
UNIVERSITY OF JOENSUU

COMPUTER SCIENCE

DISSERTATIONS XIV

MATTI TEDRE

THE DEVELOPMENT OF COMPUTER SCIENCE

A SOCIOCULTURAL PERSPECTIVE

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of Science

of the University of Joensuu, for public criticism in Louhela

Auditorium of the Science Park, Länsikatu 15, Joensuu, on

October 20th, 2006, at 12 noon.

UNIVERSITY OF JOENSUU

2006

Julkaisija Joensuun yliopisto

Tietojenkäsittelytieteen ja tilastotieteen laitos

Publisher University of Joensuu

Department of Computer Science and Statistics

Editor Erkki Sutinen

Vaihdot Joensuun yliopiston kirjasto/Vaihdot

PL 107, 80101 Joensuu

Puh. 013-251 2677, fax 013-251 2691

email: vaihdot@joensuu.fi

Exchanges Joensuu University Library/Exchanges

P.O. Box 107, FI-80101 Joensuu, FINLAND

Tel. +358-13-251 2677, fax +358-13-251 2691

email: vaihdot@joensuu.fi

Myynti Joensuun yliopiston kirjasto/Julkaisujen myynti

PL 107, 80101 Joensuu

Puh. 013-251 4509, fax 013-251 2691

email: joepub@joensuu.fi

Sales Joensuu University Library/Sales of publications

P.O. Box 107, FI-80101 Joensuu, FINLAND

Tel. +358-13-251 4509, fax +358-13-251 2691

email: joepub@joensuu.fi

ISBN 952-458-866-8 (paperback)

ISSN 1238-6944 (paperback)

ISBN 952-458-867-6 (PDF)

ISSN 1795-7931 (PDF)

Computing Reviews (1998) Classification: K.m

Yliopistopaino

Joensuu 2006

The Development of Computer Science: A Sociocultural Perspective

Matti Tedre

Department of Computer Science and Statistics

University of Joensuu

P.O. Box 111, FI-80101 Joensuu, FINLAND

matti.tedre@cs.joensuu.fi

University of Joensuu, Computer Science, Dissertations XIV

Joensuu, 2006, 502 pages

ISBN 952-458-866-8 (paperback)

ISSN 1238-6944 (paperback)

ISBN 952-458-867-6 (PDF)

ISSN 1795-7931 (PDF)

Abstract

Computer science is a broad discipline, and computer scientists often disagree

about the content, form, and practices of the discipline. The processes through

which computer scientists create, maintain, and modify knowledge in computer

science—processes which often are eclectic and anarchistic—are well researched,

but so far there is no consensus on whether studies of such processes belong to the

field of computer science or not.

In this thesis the sociocultural formation of computer science and computing tech-

nology is analyzed. It is asked if there is a need to extend computer science with

meta-knowledge derived from perspectives from disciplines such as sociology,

history, anthropology, and philosophy.

Based on a selection of science and technology studies and case studies from the

history of computing, an argument is made that understanding the social processes

that create and maintain computer science is an important part of understanding

computer science. An outlook on social studies of computer science is presented,

and it is suggested that it should be acknowledged and included in the ACM Com-

puting Classification Systems as class K.9.

Keywords: social studies of computer science; social issues; meta-knowledge in

computer science

i

Supervisors

Professor PhD Erkki Sutinen

Department of Computer Science and Statistics

University of Joensuu, Finland

Director of Research Dr. Esko Kähkönen

International Multidisciplinary PhD Studies in Educational Technology

University of Joensuu, Finland

Associate Professor PhD Piet Kommers

Department of Behavioral Sciences

University of Twente, The Netherlands

Reviewers

Professor Dr. Tech Jari Multisilta

Department of Information Technology

Tampere University of Technology in Pori, Finland

Professor PhD Pierluigi Crescenzi

Department of Systems and Computer Science

University of Florence, Italy

Opponent

Professor Dr. Johannes C. Cronje

Department of Curriculum Studies

University of Pretoria, South Africa

Language editor

Justus Randolph

Department of Computer Science and Statistics

University of Joensuu, Finland

ii

Acknowledgements

I wish to express my gratitude to my advisors Erkki Sutinen, Esko Kähkönen, and

Piet Kommers—who gave me the opportunity to freely do my research and whose

ideas were indispensable for shaping this thesis. I thank the language editor of this

thesis, Justus Randolph, for his countless insightful comments on my arguments.

His insistence on clarity had a substantial impact on the style of this thesis. I thank

the reviewers of this thesis, Jari Multisilta and Pierluigi Crescenzi, for their com-

ments.

I also thank the people with whom I have had the honor to write and publish: Mar-

cus Duveskog, Ron Eglash, Pasi J. Eronen, Teppo Eskelinen, Carolina Islas

Sedano, Minna Kamppuri, Jyri Kemppainen, Markku Tukiainen, and Mikko

Vesisenaho. I thank everyone who has read and commented my thesis. I thank

my friends and colleagues at the department of computer science and statistics,

University of Joensuu. And, of course, I thank my friends and relatives for being

there for me.

This work was funded by

(1) the Department of Computer Science and Statistics at the University of

Joensuu, Finland

(2) the East Finland Graduate School in Computer Science and Engineering

(ECSE)

(3) the National Institute for International Education (NIIED) of Korean gov-

ernment

(4) the Centre for International Mobility (CIMO) of Finnish Ministry of Educa-

tion.

This work was written with OpenOffice 2.0 under Gentoo Linux, and the illustra-

tions were made with DIA 0.94.

Joensuu, September 29, 2006,

Matti Tedre

iii

C O M M O N S D E E D

Attribution-NonCommercial-NoDerivs 2.5

You are free:

� to copy, distribute, display, and perform the work

Under the following conditions:

� For any reuse or distribution, you must make clear to others the license terms of

this work.

� Any of these conditions can be waived if you get permission from the copyright

holder.

Your fair use and other rights are in no way affected by the above.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs2.5 License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/2.5/ or send

a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

iv

Attribution. You must attribute the work in the

manner specified by the author or licensor.

Noncommercial. You may not use this work for

commercial purposes.

No Derivative Works. You may not alter, transform,

or build upon this work.

Table of Contents

1.INTRODUCTION..1

1.1.BACKGROUND..2
Computation...5

The Separation Between Science and Humanities...7

1.2.RESEARCH QUESTIONS..10

1.3.METHODOLOGY, LITERATURE, AND SOURCES..11
Credibility of Theoretical Research...11

Methodology..13

Methods..15

Choice of Literature...17

The Literature in Chapter Two...17

Sources in Chapter Three...20

1.4.CONVENTIONS USED IN THIS THESIS..23

1.5.LIMITATIONS AND ASSUMPTIONS..25
Sociocultural Matters...25

The Scope of This Thesis...28

2.INTERPRETATIONS OF SCIENCE AND TECHNOLOGY.......31

2.1.SOME BASIC QUESTIONS ABOUT SCIENCE..34
How Does One Come to Know Facts?...40

Intuition of Scientific Knowledge..41

Early Schools of Thought...42

The Problems of Positivism...44

Logical Truths Do Not Carry Information...47

Inductivism...48

Problems of Inductivism..49

Popper's Falsificationism..53

A Single Observation Can Falsify a Theory..54

Progress in Science—The Falsificationist Viewpoint....................................57

Criticism of Falsificationism..59

Science as a Contract: Thomas Kuhn's Theory...64

Some Terminology Introduced by Kuhn..66

Scientific Progress According to Kuhn..68

The Characteristics of a Paradigm..70

Scientific Problems According to Kuhn...74

The Foci And Limits of Normal Science...75

Revolutions in Science..79

Problems With Kuhn's Theory...81

Pluralism in Science...85

v

Freedom of Choice: Paul Feyerabend's Anarchistic Theory...............................89

The Anarchistic Theory of Science..90

The Critique of Feyerabend..92

Logic Cannot Explain Everything..94

Values in Science...95

The Worst Enemy of Science?...97

2.2.MODERN APPROACHES TO THE SOCIETY-TECHNOLOGY RELATIONSHIP........99
Sticking Points Between Realism and Constructionism...................................103

Not Everything Is a Social Construct...107

Sticking Point 1: Contingency...109

Contingency Thesis And the Definition of Successful................................110

Inevitability, Contingency, And “The Mangle”...114

Sticking Point 2: Nominalism..117

Ontology in the Field of Computing..119

Brute Facts and Institutional Facts...120

Searle on Objectivity and Subjectivity...122

The Ontology of Algorithms..124

Consequences of Different Positions to Nominalism..................................125

Sticking Point 3: Explanations of Stability..127

Sticking Points: A Summary..133

Technological Determinism..135

Technological Momentum...138

Is Technology Value-Free?..140

Do Machines Make History?..145

Technological Progress is Immeasurable...146

The Social Shaping of Computers..147

2.3.INTERMISSION..152
The Realist Camp...154

The Constructionist Camp..155

Middle Ground...157

3.THE DEVELOPMENT OF COMPUTING AS A DISCIPLINE .161

3.1.WHAT ARE COMPUTATIONAL INSTRUMENTS?..165
Problems With the Definition of Computational Instruments.....................172

3.2.WHAT IS A PROBLEM IN COMPUTING?...175
Different Views on the Concept of Problem..176

Three Classes of Problems...177

Authentic and Artificial Problems..179

Open and Closed Aspects of Problems..181

Open and Closed Problems in Different Problem Fields.............................183

Problems in Computer Science..185

Computer-Scientist-as-Bricoleur..187

Should Computer Science Borrow the Definition of Problem from

Mathematics?...189

What Is a Problem in Computing: Summary...191

vi

3.3.THE CREATION OF MODERN COMPUTING..192
The Newton-Maxwell Gap: Before 1950..196

Analog Computing...197

Cultural Context...200

Crossing the Newton-Maxwell Gap...203

Number Crunchers..208

The Origins of Digital Computer Technology...209

Contingencies Surrounding ENIAC...211

The Birth of Business Computing: LEO I..216

The Origins of the Verb to Program...218

Summary: The Context of the Birth of Electronic Computing....................219

Early Academic Computing..221

Early Entrants to the Field of Computing..221

MIT...223

Harvard...224

University of Pennsylvania..226

Columbia University..227

Princeton...228

The Birth of Programming Languages..232

The First Compiler...232

Computer Generations..233

Real-Time Computers Offer New Prospects..235

Normal Science or Pre-Science?..237

A Level Up In Abstraction: Fortran...237

Was fortran a Natural Step or a Contingent Event?.....................................239

Algol: The Ideal Language...242

Why Did fortran Do Better Than algol?...244

Significant Factors in Language Development..247

Section Overview..250

3.4.THE CREATION OF A DISCIPLINE..255
Struggling for Status...258

Who Is a Computer Professional?..259

Early Definitions..260

The Art and Science of Processing Information..263

The Official Birth of Computer Science..266

Shaping the Public Image of Computing...270

A Concern Over Dogmatism in Computing...273

Is the Focus the Machine (Computer) or the Phenomenon (Information)? .275

Legitimating Number Crunching as a Science...278

The Tug of War Between the Theoretical and Practical..............................283

Software Engineering...286

The Focus Turns to Programming..288

Separation from Mathematics..293

Emerging Interdisciplinarity...296

Shifts in the User Base, Status, and Content of Computing.........................297

vii

Societal Conscience Awakens..299

The Limits of the Model Set by Turing and von Neumann.........................300

The Complexity of Computer Systems..305

The Sources of Complexity..309

The Semantic Gap..311

Complexity on the Language Level...313

Mastering Complexity..316

Artificial Intelligence...318

How to Bridge the Semantic Gaps?...319

Coming of Age...321

Recent Definitions..325

What Can Be Automated?..326

The Denning Report...329

A New Era of Growth..337

What's In a Name? (Part I)...340

A New Species Among The Sciences..346

Computational Science...347

What's in a Name? (Part II)..349

Research in the Discipline of Computing...352

Methodology in Computing Curricula...352

Research Approaches and Methods in Computer Science...........................354

Eclecticism and Opportunism..359

Meta-Research in Computer Science...360

Normative Arguments Cannot Be Based on Empirical Results...................363

Section Overview..366

4.SOCIAL STUDIES OF COMPUTER SCIENCE..........................371

4.1.COMPUTER SCIENCE: AN EFFICIENT ANARCHY......................................373
Research in Computer Science...375

Scientific Statements in Computer Science...376

Social Constructionism in Computer Science..378

Anarchism in Computer Science..379

The Outcomes of Anarchism..381

4.2.APPROACHES TO SOCIAL STUDIES OF COMPUTER SCIENCE......................384
The Contribution of Social Studies of Computer Science...........................386

Social Studies of Computing..389

Three Sources of Information...390

The Sociohistorical Context of Computer Science......................................392

Ethnomethodology...396

Ethnographic Methods...400

Focus on Cases...403

Evaluation of Studies of Social Reality..404

Measures of Research...406

4.3.WHAT MAKES A STUDY COMPUTER SCIENCE?......................................411
What Is the Relationship Between a Science And Its Tool?........................411

viii

To Which Field Does Social Studies of Computer Science Belong?..........415

4.4.DISCUSSION...418
On Normative Accounts of Computer Science..419

On Descriptive Accounts in Computer Science...420

“Practical” Normative Statements in Computer Science.............................422

The Mangle in Computer Science..423

Three Positions on Public Debate..424

The Mangle in Practice..427

The Disciplinary Implications of Social Studies of Computer Science.......428

An Essential Part of Mature Computer Science...431

5.CONCLUSION...435

The Philosophy of Computer Science..436

Contingencies Surrounding Computing...438

The Stored-Program Paradigm...439

Technological Momentum...440

Technological Momentum in Computer Science...441

The Mangle of Practice..442

Computer Science..444

Proofs and Assertions...447

What Should Be Automated?...449

An Efficient Anarchy...449

Constructionism and Intersubjectivism..452

Computer Science in Society...453

Social Studies of Computer Science..455

The Promise of Social Studies of Computer Science...................................457

Epilogue...461

Index of Figures

Figure 1: Computation And Related Concepts in This Thesis.......................................7

Figure 2: The Research Cycle in This Research..14

Figure 3: Internal Conceptual Coherence in a Thesis..26

Figure 4: External Conceptual Coherence in a Thesis...27

Figure 5: Differing Views of Facts...46

Figure 6: Kuhn's Model of Scientific Progress..68

Figure 7: Core Technologies of Computing...69

Figure 8: Windows to Science..153

Figure 9: Requirements for Computational Instruments..172

Figure 10: Dimensions of Problems as Continua...182

Figure 11: Some Prominent People in the Development of Early Computers...........197

Figure 12: Interdisciplinarity in Early Computing Technology.................................199

Figure 13: Aspects of Culture Encouraging the Development of Early Computers. .203

ix

Figure 14: The Influence of U.S. Military in the Early Computers...........................207

Figure 15: Aspects That the World War II Brought Together...................................211

Figure 16: The Context of Early Electronic Computers...220

Figure 17: Some Characteristics of Five American Universities in the 1940s...........230

Figure 18: Timeline of Computer “Generations”...233

Figure 19: Timeline of Programming Languages..246

Figure 20: Some Factors in Language Development...248

Figure 21: CS Topics Grouped According to Their Containment in CS...................269

Figure 22: Abstraction Layers at the Machine Level...306

Figure 23: Abstraction Layers on a Language Level...307

Figure 24: Coarse Abstraction Levels on Network Scale..307

Figure 25: Singular Processes p1..p5 and a Class p(f(x)) of Processes......................329

Figure 26: Four Fundamental Questions in Human-Centered Computing................336

Figure 27: Research Approaches in Computing Disciplines......................................355

Figure 28: Research Methods in Computing Disciplines...356

Figure 29: Narrow and Broad Interpretations of Computer Science..........................387

Figure 30: Correspondence and Coherence in Research..407

Index of Tables

Table 1: Different Sorts of Facts..123

Table 2: Examples of Problem Classes..181

Table 3: Examples of Auxiliary and Main Disciplines..414

Table 4: Top Two K.* Sublevels in ACM CCS [1998]...433

Abbreviations

ABC...The Atanasoff-Berry Computer

ACM...Association for Computing Machinery

AFIPS...........................American Federation of Information Processing Societies, Inc.

AI...Artificial Intelligence

AIEE..American Institute of Electrical Engineers

ALGOL..Algorithmic Language

ALU..Arithmetic Logic Unit

ANSI...American National Standards Institute

APL..A Programming Language

BINAC..Binary Automatic Computer

BNF..Backus-Naur Form (formerly Backus Normal Form)

CACM...Communications of the ACM

CC2001...ACM/IEEE Curricula recommendations (2001)

CHI..Computer-Human Interaction

CISC...Complex Instruction Set Computer

x

CMM..Capability Maturity Models

COBOL...Common Business Oriented Language

CODASYL...Conference on Data Systems Languages

COSERS.............................(NSF) Computer Science and Engineering Research Study

CPU..Central Processing Unit

CS..Computer Science

CS&E...Computer Science and Engineering

CSTB..Computer Science and Technology Board (of NRC)

DNA..Deoxyribonucleic Acid

DPMA...Data Processing Management Association

DUO...Datatron Users Organization

ECC..Electronic Control Company

EDSAC...Electronic Delay Storage Automatic Calculator

Educom...Inter-University Communications Council

EDVAC..Electronic Discrete Variable Automatic Computer

EMCC...Eckert-Mauchly Computer Corporation

ENIAC...Electronic Numerical Integrator and Computer

ERA...Engineering Research Associates

FORTRAN..Formula Translating System

FPU..Floating Point Unit

GAMM...................................Gesellschaft für angewandte Mathematik und Mechanik

GNU..GNU's Not Unix

HCI..Human-Computer Interaction

HIV..Human Immunodeficiency Virus

IAS..(Princeton's) Institute for Advanced Study

IBM..International Business Machines Corporation

ICT...Information and Communication Technology

IEEE...Institute of Electrical and Electronics Engineers

IFIP..International Federation for Information Processing

IRE...Institute of Radio Engineers

IS...Information Systems

JACM...Journal of the ACM

LEO...Lyons Electronic Office Computer

LISP...List Processing (language)

MIS..Management Information Systems

MIT...Massachusetts Institute of Technology

MSN...The Microsoft Network

NCR..National Cash Register Company

NRC...National Research Council

NSA...National Security Agency

NSF..National Science Foundation

PC..Personal Computer

PDA..Personal Digital Assistant

PHP..PHP: Hypertext Preprocessor

PL/I...Programming Language One

xi

PROLOG..Programmation en Logique

Q.E.D..Quod Erat Demonstrandum

RCA...Radio Corporation of America

RISC..Reduced Instruction Set Computer

SAGE..Semi-Automatic Ground Environment

SETI..Search for Extra-Terrestrial Intelligence

SIAM..Society for Industrial and Applied Mathematics

SIG..Special Interest Group

SIGCAS..................................ACM Special Interest Group on Computers and Society

SIGCSE..........................ACM Special Interest Group on Computer Science Education

SIGOPS..ACM Special Interest Group on Operating Systems

SQL..Structured Query Language

SSEC..Selective Sequence Electronic Calculator

SSK..Sociology of Scientific Knowledge

STS...Science and Technology Studies

TC2..(IFIP's) Technical Committee 2

TCL..Tool Command Language

Tk..A common graphical user interface toolkit

TSP..Traveling Salesman's Problem

UNESCO..................United Nations Educational, Scientific and Cultural Organization

UNIVAC..Universal Automatic Computer

USE..UNIVAC Scientific Exchange

UTM...Universal Turing Machine

WG2.1..(IFIP's TC2) Working Group (on ALGOL)

VoIP..Voice over Internet Protocol

ZISC..Zero Instruction Set Computer

xii

1.Introduction

This thesis is about a phenomenon called computing. Computing is a skill, and com-

puting is a science; it entails actions, processes, theories, knowledge, workmanship,

and artistry. Computing is a study, a method, a craft, a profession—and an academic

discipline. Of all those different meanings of computing, this thesis is focused on

the academic field of computing—computer science or computing as a discipline.

Throughout the short disciplinary history of electronic digital computing, there has

been a great variety of approaches, definitions, and outlooks on computing as a dis-

cipline. The arguments have sometimes been fierce, and the pace of the extension of

the field has been unparalleled by any other science. This thesis offers one portrayal

of the disciplinary history of computing.

This thesis is also about a phenomenon called science, or more specifically, science

that is connected with computing. This thesis draws from the academic disciplines

that are concerned with the phenomenon of science—the philosophy of science, the

sociology of scientific knowledge, and other types of science and technology studies

(STS). Scholars in the above-mentioned disciplines ask questions such as “What

does it mean that something is science?”, “Who defines what is science and what is

not?”, and “What is progress in science?”. In this thesis, I discuss the different view-

points of the questions above and weigh the pros and cons of those viewpoints. This

is not a thesis about the philosophy of science, the sociology of scientific knowledge,

or other types of science and technology studies, but science and technology studies

are used in constructing a conceptual framework for the analysis of computing as a

discipline.

This thesis is essentially about a phenomenon called computer science. One cannot

begin an exploratory study about computer science by rigidly defining computer sci-

ence—or there would not be much to study. Yet what one can do is study the differ-

ent ways in which computer science has been characterized, analyze those character-

izations, place them in a conceptual framework, and aim to understand the circum-

stances in which those characterizations emerged. By doing exactly that, I wish to

set up an argument for extending computer science with a branch of study that aims

at the disciplinary self-understanding of computer science—social studies of com-

puter science.

1

1.1.Background1

This thesis deals with the sociocultural dimensions of computer science. During the

last 60 years, researchers in the academic field of computing2 have brought together

a variety scientific disciplines and methodologies. The resulting interdisciplinary

science, computer science, offers a variety of ways of modeling and explaining phe-

nomena, such as computational models and algorithms. The growth of research ef-

forts in computer science has been paralleled by the growth of the number of com-

puting-related fields, such as computer engineering, computational science, electrical

engineering, decision support systems, architectural design, and software engineer-

ing. Computers and information and communication technologies at large have also

enabled a world of new socioeconomic and cultural concepts such as e-commerce,

hacker ethics, the knowledge economy, discussion boards, and virtual communities

to emerge.

There is a wealth of research on the sociocultural impact of computers and commu-

nication technologies—studies of the new economy, working culture, leisure time,

new social formations, e-economy, and so forth3. Those studies most often focus on

if and how new computing (and communication) technologies affect society and cul-

ture, and they also focus on the interactions of technology, society, and culture.

There is less research on how sociocultural influences affect the development of the-

ories, techniques, and instruments in computer science.

According to naïve technological determinism, technology develops independently

of society4. Yet, science and technology studies (STS)5 scholars generally reject

naïve technological determinism. They often argue that the directions that research

and development take are frequently decided on by coteries external to science, and

1 Parts of this introduction are from Tedre et al., 2006.

2 The term computer science was introduced long after the construction of the first fully electronic, digital, Turing-
complete computers. The history of computer science as a discipline is discussed in Chapter Three.

3 Sociologist Manuel Castells has characterized various aspects of the network society in his trilogy The Informa-
tion Age: Economy, Society, and Culture (Castells, 1996; Castells, 1997; Castells, 1998).

4 MacKenzie and Wajcman, 1999 :p.xiv.

5 Science and technology studies (STS) is often used as an umbrella term, which includes a number of research
areas and approaches that concern science and technology: for example, the philosophy of science, studies of the
social construction of technology (see Kline and Pinch, 1999), the sociology of scientific knowledge (SSK) (see
Barnes et al., 1996), and the history of science.

2

that technological decisions are often based on, for instance, economic, political, or

ideological arguments rather than technological arguments6.

Several motivations can be attributed, for example, to the development of

GNU/Linux and its introduction into use7. Arguably, GNU/Linux is advanced (a

technical motivation), it is free of initial investment (an economical motivation), and

its roots are in hacker ethics and the free software movement (ideological and social

motivations). Also, sometimes it can emphasize a cultural or political message (e.g.,

IMPI Linux in South Africa has its roots in the concerns of “digital colonialism”,

and RedFlag Linux in China has its roots in government support for an independent

operating system).

The impetus for studies of the connections between technology, academy, institu-

tions, sciences, social milieux, human practices, economical concerns, agenda, ideo-

logies, cultures, politics, arts, and other technological, theoretical, and human aspects

of the world, arose in the wake of the constructionism of the 1960s. For instance,

the strong programme in the sociology of scientific knowledge adopted the view that

all beliefs, including scientific ones, are influenced by their sociocultural surround-

ings8; the philosophy of science took a new, social constructionist turn9; the univer-

salist, positivist nature of mathematics was undermined10; historians of science and

technology rejected inevitabilism and determinism11; and in the 1980s a new field

called science and technology studies, which focuses on the social construction of

science and technology, was formed12.

Scientists in a number of disciplines have augmented their disciplinary understand-

ing by exhaustive research on the methods, motives, and stakeholders' roles in their

respective fields. Science and technology have been the subject of investigation of

philosophers such as Karl Popper, Thomas Kuhn, Paul Feyerabend, Martin Heideg-

ger, José Ortega y Gasset, and Imre Lakatos; of sociologists such as David Bloor,

6 See, e.g., Bijker and Law, 1992; MacKenzie and Wajcman, 1999 ; Smith and Marx, 1994; Pinch & Bijker, 1987;
Bijker et al., 1987.

7 This GNU/Linux example is from Tedre et al., 2006.

8 One of the original works on the strong programme in the sociology of scientific knowledge is David Bloor's
Knowledge and Social Imagery (Bloor, 1976).

9 Kuhn, 1996 (orig. 1962)

10 Lakatos, 1976; Barnes et al., 1996

11 Hughes, 1983; Kuhn, 1996; Heilbroner, 1967; Marcuse, 1964

12 Two influential books on social construction of technology are MacKenzie and Wajcman, 1999 (1st edition was
published 1985) and Bijker et al., 1987; other similar collections are Bijker and Law, 1992 and Smith and Marx,
1994.

3

Donald MacKenzie, Bruno Latour, and Barry Barnes; and of historians such as

Thomas P. Hughes and Lewis Mumford. Those authors, among others, have offered

a variety of interpretations of why scientists are doing things as they are, why discip-

lines have shaped as they have, and what kinds of interconnections there are between

disciplines, technologies, individuals, institutions, and other influential actors.

Those explanations, or descriptions, are called descriptive accounts of science.

In addition, each new turn in the disciplinary self-understanding of a particular dis-

cipline has brought with it changes in prescriptions of how scientists in that discip-

line should work. For instance, Karl Popper's refutation of logical positivism13 refor-

mulated the conception of good scientific practice, and Thomas Kuhn's work gave

impetus to the science wars14. New viewpoints of how science should be done have

influenced, for instance, the methodologies, ethics, and epistemologies of science.

Those prescriptions, or recommendations, are called normative accounts of science.

Although computer science is an innately interdisciplinary discipline, and although

computer science is used as a tool for a variety of disciplines, there is uncertainty

whether research that focuses on computer science and computer scientists belongs

to the field of computer science. Even though there are an increasing number of

studies that might be characterized as social studies of computer science, those stud-

ies are not clearly recognized as computer science. For instance, meta-research on

computer science does not have a clear place in the ACM classification system for

computing research15. In this thesis I argue that insight into the sociocultural aspects

of the creation, maintenance, and modification of computer science (as a theoretical,

conceptual, practical, and technical framework) is an essential part of computer sci-

ence and should be included in the charter of computer science itself.

13 Popper, 1959 (orig. 1935)

14 See Kuhn, 1996 (orig. 1962). Much of the 1990s' intellectual scene was characterized by the debate between re-
lativist thinkers who criticized the objectivity of science and realist thinkers who defended the objectivity of sci-
ence (see, e.g., Bucchi, 2004, especially Chapter 6). This debate was dubbed the science wars, and even though
the debate has lost its media appeal, neither side has given up the dispute. Most people, like me, do not admit to
belong to either group.

15 See http://www.acm.org/class/1998/ (accessed September 27th, 2006).

4

My argument starts with an explication of a conceptual framework16 for this thesis

(Chapter Two). My conceptual framework is typical of science and technology stud-

ies, and it derives from a number of theories in science and technology studies. I use

that framework in my analysis of reports about the emergence of the discipline of

computing and in my analysis of the formation of the disciplinary identity of com-

puter science (Chapter Three). Based on my interpretation of the formation of com-

puter science, and on the argument that social studies of science should be a part of

the project of science itself17, I propose that social studies of computer science is an

important part of computer science and I outline the disciplinary implications of my

proposal (Chapter Four). Before my argument begins, however, I discuss the back-

ground of my research, specify my research questions and research methodology,

outline the structure of this thesis, and explicate the limitations and assumptions un-

derlying my thesis.

Computation

The term computation in this thesis does not refer to the dictionary definition18, but

rather to how computation (intuitively, albeit vaguely) is often understood among

computer scientists—that is, the implicit or explicit execution of algorithms19. This

notion shifts the focus to questions such as “What is an algorithm?” and “What does

executing an algorithm mean?”. Algorithm can be defined as a finite set of instruc-

tions that operate on a finite set of symbols and can be, at least theoretically, imple-

mented on some mechanism20. Executing an algorithm entails simply following

those instructions.

The term algorithm can be defined further by arguing that algorithms should be real-

izable. It can be argued that in order to be realizable, an algorithm has to be unam-

biguous21. It can also be argued that an algorithm has to be useful, so it can have in-

16 By conceptual framework, I refer to the terminology, concepts, models, and characterizations of processes that
are used to explain and predict a certain phenomenon. As there is significant disagreement about even funda-
mental concepts such as ontology, my conceptual framework defines the language used in this thesis. This thesis
does not have a theoretical framework, because I have not been able to find a single theory able to fully charac-
terize computer science.

17 Barnes et al., 1996:p.iix.

18 To determine by mathematics, especially by numerical methods; to determine by the use of a computer (AHD,
2004) (see p. 161 of this thesis).

19 Scheutz, 2003

20 Scheutz, 2003

21 See Knuth, 1968:pp.5-6 about algorithms, computational methods (algorithms, which may lack finiteness), and
reactive processes (nonterminating computational methods, which interact with their environment).

5

put and it must have output. In addition, algorithms can be required to finish in a fi-

nite time, or, stricter, that the execution of an algorithm finishes within some sens-

ible time limits.

Note that this characterization of computation does not define the mechanism that

does the computing. As long as the mechanism is realizable, it can be concrete or

abstract, it can be real or imagined, and it can be natural or artificial. The mechan-

ism can be based on gears, thinking, pneumatics, magic, or hamburgers—or it can be

based on an electronic computer22. So, computation does not commit one to just

computation with computers. One can study computation without any connection to

any existing or future machinery. Matthias Scheutz noted that a characterization of

computation as executing algorithms that are realizable, useful, and finite does not

yet commit one as to what computations are about or what computations are sup-

posed to achieve23. However, in practice computation is often connected with some

practical realms and functions, such as information and automation.

Issues such as what computation is about, what computation is supposed to achieve,

and other problems that computation brings about are discussed throughout this thes-

is. In this thesis the term the study of computing refers to academic or non-academic

studies on computation and the immediate phenomena24 surrounding them, such as

mechanical implementations, users, theories, data, and information. The term com-

puter science refers to the academic discipline concerned with computation and its

surrounding phenomena (I analyze the problems with the term computer science in

detail in Section 3.4). In Section 3.4 I also discuss the problems involved in making

a distinction between computer science25, computing as a field26, and computing as a

discipline27.

There is a plethora of concepts, definitions, and topics as well as problems, contro-

versies, and juxtapositions connected with computation. Figure 1 maps a subset of

the computation-related concepts that are discussed in this thesis. The concepts in

22 cf. Dijkstra, 1987.

23 Scheutz, 2003

24 Note that the term phenomenon is used in at least two meanings. The first of these meanings is “an occurrence,
circumstance, or fact that is perceptible by the senses.” (AHD, 2004). The second of these meanings comes from
Immanuel Kant, and it refers to an object as it is perceived by the senses, as opposed to a noumenon.

25 Newell et al., 1967

26 Denning et al., 2001:p.12.

27 Denning et al., 1989

6

Figure 1 range from theoretical to practical, from academic to industrial, from spe-

cific to general, and from computationally fundamental to computationally peripher-

al.

Note that there are no connecting lines in Figure 1 because Figure 1 is not a semantic

map, a theoretical hierarchic concept system, mind map, or any other kind of a form-

al representation of concepts and their relationships. Many related concepts are in-

deed close to each other because they have a close relationship—however, because a

page of text is two-dimensional, many related concepts cannot be drawn close to

each other. Perhaps one might think of Figure 1 as an organized snapshot that re-

flects one picture of the relationships between a number of concepts, but that does

not restrict alternative organizations of concepts. After all, Figure 1 does not re-

define the concepts that it presents. Figure 1 is not a portrayal of the field of com-

puter science; Figure 1 is a portrayal of the computation-related topics discussed in

this thesis.

The Separation Between Science and Humanities

As early as 1959, two influential commentators, C. Wright Mills and C. P. Snow,

had already noted a significant lack of communication and understanding between

7

Figure 1: Computation And Related Concepts in This Thesis

The study of computation

Computer Science
Uses

Data

Tools

Theories

Algorithms

Indigenous Systems

of Computing

Computational Science

 Hypercomputation

Computational Models

Algorithms

Computation

Ethnocomputing

Finiteness

Usefulness
Definiteness

Effectiveness

Computational Methods

Computer Programs

Natural &

Artificial

Mechanical &

Electronic

Computational Function

(Agentive function)

Computational Design

ICT

Users / Consumers
Users / Producers

Computational Practice

Computing

Technology

Concrete &

Abstract Real &

Imagined

Mechanizability

Communication

Computation

Automation

Recollection

Coordination

Objects

Artifacts

Instruments

Technologies

Computationalism

Computing as a

Discipline
Theory

Design

Modeling

Computational

Beings

Systems and Models

of Computation

Classes of Computation

Computational

Problems

Computational Complexity

Computational

Facts

Automatic

Computation

Information

Academic &

Non-Academic

people from the humanities and social sciences and people from science and techno-

logy. That is, they noted that there is a gap between the factions who understand hu-

man issues and the factions who understand technical issues28. Mills argued that

most people who use technological gadgets do not understand technology, and that

those people who understand technological gadgets do not understand much else29.

He argued that the scientists' work is centered around “Science Machines”, which

are operated by technicians, and controlled by economic and military people30.

Snow noted the same problem, but the other way round—he argued that no more

than one in ten highly educated humanities people are able to discuss, for example,

mass and acceleration, which are the scientific equivalents of asking “Can you

read?”31.

The gap between technological knowledge and knowledge about human issues has

been addressed by a number of computer scientists32. For instance, recently Ben

Shneiderman claimed that linking the high-tech world more closely to the needs of

people requires encouraging deeper understanding of human activities and relation-

ships33. There is a large number of studies on the effects of computing on society,

culture, institutions, academic disciplines, and so forth34. There is also research on

computing from sociological, historical, anthropological, and philosophical points of

view35. However, institutionally, computer science does not acknowledge the social

studies of computer science as a branch of computer science. In the ACM Comput-

ing Classification System36 (which is the classification system for almost all com-

puter science publications) there is no category for research and meta-research about,

for instance, how computer scientists create, maintain, disseminate, and reconstruct

knowledge; how the proofs, debates, and refutations in computer science play out;

how subjective assumptions, attitudes, and tacit knowledge affect computer science;

28 Mills, 1959; Snow, 1964 (orig. 1959). Snow's text has been widely quoted, but also widely criticized.

29 Mills, 1959:p.175.

30 Mills, 1959:p.16.

31 Snow, 1964:p.15.

32 See variants of this theme in, e.g., Cockton, 2004; Dertouzos, 2001; Johnson, 1998; Mahmood, 2002; Negro-
ponte, 1995; Weiser & Brown, 1997.

33 Shneiderman, 2002:pp.3,15.

34 See, for instance, the references in Castells, 1996; Castells, 1997; Castells, 1998; Easton, 2006.

35 See, e.g., NSR Computer Science and Telecommunications Board, 1999; Campbell-Kelly & Aspray, 2004; Such-
man, 1987; Smith, 1998, respectively.

36 See http://www.acm.org/class/1998/ (accessed September 27th, 2006).

8

or even what computer science is37. Social studies of computer science is not an ac-

knowledged branch of computer science.

Yet, computer science is done by people. No matter what ontological or epistemolo-

gical standpoints one takes, one cannot escape the fact that science as an enterprise is

run by scientists and all scientific statements are made by scientists. The relation-

ship between science and social phenomena is an issue that has been debated extens-

ively in fields such as physics and mathematics38, but not so in the field of computer

science. It has not been established, however, if understanding how computer sci-

entists work would actually be beneficial to computer science, or if such studies

might serve only sociological, historical, anthropological, or philosophical pur-

poses39. In this thesis I deal with the question of whether computer science as a dis-

cipline can benefit from social studies of computer science.

37 With a few exceptions: K.2 (History of Computing), some topics in I.2 (Artificial Intelligence), ethics in K.4.1
(Computers and Society–Public Policy Issues) and K.7.4 (Professional Ethics), and–perhaps implicitly–in K.6
(Management of Computing and Information Systems).

38 The classical works in the sociology and philosophy of science concern mostly physics and mathematics; take,
for instance, Popper, 1959; Kuhn, 1996; and Lakatos, 1976.

39 The importance of historical insight in computer science has been established–the history of computer science is
a recognized part of computer science. My question is: Why is history considered to be informative about com-
puter science while many other types of intellectual inquiry are not?

9

1.2.Research Questions

In order to determine what role social studies of computer science plays in the broad-

er landscape of computer science, I needed to pose three essential questions. First, it

was necessary to consider if the historical development of computer science has de-

pended on sociocultural factors and to what extent different aspects of computer sci-

ence are necessary or contingent parts of computer science. Second, it was neces-

sary to investigate the concrete (technological), societal (historical, cultural, institu-

tional, and political), and abstract (philosophical and theoretical) backgrounds of

computing and ask which ones are within the focus and reach of current computer

science. Third, it was necessary to ask what kinds of research can be considered to

be computer science and what kinds of arguments support the view that understand-

ing the sociocultural aspects of computer science is beneficial to computer science.

Because my research on the history of computer science showed that sociocultural

factors indeed play an influential role in the construction of computer science, and

that the benefits of sociocultural self-understanding of the discipline are warranted, I

conceptualized a viewpoint of computer science that is sensitive to the sociocultural

aspects of computer science. I also explored the implications of this viewpoint for

computer science.

If condensed in three sentences, the research questions were:

1. Is there a need to broaden computer science with perspectives from dis-

ciplines such as sociology, history, anthropology, or philosophy?

2. If there is a need to broaden computer science, what kind of arguments

support such an extension?

3. What consequences may a broad, socioculturally receptive view have on

computer science?

These three research questions, especially questions 1 and 2, are intertwined. In the

following section I describe how these three research questions were approached,

and how the structure of this thesis relates to these research questions.

10

1.3.Methodology, Literature, and Sources

This is a theoretical dissertation. The purpose of theoretical research, James Day ar-

gued, is to challenge the grounds on which other acts of research take their mean-

ing40. Day wrote, “Since all research takes its impetus from theoretical suppositions,

since every researcher is a theorist, the clear place of the theoretical dissertation

lies in the work of reviewing and remaking the terms which govern what other re-

searchers have done or will do”41. My research is a critical synthesis of existing re-

search and arguments about computer science, and the outcomes of my research are

a characterization of computer science as a socially constructed discipline and an ar-

gument for extending computer science with some complementary viewpoints. In

this section I discuss standards for judging theoretical research, methodological is-

sues in theoretical research, the choice of literature and sources in this dissertation,

and how my research questions relate to the structure of this thesis.

Credibility of Theoretical Research

As computer science is often considered to belong to the family of hard sciences, in

the beginning of my research I attempted to qualify my research in terms of quantit-

ative empirical research. I attempted to use terms such as external validity to refer to

the applicability of my conclusions on a level more general than my research (i.e.

generalizability), construct validity to refer to how the different parts of my research

cohere, and reliability to refer to the degree to which, given the same readings, a

number of independent authors would come to the same conclusions. But because in

theoretical research—as opposed to quantitative empirical research—one does not

systematically test a theory with data, using quantitative research terminology would

be somewhat artificial or even misleading.

Next I attempted to describe my research in terms of qualitative exploratory re-

search. In qualitative research, credibility may be a more appropriate criterion than

internal validity, transferability may be preferred to external validity, dependability

might be a more apt concept than reliability, and confirmability may be a better cri-

terion than objectivity42. I attempted to use the terms transferability to refer to the

40 Day, 1993 in Nickerson, 1993

41 Day, 1993

42 Trochim, 2000; Guba & Lincoln, 1994 in Denzin and Lincoln, 1994

11

degree to which my research is limited to computer science and does not concern

science at large, dependability to refer to the impact of my research on computer sci-

ence if my argument is taken seriously, and confirmability to refer to the degree to

which my arguments can be confirmed or contradicted by other researchers studying

the same topic.

Using the qualitative terminology above, one could say that my research has limited

transferability, as the aim of this dissertation is to generalize to computer science but

not to generalize to science at large. That is, I make arguments about computer sci-

ence, but not about all sciences. One could say that the dependability of this re-

search is significant—I argue for an extension of the most commonly used taxonomy

of computer science research with a category for meta-research on computer science.

And one could say that the confirmability of this research is to be shown by other re-

searchers who might adopt viewpoints that contradict those I describe in Chapter

Two and who might analyze how well the literature and sources support those altern-

ative viewpoints.

However, the qualitative research criteria may not be fully applicable to theoretical

research either, as those concepts are related to exploratory research in which collec-

ted data is used to develop, for example, models, taxonomies, or theories. Those

concepts have also been criticized as an attempt to parallel quantitative research cri-

teria43. Although in a theoretical dissertation the selected theoretical literature and

source texts could be understood as the “sample” or “data”, that parallel is weak. In

the end, a theoretical dissertation is simply different from an empirical dissertation.

As M. David Merrill wrote, “When one tries to force fit a theoretical dissertation

into an empirical dissertation format the result is a misshapen monstrosity that

pleases no one.”44.

There is, however, one term from the qualitative research tradition that is particu-

larly apt for a theoretical dissertation: credibility. Egon Guba and Yvonna S. Lin-

coln argued that an author who works within the qualitative research tradition cannot

utilize incontestable logic or indisputable evidence to force the reader to accept ana-

lyses or arguments45. An author can only hope that his or her argument is credible

43 Guba & Lincoln, 1994

44 Merrill, 2000:p.77.

45 Guba & Lincoln, 1994

12

and position is useful: Guba and Lincoln wrote, “We do ask the reader to suspend his

or her disbelief until our argument is complete and can be judged as a whole.”46. I

ask the reader to be critical about my socioculturally focused interpretation of how

the status quo in computer science has come to be, but still to judge my argument as

a whole. In the end, the reader is the judge of the selection of my theoretical literat-

ure and sources, the credibility of my angle, the rigor and depth of my analyses, and

the conclusions I draw.

James Day wrote that theoretical researcher needs to show how and why things have

happened as they have, and to indicate how, and explain why, they might be appre-

ciably improved when the position of the research is taken seriously47. This is how

Day's guideline is implemented in my research: In Chapter Two I construct the con-

ceptual framework used in this thesis and in Chapter Three I analyze computing as a

discipline using the conceptual framework formed in Chapter Two. In Chapter Four

I discuss the changes that should be made based on my findings, and sketch the im-

plications to the field of computing if those propositions are taken seriously.

Methodology

The term method in this thesis refers to a means or manner of procedure for accom-

plishing something48, like measuring the execution time of an algorithm for a given

input, interviewing a group of people about an interesting phenomenon, or compar-

ing the execution times and output sizes for a given input with two algorithms. The

term methodology in this thesis refers to the principles and assumptions that underlie

a set of methods49. For instance, the postpositivist methodology relies on realist on-

tology and dualist epistemology50, and is incompatible with, for example, positive

proofs. The term research approach in this thesis refers to a loose set of methods

and techniques chosen for research as well as a conceptual and/or theoretical frame-

work that defines the language of the research and how inferences and analyses are

made. For instance, the term formulative approach has been used to refer to re-

46 Guba & Lincoln, 1994:p.108

47 Day, 1993

48 AHD, 2004

49 Note that sometimes methodology is understood strictly as the study of methods, but sometimes loosely as a set
of methods(AHD, 2004).

50 Guba & Lincoln, 1994:p.110.

13

search that involves synthesizing and integrating information and then developing

guidelines, models, or frameworks51.

As this is a theoretical dissertation, my methodology is that of theoretical research.

However, Chetan Bhatt noted that in a theoretical dissertation, there is likely to be

overlap between the theory and methodology52, and this thesis is not an exception.

The conceptual framework in this thesis is built from the philosophical and sociolo-

gical theories discussed in Chapter Two, and this conceptual framework is then used

as a tool for the analysis of the history of computing in Chapter Three. In other

words, the conceptual framework of Chapter Two is the lens through which the ma-

terial in Chapter Three is viewed. However, that framework also guides my reading

of the constituents of the framework itself.

Theoretical research is often hermeneutic—as the research goes on, the conceptual-

theoretical framework of the research is developed, sources in the research are

changed, new patterns are found, and the analyses of the sources are revised (see

Figure 2)53. This research started with a number of historical accounts and character-

izations of computer science, from which several sociocultural patterns arose. Those

patterns were in accordance with some philosophical accounts of science, which led

to the construction of an initial theoretical framework. Subsequent reading about the

history of computer science, however, brought up more patterns of the creation of

computer science, and the theoretical framework, which consisted of one philosoph-

ical account of science, diversified into a conceptual framework, which now consists

of concepts from several sociological and philosophical accounts of science.

51 Morrison & George, 1995

52 Bhatt, 2004 in Seale, 2004

53 See especially Hans-Georg Gadamer's magnum opus Truth and Method (Gadamer, 1982, orig. 1960); the book
Philosophical Hermeneutics offers a collection of Gadamer's essays (Gadamer, 1976).

14

Figure 2: The Research Cycle in This Research

This dissertation is an interpretation of the history of computer science in a certain

conceptual framework. Choosing a different conceptual framework would definitely

change the picture of computer science presented here. That is not, however, a thor-

oughly relativistic statement. The theoretical works that form the conceptual frame-

work in Chapter Two are recognized and widely used in explanations of science and

technology. Also the sample of sources in Chapter Three consists of well-recog-

nized articles and books that have been central to the discussions of computer sci-

ence in English-speaking countries during the period from 1945-present.

This thesis has characteristics of both deductive and inductive reasoning—it is diffi-

cult to say if hermeneutically oriented research is observation-driven or theory-driv-

en54. The deductive character is obvious in the analysis of research material: I have a

conceptual framework that I use to analyze patterns of change in computing. The in-

ductive character is obvious in the refinement of the conceptual framework accord-

ing to my analysis of computing.

Methods

In examining the sociocultural aspects of computer science, one could focus on, for

instance, computer science as knowledge (abstract, intangible), computing technolo-

gies (concrete, tangible), or computer science as an activity (practical, intangible).

However, technology has contributed to scientific development in the field of com-

puter science perhaps more than in any other science. The nominally different

spheres of science and technology have in fact been so interwoven throughout the

history of computing, that in this thesis I often use the term technoscience to refer to

both of them55. In this thesis computer science as an activity is coupled together with

computer science and computer technology in order to create a multiperspectival

view of computer science.

Because all three research questions address different matters, I separately discuss

the methods that were used in this thesis for examining each of the three research

questions.

54 cf. Bhatt, 2004

55 For instance, Donna Haraway (Haraway, 1999) has used the term technoscience instead of science and techno-
logy, because she has felt that the two have–recently, to say the least–become inseparable (MacKenzie and Wajc-
man, 1999).

15

Question 1: Is there a need to broaden computer science with perspectives

from disciplines such as sociology, history, anthropology, or philosophy?

To answer this question, I examined the development of electronic, digital comput-

ing and computer science as a discipline, beginning from the birth of the first elec-

tronic, digital, Turing-complete computers, and analyzed if this development in-

cluded elements that fall outside the focus of the dominantly technologically ori-

ented theoretical and conceptual frameworks of computing. This is reported in

Chapter Three. I surveyed the existing social studies of computing and social studies

of computer science and looked at their place in computer science; I discuss this in

Chapter Four. In Chapter Four I also discuss what is needed to understand those ele-

ments, and especially if understanding those elements would benefit from concepts

or theories from the humanities or social sciences56.

Question 2: If there is a need to broaden computer science, what kind of ar-

guments support such an extension?

To answer this question, I considered arguments that have been used in other sci-

entific disciplines to support similar extensions and analyzed the viability of those

arguments in computer science. I considered both philosophical and practical argu-

ments—both are necessary in a field as dynamic as computing. This is reported in

Chapter Two. I analyzed and characterized computer science as a socially construc-

ted discipline. This is reported in Chapter Three and Chapter Four. In addition, I

considered different approaches in the humanities and social science, and analyzed

the feasibility of those approaches in studies of computing. This is reported in

Chapter Four.

Question 3: What consequences may a broad, socioculturally receptive view

have on computer science?

To answer this question I isolated a number of aspects of computing as a discipline,

and analyzed the possible consequences and changes that the aforementioned ap-

56 There is overlap between the concepts humanities and social science(s). The humanities are generally regarded
as including studies in, for instance, languages and literature, the arts, history, and philosophy (Encyclopædia
Britannica Online, 2004). The social sciences are generally regarded as including sociology, psychology, anthro-
pology, economics, political science, and history (AHD, 2004). Both humanities and social science are referred
to here in order to emphasize the generality of my research question. The reason why I foreground sociology,
history, anthropology, and philosophy is that they are central to my argument, and they have been foregrounded
in other studies on social construction of science too (e.g., Pickering, 1995:p.216).

16

proaches from the humanities and social sciences have on those aspects. This is re-

ported in Chapter Four.

Choice of Literature

Similar to the concepts of reliability and validity, sampling terminology may not be

appropriate in a theoretical dissertation. In a theoretical dissertation the choice of lit-

erature cannot be nailed down at the beginning of the research, but the researcher

must be able to revise the literature at any point in the study. The fluidity of literat-

ure and sources is characteristic of a philosophical hermeneutic approach. It could

still be said that the sample of literature in this thesis is neither a comprehensive

sample nor a representative sample, but that one could interpret the choice of literat-

ure in this thesis to have the characteristics of purposive sampling (a.k.a. judgment

sampling) and convenience sampling57, for the reasons that follow.

The main body of literature in Chapter Two consists of the works of those philo-

sophers of science that are today considered to be the key figures in the 1900s philo-

sophy of science. Initially my theoretical framework consisted of the works central

to the constructionist shift in the philosophy of science, but as my research on the

disciplinary history of computer science showed inadequacies in that framework, I

gradually extended my framework towards more modern accounts of scientific and

technological change. I selected those accounts due to their visibility in contempor-

ary discussion (such as in the journal Social Studies of Science and contemporary lit-

erature58). I describe my selection of sources for Chapter Three in more detail in the

beginning of Chapter Three. It should be noted here, however, that in Chapter Three

the articles that are available in electronic form have a better representation than art-

icles that are hard to obtain, yet most of the journal archives in computer science are

indeed available on-line.

The Literature in Chapter Two

The literature in Chapter Two consists of four main types. First, there are a number

of original, classic books in contemporary (1900s) philosophy of science and modern

57 See purposive sampling in Bernard, 1995:p.95.

58 Pickering, Barnes, and Bloor have been visible in Social Studies of Science. Of contemporary literature, see, e.g.,
Hacking, 1999; MacKenzie and Wajcman, 1999 ; Chalmers, 1976 (1999 ed.); Rosenberg, 2000; Couvalis, 1997.

17

sociology, as well as a number of original, applauded books (“modern classics”59).

Those are, in chronological order, Karl Popper's The Logic of Scientific Discovery60,

C. Wright Mills' The Sociological Imagination61, Thomas Kuhn's The Structure of

Scientific Revolutions62, Berger and Luckmann's The Social Construction of Real-

ity63, Paul Feyerabend's Against Method64, David Bloor's Knowledge and Social Im-

agery65, Imre Lakatos' Proofs and Refutations66, John Searle's The Construction of

Social Reality67, and Manuel Castells' The Information Age68.

Second, there are a number of books that are original contributions or compilation

works on the philosophy of science and other topics that concern the theme of this

thesis, but that may not be very well-known to the readership of this thesis. Those

works include, for instance, Lakatos and Musgrave's Criticism And the Growth of

Knowledge69, Pierre Duhem's The Aim And Structure of Physical Theory70, W.v.O.

Quine's Word and Object71, Barnes, Bloor, and Henry's Scientific Knowledge: a So-

ciological Analysis72, Bijker and Law's Shaping Technology/Building Society73, Ian

Hacking's The Social Construction of What?74, Steve Fuller's Kuhn vs. Popper75,

Pierre Lévy's Collective Intelligence76, MacKenzie and Wajcman's The Social Shap-

ing of Technology77, Luciano Floridi's Philosophy of Computing: an Introduction78

and The Blackwell Guide to the Philosophy of Computing and Information79, Brian

59 Because the term “modern classic” is used often, it is used here too, although the term indeed sounds like an oxy-
moron coined by impatient followers of some authors. The line between classic, non-classic, and modern classic
works is a subjective one.

60 Popper, 1959 (orig. 1935)

61 Mills, 1959

62 Kuhn, 1996 (orig. 1962)

63 Berger & Luckmann, 1966

64 Feyerabend, 1993 (orig. 1975)

65 Bloor, 1976

66 Lakatos, 1976

67 Searle, 1996

68 Castells, 1996; Castells, 1997; Castells, 1998 (trilogy)

69 Lakatos & Musgrave, 1970

70 Duhem, 1977 (orig. 1914)

71 Quine, 1980

72 Barnes et al., 1996

73 Bijker and Law, 1992

74 Hacking, 1999

75 Fuller, 2003

76 Lévy, 1997

77 MacKenzie and Wajcman, 1999

78 Floridi, 1999

79 Floridi, 2004

18

Cantwell Smith's On the Origin of Objects80, Andrew Pickering's The Mangle of

Practice81, and Steven Pinker's The Blank Slate82.

Third, there are a number of classical, oft-quoted journal articles or book chapters,

such as “Two Dogmas of Empiricism”83, “The Mangle of Practice: Agency and

Emergence in the Sociology of Science”84, “Normal Science And Its Dangers”85,

“Consolations for the Specialist”86, and “How to Defend Society Against Science”87.

Fourth, there are some references to contemporary and near-contemporary discus-

sion on the topics above by, for instance, Lewis Mumford, Greg Bamford, Philip

Brey, Luciano Floridi, Donna Haraway, Robert Heilbroner, Ronald Kline, Trevor

Pinch, Bruno Latour, Gary Thomas, Langdon Winner, Mario Bunge, Thomas

Hughes, and Rob Kling88, plus many other authors. The journal Minds and Ma-

chines deals predominantly with philosophical issues related to computing, and there

are a number of recent articles from Minds and Machines.

In my work I do not shun the works of people once named “betrayers of the truth”89

—Karl Popper and Thomas Kuhn—and “the worst enemy of science”90 Paul Feye-

rabend. In this thesis, however, their theories are not considered as being opposed to

science, but as serious criticisms of the conception of the science of their time. In

this thesis Popper, Kuhn, and Feyerabend are understood as developers of scientific

thinking—Popper wanted to correct a glaring misconception about the mechanisms

of science, Kuhn presented a description of how science actually works, and Feye-

rabend wanted to free science from detrimental dogmatism. Because in a theoretical

dissertation the conceptual framework is of major importance, and because I wish to

keep this thesis self-contained for computer scientists, the review of and discussion

about these theorists is lengthy.

80 Smith, 1998

81 Pickering, 1995

82 Pinker, 2002

83 Quine, 1980:pp.20-46. A solid critique of analytic vs. synthetic truths, and the dogma of reductionism.

84 Pickering, 1993. The “resistance” and “accommodation”: a materialist contribution to social studies of science.

85 Popper, 1970. Popper's critique of Kuhn, where Popper conceded that there is an apparent weakness in falsifica-
tionism.

86 Feyerabend, 1970. Feyerabend's critique of Popper.

87 Feyerabend, 1975. On the reasons why the society must be liberated from scientific dogma.

88 Mumford, 1962; Bamford, 1993; Brey, 2003; Floridi, 2003; Haraway, 1999; Heilbroner, 1967; Kline and Pinch,
1999; Thomas, 1997; Winner, 1999; Bunge, 1979; Hughes, 1983; Kling, 1980

89 As John Horgan noted (Horgan, 1996:p.32.)

90 Horgan, 1996

19

Sources in Chapter Three

George Berkeley complained that philosophers are keen on creating their own prob-

lems that keep them busy afterwards: “We have first rais'd a Dust, and then com-

plain, we cannot see”91. Although this thesis is a theoretical thesis, the content is not

only theoretical. In Chapter Three I tie theoretical discussion to contemporary de-

bates in the field of computer science. The literature in Chapter Three consists of

four main types.

First, there are a large number of historical accounts of computing. Those are

mainly (1) articles from the well-recognized journal IEEE Annals of the History of

Computing and (2) history books focused on computing technology. The articles

from the IEEE Annals of the History of Computing (the Annals) were chosen from

the IEEE digital library if their abstracts led me to believe that the article dealt with

sociocultural factors in computing. I read the abstracts in each issue of the Annals

from 1992 to 2004 (those issues are available on-line). Note that the Annals has a

large number of technically oriented articles that neither recognize nor deny a human

viewpoint to the history of computing technology. The history books were written

by recognized historians of computing such as Martin Campbell-Kelly, William As-

pray92, Michael Williams93, Jean Sammet94, Richard Wexelblat95, Thomas Bergin,

Richard Gibson96, and Kenneth Flamm97. Note that the historical sources do not in-

clude primary sources, such as archival records.

Second, there are applauded, classical journal articles and books that computer sci-

entists usually know by name and author, such as Knuth's The Art of Computer Pro-

gramming98 and The Remaining Trouble Spots in ALGOL 6099, Brooks' The Mythical

Man-Month100, Simon's The Sciences of the Artificial101, Gödel's On Formally Unde-

91 Berkeley, 1971 (orig.1734):p.5. Because of this inward-looking attitude, according to Luciano Floridi, philo-
sophy interacts more with its own intellectual tradition than with the culture within which it develops (Floridi,
2003).

92 Campbell-Kelly & Aspray, 2004

93 Williams, 1985

94 Sammet, 1969

95 Wexelblat, 1981

96 Bergin & Gibson, 1996

97 Flamm, 1988

98 Knuth, 1997; Knuth, 1998; Knuth, 1998b (trilogy)

99 Knuth, 1967

100Brooks, 1975

101Simon, 1981

20

cidable Propositions of Principia Mathematica and Related Systems102, von Neu-

mann's First Draft of a Report on the EDVAC103, Shannon's The Mathematical The-

ory of Communication104, Turing's On Computable Numbers, With an Application to

the Entscheidungsproblem105 and Computing Machinery and Intelligence106, Naur et

al.'s Report on the Algorithmic Language ALGOL 60107, Knuth's Theory and Prac-

tice108, Dijkstra's GO TO Statement Considered Harmful109, Bush's As We May Think110,

Denning et al.'s Computing as a Discipline111, Forsythe's What to Do Till the Com-

puter Scientist Comes112, Newell et al.'s Computer Science113, and Wirth's Program

Development by Stepwise Refinement114. Many of those articles triggered debates

that had a significant impact on the development of computer science, and many of

them belong to the “canons” of classical papers in computer science suggested by,

for instance, Michael Eisenberg115 as well as Judith Gal-Ezer and David Harel116.

Third, there is a large number of lesser-known journal articles that are nonetheless

important for this thesis. Those are mostly from Communications of the ACM, but

there are also articles from journals such as American Mathematical Monthly, Journ-

al of the ACM, BIT, Datamation, and Theoretical Computer Science. The emphasis

on Communications of the ACM (CACM) is due to its long history (CACM was es-

tablished in 1957) and its recognition as a forum for academic computer scientists to

exchange results, knowledge, and opinions. Some of the most well-known debates

in computer science have taken place on the pages of CACM: The ALGOL debate in

the 1960s, the GO TO statement debate in the late 1960s and the following structured

programming debate in the mid-1970s, computer science policies and human rights

debates in the turn of the 1980s, and the computer science education debate

throughout the publication's history.

102Gödel, 1931

103Neumann, 1945

104Shannon, 1948

105Turing, 1936

106Turing, 1950

107Naur et al., 1960

108Knuth, 1991

109Dijkstra, 1968

110Bush, 1945

111Denning et al., 1989

112Forsythe, 1968

113Newell et al., 1967

114Wirth, 1971

115Eisenberg, 2003

116Gal-Ezer and Harel, 1998

21

There is a minimal number of conference articles by authoritative figures in com-

puter science, such as Jonathan Grudin117, Peter Wegner118, John Backus119, and a

small number of conference articles that discuss contested or novel topics. Some art-

icles, such as the IEEE/ACM computing curriculum 2001120, are retrieved from the

official web pages of different organizations. Finally, there are three online diction-

aries used: (1) The American Heritage Dictionary of English Language Online, 2004

edition121, (2) Encyclopædia Britannica Online122, and (3) Stanford Encyclopedia of

Philosophy123. Dictionaries are referred to only where explicitness about a definition

of a word is necessary. In those parts of this thesis where “significant portions of

[my] own [previous] copyrighted work”124 are reused, references to my earlier pub-

lications are made.

117Grudin, 1990, in which Grudin depicts “five levels of interface design”.

118Wegner, 1976, in which Wegner brought forth an early version of computing as design-modeling-theory.

119Backus, 1959, in which Backus defined BNF.

120Denning et al., 2001

121AHD, 2004

122Encyclopædia Britannica Online, 2004

123Stanford Encyclopedia of Philosophy

124http://www.acm.org/pubs/plagiarism%20policy.html (accessed September 27th, 2006)

22

1.4.Conventions Used in This Thesis

Following the tradition of, for instance, Popper, Kuhn, Feyerabend, and Lakatos, ref-

erences in this thesis are in footnotes125. In references to books, the reference is to

the pages indicated, for instance, “Mills, 1959:pp.19-21”. In some places definite

parts of texts need to be referenced, such as “Wittgenstein, 1986:last clause”. In a

few book references no page numbers are indicated: In those cases the reference is to

the whole book and refers to the spirit of the book, such as “Popper, 1959”, which

refers to falsificationism at large. The year in the reference indicates the publication

year of that particular edition, but whenever it is necessary, also the original publica-

tion date is added: for example, “Snow, 1964 (orig. 1959)” refers to the second edi-

tion of Snow's 1959 book. In the bibliography, the original publication dates are in

brackets126. Journal and conference articles as well as chapters in compilation works

are referred to without page numbers. The names of well-known authors are in their

commonly used forms, that is, instead of “Charles Wright Mills”, “C. Wright Mills”

is used, and instead of “Charles Percy Snow”, “C.P. Snow” is used.

In some cases, short verbatim quotations are italicized in quotation marks, followed

by a footnote indicating the source (“this is a direct quotation”127). Longer verbatim

quotations are italicized and framed as a separate paragraph, and in the second half

of Chapter Three, quotations are accompanied with a year of the publication in

brackets [1976] for the sake of chronological clarity. To keep the footnote numbers

within three digits, footnote numbering starts from one in each chapter.

The terms dissertation and thesis are used interchangeably. Whenever third-person

pronouns are used, they are always of the form he or she, him or her, or himself or

herself, except for some verbatim quotations. Established terms such as the Travel-

ing Salesman's Problem are used in their conventional forms, and no gender bias is

assumed. The singular subject I refers to the author. The plural subject we is used

only in verbatim quotations—in those quotations it usually refers to people in gener-

al (for instance, “What values shall we choose to probe the sciences of today?”128).

125See, e.g., Popper, 1959; Kuhn, 1996; Feyerabend, 1993; Lakatos, 1976.

126e.g., Kuhn, Thomas (1996 [1962]) The Structure of Scientific Revolutions (3rd edition). The University of
Chicago Press: Chicago, USA.

127This footnote would indicate the source of the quotation above.

128Feyerabend, 1970

23

Common programming language names that are in all capitals and that are ac-

ronyms, such as FORTRAN, are written in small capitals (FORTRAN), as this is an oft-

used convention129, and this convention is arguably less distracting than using large

capitals. Also some institutions are written in small capitals if it has been the writing

convention in the sources that deal with them (for instance, in Peter Naur's seminal

paper on ALGOL
130, he refers to the group SHARE as “SHARE” but refer to the acronym

USE as “USE”).

Punctuation follows the practices of structured design. In the Chicago Manual of

Style, punctuation follows a non-structured manner131. For instance, according to the

Chicago Manual of Style when a quotation ends a sentence, the period comes inside

the quotation, “like this.” Following the practices of structured design, quotation

defines a block of text that begins and ends with a quotation mark. In structured

design, a sentence defines a block of text, which begins with a capital letter and ends

with a period. In structured design, if a block of text (quotation) is inserted inside

another block of text (sentence), they are nested “like this”.

I refer to fields such as mathematics and physics without capitals (“Physics”). I use

the term social studies of computer science as a name of a field.

129See IEEE Annals in the History of Computing–e.g. Rosenblatt, 1984. There are other conventions, too. For in-
stance Campbell-Kelly & Aspray, 2004 and Sammet, 1969 use all capitals FORTRAN.

130Naur et al., 1960

131The difference between structured and unstructured punctuation is similar to the difference between HTML and
XML. HTML code “...<i>......</i>” is similar to Chicago Manual of Style of punctuation, but
that code is not structured.

24

1.5.Limitations and Assumptions

Constraining arguments in one way or another is not uncommon in any discipline.

Even in the field of algorithms and theoretical computer science, in mathematics,

and in any type of quantitative research, statements are invariably bounded or quali-

fied in one way or another132. In the following pages I discuss some of the limita-

tions of, and assumptions in, my thesis. The following discussion is not meant to be

a second line of defense for me, but guidelines for the reader about the applicability

of my argument.

I cannot unearth all my hidden assumptions, if simply for the reason that I am not

aware of all of them, but in my argumentation I have attempted to make them as ex-

plicit as possible. It may be easy to spot some implicit assumptions, such as my trust

in democratic decision-making. Some other assumptions may be harder to spot, like

my belief that people must be responsible for their actions. My argument about the

responsibility of computer scientists for their science is based on that assumption.

One can always choose to delegate responsibility to groups, opinion leaders, con-

sumers, or other influential actors in the scientific-industrial-public complex, and

such relocation changes the applicability of some of my arguments. Responsibility

is not a simple matter, and it has been debated extensively in the philosophy of tech-

nology133.

Sociocultural Matters

Everybody, every researcher, has a certain sociocultural background, a certain edu-

cation, and certain experiences. The background of a researcher inevitably biases

their research; every researcher interprets phenomena from a certain sociocultural,

educational, and personal point of view. The statement above is an underlying as-

sumption in this thesis—I assume that context matters and that neither statements

nor interpretations are made in a sociocultural vacuum. This view is common to

philosophical hermeneutics in general134.

Essentially all research can be considered to be interpretive. All research, including

logico-mathematical inference, is guided by the researcher's beliefs and interpreta-

132For instance, “Let n0>0 and c>1.” or “p<.005”.

133See references in, for instance, Shrader-Frechette, 1992 and Bunge, 1979; and for a general discussion, see
Scharff & Dusek, 2003

134Gadamer, 1976:p.xxv.

25

tions about the world, as well as the researcher's view on how the world should be

understood and studied135. Note that this standpoint about interpretivity is another

underlying assumption in this thesis, and is incompatible with the naïve positivist

viewpoint. A proponent of naïve positivism might argue that researchers are able to

find out and prove aspects of how the world really works, and that full objectivity is

possible.

Conceptual Consistency

There is serious disagreement about many terms and concepts. For instance culture,

society, and science have been defined in a number of inconsistent ways and there

are debates about which definitions are best. Many terms are used in a variety of

ways in different sources, yet some consistency of terms and concepts is necessary

for this thesis. However, defining terminology strictly and defining terminology

loosely both have their problems.

If I defined terms (such as culture, society, and science) in detail for the purposes of

this thesis, then it would be possible to fully establish internal conceptual coherence

in this thesis. That is, I could define terms so that they would be used consistently

throughout this thesis. In that case, however, maintaining conceptual consistency

between terms in this thesis and terms in the references would be burdensome. In

that case, the relationship between my use of each term and the use of the term in

each reference should be defined explicitly (Figure 3). Because such a convention

would create literally thousands of relationship definitions, and because many terms

are inextricably bound to their context, I doubt the appropriateness and clarity of this

approach.

135See, for instance, Guba & Lincoln, 1994.

26

Figure 3: Internal Conceptual Coherence in a Thesis

If I would not define terminology (such as culture, society, and science) at all in this

thesis, then the meaning of terms in this thesis would change according to each refer-

ence (Figure 4). There would be no need to maintain conceptual consistency

between the thesis and the references, but there would be no internal coherence in

the uses of the concepts in this thesis. Because terms such as culture, society, and

science have been defined in a number of inconsistent ways in my references, not

defining terminology at all would lead to an excess of ambiguity of terms and con-

cepts in this thesis.

Because neither a strict definition nor a loose definition seems to be appropriate, I

take the middle-ground. Throughout this thesis I frequently revisit characterizations

of those terms that are central to this thesis. I avoid constant redefinitions of terms,

but if the author of a certain reference has a unique understanding of a certain term, I

make it explicit in the text. I discuss a variety of definitions of the terms that are

central for this thesis, but the final use of terminology is unavoidably subject to criti-

cism. Regardless, I seek to make the rationales of my standpoints towards terms and

concepts as explicit as possible.

Although I seek to make my theoretical and conceptual underpinnings explicit, in

this thesis I present the views of a large number of authors. Many of the authors

come from different disciplines, and even within specific disciplines many authors

have conflicting views. Risking appeal to authority136, I emphasize the views of au-

thoritative figures in some disciplines at the cost of other, lesser-known authors. For

instance, I elide discussion on alternative definitions of the terms algorithm and nor-

mal science and refer to Thomas Kuhn's use of the term normal science and Donald

Knuth's use of the term algorithm. To make a critical reading easier for the reader, I

136Argumentum ad verecundiam—not “appeal to unqualified authority”. Appeal to authority can be allowed, but
strictly within some specific limits (Hurley, 2000:pp.138-140).

27

Figure 4: External Conceptual Coherence in a Thesis

often introduce authors briefly137. Beginning from Chapter Two I also indicate the

date of birth and death of each influential author.

The Scope of This Thesis

From the point of view of the history of computer science, this thesis is temporally

limited to the post-1945 era, and spatially limited, mostly, to the American scene.

The majority of my material was published in the United States, and the publication

language of all my material is English. For instance Soviet, British, Israeli, Dutch,

Swedish, Japanese, and Korean efforts in the field of computing are not discussed

because the majority of the breakthrough innovations in electronic digital computing

have been attributed to the American computing scene, and the majority of the liter-

ature is about the American scene. Although the pioneering figures in the history of

computing have come from a number of countries, most of them have written in

English and published in American journals. The early (pre-20th century) history of

computing is excluded from this thesis despite the influence that, for instance, office

machinery had on the development of electronic digital computing. The number of

sources has grown gradually, and the bibliography at the moment is a snapshot of

my research at one moment. Further research will always affect the sample of liter-

ature and sources.

From the computer science point of view, this thesis is not focused specifically on

any single topic of computing, such as algorithms, complexity, artificial intelligence,

software engineering, or human-computer interaction. Although all of the above-

mentioned topics are nowadays considered to be parts of computer science, and al-

though an in-depth examination of each of them might offer revealing insights into

the social construction (or determinism) of computing, the sheer number of fields

and subfields of computing is enormous, and the boundaries between those fields are

vague. Instead of emphasizing any single topic in computer science, I discuss com-

puter science broadly.

From the philosophy of science point of view, this thesis is limited to a number of in-

fluential authors. I only include a small number of well-known Western philosoph-

ers and philosophers of science such as Popper, Kuhn, Lakatos, Feyerabend, and

137For instance, I write, “Sociologist Manuel Castells has connected...”, “Historian of technology Thomas Hughes
recognized...”, or even “The 1993 Turing Award winner, Juris Hartmanis, took an opposite view...”.

28

Searle, and the discussion of contemporary debates is limited. The philosophy of

computing is not discussed in-depth either, because most of the literature on the

philosophy of computing focus on, for instance, the theory of consciousness, mental

states, linguistic universes, information theory, or theories of multiple realizability,

and not on the philosophy of computer science. Of the philosophical accounts of

computing that play a substantial role in this thesis, Brian Cantwell Smith's meta-

physical investigations of computing are discussed the most, along with the works of

philosophers of computing such as Luciano Floridi, Philip Brey, and Gordana

Dodig-Crnkovic.

From the science and technology studies point of view this thesis does not include

many modern philosophers, sociologists, and media critics, including famous ones

such as Deleuze, Derrida, Giddens, McLuhan, Heidegger, Foucault, and Latour. In-

cluding these authors would clearly have brought depth to the analysis of computing

because they have written about influential topics such as cyberspace, reflexivity,

speech acts, deterritorialization, actor-networks, and even the concept of technolo-

gies. Nonetheless, those topics are not within the central focus of a thesis on the

definition and possible extension of the discipline of computing.

29

30

2.Interpretations of Science And Technology

In this chapter I discuss the first of the

two central themes, science1. Specific-

ally, in this chapter I focus on the views

held by academic researchers who study

the phenomenon of science. Science

and technology studies (STS) is an ap-

propriate umbrella term for the collec-

tion of literature selected for this

chapter because not all of the works in

this chapter are from easily demarcated

areas. For instance, it can be argued

that Thomas Kuhn's work2 is from the

field of philosophy or that it is from the

field of sociology. Both arguments can

be defended. However, most of the literature chosen for this chapter discuss the es-

sence of science and technology.

The first half of this chapter deals with some aspects of the philosophy of science.

The term science is already difficult: The term can be read in a number of ways, de-

pending on the context. For instance, science can mean (1) a specific class of activ-

ities such as observation, description, and theoretical explanation; (2) knowledge ob-

tained via those activities; or (3) any activity that has some special characteristics

such as thoroughness or orderliness: “I've got packing a suitcase down to a science”.

Science can also refer to (4) a historical continuum: “Western science”. Science can

refer to (5) a societal institution: “The position of science in our society”, “Humanity

should be governed by science”, or (6) a world view: “He believes in science”. Sci-

ence is also the scientist's (7) profession. Many of these definitions can have both a

descriptive and a normative meaning—activities that scientists are doing (descript-

ive), or activities that recognized scientists should be doing (normative).

1 See the box on this page for a synthesis of the science entries in Wiktionary and Webster's Online Dictionary (ac-
cessed September 27th 2006).

2 Kuhn, 1996 (orig. 1962)

31

Sci·ence

NOUN: 1: A particular discipline or branch of

learning, especially one dealing with measurable

or systematic principles rather than intuition or

natural ability; "the science of genetics". 2: Abil-

ity to produce solutions in some problem do-

main; "the skill of a well-trained boxer"; "the

sweet science of pugilism". 3: The fact of know-

ing something; knowledge or understanding of a

truth. 4: Knowledge gained through study or

learning; mastery of a particular discipline or

area. 5a: The collective discipline of study or

learning acquired through the scientific method;

5b: the sum of knowledge gained from such

methods and discipline.

ETYMOLOGY: From French science, from Latin

scientia, “knowledge”, from the present parti-

ciple stem of scīre, “to know”.

Furthermore, as academicians so well know, there are different aims of science, such

as finding, explaining, applying, developing, refuting, verifying, and so forth—and it

is not clear at all which of these aims are acceptable or desirable for science. Be-

cause many of these different readings are interconnected in complex ways, in this

thesis a detailed analysis of the term science is elided, and different definitions are

given at different contexts. However, in Chapters Three and Four I discuss the

definition of computer science.

The second part of this chapter focuses on recent (mostly 1980s-present) discussions

about the relationship of science and society. First is the discussion concerning the

social shaping of technology and the social construction of science. There are a

number of schools and viewpoints, ranging from a complete denial of the external

world (phenomenalism) to a complete denial of free will (materialism). These ex-

treme positions are quite easy to defend because they tend to narrow argumentation

to mere denial of any opposing viewpoint (and it follows from the definition of ex-

treme3 that an extremist cannot agree with anything else than his or her extremist po-

sition). Extreme positions are not suitable for the purposes of this thesis, though.

Therefore, at the risk of reducing coherence, a more fertile middle-ground is sought

for. A number of sticking points between realism and relativism are discussed, and

where possible, positions for this thesis are formed (and perhaps surprisingly, the ad-

opted position leans more towards the realist side than the relativist side of the dis-

cussion). I also cover some of the discussions concerning the feasibility of the tech-

nological deterministic argument. There are different degrees of technological de-

terminism, and due to the realist leaning in this thesis, some of the technological de-

terministic viewpoints are adopted.

In order to make this thesis self-contained (i.e., readable for computer scientists

without the need to be proficient in science and technology studies) this chapter

starts out by making basic concepts and divisions between philosophical schools

clear. Although there cannot yet be a tight linkage with computing as a discipline,

the philosophy of science is discussed with connections to and reflections on com-

puting. Therefore, unlike the literature review chapter in conventional dissertations

in computer science, this chapter is not a mere summary of what has been done in

the field, but a critical explication of the conceptual framework used in later

3 “Most remote in any direction” (AHD, 2004)

32

chapters. To make a critical reading of my analysis in Chapter Three easier for the

reader, I make my position towards each of the concepts explicit and weigh the al-

ternatives.

33

2.1.Some Basic Questions About Science

Science is knowledge which we understand so well that

we can teach it to a computer4

The philosophy of science, which is the topic of this section, deals with issues such

as the foundations of science, its assumptions and limitations, its implications, and

what constitutes scientific progress. Science is a complex, multifaceted entity com-

posed of semi-autonomous fragments, and a united consensus does not exist on what

counts as science and what does not. The philosophy of science is not an exception:

Different schools support rival, incommensurable, and often opposing theories.

The viewpoint of a philosopher of science often reflects his or her own field of

study: A mathematician and a sociologist may place different philosophical ap-

proaches above others. The philosophical accounts of science introduced in this

chapter are not chosen objectively or neutrally; they are not chosen, for instance,

randomly, but I have purposively selected them. Ironically, choosing the accounts

randomly would also account as committing oneself to a number of philosophical

and methodological standpoints.

Three basic questions that appear often in the philosophy of science are (1) the onto-

logical question: “What is real?” or “What exists?”, (2) the epistemological question:

“How do we get to know about reality?” or “How can beliefs be justified?”, and (3)

the methodological question: “By which principles do we form knowledge?” or

“How can we get knowledge about the world?”. Norman Denzin and Yvonna Lin-

coln5 noted that the choice of which one of the philosophical schools one follows

leads to a choice of a set of values—there is no value-free science (and research on

science itself is not an exception). The claim of many natural scientists that their re-

search is value-free is a value statement per se—often a positivist one.

Denzin and Lincoln noted that paradigms—as overarching philosophical systems de-

noting particular ontologies, epistemologies, and methodologies—cannot easily be

alternated between. Paradigms represent belief systems that attach the researcher to

4 Knuth, 1974c. The rest of the quotation is: “and if we don't fully understand something, it is an art to deal with
it”.

5 Denzin and Lincoln, 1994:pp.99-100. Professor Norman Denzin works in a number of fields, including soci-
ology and cultural studies, and professor Yvonna Lincoln is from the field of education.

34

a particular world view6. This does not mean that the researcher should limit his or

her study to one framework. A single phenomenon can—and should—be studied

using different frameworks of explanation and from different viewpoints, thus yield-

ing a wider view on the phenomenon and perhaps a deeper understanding of the di-

mensions of the phenomenon. This is often called triangulation, and lately crystal-

lization. It has been argued that a researcher should be familiar with a variety of

schools of research (or paradigms7), but also know that paradigms cannot mingle, or

be synthesized8. Denzin and Lincoln called this kind of researcher, using anthropo-

logist Claude Lévi-Strauss' term, a bricoleur9.

According to philosopher of physics Mario Bunge, any authentic philosophy of sci-

ence has two aims—one epistemic and one pragmatic10. The epistemic aim, Bunge

wrote, is to understand scientific research and its findings, whereas the pragmatic

aim is “to help scientists hone some concepts, refine some of theories, scrutinize

some methods, unearth philosophical presuppositions, resolve controversies, and

plant doubts about seemingly uncontroversial points”. These two goals, Bunge

wrote, complement each other.

These two aims can be seen throughout this thesis as a tension between between ex-

planation and justification, or between descriptive and normative accounts of sci-

ence. This tension, in other words, comes from the distinction between a philosophy

of science that concerns classification or description (descriptive), and a philosophy

of science that concerns prescribing norms or standards for science (normative).

This tension is often referred to as the is-ought problem, and sometimes as Hume's

Law or Hume's Guillotine11. It was raised by David Hume (1711-1776) in Treatise

of Human Nature: Can one derive what “ought to be” from “what is”?12 The is-

ought problem is also obvious in the tenets of the authorities of the philosophy of

6 Denzin and Lincoln, 1994:pp.2-4.

7 At this point, paradigm is used in a very vague meaning, which is exactly as Thomas Kuhn used it (see Kuhn,
1996). The term is discussed and enlarged upon later in this thesis.

8 Denzin and Lincoln, 1994:pp.2-3,99-100.

9 Lévi-Strauss, 1966:pp.16,17. From French bricoler, “trifle”, “tinker”.

10 Bunge, 1998:p.405.

11 Rachel Cohon (2004) in Stanford Encyclopedia of Philosophy: Hume's Moral Philosophy. See also the discus-
sion about the problems concerning Hume's Law, for instance, the interpretation that Hume denied ethical real-
ism.

12 See Hume, 1739:Book III, pp.507-521. Hume says “no, you can't”. Some other philosophers, notably John
Searle, say “sometimes you can” (Searle, 1964).

35

science: witness the criticism of Thomas Kuhn's ambiguity of whether his account of

science is a normative or a descriptive one13.

Many current “naturalist” philosophers of science claim that there is no general ac-

count of science or scientific method that would apply to the development of all sci-

ences at all historical stages14. Because science is not conducted in a social vacu-

um15, it is necessary for a philosopher, sociologist, or historian of science to make a

distinction between and understand at least five sides of science or technology: sci-

ence, technology, economy, polity16 and ideology17. In Chapter Three I focus on the

aspects of science, technology, and polity, but I also touch on economic and ideolo-

gical issues.

Quite a few accounts of the philosophy of science have been established, many of

them based on very appealing arguments that try to combine two rival classical tradi-

tions: rationalism and empiricism18. In this chapter, the basic forms of a few influen-

tial philosophical viewpoints are presented and compared. Although the philosoph-

ical accounts of science introduced here do not represent a single school of thinking

but several of them, the number of philosophical accounts presented here is still

small. Because the ontological, epistemological, and methodological approaches in

different disciplines are so various, there are many interesting, oft-used approaches

that are not discussed in this thesis. For instance, approaches such as critical theory

and feminist approaches are not covered here.

The philosophy of computing is not a subset of the philosophy of science. Gordana

Dodig-Crnkovic noted that the philosophy of computing is a broader field than the

philosophy of science, because it encompasses more than different scientific facets

13 Feyerabend, 1970

14 See, e.g., Chalmers, 1976:pp.247-253; Feyerabend, 1993:pp.18-19.

15 See, e.g., Bunge, 1998:p.406; Chalmers, 1976:pp.248-249; Kuhn, 1996.

16 Polity here means the form or constitution of a politically organized unit, or the form of government of a reli-
gious denomination.

17 Bunge, 1998:p.407.

18 The basic positions of rationalism, empiricism, and positivism are as follows. Rationalism regards reason as the
main source of knowledge. Rationalists hold that reality has an inherently logical structure, and they assert that
there are true facts that the intellect can grasp directly. Empiricism asserts that knowledge derives from experi-
ence, in the sense that justification requires experience. Positivism–especially its later branches–is related to em-
piricism in that positivists believe that justification requires experience and they exclude a priori or metaphysical
speculations. The basic affirmations of positivism are (1) that all knowledge regarding facts is based on the
“positive” data of experience, and (2) that beyond the realm of facts is that of “pure logic” and “pure mathemat-
ics”. (See, e.g., Encyclopædia Britannica Online, 2004)

36

of computing19. Although the boundaries of both of these fields may be unclear, it is

sufficient for this thesis (which is not a thesis on the philosophy of computing) to

note that there are ontological and epistemological elements that are specific to the

philosophy of computing and not to the philosophy of science at large. Take, for in-

stance, the concept of a “program”—its ontological and epistemological statuses are

ambiguous, as Brian Cantwell Smith noted20. Furthermore, the philosophy of com-

puting not only includes both normative and descriptive components, but also an im-

portant ethical component21.

The philosophy of computing as a discipline is not older than computer science, and

the contemporary debates in the philosophy of computing reflects the trends in the

philosophy of science. Currently there is no consensus about the nomenclature for a

discipline that is concerned with the philosophy of things such as information theory

and computation. There is research about the philosophy of information, the philo-

sophy of computing, cyber philosophy and digital philosophy, which all refer to

more or less the same discipline22. Perhaps the reason why there is no consensus

about the term philosophy of computing is that there is no consensus about the term

computing.

In this thesis, the term philosophy of computing is used to refer to both an analytic

approach and a metaphysical approach23 to philosophy. The philosophy of comput-

ing, as understood in this thesis, is concerned with topics such as what can be done

in principle by a mechanism24, matters of machine intelligence25, natural and artifi-

cial realities26, what is 'elegant' in computing27, and other similar questions that link

to issues of computation—such as to the machine and the theory.

This section on the philosophy of science supports both the epistemic and pragmatic

aims of this thesis. Firstly, it forms a basis for a discussion about the predominant

philosophical foundations of mainstream computer science (or the lack of founda-

tions thereof). Secondly, as a part of a larger framework, it helps characterize the

19 Dodig-Crnkovic, 2003

20 Smith, 1998:pp.29-32.

21 Rapaport, 2005

22 See, e.g., Dodig-Crnkovic, 2003 and Floridi, 2002 for examples of these.

23 For a discussion of these two approaches, see Floridi, 2003.

24 See, e.g., Scheutz, 2003.

25 See, e.g., Dodig-Crnkovic, 2003.

26 Floridi, 2004:p.xiii.

27 See, for instance, Gelernter, 1998; Gelernter, 1998b.

37

concept of computing as a social and cultural activity (hence addressing computing

as practice), and in addressing the question of whether technology is a driving force

of progress.

The aim of this chapter is not to define science, research, the scientific method or

computer science, but to enlarge upon these concepts and premises in this thesis.

Throughout this discussion, the foci are on science as knowledge and on science as

activity. The discussion includes, for instance, how people in different philosophical

branches view science as knowledge; whether knowledge is produced or discovered,

absolute or relative, reasoned or experienced, deductive or inductive, objective or

subjective. Four different views of science are presented and discussed: the empiri-

cist view, the falsificationist view, the “Kuhnian view”, and the anarchistic view.

As the inclusion of only those four views indicates, this thesis focuses on only the

major schools of the last century of philosophy of science. There is nothing original

in foregrounding these authorities. The names are among those mentioned in any

encyclopedia28: Rudolph Carnap (1891-1970) and the Vienna Circle, Karl Popper

(1902-1994) who was the most prominent critic of the Vienna Circle, Thomas Kuhn

(1922-1996) who described science as a contract, and Paul Feyerabend (1924-1994)

whose sarcastic critique of the scientific method is as topical as ever. These authors

are often mentioned as the leading figures of three dominant mainstream schools of

the philosophy of science in 1900s29. From the field of the philosophy of computing,

Brian Cantwell Smith and Luciano Floridi are foregrounded because of their pion-

eering work in the philosophy of computing.

Among noted philosophers who are set in the background of this discussion are Imre

Lakatos (1922-1974) who modified Popper's falsificationism and whose work faces

problems similar to that of Kuhn, and Bertrand Russell (1872-1970) who was a be-

liever of the scientific method and of verification and whose work shares the general

problems of positivism. Among the noted approaches that are set in the background

are Bayesianism, because of its numerous shortcomings and because including it

would not change my argument30; Ian Hacking's and Deborah Mayo's new experi-

mentalism, mostly because it replaces the positivists' view of senses as the source of

28 See, e.g., Encyclopædia Britannica Online, 2004 “philosophy of science”.

29 Bouillon, 1998

30 See Chalmers, 1976:pp.187-192. See also Kelly & Glymour, 2004 for a rebuttal of Bayesianism, i.e., the
Bayesian confirmation theory.

38

scientific knowledge with experiment and thus does not offer an angle that would be

of any extra use for this thesis31; as well as a number of often interesting variations

of basic positions such as radical empiricism, radical constructivism, and scientific

realism32.

31 Moreover, “new experimentalism” does not yet exist as an established field (Chalmers, 1976:p.194–the 1999 edi-
tion).

32 See Chalmers, 1976 for more examples.

39

How Does One Come to Know Facts?

Foolish opinions will be readily eliminated by the shock of facts33

The central problem of epistemology is

the problem of the growth of know-

ledge. That is, some statements some-

times become facts, whereas sometimes

some facts lose their status as facts and

become misbeliefs. If knowledge in-

cludes facts in the strict sense, it is hard

to see how facts proper can change. According to sir Karl Popper, the growth of

knowledge can be studied best by studying the growth of scientific knowledge34. The

reason for this, Popper wrote, is that scientific knowledge is easier to analyze than

common-sense knowledge—but Popper did not explicitly exclude the analysis of

common-sense knowledge either. The reader is advised not to expect a definition of

the growth of knowledge, but an exploration of viewpoints on what is knowledge and

what could the growth of knowledge therefore mean. When analyzing scientific

knowledge in the field of computing, a problem arises from the numerous arguments

over what is considered to be scientific in the field of computing—indeed, what is

computer science? More questions arise instantly: If it is a science, what does it

study? If it is computer science, are programs laws? Questions such as these are

discussed in detail in Chapter Three.

After having begun to achieve a disciplinary identity, the academic field of comput-

ing has seen a dramatic diversification. In the field of computing, the relationship

between growth and diversification is ambiguous; it is unclear whether diversifica-

tion is considered to be growth or scattering. It is equally unclear if diversification

implies increased eclecticism (a negative connotation), increased holism (a positive

connotation), increasingly wide or numerous perspectives (positive), an increasingly

vague focus (negative), or something else.

33 Cohen and Nagel, 1934:p.402.

34 Popper, 1959:pp.xix-xxi.

40

IN THIS SECTION:

� A short discussion about three basic posi-

tions in the philosophy of science.

� What are the basic problems of scientific

justification?

� What is the role of logic in science?

Intuition of Scientific Knowledge

Because the problems with the term computer science are dealt with later in this

thesis, it would probably be fair to start by referring to science via the intuition of

scientific knowledge as stated by Alan Chalmers, and developing the concept of sci-

entific knowledge throughout this chapter:

What is so special about scientific knowledge is that it is derived from the

facts, rather than being based on personal opinion.35

However, this intuitive idea is problematic as it turns out. It is unclear what are the

facts in that statement. In computer science it is not certain whether facts are derived

through formal methods of reasoning, through scientific methods, including obser-

vation, or through some other form of fact-gathering or fact-creation. A study by

Glass et al. reveals that there are a number of methods of inquiry in the fields of

computer science, software engineering, and information systems36. There is plenty

of computer science research based on the logico-mathematical tradition, there is

plenty of computer science research based on the empirical tradition, and there is

plenty of computer science research based on the engineering tradition. But in com-

puter science, there is little discussion about the mode of existence of the facts re-

vealed by different methods of inquiry.

It can be asked, “Are facts in computer science universally true or not?”. It is evid-

ent in a number of sources in Chapter Three that the universalistic stance is often

supported, explicitly or implicitly. It can also be asked, “Are scientific facts timeless

or do they change?—and regardless of whether they do change or not—what is so

special about scientific knowledge that it can be distinguished from 'folk knowledge',

personal opinions, or mythical beliefs37?”. In fact, it has been noted that there are

folk theorems in the field of computer science38.

35 Chalmers, 1976:p.xx.

36 Glass et al., 2004

37 Actually, the history of science shows that what have been considered scientific facts and scientific knowledge
have undergone radical changes throughout time. Keeping this in mind, the reader should every now and then
stop and ask what is there so special in scientific knowledge that distinguishes it from folk knowledge or mythic-
al beliefs.

38 See, e.g., Harel, 1980; Denning, 1980; De Millo et al., 1979.

41

Early Schools of Thought

In the following pages, three positions to formalize the essence of science are de-

scribed: the empiricist position, the positivist position, and the inductivist position.

Also the rationalist position is touched upon. Those attempts; or positions, or

schools of thought; are all found in computer science, and their contact points with

computer science are discussed in applicable parts of this section. Those positions

are all in the spirit of a quotation from the year 1934, written by two men with a

“love for truth”, as they describe it (the same quote began this chapter):

...we are sure that foolish opinions will be readily eliminated by the shock of

facts39

Two early schools of thought that involved attempts to formalize a view of science

that scientific knowledge is derived from facts rather than from opinions are empiri-

cism and positivism. The British empiricists of the 17th and 18th centuries—notably

John Locke (1632-1704), George Berkeley (1685-1753), and David Hume—held

that all knowledge should be derived from ideas that senses have implanted in the

mind. The positivists shared the view of the empiricists that knowledge should be

derived from the facts of experience40. There is indeed so little difference between

the early 20th century versions of the two schools that the terms logical positivism

and logical empiricism are used synonymously41. Even though one might think, for

reasons clarified later in this chapter, that logical positivism is dead and gone, it has

been argued that many (or most) philosophically facile artificial intelligence re-

searchers are still sometimes considered “part of the extended diaspora of Viennese

logical positivists”42.

Empiricists stand in contrast to rationalists, who believe in human, a priori43 reason-

ing, as a source of knowledge44. For instance, Plato (ca. 427-347 B.C.) and René

Descartes (1596-1650) held that what people know by reason alone is superior to ex-

periential knowledge in a number of ways—it is unchanging, eternal, perfect, cer-

39 Cohen and Nagel, 1934:p.402.

40 Chalmers, 1976:p.3.; see page 36 of this thesis.

41 AHD, 2004, Encyclopædia Britannica Online, 2004: see “logical positivism” (accessed December 2nd 2004).

42 Loui, 1998

43 A priori: knowledge deduced without sensual stimuli or observation (using pure reason); a posteriori: knowledge
originating from observations or experience.

44 Peter Markie (2004) in Stanford Encyclopedia of Philosophy: Rationalism vs. Empiricism

42

tain, and universal45. Descartes noted, though, that only knowledge that is mathem-

atical by nature can be deducted, but other sorts of knowledge need to be justified by

observations. The rationalist position and the empiricist position share similar prob-

lems when explaining the growth of knowledge—for instance, they both have a

problem explaining why facts get refuted all the time. For the rationalist, it is diffi-

cult to explain how is it that many mathematical facts, once considered eternal, have

been refuted. And the opposite is also true: If there are facts that are eternal, those

facts can not “become” facts.

In one of the landmarks in the philosophy of science, Proofs and Refutations, Imre

Lakatos gave a historical account of how Euler's (Leonhard Euler, 1707-1783) for-

mula V-E+F=2 was reformulated again and again for almost two hundred years after

its first statement, until it finally reached its current, stable form46. Lakatos' work is

a criticism of dogmatist and formalist mathematicians and puts forth an idea that

mathematical knowledge grows through proposals, speculation, and criticism—

through proofs and refutations. According to Lakatos, even the mathematician, the

researcher of the king of sciences, does not know anything for certain47. Similarly to

some major works in the philosophy of science48, in this thesis the philosophy of

mathematics and the philosophy of science are not dealt with separately—even

though they perhaps should49.

In the context of natural sciences and the positivist school of thought, an apprehend-

able reality is assumed to exist, and this reality is driven by immutable natural laws

and mechanisms (Egon Guba and Yvonne Lincoln noted that this ontological view is

commonly called naïve realism50). Researchers can converge on the “true” state of

affairs; they seek final truths (this epistemological view, adopted by positivists, is

called dualist/objectivist epistemology). The positivists believe that objects of real-

45 Peter Markie (2004) in Stanford Encyclopedia of Philosophy: Rationalism vs. Empiricism.

46 Lakatos, 1976: almost the whole book discusses the matter. See also De Millo et al., 1979. Euler's formula con-
cerns finite and connected planar graphs, and states that if the graph does not have any intersecting edges, and if
V is the number of vertices, E is the number of edges, and F is the number of faces, then V-E+F=2.

47 Lakatos, 1976:pp.1-5,125.

48 Of the major philosophers of science covered in this thesis, Popper and Lakatos implicitly considered the philo-
sophy of science and philosophy of mathematics simultaneously; Kuhn did not discuss logical and mathematical
proofs; Feyerabend denied both.

49 The Quine-Putnam argument, which is seen as the best argument for mathematical realism, holds that mathemat-
ics is indispensable to science (Mark Colyvan (2004) in Stanford Encyclopedia of Philosophy: Indispensability
Arguments in the Philosophy of Mathematics). See, for instance, Quine, 1980.

50 Guba & Lincoln, 1994:pp.109-110.

43

ity, questions, and hypotheses can be verified. A failure to verify a hypothesis does

not straightforwardly lead to its rejection. Rather, the same inspection procedure is

repeated, with distorting factors better controlled. The methodologies in positivism

are chiefly quantitative, experimental, and manipulative.

The Problems of Positivism

According to Alan Chalmers, there are three assumptions that are central to positiv-

ism51:

1. Facts are received by careful, unprejudiced observers via the senses,

2. Facts are prior to and independent of theory,

3. Facts constitute a firm and reliable foundation for scientific knowledge.

Each of these seemingly commonsense claims faces unsurmountable difficulties.

First of all, the positivist has to assume that when referring to, for example, sight,

two observers with perfect vision would see the same thing. But that is not intuit-

ively true. For instance, when a beginner and a seasoned microbiologist look

through the same microscope at the same slide, it is often the case that the beginner

cannot distinguish the cell structures that the professional can easily distinguish52.

Even though it is evident that human biological properties play a major part in how,

and what, one perceives, what one perceives is also dependent on one's previous ex-

periences, cultural upbringing, and expectations. Briant Cantwell Smith noted that

whether one sees a mountain range, forms of terrain, or a number individual moun-

tains, is an individual experience, and there is no epistemologically correct answer53.

If a competent, experienced programmer is given, say, a recursive algorithm, and the

same algorithm is handed over to a student who has just learned the language, they

both know exactly the same language syntax and see the very same code, but most

likely their understanding of what the algorithm does differs. It is especially absurd

to think that statements of fact enter the brain by means of the senses. It is absurd,

because atomic statements do not make sense as such—one needs to have a linguist-

51 Chalmers, 1976:p.4.

52 Chalmers, 1976:pp.7-11. Note that these problems are discussed widely in the philosophy of science, but as the
development of the philosophy of science is not the focus of this thesis, the works of philosophers such as Ber-
trand Russell and Ludwig Wittgenstein are not analyzed here.

53 Smith, 2002c:pp.239-240.

44

ic and conceptual framework for interpreting statements. To make sense, the atomic

statements are anchored in and related to this framework.

If observations are always contaminated by theories and by previous experiences54,

then it cannot be that one first establishes facts through observation and then derives

knowledge from those observations. I see this problem in the often cherished “data–

information–knowledge–wisdom”-distinction55. It is common to prune these con-

cepts to some sort of a variation of the following: datum56 is a basic attribute of in-

formation; information is data with a conceptual commitment and interpretation;

knowledge comes from knowing how to use the information; and wisdom adds the

understanding of when and where the knowledge is applicable. However, I argue

that this simplification is fundamentally wrong.

Data is not collected randomly, and in the data collection process, only a minor part

of (infinite) available data is collected. The choice of which data to collect, and

which to not collect, is done by using what one already knows about the domain.

The data is collected using formal or informal data structures, which are usually con-

ceptual aggregates that are created to model the phenomenon as well as possible.

Because data structures are built according to what one already knows about the do-

main, data cannot be independent of one's previous knowledge57. Andrew Picker-

ing's concept of “the mangle”, discussed later in this thesis, offers a different view-

point on the interrelations of data and knowledge58. For the sake of simplicity, the

descriptions of data, information, and knowledge are in this thesis used in the mean-

ings described above, with a remark that they are not independent of each other.

Even if one dismissed the problems of positivism described above, the positivist

school of thought would be inappropriate for computer science anyhow, because

computer science does not always deal with merely observable or merely logico-

mathematical facts, and certainly neither with merely a priori nor merely a posteri-

ori knowledge. Formal and empirical theories and engineering practice in computer

54 Couvalis, 1997:pp.11-13.

55 For this distinction, see, e.g., Firestone & McElroy, 2003:pp.17-18.

56 In this thesis, I adopt the convention of using the plural “data” as if it was singular. Instead of the phrase “data
are collected”, I use the phrase “data is collected”.

57 Brian Cantwell Smith's term inscription error is related to this problem (Smith, 1998:pp.49-50). Joseph Fire-
stone and Mark McElroy's work also acknowledges this: see Firestone & McElroy, 2003:p.19.

58 Pickering, 1995

45

science are so tightly intertwined that they are almost inseparable59. Some branches

of computing draw on theories from other sciences, others are self-referential60.

Note, however, that there is danger of a logical fallacy: Using theoretical frame-

works or theories to assess the adequacy of experimental results, and then taking

those same experimental results as supporting evidence for the theories, is clearly

circular reasoning.

There are a number of ways to view the class of “facts”. An illustration of some of

the viewpoints of the nature of facts is presented in Figure 5. The juxtapositions in

Figure 5 are by no means a comprehensive set of the positions taken in science or

philosophy. A number of additional juxtapositions are presented as my argument

goes along. Especially John R. Searle's division between brute facts and institutional

facts is discussed in detail later in this thesis.

There is doubt, as explained above, as to whether observational and experimental

objective facts could be established in science. Regardless, assuming that one could

establish objective, theory-independent facts in science, the central question then be-

comes: “How can scientific knowledge be derived from those facts?”. The strongest

possible claim would be, as Chalmers wrote, that theory could be logically derived

from facts. That is, a theory could be proven as a consequence of a given set of

facts.61

59 For some authorities who think that theory and practice (or abstract and concrete) both belong inextricably to
computer science, see Knuth, 1991; Denning et al., 1989; Forsythe, 1968; Wegner, 1976; Hopcroft, 1987. Then
again, there are those who think otherwise: see, for example, just about anything by E.W.Dijkstra.

60 Glass et al., 2004

61 Chalmers, 1976:p.41.

46

Figure 5: Differing Views of Facts

Observing

Reasoning

Subjective

Objective

Changing

Timeless

ConvincingVerifying Facts

Induction

Deduction

Logical Truths Do Not Carry Information

There is a common misconception that has to be made clear. Contrary to a common

(mis)belief, logical truths do not carry information. As Manuel Bremer noted, the

amount of information in logical truths—seen in the light of the standard approaches

to measuring or defining information content—is zero62.

Syllogistic logic states that if the premises are true and the argument is valid, then

the conclusion must be true. For instance, let premise p1 be “Every human being un-

derstands the C++ programming language” and p2 be “My grandmother is a human

being”. From these premises, it is a valid deduction d that “My grandmother under-

stands the C++ programming language”. In this case, it happens to be that p1 and d

are false, as my grandmother has never been interested in learning the C++ language.

But this does not affect the fact that this logical argument is perfectly valid. That is

to say, logic has nothing to do with the truth of deductive reasoning.

In Critique of Pure Reason Immanuel Kant (1724-1804) divided propositions into

analytic and synthetic63. Analytic propositions are those that are true simply because

of their meaning. For instance, “All bachelors are unmarried” is analytic because the

concept unmarried is contained in the definition of bachelor64. Propositions that are

not true because of their meaning only, such as empirically grounded scientific argu-

ments, are synthetic65.

According to the rules of logic, if and only if one can be certain that the premises are

true, one can also be certain that everything logically derived from the premises will

also be true. But affirming that premises are true can be very difficult. The fact that

sun has risen every day for the last 4.5 billion years does not conclusively prove that

the sun will rise tomorrow (and in fact one “day” it probably will not). If not on ex-

periment or observation, what can logical deduction be based on? Deduction works

only if one accepts the axioms66 on which systems of knowledge such as mathemat-

62 Bremer, 2003

63 Kant, 1966, orig. 1781:A6-7/B11.

64 Shapiro, 2000:p.77.

65 Yet not all propositions are either analytic or synthetic. For instance, the tautology “either it rains or it does not
rain” is neither analytic nor synthetic. Note that W.v.O. Quine rejected the analytic-synthetic-distinction in Two
Dogmas of Empiricism (Quine, 1980:pp.20-46).

66 Axioms (from Greek ������ : “self-evident”, e.g. � x : x= x), should not be held self-evidently valid even
in mathematics. To prove something true, it should be proven in all systems (which is, of course, impossible).
From the epistemological viewpoint, the truth value of axioms is not self-evident at all either. Epistemologically,
on what grounds is this x same than this other x?

47

ics are built—and that is purely a question of faith. Nonetheless, computer scientists

do not work only within an analytic, axiomatic framework of logic, but computer

scientists work also with empirically based, synthetic propositions.

Inductivism

Inductivists evaded the problem of basing the growth of knowledge on logic by

basing the growth of scientific knowledge on experience. For the inductivist, the ob-

jectivity of science is a matter of degree, and the degree of objectivity of scientific

facts derives from the objectivity of observation, induction, and deduction. Inductiv-

ists avoid subjective opinions by demanding three conditions from a valid inductive

argument67:

1. The number of observations forming the basis of a generalization must be

large.

2. The observations must be repeated under a wide variety of conditions.

3. No observation should conflict with the derived law.

The principle of induction can be summed up as

There is a form of inference of laws from the accumulated simple facts, so

that from true statements describing observations and the results of experi-

ments, true laws may be inferred.68

This kind of argument has been used a lot in computing, especially in the field of in-

formation systems69. Also all the human-computer interaction (HCI) researchers

who use Geert Hofstede's study70 as an unquestioned basis for their research auto-

matically acknowledge the principle of induction (although they may accept “re-

laxed” or probabilistic versions of induction). Hofstede's study is based on a vast

number of IBM workers from more than 50 countries. From this large sample,

Hofstede came up with four (and later five) dimensions of culture. He gave a score

between 0 and 100 to each country, for each dimension. Note that the relaxed ver-

sion of the principle of induction, “If a large number of A's have been observed un-

der a wide variety of conditions, and if most of the A's possess the property B, then

67 See Chalmers, 1976:p.46.

68 Harré, 1972

69 See, e.g., Glass et al., 2004 on the emphasis on experimental approach in IS.

70 Hofstede, 1997; used in e.g. Marcus and Gould, 2000, and numerous other studies.

48

all A's probably have the property B.”, is no longer about facts in the strict sense.

This relaxed “sophisticated” version of induction suits everyday science-making

very well, but it is not really about facts proper anymore.

From a computer scientist's point of view it is interesting to note that if one com-

pares problem solving using algorithms with problem solving using neural networks,

one may discern features of deduction in algorithmic problem solving and features

of induction in neural networks. Algorithms are based on a set of known facts (al-

gorithm and input) that then produce new facts (output) in a white box-manner71; the

whole process is transparent and explicit. Logic programming and expert systems

are especially well characterized by deduction.

On the contrary, neural networks, especially ones exhibiting unsupervised learning

—such as self-organizing maps—are based on a set of computational objects (neur-

ons) that are trained to produce the desired output. Neural networks work in a black

box manner; the process is probabilistic and very hard to track. One could, arguably,

associate algorithms more with theoretical, clear-cut (pseudo-) problems, and neural

networks more with fuzzy (real-world) problems.

Problems of Inductivism

The problems of the first condition of the inductive argument are apparent: “What is

large?”, “Is a sample of a hundred, a thousand, or a million 'large'?”, “Does 'large'

depend on the object of investigation?”. Certainly, in a study of a rare disease, a

“large sample” has to be different from a study of quarks. If one studies web pages

to find “cultural markers”, the questions are, “How large a number of observations is

enough for generalization?” and “Should one study one hundred web pages or one

thousand—or all of them72?”. In algorithm research the question might be, “How

many cases must one study to show that one algorithm is faster than another al-

gorithm?”. Statistics can offer some answers about probabilities, but “qualified”

71 Also called glass box.

72 Using studies such as Hofstede's in user interface design is a bit ill-founded. Even if the in-depth criticism of
Hofstede's work (e.g., Smith, 2002; McSweeney, 2002; Hampden-Turner and Trompenaars, 1997) is ignored, a
quintessential question remains: what is the connection between Hofstede's dimensions and usability? Perhaps
there is no connection. It is not yet shown that, say, power distance (one of Hofstede's dimensions), would be a
determining factor of usability, or that considering power distance would have any effect on usability. (Minna
Kamppuri, oral communication, 2nd April 2005). Hofstede's work is often used as a non-problematic basis for re-
search–it is almost as if Hofstede's results were objective facts and separable from their context.

49

facts, no matter how well they meet some preordained probability classes, are not

facts proper, that is, facts that are proven correct beyond any doubt.

It is also hard to draw the line with condition 2 of the inductivist argument (“the ob-

servations must be repeated under a wide variety of conditions”). Fulfilling condi-

tion 2 requires answers to questions such as, “How much variation is enough?”,

“How large should the variation be?”, and “What kind of variables should be taken

into account?”. This third question is important, because unless it can be answered

exhaustively, the list of variables can be extended indefinitely by endlessly adding

further variations. There is always an infinite number of untested observation set-

tings. For instance, in the case of user interfaces, the variations added can include

the size of the screen, the brand of the computer used, and the distance to the closest

accordionist. Unless negligible variations can be eliminated, the conditions under

which an inductive inference can be accepted can never be satisfied.

However, when defining what counts as negligible or superfluous, the researcher

draws on prior knowledge of the situation to distinguish between the factors that

might and those that cannot influence the system under investigation73. This leads to

an infinite loop. Induction is based on an appeal to previous knowledge, which is

based on further inductive arguments, and so on. One cannot justify all knowledge

by induction.

In the early 1930s Kurt Gödel's (1906-1978) incompleteness theorem, which sets

limits to intellectual achievement with axiomatic systems, shook the positivist sci-

ences. Gödel's incompleteness theorem proved that any consistent formal system ne-

cessarily contains some propositions that cannot be proven or disproven74. That is,

there are things that formal systems, such as mathematics, cannot tell anything

about. In Brian Cantwell Smith's words, semantics can never be wholly reduced to

syntax75. Alan Turing (1912-1954) proved later that there are problems that can be

precisely formulated, but that cannot be solved by any algorithm, or any computer

for that matter (undecidable problems). Furthermore, the positivist, empiricist and

inductivist are bound to run into trouble when seeking rational justifications for

73 Chalmers, 1976:p.48.

74 Gödel, 1931 in Feferman, 1986. Some critical definitions have been excluded from this statement to keep it
simple. The readers who notice this, will not need more thorough an explanation, and those who want to know
the whole framework or to read a comprehensive analysis can find it in mathematics textbooks.

75 Smith, 2002b

50

every principle. This is because a rational argument cannot be provided for a ration-

al argument itself without already assuming what is argued for. Chalmers wrote,

“Not even logic can be argued for in a way that does not commit the fallacy of beg-

ging the question”76.

The logical fallacy of begging the question (petitio principii) is committed whenever

the arguer creates the illusion that inadequate premises provide adequate support for

the conclusion by leaving out a key premise, by restating the conclusion as a

premise, or by reasoning in a circle77. (For example, assuming in the premise of an

argument something that one wishes to prove.) A prime example of begging the

question comes from the question “How can induction itself be justified?” In An

Enquiry Concerning Human Understanding, David Hume noted that there are two

options: To justify it by appeal to logic (which will not do, because nothing proves

logically that the future has anything to do with the past even though it surely ap-

pears so), or justify it by appeal to experience78. Alex Rosenberg wrote that one

could make a deductive argument79:

1. If a practice has been reliable in the past, it will be reliable in the future.

2. In the past, inductive arguments have been reliable.

Therefore:

3. Inductive arguments will be reliable in the future.

This argument, Rosenberg wrote, is deductively valid, but its first premise requires

justification. The only satisfactory justification would be the reliability of induction,

which is exactly what the argument is supposed to establish, Rosenberg noted. One

cannot argue that “induction is reliable because it has worked in the past”, because

one cannot justify induction with an inductive argument. Note that induction is used

quite successfully in different branches of science when statistical certainties are

needed, but that success does not mean that sophisticated, statistical induction could

offer a short cut to facts proper.

An error in thinking in computer science that is close to petitio principii is the in-

scription error, specified by Brian Cantwell Smith80. Inscription error refers to a

76 Chalmers, 1976:p.52.

77 Hurley, 2000:pp.156-159. Note that “begging the question” is a broad concept and there are different forms of it.

78 Hume, 1777, orig.1748:pp.25-26.

79 Rosenberg, 2000:p.115.

80 Smith, 1998:p.50.

51

phenomenon unavoidable for a computer scientist or a designer of any kind of rep-

resentation81, and it consists of two parts. First, the designer imposes a set of as-

sumptions onto a computational system (when, for instance, creating data structures,

object relationships, and so forth). Second, the designer reads those assumptions or

their consequences back off the system, as if they were independent empirical dis-

coveries or theoretical results82.

In conclusion, neither empiricism, positivism, nor inductivism provide a durable

basis for all of computer science. Although each of those approaches to science fits

some applications, they all fail to assert their supremacy as an account of science, as

they all face difficulties that have not been overcome. Adopting positivism or em-

piricism for an account of studies of computer science would narrow the study of

computational systems down to simply proving facts correct or incorrect, and build-

ing knowledge from those atomistic pieces of data. Adopting inductivism would

narrow the study of computational world down to observing phenomena and making

generalizations. Neither of these approaches would be able to do justice to the di-

versity and multidimensionality of the phenomena at hand. A look at the most seri-

ous rival to these accounts, falsificationism, is taken next.

81 Smith, 1998:p.52.

82 See Smith, 1998:pp.51-53 for examples of inscription error.

52

Popper's Falsificationism

No number of experiments can ever prove a theory,

but a single experiment can disprove one.83

Sir Karl Popper was the most forceful

advocate of an alternative to inductiv-

ism, the alternative that is heretofore re-

ferred to as falsificationism. Popper's

The Logic of Scientific Discovery84 was

a groundbreaking work in the philo-

sophy of science. Ever since the pub-

lication of Popper's book, there was a

continuous clash and debate between the old school and the new school. This clash

between the advocates of Rudolph Carnap, a member of the Vienna Circle85, and the

advocates of Popper was a significant feature of the philosophy of science up to until

the 1960s86.

The Vienna Circle held that claims are meaningful only if they can be verified.

Thus, they believed there were statements that were true and they aspired to verify

their truthfulness. Most of the studies of, for instance, human phenomena do not

meet this sort of a criterion of science: The assertion that “under these conditions

these people behaved this way” is hardly a meaningful observation because distin-

guishing superfluous variables from significant ones in “these conditions” is a sub-

jective matter. That is, the choice of significant variables, drawing the line of signi-

ficant correlation, and possible generalization are subjective matters.

Steve Fuller, who is a proponent of Popper, wrote that Popper was sympathetic to

the positivist struggle to hold all knowledge claims responsible to a publicly ac-

countable procedure87. However, Fuller continued, Popper disagreed with the posit-

ivist scientists in that for Popper, deduction was mainly a tool to compel scientists to

83 Popper, 1959 (orig. publication 1934 in German, “Logik der Forschung”).

84 Popper, 1959

85 The Vienna Circle was a group of famous philosophers and scientists who met weekly in Vienna, in the 1920s
and 1930s. Their philosophy is nowadays called logical positivism. In their opinion, there should be strict criter-
ia for categorizing claims as either true, false, or meaningless.

86 Chalmers, 1976:p.59.

87 Fuller, 2003:pp.24-25.

53

IN THIS SECTION:

� How do falsificationists see growth of know-

ledge in science?

� Could falsificationism do as the philosophy

of computer science?

� Criticism of falsificationism.

� Underrepresentation problem.

test the consequences of their general knowledge claims in particular cases by issu-

ing predictions that could be contradicted by the findings of empirical research. Any

belief whatsoever may be scientific or not, depending on whether one can try to

falsify it, to test the limits of its validity. In the field of software engineering, for ex-

ample, the following predictions have been suggested: “GOTOs increase code en-

tropy”, “Strong typing reduces run-time errors”, and “Good modularization reduces

maintenance costs”88.

Inductivists use observation and experimentation in trying to find universals: “Pro-

gram p produced the correct output with input x1; the same program p produced the

correct output also with input x2”. An inductivist would continue this until finally,

after a large enough number of tests has been done, he or she would generalize a uni-

versal conclusion: “Program p produces the correct output with any input x”.

However, there might always be a special case where the program would not work

correctly. Edsger Dijkstra89 (1930-2002) has often been quoted in this connection—

he wrote, “program testing can be a very effective way to show the presence of bugs,

but is hopelessly inadequate for showing their absence”90.

Around the 1930s Popper turned the positivists' thinking around and stated that there

could not be a way to prove universal truths, but observations could be used in falsi-

fying claims. For example, program testing is based on the principle of falsification-

ism and not on inductivism. There are alternatives to the inductivist and falsifica-

tionist paradigms in programming, too; for instance, the formal verification of pro-

grams is a deductivist, positivist enterprise.

A Single Observation Can Falsify a Theory

In texts about positivism, empiricism, and inductivism, the words true and truth are

commonplace—the scientists following these philosophies of science are on “a quest

for truth”. I noted that the truthfulness of universal claims cannot be deduced from

single observations. However, the falsity of universal claims can be—and this is ba-

88 Snelting, 1998

89 Edsger W. Dijkstra (1930-2002) is one of the indubitable authorities in the field of computer science, his main
interest being formal verification - “developing proof and program hand in hand”. He is known for, e.g., the
shortest-path algorithm Dijkstra's algorithm. For instance, former ACM president Peter Denning wrote about
him as “one of the giants of our field and a passionate believer in the mathematical view of programs and pro-
gramming” (Denning, 2004). The name is sometimes misspelled as “Edsgar” (Ensmenger, 2001; Ubiquity,
2002). However, “Edsger Dijkstra” is the correct spelling.

90 Dijkstra, 1972

54

sically what falsification is all about. If the claim is “program p produces the correct

output on any input x”, then one single observation of erroneous functioning can

falsify the claim. However, using falsification, it can never be said that a theory is

true, but it can be said that it is the best theory currently available—since it has not

yet been successfully falsified. In program testing, it is acknowledged that testing

can only prove the existence of bugs, not the absence of them91.

Alan Chalmers summarized falsificationism, writing that falsificationists freely ad-

mit that observation is guided by and presupposes theory. Theories—which are at-

tempts to give an adequate account of some aspects of the world or the universe—

are construed to overcome the problems encountered by previous theories. Theories

can be speculative or tentative conjectures or guesses freely created by the human in-

tellect92. Chalmers wrote that once proposed, speculative theories are to be rigor-

ously and ruthlessly tested by observation and experiment. For the falsificationist,

the whole of science is a set of hypotheses that are tentatively proposed with the aim

of accurately describing or accounting for the behavior of some aspect of the world

or the universe. There is only one condition that any hypothesis must satisfy if it is

to be granted the status of a scientific law or theory: If it is to form a part of science,

a hypothesis must be falsifiable.93

According to Popper's definition, a hypothesis or theory is to be called falsifiable if it

divides the class of all possible basic statements unambiguously into two non-empty

subclasses94. The first is the class of those basic statements which contradict the hy-

pothesis (or which it rules out, or prohibits). Popper called this the class of potential

falsifiers of the hypothesis. The second is the class of those basic statements which

do not contradict the hypothesis (or which it “permits”). In other words, there must

exist a possible set of observation statements (“potential falsifiers”) that are incon-

sistent with the hypothesis. If any one of these potential observations is found to be

true, the observation will falsify the theory or hypothesis.

For example, the statement “Either the students using the learning program found it

useful or they found it useless in learning” is not falsifiable, because it is tautologic-

ally true—and thus cannot constitute a part of scientific knowledge (it is fundament-

91 Dijkstra, 1972

92 Chalmers, 1976:pp.60-62.

93 Chalmers, 1976:pp.60-62.

94 Popper, 1959:pp.65-66.

55

ally uninformative). “A Turing Machine cannot solve all the computable problems”

is not falsifiable either, because of the definition of “computable problems”95: Every

computable problem can be carried out by a Turing Machine, and the computation

will always produce the result in a finite number of steps. The previous statement is

meaningless because if a problem would not be computable with a Turing Machine,

it would not be considered computable. Note that these kinds of statements are, of

course, true by definition; they are agreements between scientists about the meaning

of a term—nothing more, nothing less.

One could also take Popper's example “all ravens are black”, and modify it to create

an unfalsifiable proposition. For instance, “at least one raven is neon yellow” can be

proven true by showing a neon yellow raven, but it cannot be falsified, because there

is always a possibility that somewhere there is a neon yellow raven that people have

not yet found. In a similar manner, claims such as “There are people who cannot un-

derstand the desktop metaphor” and “Social studies of computer science can benefit

computer science” are not falsifiable.

Tautologies aside, it is dubious if a scientist can know the potential falsifiers of a

novel theory before the theory has been used, tested, and applied. Furthermore, as

Lakatos' example of Euler's formulæ indicates, many theories need to be thought

through over and over again before (if) they become stabilized96. Formulæ similar to

Euler's formulæ were tentatively proposed early in the 1700s; then rediscovered by

Euler; reformulated several times for hundred years; rigorously proven by Augustin

Cauchy (1789-1857) in the 1800s; and then gradually incorporated into the system

of knowledge approved by the scientific community.

Ironically, statements in mathematics and logic are usually not falsifiable, because

most mathematical propositions are (in principle) reducible to a set of axioms that

are tautologically true. Axioms are true by definition, and therefore they cannot be

proven false. So if one were to adopt falsificationism as the philosophy of computer

95 If computability is defined as it is defined in Church-Turing thesis. However, there is no way to mathematically
prove the Church–Turing thesis to be true because it is virtually impossible to show that all machine-computable
problems can be modeled by a Turing Machine. The Church-Turing thesis is a great example for illustrating
falsificationism: From the falsificationist point of view, the thesis should be treated as true, like physical laws or
mathematical axioms, unless falsified at some point of time. The Church-Turing thesis has withstood quite ex-
haustive tests this far. Yet, this is not to say that the Church-Turing thesis would be a complete account of what
can be computed with machinery. There are contrary claims, too (see, e.g., Copeland & Sylvan, 1999; Copeland,
1997; Wegner and Goldin, 2003).

96 Lakatos, 1976

56

science, there would need to be another, complementary philosophy for the logico-

mathematical parts of computer science.

Progress in Science—The Falsificationist Viewpoint

Progress in science, as the falsificationist would see it, could be summarized as fol-

lows97:

(1) Science starts with problems98 associated with the explanation of some

aspects of the world; (2) scientists propose falsifiable hypotheses as explana-

tions or solutions to the problem; (3) these hypotheses are criticized and

tested—and some of them are eliminated, perhaps leaving one to dominate;

(4) when this hypothesis that has successfully withstood a wide range of rig-

orous tests is eventually falsified, a new problem, hopefully far removed

from the original solved problem has emerged. This new problems calls for

the invention of new hypotheses etc.99

The process goes on indefinitely—a survival of the fittest, one might say. It can

never be said of a theory that it is true, no matter however well it has withstood rig-

orous tests, but it can hopefully be said that a current theory is superior to its prede-

cessors in the sense that it is able to withstand tests that falsified its predecessors. A

more sophisticated form of falsificationism gives a more dynamic picture of science;

a newly proposed theory will be acceptable as worthy of the consideration of scient-

ists if it is more falsifiable than its rival, and especially if it predicts a new kind of

phenomenon not touched on by its rival.100 From the falsificationists' point of view,

this is how scientific knowledge accumulates.

The term ad hoc solution, which stems from the falsificationist language, seems to

be a dirty word among self-respecting computer scientists. This is a bit peculiar,

since from the falsificationist viewpoint, contemporary computer science with all its

nuances from the social sciences, psychology, and even humanities, might be classi-

97 Adapted from Chalmers, 1976:p.69.

98 Apparently, the problem here means either (a) a phenomenon that defies scientific explanation or (b) an un-
wanted phenomenon that the scientists are unable to overcome. A historical case of the former (a) form of “prob-
lem” is, “How can bats fly in dark without bumping into things, even though they have weak vision?” (Chalmers,
1976:p.70). A historical case of the latter is Albert Einstein's problem with expanding universe, which led him to
include the cosmological constant to his theory of general relativity.

99 However, Popper's theory is criticized for having no counterparts in the history of science (Kuhn, 1996:p.77).
One could say that even if Popper's account of science was good as a normative theory, it is not a good descript-
ive account of science because of the lack of historical evidence supporting it.

100Popper, 1959:pp.91-92; Chalmers, 1976:pp.69,74-75.

57

fied as a pseudo-science. There are, though, positive uses of “ad hocness” too in

computer science, viz., ad hoc networks and ad hoc database queries.

In the philosophy of science, the term ad hoc is often used in the following (falsific-

ationist) context: A modification in a theory, such as the addition of an extra postu-

late or a change in some existing postulate, that has no testable consequences that

were not already testable consequences of the unmodified theory are called ad hoc

modifications101. These ad hoc-modifications are used to evade falsification of a the-

ory102. For instance, Albert Einstein's (1879-1955) addition of a “cosmological con-

stant” to his equations served only the purpose of Einstein's preferences (afterwards

he called it the biggest blunder of his life). The cosmological constant did not bring

in any new testable consequences that were not testable before the addition.

The notion of ad hoc is criticized for making much ado about nothing; ad hocness is

a commonsense idea, and certainly not a technical notion103. But the real problem of

Popper's ad hocness in computer science comes from equivocation on the term. The

growth of scientific knowledge, as Popper saw it, is based on the supposition that if a

hypothesis or theory is introduced to replace some refuted hypothesis or theory, the

replacing theory should have more empirical content than the refuted one. If a repla-

cing hypothesis or theory does not have more empirical content than the hypothesis

or theory it would replace, it is ad hoc104.

Many branches of computer science are areas where progress (or perhaps the growth

of knowledge) is understood as an increase in the effectiveness of processes—pro-

cesses that often include complex tradeoffs and numerous interrelated attributes. In

these cases the correct phrases may not be falsification of a theory, but stepwise im-

provement and proof of concept. There are plenty of examples of stepwise improve-

ment and proof of concept in, for example, user interface research and engineering-

oriented computer science. Indeed, falsificationism was, in the first place, set in the

context of natural sciences, and not in that of mathematics—this should be evident in

that all the examples in Popper's book are from the natural sciences. Falsification-

ism is not that well suited for logic or mathematics (where conceptual aggregates are

made true by series of definitions) or for a science focusing on, say, stepwise im-

101See Popper, 1959:p.60.

102Popper, 1959:pp.19-20.

103For further discussion and an extensive analysis of this topic, see Bamford, 1993

104Popper, 1959:pp.130-132.

58

provement of complex processes, especially if that improvement entails interrelated

tradeoffs.

Criticism of Falsificationism

In Against Method and Consolations for the Specialist, Feyerabend criticized the

Popperian doctrine105. Feyerabend raised two important questions: “Is it desirable to

live in accordance with the rules of a critical rationalism?” and “Is it possible to have

both, science as people know it and these rules?”106. From the viewpoint of com-

puter science, the first question emphasizes things such as human interests, ethics,

and scientific and human freedom107. For the computer scientist, the second question

emphasizes questions such as whether progress is limited if the scientist concedes to

falsificationism.

The crucial criticism of falsificationism at large came from the field of natural sci-

ences, where falsificationism allegedly suits best. The criticism is that a theory can-

not be conclusively falsified, because the possibility cannot be ruled out that some

part of the complex test situation, other than the theory under test, is responsible for

erroneous prediction. This weakness in falsificationism is pointed out in what is of-

ten called the Duhem-Quine thesis. Pierre Duhem (1861-1916), who was a physicist

and a philosopher of science, is usually credited with the thesis, but the logician Wil-

lard van Orman Quine (1908-2000) universalized and secularized Duhem's narrow

and religiously biased thesis108. Originally Duhem wrote, “an experiment [...] can

never condemn an isolated hypothesis but only a whole theoretical group”109. That

is, an experiment cannot falsify one aspect of a theory, but the whole theoretical

framework. This is because one cannot be sure if abnormal findings result from a

fault in the theory, the instrument, the theory about how the instrument works, or

something in the test setting110.

105Feyerabend, 1993:pp.152-153; Feyerabend, 1970

106Feyerabend, 1993:p.153.

107“Human freedom” in the sense that Feyerabend means it–not the “academic freedom of will” but freedom from
hunger, despair, and tyranny of constipated systems of thought such as academic establishment and scientific
dogmatism (cf Feyerabend, 1993:p.154.)

108See Quine, 1980; Fuller, 2003:pp.61-63. Note that although the thesis is called Duhem-Quine Thesis, Duhem's
and Quine's original theses are quite different from each other.

109Duhem, 1977:pp.183-188 (the first edition was published 1914 in French).

110Note that Andrew Pickering's “Mangle of Practice” deals with exactly this problem. Pickering's theory is dis-
cussed in detail later in this thesis.

59

In short, Quine111 stated that falsification survives only in the supposition that each

statement, taken in isolation from other statements, can admit of “confirmation or in-

firmation”112. Quine's argument was that statements about the external world face

the “tribunal of sense experience” not individually but only as a corporate body113.

Basically, according to Quine, a researcher might hold on to any belief by adjusting

the body of premises underlying the belief. When a scientific experiment contradicts

a theory or a law, nothing logically tells whether the law, theory, observation, exper-

iment, or interpretation of the experiment was flawed.

In analytic philosophy, this thesis is called the underdetermination thesis, which em-

phasizes the idea that any body of evidence can be explained by any number of mu-

tually incompatible theories. In that case, the theory choice is “underdetermined” by

the evidence. In his later works, Popper acknowledged the problem of the Duhem-

Quine thesis114, stating that when it is impossible to decide by experiment between

two theories (or which part of the whole system is faulty), the techniques of meas-

urement have to be improved first115. This does not eradicate the problem raised by

the Duhem-Quine thesis, though. That is, it does not eradicate the problem that if

one gets abnormal findings, one can never know which part of the whole test situ-

ation and theoretical framework is faulty.

From my point of view, underdetermination is not an especially interesting problem

in computer science. It is much more interesting to note that for the majority of phe-

nomena, there is an infinite number of possible modeling schemes, all incomplete

(and none perfect). Because all the models of a certain phenomenon are defective,

but defective in different ways, it could be said that the phenomenon is underrepres-

ented by the models. The interesting question, from the computer scientist's point of

view is, “Which one of these incomplete models should be chosen?”. If a number of

models model and predict the different aspects of a phenomenon well, the choice is

ultimately subjective and beyond formalization. The crucial question becomes,

“Which aspects is it more important to model?”.

111Quine, 1980, esp. chapter II: Two Dogmas of Empiricism:pp.20-46.

112French for invalidation.

113Quine, 1980:pp.37-41.

114Popper, 1959 (2004 edition: Routledge, NY and London–in Routledge Classic Series):p.56.

115Popper, 1959:p.108.

60

Another problem with falsificationism, a historical one, comes from Chalmers' ac-

cusation that had the falsificationist methodology been strictly adhered to by scient-

ists in the past, those theories generally regarded as the best examples of scientific

theories would never have been developed because they would have been rejected in

their infancy116. In the early years of its life, sir Isaac Newton's (1643-1727) gravita-

tional theory was falsified by observations of the moon's orbit. In early versions of

Niels Bohr's (1885-1962) atomic theory there were inconsistencies with classical

electromagnetic theory and observations. James C. Maxwell's (1831-1879) kinetic

theory of gases was falsified by Maxwell himself117. Paul Feyerabend commented

on Popper's theory, arguing that no new and revolutionary theory is ever formulated

in a manner that permits one to say under what circumstances one must regard it as

endangered: Many revolutionary theories are unfalsifiable118.

Feyerabend claimed that falsifiable versions of most theories do exist, but they are

hardly ever in agreement with the accepted basic Popperian statements: Every mod-

erately interesting theory is easily falsified119. Moreover, he wrote that theories con-

tain formal flaws, contradictions, and ad hoc adjustments. The Popperian criteria are

clear, unambiguous, and precisely formulated. This would, Feyerabend wrote, be an

advantage if science itself was clear, unambiguous, and precisely formulated. “For-

tunately, it is not”.120 Chalmers claimed that concerning any example of a classic

scientific theory, whether given at the time of its first proposal or later, it is possible

to find observational claims which were generally accepted at the time and which

were considered to be inconsistent with the theory121. As Lakatos' example of the

history of Euler's formula122 shows, mathematical theorems are not different. Feye-

rabend noted that Popperian criteria would eliminate science without replacing it

with anything comparable123.

116Chalmers, 1976:p.91.

117These examples are from Chalmers, 1976:pp.91-92. Chalmers gives also additional examples.

118Feyerabend, 1975

119Feyerabend, 1975

120Feyerabend, 1975

121Chalmers, 1976:p.91.

122Lakatos, 1976

123Feyerabend, 1975

61

Conceding to this criticism, Popper answered:

I have always stressed the need for some dogmatism: the dogmatic scientist

has an important role to play. If we give in to criticism too easily, we shall

never find out where the real power of our theory lies.124

Thus he at once relinquishes the falsificationist thesis. If dogmatism has a positive

role to play in an account of science that is based on ruthless criticism, a question

arises: Where does one draw the line? If dogmatism in science can be either accep-

ted or forbidden depending on the case, falsificationism loses the crispness and un-

ambiguity that were the main motivations behind it in the first place. Again, al-

though useful in practical science-making, falsification cannot constitute a tenable,

overarching philosophy of science, because of its inherent problems.

The above-mentioned examples from software engineering: “GOTOs increase code

entropy”, “Strong typing reduces run-time errors”, and “Good modularization re-

duces maintenance costs”125, are good examples of statements that are not very

clearly falsifiable (if they are falsifiable at all). Although intuitive, in the falsifica-

tionist paradigm these would be classified as pseudo-science and they could not con-

stitute a part of computer science.

First, GOTOs may not always increase code entropy. An example of this is the debate

that Edsger W. Dijkstra's article “GO TO Statement Considered Harmful”126 raised.

After Frank Rubin's response to Dijkstra127, almost twenty different versions of Ru-

bin's example were published in the following numbers of the same journal (Com-

munications of the ACM)—many of them for GOTOs, many against. In addition,

Robert L. Glass noted that when structured programming was introduced, it soon

was accepted and taken into use in almost all organizations, although no research

was ever performed to demonstrate that the claimed and hyped value of structured

programming existed128.

Second, to my knowledge there are no empirical experiments that tested the “strong

typing-theory” with two versions of the same language, one strongly and one weakly

124Popper, 1970:p.55.

125Snelting, 1998

126Dijkstra, 1968

127Rubin, 1987

128Glass, 2005

62

typed. Such an empirical experiment could reduce superfluous variables that could

be connected with the theory. Furthermore, the distinction between strongly and

weakly typed languages is exceedingly vague.

Third, the problem with the “modularization argument” is its use of the term good.

Good is an exceedingly unambiguous term, and without specifically specifying what

is considered to be good modularization, the value of the modularization argument is

dubious.

From the falsificationist perspective, these three intuitively correct “folk theorems”

are bad hypotheses, and without a reformulation in a falsifiable form and without

empirical testing, they could not constitute a part of computer science. The problem

of computer science, from the falsificationist perspective, is that in computer science

there are quite few hypotheses that are measurable and falsifiable. Much of software

engineering, computational modeling, computer visualization, scientific computa-

tion, artificial intelligence, cognitive science, and human-computer interaction may

not meet falsificationist criteria. That the three statements above might not be sci-

entific statements does not rule out the notion that if those statements were con-

sidered to be engineering heuristics129, one might argue that they belong to the body

of (non-scientific) engineering methods employed in computer science.

I argue that because of the insuperable problems in the demarcation of “science” and

“pseudo-science”, contemporary computer science with all its nuances would be

classified as a pseudo-science, but so would many other disciplines that are neverthe-

less considered science today. That falsificationism would not be easily compatible

with the plethora of methodologies of today's computer science is one matter. It is a

totally different but legitimate matter to ask why something even has to be classified

as being “scientific”, as discussed in the end of this chapter. Before discussing that

issue, a look at science and theories as institutional structures is taken.

129See, e.g., Koen, 1987; Koen, 2003 for discussion on the engineering method and heuristics.

63

Science as a Contract: Thomas Kuhn's Theory

Though the world does not change with a change of paradigm, the scientist

afterward works in a different world.130

In light of previous chapters, it seems

that in terms of the quest for shedding

light on the growth of scientific know-

ledge or on science at large, the philo-

sophy of science has been too confined

to either theories or observations (ex-

perimentation)—or the relationship

between them. By focusing excessively

on the content of science, the previously introduced accounts of science all fail to ac-

knowledge important extra-scientific influences. Scientific activity happens in a

complex sociocultural framework, and understanding how science works seems to

require understanding those frameworks, too. Tying science up with human frame-

works—be they institutional, societal, or interpersonal—is of primary importance for

alternative approaches to science, because it distances science from determinism,

universalism, and generality. (Yet, frameworks can become a dogma too—a burden

to free thinking).

The first reason for this new view of theories as structures stems from the history of

science. In the early 1960s, Thomas Kuhn noted that historical study reveals that the

progress of major sciences cannot be explained by inductivist or falsificationist ac-

counts. Kuhn's thesis was especially a criticism of falsificationism, which was the

prevailing account of science at the time. Kuhn boldly confronted Popper: “...what

scientists never do when confronted by even severe and prolonged anomalies [is give

up the paradigm.] Though they may start to lose faith and then to consider alternat-

ives, they do not renounce the paradigm that has led them into crisis.”131

130Kuhn, 1996 (3rd edition, 1st ed. 1962)

131Kuhn, 1996:p.77, underlining added.

64

IN THIS SECTION:

� What is a paradigm, strictly speaking?

� How does scientific progress happen accord-

ing to Kuhn?

� Are there paradigms in computer science?

� What are the characteristics of scientific

problems?

Furthermore, Kuhn criticized Popper's denial of the existence of any verification

procedures at all. Kuhn hit on a weak point in Popper's theory, when he criticized

falsificationism:

No theory ever solves all the puzzles with which it is confronted at a given

time; nor are the solutions already achieved often perfect. On the contrary,

it is just the incompleteness and imperfection of the existing data-theory fit

that, at any time, define many of the puzzles that characterize normal sci-

ence. If any and every failure to fit were ground for theory rejection, all

theories ought to be rejected at all times.132

This raises a question that is as difficult as the one raised by the underdetermination

thesis, yet arguably more realistic (see page 60 above for a similar discussion on

models.) Instead of asking how to deal with a number of theories that all explain a

certain phenomenon fully, a more adequate question for a theory of computation in-

volves, how to deal with a number of theories that all explain a certain phenomenon

to some degree but that all are flawed in different ways. What makes this interesting

is that if the currently dominant theories in academic computing are imperfect, on

what grounds is their dominance justified—and on what grounds could it be? What

kinds of arguments are used to raise certain theories and explanations of the compu-

tational world above other theories that explain the same phenomena, also imper-

fectly, but that are flawed in different ways? Answers for these questions are sought

in Chapter Three.

Kuhn's theory on scientific revolutions indeed has some links to the underdetermina-

tion thesis. However, there is a more general argument to be made in the context of

the theory-dependence of observations. Empirical findings are always expressed in

the terms and language of some theory. Consequently, observational statements will

be as precise and as informative as the language in which the language they are

formed is precise and informative133.

Alan Chalmers wrote that if there is a connection between how precise the meaning

of a term is and what role it plays in a theory, then the need for coherence and struc-

ture in theories would seem to follow directly from it. He continued that definitions

must be rejected as a fundamental way of establishing meanings because concepts

132Kuhn, 1996:p.146. Compare this with Popper's quotation about dogmatism and the following criticism on page
62 of this thesis.

133Chalmers, 1976:p.105.

65

can only be defined in terms of other concepts, the meanings of which are given134.

If the meanings of some concepts are not known by other means, an infinite regress

will result, Chalmers noted. (For instance, dictionaries are probably just huge circu-

lar definitions.)

From the Kuhnian point of view, scientists need theories that are taken for granted

and not questioned all the time. Perhaps true, but it is not certain if any theory

should be taken for granted. Special attention should be taken in interdisciplinary

studies: Witness the eclectic use of cultural theories in the field of cultural HCI135.

Single theories might not be detached from their frameworks.

Some of the vital questions about science for the purposes of this thesis are: “How

are scientific structures created, selected, objectified, and internalized?” and “How

should they be created, selected, objectified, and internalized?”. These questions are

also approached in Chapter Three.

Some Terminology Introduced by Kuhn

Not only did Kuhn's work bring into the philosophy of science a repertoire of new

concepts, such as “paradigm136”, “paradigm shift”, “normal science”, “incommen-

surability thesis137”, “scientific revolutions”, and “Gestalt switch138”, it also intro-

duced a new, sociological perspective on the progress of scientific knowledge. The

Structure of Scientific Revolutions was one of the most influential books on the char-

acter of (natural) science in at least the second half of the 20th century, if not the en-

tire 20th century. Interestingly, the book just provides a general account of scientific

change in about 200 non-technical, very lightly referenced pages, in the manner of

an extended encyclopædia entry—as the book was in fact originally conceived139.

134Chalmers, 1976:p.105.

135For different meanings of culture in cultural HCI, see Kamppuri and Tukiainen, 2004.

136This term was earlier used in linguistics, but brought to the philosophy of science by Kuhn.

137There is not always a method of determining which paradigm is “true”. Because two competing paradigms may
offer totally different views on the structure of the world, and paradigms themselves cannot be compared logic-
ally, comparing paradigms is hard and sometimes impossible. (Even though it is clear that the idea of incom-
mensurability comes from both Kuhn and Feyerabend, it is not clear who used the term first (see Feyerabend,
1970).)

138Kuhn referred to the psychological meaning of gestalt switch as scientists' change in their world views, “hand-
ling the same bundle of data as before, but placing them in a new system of relations with one another by giving
them a different framework” (Kuhn, 1996:p.85). However (contrary to the psychological meaning of the word),
a scientist cannot switch back and forth between the frameworks (pp.111-114).

139Fuller, 2003:pp.18-19; Reisch, 1991: Kuhn's text was originally commissioned as a monograph for the series
Foundations of the Unity of Science.

66

Kuhn's ambiguity makes it problematic to read his work: Kuhn did not make it clear

whether his account is a normative or a descriptive one. Even Popper conceded that

Kuhn's normal science passes as a descriptive account of scientific practice140, but

not as a normative one. Paul Feyerabend implied that Kuhn may have wanted to

leave himself a second line of retreat: Those who dislike the implied derivation of

values from facts can always be told that no such derivation is made and that the

presentation is purely descriptive141. Feyerabend implicitly alluded to David Hume,

who centuries ago wrote a rationalization of why one cannot mingle descriptive with

normative claims (referred to as the “is-ought problem”)142.

Kuhn replied to Feyerabend: “Surely Feyerabend is right in claiming that my work

repeatedly makes normative claims”143. He continued, stating that the answer is that

they should be read in “both ways at once”. Kuhn made his view clear: “If I have a

theory of how and why science works, it must necessarily have implications for the

way in which scientists should behave if their enterprise is to flourish”144. Yet, this

sounds a bit dubious from the Humean point of view. Following Kuhn's logic, if it

were descriptively true that totalitarian science flourishes, then the normative state-

ment—totalitarian science is desirable—necessarily follows from that. However, as

Hume wrote, one cannot derive normative clauses from descriptive statements (and

the is-ought problem prevails no matter which word one uses instead of totalitarian,

be it free, independent, or even progressive145).

In Kuhn's vocabulary the term paradigm means both an exemplary piece of research

and the blueprint it provides for future research146. In later editions of his book,

Kuhn explicitly made a distinction between two senses of the term paradigm. In one

sense, a paradigm is a disciplinary matrix, in another sense it is an exemplar. The

first sense of the term, disciplinary matrix (which is the sense referred to in this thes-

is), is a sociological one, and it refers to the entire constellation of beliefs, values,

techniques, and so on shared by the members of a given community. The second

sense, which is philosophically deeper than the first one, denotes one sort of a given

140Popper, 1970; Bloor, 1971

141Feyerabend, 1970

142Hume, 1739:Book III, pp.507-521.

143Kuhn, 1970

144Kuhn, 1970

145The notions about problems with the concept of “progress” in computing come from discussions with Teppo
Eskelinen (Eskelinen, Teppo; Tedre, Matti (forthcoming) Three Dogmas of Computing. An article manuscript).

146Fuller, 2003:p.19.

67

constellation of concrete puzzle-solutions which, when employed as models or ex-

amples, can replace explicit rules as a basis for the solution of the remaining puzzles

of normal science.147

Scientific Progress According to Kuhn

The theory of the structure of scientific revolutions could be described as a circle of

eras and events in science (Figure 6). In the first stage of Kuhn's model (pre-sci-

ence), most of the sciences have disagreeing coteries or competing theories of ex-

planations. In the early stage of physical optics, for example, each scientist felt

forced to build his or her field anew from its foundations148. During that time, the

resulting books were often directed as much to the members of other schools as they

were to the discipline. Kuhn claimed that this pattern is not unfamiliar in a number

of creative fields today, nor is it incompatible with significant discovery and inven-

tion. In this early fact-gathering phase, every candidate for a paradigm, and all the

facts that could possibly pertain to the development of a given science are likely to

seem equally relevant. As a result, Kuhn claimed, this early (pre-science) fact-gath-

ering is nearly a random activity, usually restricted to the wealth of data that lie

ready at hand.149

Kuhn's portrayal of pre-science describes well the ad hoc150-solutions the early

coders151 frequently rigged. It is implicit in Grace Hopper's (1906-1992) memoirs

that the early coders did not know that their practical work, intended to speed up

coding, was laying foundations for a new science152. Moreover, the pattern of pre-

147Kuhn, 1996:pp.175, 182-186 (“disciplinary matrix”), and 187-191 (“exemplar”). See also Kuhn, 1970: “ 'discip-
linary' because it is common to the practitioners of a specified discipline; 'matrix', because it consists of ordered
elements which require individual specification”.

148Kuhn, 1996:p.13.

149Kuhn, 1996:pp.13-15.

150“Ad hoc” in the meaning of ex tempore solutions that would not rely on any theoretical or philosophical frame-
work (or paradigm, as far as Kuhn's vocabulary is concerned) but solutions that would work within the limits of
the machines of the time.

151In the early years of computing, before the 1950s, the term programmers had not been established (at least not in
the United States), and those who programmed the computers were called coders (Hopper, 1978).

152See Hopper, 1978. Grace Hopper is one of the early computer pioneers. She was the first coder for Harvard
Mark I, formulated the first compiler, and worked with different kinds of compilers and compiler standards
through her career.

68

Figure 6: Kuhn's Model of Scientific Progress

scientific activity fits to some degree with contemporary computer science at large—

or perhaps the confused state of some parts of computer science is caused by the on-

going redefinition of disciplinary boundaries. Nevertheless, it seems impossible to

make researchers of core technologies of computing speak the same language if they

are from areas of, say, e-commerce, human-computer interaction, algorithms, and

virtual reality.

When science stabilizes enough, and the scientists working with the field have de-

veloped a strong enough consensus about the theories and tools of that particular sci-

ence, that constellation of theories, beliefs, values, techniques, and so on, can be said

to become normal science. In the course of their work, scientists every now and

then come across phenomena that normal science cannot explain coherently; these

are called anomalies. When enough anomalies accumulate, scientists cannot trust

normal science anymore, and the discipline drifts into a scientific crisis. During the

crisis state, a number of competing approaches that can explain some of the anom-

alies that led science to the crisis appears. Finally, one of the competing paradigms

wins out, causing a scientific revolution. A complete paradigm shift happens when

the opponents of the revolutionary paradigm are convinced or a new generation of

scientists replaces the old one.

I have constructed one kind of a visualization of the core technologies of computing,

as listed by Peter Denning153 (Figure 7). Different core technologies are highly inter-

connected, so every researcher would most probably come up with a chart that looks

153Denning, 2003

69

Figure 7: Core Technologies of Computing

Algorithms

Artificial Intelligence

Compilers

Computational Science

Computer Architecture

Data Mining

Data SecurityData Structures
Databases

Decision Support Systems

Distributed Computation

e-Commerce

Graphics

Human-Computer Interaction

Information Retrieval

Management Information Systems

Natural Language Processing

Parallel ComputationOperating Systems
Networks

Programming Languages

Real-time Systems

Robots

Scientific Computation

Software Engineering

Supercomputers

Virtual Reality

Vision
Visualization Workflow

different—and one researcher can make very different maps depending on the point

of view he or she chooses to take. For instance, distributed and parallel computation

are very closely linked with computational science, even though in this figure they

are at opposing ends of the map. However controversial the arrangement may be, I

prefer a chart to a list of words (atomic elements), or to an ordered list (unidimen-

sional map) because the additional dimension gives more room for imagination and

intellectual association.

The Characteristics of a Paradigm

In Kuhn's theory, if one of the pre-paradigm (or pre-science) schools seems better

than its competitors, it will slowly become a paradigm for normal science. The

school need not (and in fact never does) explain all the facts with which it can be

confronted154. A mature paradigm is made up of general theoretical assumptions and

laws and the techniques for their application. The scientists who adopt the assump-

tions, laws, and techniques of a paradigm practice normal science155.

The focus of Kuhn's theory is evidently the natural sciences, and it is doubtful if

Kuhn's theory sketches computer science well. I argue that regardless of whether

one sees computing as a mature field or not, it is certainly hard to hypothesize that

there would have ever been anomalies in the history of computing—this is discussed

further in the following chapter. There have been changes in technology and theory,

and some of those changes can even be called revolutionary, but in the history of

computing, the revolutions have not originated from anomalies. Note that philo-

sopher of mathematics Stewart Shapiro alluded that the Kuhnian concept of para-

digm does not suit mathematics well—he noted that a contemporary mathematician

needs little if any conceptual retooling to read Euclid's (325-265 B.C.) Elements156.

The diverse uses of the term paradigm makes the term a bit hard to define; in his

1969 postscript to the Structure of Scientific Revolutions, Kuhn admitted that not

only is his definition of paradigm sometimes circular, but also too ambiguous once

in a while157. Thus the concept of paradigm (although given an initial definition on

154Kuhn, 1996:pp.16-17.

155Chalmers, 1976:p.108.

156Shapiro, 2000:p.50.

157Kuhn, 1996:pp.174-210. Margaret Masterman noted that it is curious indeed that before 1967 no attempt had
been made to elucidate the notion of paradigm, which is central to Kuhn's whole view on science (Masterman,
1970–she refers to the first, 1962 edition of Kuhn's book.)

70

page 68 of this thesis) is further elaborated here, with some interwoven reflections

on computer science.

First of all, Alan Chalmers noted that a paradigm has explicitly stated fundamental

laws and theoretical assumptions158. Of the aspects of computing that some re-

searchers take as the three fundamentals of computer science159, (1) theory deals with

fundamental laws and theoretical assumptions, (2) modeling (abstraction) promises

rigorous methodology and some competing modeling schemes, and (3) design (en-

gineering) relies partly on some laws and principles derived from physics and partly

on heuristics from engineering160.

Many of the human sides of computing; such as e-commerce, HCI, and visualiza-

tion; lack uniform laws, design principles, or well-established and well-grounded

guidelines. Even though there are suggestions for design principles and usability

guidelines in HCI161, not one of them seems to be universally accepted. Arguably,

computer science at large, as a complex that is depicted in Figure 7, does not have a

uniformly accepted paradigm; thus, in the Kuhnian framework, it is either in the pre-

science state or undergoing a scientific crisis or scientific revolution. The latter

seems quite improbable because it is hard to point out a bulk of accumulated anom-

alies in the history of computing that would have triggered such a crisis. After all,

computer science is a young and interdisciplinary discipline—it is time-consuming

(if possible at all) for such a discipline to find a precise form. There again, Kuhn's

theory does not rule out that branches of computer science can hold to different

paradigms.

According to Glass et al., in computer science there is a number of separate circles,

coteries, that work within the frameworks of their distinct paradigms, and that are

sometimes hostile to each others' research162. There is, according to Glass et al.,

minimal topic overlap between the subdisciplines of computing. If, as Chalmers

claimed, a lack of agreement over fundamental principles is a characteristic of an im-

mature science, then computer science might be immature, since the research

paradigms of separate cliques in computer science do not match well or may even

158Chalmers, 1976:p.109.

159See, e.g. Wegner, 1976; or Denning et al., 1989.

160See, e.g., Koen, 2003.

161See, e.g., Dumas & Redish, 1999:pp.55-57.

162See Glass et al., 2004, for an analysis of research in different coteries of computer science.

71

conflict with each other. Even though there is agreement on the overarching nature

of some theoretical aspects of computing, most of the research on the core technolo-

gies of computing (Figure 7) is not focused on those theoretical topics and, therefore,

the field as an umbrella entity cannot, if Chalmers' interpretation of Kuhn163 is fol-

lowed, be categorized as mature.

In defense of his own work, Kuhn remarked that in the history of science it has al-

ways turned out that some work within an era's normal science violates his charac-

terization of a paradigm—but this does not render the concept of a paradigm unten-

able. Because scientists acquire their knowledge by solving standard problems and

performing standard experiments, instead of learning the rules for problem-solving

and experimenting, much of the normal scientist's knowledge will be tacit164 instead

of explicit165. From my viewpoint this is not as much a defense of normal science as

it is a call for a psychological and sociological analysis of science. The questions

that arise from the notion of the tenacity of normal science are, for instance, “Why is

shackling innovation, imagination, and perspective with standardization understood

as the tenacity of science?” and “Would explicating tacit knowledge (presupposi-

tions, cultural references, biases, personal histories and beliefs, or microsocial rela-

tions) be detrimental to normal science?”.

Second, Chalmers noted, paradigms also include standard ways of applying the fun-

damental laws to a variety of types of situation. For instance, the Newtonian para-

digm will include methods of applying Newton's laws to planetary motion, pendu-

lums, billiard-ball collisions and so on166. In computer science, if (1) there were rig-

orous, fundamental laws of modeling and design, and if (2) there would be standard

ways of applying those laws, and if (3) they would also be applied in the computer

industry, then software would not be so bug-ridden and hard-to-use as it often is

163Chalmers, 1976:p.110-111.

164“Tacit” in the sense of Michael Polanyi (Polanyi, 1964). According to Polanyi, tacit knowledge consists often of
habits and culture that “we do not recognize in ourselves” (Chalmers, 1976:p.111-112). For instance, many
mathematicians speak about tacit knowledge. According to Polanyi, good mathematicians often have a feeling of
a result being wrong or right. He quotes, e.g., Gauss as having said “I have had my solutions for a long time but
I do not yet know how I am to arrive at them” (Polanyi, 1964:pp.130-131). In Polanyi's opinion, tacit knowing is
more fundamental than explicit knowing: “We can know more than we can tell and we can tell nothing without
relying on our awareness of things we may not be able to tell.”(Polanyi, 1964:p.x). In many instances, Polanyi
stresses the importance of tacit knowledge also in formal reasoning, achieving scientific consensus, and even in
premises of science (Polanyi, 1964:pp.129-131, 219-222,160-171).

165Kuhn, 1996:pp.190-191.

166Chalmers, 1976:p.109.

72

now. Either (1) such laws do not exist, (2) standardized ways of applying the laws

do not exist, or (3) the laws are not generally applied according to those standards.

Third, according to Chalmers, paradigms include instrumentation and instrumental

techniques necessary for bringing the laws of the paradigm to bear on the real

world167. Instrumentation and instrumental techniques do exist in computer science.

In fact, the technological side seems to be well-ahead of the human, societal, and

user sides (examples of which can again be found in the areas of modeling and

design).

Fourth, Chalmers noted that paradigms include some very general, metaphysical

principles that guide work within a paradigm. For example, “any real-world compu-

tational instrument, no matter how complicated, can be presented as a Turing Ma-

chine”, is such a principle (although perhaps not correct—take analog computers, for

instance). One description of such principles in computing is given by Peter Den-

ning168. Denning classified the “great principles of computing” in two categories:

Principles of computation structure and behavior, which he called mechanics, and

principles of design. Furthermore, there is also an important addition to Denning's

principles—computing practices.

Denning's list of principles of mechanics includes topics such as algorithms, soft-

ware engineering, data mining, programming languages, and human-computer inter-

action. The principles of design include abstraction, modules, separate compiling,

layering, and reuse, amongst others. Denning's list has been criticized: For example,

principles emphasizing cognitive modes169, as well as principles emphasizing cre-

ativity and critical skills training170, have been proposed as additions or alternatives

to Denning's principles171.

Fifth and finally, Chalmers noted that all paradigms contain some very general

methodological prescriptions such as, “Make serious attempts to match your para-

167Chalmers, 1976:p.109.

168Denning, 2003. Denning's classification and definition owes a lot to the work he has done earlier with a group of
top-class computer scientists (Douglas Comer, David Gries, Allen Tucker, etc.–see Denning et al., 1989)

169Burnette, 2004

170Liu, 2004 - however, Denning, in his reply (Denning, 2004b), reminds Liu that he had included “innovation” as
part of the framework. It remains uncertain whether Liu and Denning have a mutual understanding of the
concept of innovation or not. What does become clear, though, is that a universal consensus of the principles of
computing has yet to find its form.

171Denning, 2003

73

digm with nature”172. Examples of such methodological prescriptions in the field of

computing might be, for instance, “use routines to improve the manageability of

code”, or “minimize complexity”173.

Scientific Problems According to Kuhn

Kuhn took a firm stand on the term problems. Since the outcomes of normal re-

search problems can be anticipated174, often so accurately that what remains to be

found is uninteresting per se, the method of achieving that outcome is often the inter-

esting part, the unknown. “Bringing a normal research problem to a conclusion is

achieving the anticipated in a new way, and it requires the solution of all sorts of

complex instrumental, conceptual, and mathematical puzzles”175. Thus, Kuhn called

this sort of research activity puzzle-solving; Sutinen and Tarhio176 referred to this

class as C-O-C problems, where the premises are known (C), the outcomes are anti-

cipated (C), but the means of achieving the expected results are unknown (O). Kuhn

did not regard practitioners of normal science as solving problems, but as solving

puzzles. (The terms puzzle and problem are analyzed more deeply in the beginning

of Chapter Three.)

The deliberate selection of the phrase “puzzle-solving” over “problem-solving” un-

derscores the constrained nature of normal science. Steve Fuller argued that most

scientists are narrowly trained specialists who try to work entirely within their para-

digm until too many unsolved puzzles accumulate177. Also, Kuhn emphasized the

game-like characteristic of normal science:

On the contrary, the really pressing problems, e.g., a cure for cancer or the

design of a lasting peace, are often not puzzles at all, largely because they

may not have any solution. Consider the jigsaw puzzle whose pieces are se-

lected at random from each of two different puzzle boxes. Since that prob-

lem is likely to defy (though it might not) even the most ingenious of men, it

cannot serve as a test of skill in solution. In any usual sense it is not a

172Chalmers, 1976:pp.109-110.

173McConnell, 1993:pp.114,397.

174In normal science, even paradigm re-articulation cannot aim at unexpected results. Even though this seems like
sort of a paradoxical language game (if one aims at unexpected results, one expects unexpected results, and thus
they are not unexpected), it is actually a profound notion, explained further in Kuhn, 1996.

175Kuhn, 1996:p.36.

176Sutinen & Tarhio, 2001

177Fuller, 2003:p.19.

74

puzzle at all. Though intrinsic value is no criterion for a puzzle, the assured

existence of a solution is.178

Thus, in Kuhn's theory, one of the things that acquiring a paradigm brings along is a

criterion for choosing problems that (according to the paradigm) can be assumed to

have solutions. In addition, those problems that are not reducible to the puzzle-form,

may be rejected as metaphysical speculation, as a concern of another discipline, or

sometimes as just too problematic to be worth the time. In computer science, rejec-

tions like those have for long been a part of the scientific turf wars as well as debates

over the definition of computer science as a discipline, as discussed further in

Chapter Three.

A paradigm can even insulate the scientific community from those societally import-

ant problems that are not reducible to puzzle form. It seems paradoxical that there is

not much correspondence between the difficulty of a particular science's problem

field, and the “hard” image of that science—quite the contrary179. The more ambigu-

ity there is about the premises, methodology, and the goals, the more “soft” the sci-

ence is, regardless of the difficulty of those problems. It seems that uncertainty, a

characteristic which common sense would attribute to difficult problems, is typically

attributed to “soft” sciences. Clarity, predictability, and an expected fit with existing

knowledge (which common sense would attribute to simpler problems) are charac-

teristics of a “hard” science. The fact that what is considered important may differ

between communities and societies brings an extra flavor to socioculturally aware

computing, asking, “On which terms and by whom are scientifically admissible

problems chosen?”.

The Foci And Limits of Normal Science

Clearly, computing or information and communication technologies in general are

not panaceas that could or should be applied to all problems, but it is important to

ask: “How are the limits of computing currently defined?” and “Are the boundaries

in computing defined by the limitations of human intellect and possible human

achievement, or rather dictated by normal science, and thus limited only to the nar-

row class of closed problems that can be reduced to puzzles?”. This narrow descrip-

178Kuhn, 1996:pp.36-37, underlining added.

179See page 191 in this thesis.

75

tion of problems in normal science seems quite discouraging, and according to

Kuhn, puzzle-solving activity is actually one of the reasons why normal science

seems to progress so rapidly. Its practitioners concentrate on puzzle-problems that

only their own lack of ingenuity should keep them from solving180. In fact, any piece

of research may seem to progress rapidly if the solutions to the research problems are

already known, and the only unknown is how to get there. If the goal is not known,

progress is hard to measure.

A narrow focus is not merely detrimental to science. In Kuhn's theory, normal sci-

ence owes its success to the ability of scientists to regularly select problems that can

be solved with conceptual and instrumental techniques close to those already exist-

ing. Researchers conducting normal science do not aim at novelties of fact or the-

ory, and, when successful, find none181. This sort of narrow focus enables research-

ers to concentrate their resources on well-constrained areas, which may lead to fast

and deep development in that particular area. The researchers who practice normal

science, engage throughout their careers in what Kuhn called “mopping-up” work182.

The tendency of concentrating resources becomes apparent, from time to time, as

“reverse salients”183. When some obstacles hinder progress in a number of topics,

scientists focus their inventive efforts to overcome those critical problems, because

solving them will free up a number of other areas for growth.

Kuhn wrote that there are three foci of normal science, which are neither always nor

permanently distinct. The first focus is the class of facts a paradigm has shown to be

particularly revealing of the nature of things. The goal of the researchers investigat-

ing this class is to expand on the phenomena with more precision and in a larger

variety of situations. For instance, computational complexity is such class of facts,

and the understanding of computational complexity is continuously expanded.

Nowadays the number of named complexity classes is in the tens or hundreds, de-

pending on how one counts them184. Perhaps in the growth of understanding in this

180cf. Kuhn, 1996:p.37.

181Kuhn, 1996:p.52.

182“Mopping up” really is what Kuhn called normal science (see Kuhn, 1996:p.24). This choice of words evokes an
implicit association of a few researchers walking ahead of others, finding and defining anomalies and problems,
and others following behind, left with the work of the normal scientist: Proving theorems, testing predictions,
and gathering more facts that support the paradigm.

183MacKenzie and Wajcman, 1999 :pp.11-12.

184Scott Aaronson has listed more than 460 complexity classes in The Complexity Zoo:
http://qwiki.caltech.edu/wiki/Complexity_Zoo (accessed September 27th, 2006).

76

area lies the seed for the next scientific crisis that could eventually spur computing

into a new era.

The second focus is on those facts that can be compared directly with predictions

from the theories of the paradigm. Improving the scientists' agreement on facts

within a paradigm or finding new areas in which this agreement can be demonstrated

at all, presents a constant challenge to the skill and imagination of the experimental-

ist and observer. Using the predictions and theories (linear programming, heuristics,

branch-and-cut) from the first class of facts has led to remarkable results in evading

seemingly intractable problems. For example, the traveling salesman's problem has

been solved for the 24 978 cities in Sweden185.

The third focus of normal science is on the fact-gathering activities of science. It

consists of empirical work undertaken to articulate the paradigm theory, resolving

some of its residual arguments, and permitting solutions to new problems. Examples

of this kind of work are determining physical constants, finding faster algorithms to

analyze graph structures, or conducting usability tests. Furthermore, fact-gathering

activities may incorporate ways of applying the paradigm to a new area of interest186.

For example, computer science and computational models have been used in an as-

tonishing number of studies conducted in a variety of fields. There are computation-

al models in physics and chemistry, in meteorology and biology, economics and

neuroscience; even models of culture187 and sociological phenomena188 exist. No

wonder Stephen Wolfram called computational science “a new kind of science”189.

Then again, the psychologist, economist, and the anthropologist may not yet be

ready to reduce the phenomena in their fields to computation.

In conclusion, it seems that computer science is so fragmented that it can hardly be

called a mature science from the Kuhnian point of view. Only the oldest branches of

computer science have the characteristics that Kuhn connects with maturity. Those

branches are mainly those strongly connected with mathematics and logic—al-

gorithms, numerical methods, computational models, compilers, languages, and lo-

185See the web site describing the solution at http://www.tsp.gatech.edu/sweden/ (accessed September 27th,
2006)

186Kuhn, 1996:pp.25-30.

187Gabora, 1995

188Brent et al., 2000

189Wolfram, 2002

77

gic circuits190. Then again, criticism of Kuhn's theory raises doubts about whether

the whole concept of mature normal science is valid anyway. This is discussed in

the following section.

190See Denning, 2003 for a list of all topics, mature or immature.

78

Revolutions in Science

When a piece does not fit the puzzle, is the piece or the puzzle faulty?

Steve Fuller claimed that a paradigm

succeeds by monopolizing the means of

intellectual reproduction191. However,

new and unsuspected phenomena have

been repeatedly uncovered and radical

new theories have again and again been

(and are) brought forth by scientists192.

If a scientist cannot fit an observation or

a whole theory to the dominant para-

digm, it is generally seen as a failure of

that scientist rather than as a sign of

flaw in the paradigm. The problems that, according to the dominant paradigm,

should have solutions but that seem to resist solution, are seen as anomalies (instead

of falsifications of a paradigm as Popper would have liked to take them). The line

between theories and empirical facts is exceedingly artificial, as seen in how anom-

alies are dealt with. In Kuhnian theory, when scientists encounter anomalies, they

continue to explore them, and this exploration closes only when the paradigm has

been adjusted so that the unexpected (i.e. the anomaly) has become the expected. In

short, until the theory has been adjusted so that the new fact (anomaly) can be fric-

tionlessly assimilated, the new fact, according to Kuhn, is not quite a scientific fact

at all.193

As scientists find more anomalies that do not fit the paradigm, insecurity among re-

searchers grows. The failure of theories and laws inevitably leads to a search for

new ones. Often anomalies can be fit into the dominant paradigm because the theor-

ies are adjustable194, but gradually the paradigm starts to lose status, and normal sci-

ence drifts into a crisis state. When a paradigm has entered a state of crisis, several

191Fuller, 2003:p.37.

192Kuhn, 1996:p.52.

193Kuhn, 1996:pp.52-53.

194See, e.g. Kuhn's example of stretching the phlogiston theory to accommodate anomalies (Kuhn, 1996:p.71).

79

IN THIS SECTION:

� What triggers a paradigm shift?

� What convinces scientists about the superi-

ority of the new paradigm?

� Is the Kuhnian theory a relativistic theory?

� For whom is revolution a revolution?

� What are the weaknesses of Kuhn's theory?

� Was there ever a period of normal science in

computer science or in any other science?

alternatives often emerge to replace the former paradigm. The history and philo-

sophy of science indicate that a set of empirical data can always be explained in

terms of more than one theoretical framework (see page 60 of this thesis about the

underdetermination thesis, which argues that infinitely many theoretical construc-

tions can always be placed upon a given collection of data).

So when scientists face anomalies, instead of immediately rejecting the dominant

paradigm, a paradigm is declared invalid only if there is an alternative paradigm that

explains some of the anomalies better than the dominant paradigm. A decision to re-

ject one paradigm is always simultaneously a decision to accept another, and the

judgment leading to that decision involves the comparison of both paradigms with

empirical results and with each other, Kuhn argued195. In his later work, Kuhn ac-

knowledged that falsification in fact plays an essential role in science: “It is the

strategy appropriate to those occasions when something goes wrong with normal

science, when the discipline encounters crisis”196. However, this is not to be read as

a concession to the use of falsificationism in the era of normal science, but that it can

be a tool to decide between competing theories during a state of crisis.

What makes clinging to an inadequate paradigm possible is that the proponents of

the paradigm will arguably do whatever they can to hold their theory together. Kuhn

claimed that they will devise numerous articulations and ad hoc modifications of

their theory in order to eliminate any apparent conflict197. At some point, the pro-

ponents of the old paradigm cannot hold the paradigm together. Nonetheless, a para-

digm shift cannot happen before a replacement candidate emerges:

Once [, after the pre-scientific period,] a first paradigm through which to

view nature has been found, there is no such thing as research in the ab-

sence of any paradigm. To reject one paradigm without simultaneously

substituting another is to reject science itself. That act reflects not on the

paradigm but on the man [sic]. Inevitably he will be seen by his colleagues

as 'the carpenter who blames his tools'.198

From Kuhn's point of view, Fuller claimed, argumentation in science does more to

“sway uncommitted spectators, especially if they are young or newcomers to the

195Kuhn, 1996:p.77.

196Kuhn, 1970

197Kuhn, 1996:pp.77-78.

198Kuhn, 1996:p.79.

80

field”, and less to “change the minds of the scientific principals themselves”199. The

sheer fact that newcomers in science have not yet personally invested in the old para-

digm may be enough to make them open to a radical change in direction. Kuhn him-

self wrote,

The transfer of allegiance from paradigm to paradigm is a conversion ex-

perience that cannot be forced. Lifelong resistance, particularly from those

whose productive careers have committed them to the old tradition of nor-

mal science, is not a violation of scientific standard but an index to the

nature of scientific research itself. The source of resistance is the assurance

that the older paradigm will ultimately solve all its problems [...] That same

assurance is what makes normal or puzzle solving science possible.200

German physicist Max Planck (1858-1947), who is the father of the quantum theory,

worded the same thing in a more tragic form:

A new scientific truth does not triumph by convincing its opponents and

making them see the light, but rather because its opponents eventually die,

and a new generation grows up that is familiar with it.201

Problems With Kuhn's Theory

It is hard to see that there would have been any scientific crises in the history of elec-

tronic computing—or that in some point of that history there would have been accu-

mulating anomalies. Even the most decisive revolutions—the shift from mechanical

to electronic computation and the conception of the stored-program computer—were

not results of anomalies, yet perhaps of deficiencies in the dominant paradigm (these

issues are dealt with in detail later in this thesis). Anyhow, Kuhn's Structure of Sci-

entific Revolutions has come to dominate the history, philosophy and sociology of

science. Arguably, it is often taken as the unproblematic foundation for its inquiries,

almost as if the criticisms of Kuhn's position had never been made. Popper, for ex-

ample, interpreted “normal science” as a moral failure rather than a successful adapt-

ation strategy202. Because of Kuhn's dominant position, and despite the lack of cor-

respondence with the history of computing, in the rest of section I take a standpoint

towards Kuhn's theory.

199Fuller, 2003:p.38.

200Kuhn, 1996:pp.151-152.

201Planck, 1949:pp.33-34.

202Fuller, 2003:p.40.

81

Steve Fuller argued that there is a valid social critique of Kuhn's theory203. For

Kuhn, activity is not proper science unless the community of inquirers can set its

own standards for recruiting colleagues and evaluating their work. Societal or pro-

fessional oversight cannot be found in Kuhn's theory of scientific change—as if sci-

entists would be above society; untouchable, always correct. Fuller pointed out that

one might think that such an élitist vision would have no place in today's world,

where the costs and benefits of science loom as large as those of any public policy.

Yet, Fuller continued, Kuhn managed to succeed simply by ignoring the issue, and

that Kuhn left his readers with the impression—or perhaps misimpression—that, say,

a multi-billion dollar particle accelerator is nothing more than a big scientific

playpen. Certainly, the institutions funding science have their own interests in

mind204—and, again, science is never value-free205.

There also exists a problem with Kuhn's explicit statement distancing himself from

relativism and his apparent relativist claims:

Later scientific theories are better than earlier ones for solving puzzles in

the often quite different environments to which they are applied. That is not

a relativist's position, and it displays the sense in which I am a convinced

believer of scientific progress.206

Contrary to this, it is explicit throughout Kuhn's work that scientific theories are in-

commensurable207—it is one his key claims. There are, Chalmers noted, apparently

two roads that one can choose from. One could follow the path taken by sociologists

and embrace and develop the relativist strand in Kuhn's thought, which among other

things involves carrying out the sociological investigation of science208. Or, one

could adopt the anti-relativist stance, but this would require an answer to the ques-

tion of the sense in which a paradigm can be said to constitute progress over the one

it replaces (and, incommensurability makes the comparison impossible)209.

203Fuller, 2003:pp.45-46.

204I have discussed this in Tedre et al., 2003.

205See page 34 in chapter 2.1.

206Kuhn, 1996:p.206.

207That is, because even the concept of “what is a problem” may change from paradigm to paradigm, it leaves ambi-
guity about what criteria there are to judge one theory superior to another–and how is scientific process meas-
ured. Moreover, as Feyerabend noted, Kuhn does not discuss the aim of science either (Feyerabend, 1970).

208Chalmers, 1976:p.122-124.

209My position towards progress is also discussed in a joint paper with philosopher Teppo Eskelinen (Eskelinen,
Teppo; Tedre, Matti (forthcoming) Three Dogmas of Computing. An article manuscript).

82

The question raised by Kuhn, Feyerabend noted, is not whether there are limits to

our reason; the question is where these limits are situated. Feyerabend asked: “Are

the limits to our reason outside the sciences so that science itself remains entirely ra-

tional, or are irrational changes an essential part of even the most rational enterprise

that has been invented by man?”210.

Kuhn noted that the gist of the problem is that in order to answer the question “Is

this development within the boundaries of normal science or is it revolutionary?”,

one must first ask, “For whom?”211. Sometimes, Kuhn continued, the answer is easy:

Copernican astronomy (Nicolaus Copernicus, 1473-1543) was a revolution for

everyone; the discovery of oxygen was a revolution for chemists but not for, say,

mathematical astronomers unless they were interested in chemical and thermal sub-

jects too. Later in this thesis (p.177) problems are classified according to their sub-

ject: Problems are grouped into three classes: general, intimate, and limitary prob-

lems. The aforementioned passage from Kuhn suggests that a similar kind of relativ-

ism applies to Kuhn's scientific revolutions too.

Although the three classes of problems are discussed in more detail later, a brief

summary is in order. In computer science, general revolutions are those that affect

the whole field of computing (and because of the nature of computer science as an

intersection of theory, modeling, and design, theoretical and practical revolutions

can be counted in.) General revolutions in computer science may include things

such as the Church-Turing thesis (Alonzo Church, 1903-1995, Alan Turing)212, the

discovery of semiconductors, the construction of the stored-program computer, or

the evolution of high-level programming languages. (The Church-Turing thesis and

the stored-program computer can be considered to constitute the stored-program

paradigm.) Limitary revolutions concern restricted fields of computing: the concep-

tion of mouse and graphical user interfaces (usability), the object-oriented paradigm

(programming and software engineering), and the Chinese room argument213 (artifi-

cial intelligence). Granted, it is hard to draw the line between general and limitary

problems. Those two classes may overlap, and they may even be equal. This raises

the question “limitary = general?”.

210Feyerabend, 1970

211Kuhn, 1970

212Turing, 1936

213Searle, 1980

83

Finally, intimate revolutions consist of the enlightening experiences that one may

gain when digging deeper into the discipline of computing. Those experiences

might be classified as tacit knowledge (see page 72 of this thesis). For instance, dig-

ging deep into understanding GNU/Linux (and contributing to its creation) has been

reported as a process where the technology comes second and personal enlighten-

ment (i.e., intimate revolution), fun, and socializing are more important214.

Coming back to Kuhn, what is noticeable—whether Kuhn is a relativist or not—is

that many disciplines that often use Kuhn's Scientific Revolutions as their precept,

often disregard the fact that Kuhn was a physicist. His examples and sources con-

cern merely natural sciences such as physics, chemistry, and astronomy; and it has

been claimed that, for instance, modern sociology lacks a consistent paradigm and

consequently fails to qualify as a science in the Kuhnian sense215. On the other hand,

Kuhn wrote that the typical development of a concept involves the initial emergence

of the concept as a vague idea, followed by its gradual clarification as the theory in

which it plays a part takes a more precise and coherent form—so perhaps the non-

paradigmatic sciences need more time.

Popper and his followers identified another weakness in Kuhn's theory; Kuhnian

normal science is, they claimed, a politically primitive social formation that com-

bined the qualities of the Mafia, a royal dynasty, and a religious order216. Of course,

for this critique to be valid, Kuhn's writing has to be read as a normative claim (see

page 67 of this thesis). Kuhn stated that his theory has been misinterpreted so that

“the factors which determine what the scientific community chooses to believe are

fundamentally irrational, matters of accident and personal logic. Neither logic nor

observation nor good reason is implicated in theory-choice. Whatever scientific

truth may be, it is through-and through relativistic”217.

In Fuller's words, normal science lacked the sort of constitutional safeguards that

modern democracies take for granted: Those which regularly force politicians to be

accountable to more people than just themselves218. Fuller concluded that scientists

214Himanen, 2001:first chapter. Also visible in Linus Torvalds' preface to Himanen's book.

215Chalmers, 1976:p.109.

216Feyerabend too compares Kuhn's discipline to organized crime. He also raised the question of how paradigm
changes happen; Kuhn's theory does not rule out killing the representatives of the status quo (Feyerabend, 1970).

217Kuhn, 1970

218Fuller, 2003:p.46.

84

should always be trying to falsify their theories, just as people should be always in-

vited to find fault in their governments and consider alternatives—not simply wait

until the government can no longer hide its mistakes. Yet there is a problem with

lack of autonomity too. Sociologist C. Wright Mills (1916-1962) noted that if sci-

ence is not autonomous, it cannot be a publicly responsible enterprise219.

The juxtaposition of Fuller's and Mills' views is valid and deserves to be noted as

one of the weaknesses in Kuhn's theory (too tight as well as too loose of a commit-

ment to normal science would be detrimental to science). It seems that autonomity

is a double-edged sword. Then again, it seems that the rivalry within the scientific

community may take care of this weakness. It appears that nothing rewards a scient-

ist better than finding fault in a fellow scientist's theory or experiment. And taking

science into a state of crisis and then succeeding in convincing the scientific com-

munity of the superiority of one's own paradigm over the alternative ones makes a

researcher seem immortal for a while. Kuhn himself responded; “My critics respond

to my views [...] with charges of irrationality, relativism, and the defense of mob

rule. These are all labels which I categorically reject, even when they are used in

my defense by Feyerabend”220.

Pluralism in Science

Pluralism, when understood as the presence and toleration of different viewpoints in

science, is inherent in both Popper's and Kuhn's philosophies. Popper's pluralism is

explicit in his statement “There is no method peculiar to philosophy”221. In Popper's

philosophy, any falsifiable idea can be considered valid until falsified. This may be

a noble idea, but Popper's idealism may not work in real life, for members of the sci-

entific community may reject alternative hypotheses almost automatically (cf. Kuh-

n's notion of the stubbornness of the scientific community). In Fuller's opinion,

Kuhn's pluralism emerges in the form of increasingly specialized domains of in-

quiry, each dominated by its own paradigm222—as is the case of contemporary com-

puter science. In this sense Kuhn's description of science seems more accurate than

Popper's—not as a normative but a descriptive account of computer science (not as a

prescription but as a description).

219Mills, 1959:p.106.

220Kuhn, 1970; the Feyerabend's article Kuhn refers to is “Consolations for the Specialist” (Feyerabend, 1970).

221Popper, 1959:p.xix.

222Fuller, 2003:p.55.

85

In Structure of Scientific Revolutions, what prima facie looks like an apparent confu-

sion, actually brings up a valuable point in Kuhn's conception of knowledge (the

contradicting parts are underlined223):

Just because [a paradigm shift] is a transition between incommensurables,

the transition between competing paradigms cannot be made a step at a

time, forced by logic and neutral experience. Like the gestalt switch, it must

occur all at once (though not necessarily in an instant) or not at all.224

There are apparently two senses of knowledge that Kuhn includes in the sentence

above. The first one is the (epistemologically) objective side of knowledge, which

deals mostly with the paradigm in the sense of an exemplar. As I noted earlier in

this chapter225, an exemplar denotes one sort of a given constellation in the concrete

puzzle-solutions which, employed as models or examples, can replace explicit rules

as a basis for the solution of the remaining puzzles of normal science226. In modern

science, especially in a discipline such as computer science, there is inevitably a di-

versity of beliefs among researchers. Many researchers are not aware of the relev-

ance of other branches to their own work, and there exists a complexity of objective

relationships between branches of the discipline independently of whether individu-

als are aware of that relationship227. When a paradigm shift occurs in one branch, it

inevitably affects other branches, but this does not necessarily happen in an instant.

The second sense, the (epistemologically) subjective side of knowledge is apparent

in, for example, Kuhn's term gestalt switch228, which is a state of mind that is sub-

jective to every researcher. If a gestalt switch occurs, it is a one-way street; one

either accepts the new theory or not. Thus, a gestalt switch occurs all at once for

every researcher who accepts the new theory.

223Alan Chalmers has also contemplated this problem in Chalmers, 1976:pp.124-129.

224Kuhn, 1996:p.150.

225See page 67 of this thesis.

226Kuhn, 1996:pp.175,187-191.

227cf. Chalmers, 1976:p.126.

228Kuhn, 1996:pp.111-114.

86

Paul Feyerabend made clear his negative opinion on the value of Kuhn's theory:229

Kuhn's ideas are interesting but, alas, they are much too vague to give rise

to anything but lots of hot air. Never before has the literature on the philo-

sophy of science been invaded by so many creeps and incompetents. Kuhn

encourages people who have no idea why a stone falls to the ground to talk

with assurance about the scientific method. Now I have no objection to in-

competence but I do object when incompetence is accompanied by boredom

and self-righteousness.230

In addition, Feyerabend claimed that wherever one tries to make Kuhn's ideas more

definite one finds that they are false. Feyerabend asked, “Was there ever a period of

normal science in the history of thought? No—and I challenge anyone to prove the

contrary.”231. My interpretation is that “periods of normal science” may be an illu-

sion of history. The further back in history one looks, the less data about the era's

scientific disputes is found. Is this a proof of greater scientific consensus or an in-

dication of lack of data about disputes? Langdon Winner argued that even social

constructionists disregard the possibility that there may be dynamics behind those re-

vealed by studying the immediate needs, interests, problems, and solutions of specif-

ic groups and social actors232. The manner of writing history of science as series of

definitive culmination points reinforces the common image of history of science and

invention as a predetermined route that has passed through series of small revolu-

tions.

Nonetheless, regardless of whether other sciences have or have not had periods of

normal science, it is indeed hard to distinguish an era of normal science in the short

history of computer science. There are very few things that would have been unan-

imously agreed upon at any point in the history of computer science (at least, not to

the extent that it could be called a paradigm), as later chapters of this thesis show.

As a theoretical framework for the history of computer science, Kuhn's theory fails

to acknowledge alternative strands of computing. Concentrating on the highlights of

the history of computing reinforces the idea of the development of computing as a

229Earlier Feyerabend called the normal science to revolution to normal science to revolution -pattern “[a pattern
where] professional stupidity is periodically replaced by philosophical outbursts only to return again at a 'high-
er level' ”. Then again, he began the same article by stating “in my effort to be brief I do this in a somewhat
blunt fashion” (Feyerabend, 1970).

230Feyerabend, 1975

231Feyerabend, 1975

232Winner, 1993

87

deterministic “route”. Also, it depicts history as a series of mini-fables with a num-

ber of revolutions. Following Winner's critique of social constructionism233, a genu-

ine understanding of computing requires an approach where alternative solutions and

patterns of thought, both successful and celebrated as well as unsuccessful and dis-

carded, are given due recognition. Thus, Kuhn's theory is not an appropriate theoret-

ical framework of how computing works. Furthermore, Kuhn's theory sanctifies the

arbitrarily set constraints of “scientific consensus”, and legitimatizes the oppression

of “alternative” by “normal”, and consequently is not an eligible normative precept

for computing either. A touch of Feyerabendian sensitivity about the subtle differ-

ence between science and beliefs is needed.

233Winner, 1993

88

Freedom of Choice: Paul Feyerabend's Anarchistic Theory

I arranged [the text passages] in a suitable order, added transitions,

replaced moderate passages with more outrageous ones,

and called the result “anarchism”.234

There is a large number of other philo-

sophical accounts of science that would

definitely strengthen this thesis, but I

take the literature in this chapter to be a

satisfactory sample of modern (1900s)

mainstream philosophy of science.

Surely, the works of, for instance, De-

borah Mayo, William James (1842-

1910), and Ian Hacking all have their

strengths, but for the purposes of this

thesis, the strengths and weaknesses of having a normative theory are now charted.

Before concluding this section, the strengths and weaknesses of not having an over-

arching normative theory are addressed: That is, Paul Feyerabend's anarchistic the-

ory of science.

Feyerabend's book Against Method235 challenges all of the attempts to define an ac-

count of scientific method that would serve to capture “the special status of science”.

Feyerabend argued that there is no such method, and, indeed, that science does not

possess features that render it necessarily superior to other forms of knowledge236.

For me it seems that Feyerabend encouraged researchers (and educators) to do ex-

actly what Kuhn warned them of—rejecting a paradigm without simultaneously sub-

stituting another237. Rejecting a paradigm does not, though, mean rejecting reason,

intellect, or common sense (although one of Feyerabend's books is called Farewell

to Reason238. In this chapter I discuss the reasoning behind rejecting paradigmatic

science.

234Paul Feyerabend about writing Against Method (Feyerabend, 1995:p.142).

235Feyerabend, 1993 (orig. publication 1975). Paul Feyerabend and Imre Lakatos were both Karl Popper's students
but whereas Lakatos radically modified Popper's falsificationism, Feyerabend rejected it completely.

236Chalmers, 1976:p.150, note the emphasis on the word necessarily.

237See Kuhn, 1996:p.79.

238Feyerabend, 1987

89

IN THIS SECTION:

� What does anarchistic theory of science

mean?

� What consequences does the incommensur-

ability of theories have?

� Do pre-ordained “dogmatic” scientific

frameworks inhibit progress?

� A critique of Feyerabend's anarchistic theory

of science.

The Anarchistic Theory of Science

Feyerabend's idealistic239 thoughts were at the time of their writing (and still are by

some) considered “dangerous and ill”, “a bad influence”, and “driving philosophers

of science practically insane”240. My interpretation is that Feyerabend did to the sci-

entific method what René Descartes and Zhuang Zi (�� , ca. 369-286 B.C.) did to

reality241. Even though the ideas of Descartes, Zhuang Zi, or Feyerabend are not ex-

actly intuitive, they are so philosophically sound that they can not be dismissed eas-

ily. And though their ideas are not exactly practical, the doubts they raise should be

noted and taken into consideration.

Feyerabend wanted to defend society from all ideologies—science included. Ideolo-

gies should, he wrote, be seen in perspective and not be taken too seriously—they

should be read like ethical prescriptions which may be useful rules of thumb but

which are deadly when followed to the letter242. Feyerabend joined with Kuhn in de-

manding a historical as opposed to an epistemological grounding of science, but op-

posed the Kuhnian (and C. Wright Mills') idea of the sociopolitical autonomy of sci-

ence (which would certainly reinforce the authoritarian position of science). Feye-

rabend's position is well suited for the purposes of this thesis because it allows a so-

ciocultural viewpoint of science to be taken, and criticizes the narrow view imposed

by institutions, normal science, scientist authorities, dogmatic systems of thought,

absolute truth, and rigid theories.

Moreover, Feyerabend had little sympathy for Kuhn's attempt to tie up history with

theoretical ropes: “A connection with theory just brings us back to what I at least

want to escape from—the rigid, though chimaerical243 [...] boundaries of a 'concep-

tual system'”244. Feyerabend's thinking is congruent with (perhaps even central to)

the anti-theoretical strands in postmodern thought245. From an ethnomethodological

perspective, attempts to explain divergent computational systems in terms of another

239See, e.g., Preston, 1997; Farrell, 2001: Feyerabend used to be an advocate of scientific realism, but Against
Method was written around his “transitional” or “idealistic” period.

240Feyerabend, 1975; Jacobs, 2003; Staley, 1999, respectively.

241In the West, “I think, therefore I am”, is as oft-quoted a phrase as “Zhuang Zi dreamt of being a butterfly” (��
��) in Sinocentric cultures (see this translation of Zhuang Zi in Watson, 1964:p.45). Both refer to the same
doubts about the reality and limits of knowing.

242Feyerabend, 1975

243A fanciful mental illusion or fabrication.

244Feyerabend, 1993:p.213.

245As Thomas, 1997, claimed.

90

conceptual system, say, in terms of academic computer science, may not be fruitful

at all.

Even the most radical critics of society, Feyerabend argued, agree that people owe

their increased intellectual freedom, vis-à-vis religious beliefs, to science246. To the

extent one takes this to be true, science and enlightenment are one and the same

thing; take, for instance, Galileo's (Galileo Galilei, 1564-1642) conflict with the

Catholic church. However, the liberating character science once had has, as Feye-

rabend it sees, transformed to a dogma—an obstacle to free thinking:

Any ideology that breaks the 'hold a comprehensive system of thought has

on the minds of men [sic]' contributes to the liberation of man. Any ideo-

logy that makes man question inherited beliefs is an aid to enlightenment. A

truth that reigns without checks and balances is a tyrant who must be over-

thrown and any falsehood that can aid us in the overthrow of this tyrant is

to be welcomed. It follows that 17th and 18th century science was an instru-

ment of liberation and enlightenment. It does not follow that science is

bound to remain such an instrument. There is nothing inherent in science

or in any other ideology that makes it essentially liberating. Ideologies can

deteriorate and become stupid religions.247

From the perspective of any ethnoscience, Feyerabend's standpoint is compelling es-

pecially because it is explicit about the problematic nature of “clarification”. Scient-

ists tend to demand that any discussion of science has to be expressed in notions

already familiar to them. This demand for clarification either makes it impossible to

introduce—or at least narrows down the scope of—any really new theories or phe-

nomena. The impossibility stems from incommensurability, which is closely related

to inexpressibility.

By inexpressibility I refer to the fact that totally new concepts (or some aspects of

those concepts) might not be expressible in the language of the old domain of sci-

ence. Feyerabend wrote that if new concepts should be expressible using the old sci-

ence, “the course of investigation is deflected into the narrow channels of things

already understood, and the possibility of fundamental conceptual discovery (or for

fundamental conceptual change) is considerably reduced”248. Like Kuhn, Feye-

246Feyerabend, 1975

247Feyerabend, 1975, underlining added.

248Feyerabend, 1993:p.193.

91

rabend called this incommensurability, but unlike Kuhn, Feyerabend came to the

conclusion that the concept of truth cannot override the freedom to choose one's

frame of reference in any intellectual activity. Feyerabend's philosophy is essen-

tially about freedom of choice.

The Critique of Feyerabend

The most obvious critique of Feyerabend stems from the fact that scientific theories

are based on verifiable empirical evidence, and that makes them different from, for

instance, religions that are based purely on faith. A question that has lately been de-

bated in context of Darwinism vs. creationism is: Should school subjects be chosen

without any scientific criteria at all? Thomas Kuhn agreed with Feyerabend in that

both oppose the comparison of theories as representations of nature (as statements

about “what is really out there”) as well as the consequential quest for the ultimate

framework of explanation249. The semantic conception of truth is regularly epitom-

ized in the example:

“Snow is white” is true if and only if snow is white.

If this would be merely a matter of the objective observation of nature, it would not

present any insuperable problems, but as Kuhn noted, it also involves the assumption

that objective observers understand the statement “snow is white” in the same

way250. Kuhn wrote that it should not be taken for granted that the proponents of

competing theories share a neutral language adequate for the comparison of such

observational reports. Furthermore, contrary to the trivial “snow is white”-assertion,

objectivity may not be obvious anymore if the assertion were, “GO TOs increase code

entropy” or “Good modularization reduces maintenance costs”251. In the field of

computing, a prominent computer scientist, Donald Knuth, has written about the

dogmatism concerning the GO TO statement252. His concern was that if computer sci-

ence goes far enough in purity, there would only be a dozen or so programs that are

sufficiently simple to be allowable: Those programs would be pure, but of course

they would not solve many problems.

249Kuhn, 1970

250Kuhn, 1970

251Snelting, 1998

252Knuth, 1974b

92

Both Kuhn and Feyerabend argued that there is no neutral language for science. In

the transition from one theory to the next, words change their meanings or condi-

tions of applicability in subtle ways. Linguists remind people that a perfect transla-

tion is never possible, not even with complex contextual definitions253. Though most

of the same signs are used during different eras of science (e.g., force, mass, ele-

ment, compound, cell), the ways in which some of them attach to nature has changed

over time. Successive theories are thus, Kuhn and Feyerabend said, incommensur-

able254. For example, the explications of the limits of computing in the first part of

the 1900s by Gödel, Turing, and Church255 changed the face of logic and computing.

There is a certain degree of incommensurability between “logic and computing” be-

fore Gödel's incompleteness theorems and “logic and computing” after Gödel's in-

completeness theorems. Another example is that the creation of the first electronic

computers created a number of new incommensurable concepts (as I argue later in

this thesis).

Connected with the imperative of linguistic transformation, there also exists a de-

mand for explanation or reduction of concepts—a demand that there should be con-

tinuity between concepts. Feyerabend dashed the notion that relativity is supposed

to explain the valid parts of classical physics, hence it cannot be incommensurable

with it, replying, “why should the relativist be concerned with the fate of classical

mechanics except as part of a historical exercise? There is only one task we can le-

gitimately demand of a theory and it is that it should give us a correct account of the

world.”256 Denying the existence of a vocabulary adequate for neutral observation

reports, Feyerabend at once concluded that there is an intrinsic irrationality to choos-

ing one theory over another257.

Applied to computer science the question becomes: “Why should John Presper Eck-

ert (1919-1995) and John W. Mauchly (1907-1980) have ever been concerned with

the fate of the fixed-program computer?”. The stored-program computer opened an

unforeseen number of new possibilities for the field of computing, but at the same

253Feyerabend, 1970

254Kuhn, 1970

255Gödel, 1931; Turing, 1936

256Feyerabend, 1970, italics in original.

257Kuhn, 1970

93

time, created a number of concepts incommensurable with pre-von Neumann tech-

nologies.

The problem of reduction is found in another, technological form in the development

of ICT: The demands for the downward compatibility of systems prohibit or hinder

new conceptual or technological inventions. Yet, downward compatibility enables

large scale data exchange and sharing, interconnectivity, convertibility, networking,

teamwork and such258. From the Kuhnian viewpoint, downward compatible techno-

logy might be called “normal technology”, but most of the occasional new develop-

ment tracks that start from scratch could hardly be called “technological revolutions”

- if anything, they might be called technological shifts.

Logic Cannot Explain Everything

Central to science—even to “revolutions”—is the belief that all subjects, however

assembled, quite automatically obey the laws of logic. This dogmatic assertion, Fey-

erabend claimed, is neither clear nor is it true259. First of all, it is not clear, for there

is not a single subject—logic—that underlies all the domains of nature, perception,

the human mind, or society. Feyerabend wrote: “There is Hegel, there is Brouwer,

there are the many logical systems considered by modern constructivists” (Georg

W.F. Hegel (1770-1831); Luitzen E.J. Brouwer (1881-1966)). They offer not just

different interpretations of one and the same bulk of logical “facts”, but different

“facts” altogether. This dogmatic assertion is not true either, Feyerabend argued, be-

cause there is not a single science, or other form of life that is useful, progressive,

and in agreement with logical demands. Feyerabend continued that every science

contains theories that are inconsistent both with facts and with other theories and that

reveal contradictions when analyzed in detail. Only a dogmatic belief in the prin-

ciples of the allegedly uniform discipline—Logic—will make the scientist disregard

the situation. No matter how uniform the discipline of logic is, Gödel showed that

the decision problem, a precisely stated problem, was unsolvable by mathematical

logic260.

I argue that even though computer science works with Boolean logic, the rules of

that logic hardly apply to all of computing. Modern computing is not of the “input-

258See, e.g., Succi et al., 1998.

259Feyerabend, 1993:pp.195-196.

260See, e.g., Wegner and Goldin, 2003; For the original, see Gödel, 1931.

94

process-output” form anymore, but a mesh of interrelated, interactive, complex,

chaotic systems of actors. And many of those actors are not computers but people

and natural phenomena that interact with computers through a variety of interfaces

(ubiquitous or pervasive computing)261. I do not argue that computers are not dis-

crete machines of logic or that they exhibit unpredictable characteristics, but I do ar-

gue that the real-world systems of which computers are a part, are non-discrete, non-

quantifiable, sometimes intentional, uncertain, dynamic, and exceedingly complex.

Computational instruments and their semantic content are created for a purpose (they

exist for some purpose), and they are imperfect, simplified, pruned models of reality.

Programmers create these static models from a dynamic, complex, and infinite

world. It seems implausible that one could make a clear cut around one aspect of a

dynamic reality and paste it to a static model. Brian Cantwell Smith wrote that com-

puter science once thought it could borrow time from the physical world without

having to take on space and energy262. He noted that it worked for a while, but soon

people realized what should have been predictable anyway: Time is not ultimately an

isolable fragment (not an “independent export”) of physics. I assume it would be

equally naïve, or myopic, or hasty at the very least, to insist the same isolability

about other aspects of the physical world.

Usually, the more faithfully a model depicts a dynamic phenomenon, the better that

model is said to be. However, if the model is about an unisolable phenomenon in an

infinite, dynamic, exceedingly complex, and interrelated world, one can improve the

model infinitely—an awful task for a poor perfectionist. Finally, it would be simply

absurd to insist that constantly fluctuating institutional facts263 can be isolated, that

is, to insist the social world is isolable.

Values in Science

Progress in science is often achieved by questioning the values and results of science

and society, and by suggesting new, unpopular and unfounded values to replace

them. This is how, for example, the Catholic church was replaced by science as the

261I do not know which one is a lesser crime: To call this organization “human-in-the-loop” as, e.g., Karen Frenkel
(Frenkel, 1988) did, or vice versa, “computer-in-the-loop”, so I refuse to use either of the terms. The former one
suggests that the human is subservient to the machine loop, or an external part of the computing machinery–the
latter technomorphizes the human, as if the human brain or the external world would be running an infinite loop
or process.

262Smith, 2002b–Smith's dynamic is about norms; dynamic here is about the world of brute facts.

263In terms of philosopher John Searle (Searle, 1996). Discussed later in this thesis.

95

prime authority on the world or reality264. The question Feyerabend raised was,

“what values shall we choose to probe the sciences of today?”265. The answer is also

imperative for the existence of any alternative views on science, for it specifically

calls for courage and stubbornness (the latter cannot exist in a faithful falsificationist

ideology):

A science that tries to develop our ideas and that uses rational means for

the elimination of even the most fundamental conjectures must use a prin-

ciple of tenacity together with a principle of proliferation. It must be al-

lowed to retain ideas in the face of difficulties; and it must be allowed to in-

troduce new ideas even if the popular views should appear to be fully justi-

fied and without blemish.266

“It seems to me”, Feyerabend wrote, “that an enterprise whose human character can

be seen by all is preferable to one that looks 'objective', and impervious to human

actions and wishes”267. This is how the opponents of technological determinism de-

scribe the current state of technology—impervious to human actions and wishes.

But science and technology are human constructs, and so are all the standards they

seem to impose upon scientists and people in general. It is good to be constantly re-

minded of the fact that science as people know it today is not inescapable and that

people may construct a world in which it plays “no role whatsoever”, Feyerabend

noted.

The choice of a cosmological view is a matter of taste268, and I see no reason why

one should not be free to base his or her cosmology on the logic and axioms of math-

ematics. But one should also be free to reject logic and mathematics without the

“justification”, “rationale”, or “proof” that academics so often demand. Proofs, ra-

tionales, and justifications are, after all, the core part of the mathematical and natural

sciences' tradition and it would be absurd to demand a proof in terms of the system

that is about to be abandoned. However, there is an important distinction to be

264Granted, it has not been replaced everywhere: for example, creationism and many other explanations still lose out
to Darwinism in many cultures.

265Feyerabend, 1970

266Feyerabend, 1970, italics in original. Make note, though, that Feyerabend's use of the term principle is some-
what ironic; “Imre Lakatos loved to embarrass serious opponents with jokes and irony and so, I too, occasion-
ally wrote in rather ironical vein. An example is the end of Chapter 1: 'anything goes' is not a principle. I do
not think that 'principles' can be used and fruitfully discussed outside the concrete research situation they are
supposed to affect” (Feyerabend, 1993: preface, p.vii).

267Feyerabend, 1970

268Denzin and Lincoln, 1994:pp.99-100.

96

made. Although I am sympathetic to the Feyerabendian orthogonal repositioning of

the philosophy of science, it is because it offers a legitimation for choosing uncon-

ventional corners for criticizing, diversifying, and perhaps cultivating knowledge

about computation. It is not the case that I would deny the power of mathematical

reasoning, the existence of brute facts, or the success of the currently dominant the-

ory of computation.

Even though mathematics and logic are seen as the most pervasive along the whole

spectrum of scientific domains, producing valid knowledge does not necessarily

need to conform to the formalistic rules of mathematics and logic. Feyerabend ar-

gued that methodology is full of empty sophistication, and so it is impossible to fight

the simple errors at the very basis of methodology: “It is like fighting the hydra—cut

off one head and eight formalizations take its place”269. Thus, Feyerabend wrote,

“when sophistication loses content then the only way of keeping in touch with reality

is to be crude and superficial”. It would be an error to argue that one can achieve

valid knowledge about computers and computing only through formal approaches or

only via the scientific method. The richness of the world defies even the most soph-

isticated of methodologies, and when methodology becomes a hindrance to progress,

one must be able to abandon methodology without a proof.

The Worst Enemy of Science?

Feyerabend has been named “the worst enemy of science”270, but I have a very dif-

ferent view on his work. My reading of Feyerabend is that his sarcastic anarchism is

an attempt to defend science from rigid dogmatism—indeed, instead of attacking sci-

ence, Feyerabend was defending it by attempting to break the chains that confine (in-

commensurable) free thinking, innovation, and novel theories. Perhaps more, Feye-

rabend's anarchism does not seem as much a belief of his, as an observation of pro-

gress in the history of science. My interpretation of Kuhn's description of scientific

revolutions is that in practical science-making, anything goes271.

269Feyerabend, 1970

270Preston, John; Gonzalo Munévar; David Lamb (eds.) (2000) The Worst Enemy of Science? Essays in Memory of
Paul Feyerabend. Oxford University Press: New York, USA.

271“Anything goes” (Feyerabend, 1993:p.14.) is, unfortunately a phrase that can easily be misquoted and used
against Feyerabend. Feyerabend himself commented that he never meant that any scientific theory is as good as
any other (Horgan, 1996:p.52).

97

Naturally, there is plenty of criticism of Feyerabend's position. Imre Lakatos

thought that Feyerabend's epistemological anarchism combined the worst tendencies

in both Kuhn and Popper272. But most of the critique of Feyerabend stems from the

degree to which his notion of freedom is entirely negative273. Chalmers criticized

Feyerabend's (naïve) idealism:

It is ironic that Feyerabend, who in his study of science goes to great

lengths to deny the existence of theory-neutral facts, in his social theory ap-

peals to the far more ambitious notion of an ideology-neutral State. How

on earth would such a State come into an existence, how would it function

and what would sustain it?274

Chalmers wrote that criticizing Feyerabend for setting his views on science in an in-

dividualist framework involving a naïve notion of freedom is one thing, but con-

cedes that coming to grips with the details of the case Feyerabend makes against the

scientific method is another275. Finally, it should be clarified that I do not see that

Feyerabend was a “betrayer of truth”, as is sometimes portrayed, but, as Horgan put

it: He believed very much in science, in fact, his skepticism was motivated by his be-

lief276. Feyerabend, in a rare interview, reported that “anything goes” has never

meant that any scientific theory is as good as any other—but that a researcher needs

to be an opportunist, accommodating to different situations with different methodo-

logies: “You need a toolbox full of different kinds of tools. Not only a hammer and

pins and nothing else.”277

272Fuller, 2003:p.12.

273Chalmers, 1976:p.157. Negative freedom means merely freedom from constraints (which does not guarantee
equality), whereas positive freedom means that the necessities of freedom (education, opportunity, material re-
sources, or such) are also present. Those two terms were initially introduced by Isaiah Berlin in his famous in-
augural lecture Two Concepts of Liberty, delivered before the University of Oxford, October 31st 1958.

274Chalmers, 1976:p.159.

275Chalmers, 1976:p.159.

276Horgan, 1996:p.33.

277Horgan, 1996:p.52. Note that this is very similar to the concept of researcher-as-bricoleur that Denzin and Lin-
coln present (Denzin and Lincoln, 1994:pp.2-3).

98

2.2.Modern Approaches to the Society-Technology Relationship

In all these decisions about science [...] there is a special set of features that

has worried me since the last war. It is this—that, partly because of their

inherent nature, partly because of our general education, they are made by

tiny numbers of people.278

There are a variety of terms referring to the diverse viewpoints of the studies of sci-

ence and technology, and most of those terms are overlapping and interrelated. One

of the terms that has lately become common is science and technology studies (STS).

Traditionally, as Andrew Pickering noted, the core fields of STS are history, philo-

sophy, and the sociology of science279. However, here science and technology stud-

ies is understood in its more recent meaning as an interdisciplinary research topic

that encompasses a number of approaches such as feminist, hermeneutic, and critical

approaches; a number of theories such as the actor-network theory, social construc-

tion of technology, and system theory280; and a number of fields such as anthropo-

logy, history, sociology, philosophy, and political science.

Science and technology studies is a fruitful area for this thesis for three reasons.

First, in STS it is generally acknowledged that science, society, and technology are

strongly interrelated subjects, and that they should be studied together. Second, in

STS it is acknowledged that science and technology are multidimensional phenom-

ena, and thus STS employs a variety of research approaches for understanding those

phenomena better—for instance, approaches from psychology, history, sociology,

and philosophy. Third, STS is not only restricted to academic aims but it has also

practical aims. In a society where science and technology play a vital role, citizens,

policymakers, business, and financiers need a firm and reliable foundation for their

interpretations, decisions, investments, values, and ethics. Similarly, the recognition

of the social aspects of computer science should also offer new viewpoints to stake-

holders and be influential in the development of computer science and technology.

Note that there is a small number of people around the world who work in the field

of the sociology of computing, but there seems to be no agreement whatsoever about

the substance of the field. The studies seem to concern, for instance, ethics, human-

278Snow, 1966

279Pickering, 1995:p.1.

280Bijker and Law, 1992:pp.12-13.

99

computer interaction, the organization of systems that include computing, the history

of computing, the political aspects of computing, social impact, and innovation in

the area of computing. None of those seem to aim at refining or examining theories

or technologies of computing, but examining the implications of computing on soci-

ety instead.

Throughout this thesis, I refer often to the concept of society, which is, as historian

of technology Thomas Hughes recognized, a concept that is highly abstract281. Not

only is there temporal disparity between societies, like the temporal disparity

between the twelfth-century French society and the twenty-first century French soci-

ety, but also spatial disparity, like the spatial disparity between contemporary Japan-

ese and Saudi Arabian societies. Proposing a strict definition of society is neither

necessary nor practical for the purposes of this thesis, and therefore, following

Hughes, society is referred to as a world made up of institutions, values, interest

groups, social classes, and political and economic forces. Even though this charac-

terization is sketchy, it provides for unconventional forms of society, such as a net-

work society, where the critical social structures and its dominant functions are or-

ganized around electronic information networks, as argued by sociologist Manuel

Castells282.

Another widely used term in this thesis, one that is notoriously hard to define, is cul-

ture283. Culture is often principally seen as a mental phenomenon (i.e., consisting of

values, ideas, mental models and so forth) but it also includes material and social

phenomena, which should be considered to be equally important parts of culture284.

Cultural theories have a number of controversial characteristics. Claudia Strauss and

Naomi Quinn wrote that culture can be motivating or unmotivating, enduring (in

persons and across generations) or transient, shared or personal, and thematically

unifying or disparate.285 They noted that cultures are not bounded and separable:

People share some experiences with other people who listen to the same music or

watch the same television shows; people share other experiences with people who do

281Hughes, 1994

282Castells, 1998:pp.500-507.

283I have discussed this topic in a joint paper with Minna Kamppuri and Markku Tukiainen in Kamppuri et al., 2006
and Kamppuri et al., 2006b.

284Kamppuri et al., 2006; Kamppuri et al., 2006b

285Strauss & Quinn, 1997:p.4.

100

the same work they do; and people share still other experiences with people who

have had formal schooling like they do—even if they would live on opposite sides of

the world.

In computer science, perhaps the most widely used definition of culture is the one by

Geert Hofstede286, in which he categorized cultures according to four dimensions.

Even though Hofstede's research is impressive, mainly because of its substantial

sample size, his outlook on culture is not well-suited for the needs of this thesis—

mainly because of its rigidity and his inclination to oversimplify. Another dimen-

sions alternative to Hofstede, by Fons Trompenaars,287 is equally unsuitable for the

same reasons.

Instead of characterizing cultures by a small number of fixed dimensions, I agree

with C. Wright Mills in that the human variety includes not only large aggregates

such as working class or virtual communitarians, but also the variety of individual

human beings: “an Indian Brahmin, a pioneer farmer of Illinois, an eighteenth-cen-

tury English gentleman, an Australian aboriginal, a Chinese peasant, and a Bolivian

politician”. For Mills, to “write of 'man' is to write of all men and women—also of

Goethe, and of the girl next door”288. Mills' view is aligned with Strauss and Quinn's

view of culture: Strauss and Quinn wrote, “This makes each person a junction point

for an infinite number of partially overlapping cultures.”289

There have probably been critics and advocates of technology ever since the first

technologies were developed. For instance, Carl Mitcham noted that skepticism

about technologies is hinted at already in the ancient myths of Prometheus, Hephaes-

tus, and Daedalus and Icarus290. However, because technoscience in this thesis con-

cerns information and communication technologies (ICT), this chapter focuses on

authors who have written about technology and society after the 1970s. Around

1970 a large number of technological, social, and intellectual changes took place.

Some of those changes were the emergence of the home computer291, the initiation of

286Hofstede, 1997. A search for “geert hofstede” in the ACM Digital Library yielded 214 results. (Nov. 29th 2005)

287Trompenaars & Hampden-Turner, 1997 (orig. 1993)

288Mills, 1959:p.133.

289Strauss & Quinn, 1997:p.7.

290Mitcham, 1994:p.277.

291Ceruzzi, 1999

101

the strong program in the sociology of knowledge292, the breakthrough of social con-

structionism293, the emergence of HCI as a discipline294, and so forth. (It has even

been argued that the significant breakthroughs of the information technology revolu-

tion took place in the United States in the 1970s295.)

In the following section different viewpoints of technoscience are introduced. First,

I argue that although many facts are socially constructed, not all of them are.

Second, I discuss three cruxes in the debate between social constructionists and real-

ists, and take positions towards those cruxes. Third, I examine different approaches

towards technological determinism. Fourth, I discuss the concepts of progress,

value-free technology, and the measurement of technological progress, and argue for

the standpoints of this thesis. These discussions revolve around concepts such as in-

evitability and contingency, the inherent structures of the world, the stability of sci-

ence, technological determinism, and the impact of technology on society.

292Bloor, David (1976) Knowledge and Social Imagery. In this thesis, a more recent work by Barry Barnes, David
Bloor and John Henry: Scientific Knowledge: a Sociological Analysis (Barnes et al., 1996) is utilized more.

293Berger & Luckmann, 1966. There are a large number of other authors that could be named in the context of so-
cial constructionism, such as Lev Vygotsky and Karl Mannheim. Berger and Luckmann's role was, however,
crucial because it introduced a number of concepts and a coherent framework for the field of sociology.

294The shift from programmers turned to end users during the 1970s (Grudin, 1990; Baecker et al., 1995:pp.35-47).

295Castells, 1996:pp.53-59.

102

Sticking Points Between Realism and Constructionism

The real danger is not that computers will begin to think like men [sic],

but that men will begin to think like computers.296

One of the most influential schools of

thinking in contemporary (1960-

present) sociology, philosophy, STS,

cultural studies, and many other discip-

lines, is the social construction of real-

ity, crystallized and popularized by

Peter Berger and Thomas Luckmann in

a book by the same name297. Basically,

the followers of Berger and Luckmann

believe that there is no external, object-

ive reality but that people to some extent create their perceived reality themselves (I

have discussed Berger and Luckmann's work in more detail elsewhere298).

The term social constructionism is used in so many different meanings and in so

many different contexts, that it is meaningless to use it without a thorough explana-

tion of what the term means for a particular author, in a particular work. Construc-

tionism in education is different from constructionism in philosophy. For example,

the philosopher Ian Hacking listed more than twenty very different titles “Social

construction of X” that he found from the library catalog299. The X in Hacking's list

includes, for instance, danger, illness, nature, facts, knowledge, women refugees, and

quarks. Hacking argued that the term social construction has become a code. Those

who use it favorably deem themselves rather radical—those who trash the phrase de-

clare that they are rational, reasonable, and respectable300.

Some clarification of basic terminology is necessary before this topic can be dis-

cussed meaningfully. The terms constructionism and constructivism (and construc-

296Sydney J. Harris in Eves, H. (1988) Return to Mathematical Circles. Prindle, Weber, and Schmidt: Boston,
USA.

297Berger & Luckmann, 1966

298Tedre, 2002

299Hacking, 1999

300Hacking, 1999:p.vii.

103

IN THIS SECTION:

� What is constructionism?

� Is the position in this thesis a relativist one?

� What ontological position is taken in this

thesis?

� Hacking's three sticking points: Contin-

gency, nominalism, and explanations of sta-

bility.

� What is objectivity and subjectivity?

tionalism) are often used interchangeably, but the words have different meanings in

different contexts. Traditionally, Berger and Luckmann's followers use construc-

tionism, but when a constructionist argument is made in other fields, the choice of

the term varies, sometimes implying a different emphasis. For the sake of clarity, in

this thesis the term constructionism is used even where the term constructivism has

been used in the material I reference (constructivism is used in, e.g., the philosophy

of mathematics301). Other authors, such as Kenneth Gergen, have come to the same

decision: “The term constructionism avoids [...] various confusions and enables a

linkage to be retained to Berger and Luckmann's seminal volume, The Social Con-

struction of Reality”302. As Hacking noted, even though there are differences of em-

phasis, all the construct*isms share themes and attitudes of “things are not what they

seem”, iconoclastic questioning, and finally come back to the dichotomy between

appearance and reality already set up by Plato303.

A possible disillusionment: In this thesis, I do not take the position that everything is

socially or individually constructed. In this sense, my ontological position in this

thesis is closer to John Searle's realism than Ernst von Glasersfeld's radical construc-

tionism304. Although Berger and Luckmann pushed sociologists of knowledge to un-

derstand how the common reality of a society is constructed305, their pioneering work

left many things open. Searle's work goes into specifying that there indeed is a real-

ity that is socially constructed, a reality of “institutional facts”—but that there is also

a reality of facts that are not dependent on human agreement, a reality of “brute

facts”306. Searle dissociated his realist account of social construction (note the con-

tradiction) from anti-realists who deny any ontological objectivity307. The ontology

that Searle's thinking is based on, is simple:

We live in a world made up entirely of physical particles in fields of force.

Some of these are organized into systems. Some of these systems are living

301Shapiro, 2000:p.184.

302Gergen, 1985, italics in original.

303Hacking, 1999:pp.44-49. Plato made a distinction between perfect, abstract ideas and concrete, imperfect, per-
ceived reality. This was expanded on further by Immanuel Kant, in a distinction between the noumenal and phe-
nomenal worlds. I have discussed this division further in Tedre, 2002.

304See, for instance, Glasersfeld, 1995:p.1: “[...] all kinds of experience are essentially subjective, and though I may
find reasons to believe that my experience may not be unlike yours, I have no way of knowing that it is the same.”
... and Glasersfeld is back to cogito, ergo sum–interesting, but, from my point of view, implausible.

305Berger & Luckmann, 1966:p.30. Note, however, that sociologists of knowledge often explicitly reject the charge
of anti-realism (Bloor, 1996).

306Searle, 1996:p.2.

307Searle, 1996:pp.196-197.

104

systems and some of these living systems have evolved consciousness. With

consciousness comes intentionality, the capacity of the organism to repres-

ent objects and states of affairs in the world to itself.308

However, a vast number of questions follows from this simple ontology. Some of

the questions Searle raised concern social facts: “How can one account for social

facts such as 'money', 'sentence', or 'restaurant' in this ontology?”. Those social facts

exist because people want them to exist, but there is no physical, biological, or

chemical equivalent or explanation for them. Even hard-line critics of postmodern-

ism, such as cognitive scientist Steven Pinker, agree that some categories really are

social constructions: They exist only because people tacitly agree to “act as if they

exist”309. Pinker listed money, tenure, citizenship, decorations for bravery, and the

presidency of the United States as socially constructed categories. I take that com-

puter science (computation at large, and especially computing technology) is an out-

standingly difficult field for ontologists, and both extreme relativism as well as ex-

treme realism are especially difficult positions in this difficult field. For instance,

computers reproduce a variant of the mind-body problem in the form of software-

hardware.

Another term that needs clarification is pluralism. Pluralism, when understood as

the acknowledgment that reality is expressible in a variety of symbol and language

systems, is evident in constructionist thinking310. Contrary to realist accounts of real-

ity that take there to be a real world independent of human mind, some construction-

ists deny objective knowledge and truth entirely, and claim that there is no “real

world” but only subjective, human-made perspectives, shaped by intentional

minds311. Also the term intentional has specialty meanings.

Firstly, intentional refers to human intentions; to the ambitions, goals, and motiva-

tions of people. Secondly, intentional also refers to the meaning of the word in stud-

ies of the cognition, that is, “aboutness”. In this sense, it refers to the capacity of the

mind to represent objects and states of affairs in the world. In contrast to intentional

mental states, there are human mental states that do not always refer to objects or

states of affairs, and that are not intentional when they do not have that reference.

308Searle, 1996:p.7.

309Pinker, 2002:p.202. Note Pinker's choice of words that implies a difficulty in the definition “to exist”.

310cf. Schwandt, 1994

311Searle, 1983:pp.1-6.

105

For example, anxiety and nervousness are not always “about anything”312. John

Searle listed some mental states that can be intentional, that is, about or of

something: belief, fear, hope, desire, love, hate, aversion, liking, and so on.

However, pluralism does not need to be accompanied by anti-realism, and often it is

not. Although philosophically interesting, extreme anti-realist stands are not very

useful for the purposes of this thesis because they do not accommodate some com-

monly accepted empiricist premises—for example, that human senses, based on cer-

tain biological processes, work in the same way for almost everyone—with some

minor individual variations (that are also often explainable in terms of biology,

chemistry, and physics).

The constructionist views range from acknowledging simple “everyday construction-

ism” to radical constructionism (and the different views certainly do not form a nice

continuum, but a complex system of different combinations of different aspects,

ideas, and ideologies). A simple example of everyday constructionism, or minimal-

ist constructionism, given by Thomas Schwandt, is merely agreeing that knowing is

not passive—a simple imprinting of data on the mind like on a computer hard drive

—but active: Believing that mind does something with the impressions to be stored,

at the very least forming abstractions or concepts313. Radical constructionists, ac-

cording to Schwandt, reject speaking about knowledge as corresponding to, mirror-

ing, or representing an external world. Neither of the constructionist extremes is

very useful for the purposes of this thesis—the former for its lack of depth (or intel-

lectual insight) and the latter for its total rejection of realism. It would be hard for a

minimalist constructionist to explain the nature of, for instance, money, and the ex-

treme constructionist position, when it includes relativism, has a problem with its

own justification314.

312Searle, 1983:p.4.

313Schwandt, 1994

314As John Searle noted, one cannot even state relativism without denying it (Searle, 2001). Suppose one says,
“there are no absolute truths”. Is this argument supposed to be interpreted so that it applies to itself or not?
Searle noted that either way this argument leads to inconsistency. (1) If one says there are no absolute truths ex-
cept the truth that there are no absolute truths, then one has already allowed for an exception without giving a
reason why there would be no other exceptions. (2) If one says there are no absolute truths including the claim
that there are no absolute truths, then the argument is a contradiction in terms. See also Searle, 2001 for a more
sophisticated refutation of relativism.

106

Not Everything Is a Social Construct

I noted above that I take the position that there are socially constructed things that do

not exist independently of human beings, as well as things that exist regardless of

any human beings. I take it that the piece of matter called the Earth exists no matter

what people think about it. Yet I also take it that there are things that do not exist

without intelligent beings, and that cease to exist when there are no intelligent beings

anymore—take language, for example. Because there is a number of schools that

draw the lines of social constructionism differently, a number of those schools is dis-

cussed here.

It is quite obvious that, for example, “social classes” are hardly anything else but so-

cially constructed concepts. Yet there are much more difficult questions, such as,

“Are natural sciences social constructs?”, “Is mathematics a social construct?”, and

“Are computer science or computing at large social constructs?”. At least for me,

first it seems like a paradox that no-one would deny that the science of physics is

made by people, but many would still argue that the science of physics does not have

anything to do with society. That is, it is a part of the positivist argument that the

structure of society, personal preferences, or any human aspects for that matter, do

not have anything to do with the laws of physics. However, when one sees it in the

positivist way, the paradox seems to vanish: If a person finds a mountain, the exist-

ence of that mountain does not have anything to do with the person, even though it

was certainly a discovery made by a person. Following the same inference, physi-

cists do not create laws of physics—they discover them. Consequently, many

people can make the same discovery without knowing of each other's findings and

many people can conceptualize the discovery in different ways even though they

would be speaking about the same corner of reality.

As a computer scientist, I am first inclined to ask, “How seriously should one take

people who claim that natural sciences are social constructs rather than discoveries

about reality?”. But asking that question necessarily begs another question: “How

seriously should one take people who claim that natural scientists unravel objective

facts about the world?” I take both people very seriously. After all, this dispute

boils down to questions about objective reality and the nature of knowing that, as

discussed earlier, may never be solved.

107

Neither of the two camps mentioned above is an esoteric, isolated group or a mere

philosophical curiosity. As Ian Hacking noted, it is easy to find people who blanch

when they come across the idea that the results of, for instance, physics or chemistry

are social constructs315. The majority of natural scientists believe in objective sci-

entific facts. Yet, as the science wars in the 1990s showed, it is also easy to find

those people, including natural scientists, that agree that science is (to some degree)

a social construction. There is a number of scientific disciplines that study the con-

nection between science and social spheres, such as the sociology of scientific know-

ledge and science and technology studies, and many thinkers, such as Barnes et al.,

have argued that those disciplines should be a part of the project of science itself316.

However, the number of different constructionist accounts of science is so large317

that most of them cannot be dealt with in this thesis.

For this thesis I have chosen those authors of social constructionism who are most

often connected with the social constructionist movement: naturally, the sociologists

Peter Berger and Thomas Luckmann318; the sociologist David Bloor because of his

seminal work with the “strong programme in the sociology of knowledge”319; the so-

ciologist Barry Barnes and the historian of science and sociologist John Henry for

their pioneering, philosophical work with the sociology of scientific knowledge320;

and philosopher John Searle321 for his unorthodox, realist account of social reality.

The “Bath School” (which consists of Harry Collins, Trevor Pinch, et al.) as well as

the actor-network theory (of which Bruno Latour plays a large role) are only touched

on briefly in this thesis in the context of the social construction of technology322,

which unquestionably skews the thesis towards what Hacking called the “Edinburgh

school”323.

The reader should be aware of the biases in this thesis: The type of constructionism

used in this thesis is only one of the many types of constructionism. Similarly, there

is a bias with the accounts of science presented in this thesis: Chapter 2.1 offers a

315Hacking, 1999:p.64.

316Barnes et al., 1996:p.iix.

317See, e.g., Hacking, 1999:p.65.

318Berger & Luckmann, 1966

319Bloor, 1976

320Barnes et al., 1996

321Searle, 1996

322Kline and Pinch, 1999; Strum and Latour, 1999

323Hacking, 1999:p.65.

108

very small sample of views on the philosophy of science. However, both of these

samples are large enough to provide evidence that there is no clear boundary

between “realists” and “postmodernists” (or constructionists, relativists, nominal-

ists324, idealists325, anti-realists326, etc.). Actually, it would probably be hard to find a

typical representative of either the realist or the relativist side.

In the end, no matter how multifarious the views of realists and constructionists

might be, there must be something that the constructionists and realists cannot agree

with. Ian Hacking believed there to be three main areas of irresoluble differences

between the two sides, which he called sticking points327. Hacking's sticking points

are contingency, nominalism, and explanations of stability. Because these points

stick to the very heart of any discussion about the significance of sociohistorical and

cultural studies of computing, they all are covered here. These three sticking points

mark the fronts where the researcher of social construction of computing needs to

defend his or her views. Therefore, I take a position towards each of the sticking

points. This analysis is lengthy, but these matters have to be dealt with thoroughly.

I hope that by the end of this section, I have clarified my position towards three ma-

jor bones of contention, or sticking points, in the science wars.

Sticking Point 1: Contingency

The first sticking point, contingency328, can be explained through the “contingency

thesis” that Hacking claimed constructionists to maintain329. Shortly put, the contin-

gency thesis holds that the current state of affairs in a specific science could have de-

veloped taking a route that does not have anything in common with the route that the

current science has taken. Furthermore, it states that there can be a successful altern-

ative to the prevailing science, one that does not have to have anything in common

with the prevailing science. Henceforth the terms “prevailing computing” and “al-

ternative computing” are used in the following sense: Prevailing computing refers to

the status quo in computing at large and alternative computing refers to a hypothetic-

al alternative for the prevailing computing.

324Quine, 1960:p.233.

325Koepsell, 2000:p.19.

326Hitchcock, 2004:p.6.

327Hacking, 1999:p.68.

328Contingency, in this context, refers to incidentiality, chance, and uncertainty–in, e.g., happenings or occurrences.

329See Hacking, 1999:p.78.

109

I take it that applied to computing, the contingency thesis states that there could have

been an equally successful alternative to modern computing; that it could have taken

a route that does not include Turing Machines, von Neumann-architecture, the tran-

sistor, or such; and that this alternative computing could have been as successful as

prevailing computing. Moreover, the contingency thesis in computing would state

that this alternative computing could have developed in a way that the alternative

computing and prevailing computing could not be explicable in each others' terms.

That is, alternative computing could not be explained in terms of prevailing comput-

ing or vice versa.

Holding to the contingency thesis would actually mean that the Turing Machine is

not an inevitable part of successful computing (even though it is an inevitable part of

the prevailing theory of computation). For the sake of argument, I assume that there

are computer scientists who think that any successful theory of computation is redu-

cible to, or convertible to, or explicable with the prevailing theory of computation.

For the sake of consistency with Hacking's terminology, I will use the term inevitab-

ilists to refer to those scientists who think that if a successful theory of computation

took place, then it would inevitably have taken a route similar to prevailing comput-

ing330. On the other side of the debate, constructionists think that a successful theory

of computation need not take a route similar to prevailing computing. In the follow-

ing pages I describe what the debate between inevitabilists and constructionists is

about, and what corollaries that debate has for this thesis.

Contingency Thesis And the Definition of Successful

The first problem in the contingency debate is that claiming that a successful altern-

ative computing would be possible, raises difficulties with the definition of success-

ful. It is clear in; not only Kuhn's view, but also in Popper's view on science; that

science sets its own standards, at least partially331. Those standards include, for in-

stance, the definition of successful. If the standards of science are set by scientists

working within the same science, they scarcely reject that science, as Kuhn and Max

Planck claimed332. Furthermore, following the demand of reducibility, the prevailing

computer science has its own representation and language, with which every altern-

330See Hacking, 1999:p.79.

331Fuller, 2003:pp.45-46.

332 Kuhn, 1996:pp.151-152; Planck, 1949:pp.33-34.

110

ative candidate should be explainable. As Chapter 2.1 discusses, both Kuhn and

Feyerabend agreed that there is no “neutral system of representation” or “neutral lan-

guage” that could be used to express all theories.

Now, rephrasing Hacking's question333, if the standards of successful computer sci-

ence are internal to the discipline itself, what could it actually mean to have an

equally successful but totally alternative computer science? A problem similar to

this (and a bit similar to the underdeterminacy thesis) is nicely expressed by Willard

v.O. Quine334 as the indeterminacy of translation.335

The indeterminacy of translation means, for instance, that if one meets aliens speak-

ing Alien, how can one know that Alien is a language at all? One can know that Ali-

en is a language at all only if one can translate it, by and large, to his or her own lan-

guage336. The same question in computer science is, “How does one know that state-

ments of alien computing are about computing at all?”. Similarly, one can be sure

that statements of alien computing are about computing at all only if the statements

can be reducible to, or translatable to, or explicable with one's own language and

theory of computation. Therefore, given a model of computation (or computer sci-

ence), that is sufficiently different from (but equally successful with) the prevailing

model, a computer scientist would not see it as computation no matter what337.

Of course, one can say, “if this alternative model of computation can solve the same

problems that our computation can, it does not matter if it cannot be expressible in

our terms.” This argument could be called the “equal problem solving power”-argu-

ment. However, as discussed earlier, one of the things that a scientific paradigm

brings along is a criterion for choosing problems that (according to the paradigm)

can be assumed to have solutions338. That is, science defines its own problems. As I

see it, any attempt at trying to make problem-selection neutral is doomed. For the

sake of clarity, in the following paragraphs all the problems in the world are denoted

with P, all the problems that current computer science can solve as PC, and all the

problems the alternative computer science can solve as PA. (Perhaps the word para-

333Hacking, 1999:p.69.

334Quine, 1960:pp.73-79.

335Quine gives an example of translating “neutrinos lack mass” into “jungle language”.

336Hacking, 1999:pp.74-76.

337cf. Hacking, 1999:p.72.

338Kuhn, 1996:pp.36-37.

111

digm might be used instead of science, but science is used here to indicate deeper in-

commensurability of the two systems of computation.)

First, it would be a perfectly neutral procedure to take all the possible problems in

the world {P}, and see which problems the two competing models of computation

can solve. The winner would be the model that solves more problems than the other.

However, this would lead to a question whether all problems should be considered

equally important, or if there are problems that are more important to be solved than

others. If one model can solve a large number of trivial problems and the other mod-

el can solve a small number of significant problems, which model is more success-

ful? Furthermore, models of computation can set their own criteria of significance,

importance, and triviality.

Second, one might try to find a “neutral set of computational problems”, which begs

the definition of “computational” (petitio principii339). Feyerabend and Kuhn noted

that the definition of problem is an inseparable part of science, so the question is,

“Should this neutral set be defined from the point of view of the first model of com-

putation or from the point of view of the second model of computation?”. Of course

one could take all the problems that can be solved with either science {PC U PA}, or

the problems that can be solved with both sciences {PC � PA}, but these would inev-

itably lead to the same problem with the first procedure, that is, to the question of

which problems are most important to solve.

Third, one could try to aim at some kind of “content neutrality”, following, for in-

stance, Imre Lakatos' proposition of progressive and degenerating research pro-

grams340. Simply put, progressive research programs are characterized by the growth

of new knowledge, whereas degenerating research programs are characterized by the

growth of the number of ad hoc modifications to them. Even though Lakatos aimed

at something universal, and intended his theory to encompass all sciences, all his ex-

amples came from the field of physics. As Alan Chalmers noted, Lakatos' theory

presumes that all areas of study, if they are to be regarded as “scientific”, must share

339The problem is apparent in the following phrasing: “We can find out if the model of computation A (which
defines computation in its own terms) is equally successful to the model of computation B (which defines com-
putation also in its own terms) if they can solve the same computational problems (which are defined by a model
of computation)”. That is, models of computation cannot be compared without assuming the definition of com-
putational problem, because it is an inherent part of each model of computation.

340Lakatos, 1970 in Lakatos & Musgrave, 1970; Chalmers, 1976:pp.130-131.

112

the basic characteristics of physics341. Progression and degeneration are not content-

neutral concepts.

In a word, the “equal problem solving power”-argument appears inconclusive in the

choice between two computational models, because “problem solving power” is not

an objective benchmark of success but it depends on the definition of problem,

which depends on the selected model of computation, which leads to circularity.

It seems that it is not enough that computer scientists are allowed to define what a

successful theory of computation is—which is, in essence, only the prevailing theory

—but there are tendencies to extend the theory of computation to other disciplines

and other areas of life, too. There are some attempts to explain, for instance,

mind342, universe343, and culture344 as sorts of computation. Paul Feyerabend used the

phrase chauvinism of science345 to refer to this tendency.

Scientists, Feyerabend wrote, are not content with running their own playpens in ac-

cordance with what they regard as the rules of the scientific method. Scientists want

to universalize those rules, and they want them to become a part of society at large.

Furthermore, Feyerabend argued that scientists use every means at their disposal

from argument to ridicule to intimidation to achieve their aims. Steve Fuller wrote

about the same phenomenon when he proposed that positivism was always a “made

for export” philosophy346. In Fuller's provocative opinion, positivists have wanted to

spread what they took to be the secret of physics' scientific success to the more back-

ward disciplines.

I can agree with Feyerabend only conditionally: The phenomenon that Feyerabend

depicts, is chauvinism in science only if there is a lack of symmetry. In terms of

computer science, my condition for the existence of Feyerabendian chauvinism is

that a computer scientist extends his or her science well over its traditional limits—

but at the same time denies the probing of computer science itself with non-tradition-

al instruments.

341Chalmers, 1976:p.146.

342Computationalists assert that persons are Turing Machines, or at least that all mental states are computational
states. See, e.g., Scheutz, 2002.

343Wolfram, 2002

344For instance, Liane Gabora (Gabora, 1995) describes a computational model of how ideas, or memes, evolve
through the processes of variation, selection, and replication.

345Feyerabend, 1993:p.163.

346Fuller, 2003:p.79.

113

A case in point is culture. If a computer scientist sees that culture can be explained

as a sort of computation347, but denies any explanation of computing as a cultural

phenomenon, this asymmetry is indeed chauvinistic in the Feyerabendian sense.

Chauvinism in this asymmetric sense, is surely a subjective notion. Unfortunately,

this sort of chauvinism is not unknown to computer science348. Even though such

projects are rare, computer scientists at large do not seem to find anything strange in

explaining culture as computation, yet they cringe at the very thought of explaining

computing as cultural.

Another example, apposite for this thesis, is that if computer scientists agree with,

for instance, Brent et al.'s349 computational approach to sociological explanations,

but refuse the explanation of computer science from the sociological point of view,

this asymmetry, or lack of reciprocity, is chauvinistic in the Feyerabendian sense. I

do not argue that if society can be characterized with discrete models, then discrete

models can be characterized with societal concepts. I do argue that if there is a lack

of reciprocity or symmetry in explanations that computer science allows and the ex-

planations that computer science makes, then computer science is a chauvinistic en-

terprise.

Inevitability, Contingency, And “The Mangle”

Andrew Pickering's work on quarks and high-energy physics led him to revamp the

old motto of science—“science proposes, nature disposes”350. The old motto comes

from the Popperian view that scientists can freely come up with different kinds of

conjectures, subject them to thorough experimental testing, and that nature will re-

ject the false ones. Instead of the old motto, Pickering came up with an understand-

ing of the structure of scientific practice, which he called “the mangle”351. The two

key words in Pickering's “mangle” theory are resistance and accommodation. New

scientific theories and new instruments based on the theories do not usually work—

they resist. Scientists have to give up or accommodate to the situation. Computer

347See Gabora, 1995.

348Wolfram, 2002; Gabora, 1995; Brent et al., 2000; Scheutz, 2002

349Brent et al., 2000

350Pickering, 1995:pp.38-49.

351Pickering, 1993

114

science and engineering is a prime example of mangle, because theory and practice,

the science and the machine, are inseparable in modern computing352.

In Pickering's model, there are abstract scientific theories about phenomena, there

are down-to-earth models of how scientific instruments work and what can be done

with them, and there are the instruments themselves353. For instance, in computer

science, the Turing Machine is an abstract theoretical construction, von Neumann-ar-

chitecture is a (high-level) model of an instrument, and stored-program computers

are the instruments. Alan Turing devised his theory in 1936, von Neumann architec-

ture was conceived around 1944, and the first programmable computer was success-

fully built in 1949. Other possible, different routes of development can be explained

by Pickering's mangle of practice354. Different people accommodate differently to

resistance, and thus create different branches from the same roots. For instance, had

John von Neumann (1903-1957), John W. Mauchly, and John Presper Eckert not

been in the Moore School of Electrical Engineering during the World War II, hu-

mankind could have ended up with a different kind of computing machinery (this is

further discussed in Chapter Three).

The development of a new instrument may be a long-lasting struggle between prob-

lems (resistance) and solutions to them (accommodation). The accommodation pro-

cesses can include, for instance, revising a scientific theory, revising beliefs about

how an apparatus works, or modifying the apparatus itself355. Before a robust fit

between science, model, and apparatus is created, there are different accommodation

strategies that, naturally, face different kinds of resistance. The mangling, Pickering

wrote, is material, conceptual, and social. Even though there can be incommensur-

able branches of development, an inevitabilist would say that those branches would

always unite somewhere along the way; a constructionist would say that they would

not necessarily do so.

It seems that the way in which computing has developed, the mangle, exhibits char-

acteristics of contingency rather than inevitability (even though exhibiting is differ-

ent than proving). The history of computing may be a history of technoscientific ne-

cessity (the inevitabilist viewpoint), or it can be a history of personalities, coincid-

352cf. Knuth, 1991; Denning et al., 1989; Forsythe, 1968; Wegner, 1976; Hopcroft, 1987

353See, e.g., Hacking, 1999:p.71.

354Pickering, 1993; Pickering, 1995

355Hacking, 1999:p.71.

115

ences, power games, politics, and money (the constructionist viewpoint)—this

should become clear by the end of this thesis. Chapter Three of this thesis discusses

a large number of examples that support the constructionist viewpoint, but the reader

can always adopt the inevitabilist viewpoint towards my examples, too. It is a valid

and credible argument that the history of a concept is different from the concept it-

self. One can always adopt the point of view that no matter what contingencies char-

acterize the history of computing, the development of computing eventually (neces-

sarily) would have had to follow the route it has followed (or at least it would have

necessarily lead to the same technoscientific outcomes).

In the end, the “contingency vs. necessity” debate is a matter that cannot be proven

either way, so the choice of explanatory models is predicated on the credibility of

each argument. If one believes that the necessity argument is stronger than the con-

tingency argument, one can adopt it, or vice versa. Or alternatively, one can be of

the opinion that both arguments are strong, disparate, and incomplete, and choose

not to make a decision at all. Note, however, that technologists may not always be

ready for that alternative option. Tracy Kidder claimed that since in the world of

technology and engineering there are only correct and incorrect solutions, disputes

among engineers must always have resolutions356.

The position in this thesis is a constructionist one rather than an inevitabilist one.

The consequence of this choice is that in examining the development of computing,

the circumstances in which the development takes place are considered to influence

and shape the development. That is, the environment where the researchers live and

conduct their work affects the directions and forms of computing and its theories,

lays foundations for the research, and indeed makes development possible in the first

place. From the constructionist viewpoint, there is no “natural direction” towards

which the development of computing is heading.

Adopting the inevitabilist viewpoint would mean denying the influence of the envir-

onment on the forms that computing and its theories take, or at least arguing that

eventually all developmental paths would lead to the same inevitable ends. From the

inevitabilist viewpoint, there is a natural path of development and no matter what

historical contingencies may have affected local steps of development, natural laws

356Kidder, 1981:p.147.

116

and logic would eventually direct researchers to the best direction. For an inevitabil-

ist, research on computing from sociological, historical, anthropological, or philo-

sophical perspectives does not offer insight into computing as such. For an inevitab-

ilist, sociologists, historians, anthropologists, and philosophers do not study comput-

ing but the phenomena around it—and those phenomena have only local effects

(spatially and temporally), but not lasting consequences.

Sticking Point 2: Nominalism

Hacking's second sticking point, nominalism, refers to one side of one of the oldest

philosophical debates, and as Hacking noted357, this sticking point is clearly visible

in the science wars. Because there are problems in using the term “realism” in con-

trast to, for instance, nominalism358, Hacking introduced a term inherent-structur-

ism359. (Henceforth, for the purpose of brevity, yet risking ambiguity, inherent-struc-

turism is referred to as structurism—and the adherent of inherent-structurism is, re-

spectively, called structurist.360)

The “structurism vs. nominalism”-discussion is central to this thesis: If algorithms

and computers are a part of the hierarchical structure of the world, there is little point

in studying the sociocultural and philosophical roots of computing because sociocul-

tural and philosophical aspects are merely hurdles on the road towards understanding

the universal structures of computation—structures that stem from natural laws and

logic. From the structurist point of view, sociocultural and philosophical studies

may, at best, reveal how to best root out all the unwanted sociocultural residue from

computer science (as a body of knowledge). From the nominalist point of view, so-

ciocultural and philosophical studies may offer insight into the essence of computer

science (as a body of knowledge).

A structurist (as opposed to a nominalist) would claim that there is an inherent struc-

ture in the world, and that the purpose of science is to examine this structure. This is

a nuance of Platonic ontology (even called “Platonism” by Willard v.O. Quine361), a

357Hacking, 1999:p.82.

358Already in 1960 (before the science wars), Quine noted that there are problems in the terminology (Quine,
1960:p.233).

359Hacking, 1999:p.82.

360The purpose of this thesis is not to discuss the nuances of philosophical terminology, so such shorthand is adop-
ted instead of Hacking's recommendation. “Structurism” does not refer to structuralism and therefore the discus-
sion about deconstruction is not necessary.

361Quine, 1960:p.233.

117

position which states that there are abstract, universal ideas that scientists can find.

A nominalist would claim that no such structure exists, and he or she—much in an

Aristotelian manner—denies that there are universals. As Hacking noted, the nom-

inalist scientist hopes to be true to experience and interaction and to the way in

which, for instance, a scientific apparatus does not work362. In nominalist thinking,

researchers have to accommodate constantly to the resistance of the material world.

In other words: In their work, researchers constantly face difficulties in finding a ro-

bust fit between their theories, their instruments, and their understanding of how

their instruments work363. Researchers need to accommodate to those difficulties

either by revising their theories, revamping their instruments, or rethinking how their

instruments work.

One more word about Quine's terminology: There are phenomena that Quine re-

garded as “enigmatic”. For instance, “the North Pole” and “the Equator” are ab-

stract particulars364. In Searle's framework abstract particulars might not be prob-

lematic:

(1) If all people commonly refer to one end of the axis around which the Earth

rotates as “the North Pole”, the existence of the North Pole is an ontologically

and epistemologically objective fact. That is, the Earth has an axis no matter

what people may think about it, and it is a socially established fact that the

term “North Pole” refers to that explicit point.

(2) If one refers to, instead of the Earth's axis, a commonly agreed reference

point on the map as the “the North Pole” (this is an abstract particular), the

existence and location of the North Pole is an ontologically subjective but

epistemologically objective fact.

(3) If one uses “the North Pole” as a reference to something abstract that is not

shared commonly, like the position that he or she is currently thinking, the

existence of the North Pole is an ontologically and epistemologically subject-

ive fact.

(4) If one believes that the resting place of his or her forefathers' souls is at the

North end of the Earth's axis (ontologically objective fact), and names this

362Hacking, 1999:p.84.

363Pickering, 1993; Pickering, 1995

364Quine, 1960:p.233.

118

resting place “the North Pole” (instead of “Valhalla”), then the existence of

the North Pole is an ontologically objective and epistemologically subjective

fact. That is, in this case the exact place is an intrinsic, unambiguous feature

of the Earth, but its function and meaning are observer-relative.

Ontology in the Field of Computing

The questions of ontology are rarely discussed in computer science365. Perhaps the

reason is that ontology is not regarded as a part of computing, or perhaps because the

questions are so fundamentally difficult—and fundamentally unresolved. The term

ontology in computer science and some other computer-related fields is sometimes

used in an obscure, inconsistent, and untraditional manner. A case in point is Mi-

chael Heim's The Metaphysics of Virtual Reality366. In the 145 pages of what philo-

sopher David Koepsell called “incorrect ontology and muddled metaphysics”367,

Heim confused Ideals with brute facts368, and mixed epistemology, metaphysics, and

ontology369. An ACM database search for ontology leads to definitions of ontology

with a number of very unorthodox meanings such as “[a definition of] terms or

vocabularies used within messages”370, “a comprehensive knowledge model that en-

ables a developer to practice a higher level of reuse”371, and so forth. There is no

doubt that ontology as a term in computer science is nowadays understood differ-

ently from its philosophical meaning372. In fact, the subtitle of CACM's special issue

on ontology, “Ontology: Different Ways of Representing the Same Concept” is an

epistemological matter, if anything.

Even though ontology in its traditional meaning is not generally considered to be a

part of computer science373, there are some thorough investigations of the ontology

of computing, such as Brian Cantwell Smith's On the Origin of Objects374. Unfortu-

365This is my impression, and I may be mistaken, but for instance, a search in ACM “Guide” (more than 887,000
citations published by ACM and other publishers in the field of computing) for “nominalism” yielded 16 results,
out of which few actually discuss the matter. A search for “Platonism” yielded 19 results. (1st October 2005)
See http://portal.acm.org/guide.cfm (accessed September 27th, 2006)

366Heim, 1993

367Koepsell, 2000:p.22.

368Heim, 1993:p.89.

369Koepsell, 2000:p.23.

370Pan et al., 2003

371Wang et al., 2002

372Also, for instance, Gloria Zúñiga (Zúñiga, 2001) recognizes this in her conference paper.

373Gruninger & Lee, 2002

374Smith, 1998 (Originally published 1996)

119

nately Brian Cantwell Smith's book and John Searle's The Construction of Social

Reality375 were published almost simultaneously, because Searle's book (which is a

general account of the construction of social reality) would in all likelihood have had

an impact on Smith's book (a specialized account of construction of objects), espe-

cially on Smith's successor metaphysics.

Despite the poverty of doctrinal discussion on the nature of objects and facts, com-

puter scientists, generally speaking, are keen on making models about the world.

This idea is at the base of the “new” conception of computing “ontologies”376. The

creator of C++ language Bjarne Stroustrup wrote, in the context of object-oriented

design, about modeling some aspects of “reality” or “concepts of application” as

classes377. Databases or data records, too, are usually designed to represent real-

world entities, parts of real-world entities, or aspects of real-world problems378. This

tendency suggests that computer science is not different from sciences such as phys-

ics and chemistry, in which structurism (realism) is an unwritten, rarely questioned

assumption. This is neither very surprising nor especially interesting. What is inter-

esting, though, is the observation that computers make the ontological status of some

things very vague—there are things (or facts) that could be equally well be con-

sidered either abstract or concrete. To investigate this phenomenon, which is central

to the “structurism vs. nominalism”-debate, a brief explanation of institutional and

brute facts is probably useful.

Brute Facts and Institutional Facts

John Searle's realist account of the building blocks of reality379 offers a fruitful

“middle-way” for further discussion of the nature of computational objects. His di-

vision of facts into “brute” and “institutional” allows constructionist thinking in a

traditionally materialist field of study. On one hand, Searle's division allows the re-

searcher of computing to take into account the limits of the physical world (the phys-

ical world determines some characteristics and limits of automatic (machine-) com-

putation). On the other hand, Searle's division makes possible explanations of so-

375Searle, 1996 (Originally published 1995)

376See, e.g., Castel, 2002.

377Stroustrup, 1997. See especially Part IV: Design Using C++:pp.691-790.

378See, for instance, McConnell, 1993:p.177.

379Searle, 1996

120

cially constructed phenomena that would not exist without people (e.g., money, la-

bels, programs, and algorithms).

The most interesting objects of computing, from my point of view, are neither insti-

tutional nor brute facts, but the facts that do not fit smoothly to either class—facts

such as the existence of algorithms and programs, and the objects that are not clearly

tangible or intangible—objects such as algorithm and program. From my point of

view, what makes computer science and computation stand as a prime case of a

problem in metaphysics is the dualistic nature of the computer—not dualistic in the

sense of the relationship between mind and matter, but referring to software and

hardware instead. Technically computers do not differ much from any other calcu-

lators, but the programmability and plasticity of a general-purpose computer makes

it much more difficult to analyze a computer than many other artifacts such as a

hammer, a car, or a telescope.

Philip Brey has considered the problems of virtual entities from Searle's ontological

point of view380. Many entities in computer environments, such as cursors, menus or

windows, do not fit precisely into Searle's ontology, and therefore Brey granted them

a special place: Brey claimed that they are different from physical entities, but also

different from fictitious or imaginary entities. After all, Brey claimed, they do not

have physical existence (mass or location in physical space), yet they can be manipu-

lated, they respond to user's actions, and they may stand in causal relationships to

other entities.

But contrary to Brey's argument, a mouse cursor does have a physical form—the

zeros and ones (in the form of swarms and flows of electrons) in the computer

memory that indicate the position, size, and shape of the cursor; the states of elec-

tronic circuits that render it on video memory; electrons that hit the phosphorescent

matter on the aperture grille. Then again, one might claim that a thought also has a

physical counterpart. Biological realists believe that thinking can be reduced to elec-

trochemical phenomena in the brain. Yet, unlike a thought, the existence of the

mouse cursor is a consequence of controllable and predictable, human-made pro-

cesses. It seems that Brey was confused. It is as if he was saying that the beam of

flashlight or a sound from a radio would not have physical counterparts. They do. It

380Brey, 2003

121

is a brute fact that there are photons, electrons, gasiform compounds, and other

particles that are parts of our environment. Naturally, interpreting the meaning of

the groups of those particles as “a mouse cursor” or “a beam of flashlight” is a dif-

ferent matter.

Although interesting, the entities Brey focused on are not the most fascinating ones

in regard to the ontology of computing. Instead of user interface elements, consider

records in a database, data structures in computer memory, or processor registers.

They do have a physical existence and they can be manipulated, but the fascinating

part comes from the fact that they can work as referents to tangible objects as well as

institutional facts (yet I do not argue that computers are intentional.) A swarm of

magnetic blips on a hard drive or voltage differences in a circuit can represent

money—actually, it can be used as money; it can replicate a conversation in differ-

ent forms (video, audio, or text); it can manifest or actualize an abstract idea such as

an algorithm and even make it do things in the physical world; it can refer to a tan-

gible object such as the sun. But in the end, it is still just a swarm of magnetic blips

or voltage differences.

Searle on Objectivity and Subjectivity

Before taking this discussion further, to algorithms, two crucial senses of the pair

objective-subjective need to be distinguished. The first one, as explained by John

Searle, is the epistemological sense of the words381. Searle wrote that epistemically

speaking, objective and subjective are primarily predicates of judgments. Ontologic-

ally speaking, objective and subjective are predicates of entities and types of entities,

and they ascribe modes of existence. The following list, explaining this separation,

is adapted, with slight modifications, from Searle382 (except for Table 1, which pulls

together these definitions).

1) The sheer existence of a physical object does not depend on any attitudes people

may have toward it: The existence of the object is a brute fact.

2) Physical objects have many features that do not depend on any attitudes people

may have toward the object—a certain mass and a certain chemical composition,

for instance. The object and these features are ontologically objective.

381Searle, 1996:pp.7-11.

382Searle, 1996:pp.10-11.

122

3) There are, however, features of objects that exist only relative to the intentionality

of people—for instance, that an object is a computer. These observer-relative fea-

tures are ontologically subjective.

4) Some ontologically subjective features are epistemologically objective. For ex-

ample, a computer is not a computer only because it is Searle's opinion that it is a

computer. It is a matter of objectively ascertainable fact that the object is a com-

puter.

Table 1: Different Sorts of Facts

Ontologically

Objective

Brute facts about the physical world; independent of any perceiver or

mental state

A helium atom has two electrons.

That object is made of various conducting and semiconducting elements

and compounds.

Ontologically

Subjective

Statements about things whose existence depends on subject

I have pain in my lower back.

I am thinking of a bubble sort algorithm.

Epistemologically

Objective

Statements about features that are independent of anybody's attitudes or

feelings

That object is a computer.

Algorithm A runs in O(2n2+4n) time.

Epistemologically

Subjective

Statements about features that depend on certain attitudes, feelings, or

points of view

That object is a good computer.

Algorithm A is more elegant than algorithm B.

There is one part in Table 1 that needs particularly careful analysis—ontologically

subjective facts. I argue that the existence of algorithms, as abstract things, are onto-

logically subjective facts (i.e., they do not exist independently of humans or other in-

telligent beings). Philosopher of computing Brian Cantwell Smith383 noted that even

though reason and mathematics are allegedly abstract, they do not escape the con-

fines of the world (i.e., they do not exist independently of the material world). He

wrote that to assume they would exist independently, would be ideologically reduc-

tionist in the sense that the mathematician would then be thought to have free access

383Smith, 1998:p.106.

123

to extra-world notions, immune from theoretical scrutiny. That assumption would

rely on the concept of the Platonic world of Ideals.

The Ontology of Algorithms

The argument that algorithms are ontologically subjective things, or why they would

not exist independently of humans or other intelligent creatures, is rationalized in the

following paragraphs. First, some definitions are necessary. An algorithm, accord-

ing to Donald Knuth384, is a finite set of rules that gives a sequence of operations for

solving a specific type of problem385. According to Knuth's definition, an algorithm

must be finite (it does not loop forever), it must be precisely defined, it may have in-

put, it has to have output, and it must be effective. Second, a procedure that has all

of the characteristics of an algorithm but that possibly lacks finiteness, is called a

computational method386. Such computational methods, include, for instance, react-

ive processes (e.g., computer programs) that interact with their environment. In this

thesis, I take it that the definition of algorithms concerns mechanically realizable (at

least in principle) things but not naturally occurring physical or chemical reactions

or biological phenomena.

Now, for the sake of example, I assume that some computer scientists may claim that

algorithms (for instance, the bubble sort algorithm) are ontologically objective: That

their existence is independent of humans; that they exist non-spatially and non-tem-

porally387. If algorithms are ontologically objective, also computational methods,

such as the method for calculating �2 , are ontologically objective, because the only

difference is the lack of finiteness. Note that an expression of an algorithm or a

computational method in a programming language or in an executable machine code

is called a program388. In addition, all computer programs are algorithms or compu-

tational methods.

Keeping this definition in mind, the seemingly innocent claim that algorithms are

ontologically objective is actually a much more controversial claim. In effect, it is a

claim that all computer programs are ontologically objective. To put this into a very

tangible form it is a claim that, for instance, Microsoft Word exists independently of

384Knuth, 1997:pp.5-7. See also Lewis & Papadimitriou, 1998:pp.245-246.

385Granted, the term algorithm is not that straightforward–see, for instance, Cleland, 2001.

386Knuth, 1997:pp.5-7.

387Or, perhaps, that they exist in nature.

388Knuth, 1997:p.5.

124

humans. It existed before people, and it will exist after people are gone. This claim,

a corollary of the original claim, does not seem very plausible any more. Of course,

a computer scientist can note that Microsoft Word is merely a string that, in theory,

can be produced with a simple algorithm that produces all strings given an alphabet.

This argument does not lead anywhere, though. It just maintains that one algorithm

can be produced with another algorithm, but it does not reveal anything more about

the ontological status of algorithms. Note also that if algorithms are ontologically

objective, then all incorrect algorithms also exist regardless of people.

I assume that a hasty computer scientist could fall back to a second line of defense

and specify that larger programs such as Microsoft Office are constructed out of

smaller algorithms, and that those basic algorithms exist independently of humans.

This defense is shaky when confronted with questions such as “What exactly is the

difference in granularity that separates ontologically objective and ontologically sub-

jective algorithms?”, “Is the bubble sort algorithm within a larger program one of the

basic, ontologically objective building blocks?”, and “Is the swap(a,b) within

the bubble sort algorithm one of the basic building blocks?”. Perhaps one might ar-

gue that the axioms an in axiomatic definition of a programming language constitute

the most atomic elements389. I guess that one would need to go all the way down to

the most atomic operations to make a clear cut line, but a claim such as “machine in-

structions are ontologically objective” or perhaps even “Boolean logic is ontologic-

ally objective” is quite far from the original claim—“algorithms are ontologically

objective”.

Consequences of Different Positions to Nominalism

The mode of existence of mathematical facts and logic is a difficult question. Many

philosophers, such as Gottlob Frege (1848-1925), Hilary Putnam, and Ludwig Wit-

tgenstein (1889-1951), have tried to untangle this problematic field, without conclus-

ive results390. Whether algorithms in their non-physical form are ontologically ob-

jective is a matter of belief, and it does not have a proven resolution391. One has to

weigh the different sides of the question, and choose a position that he or she finds

389This thinking is implicit in Dijkstra, 1974.

390Shapiro, 2000

391Alan Chalmers wrote, “the mode of existence of [...] linguistic objects, as well as other social constructions such
as methodological rules and mathematical systems is a tricky philosophical business. I am content to make my
points at a commonsense level [...] This is sufficient for my purpose.” (Chalmers, 1976:p.127).

125

most plausible. I have presented some reasoning for my standpoint that algorithms

are ontologically subjective things, and later in this thesis I consider the implications

of this standpoint to studies of computing.

Even though one would take algorithms, logic, and mathematical objects as ontolo-

gically subjective (they do not exist without humans or other intelligent beings con-

ceptualizing them), they are, in Searle's392 terminology, epistemologically objective:

An algorithm A that is able to perform function f, is able to perform function f inde-

pendently of anybody's attitudes towards the algorithm or feelings about it at the mo-

ment. It is a matter of objectively ascertainable fact, as Searle would call it, that the

algorithm A performs function f. (Still, note that whether algorithm A is better, more

aesthetic, or easier to implement than algorithm B, is an epistemologically subjective

matter.)

I am not arguing that algorithms would be epistemologically subjective in the sense

that their functioning, once conceptualized or created or constructed, would be de-

pendent on a person's culture, feelings, or attitudes towards it. I am arguing that one

can fairly commit to the view that algorithms do not exist without humans or other

intelligent beings393. A proponent of an opposite view would have to either acknow-

ledge that all software would exist without humans (in some kind of non-spatial and

non-temporal, Ideal, or noumenal form), or to present a definition according to

which a line between objective and subjective algorithms can be drawn—for in-

stance, based on granularity, or functioning, or some other features.

Finally, because computer science deals not only with ontologically subjective, but

also with ontologically objective phenomena (with computers, semiconductors, and

such) it would be impractical, to say the very least, to deny the existence of any

structures in the world. Therefore, in this thesis, a middle-way between the nominal-

ist and structurist viewpoints is taken. Holding to Searle's ontology seems like a

good choice to a computer scientist who wishes to be true to the physical explana-

tions of the world, but who nonetheless considers some aspects of computing as de-

pendent on human preferences.

392Searle, 1996:pp.7-9.

393Note that I mentioned earlier that naturally occurring physical or chemical reactions or biological phenomena,
such as naturally occurring RNA are not considered algorithms in this thesis.

126

If the structurist viewpoint would be adopted for this thesis, then one would need to

explain, for instance, how the functioning and the buggy parts of Microsoft Word re-

late to the inherent structures of the world—or even explain Microsoft Word as an

ontologically objective, timeless phenomenon altogether. If the position in this thes-

is would be that facts in computer science are timeless and universal parts of the

structure of the world, then it should also be explained why incorrect statements are

not timeless and universal (which would be difficult), or state that both correct and

incorrect statements are timeless and universal (which would not differ much from

nominalism anymore). One could also adopt the position that Rudolph Carnap

(1891-1970) took towards the ontology of mathematics—Carnap rejected metaphys-

ical speculations and held that scientists and mathematicians should base their de-

cisions between different mathematical frameworks on how useful the different

frameworks are394.

The nominalist viewpoint would also be difficult for this thesis, because ignoring the

quite well-functioning structures that computer scientists have built would shatter the

field into small esoteric units, perhaps without a common language. In the Kuhnian

sense, it would erase normal science. Insofar as computer science has in any sense

helped to change or can be used to positively change the human condition, it would

be a pity to erase a working construct that could be directed towards improving hu-

man conditions. Although normal science has its problems, as noted in Section 2.1,

it creates a common framework of understanding between researchers.

Sticking Point 3: Explanations of Stability

Hacking's third sticking point395 between realists and constructionists concerns the

difference between how proponents on either side explain how science has become

stable. Whereas the problem for Kuhn and Popper was to understand revolutions in

science, the problem today is to understand stability, Hacking argued. One has to

understand Hacking's claim of stability with some reservations. Hacking did not

claim that science would have become infallible or that science would have found

ultimate answers, but he claimed that there is a common sentiment that a lot of sci-

ence is here to stay.

394Shapiro, 2000:pp.126-128.

395Hacking, 1999:pp.84-92.

127

This third sticking point is not whether science deals with facts or commonly held

beliefs. The third sticking point is a debate between those who believe that the sta-

bility of science (these days) is an inherent quality of science and those who believe

that the stability of science is a result of external forces. The former ones, call them,

for instance, “rationalists”396, believe that most science becomes stable because of

the wealth of good theoretical and empirical research. The latter ones, construction-

ists, hold that the stability of science involves elements external to the professed con-

tent of science397, elements such as the human processes of making science.

My interpretation of the rationalist position is that rationalists believe that the

poverty of critical anomalies in natural sciences today is due to the fact that science

is currently consistent, well-reasoned, and faithful to reality (physical phenomena) in

its explanation of the world. And my interpretation of the constructionist position is

that constructionists believe that science today is stable not only because of its in-

ternal coherence, but also because there is a number of sociocultural aspects that

support continuity in science. Included in those sociocultural aspects that support

continuity in science are, for instance, those characteristics of science that Feye-

rabend criticized398: The ability of science to set its own standards, scientific dogmat-

ism and chauvinism (i.e., the effort to extend scientific rules and inference to all sec-

tors of society), the reluctance of scientists to denounce their own findings (which

would jeopardize their careers), uniform scientific education, skewed interests, old-

boy networks in the academic world, and such.

I see some aspects of the constructionist argument as more applicable to computer

science than others, but the field of computing does not yet seem ripe enough that

one could speculate on explanations of stability in computing. There are three major

arguments for my position. First of all, computer science is not purely a mathemat-

ical, empirical, nor an engineering discipline. Computer science is perhaps all of

these at the same time399. The definition of computer science is widely debated, and

there certainly is no definition that everyone would agree upon400. It is not sensible

396Hacking used the word because it draws the attention to the lineage (Hacking, 1999:p.91).

397Hacking, 1999:p.92.

398Feyerabend, 1993

399cf. Denning et al., 1989

400For different definitions and portrayals, see, e.g., Newell et al., 1967; Forsythe, 1967; Knuth, 1974; Atchison et
al., 1968; Kandel, 1972; Wegner, 1976; Jehn et al., 1978; Khalil and Levy, 1978; Minsky, 1979; Gibbs and
Tucker, 1986; Hopcroft, 1987; Denning et al., 1989; Lee, 1989; Hartmanis et al., 1992; Hartmanis, 1994;
Brooks, 1996; Gal-Ezer and Harel, 1998; McGuffee, 2000; Brookshear, 2003:p.1; Denning, 2003.

128

to argue that a discipline is stable or unstable if there is no clear picture of what ex-

actly is stable or unstable.

Second, if one sets aside the problem of diversity, the next problem arises from the

youth of the discipline. The field of computing as a discipline is only around sixty

years old, if one begins from the first electronic computer built401. (Also the stored-

program concept was conceived around that time402.) During the past sixty years,

there have been significant changes in the “paradigms”403 or practices of the field.

There have been a number of shifts in technology: the transistor, the integrated cir-

cuit, optical media, microcomputers, etc.; in theory: fuzzy logic, public-key crypto-

graphy, Chaitin complexity, etc.; in programming: high-level programming lan-

guages, object-oriented programming, logic programming, etc.; in communications:

the modem, the Ethernet, the Internet, wireless solutions, the World Wide Web, etc.;

in human-computer interaction: the mouse, the monitor, speech recognition, etc.; in

uses: computational sciences, office computing, decision support systems, games

and entertainment, etc.; etc. The number of cumulative and remarkable changes is

large and the pace of change has been fast. It is not sensible to argue that a discip-

line is stable or unstable if the time span of stability would be very short. In essence,

anything can be called stable if the time span is chosen conveniently.

Third, unlike electrons, genes, proteins, or acids, computers are human-made phe-

nomena. It is irrelevant whether one sees theoretical computer science as a study of

abstract, universal things, or concrete, human-constructed things. Irrelevant, because

theoretical computer science is only one part of computer science—in fact, the ma-

jority of the definitions of computer science note that it deals with machinery404 (and

machinery is human-made in its entirety). The proponents of universalism in com-

puter science might argue that computers are based on theories that are universal, so

they are instances or manifestations of Ideas. That would take the discussion back to

the second sticking point, nominalism. Be that as it may, I suppose that the majority

of scientists would not object to my claims that (1) computers are different from nat-

401ENIAC became operational 1945 (Williams, 1985:p.285).

402Mauchly, 1979; Williams, 1985:pp.298-302, 411.

403Although the term paradigms (in plural form) is sometimes used in computer science, I do not consider it to be a
correct term to use, at least from the Kuhnian viewpoint. A plural paradigms necessitates at least one paradigm
shift, which necessitates at least one scientific crisis triggered by anomalies, and it is difficult to point out such
course of events in the sixty-year history of modern computing.

404See the list of references above for a sample set.

129

urally occurring things such as electrons, genes, proteins, or acids, and that (2) the

discipline of computer science is different from physics, biology, or chemistry in that

sense405.

However, I expect that a counterargument to my argument might be that (1) com-

puter scientists study theories and models of computation, and that understanding

these theories and models does not require understanding computer scientists. This

counterargument could be continued that (2) relying on these theories and models,

computer scientists build computers, and thus understanding computers does not re-

quire an understanding of computer scientists either.

The first part of the counterargument is valid because the ontological status of theor-

ies and models of computation is fundamentally unsolved. That is, because humans

cannot escape the material world, human beings have no means to know with cer-

tainty the ontological status of abstract concepts. This is not, however, to agree that

theories and models of computation exist independently of intelligent beings, but just

that the mode of existence of theories and models cannot be proven as being either

objective or subjective. Nonetheless, I noted earlier in this thesis that the viewpoint

adopted in this thesis is that theories and models of computation are human construc-

tions.

The second part of the counterargument requires careful discussion. Andrew Picker-

ing noted that humans differ from nonhumans precisely in that people's actions have

intentions behind them, whereas the performances (behaviors) of quarks, microbes,

or machine tools do not406. He wrote, “I find that I cannot understand scientific prac-

tice without reference to the intentions of scientists, though I do not find it necessary

to have insight into the intentions of things”. Pickering was correct when he wrote

about naturally occurring phenomena such as quarks and microbes. But when Pick-

ering wrote that it is not necessary to understand the intentions of machine tools, I

agree with him insofar as he did not imply that it is not necessary to understand the

intentions of the creators of machine tools to understand machine tools.

Although computers are not intentional, and although theories and models of compu-

tation are not intentional, computers are constructed by scientists who are intention-

405For instance Donald Knuth wrote that computer science is an unnatural science (Knuth, 2001:p.167).

406Pickering, 1993

130

al. Unlike the actions of computers, most of scientists' actions have motivations be-

hind them. Hence, I argue that it would be ill-advised to state that (1) computers are

constructed by computer scientists, and that (2) one can understand computers

without understanding the intentions of computer scientists who built them. The

only way to avoid contradiction would be to argue that computers are instances of

abstract (universal) theories and models of computing, but then one would have to

hold to the notion that there are no practical intentions behind building computers. If

there are practical purposes behind building computers, then computers cannot be

understood without understanding these practical purposes407.

Consider the hammer, for instance. Assume that intelligent beings create a hammer,

and then become extinct. In addition, assume that other intelligent beings find the

hammer. The question is, “Is it possible for the finders of the hammer to understand

what the hammer is without understanding the intentions of the creators of the ham-

mer?”. I argue that without understanding the intentions of the creators of the ham-

mer, the finders of the hammer can speculate about the hammer, and perhaps specu-

late correctly, but not be sure about it. But if they know that the intention of the cre-

ator of the hammer was to drive nails through wood, they can be certain that they un-

derstand what the hammer is408.

In a sense, it would sound more odd to say that mathematical and logical truths exist

without any intelligent beings than to say that they exist only with intelligent beings.

It would be to argue that something immaterial exists, which contradicts what natur-

al scientists usually argue for; that is, natural scientists tend to argue that in order to

exist, things need to have mass or at least some kind of energy. No matter which

way one puts it, to argue that mathematical and logic truths exist without any intelli-

gent beings would be to argue that something immaterial and eternal can exist and

that people would somehow have access to these immaterial facts.

A major part of the debate about the explanations of stability concerns the natural

sciences. According to Hacking, the arguments on either side of this debate are of-

ten taken from physics; Maxwell's Equations and the Second Law of Thermodynam-

ics appear in debates regularly409. That physics is used as a reference discipline re-

407Although computers can be built for the practical purpose of studying computation, which is a special case.

408It is a different matter altogether whether one can ever fully understand the intentions and motivations of another
intelligent individual.

409Hacking, 1999:p.84.

131

flects on the tone of the debate. Relying on the premise that computers and natur-

ally occurring things are two different classes of phenomena, I make the following

argument: If a natural scientist encounters problems (anomalies), the difficulties

most probably stem from unfamiliar, unrecognized, or unknown complexities in the

interdependencies of the physical world. The problems in the social sciences arise

from the complexity of social systems. The basic units in social scientists' research

literally have their own minds and intentions410. However, if a computer scientist en-

counters problems, the difficulties arguably stem from computer scientists' earlier

work—computer scientists have built the complexity or definiteness of their own

discipline. Earlier design choices in, for instance, control structures, architectures,

languages, grammars, techniques, data structures, syntax, and semantics, define the

starting points for future challenges. In other words, computer scientists are much

more responsible for the level of complexity of their own discipline than physicists,

chemists, or biologists.

To the extent that one agrees with the aforementioned argument, the discussion on

the third sticking point, “explanations of stability” may not be very fruitful in com-

puter science. This is due to the rationalist and the constructionist explanation com-

ing very close to each other:

� Rationalists might say that the stability of computer science is an inherent quality

of computer science (a science that was built by humans called computer scient-

ists).

� Constructionists might say that stability of computer science is a result of external

qualities (i.e., the sociocultural characteristics of computer scientists).

In a human-made science that studies human-made phenomena it is hard to see

which characteristics should be attributed to external qualities and which ones to the

inherent qualities of science.

My three arguments on the last six pages cast serious doubt over the rationality of a

discussion about the “explanations of stability” in the field of computing. Note,

however, that none of my arguments forbids that discussion—or any other discus-

sion on computer science for that matter. In fact, the above-mentioned three charac-

teristics of computer science—diversity, turbulence, and human produceness—en-

410Hitchcock, 2004:p.16.

132

able the mode of discussion in this thesis. Therefore, I leave this question open and

move on to a brief conclusion of my standpoint on Hacking's sticking points.

Sticking Points: A Summary

An analysis of the realist-constructionist sticking points in computer science shows

that there are some standpoints in studies of computer science that are so fundament-

ally contradictory that a researcher cannot commit to one without rejecting the other.

Of course, a researcher can always choose to reject both of them, and to leave the

question open (or to find an alternative solution, which may be the start of a new ap-

proach to science). There are also middle-ways to these sticking points but the

middle-ways tend to run in trouble with both sides, and may be extremes of their

own.

The first of these aspects deal with contingency: If a computer scientist holds to the

contingency thesis (i.e., the constructionist side), then he or she takes the position

that none of the foundations of computer science are inevitable parts of successful

computing. If a computer scientist rejects the contingency thesis, he or she takes the

position that whatever local contingencies there may be, there is a path that any suc-

cessful form of computing takes, or a set of principles that any successful form of

computing necessarily holds to. As happens more often than not with extremes,

both of the extremes (inevitability and contingency) are easy positions, because ar-

guing them is a straightforward denial of opposing arguments. Anything between

leads to difficulties in explaining which aspects of computing are contingencies, and

which are necessary. This sticking point is left unresolved for now, because the fol-

lowing chapters of this thesis partly cover the history of computational instruments,

and help in making conclusions about the question of contingency.

The second of these controversial aspects is nominalism: If a computer scientist

holds to structurism, he or she takes the position that computing is built on (or exhib-

its, or is a part of) an inherent structure of the world and logic. If a computer scient-

ist holds to nominalism, he or she takes the position that all the structures that com-

puter science deals with are ultimately human creations and that there are no struc-

tures in the complexity of world. Again, neither of the extremes is particularly use-

ful, at least not for the purposes of this thesis. The ontological middle-way that

133

Searle proposed offers a framework for an analysis of different sorts of computation-

al facts, and this framework is referred to later in this thesis.

As David Bloor wrote (and Popperians should agree), all knowledge, whether it be

in the empirical sciences or even in mathematics, should be treated as material for

investigation411. Scientists oriented towards researching brute facts can use whatever

method they find suitable for their research, but they should not take any of their

facts as ultimate or perfect. The same applies to researchers oriented towards institu-

tional reality. Because the dividing line between Searle's two classes is not crystal

clear in computer science, one of the responsibilities of the informed researcher is to

constantly keep probing the line, asking questions, trying to make it clear for all re-

searchers alike to what extent are their facts institutional or brute.

411Bloor, 1976:p.1.

134

Technological Determinism

Any sufficiently advanced technology is indistinguishable from magic.412

Professor Steve Fuller argued that some

of the most remarkable philosophers of

science of the last century, such as Pop-

per and Kuhn, promoted excessively

idealized visions of science413. Fuller's

interpretation was that they did this in

order to avoid asking whether the in-

struments used in experiments were in-

spired by and/or applied in a military-

industrial setting outside the experimental context. Whatever the reason for not dis-

cussing what the possible military-industrial ties were at the time, nowadays there

has been plenty of research on the external influences of science. Sociologists and

historians of science, for instance, have analyzed the tacit and direct influences and

motivations in different kinds of technologies414.

A sense of technology's power as a crucial agent of change has a prominent place in

the culture of modernity, claimed Leo Marx and Merritt Roe Smith415. They de-

scribed the collective memory of Western culture as being well-stocked with lore

that states that the role of mechanic arts is to initiate change. Examples of such lore

in the field of computing are those that recount information and communication

technologies—especially the Internet—as triggering an Information Age416, creating

the digital divide and the New Economy417, as well as computers and networks im-

proving education418, changing class structures in society419, and leading to collective

412Often referred to as “Clarke's Third Law”; found in Clarke, Arthur C. (1973) Profiles of the Future.

413Fuller, 2003:p.89. Fuller is a professor of sociology at Warwick university.

414See, for instance, collections of essays by Smith and Marx, 1994; Bijker and Law, 1992; or MacKenzie and Wa-
jcman, 1999 .

415Smith and Marx, 1994:p.ix.

416See, e.g., Manuel Castell's trilogy The Information Age: Economy, Society, and Culture (Castells, 1996; Castells,
1997; Castells, 1998).

417See Irving, 2004 and Eaton, 2004 in Egendorf, 2004.

418Honey, 2004

419Florida, 2003

135

IN THIS SECTION:

� What is the position towards technological

determinism and social construction of tech-

nologies in this thesis?

� Is technology value-free?

� Do machines make history?

� How can one measure technological pro-

gress?

intelligence420, etc421. Many people in the field of ICT mistake technology as the an-

swer, rather than the question422. Yet, many technologies tend to raise more ques-

tions than they can solve423.

Simply defined, following Thomas P. Hughes, technological determinism is the be-

lief that technical forces determine social and cultural changes424. Everett Rogers

noted that the opposite of technological determinism is social determinism, or the so-

cial construction of technology425. According to this view, technology is a product

of society, and its functions and forms are defined by the norms and values of the so-

cial system. Common sense says that if one is concerned about what technology

does to society, or to people, one is a technological determinist to some degree. That

is, if and only if one believes that technology can have an effect, one can be worried

about it.

Even though researchers might, on some level, settle for the simple definition of

technological determinism mentioned above, there really is no single account of

technological determinism. Instead, there are different degrees of technological de-

terminism and different emphases. One simplistic way to outline the different de-

terministic views is to place them along a line between “soft” and “hard” extremes,

as suggested, for instance, by Smith and Marx426. Merrit Roe Smith wrote that the

soft view holds that technological change drives social change, but at the same time

responds discriminatingly to social pressures. The hard view perceives technologic-

al development as an autonomous force, completely independent of social con-

straints427. There are variants and degrees of each: For instance, one variant of the

hard view, proposed by Richard Florida, is techno-utopianism, a belief that technolo-

gies, especially “killer applications”, shape the course of human events428.

But along with many science and technology researchers, many modern sociologists

disagree with hard technological determinism, claiming that technology is not the

420Lévy, 1997

421See Negroponte, 1995, for a large number of tales and visions.

422Smith, 1994b

423Mills, 1959:p.15.

424Hughes, 1994

425Rogers, 2003:p.148. Social construction of technology is depicted in, e.g., Kline and Pinch, 1999.

426Smith and Marx, 1994:pp.xii-xiii.

427Smith, 1994

428Florida, 2003:p.26.

136

cause of social change at all429. It has been suggested that technologies are a factor

in social change, but only when combined with organizational, social, and economic

adjustments430. These views are sometimes called social constructionism or social

determinism—neither of which is a really good term for the phenomenon because

both terms come from a context outside the discourse on technology431. Better terms

are, for example, the social construction of technology432 or the social shaping of

technology433.

Notwithstanding this problem with names, there is also a gamut of views on the soft

side of the spectrum. Wiebe E. Bijker and John Law wrote that the views range

from (a) acknowledging that artifacts per se do not carry meaning but that people

give them meanings (this can be paralleled with Searle's concept of observer-relative

features of objects434), to (b) understanding the social, political, psychological, eco-

nomic, and professional commitments, skills, prejudices, possibilities, and con-

straints of artifacts, to (c) claiming that the form, function, and shape of technologies

are purely socially determined435.

Except for their extreme forms, the social construction of technology and technolo-

gical determinism are not mutually exclusive but, depending on which viewpoints

are considered, they do have commonalities. This leaves room for misunderstand-

ings, ambiguities, and criticisms against each side.

One of the criticisms based on a strict reading of the terms “technological” and “de-

terminism”, is Bruce Bimber's criticism of the soft-hard division436. Bimber offered

an alternative model with three interpretations of technological determinism: the

normative, the nomological, and the unintended consequences approaches437. Ac-

cording to Bimber, the essence of a normative account is that the norms and practice

of technology are removed from political and ethical discourse. The nomological

account rests on “laws of nature” rather than on social norms, and is exemplified by

429See, e.g., Castells, 2000

430Florida, 2003:p.26.

431For social constructionism in sociology, see Berger & Luckmann, 1966; for social determinism in psychology,
see Holstein & Gubrium, 2003:p.13.

432Bijker, 1992

433MacKenzie and Wajcman, 1999

434Searle, 1996:pp.11-13.

435See, e.g.. Bijker and Law, 1992:pp.1-14, for some viewpoints.

436Bimber, 1994

437Bimber, 1994

137

the belief that “given the past, and the laws of nature, there is only one possible fu-

ture”. The unintended consequences account relies on the uncertainty and uncon-

trollability of the outcomes of actions such as technological development. Of these

approaches, only the nomological account is, as Bimber saw it, really both technolo-

gical and deterministic: It is truly technologically deterministic.

Technological Momentum

Thomas Hughes offered another alternative to the soft-hard juxtaposition, locating

the concept of “technological momentum” somewhere between the poles of techno-

logical determinism and social constructionism438. Hughes noted that both of those

views suffer from a failure to encompass the complexity of technological change.

Technological momentum, on the other hand, infers that social development shapes

and is shaped by technology.

The temporal axis in Hughes' concept of technological momentum is important in

understanding technological determinism in the field of computing. Hughes' studies

indicate that younger, developing systems tend to be more open to sociocultural in-

fluences, while older, more mature systems prove to be more independent of outside

influences and therefore more deterministic by nature439. Yet, Hughes' account is

still sensitive to the complexities of history, society, institutions, values, interest

groups, social classes, and political and economic forces.

Hughes' temporal axis in technological determinism gives Searle's epistemological

dimension of facts an interesting twist: It seems that when an innovation is born, that

innovation is epistemologically subjective, but usually440 the older and more preval-

ent an innovation gets, the more epistemological objectivity it gains. In Searle's

books, that some things are screwdrivers are epistemologically objective facts: It is

not only Searle's opinion that they are screwdrivers. As I see it, the increase in epi-

stemological objectivity is closely linked with those innovations becoming more ri-

gid, less responsive to outside influences, and thus more deterministic by nature.

The temporal dimension is important for computing for a number of reasons: It is of

use in proportionating (or finding the place of) computing with other, usually older

438Hughes, 1994

439Smith and Marx, 1994:p.101; Hughes, 1994

440This is not always the case. Some innovations fade away. For instance, the number of people who can use a
slide rule is most probably declining as it is not taught in the schools anymore.

138

disciplines; it helps in understanding technological change and stability in computing

(although it does not help in understanding stability in the theoretical sense as used

in Hacking's sticking points, discussed on page 127). It also helps in understanding

computing as a cause and an effect—shaping and being shaped by society. Note,

however, that by shaping society, I do not mean that technologies, unintentional

things, would shape anything, but that by being available for people to use, technolo-

gies may increase the chance of certain decisions or changes.

Hughes wrote that as technological systems grow larger and more complex (of

which intercommunicating computational systems are a prime example), systems

tend to shape society more than society tends to shape systems441. Hughes' hypo-

theses help explain the positions taken by determinists and constructionists: Social

constructionists have the tools for understanding analyzing young systems while

technological determinists have the tools for understanding analyzing mature ones442.

In the computer scientists' world, technological determinism is commonplace and

rarely questioned, as exemplified by phrases such as: “Technology has always been

the root cause of economic and social change”443, “...the natural evolutionary situ-

ation of technology”444, and “The Internet has already wrought great change in our

society”445. In the computer science discourse, computer scientists rarely require jus-

tification of deterministic views as the ones above. That is, technological determin-

ism is the norm. Manuel Castells' texts support my view that in academia and sci-

ence (in the field of computing, at least) there is a strong culture of belief in the “in-

herent good of scientific and technological development as a key component in the

progress of humankind”446. It is, Castells wrote, a direct continuation of the Enlight-

enment and modernity.

Because technological determinism is a central part of the conceptual framework in

this thesis, a number of common problems around it must be discussed. There are

three problems or problematic questions that I find frequently in the sociological and

philosophical literature about technology. These problems are the question of value-

441Hughes, 1994

442Hughes, 1994

443Spindler, 1998 in Leone et al. (eds.), 1998.

444Levinson, 1998

445Godwin, 1999

446Castells, 2001:p.39.

139

free technology, the question of the role of technologies in history, and the question

of measuring progress. In the following, I analyze and take a position towards each

of these.

Is Technology Value-Free?

At this point it should be noted that my use of the term technology is congruent with

what Carl Mitcham called technology as object or as artifact447 and what Stephen J.

Kline called technology as hardware. Kline argued that this is the most common us-

age of the term, and that it concerns manufactured articles—things that are made by

humans and that do not occur naturally448. Other uses of the term technology are, for

instance, as knowledge, as activity, as volition, as sociotechnical system of manufac-

ture, and as sociotechnical system of use449.

Marshall McLuhan (1911-1980) called claims of value-free technology the “voice of

the current somnambulism”450. It has been argued that all technologies are shaped by

and mirror the complex trade-offs that make up societies (both technologies that suc-

ceed, as well as technologies that fail)451. Politics; economics; theories; notions

about what is beautiful, ergonomic, or worthwhile; professional preferences; preju-

dices; skills; design tools; and the raw materials that are available—all these are, ac-

cording to Bijker and Law, thrown into the melting pot whenever an artifact is de-

signed or built. Langdon Winner argued that because of these inherent qualities,

which are fused into technologies, technologies invariably favor the interests of

some over the interests of others452. However, I suggest that (following Hughes' the-

ory of technological momentum453) the proportions and functions of the different

factors in Bijker and Law’s melting pot process are not static, but dynamic. When

technologies are designed and built, decisive and minor factors alike can change

over time; for example, professional preferences may play a decisive role in the be-

ginning but a minor role later.

447Mitcham, 1994:p.161.

448Kline, 1985

449Mitcham, 1994; Kline, 1985

450McLuhan, 1975

451Bijker and Law, 1992:p.3.

452Winner, Langdon (1986) The Whale and The Reactor: A Search for Limits in an Age of High Technology. Uni-
versity of Chicago Press:pp.55-56, as quoted in Smith, 1994:p.32.

453Hughes, 1994

140

Extending Langdon Winner's question “Do artifacts have politics?”454, I see that

there are two basic ways of stating the claim that there is a dependent relationship

between political, cultural, or ethical values and information, communication, and

computing technologies. The first way is a strong claim:

The development, diffusion, or maintenance of a given technological system

requires a particular culture, a particular social form, or a particular set of

values.455

This claim is a central assumption in arguments such as, “the innovation or diffu-

sion456 of the Internet requires openness, a techno-meritocratic culture, virtual com-

munitarianism, an entrepreneurial economy457, and a hacker ethic458”. It could be ar-

gued that without accepting those values, one cannot have the Internet, or that if one

wants the Internet, one also has to accept these values459. The second way, although

weaker, is more plausible:

The development, diffusion, or maintenance of a given technological system

is strongly compatible with a particular culture, a particular social form, or a

particular set of values.460

This claim is a central assumption in arguments such as, “the development or diffu-

sion of the Internet does not necessarily require openness, a techno-meritocratic cul-

ture, virtual communitarianism, an entrepreneurial economy, or a hacker ethic—

however, the more these prevail among a society, the better the chances are for in-

novation or diffusion of the Internet”. In other words, if the Internet is highly com-

patible with those values, then the more the values in a society differ from those val-

ues, the more problems and conflicts there will be during the innofusion process.

The second, weaker claim sounds plausible. The creators of technology usually cre-

ate technologies for certain purposes. Those purposes are usually in harmony with

the values that the creators hold. In a culture with values that conflict strongly with

454Winner, 1999

455cf. Winner, 1999

456James Fleck coined the term innofusion when he argued that the processes of innovation and diffusion are not
separate spheres, but intertwined processes (Fleck, 1999). Everett Rogers' findings are in line with Fleck’s argu-
ment (see Rogers, 2003:p.167).

457Castells, 2001:pp.36-61.

458Himanen, 2001

459Adapted from Winner, 1999 (Winner's example is about nuclear vs. solar energy)

460Adapted from Winner, 1999

141

the purposes of technology, technology may offer less advantages because some of

the major possibilities that technology makes available might not be exploited. For

instance, if recording the human voice were a taboo in a certain culture, VoIP (Voice

Over IP) probably would not succeed in that culture. However, it is possible that if

cultural values conflict strongly with the purposes of technology, the technology

may have unexpected advantages altogether. For instance, it has been reported in a

non-academic publication that youngsters in United Arab Emirates use Bluetooth

devices for secretly initiating conversations with the opposite sex, because it is con-

sidered impolite for a man to speak in public to a woman with whom he is neither

married nor related461. It must be noted that neither of the above-mentioned versions

of the dependency claim make statements about technology per se; they make state-

ments only about the creation, diffusion, and maintenance of technology.

Even if one were to agree that the sociocultural environment can affect the produc-

tion and use of computing technology, one can still argue, fairly, that computational

instruments per se are value-free. The term value-free technology usually means that

technologies per se do not hold any values: Technologies are not inherently good or

evil.462 In these seemingly trivial notions there is a quirk: It would surely be odd to

refer to unintentional objects as having morals. But because the “inherently value-

free” argument is often rationalized by an example: “A pen can be used to write a

peace treaty (mostly good) or to declare a war (mostly evil)”, the “inherently value-

free”-clause can be understood differently.

My interpretation is that those who use the argument that a pen can be used to write

a peace treaty or to declare a war, use it as an example that the pen has the capability

for being used for good or evil. A common counterargument is that because nuclear

weapons have no capability for good, but only a capability for evil463, technologies

are not value-free464.

461Sharp, Heather (2005) Phone Technology Aids UAE Dating. In BBC News Dubai, July 29th 2005. Available at
http://news.bbc.co.uk/1/hi/world/middle_east/4718697.stm (accessed September 27th, 2006)

462Admittedly, good and evil are exceedingly artificial and subjective categories. In fact, “good vs. evil” is such an
inane and dichotomous juxtaposition, that I would not like to use it. However, as it has been used widely in this
context, it is used here in a similar manner.

463Note that nuclear weapons are not designed to protect from an enemy nuclear attack, even though they may do
so. They are designed to kill people in masses, which is considered to be bad in most ethical accounts. Further-
more, they do not separate soldiers and civilians, women and men, young and old, enemy and ally, which is con-
sidered to be bad even according to the rules of war. One can still be of the opinion, however, that destroying
enemy cities in masses is good.

142

It does not matter if nuclear weapons can be used only for evil or not, it is still a fact

that nuclear weapons are inanimate, unintentional objects and they most probably do

not know anything about morals. At the same time, the designers of nuclear

weapons have motivations and morals and they must carry the responsibility and the

pang of conscience that come from creating nuclear weapons.

Value neutrality can also be connected with the attributes of technology. Consider,

for example, a simple attribute, such as speed, as a value-free attribute of techno-

logy465. It is not unheard of that an increase in the speed of computing technology is

associated with technological progress. However, those who claim the attributes of

technology to be value-free, do not claim an increase in speed to be either good or

bad (since speed is value-free).

For those who take technology to be value-free, if technology gets faster, it gets

faster, not “better”. Similarly, if technology gets slower, it gets slower, not “worse”.

So, in fact, the notion of technological progress is thus reduced to the notion that

computing gets faster or slower, without any normative notions like “better” or

“worse”. In this sense, technological progress means simply technological change.

Only if one connects progress with a normative statement like—“speed is good”—

then additional speed in computing technology is progress.

Also, those who claim that attributes of technology are not value-free should find it

hard to label speed either good or bad. For example, an increase in computing speed

has made the human genome project possible (which many people perceive as

good), but it has also made new nuclear, biological and chemical weapons; the Car-

nivore; and the Echelon possible (which many people perceive as bad). Labeling an

attribute of technology as desirable and calling development in that area progress is

definitely not a straightforward matter. Of course one could distance oneself from

consequentialism (utilitarism) and state that (1) technology is not value-free, and that

(2) speed is inherently good—although then “speed=good” would be truth by defini-

tion, and alterable as such.

464Although the nuclear weapon example is a common example (Williams, 1994; Winner, 1999; MacKenzie, 1999),
it is an extreme example which easily leads the discussion to politics and the morals of war (an apparent oxymor-
on), which are not the focus of this thesis. Therefore, I will not discuss the nuclear weapon example here.

465Parts of this discussion are from a joint work with Teppo Eskelinen, from the University of Jyväskylä (Eskelinen,
Teppo; Tedre, Matti (forthcoming) Three Dogmas of Computing. An article manuscript).

143

I think that the crux of the debate is this: Although technology as such is value-free,

the development and the use of technologies are always processes in which the de-

velopers and users of technology have a number of motivations. Unlike technolo-

gies, conscious human actions are not value-free.

That is, one has to make a distinction between two things: technology per se, and the

production or use of technology466. Technologies are unintentional objects or con-

cepts and unintentional objects and concepts do not have morals. Contrary to what

Winner wrote, technology does not favor anybody’s interests. The designers or users

may do so, however. Technologies as such are no more good, evil, benevolent, or

malicious than they are happy, sad, angry, or meek. Technology does not favor any-

body’s interests any more than it thinks or dreams. If there were a technology that

could be used only for exterminating the human race, and for nothing else, the tech-

nology would still be value-free. Even though someone might want to say that such

a technology favors the interests of non-human life on the planet Earth, that is not

the case. The designers of such technology, however, cannot evade the responsibil-

ity for designing and building such technology, and its users cannot evade the re-

sponsibility for using such technology. The designers carry as heavy a responsibility

for the outcomes of technology as the users do—without the designers’ effort, the

users would not have had that technology in the first place.

Technology is produced by conscious human beings, and conscious actions entail

motivations. That is, the creators of technology always have a motive for creating

technology—and motives are value-laden. For instance, reducing poverty is often

considered to be a good motive, and greed is often considered to be a bad motive.

Even thirst for knowledge is a motive. When computer scientists work on comput-

ing technology and theories, they are motivated by a number of things, be it income,

passion, a thirst for knowledge, or something else. Computer scientists are also

aware of a number of possible uses for their plans; some of these uses can be malig-

nant and some benign.

Although computer scientists cannot know to which end their products will ulti-

mately be used, and although computer scientists cannot know all the possible con-

sequences of their products, they do have a responsibility for their work. Mario

466This distinction was made to me by Dr. Esko Marjomaa (oral communication, February 23rd 2006).

144

Bunge wrote that an entire process of technology production may be morally objec-

tionable if the goals it aims at are exclusively evil467. Bunge argued that “the tech-

nique of evil doing is evil itself”. Although the end product, an inanimate object or

concept, is value-free, the choices that computer scientists have made during the pro-

duction are not value-free. Computer scientists cannot be held responsible for unin-

tended consequences or unforeseen malicious uses of technology. Computer scient-

ists must be held responsible for the foreseeable effects and side-effects of techno-

logy, and they must be able to justify their choices468.

Do Machines Make History?

The second argument I make in the context of technological determinism is that ma-

chines do not make history. Although Robert Heilbroner's (1919-2005) classic art-

icle “Do Machines Make History?”469 advocates a seriously qualified deterministic

view, it is necessary to state that I take it that technologies do not impose social and

political characteristics upon a society. During the turn of the twentieth century

there was a common belief that technology defines the social and political character-

istics of a society. For instance, Karl Marx (1818-1883) proposed that the substruc-

tures of the society (economical and material) define the superstructures of society

(social and cultural)470. Modern sociologists, however, disagree, and indeed argue

that technology is not the cause of social change at all471. For instance, John Fiske

wrote, “New technologies do not in themselves produce social change, however,

though they can and do facilitate it”472. Technologies have been claimed to be one

factor in social change, but changes take place only when combined with organiza-

tional, social, and economic adjustments473. In other words, technologies are not a

cause of change, but they can be a catalyst or a factor of change, or make change

possible474. Machines as such do not actually do anything; they are not intentional.

467Bunge, 1979 in Scharff & Dusek, 2003. First printed in Bugliarello, George; Doner, Dean B. (eds.) (1979) The
History of Philosophy and Technology. University of Illinois Press: Urbana, USA:pp.262-281.

468I concede that in reality, the choices that people make when they develop technologies are not straightforward.
Kristin Shrader-Frechette listed a number of different ethical aspects that technologists are expected to weigh
when they make decisions about technologies (Shrader-Frechette, 1992; first printed in Becker, Lawrence C.;
Becker, Charlotte B. (eds.) Encyclopedia of Ethics, vol. 2. Garland Publishing, New York:pp. 1231-1234).

469Heilbroner, 1967

470This topic, noted in this connection by Teppo Eskelinen, is discussed in Eskelinen, Teppo; Tedre, Matti (forth-
coming) Three Dogmas of Computing. An article manuscript.

471See, e.g., Castells, 2000.

472Fiske, 1994

473Florida, 2003:p.26.

474See, for instance, Castells, 2001:p.39.

145

People construct the social and political characteristics of a society, often assisted by

machinery. One could rephrase Heilbroner475 and state that computing technologies

have an impact on social and cultural change, mainly by changing the material con-

ditions of human existence.

Technological Progress is Immeasurable

The third argument I make related to technological determinism is that technological

progress at large is immeasurable. This is perhaps the most controversial claim

concerning technological determinism in this thesis, so particular clarity is needed476.

First of all, progress, if characterized as “moving forward”, relies on the assumption

that there is a given goal towards which technological change is heading. This char-

acterization leads back to determinism. For example, one would need to assume

there is a pre-determined path that technologies will take, which is not assumed in

this thesis. Furthermore, the fact that a particular technological development works

well is not an indication that that technological development is progress, or even a

step in the right direction. In the big picture, that step may be even a step regretted

later, as exemplified by the adoption of the QWERTY keyboard.

The QWERTY keyboard worked well when the main concern of typewriter manufactur-

ers was not having the hammers of the typewriter getting stuck together—it was de-

signed specifically to slow down typists477. But nowadays that particular technology

has become an example of what diffusion and STS researchers call a technological

lock-in478: Its pervasive diffusion prevents competing products that are better in

many senses, such as the Dvorak keyboard, to emerge.

Although progress cannot be measured if there is no specific goal, progress can be

measured if a goal (and in some cases, a measurement unit) is specified. Towards a

given goal, say, a manned space flight to Mars, or discovering a cure for HIV, there

can be progress—but without a goal, the notion of “progress” is misleading. In this

case, Thomas Kuhn noted that the direction of progress is away from something, not

475Heilbroner, 1994

476This is discussed in Eskelinen, Teppo; Tedre, Matti (forthcoming) Three Dogmas of Computing. Unpublished
manuscript.

477Rogers, 2003:p.10.

478Arthur, 1999; MacKenzie and Wajcman, 1999 :p.20.

146

towards something479. However, because progress away from something can actu-

ally be harmful for future development, it is dubious if progress is the right term.

At this point the value-neutrality argument must be clarified. I have argued that the

Internet is not necessarily a tool of liberation and democracy; it can be used as a tool

for oppression as much as a tool for liberation. This claim would imply that the In-

ternet is a value-neutral technology. Secondly, I have claimed that all technologies

embody, for instance, politics, economics, theories, notions about what is beautiful,

ergonomic or worthwhile, professional preferences, prejudices and skills. This

would imply that there are no value-neutral technologies. The distinction is clear:

Technologies are unintentional things and they do not hold values. People who

design technologies do hold values. Technologies are always better suited for doing

some things than other things. The values of the designers may affect technological

development so that the resulting technologies are better suited for some things than

others. But I also recognize what Bruce Bimber called “unintended consequences”,

that an element of uncertainty and uncontrollability always accompanies technolo-

gical development480. As Bimber wrote, even willful, ethical social actors are unable

to anticipate the final consequences of technological development. However bene-

volent the designers of technology are, technologies can be used in unforeseen ways

in the future.

The Social Shaping of Computers

The Internet is an obvious example of the discussion about values and technology in

the field of computer science. Freedom of expression was a central value for the

early developers of the Internet481. I suggest that if that would not have been the

case, the medium might be much more controlled. Control of the Internet can in fact

be seen in countries where freedom of expression is largely restricted. For instance

Saudi Arabia, China, and Iran have severely restricted Internet access by filtering

foreign web sites482.

479Kuhn, 1996:p.170.

480Bimber, 1994

481Castells, 2001:p.55.

482Reporters Without Borders (2006) Freedom of the Press Worldwide in 2006. Annual Report. Available at
http://www.rsf.org (accessed September 27th, 2006).

147

After its early development between the 1960s and the 1980s, the Internet has been

largely shaped by commercial uses since the 1990s483. E-commerce has affected

technologies used on the web: For instance, PHP3 was written for e-commerce,

Flash for the needs of the MSN portal, and Java for the convergence of consumer

devices. And certainly, e-commerce has had a significant impact on the develop-

ment of secure transactions over the net (credit card numbers) as well as on data

mining techniques (e.g., “customers who bought X also bought Y”).

It seems, paraphrasing Michael Smith484, that the issue of technological determinism

is not an issue about technology after all; it is a product of a curious cultural and

political fetishism whereby artifacts stand in for technology, and technology in turn

signifies national progress. But as C. Wright Mills aptly put it, those who use tech-

nological devices do not understand them, and those who create them do not under-

stand much else485. That is, Mills concluded, why one may not, without great ambi-

guity, use technological abundance as the index of human quality and cultural pro-

gress.

It is hard to predict the prospective directions of technological change (or progress).

The examples of alleged false predictions by technological leaders are numerous, the

best-known probably being “I think there is a world market for maybe five com-

puters” (attributed to Thomas Watson (1874-1956) of IBM, 1943, but never con-

firmed), and “640K should be enough for anybody” (attributed to Bill Gates, Mi-

crosoft, 1981). But more interesting than false predictions, are correct predictions.

For instance, Vannevar Bush's (1890-1974) Memex486, can be considered to be an

early equivalent of hypertext. An interesting question—one that cannot be answered

here—is if technologies are predictable or if there are just so many predictions that

some of them repeatedly come true?

There is also a profound problem with the concept of “revolutionary technologies”,

and with predicting them. The problem with the concept is that it is not clear how

the term revolutionary should be operationalized. The questions that arise are, for

instance, “What kinds of technological innovations constitute a revolution?”, “Is a

technological implementation or the theory behind it a revolution?”, and “Is techno-

483Castells, 2001:p.55.

484Smith, 1994b

485Mills, 1959:p.175.

486Bush, 1945

148

logy revolutionary because of its inherent qualities or because of its effects?”. The

problem with predicting revolutions is that if they are understood in the Kuhnian

sense, the fact that they cannot be predicted makes them revolutions. Suppose that

discussing future technology in the seventeenth century, a visionary would explain to

town folks that according to his or her prediction, someone is going to invent the

transistor in a few hundred years. “Transistor, what is that?” the town folks would

exclaim. With tremendous difficulty, the visionary would be able to explain the

transistor, only to stop and realize that he or she just invented the transistor487. An-

other interpretation is that the visionary has only predicted the transistor, but without

an operational prototype, the visionary has not invented the transistor.

Of course radical innovations (or technological developments) can also be predicted

a short time before the actual prototypes are built, but what seems to make them rad-

ical is that just a short time before, they were unimaginable (“short” is, admittedly, a

vague modifier). There are a number of technologies that have been predicted, but

not yet implemented. Take using fusion as a source of energy, for example: Even

though it was theorized in the early twentieth century, there still are no functional,

practical implementations—yet, such an implementation would not come as a radical

innovation. Such an implementation would be regarded as an outcome of a long, cu-

mulative research and design process.

What are called radical, unimaginable innovations, often seem to occur despite the

establishment, be it academic or industrial, and not because of it488. It has been ar-

gued that many of the interesting breakthroughs take place at the intersection of dif-

ferent disciplines and cultures489. Note, however, that one cannot aim at unimagin-

able or unexpected innovations490. (In the same way, Kuhn argued that one cannot

aim at unexpected findings in science.)

Pat Hughes and Graham Cosier have suggested that a clear distinction between an

invention and a revolution should be made491. They argued that the internal combus-

tion engine was a vital invention, but ultimately people could have done without it

487This example, in different forms, can be found in a number of places; I have paraphrased Eskelinen, Teppo
(2005) oral communication, 21st August 2005.

488For instance, the stored-program concept and high-level languages were conceived despite the opposition of the
computing establishment of the time (Flamm, 1988:p.48; Sammet, 1969:p.143; Bright, 1984).

489Johansson, 2004

490See footnote 174 on page 74.

491Hughes & Cosier, 2001

149

(steam cars could have been used, or electric cars have been developed instead of

gasoline-run cars). Electricity, on the other hand, brought about a truly revolution-

ary change, a change bigger than anything in business itself492. Although I do not

agree with Hughes and Cosier in their deterministic claim that technology drove so-

cietal change, they are, of course, correct in that electricity was indeed one of the

major factors in the second industrial revolution493.

Hughes and Cosier also claimed that because eye glasses may soon become obsolete,

they may not have constituted a revolution494. Although I do not aim at offering an

alternative definition of revolution, Hughes' and Cosier's argumentation seems awk-

ward. The fact that an innovation may become obsolete does not nullify its impact at

the time of its innofusion. The Internet has enabled a number of changes in a large

variety of areas of life, from economy, communications, and computing to leisure,

entertainment, and love. Although the Internet may (and probably will) become ob-

solete one day, it has been a catalyst for a number of important changes. Hence, my

point of view is that the Internet is a revolutionary technology. (Still, the Internet

did not make history, but the people who built the Internet, the people who made use

of it, and the people who resisted it, did.)

All the attempts to use current technologies as an example of how technologies fol-

low a certain predetermined path are fundamentally flawed because, in retrospect,

technological development naturally has “followed a path”. But it is doubtful

whether it has followed the only possible path. Only imaginable progress can be

predicted; revolutions in technology are unimaginable and thus impossible to pre-

dict, and cannot constitute a path. It is doubtful whether there have even been tech-

nological revolutions in the same sense that there are claimed to have been scientific

revolutions—this is merely a matter of definition. Alan Kay, for instance, presented

an argument that the computer revolution has not even happened yet495. One can ar-

gue, though, that revolutions in instruments have spawned revolutions in sciences.

But is the Internet a result of long-term development with a zest of innovation, or is

it really a revolution as Kuhn would see it? How about the stored-program com-

492Hughes & Cosier, 2001

493The term industrial revolution, popularized by Arnold Toynbee (1852-1883) is quite vague, but usually it is used
to refer to a number of technological, socioeconomic, and cultural changes (Encyclopædia Britannica Online,
2004).

494Hughes & Cosier, 2001

495In the abstract of his keynote speech, Kay used the history of books as a comparison. See Kay, 2000.

150

puter? A look at the history of computing technologies in Chapter Three sheds light

on this question.

151

2.3.Intermission

Nihil tam absurdum quod non dicatur ab aliquo philosophorum.496

What would philosophers of science like Popper, Kuhn, and Feyerabend have had to

say to a modern computer scientist? How would they have characterized modern

computer science? How would a computer scientist take their message? To start

with, the philosophers themselves do not agree. Steve Fuller, a proponent of Pop-

per's philosophy, argued that in many respects, the postmodern condition associated

with Kuhn's ascendancy marks a return to the pre-modern sensibility497. Fuller ar-

gued that what is often called relativism—be it in praise or condemnation—is simply

the “ancient attitude”, perhaps most clearly defended by Aristotle (384-322 B.C.),

that all knowledge must be adequate to its objects. Ethnographic sociologists now

speak of context sensitivity and cognitive psychologists of domain specificity to

mean much the same thing498. The relativist side and the realist side are still both

strong today. In this section, I briefly summarize this chapter. This section is lightly

referenced, because all these matters have been discussed earlier in this chapter.

According to C. Wright Mills, in every intellectual age one style of reflection tends

to become a common denominator of cultural life499. Mills reported that during the

modern era in Western societies, the physical and biological sciences have been the

major common denominators of serious reflection and popular metaphysics. He

wrote that the cultural meaning of physical science is becoming doubtful and inad-

equate. Mills seems to have predicted correctly; the intangible and immaterial seem

the common denominator for postmodernism. Economies have become ones of

signs and space500, societies have become knowledge-based, and sciences have diver-

sified. Indeed, emphasis on brute facts seems like a common denominator of the

modern era, whereas an emphasis on institutional facts seems like a common denom-

inator of the postmodern era.

496“There is nothing so absurd as not to have been said by a philosopher”. Attributed to Marcus Tullius Cicero
(106 B.C. - 43 B.C.).

497Fuller, 2003:p.67.

498Fuller, 2003:p.67.

499Mills, 1959:pp.13-16.

500As proposed by Lash & Urry, 1994.

152

In order to discuss the brute facts of computing together with the institutional facts

of computing, a broad conceptual framework for computer science is necessary.

Figure 8 shows some of the variety of concepts connected with science that have

been discussed in this chapter. Because the area is so thoroughly complex, and be-

cause the complex interconnections cannot be expressed on a two-dimensional plane,

the topics are mapped in the figure in a semi-random manner. That is, many related

concepts are close to each other, but many other related concepts just simply cannot

be drawn close to each other. In this sense, the reader should not take Figure 8 as a

relational or semantic map but as a compilation of the central concepts discussed in

this chapter.

Figure 8 presents some concepts in the philosophy of science and STS that are relev-

ant to this thesis. There is some overlap between these two fields, but whereas the

philosophy of science is more concerned with the ontological, epistemological, and

methodological questions of science, STS is more concerned with viewpoints from

the history, sociology, anthropology, and psychology of science and immerses itself

in the interdisciplinary study of the theoretical and practical sides of science. The

153

Figure 8: Windows to Science

Science

Descriptive

Normative

Progress

Ontology

Epistemology

Methodology

Anarchism

Is-ought-

problem

Polity

Ideology

Economy

Technology

Rationalism

Empiricism

Ethical

Philosophy

Induction

Deduction
Knowledge

A priori

A posteriori

Theory

Practice

Facts

Axioms

Truth

Falsificationism

Verifying

Falsifying

Universals

Ad hoc

Underdetermination

Thesis

Dogmatism

Pseudo-science

Paradigm

Theoretical

Framework

Anomalies

Revolutions Normal Science

Incommensurability

Crisis

Discoveries

Inventions

Design

Theory

Modeling

Laws

Techniques

Instruments

Principles

Realism

Constructionism

Reducibility

Inexpressibility

LogicBoole

Hegel

Brouwer

Institutional Facts

Brute Facts

Values

STS

History

Sociology

Philosophy

Psychology

Pluralism

Contingency

Indeterminacy of

Translation

Inevitability

Technological

Determinism

Resistance

Mangle

Accommodation

Nominalism

Structures

Technological

Momentum
Social

Determinism
Timeline

Neutrality

subject matter of STS concerns, for instance, the scientific laws, techniques, instru-

ments, and theoretical frameworks of science and technology. The philosophy of

science focuses more on the descriptive, normative, and ethical components of sci-

ence—and, for example, scientific polity, ideology, and methodology. The philo-

sopher of science might ask, for instance, if prescriptions of how science should be

done are derived, or can be derived, from descriptions of science or of the natural

world (i.e., the is-ought problem). The STS researcher might ask whether the prin-

ciples of design, theory, and modeling are results of contingency or necessity.

The two fields overlap, they deal with a number of similar or same questions, and

many people take STS to be an umbrella term that contains the philosophy of science

as a subfield. The arcs in the Figure 8 are there to sketch the quadrants related to

STS, philosophy, realism, and constructionism in the figure—they are not to be

taken as dividing lines or such.

The Realist Camp

Ever since early Greek philosophy, extending throughout the history of philosophy,

there has been a strong rationalist line of thought; take Plato and René Descartes, for

instance. Rationalists would argue that there are truths in computing that are univer-

sal; especially those in the more theoretical branches of computing. From the ration-

alist point of view, universally true facts are discoveries, rather than parts of a hu-

man-made system of science—actually, some think that if all axioms are known, all

knowledge can be derived from those axioms. Naturally, this thinking also entails

presuppositions that there are inherent structures in the world that scientists can find,

and that all the new findings are inevitable: At some point progress would have led

to them anyway. According to this technological deterministic viewpoint, because

science and technology are parts of the inherent structures of the world, they are free

from the influences of values and culture.

However, Imre Lakatos' standpoint was that all the facts that scientists deal with

have formed over years of proofs and refutations (of which the Church-Turing Thes-

is is an example in computing). The position of Lakatos' teacher, Karl Popper, was

that one would never be able to prove anything universally true. According to Pop-

per, steadfast attempts to falsify even the most cherished theories are considered to

be good scientific practice. Then again, making ad hoc modifications to theories is

154

considered to be bad scientific practice, and often pseudo-science. There would be

no place for dogmatism in pure falsificationism, because any theory that fails should

be abandoned.

The underdetermination thesis poses the following problem for falsificationism:

“Given a number of theories that explain the data equally well, how does one de-

termine which theory is best?”. This problem does not have a general solution, but

neither does the problem posed by what I chose to call the underrepresentation

problem (a problem which is arguably more apt for computer science than underde-

termination): “Given a number of models that all successfully model and predict dif-

ferent aspects of a phenomenon, but that all are flawed in some way(s), how does

one determine which model to use?”.

However, all theories most certainly are not equally valuable because the underde-

termination thesis requires increasing the number of ad hoc modifications, which

makes some theories look increasingly implausible or even fictitious. Different the-

ories suit different situations. Questions that inevitably arise from having a number

of theories that all suit different situations, are “If currently dominant theories in aca-

demic computing are imperfect, on what grounds is their dominance justified?”,

“What kinds of arguments raise the dominant theories above other theories that ex-

plain the same phenomena also imperfectly but that are flawed in different ways?”,

and “Which arguments do computer scientists use when choosing between compet-

ing models, all flawed in different ways?”. All these questions are discussed in

Chapter Three.

The Constructionist Camp

According to Thomas Kuhn's constructionist theory, science is an agreement among

scientists, and as long as there are not too many anomalies that the current normal

science cannot explain, everything is fine. If anomalies start to accumulate, the

paradigmatic science may drift into crisis, and out of the turmoil of the scientific

crisis, a new revolutionary paradigm that can explain the anomalies can arise. Most

constructionists think that many scientific facts are facts only because scientists

choose to believe so. According to the nominalist argument, which is connected

with pluralism and constructionism, there are no inherent structures in the world, and

155

obviously, new technologies and theories are no more (and no less) than inventions

—human-made things.

It has been argued that at the wake of Kuhn's triumph, science has come to be justi-

fied more by its paradigmatic pedigree than its progressive aspirations501. Scientific

progress, in Steve Fuller's opinion, is better described by Popper's philosophy.

However, in light of the history of science, Kuhn's description seems to be more val-

id502.

The concept of progress is indeed dubious in the constructionist account, since after

a paradigm shift, new theories are more or less incommensurable with the old ones:

Radically new theories are often inexpressible with the language of old science.

Two competing paradigms may not only explain the same facts in a different way,

but they may explain different facts altogether. The demand of reducibility or “in-

stant clarity” in computing is a hindrance for (at least) two reasons, one practical,

one ideological.

From the practical point of view, if new or emerging embodiments of computing

have to be explained in (incommensurable) terms of current academic computer sci-

ence, it either makes it impossible to introduce entirely new concepts, or it reduces

the power of the expression of new concepts to the power of the expression of cur-

rent academic computer science. In other words, the indeterminacy of translation,

accompanied with the demand for reducibility, set an upper limit for what can be ex-

pressed by theories bound to what can be expressed by current science.

From an ideological perspective, the demand of reducibility and instant clarity is a

forceful occupation of intellectual territory. The demand of reducibility elevates

academic computer science to the intellectual standard status. That is, any concept

that cannot be clarified by showing a counterpart in current science is automatically

considered a flawed concept according to computer scientists.

The incommensurability thesis that Kuhn held to, denies humans, much in a Kantian

way, any access to universals. Feyerabend went further and denied that even logic is

universal: “There is Boole, there is Hegel, there is Brouwer, there are the many post-

modern systems of logic”. In Feyerabend's anarchistic vision, there is no need to

501Fuller, 2003:pp.6-7.

502But not all philosophers of science think it is really valid. In addition to Fuller, 2003, see, e.g., Feyerabend,
1975.

156

suppress even the most “outlandish product” of the human brain. According to Fey-

erabend, everyone may follow his or her inclinations and science (conceived as a

critical enterprise) will profit from such an activity. He wrote that one should be en-

couraged not just to follow one's inclinations, but to raise them, with the help of cri-

ticism (which involves a comparison with existing alternatives) to a higher level of

articulation and thereby raise their defense of this criticism to a higher level of con-

sciousness.503 The question that Feyerabend's anarchistic philosophy of science

raises in the field of computing is: Is anything goes a fruitful prescription for the

field of computing, or should a certain amount of dogmatism be allowed?504

Middle Ground

Even though one might refuse constructionist, anarchist, positivist, falsificationist,

empiricist, or inductivist accounts as being inadequate for providing a philosophy of

science (or an account of science), some or all of the accounts may offer useful

methodological tools (such as deduction and induction) for testing arguments.

However, using methodological tools assumes that the researcher acknowledges the

underlying philosophy. One cannot argue for an a posteriori interpretive methodo-

logy if one does not take a distance from universalism, at least to some extent. Sim-

ilarly, it seems a bit strange (although not incorrect) for a researcher to utilize a pos-

itivist methodology but hold that results achieved from using the positivist methodo-

logy are subjective or open for subjective interpretations. It seems that there is no

middle way but either one extreme or another. Yet, because all of the extremes face

difficulties, none of them are philosophically adequate either. Only a variety of

pragmatic accounts prevail.

There are a number of accounts that fall between constructionism and realism, or at

least accounts that are credible defenses of a middle way, and I considered three of

them. The first was Thomas Hughes' technological momentum, which relies on a

temporal variable to blaze a trail between technological determinism and the social

construction of science (social determinism). According to the technological mo-

mentum argument, young technological systems exhibit characteristics of social con-

503Feyerabend, 1970

504Actually, Feyerabend's anti-dogmatic stance has been referred to in the field of computing: The Feyerabend Pro-
ject is an attempt to give new dynamism to computing–see De Meuter et al., 2002. Another reference to Feye-
rabend in the field of computing can be found in Snelting, 1998. Snelting refers to Feyerabend in a negative
sense.

157

struction, but when they become more widespread and more established, the charac-

teristics they exhibit are closer to those characteristics connected with technological

determinism.

The second account, Andrew Pickering's mangle of practice, has been named “the

most materialist contribution to the social studies of science to date”505. Pickering

used an example from quantum physics to show a structure and processes between

(1) theoretical models, (2) design and theory of instruments and how they work, and

the (3) instruments themselves. When a researcher works, usually things do not go

as planned; the world resists. The researcher accommodates this resistance by re-

vamping some or all parts of the structure, and tries again. This process is called

“the mangle”; in the end, the researcher hopes to get a robust fit between the three

elements of the structure of the investigation.

The third account was John Searle's realist account that can accommodate socially

constructed facts. Searle's account relies on a simple ontology: The world is made

of particles in fields of force; some of these particles are organized into systems; and

some of these systems are living systems that have evolved consciousness. These

conscious creatures can represent objects and states of affairs in the world to them-

selves (intentionality). In Searle's theory, there are brute facts in the world, state-

ments whose truth value does not depend on any attitudes of people. However, con-

scious, intentional creatures can attach particular meanings to objects or facts—or

create new facts altogether. Those facts exist only because of conscious creatures,

and they cease to exist when there is nobody left to hold those facts.

In this chapter I have developed a conceptual framework for this thesis. All the dif-

ferent accounts of science and technology introduced in this chapter concern the

fields of physics, mathematics, chemistry, and other natural or mathematical sci-

ences. I argue that this framework is also suitable for an analysis of computer sci-

ence—but the framework is tested in Chapter Three.

In Chapter Three I analyze the formation of computer science using this framework

as a tool of analysis. My analysis is focused on the sociocultural formation of com-

puting—I analyze if the development of computing bears the characteristics of social

construction and if it fits my framework well. That is, I ask if the development of

505Hacking, 1999:p.71.

158

computing bears the characteristics of contingency, nominalism, constructionism, or

other sociocultural or human characteristics that may have affected how computer

science and technologies have developed.

159

160

3.The Development of Computing as a Discipline

In this chapter I discuss the second of

this thesis' two central themes, comput-

ing1. Specifically, in this chapter I fo-

cus on the academic interpretation of

computing—computer science. Even

though scientific approaches to comput-

ing existed long before the advent of

electronic digital computers2—and even

though systems of numeration have ex-

isted for at least 5000 years and al-

gorithms comparable to those of today

have existed for at least 3500 years3—my study is limited to the era after the birth of

electronic digital computing.

One can hardly argue that the terminology in computer science is fully established.

Terms such as computer science, computing as a discipline, and the field of comput-

ing are used in a variety of competing ways. The debates about what computer sci-

ence is, what computer science is about, and what computer science should become

are common in the past of computer science, and not unheard of in contemporary de-

bates either. Many disputes arise from the different meanings of the term comput-

ing. Instead of the restricted dictionary definition (see the box above), the term

computation is among computer scientists more often understood as the implicit or

explicit execution of algorithms4.

Most of the early debate over the nature of computing, computer science, and com-

puter engineering, (along with names such as comptology, hypologi, Turingineering,

and computics5) revolved around the question whether computer science was a dis-

cipline separate from mathematics, electrical engineering, and applied physics6.

1 See the box on this page for a synthesis of the compute and computing entries in Wiktionary and Webster's On-
line Dictionary (accessed September 27th 2006).

2 Knuth, 1974

3 Williams, 1985:p.9; Knuth, 1972

4 Scheutz, 2003

5 Ensmenger, 2001; McKee, 1995

6 Ensmenger, 2001; Aspray, 2000

161

Com·pute

VERB: 1. Make a mathematical calculation or

computation. 2. To reckon or calculate: “Can

anyone here compute the square root of

10201?”. 3. (colloquial) To make sense: “Does

that compute, or do I need to explain further?”

Com·put·ing

NOUN: 1. Action of using a computer. 2. The

study of computers and computer programming.

ETYMOLOGY: From Latin computāre: to count, to

compute.

SYNONYMS: calculate, cipher, cypher, figure, reck-

on, work out.

Some authors claimed that computer science was a new engineering discipline7;

some authors made a strict distinction between making programs (i.e., software en-

gineering) and “designing classes of computations that will display a desired behavi-

or”8; some authors claimed that “... computer science is the study of the theory and

practice of programming computers”9 and many authors objected to the persistent

“computer science equals programming”-myth10. In this thesis, the computing activ-

ity is connected with computational instruments (which are defined in Section 3.1),

and I often use the term technoscience to refer to both science and technology.

The tone of the debates about the essence of computer science changed during the

formation of the discipline. Whereas one of the major foci of early (1950s) profes-

sionals of computing was on achieving a disciplinary autonomy, in the following

decades the focus turned towards what kinds of topics should be included in or ex-

cluded from computer science. Computer science has been diversifying radically

ever since the birth of electronic digital computing, and diversification is still a char-

acteristic of computing. Diversification has kept the debate about the disciplinary

identity of computer science alive. In this section I offer my interpretation of the de-

velopment of computing, the formation of computer science as a discipline, and the

anatomy of research in computer science.

The history of the debate around computer science is a prime example of the social

construction of a scientific discipline. The definition-creating process has included

several kinds of stakeholders: institutions—such as the ACM, the IEEE, and the

DPMA (Data Processing Management Association); opinion leaders and authorities

—such as George Forsythe, Peter Denning, Edsger Dijkstra, Richard Hamming,

Donald Knuth, and Peter Wegner; professional factions—such as groups of busi-

ness-, information-, and academically oriented practitioners; and societal institutions

—such as universities, industries, and governments11. In Section 3.3 I situate the

early development of modern computing in my framework, which was constructed

in Chapter Two, and in Section 3.4 I analyze the disciplinary development of com-

puter science with the same framework.

7 Loui, 1995

8 Dijkstra, 1972

9 Khalil and Levy, 1978

10 Denning, 2004; Denning et al., 1989; Ralston, 1981; Ralston and Shaw, 1980

11 Ensmenger, 2001, demonstrates the “rich complexities hidden behind seemingly straightforward debates about
professionalism”.

162

Because of the ambiguity of the term computer science, one cannot begin an invest-

igation into the development of computer science by defining computer science.

One of the hardships of defining computer science is that definitions have two func-

tions: to tell what a discipline is, and to tell what a discipline is not. This dual func-

tion is hard to achieve, and there is often a struggle between a narrow definition and

a broad definition12, and I present examples of both in this chapter. I do not arrive at

any conclusive definition of computer science because I have not been able to either

find or construct a definition that would not downplay any aspects of computer sci-

ence and that would still be informative about the variety of branches that are con-

sidered to belong to computer science today.

I also present a number of perspectives on what kinds of knowledge computer sci-

entists work with. For instance, Donald Knuth described computer science as having

theoretical and practical sides. He wrote, “Theory and practice are not just two

sides of the same coin. They deserve to be mixed and blended, but sometimes they

also need to be pure”13. However insightful, Knuth's view is a unidimensional, sim-

plified juxtaposition that does not take into account other crucial aspects of science

and technology. Practical and theoretical aspects are not the only aspects affecting

the development of computer science or the everyday work of computer scientists.

There is also a plethora of economic, technical, historical, sociocultural, ideological,

political, philosophical, institutional, professional, and ethical factors that affect

computer science and the work of computer scientists.

In this chapter I analyze my source material using the theoretical framework de-

veloped in Chapter Two. The questions I ask are, for instance, “Do these sources in-

dicate characteristics of contingency or necessity?”, “Do these sources support tech-

nological determinism or social constructionism?”, “According to what scientific

principles do computer scientists seem to work?”, and “How are scientific controver-

sies in computer science solved?”.

In Section 3.1 I clarify what I mean by computational instruments; in Section 3.2 I

expand upon the concept of problem in computing; in Section 3.3 I analyze the cre-

ation of digital electronic computing and the early developments of the field of com-

puting; and in Section 3.4 I analyze the formation of computer science as an academ-

12 McGuffee, 2000

13 Knuth, 1991

163

ic discipline, analyze the different sides of the discussion about what computer sci-

ence is, and present and analyze meta-research of computer science.

164

3.1.What Are Computational Instruments?

The computing scientist could not care less about the specific technology

that might be used to realize machines,

be it electronics, optics, pneumatics, or magic.14

The modern definition of a computer is

that it is a machine that handles data

automatically under the direction of a

set of instructions specified in ad-

vance15. Although this definition is suf-

ficient for most purposes, it is too short

and too vague for discussing computing

on the general level. A general-purpose computer (electronic, digital, Turing-com-

plete computer) is a special case of a computational instrument—an underlying prin-

ciple in a general-purpose type of computer is that strings of symbols can be inter-

preted both as data and as programs16. In this thesis, a definition for the category of

computational instruments is necessary. This is not to say that the aforementioned

definition of computer would not be good as such. However, it deserves a deeper

conceptual analysis, especially in ontological and functional terms.

To begin with, many computational instruments are tools that help people do tasks

that would be harder or practically impossible otherwise, at least without using any

memory aids, such as a paper and pen. In principle, computational instruments do

not do anything that people could not do (albeit people may do those tasks slowly).

Almost anyone can do tasks that require performing very simple algorithms like

adding or multiplying numbers. Furthermore, some human beings have the ability to

calculate very rapidly and very accurately. A person could run complex algorithms

without any tools, if he or she had sufficient memory capabilities. (For example,

some mathematical savants have been shown to have “virtually endless” memory of

series17.)

14 Dijkstra, 1987

15 Ceruzzi, 1997

16 Denning, 1985

17 Gardner, 1993:pp.155-156.

165

IN THIS SECTION:

� What is a computational instrument?

� Why are not all objects that can be used in

computations, computational instruments?

� What controversial issues are there about the

nature of computational instruments?

This raises questions such as, “Is the human mind a computational instrument?”, “Is

the Turing Machine a computational instrument?”, and “Are algorithms per se com-

putational instruments?”. A natural follow-up question is, “What is the relationship

between algorithms and computer programs?”18. Computer programs (which can be

considered to be one sort of formalization of algorithms) can be considered either

abstract or concrete objects, depending on one's viewpoint, argued Brian Cantwell

Smith19. Herbert A. Simon (1916-2001) too noted that computers are both abstract

objects and “empirical objects”20. Also Lewis and Papadimitriou posed the question

whether hardware, or software, or theory is the basis of computation21. The answer

to this question is merely a matter of definition and a playground for endless disputa-

tion. To avoid equivocation in this matter, I use the following definition:

A computational instrument is a physical object. (Definition 1)

As a corollary, computational instruments are part of the ontologically objective

world; their existence as well as their chemical and physical properties are brute

facts. Furthermore, in this thesis I consider living organisms, except for those inten-

tionally made for biological computation, to not be computational instruments (Yet

this exclusion also leaves room for debate: Consider, for example, Stephen

Wolfram's “universe as computation”22, or the possible non-physical computing

technologies of the future).

Systems of numeration could be counted as a sort of machinery23 because they en-

able solving numerical problems beyond the limits of the human mind. So, are sys-

tems of numeration computational instruments? Systems of numeration deal with

abstractions, and without these abstractions people would be able to deal only with

the tangible world. Actually, I argue that the only number naturally attributable to

physical objects is one (1). The number zero (0) indicates nothingness, and there ex-

ists no no physical object: Physical objects can only naturally exhibit their existence

(“this is a brick”). They cannot exhibit their non-existence (“this is a no-brick”).

18 The relationship between a program and an algorithm is not easily, and I am not covering that discussion here.
For a discussion about the problems of exactly defining algorithms, see Cleland, 2001.

19 Smith, 1998:pp.29-32 (the discussion between McMath and McPhysics).

20 Simon, 1981:pp.22-26.

21 Lewis & Papadimitriou, 1998:p.247.

22 Wolfram, 2002

23 See F.P. Barnard (1869) Report on the Machinery and Processes of the Industrial Arts (New York: Van Nos-
trand) in Williams, 1985:p.1.

166

The number two (2) involves an abstract coupling of two physical objects (one ob-

ject and one object), but abstractions are ontologically subjective (although the num-

ber two is arguably an epistemologically objective thing).

Perhaps the following is a bit too trivial of a notion, but without (explicit or tacit)

systems of numeration, people would be able to deal only with the number one.

Based on definition 1, because systems of numeration are not physical artifacts, but

theoretical constructions, systems of numeration are not considered to be computa-

tional instruments in this thesis. They are a part of the foundations that computation-

al instruments are based on, but not computational instruments as such.

It could be defined that any physical artifact that has the capability of extending hu-

man mental capabilities (e.g., extending calculation ability) is a computational in-

strument. Following this definition, piles of stones, sticks, marks in the sand, or fin-

gers would be computational instruments. They (1) extend human memory capabil-

ities (for instance, 20 piles of stones can be used to extend the “immediate memory

capacity” of people, which has been argued to be 7±2)24, (2) they make abstractions

possible (white stones might mean sheep and red stones might mean pigs, or white

stones might mean tens and red stones might mean hundreds), and (3) they enable al-

gorithms for at least addition and subtraction.

However, without an intentional agent giving a stone or a stick a computational

function, stones and sticks are not computational instruments per se. If all physical

objects were computational instruments, people would live amongst a universe of

computational instruments (indeed, some argue that people do25). Therefore, defini-

tion 1 needs to be expanded upon. One might say,

A computational instrument is a physical object that has been explicitly as-

signed a computational function. (Definition 2)

That is, a computational instrument is an object that is used to aid in computation. A

computational function falls into Searle's category of agentive functions26: Agents

(such as people) intentionally put objects into computational use.

24 Miller, 1956

25 Wolfram, 2002, “computational universe”.

26 Searle, 1996:pp.20-21.

167

Pieces of wood27, cords28, coconut leaves29, fingers30, or pen and paper can meet the

aforementioned constraints. Yet, only those pieces of wood, cords, coconut leaves,

fingers, or pens and paper that are given a computational function can be computa-

tional instruments, and only when there is at least one intentional agent upholding

that function. The demand of an intentional agent upholding a computational func-

tion of an object classifies computational instruments as being ontologically subject-

ive. Although the existence of a computational instrument is a brute fact, (ontologic-

ally objective), computational instruments are not computational instruments without

the intentionality of people. The ontologically objective features of objects, such as

their chemical composition or their physical structure, do not yet make them compu-

tational instruments; there also must be people or other conscious or intentional be-

ings who consider those objects to be computational instruments. When there is no

intentional agent assigning a computational function to a given PC, the PC can no

longer be considered to be a computational instrument. Computing is not an inher-

ent function, not even for calculators or abaci31.

In a definition of computing as a discipline by Denning et al.32, computing (limited

to computer science and engineering) is divided into three components. These com-

ponents are theory, design, and modeling (abstraction). Theory derives from the

mathematical sciences, design from engineering, and modeling from the natural sci-

ences33. Many authors, such as Gibbs and Tucker34, foreground (1) “the formal prop-

erties of algorithms and data structures” over (2) “tools and theory” and (3) “applica-

tions” in computing, but none of those three aspects is foregrounded in this thesis.

Theory, design and modeling are so intricately intertwined in computing that it is ir-

rational to say that any one is fundamental. Denning et al. claimed that despite their

inseparability, theory, design and modeling are distinct from one another35. Theory

is concerned with the ability to describe relationships among objects and prove them

27 Needham, 1959:pp.68-80: Needham wrote about calculating rods in the Far East.

28 Ascher & Ascher, 1981: Ascher and Ascher wrote about the quipu of the Incas.

29 Ascher, 2002:pp.7-9: Ascher wrote about knots on coconut leaves.

30 Zaslavsky, 1980: Zaslavsky examined some African ways of using fingers to count.

31 If one interprets some naturally occurring phenomena as computation, then one might say that computing is an
inherent function of those phenomena.

32 Denning et al., 1989

33 Denning et al., 1989

34 Gibbs and Tucker, 1986

35 Denning et al., 1989

168

correct. Design is concerned with the ability to implement specific instances of

those relationships and use them to perform useful actions. Modeling is concerned

with the ability to use those relationships to make testable predictions about the

world. There are, though, other relationships between theory, design, and modeling:

For instance, empirical modeling starts with the experiential construction of know-

ledge about a given domain, leading to a precise formulation or specification36.

Using Gibbs and Tucker's and Denning et al.'s definitions of computing as a basis, a

third definition of computational instruments can be stated as:

Computational instruments use organized structures or models to represent

information. (Definition 3)

Organized structures and models that represent information are also called data

structures. Data structure can be formally defined, as Hansen37 does, as a quadruple

<D, F, S, A> where D and F are domain and function definitions (which define ex-

ternally observable behavior), and S and A are storage structure and algorithms,

which implement the functioning of the data structure. This formal definition may

be best suited for the purposes of theoretical computer scientists and mathematicians,

since this level of formalization is not necessary for the purposes of this thesis. Yet,

Hansen's definition hints at what properties can be expected from organized struc-

tures or models that represent information.

The quadruple <D, F, S, A> can be further divided into external and internal descrip-

tions E=<D, F> and I=<S, A>38. In practice, the external descriptions provide in-

formation where the data structure is applicable, and what one can do with it. The

internal descriptions can be very simple or very complex: For instance, S can be bits,

words, trees, or graphs. This applies well to basic computational tools, such as the

abacus. The domain of the abacus is integers (fractions, too, if defined accord-

ingly39). The function definitions are storing a number, adding to, subtracting from,

multiplying by, and dividing by another number. The storage structure varies

between versions of abaci40, and the algorithms for the functions vary accordingly.

36 Beynon & Russ, 1995

37 Hansen, 1981

38 Hansen, 1981

39 See Williams, 1985:p.59.

40 Williams, 1985

169

The definitions of Gibbs and Tucker41 as well as Denning et al.42, lead to yet another

definition of computational instruments:

Computational instruments use algorithms to manipulate organized inform-

ation. (Definition 4)

Gibbs and Tucker as well as Denning et al. emphasized the role of algorithms in

their models, and it is hard to see disagreement in the claim that algorithms are cent-

ral to computing43. The set of algorithms (A) mentioned earlier in the context of data

structures—addition, subtraction, and such—implement the external functions (F) of

the data structures.

An algorithm, according to Donald Knuth44, is a finite set of rules that gives a se-

quence of operations for solving a specific type of problem; an algorithm must be fi-

nite (it does not loop forever), it must be precisely defined, it may have input, it has

to have output, and it must be effective. In addition, a procedure that has all of the

characteristics of an algorithm but that possibly lacks finiteness, is called a computa-

tional method45. Such computational methods, include, for instance, reactive pro-

cesses (e.g., computer programs) that interact with their environment.

There are viewpoints in computing in which algorithms and data structures are seen

to be woven together. For instance, object-oriented programming is based on such

an abstraction. Alternative models of computation lead to quite different views on

data structures and algorithms: For instance, quantum computing uses interdepend-

ent, probabilistic models of data; randomized algorithms aim at some level of ran-

dom behavior to, for instance, speed up computation or avoid worst-case scenarios.

Defining computational instruments as they are defined in this section may not do

justice to all forms of computation, and the definition given here is just one of infin-

itely many possible definitions.

41 Gibbs and Tucker, 1986

42 Denning et al., 1989

43 See Knuth, 1974.

44 Knuth, 1997:pp.5-7.

45 Knuth, 1997:pp.5.

170

Yet another definition of computational instruments can be derived from what Den-

ning et al.46 called the fundamental question underlying all of computing, “What can

be effectively automated?”:

Computational instruments automate tasks. (Definition 5)

Definition 5 rules out, for example, a pen and paper as a computational instrument.

Even though one can actually use a pen and paper to emulate a Turing Machine (and,

accordingly, emulate any computer), a pen and paper are not computational instru-

ments because they do not automate the task at hand: The task has to be done by a

human.

The definitions 1 to 5 of computational instruments are illustrated in Figure 9. All

objects regardless of their ontological status are represented by the space around the

figure, and physical objects (def.1) are a subset of all objects. Objects that have a

computational function (def.2) are a subset of all objects, intersecting physical ob-

jects. The set of all the objects that meet the criteria of definitions 1 and 2, is further

delimited by those objects that handle structured data (def.3). Furthermore, the ob-

jects that handle data algorithmically (def.4), delimit the set of computational objects

still more. The last intersecting ring denotes the objects that automate tasks. In this

thesis, an artifact can be considered to be a computational instrument if it meets all

the aforementioned constraints (definitions 1 to 5—see Figure 9).

I hope that the five definitions of computational instruments discussed above deep-

ens and explains the definition of computer mentioned in the beginning of this sub-

section (“a machine that handles data automatically under the direction of a set of in-

structions specified in advance47”). Particularly, this detailed five-point definition

brings up some issues that might not spring to mind from the short definition. This

definition is certainly deficient, but then again—all definitions are, and all defini-

tions leave room for debate48. Hence, some of the major sticking points that this

definition raises are dealt with here.

46 Denning et al., 1989

47 Ceruzzi, 1997

48 If there was an unanimously agreed upon comprehensive definition, there would not be debate about the defini-
tions. For different views about the concept of computation, see Copeland & Sylvan, 1999; Copeland, 1997.
For a different view about what constitutes computing, see, for instance, Norman, 1997.

171

Problems With the Definition of Computational Instruments

The first major sticking point here, connected with definition 1, is that this definition

excludes abstract tools for computation, such as calculus and other non-physical phe-

nomena. It even excludes computer programs that have no physical counterpart, that

is, computer programs without an actual implementation running in computer

memory. Determining the “physical counterpart” of an algorithm is difficult: Is an

algorithm written on paper a physical counterpart?

One can give a well-grounded argument that algorithms are abstract, non-physical

things. Computer programs are merely one form of expression for algorithms, so

computer programs can also be understood as abstract and non-physical. On the oth-

er hand, computer programs in computer memory do have physical counterparts.

Because this problem is well-documented by Brian Cantwell Smith49, it is not further

discussed here. (Just for the sake of clarity, as was earlier remarked, it is a computer

given an agentive function50 that does things; an algorithm, a program (on one's

mind, on paper, or even on a disk), or a computer per se do not do things.)

The second major sticking point, connected with definition 2, is that the definition

presented here excludes many objects that can do complex computational functions,

but that are not specifically built for such tasks. These functions are, in Searle's tax-

onomy, called non-agentive functions51. When one says, “the function of the heart is

to pump blood”, one gives a function to a naturally occurring phenomenon as a part

49 Smith, 1998:pp.29-32.

50 Searle, 1996:pp.20-21.

51 Searle, 1996:pp.20-21.

172

Figure 9: Requirements for Computational Instruments

Algorithmic

Physical Objects

Automation of Tasks Structured Data

Computational Function

of a theoretical account52. The brain can perform computational functions, but there

is no intentional agent53 that has given that function to the brain. Yet, living organ-

isms that are genetically engineered for computational tasks, such as those organisms

that researchers of strands of biological computing aim at, would still be considered

computational instruments (although computational beings might be a more suitable

term). In short, just that computer scientists can interpret some naturally occurring

phenomena as computations does not mean that the nature would give computational

functions to phenomena.

Another minor sticking point is related to the teleological-deontological54 problem:

Can computing be an inherent (not observer-relative, necessary) function of an arti-

fact? Certainly, computing is not an inherent function of naturally occurring phe-

nomena, such as stones or pieces of wood. But if something is built specifically for

computation, does computing become an inherent function of that artifact (telos; a

purpose)? Following Searle's55 argument, from an outsider's (alien's) viewpoint (in-

trinsically speaking) there are no such things as computers—there are only things

that people treat as computers. Surely, things that are built to be computers do com-

putations much better than many other things, like socks or forks, do. But a com-

puter is still a computer (ontos; the thing) merely because people use it as (or made it

for the purpose of, or regard it as) a computer.

The third major sticking point, connected with definition 5, is that this definition ex-

cludes some technologies that intuitively would belong to the category of computa-

tional instruments, but that do not automate tasks. Take the abacus, for example.

Even though the abacus fulfills all the other requirements, it does not automate cal-

culations. Michael Williams56, who is a historian of computing, called abaci “aids to

calculation” instead of computational instruments or tools. Then again, the slide

rule, another simple tool that deals with discrete and organized data, is used algorith-

mically (albeit the algorithm is very simple) and automates calculation, so the slide

rule is here considered to be a computational instrument. Even though the automa-

tion-requirement makes determining whether some objects are computational instru-

52 Searle, 1996:pp.20-21.

53 In this thesis, I shall not analyze the possibility of a higher force such as gods giving this function.

54 Teleological in the sense of goal or purpose; deontological in the sense of necessity.

55 Searle, 1996:p.12.

56 Williams, 1985:p.48.

173

ments a bit difficult, it also clarifies the status of some objects: Fingers, brains, and

rocks are debarred from the category of computational instruments.

The fourth, and perhaps the most controversial, sticking point comes from the fact

that computers are nowadays ubiquitous. Certainly, a general-purpose computer is a

computational instrument. But there is digital computing technology everywhere:

cars, ovens, clocks, doors, phones, PDAs (Personal Digital Assistant), clothing, and

so forth. The ubiquity of embedded computing technology makes it very hard to de-

termine which of these objects fulfill the criterion of serving a “computational func-

tion”. This criterion is ultimately subjective. On one hand, almost everyone can

agree that even though a modern car can have twenty computational instruments, the

car as such is still not a computational instrument. On the other hand, many people

would probably say that a PDA is a computational instrument. But there are many

things that fall between PDAs and cars and that may or may not be considered com-

putational instruments, depending on the judge.

The lines drawn by these definitions are artificial. One can certainly find examples

where two tools fall on opposing sides of the line between computational instru-

ments and everything else, even though they both might seem equally fit or unfit for

the category of computational instruments. All in all, every attempt to categorize or

classify phenomena is somewhat artificial. In this thesis, this definition of computa-

tional instruments is necessary to make the concept of computational instruments as

unambiguous as possible, but the definition is certainly deficient for many other

uses.

174

3.2.What Is a Problem in Computing?

Houston, we've had a problem here.57

The dictionary definition for “problem”

is “a question to be considered, solved,

or answered”58. However, in this thesis

this concept ought to be analyzed fur-

ther, for what is a problem to one per-

son may not be a problem at all to an-

other59. What is considered a problem

in history class is not at all similar to a

problem in physics class. For instance,

C. Wright Mills offered a sociologist's

definition of “practical problem”: “Of-

ten what is taken by the liberally prac-

tical to be a 'problem' is whatever (1)

deviates from middle-class, small-town

ways of life, (2) is not in line with rural

principles of stability and order, (3) is not in concurrence with the optimistic pro-

gressive slogans of 'cultural lag', and (4) does not conform with appropriate 'social

progress.' But in many ways the nub of liberal practicality is revealed by (5) the no-

tion of 'adjustment' and of its opposite, 'maladjustment'.”60

Although the book Problem Solving with C++61 may help with computer scientist's

problems, it does not help much in sociologists' problems as described by Mills. In

addition, the problems presented in school differ from problems at home. The prob-

lems encountered on a national level differ from those encountered on an individual

level62. It has also been argued that every age tends to think it is special, facing

problems that have never occurred before—the “arrogance of the present”63.

57 Apollo Spacecraft Program Office, Test Division (1970) Apollo 13 Technical Air-to-Ground Voice Transcrip-
tion: Tape 36/13. Manned Spacecraft Center of National Aeronautics and Space Administration: Houston, Texas.

58 AHD, 2004 (American Heritage Dictionary, Online Edition)

59 Mills, 1959:p.76.

60 Mills, 1959:p.90

61 Savitch, 2004

62 For a discussion on the topic, see Tedre, 2004.

63 Hughes & Cosier, 2001

175

IN THIS SECTION:

� Why is the concept of problem a controver-

sial issue?

� Are problems the same to everyone?

� Are there problems that are more “real” than

other problems?

� What is the difference between open prob-

lems and closed problems?

� How are problems approached in computer

science?

� Why should not one just solve problems as

he or she wants?

� Why could not computer scientists just bor-

row the problem-solving tools from math-

ematics?

Different Views on the Concept of Problem

C. Wright Mills made a distinction between troubles, which are individual problems,

and issues, which have to do with matters that transcend the local environment of the

individual and which are public matters64. Karl Popper wrote that there is a differ-

ence between the problems of scientists and philosophers: When a scientist faces a

problem, he or she can go “straight to the heart of the [structured problem]”, but

when a philosopher faces a problem, he or she does not face an organized structure,

but rather “something resembling a heap of ruins”65. Having all these different

viewpoints of the concept of problem raises some questions: “What is a problem?”,

“Are problems subjective or objective?”, and “Who decides which problems are im-

portant?”.

Key questions about problems, from the viewpoint taken in this thesis, are, “What is

the definition of a problem?”, and especially, “Can there be more than one legitimate

definition for problem at a time?”. There is arguably a number of common misuses

of the term. Marcelo Borba noted that it is important to distinguish a problem from a

trivial question to which the answer is known without any need for reflection66. For

instance, the question “What color are the pants I'm wearing?” is not a problem. An-

other common misuse of the term is using it in a situation where “problem” is asso-

ciated simply with “not knowing”, Borba wrote. Not knowing how many provinces

there are in Finland is not a problem for most people because they most likely do not

care about knowing the answer. In the same manner, if a person is given a shuffled

deck of cards, a sorting problem (which is a sort of a computational problem) does

not exist if the person does not need an ordered deck.

Borba suggested that one valid use of the term problem is, “If an obstacle occurs in

the course of someone's own existence, and he/she does not know how to overcome

the obstacle, then he/she has a problem.”67 Dermeval Saviani suggested that a prob-

lem has two sides—the subjective side that is the feeling of necessity, and the object-

ive side that is the situation that puzzles the consciousness68. In other words, in each

64 Mills, 1959:pp.8-9.

65 Popper, 1959:p.1 (in the preface of the first edition, 1934).

66 Borba, 1990

67 Borba, 1990

68 cf. Saviani, 1985

176

problem there is an obstacle (objective aspect) that a person wants to overcome (sub-

jective aspect).

It has been argued that problem solving (in the sense of instructions or general rules

on how to overcome a problem) depicts only one aspect of the more general concept

—problem management69. A solution (whether it is a definite unequivocal “answer

to a problem” or, e.g., a resolution rising from a debate) is nothing more than one

stage in this process. Problem management may also involve identifying, compre-

hending, expressing, formulating, solving, and evaluating the problem in question.

C. Wright Mills noted that many scientific and technological developments actually

raise more problems, both intellectual and moral, than they solve, and the problems

they have raised lie almost entirely in the area of social, not physical, affairs:

Recent [1959] developments in physical science—with its technological cli-

max in the H-bomb and the means of carrying it about the earth—have not

been experienced as a solution to any problems widely known and deeply

pondered by larger intellectual communities and cultural publics.70

Three Classes of Problems

Generally, problems can be classified in many ways, but it seems that from the con-

structionist point of view it is a suitable classification method to divide classes of

problems according to the size of the subject group. In the following text, I present

three arguments that support this criterion of classification, and I introduce corres-

ponding classes of problems.

First, I argue that there are problems that exist in all cultures and for all people. For

instance, “What are the rules for an ideal society?” is, arguably, a question that (at

least should) concern everyone from time to time—at the very least when the rules

of society put the person in an awkward situation. Another example of a problem

that seems to appear in all cultures is the problem of cosmology: “the problem of un-

derstanding the world—including ourselves, and our knowledge, as part of the

world.”71. In this thesis this class of problems is called general problems.

Second, I argue that some problems exist only for one individual person and are at-

tached to a particular context—for example, many ethical problems are highly sub-

69 Sutinen & Tarhio, 2001

70 Mills, 1959:p.15. Note that even though Mills' text is now almost half a decade old, it still seems valid.

71 Popper, 1959:p.xxiii.

177

jective and contextual. For instance, “Should I tell a little white lie to save someone

from embarrassment?” is a question that exemplifies a subjective and contextual

problem. (Hereafter these problems are referred to as intimate problems.) In a thes-

is focusing on individual-level phenomena, this might be the most interesting class

of problems in this classification scheme, but in this thesis this class of problems is

of secondary importance.

Third, I argue that some problems that are trivial, insignificant, or illegitimate to oth-

er cultural groups may be essential or central to others. Social philosophers may not

(for various reasons) think about mathematical problems as real problems at all,

whereas mathematicians may not see philosophers' problems as valid problems. Ac-

cording to Borba, it is fair to claim that the seemingly objective aspects of problems

—obstacles—are culturally influenced, for what is considered an obstacle in one cul-

ture may not be one in another culture72. In this thesis, the term limitary problems is

used to indicate this class of problems73.

Many philosophers of science have originally been physicists or mathematicians (for

example Imre Lakatos, Thomas Kuhn, Paul Feyerabend, and Pierre Duhem). That is

perhaps why a problem in the philosophy of science is usually considered to be

something that can be put in an explicit, structured, and deterministic form (i.e., in

Popper's words, into a form of a theoretical problem74). Theoretical problems are of-

ten limitary problems. Finding the optimal solution for the traveling salesman's

problem (TSP)75 can be considered an obstacle in any culture, but not many cultural

groups other than the group of theoretical computer scientists may feel the necessity

to overcome it—perhaps not even traveling salesmen.

If one agrees with the three arguments mentioned above, it follows that the under-

standing of how a problem is defined is a socially constructed, culturally mediated,

and individually interpreted concept—which necessarily means that there cannot ex-

72 Borba, 1990

73 Note that there may be other classification schemes or names for the types of problems. However, in this thesis
these three terms are used: general, intimate and limitary problems.

74 See Popper, 1959:p.88.

75 The traveling salesman's problem is as follows: A salesman should visit a number of cities, using the shortest
possible route between them and returning to the starting point. Which route should he or she choose? In real-
ity, a salesman quite probably does not care to figure out which route is ultimately the shortest one, but he or she
may choose the route by other criteria (schedules, traffic jams, speed limits), or just not care about a few extra
kilometers on the road. In theoretical computer science, however, finding the optimal solution for the TSP is a
central problem.

178

ist descriptive criteria by which some problems would be “better” or “worse” than

others. Granted, some problems can be more common, taxing or abstract than oth-

ers, but if for some reason it would be imperative to rank or compare problems, it

still would be problematic to apply “semi-quantifiable” criteria such as prevalence,

difficulty, or level of abstraction to problems. Furthermore some phenomena such

as war raise both intimate problems (how to survive it, how to die with honor, how

to make money out of it, etc.) and general problems (its effects upon economic,

political, domestic, and religious institutions, etc.)76.

Following Mills' thinking, computer viruses can be considered problems in two of

the three aforementioned classes. Viruses are intimate problems, for computer users

have to keep their virus programs continuously up to date, viruses consume comput-

ing and communication resources and sometimes destroy files or mess up whole op-

erating systems. Viruses are also limitary problems because economies, govern-

ments, and other institutions of information societies can be put down on their knees

by them. (Luciano Floridi noted that viruses can also be sources of income for some

groups77. Be that as it may, very often a problem to one is a source of income to an-

other.) Finally, viruses are not general problems, since the majority of the popula-

tion of the world would not care less about whether a computer here or there crashes

or not.

Authentic and Artificial Problems

In addition to dividing classes of problems according to the size of the subject group,

problems can also be divided into two classes according to their authenticity. This

division, which is essential for understanding the ambiguity of the concept of prob-

lem, is the division defined by Marcelo Borba78 between pseudo-problems79 and au-

thentic problems (artificial problems). Pseudo-problems are imposed ones, and not

really problems for people personally. Borba wrote that, for example, students may

attempt to solve pseudo-problems only in order to get good grades. In computer sci-

76 cf. Mills, 1959:p.9.

77 Floridi, 2003

78 cf. Borba, 1990. I would rather use the term quasi-problems, but in this thesis, the term pseudo-problems is
used. Using quasi-problems would connote resemblance, whereas pseudo-problems connotes fake or hoax.

79 Not to be confused with what Popper classified as pseudo-problems (see e.g. Popper, 1959:pp.314-315). For
Popper the criterion of demarcation between science and pseudo-science is that scientific theories must be falsifi-
able; so in the Popperian sense (1) propositions that are not falsifiable and (2) problems based on these proposi-
tions are (1) pseudo-propositions and (2) pseudo-problems, respectively.

179

ence, scientific truths are generally seen as unbiased, and pseudo-problems are

thought to be culturally neutral—after all, pseudo-problems mostly relate only to the

science itself. This is a self-fulfilling view.

As I see it, pseudo-problems relate mostly to computer science itself, and computer

science becomes increasingly applicable to these pseudo-problems. This may ulti-

mately lead to a construction of a science that feeds only itself and fulfills only its

own needs, becoming disconnected from its surroundings. Paul Feyerabend noted

this phenomenon: “The slowly emerging conceptual apparatus of the theory soon

starts defining its own problems, and earlier problems, facts, and observations are

either forgotten or pushed aside as irrelevant”80. Using Sutinen and Tarhio's terms81,

this phenomenon may lead to the problem management principle of what-you-know-

is-what-you-get rather than what-you-need-is-what-you-get. The former principle,

Sutinen and Tarhio wrote, builds on a specific set of features, corresponding to a

closed problem. The latter principle, they continue, states a “customer's problem”

(sometimes in an obscure way), but it gives more room for innovativeness. When

closed problems are introduced at schools, a teacher often expects the student to

come up with not any solution but with a solution that the teacher is familiar with82.

Closely related to the class of pseudo- and authentic (real-world83) problems is the

concept of the auxiliary problem. An auxiliary problem ()� , as defined by George

Pólya (1887-1985)84, is a problem which is not solved for its own sake—that is, for it

being of interest to the researcher—but because the researcher hopes that its consid-

eration may help solve another problem ()� 85. Solving the auxiliary problem � does

not solve the problem � that raised the auxiliary problem; the auxiliary problem � is

a means by which a solution for original problem � is sought.

80 Feyerabend, 1993:p.155. Italics in original underlined.

81 Sutinen & Tarhio, 2001

82 Ackoff, 1978:p.9.

83 In this thesis, the terms authentic problem and real-world problem are used synonymously.

84 George Pólya was a mathematician who worked with, e.g., David Hilbert (1862-1943), especially in areas of
group theory (Pólya's formula) and analytic number theory (Hilbert-Pólya conjecture). His book on general
heuristics in problem solving, How to solve it, has sold over a million copies, yet is still considered a mathemat-
ically-sound book.

85 Pólya, 1957:pp.50-51.

180

Open and Closed Aspects of Problems

Because Feyerabend and Kuhn (and to some extent, Popper) noted that (normal) sci-

ence carries with it a set of certain problems that are considered scientific, and that

the success of normal science is judged by the success of scientists in solving the

problems normal science holds, it is important to dig deeper into the concept of

problem, and how it is understood in computer science. Even though there is an

abundance of books in computer science that are named “Problem Solving Using

X”86, there has not been a lot of analysis of the concept problem in the area of com-

puter science. Sutinen and Tarhio analyzed the term problem by composing a classi-

fication of three binary positions, similar to Table 2.

Table 2: Examples of Problem Classes87

Start Tech Goal Examples

C C C Routine problems88, such as applying a formula (e.g. E = ½mv2)

C C O Algorithm animation (with obscure learning goal)

C O C Mathematics in making, sorting, other kinds of puzzle-solving activity89.

C O O P=NP?90

O C C Designing an operating system

O C O Wasting time, horoscopes

O O C Preventing cheating

O O O Problem of cosmology, rules for an ideal society

In this classification (Table 2), Start refers to the starting point, parameters, or input

of the problem, Tech refers to the technique, method, or algorithm to solve the prob-

lem; and Goal refers to the result or output of the problem91. In Sutinen and Tarhio's

86 Replacing X with any programming language, for example, C, Pascal, Java, or such, and then searching for a
book by that name produces plenty of results.

87 This is a modified version of Sutinen and Tarhio's table (Sutinen & Tarhio, 2001). The original was not com-
pletely suitable for this thesis; for instance, the original problem instances in O-O-O were “Spontaneous situ-
ation, improvisation, driving on a slippery road”, and in C-C-O “Marital problem”. Driving on a slippery road
usually has predetermined goals like arriving home safely or not crashing the car. In addition, I am not con-
vinced that marital problems have a fixed methodology or technique.

88 As Pólya would call them; see Pólya, 1957:p.171.

89 On mathematics in making, see Pólya, 1957:p.117. Thomas Kuhn would probably demote this class to “puzzles”
instead of “problems”, as I discussed earlier in this thesis (page 74), see, e.g. Kuhn, 1996:p.36. Puzzles are a
subclass of problems. Most often puzzles cannot be solved because of the self-imposed constraints in them
(Ackoff, 1978:p.9).

90 A central question in the theory of computation. In short, it is asked that if solutions to a decision problem
(where the answer is a definite yes/no) can be verified in a reasonable amount of time regardless of input size,
can the answers also be computed in a reasonable time?

91 Sutinen & Tarhio, 2001

181

definition these three binary positions, denoted here by <S,T,G> can be either open

(O) or closed (C). Open means undefined, obscure, unclear, or open-ended, whereas

closed means the opposite.

It should be noted that representing problems as three (<S,T,G>) binary positions

C	O (1) reduces the view of the world into binary statements and (2) prunes the

infinite number of variables in the world to three. Considering these three positions

<S,T,G>, it might perhaps be beneficial to represent the positions as continua, which

would yield a three-dimensional model as depicted in Figure 10. In this model the

dimensions would not have to be either closed or open, but could also be partly open

and partly closed (although having only three dimensions would still be a simplifica-

tion). For example, in Figure 10 point (s, C, C) represents a problem for which some

of the parameters, or input, are open. However, representing the dimensions as three

binary positions, as in Table 2, simplifies the model and makes it easier to examine

different problem classes. Thus, the system introduced by Sutinen and Tarhio is

used in this thesis.

It is interesting to note that because scientists are active in seeking problems, closed

problems are favored over open problems. According to Popper, “it is we, who al-

ways formulate the questions to be put to nature: it is we who try again and again to

put these questions so as to elicit a clear-cut 'yes' or 'no' (for nature does not give an

answer unless pressed for it)”92. If the initial conditions of a problem cannot be as-

certained, and the experimental results seem to defy the attempts to formalize predic-

tions into suitable laws, a scientist often gives up trying if the problem does not in-

92 Popper, 1959:p.280. (The term pseudo-problem still refers to artificial, imposed problems and not to Popper's use
of the term.)

182

Figure 10: Dimensions of Problems as Continua

Start

Tech

Goal

(C,C,C)

(O,C,C)

(C,O,C)

(C,C,O)

(s,C,C)

terest him or her much, Popper claimed93. In other words, Popper's statement could

be interpreted as: If a scientist is not able to express an issue (i.e., the problem, the

methodology, and the results) in a closed form, he or she will probably ignore the

issue, and the gathered data can be used in, perhaps, estimating probabilities, but not

in building a scientific base. In the following pages, the <S,T,G> classification

scheme for problems is analyzed further.

Open and Closed Problems in Different Problem Fields

In mathematics, the concept of a problem seems quite straightforward. According to

Pólya, a problem consists of a number of elements such as “the unknown(s)”, “the

data”, and “the condition(s)”94. Some questions that Pólya used to circumscribe a

problem are, for example, “Can the condition(s) be satisfied?”, “Is the condition suf-

ficient to determine the unknown?”, “Is there redundancy?”, and “Are there contra-

diction(s)?”. Furthermore, there are “problems to find” and “problems to prove”.

In Pólya's “problems to prove”, the researcher is given a clearly stated assertion, and

he or she has to answer the question, “Is this assertion true or false?”. The research-

er has to answer this question conclusively, either by proving the assertion true, or by

proving it false.95 In Sutinen and Tarhio's problem classes the “problems to prove”

are of type “C-O-C”96. In problems to prove, the premises are clearly stated

(start=C), the answer is definite yes or no (goal=C), but the researcher does not yet

know how to come to the answer (tech=O). In Pólya's “problems to find” the aim is

to find the unknown of the problem, also called “quaesitum”97. Not restricted to

mathematical problems only, objects in this class of “problems to find” may be the-

oretical or practical, abstract or concrete, serious problems or mere puzzles, Pólya

concluded.

Problem management in computer science at large (if it is defined as an inseparable

synthesis of theory, design and modeling (abstraction)98) can concern problems to

find, or problems to prove. In computing there are areas that require deductive,

mathematical inference, but there are also areas that require an approach like Picker-

93 Popper, 1959:p.198.

94 For these issues see Pólya, 1957:pp.xxxvi, 2-3, 154-156.

95 Pólya, 1957:p.154.

96 C losed starting point, Open technique, and Closed (presupposed) results.

97 Pólya, 1957:p.154.

98 Denning et al., 1989; this is an oft-quoted definition of computer science as a discipline.

183

ing's “mangle”—the mangle is the process by which a scientist is ready to refine his

or her theories, instruments, and theory about the instruments, accommodating to the

problems along the way. From Pickering's mangle-viewpoint, the resistance of the

world, that is, the problems of finding a robust fit between the theory, the instru-

ment, and the scientist's theory about the instrument, might be considered a problem,

and accommodation to the resistance might be considered a solution.

As I see it, the class (O-O-O) includes general problems, such as the above-men-

tioned “what are the rules for an ideal society?”, and “the problem of understanding

the world—including ourselves, and our knowledge, as part of the world”. Note that

whereas class (C-C-C) is considered to contain a maximum number of controllable

variables, preferably quantitative, and a minimum number of uncontrollable vari-

ables99, class (O-O-O) can be rich in both, and they can be either qualitative or

quantitative.

In the first general problem mentioned—“What are the rules for an ideal society?”—

the starting points, if taken as “the unknowns”, are uncountable (think of the di-

versity of humankind, for example) and the goal is not known—indeed, it is not even

known whether the goal exists. There are some suggested methodologies, for in-

stance, John Rawls' (1921-2002) theory of the “veil of ignorance”100, which emphas-

izes primarily negative freedom, and Karl Marx's theory, which emphasizes primar-

ily positive freedom101. But because there is no general agreement of whether either

of these theories—or any other theory for that matter—is “correct”, and also because

the competing methodologies are largely incommensurable, the methodology for this

problem is open (O). In the second general problem that was mentioned earlier—the

problem of understanding the world—the starting points are not known except for

one (the oft-quoted cogito, ergo sum102), and surely, neither the goal nor the method-

ology are preconceived.

99 See, e.g., Ackoff, 1978:p.11. However, note that Ackoff stated that the color (of a car) is a qualitative variable,
but color clearly has both qualitative and quantitative components. The color spectrum that an object reflects can
be measured to a high degree (quantitative component–a “brute fact”), but the preferences or associations colors
have are highly personal and cultural (qualitative component–an “institutional fact” and often epistemologically
subjective fact).

100Rawls' veil of ignorance is based on the idea that a person should create a social contract without knowing his or
her capabilities (intelligence, vigor, values, etc.), position in the society, gender, race, or family roots. This
should, according to Rawls, lead to the best possible societal contract. See Rawls, 1971:pp.136-142.

101See footnote 273 on page 98.

102Following René Descartes (1596-1650), the only thing one can know for certain is that his or her mind exists (if
one accepts the premise that something nonexistent cannot think.

184

Problems in Computer Science

There are a number of definitions of computer science, but in this connection the

term theoretical computer science refers to the “theory” part of computing as a dis-

cipline (see Denning et al.'s definition103), and the term computer science refers to

the combination of theory, design, and modeling (i.e., the discipline of computing at

large). Although computer science at large and theoretical computer science are not

parallel concepts, they are contrasted here for a number of reasons. In the early days

of computing there was a long and heated debate around the question whether com-

puting is a mathematical discipline or if it also includes other aspects such as engin-

eering. The common antonym pair theoretical and practical would not be a historic-

ally meaningful juxtaposition (the debate of the identity of computing as a discipline

is discussed later in this thesis). In addition, theoretical computer science is an es-

tablished name for one branch of the discipline of computer science, and for in-

stance, theories of design do not belong to theoretical computer science, but they are

not practical issues either. Hence the term computer science refers to all of com-

puter science, and theoretical refers to one subpart of computer science at large.

In computer science (at large), as in any other experimental science, the initial

premises may need refining, or mangling104, during the problem management pro-

cess. For example, the initial selections of a programming language or a platform

may, during the process, turn out to be unsuitable for the task at hand. There rarely

exists a consensus about the goal between different stakeholders. Also, requirement

specifications tend to get refined throughout the process (start=O). In contrast, in

theoretical computer science the premises (such as axioms and rules of inference) are

usually given and remain in force.

In computer science if a structural design scheme was chosen initially, it may at

some point turn out to be inappropriate, and the technique might be changed to, say,

object-oriented design (tech=O). The whole process is indeed characterized by ad

hocness105. In theoretical computer science the choices are usually similar to those in

mathematics: induction, deduction, direct proof, proof by contradiction, construc-

tion, exhaustion, plus a number of other mathematical methods of proof.

103Denning et al., 1989

104Pickering, 1995

105A good example of this is seen in John Tracy Kidder's “The Soul of a New Machine” (Kidder, 1981). Kidder's
ethnographic study describes the whole social process of creating a new brand of a computer.

185

In computer science (at large), even the goals of the problem management process

may change during the process. Software engineers, especially, know that what is

expected of the end product tends to change throughout the development process

(goal=O). In theoretical computer science the aim remains mainly simple and

straightforward: proving an assertion true, false, or unsolvable106.

Computer science has a large amount of problem-solving-related literature. In gen-

eral, this literature seems to relate to closed problems and not to real-world prob-

lems. For example, Maureen Sprankle107 introduced six steps in problems solving:

1) Identify the problem,

2) Understand the problem,

3) Identify alternative ways to solve the problem,

4) Select the best way to solve the problem from the list of alternative solutions,

5) List instructions that enable one to solve the problems using the selected solution,

and

6) Evaluate the solution.

Sprankle's steps presuppose that there exists a single “best way” to solve any prob-

lem and a “best result”. Sprankle wrote, “In this book, the term solution means the

instructions listed during step 5 of problem solving—the instructions that must be

followed to produce the best results”108.

In programming, which is already a confined sector of computer science, what is

best from one viewpoint may not be that from another. Programmers have to fre-

quently make choices between, say, memory usage vs. speed, portability vs. effi-

ciency, or elegance vs. simplicity (or elegance or simplicity vs. readability or ergo-

nomics). However, some books such as Lerman's textbook109, acknowledge the sub-

jectivity or contextuality of “good” and “bad” when it comes to algorithms.

106It would not be reasonable in this thesis to restrict computer science at large to “proving something to be true” or
“falsifying something” even though some authorities, such as David Gries and Edsger Dijkstra, might like to see
computer science that way.

107Sprankle, 1998:pp.3-4.

108Sprankle, 1998:p.5.

109See Lerman, 1993:p.2.

186

Lerman's textbook declares explicitly that it covers only “engineering, science, man-

agement and planning”, and thus delimits the parameters, premises or input of the

problems to “clear, unambiguous statements”110. I argue that clear, unambiguous

statements rarely exist outside the field of theoretical computer science111. My view-

point is supported by some textbook authors. For example, a book by Zbigniew

Michalewicz and David Fogel explicitly states that real-world situations rarely

present the circumstances required by algorithmic problem-solving112.

Michalewicz and Fogel used an example of a particular technique that is available to

calculate the minimum-cost allocation of resources, and suggest that this method is

almost always applied inappropriately in real-world settings because the technique is

for linear functions, and in real-world settings the cost function and constraints are

almost always nonlinear.

Computer-Scientist-as-Bricoleur

From Michalewicz and Fogel's point of view, problem solving has to take theory

into account, but it also needs (a) a variety of non-specialized tools for a wide vari-

ety of purposes, (b) an understanding of institutional or organizational constraints, as

well as (c) a grasp of other players in the field—which consequentially introduces

personal and cultural differences. They wrote,

Effective problem solving requires more than a knowledge of algorithms; it

requires a devotion to determining the best combination of approaches that

addresses the purpose to be achieved within the available time and in light

of the expected reactions of others who are playing the same game. Recog-

nizing the complexity of real-world problems is prerequisite to their effect-

ive solution.113

Taking a look at research in three distinct areas of computing—computer science,

software engineering, and information systems—paints a picture of computer sci-

ence as being inbred. Glass et al.'s study114 revealed that of these three areas, com-

puter science was 89.3% self-referential. However, software engineering was even

110Lerman, 1993:pp.1-2.

111cf. Paul Feyerabend: “Popper's criteria are clear, unambiguous, precisely formulated [...] This would be an ad-
vantage if science itself were clear, unambiguous, and precisely formulated. Fortunately, it is not.” (Feyerabend,
1975).

112Michalewicz and Fogel, 2002:see pp.1-7.

113Michalewicz and Fogel, 2002:p.3.

114Glass et al., 2004

187

more so: Only 1.9% of the references in the references section of software engineer-

ing articles were to literature outside the field of software engineering itself (98.1%

self-referential). Information systems (IS) was the least self-referential. It was

27.2% self-referential, and the largest external reference disciplines were manage-

ment (18%), “other” (12.5%), cognitive psychology (10.7%), economics (11.1%),

and social and behavioral sciences (9.0%). Even though Glass et al.'s study does not

prove that IS would be any more applicable to real-world problems than the other

two, one might expect it to be115.

Anthropologist Claude Lévi-Strauss introduced the term bricoleur to describe the

opposite of an engineer. An engineer creates and uses specialized tools for special-

ized purposes, whereas the researcher-as-bricoleur is knowledgeable with and

works between and within competing and overlapping paradigms116. Computer sci-

entists (especially outside the USA) are usually not trained in subjects other than

computer science, mathematics, and perhaps the natural sciences117. The failure of

recognizing the complexity of real-world problems may have its roots in the narrow

education of computer scientists.

Mordechai Ben-Ari has argued that “the manifestation of bricolage in computer sci-

ence is endless debugging: Try it and see what happens”118. This is a way of action

that Edsger Dijkstra opposed fiercely throughout his career, and I do not consider

Ben-Ari's bricolage to be a bricolage in the positive sense of the word, as described

by Denzin and Lincoln119. Attributes connected with a researcher-as-bricoleur are

“flexible and responsive”, “technically curious and multi-competent”, and “intellec-

tually informed”—not uncoordinated, obstinate, or artless. However, Ben-Ari did

not claim that bricolage would be a recognized methodology in computing, but only

a thinking tool. Neither did Ben-Ari see bricolage as a normative account for com-

puter scientists. Ben-Ari argued that students who excel at bricolage often cannot

make the transition to master the thought patterns and methods that are required in

abstract techniques. An abstract planning style is needed in, for instance, software

115It is interesting to note that of these three, IS is generally funded the least.

116See, e.g. Denzin and Lincoln, 1994:pp.2-3; Lévi-Strauss, 1966:p.17. Contrary to Denzin and Lincoln, Lévi-
Strauss used the term in a somewhat negative meaning (Lévi-Strauss, 1966:pp.16-17).

117Denning et al., 2001:chapter 9.4.

118Ben-Ari, 2001

119Denzin and Lincoln, 1994:pp.2-3.

188

engineering120. Nonetheless, the positive attributes that Denzin and Lincoln associ-

ated with researcher-as-bricoleur (mentioned above) can support computer scientists

in broadening their competence towards the Michalewicz and Fogel's attributes (a)-

(c) that begun this subsection.

Should Computer Science Borrow the Definition of Problem from Mathematics?

In mathematics, according to George Pólya, the three fundamental questions to be

asked are explicit (“What is the unknown”, “What are the data” and “What is the

condition”121). Yet, the concept of problem in mathematics is not that straightfor-

ward. For example, the interests, persistence, acuity, and personal goals of a single

researcher affect the problem. Ian Stewart wrote,

At research level you invent the problem yourself. [...] You therefore spend

a great deal of time developing a feel for the problem, trying to decide what

the essential ideas and concepts should be and how everything fits togeth-

er.122

Although the phrase “you invent the problem yourself” may sound non-mathematic-

al, it has to be kept in mind that mathematics is human-made. Albeit being human-

made, it is hard to think of a science that has not gained benefit from the field of

mathematics.

Though mathematical research problems may begin with a fixed problem, the tech-

niques for solving them may vary; to avoid getting stuck examining a problem from

only one point of view, mathematicians may also set new questions concerning a

problem. Reductio ad absurdum and indirect proof are examples of common altern-

ative techniques123. Pólya wrote that new questions and new viewpoints may cause

new possibilities of solving the original problem to unfold124. Pólya's alternative

techniques approach clearly is a change in methodology that reframes mathematics

as including “C-O-C” and “O-O-C” classes of problems. Mathematics presented

120Ben-Ari, 2001

121Pólya, 1957:pp.6-7.

122Ian Stewart: Foreword in Pólya, 1957:p.xxi., underlining added. To the extent that this argument is accurate, it
would render at least some of the goals of mathematics open (O).

123See., e.g., Pólya, 1957:pp.160-171.

124Pólya, 1957:pp.210-211.

189

with rigor is a systematic deductive science, but “mathematics in making” is an ex-

perimental inductive science, Pólya claimed125.

Insistence on rigidly defined unknown(s), data, and condition(s) would not apply

well to practical126 (pragmatic, experimental) sciences such as computer science.

Take the process for designing a calendar program, for example. In this case the

question “What is the unknown?” is impracticable. The number of unknowns prac-

tically defies enumeration, and one can always add an extra variable (superfluous

variables in the Duhem-Quine thesis). Those unknowns include the possible plat-

forms, the possible features of the user interface, the possible variety of user skills,

and, especially, the possible variety of user expectations and needs.

In the same calendar program the question “What are the data?” is as inappropriate

as “What is the unknown?”. The multiplicity of data that would affect design de-

cisions is overwhelming: the possible portability and platform compatibility issues,

the possible internationalization and localization parameters, the possible protocol

variations, and, especially, when devising the metaphors and analogies for the pro-

gram—the wide variety of cultural backgrounds of the users.

To use the same calendar program example with the third question: The same di-

versity of real-world goals makes it virtually impossible to answer the question

“What are the conditions?” extensively. The possible economic restraints, the pos-

sible deadlines, the possible management issues, the possible inter-personal tensions,

the unpredictability of people—the list of conditions is endless.

Norman Matloff claimed that the often-praised CMM (Capability Maturity Models)

that are used to evaluate companies by the maturity of their production processes, do

not actually tell the whole truth about a company127. Matloff argued that CMM

merely assesses a company's project management techniques, not the quality of its

personnel. As one official in the CMM project at Carnegie Mellon University128

noted (according to Matloff): “You can be an [highest CMM-rated] organization

that produces software that might be garbage”.129

125Pólya, 1957:p.117.

126Pólya, 1957:p.149.

127Matloff, 2004

128Carnegie Mellon University's Software Engineering Institute is de facto authority in CMM.

129Matloff, 2004

190

What Is a Problem in Computing: Summary

In the beginning of this section, I asked if there can be more than one legitimate

definition for the term problem at a time. I proposed that there are a variety of

equally useful definitions of problem, and I sketched an extended characterization of

the concept of problem.

First, a problem consists of an obstacle in someone's own existence (objective as-

pect), and of a feeling of necessity to overcome the obstacle (subjective aspect). An

important aspect of the definition is that if a person does not feel the necessity to

solve a problem, it cannot be considered a problem for that person. If a person does

not feel the necessity to solve the traveling salesman's problem, it is not a problem

for that person.

Second, problems can be divided to general, intimate, and limitary. General prob-

lems concern most people (though not necessarily most of the time). Intimate prob-

lems are problems for single individuals; they are subjective and contextual. Limit-

ary problems concern confined groups of people. Problems for some may be ad-

vantages for others. Based on these statements, I further argued that the understand-

ing of how problem is defined is a socially constructed, culturally mediated and indi-

vidually interpreted concept. A relativist stand was taken regarding the concept of

problem. There does not exist criteria by which some problems would be better or

worse than others, although some problems can be more common than others.

Third, there are different sorts of problems, for example (but not limited to these),

authentic, pseudo-, and auxiliary problems. Authentic (real-world) problems corres-

pond to general, intimate, or limitary problems, and they include both an objective

and a subjective aspect; for instance, the feeling of necessity to overcome the prob-

lem. Pseudo-problems include an objective aspect, but the subjective aspect is weak

or artificial. Auxiliary problems are not solved for their own sake but as a means to

solve another problem.

Fourth, eight problem classes are defined as a triplet <S, T, G>, where S refers to the

starting point, parameters, or input of the problem; T refers to the technique, method,

or algorithm to solve the problem; and G refers to the result or output of the prob-

lem. Each parameter of <S, T, G> is either closed (C) or open (O), and the corres-

ponding classes are marked as C-C-C, C-C-O, ... , O-O-O.

191

3.3.The Creation of Modern Computing

New Machine Solves Problems Faster than

Mathematicians Can Make Them130

The forces and motivations behind the development and diffusion of computing

technology are not certain. It is not certain if the development and diffusion of com-

puting technology have benefited from certain sociocultural settings; what interrela-

tions between the technological, institutional, professional, and social aspects of

computing there have been (if any); or if the history of computing has been contin-

gent or if it has followed a certain path. This section is an exploration of the so-

ciocultural aspects that have affected early computing technology and related areas.

In the end of this section, I offer my interpretations about the uncertainties above. If

the forms and directions that computing technology takes are influenced by sociocul-

tural phenomena, then the research on the sociocultural aspects of computing devel-

opment sheds light on technology itself. If the forms and functions of technology

are shaped by extra-technological and extra-scientific (sociocultural) forces, then one

cannot understand technologies only by looking at the current state of technology;

one also has to understand the sociocultural environment and the history of technolo-

gical development. The discussion in this section builds my case for the importance

of social studies of computer science.

The topics covered in this section are not divided into subsections chronologically.

They are not divided by, for instance, decade, because decade per se has no signific-

ance131. Instead, subsections are divided into themes. The theme of the first subsec-

tion is the shift from electromechanical computation to electronic computation, the

theme of the second subsection is the early development of electronic computation,

the theme of the third subsection is early academic computing, and the theme of the

fourth subsection is the birth of programming languages. Because the themes are in-

terrelated, there is some chronological and thematic overlap between the subsections.

The history of electronic computing is quite short. In this section the term early

computing technology refers to a period of thirty years: From the crossing of the

Newton-Maxwell gap in the 1940s to the advent of computing as a discipline in the

130New York Herald Tribune, January 28, 1948, p.7, as quoted in Martin, 1993.

131cf. Sammet, 1991

192

1960s. The crossing of the Newton-Maxwell gap; that is, the shift from elec-

tromechanical devices to fully electronic devices; took place during the 1940s, and

the first fully electronic, digital, Turing-complete computer, ENIAC, became opera-

tional in November, 1945 and was inaugurated in February, 1946132. After the com-

pletion of ENIAC there have been a number of major breakthroughs in computing in

Western societies. Take, for instance, breakthroughs such as the advent of program-

ming languages in the 1950s; the development of time-sharing in the 1960s; the

emergence of personal computing in the 1970s; the innovation of the graphical user

interface in the 1980s; the diffusion of the world wide web in the 1990s; and a diver-

sification of computing technologies, so that they extend to nearly all aspects of the

urban Western middle- and upper-class life, in the 2000s. The themes in this section

span over the first thirty years after the construction of ENIAC, from the 1940s to

the 1960s.

The constraints in the development of technology are not always just technical

ones133. All technologies have been argued to embody the physical, intellectual, and

symbolic resources of the society that constructs them134. It has been argued that the

constricting and enabling factors of the development of early electronic computing

include, for instance, institutional and organizational factors that support a certain

practice or tradition in computer designs135, inter-personal relationships136, visionar-

ies and strong leaders137, and a diversity of cultural aspects138. For instance, it has

been argued that much of the devotion invested in the development of high-speed

electronic computing was due to the Second World War139. Note that the phrase

technologies embody resources of the society should not be understood as a position

that technologies would, after their construction, hold the values of their construct-

ors. Technologies are unintentional things. But values, among other things, may af-

132Campbell-Kelly & Aspray, 2004:pp.85-86. Note that there had been earlier computers that fulfilled some of the
criteria that ENIAC met: The ABC computer and Colossus were digital and fully electronic, but they were not
Turing-complete (Williams, 1985:pp.270-271;294-296); Konrad Zuse’s Z3 was digital and Turing-complete, but
it was not fully electronic because it used relays (Williams, 1985:pp.220-221); Harvard Mark I was digital but it
was electromechanical, not fully electronic (Williams, 1985:pp.243-244).

133Marcus and Akera, 1996

134Hughes, 1983:p.2.

135Marcus and Akera, 1996. (This is also supported by the Kuhnian view of science; see Kuhn, 1996).

136Williams, 1985:p.303.; Aspray, 2000.

137Aspray, 2000; also Tracy Kidder’s book The Soul of a New Machine implies the importance of leadership figures
(Kidder, 1981).

138Flamm, 1988:p.136, Bowles, 1996.

139Flamm, 1988:p.48; Campbell-Kelly & Aspray, 2004:p.73.

193

fect technological development so that the resulting technologies may be better

suited for some things than others.

Although computing technology was, from early on, developed in a number of coun-

tries140, most of the major technological breakthroughs in early electronic computing

technology were made in the U.S.141 The themes in the following subsections are fo-

cused on the development of computing in the U.S., and the sources are chosen ac-

cordingly.

There is an abundance of research about the history of computing in the U.S. One of

the premier journals in the history of computing is the (U.S.-based) IEEE Annals of

the History of Computing (hereafter The Annals). The Annals is highly esteemed;

for instance, major textbooks in the history of computing regularly cite the Annals142.

It has been noted, though, that one of the drawbacks of the Annals is that it has a

strong orientation towards the English-speaking world143. The sources in this section

include a number of books by recognized historians of computing such as Jean Sam-

met, Michael R. Williams, Martin Campbell-Kelly, and William Aspray, and a large

number of articles from the Annals. In this chapter the history books and journal art-

icles are used as sources that offer historians’ interpretations of the history of com-

puting.

In this section I analyze the source material in terms of the framework developed in

Chapter Two. For instance, I investigate whether these selected historical studies of

computing indicate that the development of computing technology shows character-

istics of contingency. I also investigate whether these historical studies support the

view that the concepts, theories, and technologies of computing are a product of a

mangle of testing and revamping different aspects of computing. What is more, I in-

vestigate if these historical studies back up the idea of technological momentum—

that in the beginning of the development of a system, the system shows characterist-

ics of social construction, and that as the system matures it tends to show increasing

characteristics of technological determinism. I use my interpretations in this section

140See, for instance, examples of computing in the Soviet Union in Trogemann et al., 2001; in Great Britain in
Croarken, 1992 and Ferry, 2003; in Germany in Rojas, 1997; in Sweden in Petersson, 2005; and in Japan in
Flamm, 1988:pp.172-202.

141See Pugh and Aspray, 1996, for a large number of early computing innovations in the U.S.

142See, e.g., Flamm, 1988:pp.31, 32, 38, 40, 42, etc.; Ferry, 2003:p.201ff.; Williams, 1985:pp.193, 194, 262, 264,
407, etc.; Campbell-Kelly & Aspray, 2004:p.301ff.

143Lee, 1996

194

to support my argument about the nature of computer science and to my rationaliza-

tion of social studies of computer science in Chapter Four.

The reader is advised to take into consideration the fact that the history of computing

presented in this section is doubly interpreted. Firstly, the historians of computing

who have written the texts selected in this chapter offer interpretations of their

source material. Secondly, I have selected those parts of the historians’ texts that are

relevant to my research questions, and analyzed those texts in terms of the frame-

work developed in Chapter Two.

195

The Newton-Maxwell Gap: Before 1950

30-ton Electronic Brain at University of Pennsylvania

Thinks Faster than Einstein144

Technology is not developed in a so-

ciocultural vacuum. For instance, pub-

lic attitudes, politics, and social struc-

tures are claimed to influence technolo-

gical development145. It is quite clear

that the diffusion of certain technolo-

gies can be sped up by political de-

cisions. For instance, the government

of Finland has decided to end analog

TV broadcasts by the fall of 2007. This

decision promotes (even forces) the diffusion of digital television technology. It is

also clear that the development of certain technologies can be a political decision:

The mission to the Moon is a case in point146. Also, culture matters in technological

development. Sociologist Manuel Castells has connected four cultures with the de-

velopment of the Internet—the techno-meritocratic culture, the hacker culture, the

virtual communitarian culture, and the entrepreneurial culture147. The creator of the

Linux kernel, Linus Torvalds, noted that Linux was born out of a need for socializa-

tion and entertainment, not from an economic need148. Wiebe Bijker and John Law

argued that technologies are born out of conflict, difference, and resistance, and out

of controversies, disagreements, and difficulties149.

This section deals with the early history of computing starting from the shift from

analog computers to digital computers, during the Second World War. The aspects

that are discussed include, for instance, the events that brought together the people

who built the first digital computer, the cultural atmosphere that surrounded techno-

144Philadelphia Evening Bulletin, February 15th, 1946, as quoted in Martin, 1993.

145Flamm, 1988; Winner, 1999; Bowles, 1996, respectively.

146See, for instance, Sadeh, 2002.

147Castells, 2001:p.37.

148See Linus Torvalds' foreword in Himanen, 2001:p.15.

149Bijker and Law, 1992:p.9. Bijker and Law are recognized figures in the field of social studies of technology.

196

IN THIS SECTION:

� Who were the pioneers of electronic com-

puting?

� Which disciplines were central to the birth

of electronic computing?

� Was the development of early electronic

computing culturally neutral or was it influ-

enced by any cultural aspects?

� What was the role of World War II in the de-

velopment of early electronic computing?

logy at the time, the influence of governmental institutions, the Second World War,

and the contingencies that led to building the first business computer.

To help readers recognize the important names in the text, a number of people who

had a strong influence in the development of early computers are presented in Figure

11. I recognize that presenting this kind of a list of people is a source for endless

disputation, so I wish to make clear that I do not claim that these eight people would

be the eight most important people at the time. Nonetheless, all these people did

play an important role in the history of computers at early 1900s, and their names

appear frequently in the history of computing.

Analog Computing

One of the problems that has vexed applied mathematicians over the years has been

that of calculating the area under a given curve, that is, the integral of a given func-

tion, or
 f �x �dx . The integral is easy to calculate for elementary functions that

can be integrated analytically, but almost impossible if the function f(x) is either not

known in analytic form or is not well-behaving150. Beginning from the early 1820s,

many attempts to build devices for measuring the integral were made151, but the first

differential analyzers that actually worked were constructed by Vannevar Bush at

MIT (Massachusetts Institute of Technology), USA, around 1927.152

In England, Douglas Hartree (1897-1958), J.B. Bratt, and John Lennard-Jones'

(1894-1954) Manchester Differential Analyzer was built in 1935 after Hartree, Bratt,

and Lennard-Jones had studied Vannevar Bush's differential analyzer153. However,

neither the British scientific community nor the British Press showed much interest

150Williams, 1985:pp.206-212; Bowles, 1996; Polachek, 1997.

151Campbell-Kelly & Aspray, 2004:p.45.

152Williams, 1985; however, Polachek, 1997, claimed the exact year of the production-scale machine to be 1931.

153Croarken, 1992

197

Figure 11: Some Prominent People in the Development of Early Computers

IndividualsJohn Mauchly

John Presper Eckert

Herman Goldstine John von Neumann

John Atanasoff

Leslie John Comrie

Maurice Wilkes

Alan Turing

in Hartree's machines154 for the reasons discussed later in this chapter. In the U.S.,

the final version of Bush's machine, known as the Rockefeller Differential Analyzer

#2, was used extensively during the Second World War by the armed services of

both America and Britain for the calculation of ballistic firing tables155. However,

the reasons for building the machine were not only scientific or practical reasons.

Susann Puchta, who is a historian of mathematics, noted that the role of interdiscip-

linarity in the development of computing technology has been given too little atten-

tion156. Susann Puchta, Michael R. Williams (historian of computing), and Mark

Bowles (historian of technology and science) listed a number of sectors that needed

Vannevar Bush's computing machinery: for instance, electrical engineering, math-

ematics, sciences (especially physics), radio technology, and warfare157. Puchta ar-

gued that breaking the disciplinary boundaries was not only necessary to achieve the

goals that the device was built for, but that the interdisciplinary development work

enabled more efficiency and creativeness within the traditional disciplinary boundar-

ies, too.158

Bush's end product combined knowledge from fields that had not had much interplay

before: for example, pure or formal mathematics, mechanical engineering, innova-

tions from seafaring, and logic (Boolean algebra)159. In addition, a number of other

fields such as astronomy, navigation, and meteorology had an impact on the devel-

opment of early computers160. Of the people in Figure 11, Turing was a logician and

mathematician, Leslie Comrie (1893-1950) was from the field of astronomy, John

Atanasoff (1903-1995) was from the fields of electrical engineering and mathemat-

ics, John von Neumann161 worked on a number of mathematical fields, Wilkes and

Mauchly were from physics, Lt. Herman Goldstine162 (1913-2004) was from math-

154Bowles, 1996

155Williams, 1985:pp.206-212.

156Puchta, 1996

157Puchta, 1996; Bowles, 1996; Williams, 1985:p.209.

158An interplay of different cultures, domains, and disciplines that allows established concepts to clash and com-
bine, ultimately forming a multitude of new, groundbreaking ideas, has recently been named the Medici Effect
(Johansson, 2004:p.2).

159Williams, 1985:p.209; Puchta, 1996; Bowles, 1996.

160Naur, 1992:pp.596-597; Campbell-Kelly & Aspray, 2004:pp.52-59.

161John von Neumann was a student of renowned mathematicians such as David Hilbert and George Pólya. In How
to Solve It, Pólya tells that he had shown his class an unproven theorem and told the class that it may be difficult.
After five minutes, von Neumann had written a proof of the theorem on the blackboard. Pólya wrote, “After that
I was afraid of von Neumann.” (Pólya, 1957:p.xv).

198

ematics, and John Presper Eckert163 was a student at the Moore School of Electrical

Engineering. Figure 12 shows the main branches of science that had an impact on

the development of early computers.

The development of early computing technology was a point of intersection of a

number of different ideas. My interpretation is that what is essentially fruitful in the

clash and combination of different cultures, domains, disciplines, experts, and con-

cepts, is the anarchism of that situation. That is, when sufficiently many cultures,

domains, disciplines, experts, and concepts are put together, the demands for instant

clarity or reducibility have to be dropped. In practice, every person cannot be

trained to be knowledgeable about every other person's art or science. An eclectic

combination of incommensurable arts and sciences creates an ontological, epistemo-

logical, and methodological anarchy in the sense that no ontology, epistemology, or

methodology can be claimed superior over others164.

Insofar as this is true, epistemological and methodological anarchy inevitably inhib-

its dogmatism (a characteristic of monodisciplinary coteries) because dogmatic

views are based on faith about the superiority of a certain belief system. When the

people in an anarchical interplay of cultures, domains, disciplines, and concepts,

have a common mission, they need to communicate some aspects of their art or sci-

ence to the others—which should lead to the people explaining their art or science in

the clearest and simplest way possible. That is, they need to present their art or sci-

162Lieutenant Herman H. Goldstine, a mathematics PhD from University of Chicago, was an officer at the Ballistics
Research Laboratory, assigned to the Moore school of electrical engineering at the University of Pennsylvania
(Campbell-Kelly & Aspray, 2004:p.76).

163Eckert was characterized as “The brightest graduate student around at the time”, “undoubtedly the best electronic
engineer in The Moore School” (Winegrad, 1996). Not to be confused with Wallace John Eckert from Columbia
University.

164When Pickering wrote about eclectic multidisciplinarity, he called this phenomenon the balance problem (Pick-
ering, 1995:p.215). I do not share Pickering’s view that it is a problem that there are no rules for specifying
which of the multiple set of epistemic and social factors is dominant in a multidisciplinary situation.

199

Figure 12: Interdisciplinarity in Early Computing Technology

Interdisciplinarity

Mathematics

Physics

Electrical Engineering

Military Science Astronomy

Logic

ence without the theoretical or metatheoretical issues, the counterarguments, the al-

ternatives, or the disciplinary controversies between different coteries or cliques.

Superficial knowledge about powerful ideas enables a person to utilize concepts or

innovations without getting mired in field-specific debates. In addition, ignorance

about traditional boundaries of an art or science may enable unexpected crossings of

those boundaries (especially boundaries of applicability). Yet, superficial know-

ledge about powerful ideas can also be counter-productive. If researchers utilize a

powerful idea without knowledge about its theoretical and metatheoretical issues,

counterarguments, alternatives, or disciplinary controversies, they may get mired in

black spots that an expert would avoid.

Cultural Context

Both Puchta and Bowles emphasized that the context in which Vannevar Bush's ana-

lyzer was developed provides information about the intellectual, interdisciplinary,

and social dimensions, as well as sources, of modern computing165. Whereas Puchta

focused on definite intellectual and disciplinary contexts, Bowles argued that the

techno-utopistic, technologically enthusiastic, and practical atmosphere of the U.S.

enabled American scientists to obtain the funding needed for development. Histori-

ans of computing Martin Campbell-Kelly and William Aspray called this “America's

love affair with office machinery”166. Kenneth Flamm167 even claimed that instead of

a lack of funding or technological knowledge, tradition-bound culture was the cru-

cial factor that made British scientists unable to compete with their American col-

leagues in building the differential analyzer.

Bowles, too, stated that the differences between U.S. and British cultural contexts

were the main reason for the difference between the U.S. and British results. His

findings suggest that there were four contextual factors that were the main sources of

differences in the development of computing machinery between the U.S. and Bri-

tain168. Some of the aspects that Bowles dealt with are supported by the texts of

Mary Croarken, a historian of computing and expert on British scientific comput-

ing169. Bowles' four contextual factors are discussed below.

165Puchta, 1996; Bowles, 1996

166Campbell-Kelly & Aspray, 2004:p.19.

167Flamm, 1988:p.136.

168Bowles, 1996

169Croarken, 1992; Croarken, 1993

200

First, Bowles argued that the practical, professional values of American scientists

were reinforced by popular and professional culture. He continued that the British

scientific community, in contrast, resisted and ignored practical research because

they believed that a practical engineer's machine would be incapable of solving the-

oretical problems for scientists. An example of this different emphasis can be seen

in Vannevar Bush's exclamation, “I'm no scientist, I'm an engineer”170. The British

valued theory over practice, the Americans valued practice over theory.

Second, because the British university scholarship sponsors valued theory and down-

played practice, the best students went to universities to study theoretical subjects,

and technical schools got mediocre students who were not taught advanced topics

such as differential equations171. In the U.S. the predominant professional style, ac-

cording to Bowles, was “practical enthusiasm”. In the U.S., the traditional universit-

ies had their technical schools, such as Pennsylvania's Moore School of Electrical

Engineering and MIT's laboratories. Aspray argued that the departmental environ-

ment in American universities was critical to the success of computing, especially

with respect to whether the discipline of computing was able to grow172. In addition,

individual people had an influence on the success of computing—for instance,

Puchta noted that Vannevar Bush's role as a mediator between the subcultures of sci-

ence, mathematics, and engineering had an influence on MIT science policy173.

Third, Bowles claimed that the public status of engineers in the U.S. was in complete

contrast to the status of engineers in Britain. Whereas the American engineer was

the hero of the new century, the British engineer was a second-class citizen174.

While American engineers continually had to fight for status within the scientific

community, they were beneficiaries of a strong public appreciation for their expert

skills and financial support for their services175. Aspray noted that engineering uni-

versities in the U.S. got financial support both from the government and industry—

and that external support was critical to becoming and remaining strong in the com-

puting field176.

170Kevles, 1987:p.293.

171Interview with Arthur Porter, Douglas Hartree's graduate student, Feb. 20, 1995, in Bowles, 1996.

172Aspray, 2000

173Puchta, 1996

174Bowles, 1996; Bush, Vannevar (1970) Pieces of the Action: Morrow Press (as quoted in Bowles, 1996).

175Bowles, 1996

176Aspray, 2000

201

Fourth, Bowles argued that the American press played an important part by reinfor-

cing an anthropomorphic, laudatory image of computational instruments (the Amer-

ican press used terms such as “the robot Einstein”177, “the super-brain”, and “man-

made mental giant”178). The American press should not be blamed, though. The de-

signers of early electronic machines were the ones using anthropomorphic termino-

logy in the first place179. In contrast to the American press, the British press con-

sidered machinery important mainly because it reduced “donkey work”. The British

and U.S. public were given very different cultural representations of computing ma-

chinery.

It seems that cultural (media) representations are highly important in the develop-

ment of any technology. Communications theorist and philosopher Marshall

McLuhan wrote that new technologies extend the physical and mental properties of

people, and that any extension affects the whole psychic and social complex180. If

computing machines are presented as what Lewis Mumford (1895-1990) would call

“extensions of [a person's] own organism”181, the emergence of new machinery

changes those extensions, and forces people to redefine their relationship to, for ex-

ample, technoscience, nature, institutions, and each other. In fact, the more techno-

logies are allowed to de-categorize182 and recategorize people, the harder it gets to

understand and perpetually redefine one's place in the network of relationships

between, for instance, technoscience, nature, individuals, and institutions.

The culmination of de-categorization would be a point where traditional communit-

ies, societies, classes, strata, tribes, and such would be gone. In this kind of a cul-

mination of de-categorization, people would constantly redefine their (molecular183

or atomic) relationships with respect to everyone and everything they come in con-

tact with. Currently people use molar aggregates (such as communities, societies,

and strata) as pre-defined categories to guide their actions and define their place in a

community. Elements of ongoing de- and re-categorization are visible in, for in-

177Bowles, 1996

178Martin, 1993

179Grier, 1996

180McLuhan, 1975:pp.3-4.

181Mumford, 1962:p.321.

182In the terminology of philosopher and anthropologist Pierre Lévy (Lévy, 1997:pp.37,55).

183A term from Pierre Lévy (Lévy, 1997:pp.39-55).

202

stance, Himanen's, Florida's, and Castells' accounts of the Information Age, but espe-

cially in Pierre Lévy's texts on collective intelligence184.

In a culture, like the American culture that is portrayed by Bowles and Flamm,

where technologies are glorified and portrayed as extensions of people, technologic-

al development modifies the interrelations of technoscience, people, businesses, in-

stitutions, individuals, and so forth. In contrast, consider the portrayal of British cul-

ture by Bowles and Flamm; a culture in which computing technology is merely a

means of getting tedious jobs done. In comparison with the American culture, the

changes that technology brings to the British culture are much more minor: A tech-

nology that is not anthropomorphized is not a rival to mankind, except for perhaps

technologies that may compete with people in the labor market. If technology is not

anthropomorphized, it does not force people to redefine their places in the socio-in-

dustrial-institutional complex, much less the universe. The effect of computing tech-

nology in these two media cultures is radically different. Technology is leading,

guiding, as well as de- and re-categorizing in the former culture, but servient and

preserving the status quo in the latter culture. The different aspects of culture that,

arguably, encouraged the development of computing technology in the early- to mid-

1900s are portrayed in Figure 13.

Crossing the Newton-Maxwell Gap

The inaccuracy and slowness of the Differential Analyzer actually led to the Ballistic

Research Laboratory of the U.S. Army to agree to fund a new high-speed computer,

starting from May 1943185. This agreement in part led to the beginning of the con-

struction of ENIAC186 at the Moore School of Electrical Engineering at the Uni-

versity of Pennsylvania. This change is sometimes called crossing the Newton-Max-

184Himanen, 2001; Florida, 2003; Castells, 2001; Lévy, 1997

203

Figure 13: Aspects of Culture Encouraging the Development of Early Computers

Culture
Enthusiasm

Anthropomorphism

Status of engineers Media portrayal

Practicality

well gap because it marks a paradigm shift from mechanical computation (governed

by Newton's laws of motion) to electronic devices (governed by Maxwell's laws of

electromagnetic radiation)187.

In the 1940s, computing was not performed for its own sake, but always as a means

to an end188, and at that time the end was dictated by world politics. The lack of ef-

fective calculating technology was a major bottleneck to the deployment of new

weapons189 and to the calculation of trajectory tables190. The U.S. Army took a

gamble on an untested technology, bypassed the established scientific community191,

and decided to fund a new technology proposed by Eckert and Mauchly at the Moore

School. This gave John Mauchly and John Presper Eckert the chance to realize their

ideas for an electronic computing machine.

However, the established scientific computing community, headed by Vannevar

Bush, fiercely opposed the ENIAC project and Eckert and Mauchly’s choice of elec-

tronic circuit elements192. It was the Army's willingness to gamble on a radically

new approach, and Eckert and Mauchly's stubborn defiance of the scientific estab-

lishment, that led to the birth of the first all-electronic computers. This is but one of

the examples where computing technology has taken a route opposed by the scientif-

ic establishment. The question of contingency raised by Ian Hacking's first sticking

points of constructionism remains193. That is, it is not certain if computing techno-

logy would have taken another, equally successful path (the one favored by the es-

tablishment) without the influence of Eckert, Mauchly, and the U.S. Army.

If one puts the Eckert-Mauchly project in Pickering's “mangle”194 framework, it

seems that automatic computing could have turned out differently without Eckert

and Mauchly. Eckert and Mauchly encountered a number of clashes between 1) the

185Leslie Comrie stated that the accuracy of a differential analyzer was roughly 1/x, where x is the number of
pounds (money) one is prepared to spend (Comrie, 1944). About the slowness, Comrie noted that where the
computer (human) would need weeks to achieve the result, the analyzer can obtain the result in a few days (Com-
rie, 1944).

186Polachek, 1997; Winegrad, 1996

187Ceruzzi, 1997

188Campbell-Kelly & Aspray, 2004:p.70.

189Flamm, 1988:p.48; Campbell-Kelly & Aspray, 2004:p.73.

190Williams, 1985:pp.272-273.

191Flamm, 1988:p.252.

192Flamm, 1988:p.48.

193Hacking, 1999:p.78. See page 109 of this thesis.

194Pickering, 1995; Pickering, 1993

204

theory of computation, 2) their theory about how computers should work, and 3) the

computer itself. They had an idea of how computers should work, but the world

“resisted”. Eckert and Mauchly accommodated to the clashes between their expecta-

tions and the resistance of the world by revising their theory about how their com-

puter should work and by revamping their computer. For instance, the original plan

of ENIAC that contained 5,000 vacuum tubes and cost $150,000 escalated to one

that contained 18,000 vacuum tubes and cost $400,000; the operating voltages were

dropped to make the life-span of vacuum tubes feasible; and quite early in the con-

struction of ENIAC, Eckert and Mauchly (and later von Neumann) became con-

vinced that the design of ENIAC was insufficient for generic computation195. The

understanding of the stored-program concept grew out of accommodations to the

problems in building ENIAC. This is a prime example of the mangle196.

The Eckert-Mauchly project raises a question concerning the contingency thesis:

Were the accommodation strategies of Eckert and Mauchly inevitable or contingent?

On one hand, if their brilliant strategies and ideas were inevitable, and if other re-

searchers too would have eventually come to the same conclusions, there is not

much sense in celebrating Eckert and Mauchly's ingenuity. Then the development of

electronic computers was only a matter of time—it was inevitable. On the other

hand, if their strategies and ideas were independent and original, then the status quo

of computing is a result of contingencies—computing developed as it did because of

the ideas and strategies of people who came together due to certain sociopolitical cir-

cumstances, and among those people were Eckert and Mauchly. There is a number

of other viewpoints to the question of contingency, and I address here the most inter-

esting ones for the purposes of this thesis.

If one believes that the scientific community was wrong and Mauchly and Eckert

were right, this case is an example of the fallibility and dogmatism of the scientific

community, thus supporting Kuhn's and Feyerabend's descriptions of science. There

is a large variety of scenarios that can follow from assuming that Eckert and

Mauchly were wrong and the scientific community was right, or that they all were

wrong, or that they all were right. However, those scenarios are not the focus of this

thesis.

195Campbell-Kelly & Aspray, 2004:pp.76-83.

196Pickering, 1995; Pickering, 1993

205

It would be difficult to accommodate many events and development routes of the

Eckert-Mauchly project into the inevitabilist framework (in which technological de-

velopment follows an inevitable route defined by natural laws197). Many events and

developments in the Eckert-Mauchly project surely seem contingent. Inevitabilists

cannot explain those events in Kuhn's terms, because the Kuhnian account is incom-

patible with inevitabilism198. They cannot resort to falsificationist and positivist ac-

counts of science, either, since a dutiful falsificationist would not have continued de-

veloping the computer given the critique and refutations of the reliability and plaus-

ibility of Eckert and Mauchly's machine199. A practical falsificationism that would

allow some dogmatism (as suggested by Popper200) would be closer to Feyerabend's

anarchistic theory of science than to original falsificationism. If dogmatism is al-

lowed inconsistently, then there is the problem of who decides when dogmatism is

allowed and when is it not. If one would not be ready to accept the Feyerabendian

position, he or she would need to explain the scientific and technological progress of

Eckert and Mauchly in terms other than those discussed in this thesis. (Granted,

there are numerous deterministic accounts of technoscientific progress that are not

discussed in this thesis.)

Notwithstanding the different explanations of how progress in technoscience occurs,

one important contributor to this progress is certain. The U.S. Army played a decis-

ive role in the development of early electronic computing machinery. This is not a

social deterministic statement—it is not to say that the form and function of Eckert

and Mauchly's computer was defined by the Army. Yet, the role of the Army cannot

be ignored. Some of the changes that the military brought in are depicted in Figure

14.

Pugh and Aspray201 listed technologies, which are central to modern computers and

which have been directly funded by customers with national-security funding and

priorities: the stored-program computer itself (U.S. Army funding), magnetic-wire

storage device (U.S. Army funding), mylar-based magnetic tape (U.S. defense con-

tractors), ferrite-core memory (Department of Defense and U.S. Government, for the

197Hacking, 1999; or the nomological interpretation of technological determinism in Bruce Bimber's terms (Bim-
ber, 1994).

198Hacking, 1999:p.99.

199Flamm, 1988:p.48; Williams, 1985:p.275; Winegrad, 1996; Campbell-Kelly & Aspray, 2004:pp.79-80.

200Popper, 1970:p.55.

201Pugh and Aspray, 1996

206

SAGE project), real-time operation (SAGE), overlapping of computation and input-

output functions (SAGE), cathode-ray-tube displays with light pens (SAGE), du-

plexed operation for improved reliability (SAGE), digital data transmission via

phone lines (SAGE), magnetic-drum storage devices (ERA with government con-

tract), and semiconductor device technologies (NSA among other national-security

customers).

The traditional cost-sensitive customers would not have funded such experimental

projects202, but for national security purposes, especially in the post-World War II

and Cold War years, cost was not an important factor203. It is not clear, however,

how the military and national security funding affected the development of com-

puters in this early phase—for instance, it is unknown whether development would

have been slower without military funding, or whether researchers working without

military funding would have been able to develop much cheaper alternative solu-

tions.

202With one exception: the British catering and food-manufacturing company J. Lyons, which financially supported
Cambridge University in building EDSAC, and also built its own, business-oriented version of EDSAC, LEO I–
finished December 1953 (Land, 2000).

203Flamm, 1988:p.2.

207

Figure 14: The Influence of U.S. Military in the Early Computers

Practicality

Disregard of establishment

Top-class people Continuous research funding

Military

Clear objectives

Markets for machinery

Number Crunchers

“Computing Super-Brain Aids Army.”204

At the Moore School of Electrical En-

gineering at the University of

Pennsylvania, John Mauchly was in the

midst of a very strong research and

training center for electrical engineer-

ing, which meant that he had both

mentors above him and students be-

neath him—both of whom he could en-

list into a project like ENIAC205. The Army had moved a number of top scientists to

the Moore School (including Goldstine206), and the academic programs were acceler-

ated by eliminating vacations207. Mauchly was not the one to initiate everything—

Mitchell Marcus and Atsushi Akera argued that it took Herman Goldstine's initiative

to launch the ENIAC project, suggests that the birth of electronic computing owed

itself as much to various trends in the historical context as the ability of Mauchly to

draw together various pieces of the puzzle himself208.

The designers and constructors of ENIAC had a grand vision for their machine: Dav-

id Grier wrote that they believed ENIAC would change the nature of science and es-

tablish a new scientific method based on electronic computation209. To make this

change clear, the researchers attempted to delineate a clear boundary between the

new world of electronic computers and the older world of human computers by us-

ing words that could not be connected with human computing (e.g., they talked

about “program” instead of “calculation”). I argue that another reason for the new

terminology was the incommensurability of electronic computers with previous

knowledge, but I discuss this matter later in this thesis in connection with von Neu-

mann's anthropomorphic terminology.

204Newark Star Ledger, February 15th, 1946, as quoted in Martin, 1993.

205Marcus and Akera, 1996

206Flamm, 1988:p.47; Campbell-Kelly & Aspray, 2004:p.76.

207Campbell-Kelly & Aspray, 2004:p.71.

208Marcus and Akera, 1996

209Grier, 1996

208

IN THIS SECTION:

� What factors were crucial to the construction

of ENIAC?

� What was the role of contingency in the

birth of electronic computing?

� What motivated or discouraged the business

sector to participate in the development of

early electronic computing?

The Origins of Digital Computer Technology

Despite the opposition in the beginning, when ENIAC was completed it was the first

large-scale electronic computer210. Marcus and Akera argued that it was a crucial

machine that convinced many institutions and people—scientists, military officials

and industrialists alike—to commit to the rapid development of electronic comput-

ing. ENIAC was also the only electronic computer in the world for three years211.

According to Marcus and Akera, the roots of high-speed electronic computing had

multiple origins, which fundamentally came together only because of the particular

circumstances surrounding Word War II212.

The first origin came from the development in the elements of electronic computing

itself (for the purposes of different kinds of measuring equipment, not for computers

as such). The second origin came from the advances in theoretical and experimental

physics, notably by John Atanasoff and John Mauchly. Third, the particular situ-

ation of the Moore School of Electrical Engineering213 provided a fertile soil for the

innovative ideas which Mauchly and others brought to it.

The keywords of Marcus and Akera's origins of electronic digital computing are

(1) technological prerequisites (instruments),

(2) a scientific base (theory), and

(3) sociocultural issues (culture).

Flamm, on the other hand, named four origins of computing214:

(1) mechanical calculating machines (instruments),

(2) differential analyzers used to model physics (modeling),

(3) new components (instruments), and

210However, ENIAC was not a stored-program computer (where the program as well as data are symbols located in
the memory), but for each different kind of computation, a manual rewiring of wiring patterns was needed–and
this took hours or days to accomplish. Therefore, some argue that it should rather be called a programmable cal-
culator (Pugh and Aspray, 1996). In 1948 rewiring was made easier by introducing switch banks so that repro-
gramming could be accomplished by re-setting the switches (Pugh and Aspray, 1996).

211Mauchly, 1979

212Marcus and Akera, 1996

213Marcus and Akera noted that firms such as Philco, RCA, and Atwater Kent were located close together, and ma-
jor research facilities such as Bell Laboratories were not so far away either. The undergraduate, as well as mas-
ters level program at the Moore School, was specifically designed to supply this regional industry with well-
trained engineers. The educational program provided both the faculty and students, as well as the laboratory fa-
cilities, that were essential to the development of ENIAC (Marcus and Akera, 1996).

214Flamm, 1988

209

(4) the abstract conceptualization of information and information processing

(theory).

In addition, the military roots of computing are emphasized throughout Flamm’s

book. These themes—instruments, theory, modeling, and culture—occur in a large

number of texts on the early history of the computer, with different emphases. They

are referred to as, for instance, (a) “engineers”, “theoreticians”, and “attitudes”215;

(b) “engineers”, “logicians”, and “war effort”216; and (c) “design”, “construction”,

“people”, and “science”217. The same issues are addressed in my early definitions of

ethnocomputing218: data structures, algorithms, tools and theory, and uses. Data

structures are inherent in Flamm's (4); algorithms are a part of Marcus and Akera's

(2) as well as Flamm's (4); tools and theory are a part of Marcus and Akera's (1) as

well as Flamm's (1) and (3); and uses is clear in Flamm's (2).

Pugh and Aspray wrote that World War II also brought about the shift of emphasis

from private companies' demand for cost-effectiveness to national-security agencies'

demand for function, performance, and availability at any cost219. Dilys Winegrad

argued that the theoretical and practical developments at the University of

Pennsylvania would at any other time, in all likelihood, have been dismissed as in-

teresting, but impractical. Winegrad claimed that the projects at Penn would have

undoubtedly been rejected for the simple reason that they cost too much220.

Mary Croarken argued that due to World War II the importance of mechanizing and

centralizing computation was recognized in both government and academic

circles221. In England, World War II had profound effects on the immediate and later

work of the Cambridge Mathematical Laboratory. At the local level, the laboratory's

premises and equipment were leased by the Ministry of Supply, and in the wider

context, the war accentuated the growing need for scientific research and, with it, the

increased need for automatic computation222. Figure 15 shows a composite of some

215Bowles, 1996

216Campbell-Kelly & Aspray, 2004

217Williams, 1985

218Tedre, 2002

219Pugh and Aspray, 1996

220Winegrad, 1996

221Croarken, 1992

222Croarken, 1992

210

of the aspects that were brought together by the Second World War, aspects that had

a fundamental effect on the birth of computing in the early 1940s.

William Aspray, however denied that World War II had a uniformly positive effect

on the development of computing in America. He stated that, for example, before

the war, MIT had a much broader and more active computer program than is gener-

ally recognized223. According to Aspray, the war actually brought a wide variety of

research projects to an end, including research on digital techniques, electronic ele-

ments, and a general-purpose digital computing machine.

Contingencies Surrounding ENIAC

Unfortunately, as David Grier noted, ENIAC became a burden before it was even

completed; It became operational just as its developers began to appreciate and un-

derstand stored memory programs and serial arithmetic machines224 (ENIAC was a

parallel machine). To the developers of ENIAC (among them, Eckert and Mauchly),

the stored-program computer225 concept (conceived apparently around January

1944226) was so important and so powerful that they wanted to put aside their old

work and ENIAC, and to begin work on new machines. Grier wrote that they

quickly discovered that they could not abandon their old ideas as soon as they

wished because they had made large intellectual investments in the old techno-

223Aspray, 2000; NB: the term “general-purpose” is a bit misconceived. Perhaps “multipurpose” would be a better
term. If there really were a general-purpose machine design, there would be no need for any other design (cf.
Sammet, 1991, about the use of “general purpose language” and “multipurpose language”). However, because
the term “general-purpose” is so firmly established, it is used in this thesis.

224Grier, 1996

225In a stored-program computer the instructions on how to do the computation and the data required or generated
by the computation reside all in the memory of the computer, and the computer can be reprogrammed for differ-
ent tasks just by uploading different instructions into the memory–no rewiring is needed as was the case with
ENIAC.

226Mauchly, 1979; Williams, 1985:pp.298-302, 411.

211

Figure 15: Aspects That the World War II Brought Together

World War II
Practicality

Cambridge Math. lab

Moore School Disregard of costs

Risk-taking

logy227, and because the sponsors needed to get their money's worth. John von Neu-

mann, however, published Eckert and Mauchly's ideas in his landmark text First

Draft of a Report on the EDVAC228 in June 1945, and thus, in a twist of fate in com-

puter history, the architecture became to be known as von Neumann architecture229

(discussed further in this chapter).

It was also a historical contingency that the ideas generated by the people associated

with ENIAC were, after the unveiling of the machine, freed of their military security

classifications (for instance, the British Colossus computers were not230). The entire

development of ENIAC was done secretly. No papers could be published, and dis-

cussion was limited to initiates231. Von Neumann has been criticized for using an-

thropomorphic language in connection with computers232, but actually his (1) use of

neurological rather than engineering terms enabled him to circumvent military secur-

ity233. Pugh and Aspray noted that other reasons for the loosening of military secur-

ity classifications were (2) the failure of ENIAC to be completed in time to demon-

strate its military value during the war, (3) the perception that ENIAC was a general-

purpose calculator rather than a specialized military machine, and (4) the desire of

the army and the University of Pennsylvania to publicize their accomplishments in

electronics234.

Note that even though Dijkstra claimed that the use of anthropomorphic terminology

when dealing with computer systems is a “symptom of professional immaturity”,235

anthropomorphic language is not shunned today. Everyday computing terminology

227Grier, 1996

228Neumann, 1945

229The widely-adopted term “von Neumann-architecture” ignores the developers of ENIAC, that is, Mauchly and
Eckert among others who also devised the stored-program concept when they understood the limitations of ENI-
AC. This conflict, together with a patent rights issue, lead both Eckert and Mauchly to leave the Moore School.
(Grier, 1996; Williams, 1985:pp.302-303; Mauchly, 1979). Mauchly noted that von Neumann himself had stated
that he had done the design as an accommodation for the Moore School group, but Herman Goldstine “inadvert-
ently distributed” the report with John von Neumann as the sole author (see e.g. Mauchly, 1979; Pugh and As-
pray, 1996; Williams, 1985:p.302).

230Williams, 1985:pp.287-296.

231Winegrad, 1996

232Eckert and Mauchly were careful to shun anthropomorphic terms to describe their work. Though they did resort
to the term “instructions”, they never talked of “instructing” a machine. George Stibitz was more direct in at-
tempting to distance ENIAC from anthropomorphic terms, asking the press to better understand what they were
trying to do (see Grier, 1996; Stibitz, 1946)

233Pugh and Aspray, 1996; see Neumann, 1945 for terms such as sensory or afferent neurons and motor or efferent
neurons.

234Pugh and Aspray, 1996

235Dijkstra, 1975b in Dijkstra, 1982:pp.129-131.

212

includes terms such as neural networks, master and slave, sleeping, killing, dying

and being alive (processes), artificial intelligence and memory, agents, viruses, par-

ents, siblings and relatives (trees), and so forth236. As I see it, there is an ongoing an-

thropomorphizing of technology and simultaneous technomorphizing of humans

(“software of the mind”237, characterizations of the brain as central processor, the hu-

man memory as hard drive, and other technomorphisms). This tendency is well-sup-

ported by those strands of a modern, scientific world view where people are seen as

complex machines. A number of new philosophical trends, such as transhuman-

ism238, well from this contraction of the human-machine gap.

As I noted earlier in this section, I suggest that incommensurability with earlier

knowledge was one reason for differing opinions on the terminology of the new ma-

chinery. My interpretation is that John von Neumann attempted a metaphor transfer

from neuropsychology to computing technology—namely, referring to an article

published in the Bulletin of Mathematical Biophysics (1943), von Neumann made

parallels from neuropsychology (neurons, synapses, axons) to EDVAC239. Further-

more, he called input and output devices of the machine organs: “The device must

have organs to transfer [numerical information] from R into its specific parts C and

M”240. It is also my interpretation that in contrast to von Neumann, Mauchly and

Eckert wanted to disassociate from earlier science by introducing new terminology,

such as a program. This argument is supported by David Grier: “the researchers at-

tempted to delineate a clear boundary between the new world of electronic com-

puters and the older world of human computers”241.

I agree with Grier’s argument that the stored program model was not a paradigm

shift in the Kuhnian sense because there was no crisis instigated by accumulating an-

omalies242. Nevertheless, I argue that EDVAC still epitomized an intellectual and

236There is also plenty of culture-specific terminology and terminology that may rouse different feelings among
people: take, for instance, terms such as daemon, Trojan horse, divide and conquer, greedy algorithm, trapdoor
and backdoor, worm, abort, terminate, and execute. This is not to say that it would be bad or good to use such
terminology, just to notice that a phenomenon of attributing anthropomorphic terms is common.

237Hofstede, 1997

238Transhumanism is an umbrella term for a number of philosophies that principally include the view that new tech-
nologies can take humankind to a new level of consciousness or being, as well as add to the quality and meaning
of human life. These philosophies include, for instance, posthumanism.

239Neumann, 1945

240Neumann, 1945

241Grier, 1996

242Grier, 1996

213

technological paradigm shift without Kuhnian prerequisites. The development of

EDVAC entailed a number of concepts without an analogy to the normal science of

the time (stored program, memory addresses, registers, and such243). The concepts

were incommensurable, and therefore, following both Feyerabend and Kuhn, one

could not demand a continuation between old and new concepts244. Such a demand

for continuation (or explanation, or reduction) of concepts simply could not have

been realized. Von Neumann's metaphor transfer from neuropsychology may have

been an attempt to ease the innofusion of EDVAC by contextualization245 but in ret-

rospect it seems a bit awkward.

As already mentioned, the idea of a stored-program computer was first embodied in

EDVAC designs (First Draft of a Report on the EDVAC246) created at the University

of Pennsylvania late in 1944. The war-related projects led to ENIAC, and from

ENIAC emerged the EDVAC concept247. The “First Draft of a Report on the ED-

VAC”248 created considerable interest249. In May 1946, Leslie John Comrie returned

to England from a visit to America with a copy of von Neumann's draft, and as soon

as Maurice Wilkes from Cambridge had read the document, he was determined to

build a stored-program computer250. Wilkes' Mathematical Laboratory had sufficient

funds to get the project started, and the nature of the project was well within the mis-

sion statement of the Mathematical Laboratory. The Moore School had offered a

famous series of lectures about everything that was needed for constructing a com-

puter, and Wilkes, with Douglas Hartree and David Reese, soon put the Moore

School lectures into practice251. Wilkes also had the support of the Mathematics fac-

ulty of Cambridge. The next few years were spent in intense activity—setting up an

electronics laboratory and building the EDSAC (electronic delay storage automatic

calculator)252.

243These are the modern day equivalents for the EDVAC terms.

244Feyerabend, 1970; Kuhn, 1970

245Contextualization here means situating a new concept into a familiar context or expressing a new idea in terms
that are familiar to the audience.

246Neumann, 1945

247Croarken, 1992

248Neumann, 1945

249Pugh and Aspray, 1996

250Croarken, 1992

251Williams, 1985:p.303.

252Croarken, 1992

214

Just before the turn of the decade, the world’s first stored-program computer became

operational, but two computers have been suggested to have been first. EDSAC in

the Cambridge Mathematical Laboratory performed its first automatic calculation on

May 6, 1949253, but John W. Mauchly claimed that the BINAC, or the first of the two

computers that became the BINAC, had undergone testing early in 1949, and that it

had run nonstop for 44 hours in April 1949254. Mauchly wrote that the test was then

interrupted so that the engineers could get on with other work. Other sources claim

that the BINAC ran its first program in the late summer of 1949255.

The disagreement most probably derives from the difference between the testing-de-

bugging phase and the actual announcement of a new computer256. On one hand, if

one thinks of running “44 hours nonstop” in the testing and debugging phase as the

début of a machine, then BINAC might have been the first one. On the other hand,

if one thinks of constructing a full-sized machine capable of solving realistic prob-

lems and introducing it to regular use as the début of a machine, then EDSAC was

the first257. This question is merely a matter of definition: “When assessing which

computer was the first, should one use the earliest “gleam in the eye”, first test usage

date, completion of testing, or first installation to a customer258?”.

History-writing based on “firsts” often runs into trouble because of the questions

above. The BINAC/EDSAC-controversy is just one example of such problems. In

the larger picture, the whole issue of “firsts” does not really matter that much. For

instance, Mary Croarken suggested that regardless of which computer was actually

the first, it was more important that Maurice Wilkes of Cambridge had created a

young and vibrant team at the Cambridge Mathematical Laboratory259—the con-

struction of EDSAC was just the beginning of a continuing program of computer sci-

ence research and teaching. Wilkes’ work on EDSAC led directly to the construc-

tion of the first business computer, LEO I.

253Worsley, 1950

254Mauchly, 1979

255Williams, 1985:pp.361-362.

256See, e.g. Kidder, 1981, for a description of the different phases in building a computer.

257Williams, 1985:pp.333-334.

258cf. Sammet, 1991; a good example of the fuzziness in where to draw this line can be found in Kidder, 1981.

259Croarken, 1992. The laboratory was later to be called Cambridge Computer Laboratory.

215

The Birth of Business Computing: LEO I

The enthusiasm of Wilkes, Hartree, and Reese for manufacturing computers in Bri-

tain was not matched with an enthusiasm of Britain's old-fashioned businesses for

using computers260—however, there was an exception. In May 1947, two senior

company executives from the British company J. Lyons visited the USA, meeting a

number of pioneers in electronic computing, and getting a demonstration of ENI-

AC261. The company executives recognized quickly that the characteristics of the

machines they saw could be modified to provide the necessary capabilities to solve

some of the problems of business data processing262. Here lie the roots of the world's

first office computer. According to Georgina Ferry, before the visit by Lyons'

people, Goldstine had never thought about using computers in the office, but now he

instantly saw the point and became enthusiastic about it263.

Hinted by both Aiken in Harvard and Goldstine in Princeton, on their return to Eng-

land, the J. Lyons people visited Cambridge where they were introduced to Maurice

Wilkes264. The work on the EDSAC (electronic delay storage automatic calculator)

had already started. The J. Lyons people were most impressed with the advances in

technology, well beyond anything they had seen in the U.S.265, yet contrary to the

American researchers, for whom the money was not a problem, when the J. Lyons

executives had visited Cambridge they wrote,

They have all their plans drawn and the hold-up is purely due to lack of

money. [...] We were told that given £2000 they could complete much more

rapidly. Both Professor Hartree and Dr Wilkes were willing and keen to

co-operate with us, in particular they are interested in applying their ma-

chine to any clerical job we may suggest.266

The computer to be built for J. Lyons was dubbed LEO I (Lyons Electronic Office

computer One). A member of the LEO team, a professor of information manage-

ment Frank Land, noted that the company J. Lyons could have played a passive role

and waited until such machines would have become commercially available. Land

260Campbell-Kelly & Aspray, 2004:p.95.

261Ferry, 2003:p.42.

262Land, 2000

263Ferry, 2003:pp.42-43.

264Land, 2000; Ferry, 2003:p.43.

265Land, 2000; Ferry, 2003:p.64.

266Thompson, T.R. and Standingford, O. Report on Visit to USA, archives of J. Lyons and Co., May/June 1947, as
quoted in Land, 2000 and mentioned by Ferry, 2003:p.65.

216

argued that the company wanted to have some influence in the design so that the

new machine would not be built in a form more suited to handling mathematical and

census calculations, but that it would suit business interests better267. The uses of

LEO were to include payroll, stock control, sales invoicing, and whatever else could

be effectively envisaged268. Ferry and Flamm argued that the British electrical and

office machine companies had not even begun to think about electronic calculating

machines269. Ferry continued that the post-war government was also unable to initi-

ate anything like this expensive and risky proposal. It took a private company to ini-

tiate such a step.

Finally, the J. Lyons board members agreed to support the Cambridge venture, but at

the same time to work towards building their own machine with the help of Wilkes

and his team270. The board also agreed to help finance the work at Cambridge with a

grant of £3000. In addition, Lyons offered to make one of their best technical

people, Ernest Lenaerts, available to Cambridge271. As it turned out later, Lenaerts, a

former business clerk, became an important contributor to EDSAC and later a key

person in the design and building of Lyons' computer272. In return for the Lyons help

package, Cambridge agreed to help Lyons design and build their own computer and

to help recruit a chief engineer, Dr. John Pinkerton, to head the technical side of the

project273. A project team was established and work commenced in 1949 to design

and build the computer. The collaboration between academy and industry, between

Cambridge and J. Lyons, might be the first instance of a user-driven innovation pro-

cess in the field of computing.

Frank Land argued that there are a number of factors that affected Lyons' pioneering

move into business computing274:

(1)The nature of Lyons' business was characterized by a very large range of food

products and food provision services. Their trade was mass transactions with rel-

atively low average values, so their competitiveness depended on advantageous

267Land, 2000

268Aris, 2000

269Ferry, 2003:p.67; Flamm, 1988:p.146.

270Land, 2000; Ferry, 2003:pp.67-68.

271Williams, 1985:p.333; Land, 2000; Ferry, 2003:p.69.

272Land, 2000

273Ferry, 2003:p.92.

274Land, 2000

217

pricing of its products. Computers were able to deliver an unparalleled fit

between cost and income.

(2)Personnel and leadership; the company recognized the need for top-class man-

agement early on. Lyons recruited top-class academic people and permitted them

to take leadership roles in the management of the company. Academic people un-

derstood the possibilities of experimental technologies.

(3)Self-sufficiency; the strategy of Lyons was to be as self-sufficient as possible.

They had the confidence and experience to believe they could provide the relev-

ant goods or services more effectively than any other contractor.

Similar reasons are also given by another member of LEO group, John Aris275, but he

argued that the reliance on personnel also accounted for the demise of LEO.

In light of the sources used above, the founding of the office computer business in

Britain seems like quite an incidental happening. It was a result of a number of so-

cial, economic, and technological aspects mixed with extraordinary foresight, or

simple contingency. There was a group of people with a vision and creative imagin-

ation276, an economic situation that encouraged adventurous implementation277, and

enough technological knowledge (yet no experience) of how to build a computer278.

The simultaneous construction of LEO I and EDSAC marks two turning points—the

beginning of electronic office computing and user-driven development.

The Origins of the Verb to Program

Many of the terms of today’s computing were coined around the time of the building

of ENIAC. In the year 1944 the term computer was, instead of the current sense, as-

sociated with people whose job was to do calculations. Take, for instance, the com-

ment by Leslie J. Comrie: “The chance of turning anyone into a good computer de-

creases rapidly from the time they leave school or college to vanishing point five

years later—or even earlier.”279 Desktop calculators were in high demand during

World War II by the thousands of human computers who did calculations for the

275Aris, 2000

276Ferry, 2003:p.ix.

277Aris, 2000

278Aris, 2000

279Comrie, 1944

218

design and operation of military equipment280. Because most of these human com-

puters were women, things like time saving were referred to accordingly: “The work

done was the equivalent of 4 to 10 girl-years”281.

Irrespective of the actual beginning of the construction of ENIAC, the verb to pro-

gram was introduced by John Mauchly in his 1942 paper on electronic computing

(however, it was introduced in the context of ENIAC, the programming device282,

not in its current meaning). Mauchly had borrowed the term to program from con-

temporaneous electronic control engineering, but the word came from the Greek

�� (before) and ������ (to write) and was first used in 1633 to mean an offi-

cial public notice283. The modern meaning of the term program first emerged during

the summer of 1946 at the Moore Lectures, the six-week-long summer class on elec-

tronic digital computers284 (of course, to name an idea is not the same as inventing

that idea285). Because of the inconsistent use of the term in the early years, it is hard

to say who really was the one who introduced the term programming. Nonetheless,

the need for totally new terminology suggests that there were significantly new con-

cepts and activities. Those new concepts and activities were not explainable by

single words in the old vocabulary. I interpret the need for new vocabulary as a sig-

nal of a significant conceptual novelty, sometimes even a paradigm shift. I discuss

later whether the development of ENIAC/EDVAC was a paradigm shift or not.

Summary: The Context of the Birth of Electronic Computing

All authors in the history of computing recognize the obvious: The political situation

(World War II) and one branch of government (military) were the driving forces in

the development of computing machinery towards electronic computers. An aggreg-

ate of factors that contributed to the development of early electronic computers is

portrayed in Figure 16. The advancements in, for instance, theoretical physics (sci-

ence) and engineering (design) that lead to new innovations (instruments) are also

agreed on as having a direct connection with the development of computers. The in-

terplay of theories, methods, and concepts across different sciences (interdisciplinar-

280Pugh and Aspray, 1996

281Stibitz, 1946, in Campbell-Kelly & Williams, 1985.

282Mauchly, 1942

283Grier, 1996

284See, for instance, Eckert, 1946.

285Grier, 1996

219

ity) and the decisive role of a few people (individuals) is also widely accepted as

having played a role in the process. It is difficult to say which of those were more

important than others, and which of those were sufficient or necessary conditions for

the birth of electronic computing.

Furthermore, many sources suggest that coincidence, such as freeing ENIAC of mil-

itary classification or risks taken by Lyons (contingency), was an important aspect.

Interestingly, economic aspects did not seem to play much of a role—since human

computers were cheap to use, electronic computers were developed despite the costs,

rather than their potential for cost-saving (except for LEO I). Finally, the sources in-

dicate that a number of sociocultural aspects (culture) had some degree of influence

on the development of early computing machinery.

220

Figure 16: The Context of Early Electronic Computers

Design

Electronic

computers

Instruments

Culture

Science

Military

Individuals

Interdisciplinarity

World War II

Turing

Eckert
Comrie

MauchlyAtanasoff

Goldstine Wilkes

von Neumann

Electrical Engineering

Mathematics

PhysicsLogic

Military Science

Astronomy

Anthropomorphism
Technoenthusiasm

Practicality

Media portrayal
Status of engineers

Disregard of establishment Clear objectives

Practicality

Markets for machinery

Continuous funding

Top-class people

Cambridge math lab.

Risk-taking

Disregard of costs

Moore school

Early Academic Computing

“Army ‘Robot Brain’ Does 100 Years Math in 2 Hours:

New Device to Cut Research Blocks”286

Early academic computing emerged

from a mixed collection of disciplines,

and for a long time it was not certain

what computing as a discipline exactly

was. It was uncertain whether comput-

ing was a theoretical subject, like math-

ematics, or a practical, design-oriented

subject, like engineering. It was not

certain either if the value of computing technology was merely instrumental, or if

computers and the phenomena surrounding them were worthy of academic study.

While these questions were still unclear, a number of universities made an early start

in the field of computing. Although some of them were able to keep their head start,

some lost their advantage along the way. This section discusses five American uni-

versities that made an early entry in the field of computing and the characteristics

that made a difference in their later success.

Early Entrants to the Field of Computing

William Aspray, who is a historian of computing, argued that those American uni-

versities that entered the computing field in the 1940s287 gained significant advant-

ages from their early entry288. He wrote that among those advantages were (1) estab-

lished reputations in the computing field, (2) good ties with potential employers for

their graduates, (3) the ability to garner a large portion of what limited government

and industry support and funding was available, (4) a decisive advantage over later

entrants in recruiting faculty from the minuscule pool of mathematicians and engin-

eers with computer experience (as well as in attracting students), (5) setting the

286New York Journal-American, February 15th, 1946, as quoted in Martin, 1993.

287The first independent university departments of computer science did not emerge before the 1960s, so computing
field or field of computing is used here instead.

288Aspray, 2000. William Aspray has written a number of books on the history of computing, among them one
with Martin Campbell-Kelly, another famous historian of computing (Campbell-Kelly & Aspray, 2004). Aspray
is also the author or co-author of a notable number of journal articles on the early history of computers.

221

IN THIS SECTION:

� Was an early entry to the field of computing

an advantage in the academic world?

� Was the academic world receptive to the op-

portunities of automatic computing?

� Did academic research in computing follow

an orderly plan?

design standards not only for the academic sector but also for the computer industry,

and (6) being able to set the research agenda in the emerging discipline in ways that

were to their own advantage.

Points (1) to (4) in Aspray's list are practical concerns, yet they most likely have an

influence on issues that are beyond their immediate scope. They have such influence

because an established reputation can earn the university an authority position on

scientific practices (point 1); because the amount of funding can also give the uni-

versity power also outside academic boundaries (point 3); and because the famous

names can make ad hominem or prestige-based value assessments more probable

(point 4). Point (5) is a case of a Kuhnian exemplar—universities are able to set

models and examples that later replace explicit rules as a basis for the solutions to

the problems of normal science289. Finally, point (6) speaks for itself: Merely being

first can be enough to shape the discipline. In terms of the definition of problems

presented earlier in this thesis (p.191), early entrants are able to set the research

problems so that the starting points are most favorable for them, the outcomes are

anticipated, and only the methodology to achieve the results is unknown. This sort

of problems are of class C-O-C, and in terms of Kuhn, they would be referred to as

puzzles290.

Points (5) and (6) are explicit in Kuhn’s and Feyerabend’s accounts of science. If

researchers set the research agenda according to their own expertise, then there is a

congruence of agendas and expertise, but perhaps not a connection between agendas

and the most important problems. This is explicit in Kuhn’s description of scientific

practice. In addition, standards and agenda partly dictate the language of science.

According to Kuhn and Feyerabend, there is no neutral scientific language291, and the

norm of scientific language (in the Kuhnian sense) is set by a consensus of research-

ers, which in this case would be the early entrants to the field of computing.

Aspray noted that there are also disadvantages to early entrance. The disadvantages

of early entrance are, for example, (a) the need to devote time away from computer

projects to develop peripherals, component technologies, and test equipment, (b) the

need to spend a great deal of effort educating governmental officials about the value

289Kuhn, 1996:pp.175,187-191; Kuhn, 1970.

290Kuhn, 1996:p.36.

291Feyerabend, 1970; Kuhn, 1970

222

of computing, and (c) great uncertainty and many dead-ends with the technical direc-

tion of computers.

Note the resemblance of disadvantages (a) and (c) with Pickering's “mangle”292. In

the face of a great uncertainty, pioneers attempt to construct instruments. They have

their theories of a domain and theories of the equipment they are constructing, but

things usually do not go as planned—the world resists. Through repeated rewriting

and rebuilding attempts, the pioneers hope to get a robust fit between three things:

the theory, the instrument, and the theory of how the instrument works293. The theor-

ies and cutting-edge technologies that are considered pioneering are the ones that go

through the mangle; the followers of the pioneers can avoid the troubles of the pion-

eers. In the following pages, the starting positions of five American universities,

which pioneered in computer research, are described. This early history of academic

computing is a prime example of sociocultural and institutional influences in the de-

velopment of an academic discipline.

MIT

The Massachusetts Institute of Technology, MIT, to begin with, was shaped by three

factors in the interwar years, William Aspray argued294. In the early decades of 20th

century, MIT had already become the leading institution in mathematically intensive,

science-based engineering in the USA. First, MIT, especially the electrical engineer-

ing section, had strong ties to industry. In MIT, Vannevar Bush and Harold Hazen

carried out substantial research for industry with the calculating machines they

built295. Second, Bush and his colleagues had relatively strong ties to the govern-

ment and the military at a time when there was relatively little contact between uni-

versities and the federal government. Third, electrical engineering was one of the

most important departments at MIT, and members of the department's faculty were

frequently recruited for senior administrative posts at the university. Aspray stated,

These three factors reinforced one another. Faculty members interested in

computing received institutional support from the department and the uni-

versity's central administration; they received strong financial support from

the industrial and government sectors; and they had close contact with the

292Pickering, 1995

293Pickering, 1995; Hacking, 1999:p.71.

294Aspray, 2000

295Campbell-Kelly & Aspray, 2004:pp.53-54.

223

most sophisticated users and developers of computing technology. This

situation was unparalleled among American universities in the interwar

period.296

Harvard

Harvard's entry into computing was attributed completely to Howard Aiken (1900-

1973), Aspray wrote. Aiken got Harvard and IBM to sign an agreement where IBM

would conduct the engineering and construction of an automatic computing machine

(known as Harvard Mark I) for Harvard to use in its scientific research. However,

Michael Williams, a historian of computing, wrote that a major quarrel occurred

between IBM's Thomas Watson (Sr.) and Aiken at the dedication ceremony of Har-

vard Mark I, in the summer 1944297. Harvard's people thought of Aiken's functional

specifications for the machine as being the most important, while IBM regarded the

most important work to be the design, engineering, and construction. Campbell-

Kelly and Aspray wrote that people at IBM claimed that Harvard did not give due

credit to IBM for its generosity298. Campbell-Kelly and Aspray blamed this conflict

on Aiken's youthful arrogance. The end result was an abrupt termination of IBM

support for computing at Harvard299 and a fall out between the two men that was to

last the rest of their lives300. But although Harvard Mark I was greeted with tech-

noenthusiasm—the press called it “Harvard's Robot Super-Brain” and declared that

“Robot Mathematician Knows All the Answers”301—computing was seen in Harvard

as having a second-class status.

Aspray, as well as Flamm, wrote that after the IBM incident, Aiken convinced the

Navy that the calculator could contribute to the war effort, and co-operation between

the Bureau of Ships and Harvard begun302. Even though this co-operation ended at

the end of the war, the Navy Bureau of Ordnance continued to provide operating

funds for the laboratory until 1948, when the Harvard Mark II was completed and

shipped to the Navy laboratory. After the Navy funding ended 1949, a funding crisis

296Aspray, 2000

297Williams, 1985:pp.240-242.

298Campbell-Kelly & Aspray, 2004:p.64.

299Aspray, 2000

300Williams, 1985:p.242.

301American Weekly and Popular Science Monthly, as quoted in Campbell-Kelly & Aspray, 2004:p.64.

302Flamm, 1988:p.41.

224

arose in the laboratory, and Aiken had to struggle each year to finance his opera-

tion303.

Computing, with its practical bent and the widely held view that it was a service op-

eration, was especially suspect. Aiken's interpersonal skills and management styles

also distanced him from his colleagues; Aspray argued that Aiken “just didn't know

the meaning of cooperation”304, and having a strong sense of hierarchy, he was called

“the commander” and “the boss” around the laboratory. Contemporaries agree that

he was a difficult person to work with—and “he just could not tolerate anybody not

considering him the most eminent computer engineer in the world”305. Aiken's name

even appeared at the top of every report produced by the laboratory.

During 1950s, before Aiken retired at 1961, the problems arising from his character

had deteriorated Harvard's computing program:

While Harvard had been on the cutting edge of computing in the 1940s, it

had become an intellectual backwater by the time of Aiken's retirement.

Aiken was increasingly seen outside as a technological reactionary, preach-

ing a conservative approach to machine design, mistrust of the reliability of

vacuum tubes, and lack of commitment to the stored-program concept.306

Aspray argued that when Aiken retired from Harvard, the laboratory was in poor fin-

ancial shape, his laboratory was in isolation, there was a leadership vacuum, the edu-

cational and research programs needed refreshment, the relationship to the faculty

and administration were strained, and the program was highly inbred307.

Although some historians claim that Aiken failed to grasp the universality of the

computer, Aiken has also been defended in this matter308. Aiken's computing labor-

atory is an extreme example of where authoritative leadership can work—for both

good and bad. Aiken had both built the program, and created relationships in the

process, and brought it down, and destroyed relationships in the process. Further-

more, Aiken's era in Harvard is an example of how large an influence one person can

have on a whole field of research in a certain university.

303Aspray, 2000

304Evident also in a defense of Aiken by Cohen, 1998.

305Cohen, 1998

306Aspray, 2000

307Aspray, 2000

308See Copeland, 2004 for accusations and defense.

225

University of Pennsylvania

The University of Pennsylvania, with its development of high-speed calculating

devices, is perhaps the most famous university in the modern history of computing.

Aspray wrote,

Penn should have been extremely well positioned to become one of the aca-

demic leaders in the computing field. In 1946 it possessed the only elec-

tronic calculator in the world, held government funding to build the proto-

type stored-program computer, had close working relations with the milit-

ary groups that had a continuing interest in funding the development of

computers in the Cold War era, and employed a talented staff with un-

equalled experience.309

However, three factors impeded the Moore School of the University of Pennsylvania

from becoming a dominant player in postwar academic computer science. First,

some of the principal people involved in the ENIAC and EDVAC projects had come

to the Moore School only because of the war310. After the war, von Neumann, for

example, started a project at the Institute for Advanced Study, taking with him sever-

al people from Penn311. Second, the university administration was uneasy about re-

ceiving military support in peacetime312. George McClelland, who was the president

of the university, was not sure whether such funding would advance the university's

objectives or corrupt them instead. The third factor was the university's regulations

concerning faculty with commercial interests. Particularly, quarrels about patent

rights made some key persons, Eckert and Mauchly among them, leave the uni-

versity at the end of March 1946313. Many from the Moore School left after Eckert

and Mauchly's departure314.

A new patent policy was adopted in 1946 to protect the “intellectual purity” of the

research that the University of Pennsylvania sponsored315. The patent quarrel with

the dispute over the term von Neumann architecture caused Eckert and Mauchly to

resign in March 1946—had they stayed beyond that, the new policy would have re-

309Aspray, 2000

310Williams, 1985:pp.273-274; Aspray, 2000; Winegrad, 1996.

311Flamm, 1988:pp.50,52.

312Aspray, 2000

313Flamm, 1988:pp.50,51; Aspray, 2000.

314Flamm, 1988:p.50.

315Aspray, 2000

226

quired them to assign all their patents to the university316. Instead, they formed the

Electronic Control Company (ECC), later called the Eckert-Mauchly Computer Cor-

poration (EMCC). Historian Kenneth Flamm called Eckert and Mauchly's move a

“daring bet”317: It was the first company to be established for the sole purpose of

designing, manufacturing, and marketing electronic stored-program computers.

When UNIVAC was accepted by the Bureau of Census in 1951, EMCC also became

the first company to produce an electronic stored-program computer for the commer-

cial market318.

The changing of University of Pennsylvania policies led—directly or indirectly—to

the beginning of the commercial computer industry (in the UK, LEO became an in-

dustrial product later). One may argue that it was just a matter of time before the

commercial computer industry would emerge, but the fact that two brilliant minds,

Eckert and Mauchly, were the ones to initiate it, derived from the changes of uni-

versity policies at the University of Pennsylvania.

Columbia University

Columbia University and IBM announced in February 1945 that they would jointly

establish the Watson Scientific Computing Laboratory, on the Columbia campus.

Flamm wrote that Thomas Watson Sr., the chairman of IBM, was a long-time friend

of Columbia and a trustee of the university since the 1930s319. Personal attachment

was, however, not the only reason for the co-operation between IBM and Columbia.

Because the co-operation with Harvard had ended abruptly in the summer of 1944,

due to a slight by Howard Aiken320, IBM did not have other research laboratories at

the time.

The academic-industrial collaboration was most obvious with Columbia University.

For example IBM 805, the International Test Scoring Machine, was constructed for

Columbia, and only afterwards developed into a commercial product. Columbia, es-

pecially Wallace Eckert (1902-1971), had been IBM's main contact with the scientif-

316Pugh and Aspray, 1996; Williams, 1985:p303.

317Flamm, 1988:p.29.

318Pugh and Aspray, 1996. The J. Lyons' LEO I computer in Great Britain was built in collaboration with Cam-
bridge University (Land, 2000; Ferry, 2003), not by a computer company.

319Flamm, 1988:p.31.

320Williams, 1985:p.242.

227

ic community321. In 1945, Watson hired Wallace Eckert to direct a newly-formed

the “IBM Department of Pure Science”. The department's mission was to help IBM

understand the needs of the scientific community and find opportunities for IBM in

the academic market. IBM trusted this academic-industrial collaboration to such an

extent that they paid Wallace Eckert two and a half times his previous salary,

donated an impressive battery of IBM's machines to Eckert's laboratory, furnished a

library, and funded Eckert's graduate students.322

The work of the laboratory and the academic-industrial collaboration had some bear-

ing on the design of IBM's new electronic products323. For example, the Selective

Sequence Electronic Calculator (SSEC), designed at Columbia and built by IBM,

was intended to give IBM a “super calculator” that would be more powerful than

Aiken's machine or any subsequent machines that would evolve from it324. Camp-

bell-Kelly and Aspray, as well as Flamm, attributed the development of SSEC partly

to IBM's Watson's desire for revenge on Howard Aiken for the argument over Har-

vard Mark I325. The success of SSEC gave IBM engineers useful experience for the

design of the IBM 650 calculator, one of IBM's most important products in the

1950s326. Williams argued that despite their commercial successes, IBM was by no

means a leader in computing, but they were immensely successful in following the

product developments of other, smaller firms327.

Princeton

For Princeton, computing came as a result of John von Neumann's wartime experi-

ence at the Moore School. Von Neumann began in Princeton in 1936328 by research-

ing applied mathematics—fluid dynamics in particular. This research led, during the

war, to von Neumann becoming a consultant for the National Defense Research

Committee, the Navy Bureau of Ordnance, and the Manhattan Project. Von Neu-

mann learned about the ENIAC project through Herman Goldstine, and quickly

321Campbell-Kelly & Aspray, 2004:pp.100-101. Wallace Eckert should not be confused with J. Presper Eckert.

322Aspray, 2000

323Aspray, 2000

324Flamm, 1988:pp.61-62.

325Campbell-Kelly & Aspray, 2004:p.64; Flamm, 1988:p.61.

326Aspray, 2000

327Williams, 1985:p.382.

328Flamm, 1988:p.34.

228

gained access to the classified project329. Flamm wrote that in 1945, before ENIAC

was operational and before the war had ended in Japan, von Neumann began to plan

for the postwar construction of a computer that would be devoted exclusively to sci-

entific research at Princeton's Institute for Advanced Study (IAS)330. Note that the

purpose was not computer science, but applied science using computers as a tool.

Von Neumann’s purpose for developing computing was chiefly instrumental.

In order to succeed with his plan, von Neumann needed to overcome a number of

challenges. The faculty and administration of the IAS was interested in pure, theor-

etical issues in mathematics and physics. Similar to Harvard, most of IAS’s faculty

regarded computing as a practical subject matter that was not worthy of their invest-

igation331. Also, to build a computer would require the purchase and construction of

extensive laboratory facilities and equipment. Aspray named three major obstacles

von Neumann faced:

[1] The institute was a place carefully groomed for the scientific elite, and

there was great concern among the faculty over having to share their hal-

lowed grounds with engineers, technicians, coders, and operators. [2] There

was also a serious problem of funding, both to build the computer, and to

maintain it and the research scientists who would be brought to the institute

to use it in their research. [3] Later there was a political problem, when von

Neumann's use of the computer for weapons design ran counter to the born-

again pacifist views of Robert Oppenheimer, who had been appointed dir-

ector of the institute.332

According to Aspray and Campbell-Kelly, von Neumann's political deftness, sci-

entific reputation, and military contacts, enabled him to overcome these challenges.

Von Neumann managed to persuade his colleagues and the institute administration

to permit a computer project to be started if funding was found. A number of people

from the Moore School joined von Neumann's computer project333. Likewise, fund-

ing, both direct and in-kind, was, after all, not so difficult to obtain334. Aspray wrote

that von Neumann convinced Princeton to become a partner, to help with the engin-

eering of the machine, and to have their scientific faculty use it for their research.

329Williams, 1985:pp.299-301.

330Flamm, 1988:p.49.

331Aspray, 2000

332Aspray, 2000, underlining added.

333Campbell-Kelly & Aspray, 2004:p.86.

334Aspray, 2000

229

Von Neumann secured RCA (Radio Corporation of America), which had recently

moved its research laboratories to the Princeton area, to become a partner and under-

take the design of the computer's memory device. He persuaded the military to un-

derwrite most of the costs of the project, arguing that it would be to their benefit to

have additional calculating capability and to explore alternative computer designs to

those being pursued at Harvard and the Moore School at Pennsylvania University.

Finally, von Neumann won the political obstacle:

Despite the reliance on military funding, von Neumann was able to retain

his objective to restrict the institute computer to scientific research by

agreeing that the computer would serve as a prototype and that copies of

the computer would be built for military use at other locations (Argonne,

Los Alamos, and Oak Ridge laboratories; RAND corporation; and Aber-

deen Proving Grounds).335

In Figure 17 some characteristics of the academic computing field in the USA after

the 1940s are illustrated. Kuhn’s descriptive account of science is most obvious in

the case of the Moore School of the University of Pennsylvania. The second world

war had given the Moore School such a strong leadership position in the field that

the school had a decisive influence on the research agenda in the field of computing.

Also Andrew Pickering's theory of “the mangle” can best be seen in the work done

in the Moore School: Although the Moore School was the vanguard of technological

and theoretical development, it arrived at many dead-ends. Sometimes the research-

335Aspray, 2000

230

Figure 17: Some Characteristics of Five American Universities in the 1940s

Princeton

MIT Pennsylvania

Harvard

Columbia
Setting Standards

Work Opportunities Setting up

Research Agenda

Best Faculty

Government and

Industry Support

Reputation

Reputation

Burden of

Convincing

Burden of

Convincing

Time Spent on

The Mangle

Work Opportunities

Strong

University

Support

Weak

University

Support

Interaction With

Industry

Weak

University

Support

ers at the Moore School had to even knowingly arrive at dead ends. One example is

the Moore School's building of ENIAC despite the researchers knowing its limita-

tions and despite the researchers knowing how to overcome them.

231

The Birth of Programming Languages

The use of COBOL cripples the mind; its teaching should, therefore,

be regarded as a criminal offense.336

The decade of the 1950s clearly marks

the birth of programming languages.

The only programming language de-

veloped before the 1950s was Konrad

Zuse's (1910-1995) Plankalkül, but it

was never implemented337. Despite its

age, Plankalkül contains features that

are standard in today's programming

languages338. Plankalkül was, in some

ways, a more elegant and advanced pro-

gramming language than those that ap-

peared 10 to 15 years later339. In this

section the development of program-

ming languages is paralleled with the development of computer technology. One

question in this section concerns computing from the Kuhnian perspective: The his-

tory of the computer is divided into computer “generations”, but can these genera-

tions be considered eras of normal science? Other questions in this section concern,

for instance, the contingency thesis and technological momentum in computer sci-

ence, factors in language development and diffusion, and the origins of high-level

programming.

336Dijkstra, 1975b

337Bauer & Wössner, 1972; Sammet, 1991

338Sammet, 1991

339Backus, 1981:p.28. in Wexelblat, 1981; Bauer & Wössner, 1972.

232

IN THIS SECTION:

� Why were programming languages de-

veloped?

� Are computer generations eras of normal

science and technological revolutions para-

digm shifts?

� Was the development of high-level lan-

guages contingent or determined?

� What are the reasons behind the major diffu-

sion of FORTRAN and the minor diffusion of

ALGOL?

� What are the most significant factors in lan-

guage development?

The First Compiler

One of the early programming pioneers, Captain Grace Murray Hopper, wrote that

during the 1950s, the whole establishment of computing was firmly convinced that

the only way to program a computer was using octal notation340. The pessimists pre-

sumed that high-level languages could never generate code that was efficient either

in the use of time or the use of memory341.

In 1951 Hopper began building a set of mathematical subroutines for UNIVAC I,

and to standardize them for general use. Hopper wrote that she soon noticed that a

few things were badly wrong with the way subroutines were being written at the

time342. All the subroutines started at line zero, and when copying a subroutine to

another program, all the lines should be added to existing addresses—and, as Hopper

wrote, programmers were (and perhaps are) lousy adders. Hopper also mentioned

that programmers were lousy copyists: Very often 4 would turn into A, or 4 would

turn into ∆ or even B into 13. Out of these problems came the A-0 compiler that

Hopper wrote between 1951 and 1952343. Robert W. Bemer suggested that if Grace

Murray Hopper and the other people working with languages A-0 and A-2 had been

given the type of support IBM gave to FORTRAN, they could have gotten a lot farther,

much faster with their early start344.

Computer Generations

Computing machinery advanced quickly from the very beginning; the rapid pace of

innovation after 1950 makes it difficult to connect the history of modern computing

with what happened before the 1950s. Paul Ceruzzi wrote that the division of com-

puting history into “generations” (see Figure 18 for the author's interpretation of

these generations) reinforces the notion that everything that happened before the

1950s was only a prologue to the story345. However, nearly all the major players in

electronic computing's early years—IBM, NCR, Burroughs, and Remington Rand—

340Hopper, 1978:p.7. See Knuth, 1998:pp.194-209 for some history and theory of positional number systems, in-
cluding radix-8 and radix-16.

341Bright, 1984

342Hopper, 1978:p.10.

343Hopper, 1978:p.10.

344Bemer, 1984

345Ceruzzi, 1997

233

had deep roots in the office appliance industry, supplying mechanical or elec-

tromechanical equipment to businesses since the late 19th century346.

From my perspective, dividing computing history into computer generations rein-

forces the notion that the history of computing equals the history of the computer,

which is simply incorrect. Computer generations (Figure 18) are usually segmented

as follows: electronic computers (ca.1946-1958), transistor-based computers

(ca.1958-1964), the use of integrated circuits (ca.1964-1972), and the use of large-

scale integration such as the microprocessor (after ca.1972). The idea of genera-

tions is based on single technological shifts (which are not revolutions in the sense

discussed on page 149 of this thesis).

An approach to the history of computing that would not equate computer history

with computer generations would be to take the history of computing as gradual

transitions in, for instance, architectural design, programming, usability, pervasive-

ness, research fields, applications areas, and modes of operation. All these factors

can be safely included under the title “computing history”, because they are interre-

lated and, to a large extent, inseparable parts of the development of computing. For

instance, pervasiveness depends on miniaturized architectures, interoperable pro-

gramming standards, and interactivity (usability); it arises from a number of research

fields, such as communications and ubiquitous computing; it has its own application

areas (e.g., wearable computing); and it defines new modes of operations (e.g., sen-

tient computing). Pervasiveness also affects other aspects of computing such as sys-

tems design (e.g., distributed systems), HCI (e.g., ubiquity and invisibility), commu-

nications (e.g., wireless communications), and programming (e.g., protocols). Al-

though there are indeed technological breakthroughs that could warrant the term

generations, from my point of view small-scale shifts in the different aspects of

computing accumulate to be more important in computing than the four large tech-

nological shifts called computer generations.

346Cortada, 1993 as quoted in Ceruzzi, 1997.

234

Figure 18: Timeline of Computer “Generations”

My concern over writing the history of computing as computer generations is sup-

ported by a comparison between the early history of computers and the early history

of programming. While computers got faster, programmers did not: They were still

writing programs with awkward octal code or call words. The progress in comput-

ing machinery could not have been properly utilized without progress in program-

ming methods. The leaps between computer generations are not well-aligned with

the leaps in other aspects of computing. Hopper noted that the number of people

who were interested in using (the few available) computers to solve problems, but

who were unwilling to learn octal code and bit manipulation, grew ever after the

1950s347. Hopper stated that in her opinion, things started to already go wrong by the

early 1950s:

[1978] I'm hoping that the development of the microcomputer will bring us

back to reality and to recognizing that we have a large variety of people out

there who want to solve problems, some of whom are symbol-oriented, some

of whom are word-oriented, and that they are going to need different kinds

of languages rather than trying to force them all into the pattern of the

mathematical logician.348

Although there were large shifts in computer technology, the shifts in how com-

puters were used were much slower and the development steps in programming lan-

guages, coding conventions, utilization of the processing power, and such were not

aligned with the computer generations. Dividing computing history into periods

marked by the four generations in Figure 18 is a technocentric oversimplification, a

choice which promotes a technological deterministic view rather than a social con-

structionist view.

Real-Time Computers Offer New Prospects

The 1950s marked the construction of the first real-time computer. Even though

Project Whirlwind at the Massachusetts Institute of Technology began as early as

1943 with U.S. Navy funding, the system became operational in the beginning of

1950, and was completed in 1951349. Designed especially for real-time applications,

347Hopper, 1978:pp.10-11.

348Hopper, 1978:p.11.

349Aspray, 2000; Williams, 1985:pp. 372-378.

235

such as flight simulation350, Whirlwind was the first real-time computer in operation,

and it incorporated (and yielded) numerous innovations, including magnetic core

memory, the graphical display, and the light pen351. Whirlwind also served as the

prototype for the computers that IBM built for the U.S. government's semiautomatic

ground environment (SAGE) system352. As a result, Project Whirlwind was separ-

ated from the MIT Servo Lab, and absorbed by Lincoln Laboratories, which was

funded by the Air Force353.

Perhaps because real-time computing was born in the vacuum tube era, its birth may

escape one’s attention as one of the most important technological changes in com-

puting. ENIAC and its successors were used to processing tasks that could have

been done using mechanical technology too, and often electronic computers did not

offer an advantage over the mechanical punch-card machines in speed or costs354.

The case was different with Whirlwind: Analog machines were not able to react fast

enough for the purposes of Whirlwind355. In addition, real-time systems made things

possible that were unachievable earlier with batch processing. Batch processing sys-

tems are rare today, but real-time systems, of different complexities, are nowadays

ubiquitous. The emergence of real-time computers, not the emergence of the elec-

tronic computer alone, was able to provide a platform for changes in business and

academical practices.

Although it may not be considered a technological revolution (see page 149 of this

thesis), Whirlwind is an outstanding example of a combination of academic, milit-

ary, and industrial co-operation. The experience that IBM obtained from this

academy-designed, military-funded project, played a big part in IBM's subsequent

commercial line of computers356, providing it an apparent advantage over other com-

panies. The 24 installed Whirlwinds (the Air Force named them AN/FSQ7357) were

the central air defense radar system of the U.S. government until the early 1980s358.

350Rosen, 1969

351Campbell-Kelly & Aspray, 2004:pp.144-148; Williams, 1985:pp. 372-378.

352Williams, 1985:pp. 372-378; Flamm, 1988:p.56.

353Flamm, 1988:p.56.

354Campbell-Kelly & Aspray, 2004:p.141.

355Williams, 1985:p.373; Campbell-Kelly & Aspray, 2004:p.143.

356Williams, 1985:p.378.

357“AN” designates a complete system, “F” designates a fixed ground system, “S” designates a special system, and
“Q” designates a special or combination purpose.

358Williams, 1985:p.378.

236

MIT got steady funding for its research, was provided an IBM Model 704 computer

free of charge359, and became one of the most active groups in the early history of

electronic computers360.

There was another development in machinery in the early 1950s: Whereas EDVAC

used bit-at-a-time (serial) arithmetic, the IAS computer, constructed at Princeton

University with John von Neumann, was a parallel machine361. John von Neumann's

reports on the IAS (Institute for Advanced Study) computer soon became one of the

most important tutorial documents in the early development of electronic com-

puters362. The word-at-a-time (parallel) arithmetic that the IAS computer used, gave

it an advantage over other computers at the time363. The IAS computer executed in-

structions 40 bits at a time, which the IAS team called a word. This is argued to be

the first use of the term word to describe the aggregate of binary digits that a com-

puter would handle at a time364. The IAS design, retaining sequential instruction

fetching and instruction executing, but doing arithmetics a whole word at a time, be-

came the norm. The designers of business computers often chose the “serial ap-

proach”, but by the 1960s, the single-bit-at-a-time design had vanished365.

Normal Science or Pre-Science?

When speaking about the computing of the 1950s, it seems unsubstantiated to speak

about normal science in the Kuhnian sense. The discipline of computing did not

have a form, its content was debated, and the difference between computing and oth-

er disciplines, such as mathematics and electronic engineering, was disputed. The

only phase in Kuhn's theory that correctly portrays the computing of the 1950s is

pre-science. In the pre-science stage of Kuhn's theory, a discipline has disagreeing

coteries or competing theories366—computing had both. In Kuhn's theory, in this

early fact-gathering phase, every candidate for a paradigm is likely to seem equally

relevant—in computing there was a number of research directions, none of which

359Aspray, 2000

360Rosen, 1969

361Ceruzzi, 1997

362Rosen, 1969

363Rosen, 1969

364Ceruzzi, 1997 At about the same time, IBM researchers specifically used the concept externally programmed to
mean that their machine took instructions from a stream of punched cards (Grier, 1996)–the verb to program had
stabilized within the language of computing.

365Ceruzzi, 1997

366Kuhn, 1996:p.13.

237

had asserted its superiority over the others. Because it is difficult to find evidence

for the existence of a well-defined era of normal science in the early development of

computer hardware, a look at the development of software is taken next.

A Level Up In Abstraction: FORTRAN

Before 1954 almost all programming was done in machine language or assembly

language367. Jonathan Grudin has portrayed this era as “interface as hardware”: The

typical users were engineers and programmers, and hardware was the central part of

the user interface368. At that time the term automatic programming was used to refer

to what are now called high-level languages (and compilers)369. Computer scientist

John Backus wrote that automatic programming was not taken seriously mostly be-

cause early experiments had been discouraging. This had led the computing com-

munity to reason that efficient programming was something that could not be auto-

matized370. Although there were doubts about the feasibility of high-level languages,

writing machine language or assembly language was laborious, and there was pres-

sure to ease this burden371.

In addition to the labor-intensiveness of machine language, another influence on the

development of the high-level language FORTRAN (FORmula TRANslating system, later

also FORmula TRANslator) was the economics of programming in 1954. The cost of

hiring programmers was usually at least as great as the cost of the computer itself.

Computer scientist John Backus372 wrote that programming and debugging accoun-

ted for as much as three quarters of the cost of operating a computer, and obviously,

as computers got cheaper, this situation got worse.

The labor-intensiveness of computing led Backus to propose the FORTRAN Project in

late 1953. Another reason for recommending the development of FORTRAN was, in

Backus's own words, “FORTRAN may apply complex, lengthy techniques in coding a

problem which the human coder would neither have the time nor inclination to de-

367Machine language refers to machine instructions that are executable on a specific architecture as such, and as-
sembly language (or symbolic assembler) refers to the notation used for making machine language readable.

368Grudin, 1990

369Backus, 1981:p.25.; Sammet, 1969:p.13. Note that the term high-level language does not refer to the supremacy
of these languages over machine language or assembly language but to a higher abstraction level. Note also that
also the term higher-level language has been used to refer to high-level language (Sammet, 1969:p.1).

370Backus, 1981:p.26.

371Campbell-Kelly & Aspray, 2004:p.168.

372Backus, 1981:pp.26-27. Backus was originally from the field of mathematics.

238

rive or apply”373. From today's perspective it is interesting, as historian of comput-

ing Jean Sammet noted, that Backus' group really needed to justify the development

of FORTRAN
374. However, there was plenty of pessimism about whether FORTRAN could

ever construct code that was efficient both in time and in space375.

Even though researchers at the Mathematics Department at Bettis Laboratory (for

nuclear power research) were pessimistic about the still-fetal FORTRAN, it produced

correct code—and the amount of labor required to debug and maintain the code (and

even to change it substantively)—was remarkably small376. Herbert Bright recalled

that one of the researchers had written a program specifying the gamma of tau in

FORTRAN in one afternoon. Bettis Laboratory researchers estimated that it would have

taken about two weeks to have written that amount of code in assembly language

and another two weeks to debug it377. Bright’s recollection reinforces the view that

in computer science progress takes place through demonstrations instead of proofs or

experiments.

Was FORTRAN a Natural Step or a Contingent Event?

Here Ian Hacking's first sticking point378, contingency, comes in. The question that

the history of FORTRAN poses is, “Was FORTRAN or a FORTRAN-like language a natural,

necessary step or was it a contingency without which other modes of programming

could have developed?”. Compilers as a class existed before FORTRAN
379. There has

been a large number of significant conceptual changes after FORTRAN. So what in-

deed is the significance of FORTRAN? The two aspects that need to be discussed con-

cerning the development and standardization of FORTRAN are Hacking's “contingency

vs. necessity-sticking point” and Hughes' “technological momentum”380. The contin-

gency vs. necessity debate raises a number of questions, such as: “Were the concepts

of programming languages discoveries, as Peter Wegner’s choice of words sug-

gests381, or were they inventions? Did this process display forms of technological

determinism or social construction?”.

373Backus, 1981:p.30.

374Sammet, 1969:p.143.

375Bright, 1984

376Bright, 1984

377Bright, 1984

378Hacking, 1999:p.68.

379Bemer, 1984

380Hughes, 1994

239

In the time before the standardization of FORTRAN, programming was a skill that few

had, and that skill was tied to a few types of computers from even fewer computer

companies. A high-level language such as FORTRAN was considered to be just another

tool for working with disconnected varieties of computers382. My interpretation is

that because programming was being done in machine language at the time, there

were no structures that would have imposed any conceptual models on programming

(except for the concepts dictated by the computer architecture, such as random ac-

cess, single storage for data and instructions, separation of memory and processor,

input and output, and such).

Assembly languages383 have a very special place among computer languages. Any-

thing that can be done in any high-level language, can be done in assembly language,

but not everything that can be done in assembly language, can be done in every high-

level language (e.g., direct memory manipulation). Consider the scenario where a

researcher would take a programmer who knows only the Java language, a program-

mer who knows only the C language, a person who has no programming experience,

and programmers who know only, for instance, LISP and Prolog, and the researcher

would teach all of these programmers the assembly language. It would be interest-

ing to know if their program constructs in assembly language would differ from each

other because of the different mental models they may have about programming.

The chaotic state of programming was restrictive in many senses; it barred non-spe-

cialists, separated computer brands, and hindered portability384. This chaos seems

like a technological counterpart of Kuhn's pre-science state. Standardization,

however, changed the computer world. Martin Greenfield argued that the standard-

ization of FORTRAN brought along with it a stamp of approval for high-level lan-

guages385. He continued that this approval led to all systems large enough to support

a FORTRAN compiler having a FORTRAN compiler. According to Greenfield, a number

381Wegner, 1976b. However, I would like to suppose that Wegner's sentence “The 1950's were concerned primar-
ily with the discovery and description of programming language concepts” is a lapse and not a stand on the con-
tingency debate. The rest of Wegner's article suggests that it is a lapse.

382Greenfield, 1984

383Assembly language can be considered the most basic programming language, which is translated (almost) dir-
ectly to machine instructions. Basically assembly language is a set of human readable (students today might dis-
agree) symbols that correspond to machine instructions. Assembly languages are not dead: They are still needed
in some time-critical systems and embedded systems that have very limited resources, as well as in reverse engin-
eering (e.g., virus research).

384cf. Greenfield, 1984

385Greenfield, 1984

240

of key barriers were broken by FORTRAN: (i) it took programming out of the hands of

the few, (ii) programming skills became portable and not tied to a single system, (iii)

vendors could have compatibility between their models, and all this contributed

heavily to the expansion of the computer industry. The shift from machine language

programming to high-level language programming still does not constitute a para-

digm shift in the Kuhnian sense. First, machine language programming was not re-

futed, but a higher-level alternative for it was built. Second, there were no anom-

alies that would have led to a crisis. Although there was clearly a revolution, it was

not a revolution in the Kuhnian sense. If the shift from machine language program-

ming to high-level languages has to be labeled as a shift in the Kuhnian sense, it is a

shift from pre-science to a scientific paradigm.

The making of FORTRAN clearly bears the characteristics of social construction. First,

there was the disbelief of many, the optimism of some, and the final acquiescence of

the people of IBM386. The decisions were dependent upon groups of opinion leaders.

Second, there were several kinds of “recruitment activities”387 that were carried out

in order to convince experts who were open-minded and venturous. Bruce Rosen-

blatt's recollection that the early user community was small enough to form support

groups and attend meetings388 suggests that there is a parallel between early FORTRAN

advocates and Everett Rogers' description of innovators389. In Rogers' description,

socially active gathering of outside influences and the forming of cliques are charac-

teristic of innovators. Third, Peter Wegner argued that FORTRAN is evidence that the

model of implementation in the mind of language designers may strongly affect the

design of the language390. That is, a programming language is designed according to

how its designer thinks about the computer and its programming. The design of

FORTRAN was dependent on the “virtual machine” in the mind of John Backus, who

designed FORTRAN. Fourth, one of the strongest motivations was money: John Back-

us, the FORTRAN project leader, made the case for FORTRAN mainly on economic

grounds391.

386Sammet, 1969:p.144; Bright, 1984; Wegner, 1976b; Campbell-Kelly & Aspray, 2004:p.170.

387Rosenblatt, 1984

388Rosenblatt, 1984

389Rogers, 2003

390Wegner, 1976b

391Campbell-Kelly & Aspray, 2004:p.169.

241

But as FORTRAN got standardized and as it diffused well, it also started to institutional-

ize and become rigid. Rosenblatt called this phenomenon setting up defenses and

perpetuation392. FORTRAN was taught in colleges, and taken as the notation system for

many scientific publications. It seems that as the language got more widespread the

more deterministic characteristics it assumed. Since large libraries of technical and

scientific programs and subroutines were written in FORTRAN, it was fairly natural to

build FORTRAN compilers for all of the new machines because they were introduced to

the scientific and technical industry393. FORTRAN was constructed from a fairly open

(i.e., flexible) set of needs, designed according to the views of a small number of

people, and as FORTRAN gained technological momentum, it developed the character-

istics of technological determinism. It achieved such an institutional status that it is

even today regarded as the lingua frança of scientific computing394. This is a prime

example of Thomas Hughes’ technological momentum in computing. (Note,

however, that although FORTRAN is the origin of a large number of programming lan-

guages, there are plenty of languages that are not descendants or relatives of FORTRAN

at all, such as LISP, APL, and ALGOL
395.)

ALGOL: The Ideal Language

Jean Sammet wrote that the years 1958 and 1959 were the most influential and pro-

lific in the development of programming languages. She claimed that no other two-

year period contained developments that had as much long-range significance396.

Sammet attributed the convergence of so much significant work in those particular

years to a growing interest in software in general and programming languages in par-

ticular. From the interface design-perspective, the reason for such enthusiasm is

clear: users were freed from having to know about the hardware397.

In 1957 the ACM and the GAMM (Gesellschaft für angewandte Mathematik und

Mechanik) appointed a committee to study, and recommend action for, the creation

392Rosenblatt, 1984

393Rosenblatt, 1984

394Campbell-Kelly & Aspray, 2004:p.169.

395It is a matter of definition whether ALGOL is a descendant of FORTRAN or not. For instance, Jean Sammet does not
mention such a relationship (Sammet, 1969).

396Sammet, 1991

397Grudin, 1990

242

of a “universal” programming language (in a GAMM meeting Peter Naur398 had pro-

posed an algorithmic language-machine code translator as early as 1951399). Soon

IFIP's (International Federation for Information Processing) technical committee 2

(TC2) founded a working group on ALGOL (WG2.1)400, supported by USE (UNIVAC

Scientific Exchange), DUO (Datatron Users Organization), and SHARE
401.

Alan Perlis (1922-1990)402, who was one of the people active in designing ALGOL

(ALGOrithmic Language), wrote that at the time it seemed that every new computer

and even each programming group was spawning its own algebraic language or

cherished dialect of an existing one403. There is one part of the GAMM-ACM letter

that particularly stands out to me: Perlis wrote, “The situation would not be im-

proved by the creation of still another nonideal language.” I do not know the exact

meaning of this phrase, but apparently (some of) the researchers of the GAMM and

the ACM believed that an ideal language could be developed. However, the opening

speaker of the GAMM meeting had already urged the group not to waste the pre-

cious days in a search for the perfect language and to heed Wittgenstein's observa-

tion that all too often “the best is the enemy of the good”404. Today there is no wide-

spread delusion of an ideal language: it is accepted that different types of language

suit different needs 405.

ALGOL grew out of this GAMM-ACM joint effort406. ALGOL was sophisticated, and it

also met two of the three initial objectives set by the ALGOL committee407. It was (1)

possible to use it for the description of computing processes in publications (“public-

ation language”), and it was (2) mechanically translatable into machine programs

(“hardware representations”)408. However, the third objective, that ALGOL should be

398Peter Naur is a pioneer in the areas of software engineering and software architecture.

399Naur, 1981:p.93.

400Lindsey, 1996 in Bergin & Gibson, 1996.

401SHARE was allegedly the first organization of computer professionals, formed around the IBM 704 scientific com-
puter. SHARE is an organization to distribute and share software for free. SHARE is not an acronym: According to
an early SHARE manual, the founders of the organization chose the name SHARE, hoping to find suitable words to
match the initials, but “nobody was really that smart”, and so “each member is free to interpret the initials in his
[or her] own way” (Edson et al., 1956:p.01.01-02).

402Perlis' BSc degree was in chemistry and MSc and PhD degrees in mathematics.

403Perlis, 1981:p.76.

404Perlis, 1981:p.78.

405Denning, 2003

406Sammet, 1969:pp.173-174.

407Naur et al., 1960

408Naur, 1981:p.113; Sammet, 1969:p.175.

243

as close as possible to standard mathematical notation and readable without further

explanation (“reference language”409), was unattainable. Peter Naur noted that the

part of the notation of ALGOL that was similar to standard mathematical notation was

confined to simple arithmetic and Boolean expressions410.

ALGOL was the pet child of a number of the world’s top computer scientists of the

time. Although there was a clear and common vision of the purpose and general

form of ALGOL, its details were grounds for fervent debate and criticism. In his Octo-

ber 1967 CACM article, “The Remaining Trouble Spots in ALGOL 60”, Donald Knuth

wrote that if any other language comparable to ALGOL would undergo such detailed

scrutiny as ALGOL had undergone, it would be impossible to publish the list of trouble

spots because the number of trouble spots would be a full order of magnitude great-

er411. Knuth finished his article by writing, “The author [Knuth] has tried to indicate

every known blemish in [the ALGOL report412]; and he hopes that nobody will ever

scrutinize any of his own writings as meticulously as he and others have examined

the ALGOL report”413. A massive intellectual effort was invested in developing ALGOL

to be the ultimate programming language.

ALGOL 60 had a significant effect on the field of programming language design in

several ways414: (1) ALGOL was a language suitable to be used as a programming lan-

guage and independent of any implementation; (2) ALGOL was suitable for the expres-

sion of algorithms in pure human-human communication; (3) as a side product of

ALGOL, a new style of language description was demonstrated (known as BNF, Back-

us-Naur Form415); (4) ALGOL was a demonstration of a combination of generality and

economy of concept as well as precision and description; and (5) ALGOL included a

number of novel ideas, especially in the areas of blocks and procedures.

409Sammet, 1969:p.175.

410Naur, 1981:p.113.

411Knuth, 1967

412Backus et al., 1963

413Knuth, 1967

414Naur, 1981:p.93.

415See Backus, 1959. Originally it was called “Backus Normal Form”, but Donald Knuth (Knuth, 1964) pointed
out that calling it “Backus Naur Form” would have several advantages: (1) it gives proper credit to both de-
velopers Backus and Naur; (2) it preserves the established abbreviation BNF, and (3) it does not call “Form” a
“Normal Form”. The name Backus Naur Form replaced Backus Normal Form soon after Knuth's note (Knuth,
1964).

244

Why Did FORTRAN Do Better Than ALGOL?

The limited diffusion of ALGOL, which was carefully designed to be a superior lan-

guage to FORTRAN, into the programming world at large is an indicator that by the

time ALGOL was ready to be introduced, FORTRAN had already become an institution.

Although ALGOL was designed and backed up by a large number of the most promin-

ent figures in the field of computing416, and it was endorsed by, for instance, Com-

munications of the ACM (CACM), it never gained ground in programming practice at

large. Because IBM did not want to add ALGOL support to FORTRAN, ALGOL never really

had the chance to become the standard language for IBM machinery417 (recall that

IBM was the leading computing corporation of the time). Yet, ALGOL became the

base of reference for much of the subsequent programming language development418.

Although ALGOL was, since February 1960, the publication language used in CACM,

for most people in the 1960s the only way to check the correctness of CACM al-

gorithms in practice was to translate them into FORTRAN because relatively few install-

ations in the U.S. at that time had ALGOL compilers419. In the vocabulary of Thomas

Hughes420, as FORTRAN gained technological momentum, it became more a shaper of

its environment than shaped by it. ALGOL was not able to gain similar momentum

and, under the circumstances, did not become a similar shaper of computing prac-

tice. Whereas FORTRAN was the most important practical milestone in programming

language development, ALGOL has been proposed as being perhaps the most import-

ant conceptual milestone421.

At the end of the decade, business computing finally got its own language. In 1959 a

number of representatives from user groups, government, computer manufacturers,

and other interested parties formed the COBOL (COmmon Business Oriented Language)

language specifications422. The CODASYL423 Committee behind COBOL was the first

intercompany committee in computing, which consisted primarily of competing

computer manufacturers and two government agencies (the U.S. Air Force and the

416See, for instance, Sammet, 1969:pp.172-196.

417Perlis, 1981:p.83.

418Perlis, 1981:p.90.

419Sammet, 1969:pp.176-177.

420Hughes, 1994

421Wegner, 1976b

422Sammet, 1969:p.330.

423COnference on DAta SYstems Languages

245

Navy)424. Captain Grace Murray Hopper noted that, in fact, it was the U.S. Navy

that ordered her to work with the first computer, that the Navy made it possible to

develop COBOL, and that the Navy made it possible for her group to develop the COBOL

test routines425.

Although COBOL entailed a number of new concepts; such as natural language style

programming, record data structures, and file description and manipulation facilit-

ies426; COBOL is not discussed here further. Its origins do not bring in any essentially

new characteristics to the birth of programming languages.

A large number of different languages have been developed over time. Figure 19

shows a timeline of the creation of a number of influential languages. Note the long

period between FORTRAN and any of its competitors.

FORTRAN had a good head start on other high level languages. The reason for the dif-

ference between the impacts of FORTRAN and ALGOL is clear. FORTRAN was a response

to a number of needs that arose from practice, but ALGOL was planned devoutly, for a

long time, by a large number of the most prominent people in the field, and retro-

spectively, it seems that it was more of an object of study than a solution itself. The

participants of this “great programming language debate” were at first called ALGOL

lawyers and later ALGOL theologians427.

The construction of ALGOL is an example of the social construction of technology par

excellence. Whereas FORTRAN was designed to meet needs rooted in practice (de-

scriptive aspects), the designers of ALGOL had clear intellectual intentions that were

agreed upon together (normative aspects). The designers wanted it to be a publica-

tion language that would be as close as possible to mathematical notation and wanted

it to be readable without further explanation. However, generally speaking, both of

the languages are a result of specific sets of needs that have affected the design and

implementation of those languages.

424Sammet, 1969:p.330.

425Hopper, 1978:p.20.

426Wegner, 1976b

427Wegner, 1976b

246

Figure 19: Timeline of Programming Languages

When one looks at the programming languages used during the past fifteen years, it

is notable that FORTRAN has survived while many others have disappeared. Certainly,

it was the first high-level programming language to come into common use, but

there are also other reasons for the persistence of FORTRAN. First, Bruce Rosenblatt

wrote that one reason for the survival of FORTRAN was that IBM was farsighted

enough to put support people in the field; the users could easily get support428.

Second, FORTRAN III, which used in-line assembler language within FORTRAN code,

was not released429. So the language remained machine-independent.

Third, Rosenblatt continued that FORTRAN was (and is) easy to use; the self-teaching

course that IBM gave took about 20 hours—about a fourth of the time that was es-

timated to teach or learn COBOL or PL/I. Soon after FORTRAN's introduction, it was also

used as a notational method in many scientific publications430. Fourth, the synergist-

ic, snowballing effect of users helped to build large, shared libraries of programs and

subroutines that could be quickly put on new machines as they were introduced,

providing those new machines had a FORTRAN compiler. Thus the FORTRAN compiler

was a standard program. Fifth, and probably the most important thing about FORTRAN

has been its adaptability. Subroutines, on-line computer programming, operating

systems, structured programming, and object-oriented programming have all been

successfully added to successive versions of FORTRAN.431 The latest version of

FORTRAN at the moment is Fortran 2003432.

Significant Factors in Language Development

Since programming languages do not appear spontaneously, a major factor in their

conception are the people and organizations who bring them into existence433. Jean

Sammet named five significant social, institutional, and human factors in language

development434: First, (1) there are organizations, such as profit making companies

and universities; second, (2) an organization, as such, does not create anything, but

people do; third, (3) language development depends not only on the employers of the

individuals doing the work, but also on sponsors (e.g., CODASYL for COBOL and

428Rosenblatt, 1984

429Backus, 1981; Rosenblatt, 1984

430Rosenblatt, 1984

431Rosenblatt, 1984

432Note the writing convention change from FORTRAN to Fortran between FORTRAN 77 and Fortran 90.

433Sammet, 1991

434Sammet, 1991, underlining added.

247

IFIP TC2 for ALGOL 68); fourth, (4) for languages developed by individuals, such as

Pascal, it is worth taking an individual's background into consideration; and fifth, (5)

a significant factor in language development is the motivation of the organization or

individual. Figure 20 shows an outline of the factors discussed here, with a few

samples of each of them.

In Figure 20, there are four people who played a major role in the early development

of programming languages. They have been selected for inclusion in Figure 20 be-

cause they appear in this section. The examples of aspects of personal backgrounds

in Figure 20 concern only the professions of people involved, but a thorough under-

standing of a person's background would require understanding that person's socio-

economic status, education, political and ideological leanings, upbringing, home cul-

ture, significant happenings in the person's life, motivations, and other things that

may play a part in one's actions and behavior. Sponsors include, for instance, UN-

ESCO, which sponsored the conference in which the BNF was introduced and the

open ALGOL debate appeared435; IBM, which was a sponsor of FORTRAN; and the U.S.

Navy, which was active in creating COBOL. Organizations include, for instance,

SHARE and USE organizations, which established ALGOL working groups436, and the

ACM, which was very active in enforcing ALGOL. Motivations include, for instance,

the above-mentioned motivations driving ALGOL, such as the need for a publication

435Sammet, 1969:p.175.

436Naur et al., 1960

248

Figure 20: Some Factors in Language Development

GAMM

IBM

Mathematics-

Friendly

Notation

Sponsors People

Organizations Motivation

Personal Backgrounds

Workload

ACM

CODASYL

Cost Savings

IFIP TC2

UNESCO
John Backus

Mathematics

Usability

Alan Perlis

Chemistry

Language for

Publications

Grace Hopper

Computer

Engineering

Peter Naur

Astronomy

Military

Programming

DUO

SHARE

USE

Research on Programming

Languages

U.S. Air Force

U.S. Navy

language, programming language research, and a notation close to mathematics, as

well as the cost-saving issues that drove the creation of FORTRAN and COBOL.

Sammet wrote that in examining programming languages, one should also look at

the different types of uses and functionalities that each language was designed to in-

corporate437. She noted that it sometimes occurs that a new functionality is often

more a matter of style and personal preference than meeting real needs that had not

been met before. In fact, Sammet listed personal needs and functional needs as the

two most important incentives for programming language development.

By the end of the 1950s the number of uses for computing had grown rapidly. Com-

puting speeds grew and high-level languages enabled non-devoted specialists to util-

ize computers for their business, research, statistical, or other purposes. There was

no such term as computer scientist, though. People who worked with computers

were mathematicians, physicists, electronic engineers, military officers, specialists

from different businesses, and scientists. However, there was an increasing number

of scientists whose primary subject area was computers, and there was an increasing

number of topics that did not belong clearly to any other science (topics such as

computability, algorithms, grammars, automata, modern cryptography, artificial in-

telligence, and so forth). Computer scientists as a group did not belong clearly to

any existing discipline, but there was no disciplinary identity for computing profes-

sionals either. In the next section, the difficulties of forming a new discipline are ex-

amined.

437Sammet, 1991

249

Section Overview

I began this section by noting that I would offer my interpretations about the so-

ciocultural influences in the development of early computing; about the interrela-

tions between the different technological, institutional, professional, and social as-

pects of computing; about the possible contingencies in the development of comput-

ing; and about the technological momentum of computing technology. In this sub-

section I summarize my interpretations of the development of early computing tech-

nology.

The role of interdisciplinarity was crucial in the shift from electromechanical com-

putation to electronic computation438. I suggested that a combination of mutually in-

commensurable crafts and sciences creates an ontological, epistemological, and

methodological anarchy, which inhibits dogmatism and thus allows for unexpected

directions of development. In addition to interdisciplinarity, a techno-enthusiastic

culture was one of the main reasons for the U.S.'s success in terms of the develop-

ment of early computing machinery439. Culture has been argued to affect the amount

of funding a field gets, the valuation of theory and practice, the foci of research, the

popularity of technological disciplines, and public support440, which are all central to

development of a field.

Historians of computing note rather unanimously that the best people in the field of

automatic computation became associated with the Moore School because of the

U.S. Army's increased need for automatic computation, which was due to the Second

World War441. The U.S. Army took a gamble on an untested technology that no

private investor would have taken in a normal situation—especially when the un-

tested technology was opposed by the established scientific community442. Note that

the scientific community has not always been a facilitator of progress; for instance,

the scientific establishment resisted ENIAC, which is now considered to be one of

the most important milestones in the history of electronic computing. Interestingly,

438For instance, Puchta, 1996; Williams, 1985:p.209; Bowles, 1996; Naur, 1992:pp.596-597; and Campbell-Kelly
& Aspray, 2004:pp.52-59, have noted a number of fields that have contributed to the development of early com-
puting.

439Bowles, 1996

440Campbell-Kelly & Aspray, 2004:p.19; Flamm, 1988:p.136; Bowles, 1996; Aspray, 2000.

441Marcus and Akera, 1996; Flamm, 1988; Campbell-Kelly & Aspray, 2004; Williams, 1985

442Marcus and Akera, 1996; Pugh and Aspray, 1996; Winegrad, 1996; Croarken, 1992

250

economic aspects did not seem to play a decisive role in the birth of electronic com-

puting—human “computers” were cheap to hire, and electronic computers were de-

veloped despite the costs, rather than their potential for cost-saving443. Two wars—

the Second World War and the Cold War—fueled an unprecedented scientific mo-

bilization of the U.S., which in turn resulted in massive investments, innovations,

and developments in high-technology444.

The work headed by Eckert and Mauchly (and von Neumann) shows characteristics

of the mangle of practice: When the ENIAC was being built, the developers of ENI-

AC had (1) a theory of computation (Turing’s formalization of computation445), (2) a

theory of how electronic computers should work, and (3) ENIAC itself. During the

construction of ENIAC both the theory of how electronic computers should work

and ENIAC itself were revised and revamped many times, but finally Eckert,

Mauchly, and von Neumann came up with the concept of the stored-program com-

puter446 (However, the stored-program computer took several more years and a num-

ber of modifications of the original plan before it became complete).

After the Second World War, the stored-program idea and EDVAC designs were,

against all odds, declassified447, which meant that academics around the world were

able to build on the work done at the Moore School. In Britain, the example of ED-

VAC, combined with favorable social and economic conditions as well as risk-tak-

ing, led to the construction of the first stored-program computer, EDSAC, and the

world’s first office computer LEO I448. Because there was great uncertainty about

the research directions and paradigms of electronic computing, the first twenty years

of electronic computing saw a great variety of fundamentally different competing

technologies449.

My interpretation is that in the early years of computing, computing technology did

not yet bear the characteristics of technological determinism, but that there was an

uncertainty about research directions and design practices. Most computing ma-

443Campbell-Kelly & Aspray, 2004:p.141.

444See Flamm, 1988:p.2. However, Aspray denied that World War II had a uniformly positive effect on computing
in the U.S. (Aspray, 2000).

445Turing, 1936

446Campbell-Kelly & Aspray, 2004:pp.76-83.

447Pugh and Aspray, 1996; Williams, 1985:pp.287-296; Winegrad, 1996.

448Aris, 2000; Ferry, 2003; Land, 2000; Williams, 1985:p.333.

449Williams, 1985

251

chines that were built during the first ten years of digital computing were different

from each other in their architecture, design, constraints, or working principles. It

seems that computing technology gained technological momentum quite slowly, and

it is my interpretation that only the birth of the first unified computer architecture,

the IBM System/360 in 1964450, was a clear signal of technological determinism in

the computing machinery.

The IBM System/360 series introduced a computer architecture that was common to

a family of computers—computers from small business machines to large scientific

machines were run on the same operating systems, using one set of software451. Be-

fore the System/360, all computers ran different software packages, so compatibility

was hard to achieve. Campbell and Aspray noted the following gearing effect: Giv-

en m different computer models, each requiring n different software packages, a total

of m×n programs had to be developed and supported before the unified

System/360452.

The American universities that entered the field of computing earlier than other uni-

versities gained some advantages, but also some disadvantages, because of their

early entry453. The studies of the competition between Harvard, Princeton, MIT,

Columbia, and University of Pennsylvania suggest that success and failure in the

field of computing resulted from a combination of military-industrial-academic rela-

tionships, institutional decisions, academic reputations, interpersonal skills, uni-

versity policies, politics, and geo-economic location454. Also, the quality of leader-

ship affected the success of competing research groups455. And because there was no

common understanding of how computers should be built, pioneering groups faced a

number of technological and theoretical dead-ends that the groups that followed

were able to avoid456.

The first programming languages were shunned by the computing establishment but

eventually some people, most notably Grace Hopper and John Backus, succeeded in

450Campbell-Kelly & Aspray, 2004:pp.122-129; Silberschatz et al., 2002pp.801-802.

451Silberschatz et al., 2002pp.801-802.

452Campbell-Kelly & Aspray, 2004:pp.122-129.

453Aspray, 2000

454Marcus and Akera, 1996; Aspray, 2000; Williams, 1985:pp.242, 299-301; Flamm, 1988:pp.50-62; Campbell-
Kelly & Aspray, 2004:pp.100-101; Pugh and Aspray, 1996; Winegrad, 1996; Cohen, 1998.

455Williams, 1985:pp.242, 350-353; Campbell-Kelly & Aspray, 2004:p.64; Aspray, 2000.

456Aspray, 2000

252

selling the concept of programming languages to administrative, managerial, and

technical people by arguing that programming languages would result in economic

savings457. Although the creation of FORTRAN had the characteristics of social con-

struction458, FORTRAN gained technological momentum as it matured, and it soon

turned into an institution itself. FORTRAN was followed by programming languages

much more elegant than FORTRAN, but the newcomers were too late: FORTRAN became

the de facto standard of computing for a long time459.

Although high-level languages changed the face of computing, the shift from ma-

chine-language programming to high-level language programming constitutes

neither a revolution nor a beginning of a paradigm in the Kuhnian sense (see pp.-

241). I argue that the shift from an era of pre-science to a scientific paradigm

happened with the advent of stored-program computers. This paradigm might be

called, for instance, the stored-program-paradigm (not the “von Neumann-para-

digm” because a historically accurate name would also have to acknowledge the in-

fluences of Eckert, Mauchly, and Turing). The new programming paradigms such

as object-oriented programming are not paradigms proper (in the Kuhnian sense),

because new programming paradigms do not render pre-existing programming

paradigms obsolete. If anything, new programming paradigms should be called new

programming viewpoints or new programming approaches. If there is a program-

ming paradigm in the Kuhnian sense of the word paradigm, it is the stored-pro-

gram-paradigm, and that paradigm has persisted for almost sixty years now. If there

is to be a paradigm shift in the Kuhnian sense in programming languages, the new

paradigm will not merely offer another perspective of the stored-program-architec-

ture, but it will replace the stored-program-architecture or make all other program-

ming languages redundant.

A number of non-technological factors can be attributed to the development of early

electronic computing. The factors that have been found to steer the development of

computing include aspects of organizations (institutional sponsors, profit-making

companies, universities, government branches), people (characters, individual’s

backgrounds, motivations—as well as quarrels, visionaries, opinion leaders, reputa-

457Sammet, 1969:pp.4, 143; Bright, 1984; Backus, 1981:pp.26-30.

458Sammet, 1969:p.144; Bright, 1984; Wegner, 1976b; Campbell-Kelly & Aspray, 2004:p.170.

459Rosenblatt, 1984; Campbell-Kelly & Aspray, 2004:p.169; Sammet, 1969:pp.176-177; Wegner, 1976b.

253

tions, contacts), contingencies (security lapses, coincidental convergences of com-

mon interests, misunderstandings, the snowball effect), interdisciplinarity (electrical

engineering, mathematics, logic, theoretical and experimental physics, weapons re-

search), and culture (techno-enthusiasm, practicality, techno-utopianism, risk-taking,

political situation, regulations, policies, élitism).

Although the above-mentioned non-technological factors can be attributed to the de-

velopment of computing, every source text in the history of computing included in

this thesis also discusses technological or theoretical aspects of computing. No mat-

ter what motivations, interests, or contingencies have affected the development of

computing, the technological or theoretical aspects of computing affected the devel-

opment of computing too. However, it seems that sociocultural factors had a

stronger impact in the early development of electronic computing than in the later

developments. It can be said that when computing as a field matured, computing

technologies gained technological momentum.

The early history of electronic computing shows two signs of an increase of techno-

logical momentum, that is, two signs of a shift from social construction towards

technological determinism. As knowledge about computing grew, computing sys-

tems also became more complex and more interdependent. Firstly, in the early days

of computing there was uncertainty about the directions of computing, but as know-

ledge about computing accumulated, researchers increasingly followed the path set

by earlier researchers. This is traditionally called the growth of knowledge.

Secondly, early designers in the field of computing were able to start with a tabula

rasa, but as the number of computer installations grew, the design decisions of com-

puting had to be increasingly based on pre-existing systems. This is, using Hughes’

terms, an example of an increase in technological determinism, or a growth of tech-

nological momentum460.

460Hughes, 1994

254

3.4.The Creation of a Discipline

In our early days we were, in part, evangelists with a message about

computing machinery. Whatever our own contributions may have been,

the gospel is certainly widespread at the present time.461

The history of computing as an academic discipline and as a profession is not short-

er than the history of electronic computing itself. The first societies for profession-

als in automatic computing were founded at the same time that ENIAC was un-

veiled. It is difficult to trace the earliest discussions of computing as a distinct dis-

cipline, but in the April 1958 issue of Communications of the ACM (CACM) the edit-

ors of DATA-LINK asked the editor of CACM,

[1958] What is your reply when someone asks your profession? Computing

Engineer? Numerical Analyst? Data Processing Specialist? To say “Com-

puter” sounds like a machine, and “Programmer” has been confused with

“Coder” in the public mind (if your particular segment of the public knows

what you are talking about at all!)462

The editors of DATA-LINK then asked for suggestions for the name of the discip-

line, noting that a brief, definitive, and distinctive name would help the profession to

be widely recognized (yet they do not further specify the profession). After these

early attempts to characterize the discipline of computing, there has been a dizzying

amount of debate about the form and content of the field. In this section, I take a

look at the changes in computing as a discipline since the 1958.

The reason for tracing the changes of computer science throughout its disciplinary

history is that it is necessary for a philosopher, sociologist, or historian of science to

make a distinction between and understand a number of different aspects of science

and technology463. In social studies of computer science changes in computing are

situated in their scientific, technological, social, historical, cultural, linguistic, polit-

ical, economic, institutional, personal/individual, and other sociocultural contexts.

In this section I discuss the effect of those contexts on the development of computer

science.

461The president of the ACM, Alston S. Householder, in his 1955 presidential address to the ACM, published in the
January 1956 issue of Journal of the ACM (Householder, 1956).

462The editors of the DATA-LINK (Los Angeles ACM Chapter Newsletter) in Letters to the Editor, April 1958 is-
sue of Communications of the ACM.

463cf. Bunge, 1998:p.407.

255

The subsections in this section are arranged chronologically. The accounts of com-

puting as a discipline are, for the most part, arranged chronologically. In this sec-

tion, all full quotations begin with the year of the quotation in brackets (e.g., [1976]).

This convention is adopted to help the reader with the timeline of this section. The

first subsection discusses the birth of computing as an academic and professional

field; the second subsection discusses the diversification of the field; the third sub-

section discusses recent definitions of the field; and the fourth subsection character-

izes and discusses the methodologies of computer science.

The focus in this section is not explicitly on computing in the U.S., although impli-

citly there is an American bias because most of the citations are from U.S.-based

publications, such as CACM and IEEE Computer, and because the language in this

dissertation is English. Then again, it can be argued that the U.S. has been central to

the development of computing from the 1950s onwards. In addition, the ACM and

the IEEE Computer Society are the two largest societies for professionals in the field

of computing, and CACM and IEEE Computer are the flagship publications of these

societies464. Other journals that have been used as sources include Science, Americ-

an Mathematical Monthly, Journal of the ACM, Theoretical Computer Science,

Datamation, BIT, plus a number of other journals and books.

Most of the articles included are written by computer scientists, but the target audi-

ences vary. Although many of the articles are addressed to computer scientists,

some are addressed to mathematicians465, and some to the whole scientific com-

munity466.

Because curricula specify what competent or qualified professionals should know

and what they should be able to do, official curricula offer one viewpoint of the dis-

cipline at each era. Therefore I include a number of academic computing curricula

in the sources in this section. It should be noted that the curricula included are writ-

464Communications of the ACM writes, “Communications of the ACM is the flagship publication of the ACM and
one of the oft-cited magazines in the computing field”. (http://www.acm.org/pubs/cacm/about_cacm/)
(accessed September 27th, 2006). IEEE Computer writes that it is “The flagship magazine of the IEEE Computer
Society”. (http://www.computer.org/computer/) (accessed September 27th, 2006). The website of CACM
reports the readership to be about 85,000 and the website of IEEE Computer reports its readership to be about
86,000.

465Knuth, 1974; Dijkstra, 1974.

466Newell et al., 1967

256

ten by computer scientists, not scholars in the field of education, and that I look at

the various curricula as a computer scientist, not as an educator.

The reader should take note of the bias that the selection of source material causes.

Although the publications above belong to the most oft-quoted and most widely cir-

culated journals and magazines in the field, it is not certain if they are representative

of the discussion in the field at large. For instance, the readership of the publications

above is highly educated, and just belonging to their readership indicates an interest

in certain computing-related issues467. The reviewing process creates a double bias

in the publication of articles. Firstly, some screening-out may take place implicitly

because the authors know that there is a double-blind review process, and secondly,

the review process itself often follows a preordained policy set by the publication

board. This double bias is implicit in Langon Winner's criticism of social construc-

tionism—From Winner's point of view it would be an error to take the published,

public discussions and other social activities of “relevant actors”, analyze them, and

argue that one has unpacked or uncovered the whole phenomenon468.

Winner argued that the visible, surface phenomena are just the tip of the iceberg. He

wrote that focusing on “relevant actors” often disregards those dynamics of technos-

cientific change that are not revelead by studying surface (public) phenomena469.

However, I am not offering a comprehensive picture of the development of computer

science but I am taking a number of interesting cases that demonstrate some aspects

of the debate about computer science. In sampling terms, my choice of the articles is

a purposive sample: I have attempted to select an array of interesting accounts of

computing as a discipline, and my aim is to offer a good variety of viewpoints of

computer science.

467For instance, IEEE Computer and CACM report that about 65% of their readers hold at least a M.Sc degree.

468Winner, 1993

469Winner, 1993

257

Struggling for Status

Programming is one of the most difficult branches of applied mathematics;

the poorer mathematicians had better remain pure mathematicians.470

The same year ENIAC was unveiled,

1946, the first society for computing

professionals, the Subcommittee on

Large-Scale Computing of the Americ-

an Institute of Electrical Engineers

(AIEE) was founded471. Five years

later, the Institute of Radio Engineers

(IRE) formed its Professional Group on

Electronic Computers. Then, in 1963

the AIEE and IRE merged, forming

today's Institute of Electrical and Electronics Engineers, the IEEE. This merging

also led to the IEEE Computer Society. The Association for Computing Machinery

(ACM) was founded 1947, and the specialization of IEEE and ACM emerged early

in their history: The IEEE Computer Society focuses on standards (IEEE) and hard-

ware, whereas the ACM focuses on theoretical computer science and applications472.

Although the early professional societies of AIEE, IRE, and ACM were clearly fo-

cused on computing, it is difficult to say if the early professionals in those societies

considered themselves primarily as computing professionals or perhaps engineers or

mathematicians who focus on computing. For instance, in some of the articles in the

early issues of Journal of the ACM (JACM) the professional identity of the people

who work with computing is still unclear473.

Journal of the ACM was first published in 1954, and in the inaugural issue the pres-

ident of the ACM, Samuel B. Williams, sketched the development of ACM474. Wil-

liams noted that the membership of the Eastern Association for Computing Ma-

chinery, renamed ACM in January 1948, had grown quickly from a 78-member in-

470Dijkstra, 1975b

471Wood, 1995

472Williams, 1954; Householder, 1956

473See Williams, 1954; Householder, 1956; Householder, 1957; Carr, 1957.

474Williams, 1954; a more thorough discussion on the early history of the ACM can be found in Alt, 1962.

258

IN THIS SECTION:

� How was computing as an academic and

professional field born?

� What controversies were there in the early

years of the field?

� How was computer science as a discipline

born?

� What were the main controversies in the de-

bate about computing as a discipline?

formal group of people interested in computing (May, 1947) into a 1200-member in-

ternational group of people (January, 1954). In the early years of the ACM there

were already debates about whether the ACM should concern itself with hardware or

theory475. Communications of the ACM was established in 1958 to be a forum for

timely information in the field, whereas Journal of the ACM was for articles less

temporal by nature476.

Who Is a Computer Professional?

In the early 1950s, the disciplines that are known today as computer science and

software engineering existed only as a loose association of institutions, individuals,

and techniques477. According to Gibbs and Tucker, early academic programs in com-

puter science (even though they were not called that yet) were of two types478: One

type of academic programs involved short non-credit programming courses, offered

by college and university computer centers, for students in the scientific disciplines.

The other type of academic programs were graduate programs in computer science,

which emerged in selected large universities that had significant research interests in

computing. The programs offered were diverse in content and standards.

Since the late 1950s479 there has been debate over the qualifications required of a

computing (or computer) professional. The questions asked are, for instance, “Who

qualifies as a computing professional, with whose accreditation, having exactly how

much experience, knowing which areas, having what kind of skills, and belonging to

which organization?”. The seemingly straightforward debates about professionalism

in the diverse field of computing are actually complex confrontations between vari-

ous actors480. When the stored-program digital computers (programmable com-

puters) emerged in the early 1950s481, the debate was whether computing is a re-

spectable scientific field or if it is an applied science—a branch of engineering. For

example, Edsger Dijkstra stated in his 1972 Turing Award Lecture,

475Householder, 1957

476Bauer et al., 1959

477Ensmenger, 2001

478Gibbs and Tucker, 1986

479Ensmenger, 2001. See, e.g., Denning, 2004; Lethbridge, T.C., 2000; Pour et al., 2000 of recent debate

480Ensmenger, 2001

481Although the first stored-program computer to be conceptualized was EDVAC, described by von Neumann in
1945, it was not operable until 1952 (Aspray, 2000). EDSAC and BINAC were both run in 1949.

259

[1972] [In 1952] I had to make up my mind, either to stop programming and

become a real, respectable theoretical physicist, or to carry my study of

physics to a formal completion only, with a minimal effort, and to become

..., yes, what? A programmer? But was that a respectable profession?

After all, what was programming? Where was the sound body of knowledge

that could support it as an intellectually respectable discipline?482

Dijkstra's statement can, in part, explain his lifelong aspirations to formalize com-

puter science. If Dijkstra held that computer science is second to theoretical physics

because computer science lacks the theoretical, formal body of knowledge that phys-

ics has, then it is only natural that Dijkstra aspired to elevate the status of computer

science by formalizing the core knowledge of computer science.

During the last years of the 1950s, the terminology in the field of computing was

discussed in the Communications of the ACM, and a number of terms for the practi-

tioners of the field of computing were suggested: turingineer, turologist, flow-

charts-man, applied meta-mathematician, applied epistemologist483, comptologist484,

hypologist485, and computologist486. The corresponding names of the discipline were,

for instance, comptology, hypology, and computology. Later Peter Naur suggested

the terms datalogy, datamatics, and datamaton487 for the names of the field, its prac-

titioners, and the machine, and recently George McKee suggested the term com-

putics488. None of these terms stuck, but I take the discussion about the name of the

field as a clear indicator that by the turn of the 1960s the search for a disciplinary

identity had begun.

Early Definitions

As the field matured, and as model curricula and textbooks were developed, the pro-

grams at various universities increasingly came to resemble one another489. Al-

though a common agreement on the content of the field developed, throughout the

482Dijkstra, 1972

483Weiss & Corley, 1958

484Correll, 1958

485Zaphyr, 1959

486The December 1958 issue of DATA-LINK attributes the term computology to Edmund C. Berkeley. The editors
write, “We like the name "Computology" for our profession, as suggested by E.C. Berkeley in the November is-
sue of COMPUTERS AND AUTOMATION. A member of the profession would therefore be a "Computologist."”

487Naur, 1966

488McKee, 1995

489Aspray, 2000

260

1960s computer specialists continued to wonder at the “almost universal con-

tempt”490 (or at least “cautious bewilderment and misinterpretation”491) with which

programmers were regarded by the general public492. If there was an image of com-

puting, it seems to have been somewhat negative493. In the November-December

1959 issue of Datamation, the leading periodical of the era, Herb Grosch was con-

cerned that information processing was being defined narrowly because it is “as

broad as our culture and as deep as interplanetary space”494.

In 1967 computer science as a term was still quite new (for instance, the first depart-

ment of computer science was established at Purdue University in 1962495). In the

1960s professors from fields other than computer science often asked, “what exactly

is computer science?”. Three prominent computer scientists—Allen Newell (1927-

1992), Alan J. Perlis (1922-1990), and Herbert A. Simon (1916-2001) gave a public

answer. They elaborately defended computer science in an article published in the

September 1967 issue of Science;

[1967] Wherever there are phenomena, there can be a science to describe

and explain those phenomena. Thus, the simplest (and correct) answer to

“What is botany?” is “Botany is the study of plants”. And zoology is the

study of animals, astronomy the study of stars, and so on. Phenomena

breed sciences.

There are computers. Ergo, computer science is the study of computers.

The phenomena surrounding computers are varied, complex, rich. [...]

Computer science is the study of the phenomena surrounding computers.496

Newell et al.'s definition is clearly a descriptive one (i.e., it describes what profes-

sionals, researchers, and teachers actually do). It also leans towards the empiricist

tradition because it emphasizes knowledge creation from description and explana-

tion. C. Wright Mills has given a similar argument that social science is defined by

what duly recognized social scientists do and have done497. Richard Hamming

(1915-1998) pointed out the difficulty of defining fields precisely when he wrote

490C.J.A., 1967

491Datamation, 1962

492Ensmenger, 2001

493C.J.A., 1967; Datamation, 1962; Ensmenger, 2001

494Grosch, 1959

495Rice and Rosen, 2004

496Newell et al., 1967

497Mills, 1959:p.19.

261

that “Mathematics is what mathematicians do.” followed by “Mathematicians are

people who do mathematics.”498.

Despite its eloquence, Newell et al.'s definition is criticized as being a circular defin-

ition that seems flippant to outsiders499. Nonetheless, the definition has been widely

quoted ever since500. Since the computer at that time was—and still is—a novel and

complex instrument, it cannot be said to be subsumed under any other science as an

instrument (unlike instruments such as the electron microscope or the spectrometer).

Newell et al. noted that the study of computers does not lead to user sciences, but to

the further study of computers. They continued that the computer by this definition

is not just an instrument but a phenomenon as well, requiring description and explan-

ation—and phenomena define the focus of the science, not its boundaries501. Note

that in Newell et al.'s definition, the boundaries form around the computer, not com-

puting.

Although the computer is not an instrument of one single field, it does work as an in-

strument for numerous sciences. The development of computer hardware and soft-

ware—especially nowadays—is often not an end in itself. Thus, from the academic

view of computer science, a question has been raised: “Of what use is computer sci-

ence in the real world?”502. This question could be answered in the spirit of Newell

et al.'s definition: If computer science is the study of the phenomena surrounding

computers, then the more instrumental uses the computer has, the more diverse com-

puter science is. Consequently, the more instrumental uses the computer has, the

more use computer science has in the real world. Be that as it may, Newell et al.'s

definition inevitably includes many cases that most people would not consider to be

computer science503. If one sticks to Newell et al.'s definition and reads it loosely,

today essentially everything could be considered computer science.

498Dijkstra, 1987; Hamming, 1969

499Denning et al., 1989

500See e.g., Knuth, 1974, Wegner, 1976, and McGuffee, 2000 among numerous others.

501Newell et al., 1967

502MacKinnon, 1988

503McGuffee, 2000

262

The Art and Science of Processing Information

George Forsythe (1917-1972)—whom Donald Knuth argued to be responsible for

the rapid development of computer science in the world's colleges and universities

more than anyone else504—wrote in the January 1967 issue of CACM,

[1967] I consider computer science, in general, to be the art and science of

representing and processing information and, in particular, processing in-

formation with the logical engines called automatic digital computers. [...

A] central theme of computer science is analogous to a central theme of en-

gineering science—namely, the design of complex systems to optimize the

value of resources.505

[1968] Computer science is at once abstract and pragmatic. The focus on

actual computers introduces the pragmatic component: our central ques-

tions are economic ones like the relations among speed, accuracy, and cost

of a proposed computation, and the hardware and software required. The

(often) better understood question of existence and theoretical computabil-

ity—however fundamental—remain in the background. On the other hand,

the medium of computer science—information—is an abstract one. The

meaning of symbols and numbers may change from application to applica-

tion, either in mathematics or in computer science. Like mathematics, one

goal of computer science is to create a basic structure in terms of inherently

defined concepts that is independent of any particular application.506

Forsythe brought a number of important aspects of computing to light. These as-

pects, which I discuss below, are the dichotomy between arts and science, the activit-

ies of computer science, real-world constraints, and the juxtaposition of practice and

theory.

First, Forsythe noted the dichotomy between art and science. Although Forsythe has

not used art in the context of computing, another famous computer scientist, Donald

Knuth, contemplated the term in his Turing Award lecture507. In Knuth's words,

“Science is knowledge which we understand so well that we can teach it to a com-

puter; and if we don't fully understand something, it is an art to deal with it.” Refer-

ring to C.P. Snow (1905-1980), Knuth described the scientific approach with terms

such as logical, systematic, impersonal, calm, and rational, and described the artistic

504Knuth, 1972b

505Forsythe, 1967

506Forsythe, 1968

507Knuth, 1974c

263

approach with terms such as aesthetic, creative, humanitarian, anxious, and irra-

tional508. Knuth wrote, “It seems to me that both of these apparently contradictory

approaches have great value with respect to computer programming.”509 Richard

Hamming also noted the lack of insight into the artistic aspects of computing in the

January 1969 issue of the Journal of the ACM;

[1969] To parody our current methods of teaching programming, we give

beginners a grammar and a dictionary and tell them that they are now great

writers. We seldom, if ever, give them any serious training in style.510

One must remember that neither science nor art are solely positive categories. Paul

Feyerabend wrote that terms such as science and art are temporary collecting-bags

containing a great variety of products, some excellent, others rotten, and all of them

characterized by a single label511. But collecting-bags and labels, Feyerabend wrote,

do not affect reality. They can be omitted without changing what they are supposed

to organize. Of course, Knuth never implied that all science and all art would be

equally valuable. Knuth's notions that art can be transformed into science and that

theory improves artistry512 are important. Art and science are not rigid labels or col-

lecting-bags—ideas can move between art and science.

Second, Forsythe noted that representing and processing information are the activit-

ies of computer science. He also distinguished between a broad sense (general) and

a narrow sense (particular) of these two activities. My interpretation of Forsythe is

that in the broad sense, representing refers to data representations or data structures,

be they trivial or complex, or be they intuitive (art) or structural-categorical

(science). Furthermore, I assume that processing refers to informal (art) or formal

(science) ways of manipulating those representations of information (algorithms). In

my interpretation, Forsythe's narrow sense of the concepts confines these actions to

those achievable with a digital computer.

508Note that neither of these definitions (art nor science) is adopted for this thesis because of their apparent flaws.
The characterization of science as something that can be taught to a computer is definitely too narrow, and the
characterization of art as anxious and irrational does not do much justice to art (Knuth did not claim it to do
much justice to art, either). The text Knuth refers to is Snow, 1964.

509See Knuth, 1974c.

510Hamming, 1969:p.10.

511Feyerabend, 1994

512Knuth, 1974c; Knuth, 1991. Dijkstra, on the other hand, noted only one direction to this: transforming the Art of
Programming into the Science of Programming (Dijkstra, 1968b).

264

Third, Forsythe foregrounded design and resources.513 Forsythe's computer science

is not situated in the ideal, infinite world of mathematics, but it is situated within the

finite boundaries of available resources. Design, as defined by Denning et al., is

rooted in engineering and deals with constructing systems or devices to solve a given

problem514. Design, as an engineering activity, has to cater not only to material re-

sources but also to human constraints. In addition, whereas the Turing Machine

does not have space constraints515, Forsythe's version of computing takes into ac-

count the limits of computing resources of actual computers.

Fourth, Forsythe recognized that there are abstract and pragmatic sides to computer

science. However, in Forsythe's language the abstract side does not refer to the the-

ory of computation as one would expect. Forsythe explicitly pushed the theory of

computation to the background. Forsythe's abstract side to computer science is in-

formation (i.e., symbols and numbers). When Forsythe noted that one task of com-

puter science is to create an application-independent symbol system, he definitely

took sides with the reductionist information theorists. The reductionists (or inher-

ent-structurists as Hacking516 called them) believe that all kinds of information are

ultimately reducible to some Ur-concept, “the mother of all instances”517. Note that

there are plenty of opposing, nominalist-siding viewpoints to information, and even

Claude E. Shannon (1916-2001), who laid the foundations of the mathematical the-

ory of communication, noted that it is hardly to be expected that a single concept of

information would satisfactorily account for the numerous possible applications of

the theory of information518. In fact, Shannon’s use of the term information is very

specific—from Shannon’s engineering viewpoint, the meaning of information was

not relevant at all519.

Although Forsythe's definitions are unorthodox and practical in some aspects, such

as pushing the theory of computation to the background, his definitions are also very

positivist or structurist in other aspects, such as aiming at universalist symbol sys-

tems in information. On the whole, Forsythe offered an early definition of computer

513Forsythe wrote, “...the design of complex systems to optimize the value of resources” (Forsythe, 1967).

514Denning et al., 1989

515See Turing, 1936–his example machines yield infinitely long results. See also Turing, 1950, where Turing expli-
citly talks about infiniteness of the Turing Machine.

516Hacking, 1999

517Floridi, 2004b

518Shannon, 1950, as reprinted in Sloane & Wyner, 1993:pp.180-183.

519Shannon, 1948, as reprinted in Sloane & Wyner, 1993:pp.5-83.

265

science that tries to accommodate both the pragmatic and the abstract sides of com-

puter science under the same umbrella term, instead of dividing computing into the

fields of science and engineering (or into abstract and concrete, or into pure and ap-

plied).

An early characterization of programming by an authoritative figure in computing

can be found in Donald Knuth's 1968 classic The Art of Computer Programming

Vol. 1:, which states, “The notion of an algorithm is basic to all computer program-

ming.” An algorithm is a precisely defined sequence of rules that tells one how to

produce specified output information from given input information in a finite num-

ber of steps.520 Knuth's seminal 1968 book is a prime example of the rationalistic re-

search tradition, but six years afterward, in 1974, Knuth took another viewpoint to

computer science in the April 1974 issue of American Mathematical Montly, when

he referred to the Newell et al.'s definition from 1967. Knuth wrote,

[1974] When I say that computer science is the study of algorithms, I am

singling out only one of the 'phenomena surrounding computers', so com-

puter science actually includes more. I have emphasized algorithms be-

cause they are really the central core of the subject, the common denomin-

ator which underlies and unifies the different branches.521

The notion of algorithm is indeed central to programming, and Knuth's 1974 argu-

ment “computer science is the study of algorithms” seems to hold still today in many

characterizations of computer science. For instance, each of Denning's thirty core

technologies of computing522 (see Figure 7 on page 69) includes studies of al-

gorithms in one way or another.

The Official Birth of Computer Science

The ACM had begun working on a recommendation for academic programs in com-

puter science as early as 1962 (the same year as Purdue University launched the first

study program actually called computer science523). The ACM Curriculum Commit-

tee became an independent committee of the ACM in 1964, and released their first

520Knuth, 1968:pp.1-7.

521Knuth, 1974

522Denning, 2003

523Rice and Rosen, 2004

266

draft in 1965524. The final version was completed in 1968, and it characterized the

subject areas of computer science as follows:

[1968] The subject areas of computer science are grouped into three major

divisions: “information structures and processes”, “information processing

systems” and “methodologies”.525

Computer science, according to this view, is the study of information structures526.

A modern computer scientist would probably see this definition as suitable for the

academic discipline of information systems. Nevertheless, this definition can be read

either as a normative framework (i.e., aiming at defining the discipline by listing the

topics computers scientists should be doing) or a descriptive one (i.e., describing

what computer scientists actually do). The report describes and discusses twenty-

two courses that were found in the computer science curricula at universities in the

U.S., and the report uses two dozen pages of suggested readings for these courses.

In the '68 report, the ACM people clearly take some distance to subjects they believe

should not belong to academic computer science. They wrote:

[1968] ...these recommendations are not directed to the training of com-

puter operators, coders, and other service personnel. Training for such po-

sitions, as well as many programming positions, can probably be supplied

best by applied technology programs, vocational institutes, or junior col-

leges.527

Similarly to Knuth's 1968 definition, the ACM's 1968 definition reflects a mathemat-

ical research tradition since algorithms and information structures are two abstrac-

tions of the phenomena that computer science is concerned with528. But unlike

Knuth, the ACM definition excludes computer-related work that is not considered

academic, such as programming. At the time this position was already criticized for

being too academic, theoretical, and narrow529. The critics demanded a more practi-

tioner-oriented view, hands-on laboratory work, and inclusion of other computer-re-

lated areas into computer science education (this issue is discussed later in this thes-

is).

524Conte et al., 1965

525Atchison et al., 1968

526Wegner, 1976

527Atchison et al., 1968, underlining added.

528Wegner, 1976

529Wishner, 1968; Hamming, 1969

267

In the June 1974 issue of CACM, the president of the ACM at the time, Bernard A.

Galler, announced that the National Science Foundation had passed the following

resolution:

[1974] Resolved that the Computer Science and Engineering Advisory Pan-

el of NSF affirms the distinction of Computer Science from all other science

or engineering disciplines and recommends that the National Science

Foundation make this manifest in its statistical and programmatic activit-

ies.530

This resolution was greeted as an important step, because it was expected that the

distinction of computer science as an autonomous discipline would increase funding,

give computer science its own student and research fellow quotas, and grant com-

puter science its own representation on the National Science Board and similar

policy-making committees and boards531.

Neither the theoretical camp nor the practical camp in computer science were undi-

vided. There existed a clear dichotomy within the ranks of mathematically oriented

computer scientists because the mathematical aspects of computer science include

not only computability and complexity—which touch upon logic, combinatorics, and

probability theory—but also include numerical analysis, which entails intensive

computations532. The practitioners' side was even more scattered—the practical sides

of computer science included, for instance, architectural design, coding, computer

engineering, and program design.

Lotfi A. Zadeh, who has been credited as being the father of fuzzy logic, wrote in

1968 that computer science consists of subjects which belong to computer science to

different degrees533. In Zadeh’s opinion, fuzzy sets of topics that play a central role

in computer science, such as programming languages, operating systems, and data

structures, have almost full containment in the fuzzy set of computer science. Those

topics that are more peripheral, such as mathematical logic, have “less containment

in computer science”. Zadeh’s (sets of) topics of computer science are grouped in

Figure 21 according to their containment in (the set of) computer science534.

530Galler, 1974

531Galler, 1974

532Gal-Ezer and Harel, 1998

533Zadeh, 1968

534Adapted from Table 1, Containment Table for Computer Science, in Zadeh, 1968.

268

The topics of computer science on the innermost circle of Figure 21 are those that

Zadeh regarded as having a “degree of containment equal to unity”. Zadeh gave

these topics a degree of containment equal to 1 (on a scale from 0 to 1). The topics

that Zadeh graded to have a degree of containment in computer science equal to 0.9

are grouped on the second innermost circle in Figure 21. The topics on the third,

fourth, and fifth circles have degrees of containment equal to 0.8, 0.7, and 0.6, re-

spectively.

There is substantial overlap between Zadeh’s list of computing topics from the year

1968 and Denning’s core technologies of computing from the year 2003 (Figure 7,

page 69 of this thesis). Although the two lists are not fully comparable, because

Denning’s list consists of technologies whereas Zadeh’s list consists of topics, many

comparisons can be made. Many topics such as programming languages, operating

systems, and data structures are found in both Zadeh’s and Denning’s lists under ex-

actly same names, which implies that much of modern computer science was already

in place in 1968. However, analog and hybrid computers, found on Zadeh’s list, are

not even implicitly on Denning’s list. Furthermore, there are a number of new topics

on Denning’s list that are not even implicitly on Zadeh’s list—e-commerce, work-

flow, virtual reality, robots, software engineering, management information systems

(MIS), and human-computer interaction. Although much of computer science was

in place in 1968, the field has diversified substantially between 1968 and 2003.

269

Figure 21: CS Topics Grouped According to Their Containment in CS

Dynamic

programming

Computational

linguistics

Automata theory

Finite-state

systems

Programming

systems

Formal languages

and grammars

Programming

languages

Computer design

and organization

Data

structures Models of

computation

Operating

systems

Theory of

algorithms

AI and heuristic

programming

Discrete

mathematics

Combinatorics and

graph theory

Numerical

methods
Switching theory

Mathematical

programming

Analog and

hybrid computers

Computer

graphics

Digital devices

and circuits

Information

retrieval
Mathematical

logic

Information

theory

and

coding

Pattern

recognition

and

learning

systems

Shaping the Public Image of Computing

In his 1968 Turing Award lecture, Richard Hamming stated his occasional frustra-

tion with the debate around “What is computer science currently? What can it de-

velop into? What should it develop into? What will it develop into?”535. Still he

considered it very important not to ignore the discussion over definitions of comput-

ing to just “get on with doing it”, and he brought to light a very important point—the

point that the public image of a science affects how a science is formed;

[1969] the picture which people have of a subject can significantly affect its

subsequent development. Therefore, although we cannot hope to settle the

question definitively, we need frequently to examine and to air our views on

what our subject is and should become.536

In Hamming's sense of the term computer science, at the heart of computer science

lies a technological device, the computing machine. Without it, Hamming argued,

almost everything that computer scientists do would become idle speculation, hardly

different from that of the notorious Scholastics of the Middle Ages537. Hamming

noted that the work of computer scientists is guided by expenses, workload, and the

popular image of computer science (which also affects the amount of money granted

to science);

[1969] So much of what we do is not a question of can it be done as it is a

question of finding a practical way. It is not usually a question of can there

exist a monitor system, algorithm, scheduler, or compiler, rather it is a

question of finding a working one with a reasonable expenditure and ef-

fort.538

That is, in Hamming’s opinion, the theoretician’s question “Can there be x?” is less

frequent than the practitioner’s question “What is the most cost-effective way of

building x?”. Therefore, in Hamming's vision, the focus should not be on computa-

tion, but on the computer.

535Hamming, 1969

536Hamming, 1969

537Hamming, 1969. Scholastics relied on books by renowned scholars, studying them thoroughly, learning the the-
ories of the authorities to the letter. Scholastics' work relied solely on the books, not on developing their own
theories. In this mode of working there cannot be growth of knowledge, but the amount of knowledge can only
diminish or stay the same.

538Hamming, 1969, underlining added.

270

Hamming also brought forth an important point when he raised a question about the

distinction between undirected research and basic research. The point of the ques-

tion concerns what kind of activity is considered to be progressive research and what

is not. He wrote:

[1969] This brings me to another distinction, that between undirected re-

search and basic research. Everyone likes to do undirected research and

most people like to believe that undirected research is basic research. I am

choosing to define basic research as being work upon which people will in

the future base a lot of their work.539

The line between these two kinds of research is not always clear: “While one cannot

be certain that a particular piece of work will or will not turn to be something to be

built upon, one can often give fairly accurate probabilities on the outcome”540. Ham-

ming questioned the academic and professional skills of many of his contemporaries;

he argued that very few people are capable of doing basic research. Unfortunately,

Hamming did not define undirected research vis-à-vis basic research in any of his

articles available in the ACM Digital Library541, and the aforementioned definition is

ambiguous. However, the chain of Hamming's logic seems to be as follows: There is

some (probabilistic) criteria that can be used for measuring whether a research study

will turn out to be basic or not. So, one can predict whether his or her research study

will be basic research or not. Why do some people continue, then, doing research

that they know is undirected and will not help in building the scientific base? Be-

cause they cannot do basic research.

Regardless of whether Hamming's comment was actually meant in the way I inter-

preted it or not, one way of understanding the concepts of undirected research and

basic research is from the Kuhnian viewpoint. From Kuhn's point of view basic re-

search is a puzzle-solving activity, and undirected research is just unparadigmatic

non-research. Note that Kuhn was unequivocal in that no research can aim at unex-

pected results, not even research that aims at paradigm re-articulation. Hamming

may have taken a Kuhnian-kind of a point of view when he noted that the problem

solving method defines whether research is basic or undirected. If he did take the

539Hamming, 1969:p.10.

540Hamming, 1969

541A search in ACM Digital Library (Nov. 12, 2005) for “undirected research” produced two articles:
Denning, 1992 and Hamming, 1969. Denning used the term to refer to basic research.

271

Kuhnian point, his comment does not mean much—Hamming would be comparing

research to non-research. Yet, I think that the gist of this matter is not about whether

research is done within the area of normal science or not.

Rather, it seems to me that the term undirected research is an oxymoron. As an

idiom, the term undirected research has been widely used synonymously with non-

mission research, that is, basic academic research that is not driven by applica-

tions542, but this cannot be the sense in which Hamming used the term. Undirected

means most commonly having no object or purpose; not guided; having no pre-

scribed destination543. Furthermore, research means usually something like invest-

igation, inquiry, or study. All synonyms of research are about something, or of

something. There is no research that does not aim at something, be it theory-refine-

ment or exploring unknown phenomena. Research always aims at something, and

no research can aim at unexpected results (see footnote 174 on page 74 of this thesis).

I noted earlier that problem-solving, also of the scientific kind, has starting points

(premises), goals, and methodologies (see page 191 of this thesis). Respectively, if

all research aims at something, then Hamming's juxtaposition of basic research and

undirected research can be understood either as a criticism of free choice of starting

points, as a criticism of free choice of goals, or as a criticism of free choice of meth-

odologies. The Feyerabendian response to all three is roughly the same.

First, if science (as an institution) is rigid about the premises of research, it may

close its doors to valuable insights. Take, for instance, the insistence of the geo-

centric world view in the age of Copernicus. Second, if science (as an institution) is

rigid about the goals of research, it may insulate the scientific community from a

whole universe of important problems. Take, for instance, verification as the goal of

research versus explanation as the goal of research. If the goal of science is verifica-

tion, scientists can tackle a very different set of problems than if the goal of science

is explanation. Third, and similar to the second point, if science (as an institution)

delimits the methodologies of research to a number of approved ones, it may close

the doors to a number of important approaches and to whole fields of inquiry. Take,

for instance, a priori methodologies versus a posteriori methodologies as normative

accounts for research. The only approach to research that does not restrict progress

542See, e.g., Asner, 2004 in Grandin et al., 2004:pp.4-5; Denning, 1992; National Research Council, 1999:p.213.

543AHD, 2004

272

in any way is absolute freedom from any kinds of constraints. (Yet this does not

mean that freedom of constraints would further research the best, or that one should

not care about, for instance, the ethics of research.)

It is certain that there was a wide divergence of opinion on what computer science

was before the 1970s—and on what computer science should have become. There

were those who saw computer science as a mathematical science, separated from

mundane computing machines, then there were those who took computer science as

an engineering science, and finally there were those who wanted to see an interplay

of a variety of aspects of computing. At the turn of the 1970s, as computing ma-

chinery continued to spread to academic and business circles, the debate gained in-

tensity.

A Concern Over Dogmatism in Computing

In his 1970 Turing Award lecture, published in the April 1970 issue of Journal of

the ACM, Marvin Minsky expressed his concern about computer science's having an

obsession with form instead of content544. For instance, programming languages and

the theory of computation, Minsky argued, had an excessive preoccupation with

formalism: Minsky wrote,

[1970] To build a theory, one needs to know a lot about the basic phenom-

ena of the subject matter. We simply do not know enough about these, in

the theory of computation, to teach the subject very abstractly. Instead, we

ought to teach more about the particular examples we understand thor-

oughly, and hope that from this we will be able to guess and prove more

general principles.

[The] syntax [of programming languages] is often unnecessary. One can

survive with much less syntax than is generally realized. [...] What is a

compiler for? The usual answers resemble “to translate from one language

to another”. [...] For the future, a more ambitious view is required. Most

compilers will be systems that “produce an algorithm, given a description

of its effect.545

Minsky's concern was related to his claim that “there are many ways to formulate

things and it is risky to become too attached to one particular form or law and come

544Minsky, 1970

545Minsky, 1970

273

to believe that it is the real basic principle”546. As the underdetermination thesis

states, there are indeed infinitely many ways to formulate a theory about a phe-

nomenon. A caution about detrimental dogmatism is reflected in Minsky's text

(which was published before Feyerabend's book Against Method547). Minsky is

anxious that too strong of an adherence to normal science (or too strong of a belief

that the normal science of a particular era is the culmination of progress) may blind-

fold the researcher from seeing alternative paths. In Minsky's opinion, concentrating

on content instead of form would free people to “build, in their heads, various kinds

of computational models” instead of wasting their resources on the form548. I inter-

pret this as a call for intuitiveness, creativity, and ad hocness instead of a call for

concentrating on preordained forms. The content vs. form-juxtaposition can be in-

terpreted as a juxtaposition between actively shaping new forms vs. adapting exist-

ing forms into different contexts.

The concern Minsky had about programming languages is also quite an unorthodox

one, given the year he stated it. Some researchers were quite happy with the state of

programming at the time, and Peter Wegner; who was an editor-in-chief of one of

the major ACM publications, Computing Surveys; even wrote in IEEE Transactions

on Computers 1975, that “it may well be that programming language professionals

did their work so well in the 1950's and 1960's that most of the important concepts

have already been developed”549. Note that afterwards there have been develop-

ments in web design languages, virtual machines, visual programming, design pat-

terns, and so forth. Although some of them were developed as early as the 1960s,

they had not been included in Wegner's article. It is unlikely that by most important

concepts Wegner referred to the stored-program-paradigm, because the stored-pro-

gram-paradigm was already in place in the late 1940s.

It is difficult to see how programming languages could cease to change. The differ-

ent styles of programming languages such as SQL, Java, Perl, and C++ are a result

of differences in the application domains that inspired their creation in the first

546Minsky, 1970. Note the resemblance of this statement to underdetermination thesis (see p.60).

547Feyerabend, 1993 (orig. 1975). Feyerabend's early papers on the topic were published around 1970 (see, e.g.,
Feyerabend, 1970), but both Preston and Farrell have argued that this was between Feyerabend's realist and anti-
realist periods (Preston, 1997, Farrell, 2001).

548Minsky, 1970; see also Minsky's earlier text Why Programming is a Good Medium for Expressing Poorly Un-
derstood and Sloppily-Formulated Ideas (Minsky, 1967 in Krampen & Seitz, 1967).

549Wegner, 1976b

274

place550. Insofar as programming languages are application-dependent, their change

would cease when application domains would cease to change. Minsky was far-

sighted enough to understand that the application domains of computing are not yet

exhausted. The number of calls for new approaches; such as empirical modeling551,

resilient systems552, stochastic and quantum computation; is as large as ever. Minsky

was also wise enough not to think that the 1970's abstraction level in programming

languages would have been the highest level possible. Yet, because Minsky's state-

ment above does not exclude universals, his angle seems close to that of Donald

Knuth in the sense that Minsky argued that working with particulars may help in

finding universals. (Similarly, Knuth wrote, “We should continually be striving to

transform every art into a science: in the process, we advance the art.”553) Although

both Minsky and Knuth seem to be on the structurist side of the structurist-nominal-

ist debate, neither Minsky nor Knuth mentioned, though, how universals are to be

found, if ever.

Is the Focus the Machine (Computer) or the Phenomenon (Information)?

The International Federation for Information Processing (IFIP) World Conference

on Computer Education convened in 1970 in Amsterdam, the Netherlands, and ac-

cepted the term computer science as “the study of computing machines (actual or

potential)”554. It is unlikely that this definition could have been expected to make

much of a difference in the computing community. It does not comment on what

subfields are included in the science, neither does it explain in a sufficiently exact

way what is it that computer scientists do except for “study”. From almost any point

of view, this definition suffers from excessive generalization (which may be a direct

result of working in a committee).

Much more interesting than the IFIP Conference Recommendation Committee's de-

fining of computer science is their defining of a parallel term—informatics—which

the French championed. Aaron Finerman wrote that inherent in the definition of in-

formatics is the notion that information processing by computer is a syntactic pro-

cess involving symbol strings (much in the same manner Shannon defined informa-

550Denning, 2003

551Beynon & Russ, 1995

552Frankston, 1997 in Denning & Metcalfe, 1997.

553Knuth, 1974c

554Finerman, 1970

275

tion555), while information processing by humans is a semantic process involving

word and phrase images. Finerman wrote in the November 1970 issue of CACM,

[1970] Informatics is the science of the systematic and effective treatment

(especially by automatic machines) of information seen as a medium for hu-

man knowledge and for communication in the technical, economic, and so-

cial fields.556

That is, informatics studies how information can be processed automatically. It is

unclear, however, whether the committee implied that computers might be able to

process information semantically (as humans do), or whether there is some sort of a

fundamental dissimilarity between information as a medium for human knowledge

and information as machine-processable phenomenon.

Even today, computer scientists from different regions of the world name and define

the field of computing in a different ways. Gal-Ezer and Harel wrote in the Septem-

ber 1998 issue of CACM,

[1998] In fact, there is no clear agreement even on the name of the field. In

European universities, the titles of many of the relevant departments revolve

around the word 'informatics', whereas in the U.S. most departments are

'computer science'. To avoid using the name of the machine in the title, [...]

some use the word 'computing' instead. Other department names contain

'information systems' or 'computer studies'.557

There is a variety of names for the field in languages other than English. For ex-

ample, Finnish universities use the term computer science in texts in English, but the

Finnish word for the discipline, tietojenkäsittelytiede, is translated word for word as

“information processing science”558. In Swedish the discipline is datavetenskap or

informationsteknologi: “data science”559 or “information technology”, respectively.

In Dutch the term is informatica, which refers to the junction between information

and automatic (processing)560. Similarly, in Russian, the basics of computer science

555Shannon, 1948; Shannon, 1950

556Finerman, 1970

557Gal-Ezer and Harel, 1998

558However, it is ambiguous if in Finnish the word tieto refers to data, information, or knowledge.

559Yet, data in datavetenskap is often understood as dator (computer), but to use data and dator synonymously is
obviously incorrect.

560Dr. Piet Kommers (Aug 5th 2004, oral communication).

276

is —“informatics” or “information science”информатика 561—but on the advanced

level, the field is divided into subfields and characterized in more specific terms such

as (“computer techniques”, or “computer engineering”)вычислительная техника 562.

Gordana Dodic-Crnkovic has noted that interestingly, the British term computer sci-

ence with its empirical orientation and the German and French terms informatics

with their abstract orientation, correspond to the eighteenth- and nineteenth-century

characters of British Empiricism and Continental Rationalism563. One should also

note that in the early history of modern computing, Americans were the advocates of

practical work whereas the British were the advocates of theoretical work.

In 1966 Peter Naur suggested using the term datalogy to replace computer science564

—Naur made a distinction between data and information. Edsger Dijkstra also ar-

gued that computer science is an entirely wrong term: “Primarily in the U.S., the

topic became prematurely known as 'computer science'—which actually is like refer-

ring to surgery as 'knife science'.”565. Instead of the computer, or computing techno-

logy, Dijkstra wanted to emphasize the abstract mechanisms that computing science

uses to master complexity. Contrary to Dijkstra's opinion, Frederick Brooks Jr.

wrote that “our namers got the 'computer' part exactly right”566.

The importance of naming the field is discussed further later in this thesis (page

341ff.), but it ought to be noted here that it has been argued that the choice of the

name of the field situates the field among other disciplines, creates the expectations

set for it, guides the areas in which it can be applied, and, much in a Kuhnian man-

ner, affects the choice of problems for the field.567 Certainly names like knowledge

processing science, computer engineering, informatics, and computer science arouse

different connotations.

There was a group of proponents of the algorithmic, rationalistic research tradition,

and Edsger W. Dijkstra was among them. In the October 1972 issue of CACM,

Dijkstra wrote,

561See e.g. the English version of Cormen et al., 1998:p.xv–“Laboratory for Computer Science”. In the Russian
translation (Cormen et al., 2001:p.15) it is “Лаборатория информатики” (Laboratory of informatics).

562Dr. Alexander Kolesnikov (Aug. 5th 2004, oral communication); Ms. Evgenia Chernenko (Aug 2nd 2004, oral
communication).

563Dodig-Crnkovic, 2002

564Naur, 1966

565Dijkstra, 1987

566Brooks, 1996

567cf. Brooks, 1996

277

[1972] We must not forget that it is not our [computing scientists'] business

to make programs; it is our business to design classes of computations that

will display a desired behavior.568

Dijkstra's viewpoint is a well-founded and original one569, and top-down approaches

similar to Dijkstra's have been promoted by, for instance, Niklaus Wirth and Peter

Naur570. In 1972, proofs of program correctness were usually written a posteriori,

that is, after the program had been written571. Instead of a posteriori proofs, Dijkstra

suggested that one should start designing classes of computations by formally (math-

ematically) specifying what the program should do, and then gradually deriving the

actual program from these specifications. This resembles the mathematical tech-

nique of proof by construction. Since derivations are mathematical transformations

between two systems, if the rules for transformations are correct, the resulting pro-

gram is necessarily correct (bug-free572). From a mathematical point of view, Dijk-

stra's approach is durable, but it never gained much support outside minor coteries in

academic circles, and it was later rebutted by James H. Fetzer, who noted that veri-

fication can only establish correctness between two formal models—program and

formal description—but programs as causal phenomena are not appropriate subjects

for deductive verification573. Brian Cantwell Smith noted that although one can

prove the correctness of the relationship between the program and the model, it cer-

tainly does not say anything about how well a program does what it was intended to

do574.

Legitimating Number Crunching as a Science

If physics is considered to be the king and mathematics the queen of the sciences575,

then logic is probably the father of the king. In this picture, computer science can

hardly be said to belong to the royal family. In the 1970s, many mathematicians

568Dijkstra, 1972

569See, for instance, an early writing by Dijkstra in Dijkstra, 1968b.

570Wirth, 1971; Naur, 1969; Naur, 1972

571Dijkstra, 1975

572Donald Knuth often has been said to have written a memo that ended with a sentence “Beware of bugs in the
above code; I have only proved it correct, not tried it.”. Knuth dates this memo to March 29th, 1977. This seem-
ingly innocent quotation does have a good point–human errors can occur in any part of the program-construction
process. Proving a program correct does not mean that the program corresponds to the proof, that is, that the
translation from proof to program was done correctly.

573Fetzer, 1988; see also an overview of the formal verification debate in Colburn, 2000:139-152 passim.

574Smith, 1996 in Kling, 1996:pp.810-825 (found also in Johnson & Nissenbaum, 1995:pp.456-479).

575Easton, 2006

278

who saw infinity as a prerequisite for mathematical depth, saw computers only as

number crunchers, or perhaps as tools for numerical analysis576. Hence, the best le-

gitimation of the field of computing as a science would have been to gain the recog-

nition of the mathematical community. Donald Knuth, who is not only a computer

scientist but also a recognized mathematician, saw the theory of computing as a sub-

ject worthy of study as such. In the April 1974 issue of American Mathematical

Monthly he wrote,

[1974] Like mathematics, computer science will be somewhat different from

the other sciences, in that it deals with [hu]man-made laws which can be

proved, instead of natural laws which are never known with certainty. [...]

The difference [between mathematics and computer science] is in the sub-

ject matter and approach—mathematics dealing with more or less with the-

orems, infinite processes, static relationships and computer science dealing

more or less with algorithms, finitary constructions, dynamic relation-

ships.577

This extract of Knuth's article has two parts: In the first part Knuth noted the similar-

ities between computer science and mathematics. In the second part he sketched the

differences between the two. Alas, Knuth's ontological position is not clear in this

article. However, the term “deals with man-made laws” implies that he took a posi-

tion of ontological subjectivity. That is, the term can be understood as taking an atti-

tude that the laws in computer science exist because there are intelligent beings that

make them exist. Note, however, that Knuth's wording does not rule out ontological

objectivity in the sense that human-made can refer to a symbol-theory system that

describes universal facts that exist without people. In other words, Knuth's statement

may mean that the laws of computer science are windows to noumena578. (Note that

Knuth uses the term laws instead of constructions, theories, or hypotheses.)

Knuth seems to have argued for epistemological objectivity in the sense that laws

“can be proved”. That laws can be proved true indicates that Knuth took there to be

a universal logic, following which, any independent thinker would proceed from the

same axioms and premises to the same conclusions. Underlying Knuth's comparison

576Dijkstra, 1987

577Knuth, 1974

578According to Immanuel Kant noumenon is thing-in-itself, independent of the subject, and noumena are opposed
to phenomena that refer to the world as experienced by people. Note that in Kant's philosophy, noumena and
phenomena are separate: One cannot expect to achieve certainty about noumena by observing phenomena.

279

of computer science with empirical sciences there is an assumption that is indicative

of extreme epistemological objectivity: Even natural sciences are uncertain com-

pared to computer science. From this epistemological point of view, the laws of

computer science are facts that researchers have constructed to perfection within the

bounds that the researchers have set—hence the factuality of the laws of computer

science compared to the imperfect interpretations of the unbounded external world

made by natural scientists. Knuth's epistemological position can be understood dif-

ferently if one allows axioms, rules, and logic to be matters of taste (chances are that

Knuth does not consider them to be matters of taste). It is not certain, however, what

are laws in computer science.

In the discussion about the explanations of stability579 (p.127ff. of this thesis), I ar-

gued that computer scientists are much more responsible for the level of complexity

of their own discipline than natural scientists. Earlier design choices in control

structures, architectures, languages, techniques, data structures, syntax, semantics,

and so forth, define the starting points for future challenges. A corollary of my argu-

ment is that if computer science is seen as a stable science, it is stable only because

computer scientists have built it that way. Stability or instability is not an inherent

quality of computer science, but a result of external aspects that have shaped (hu-

man-made) computer science. In this sense, Knuth's position seems consistent with

my position. If Knuth believed that stability and instability are inherent qualities of

computer science, he might not have characterized the science as being human-

made. Of course there is always the possibility that Knuth took the stability as a res-

ult of the inherent qualities of computer science, but took the instability as a result of

the limited understanding of the inherent structures of computation.

The second part of Knuth's text deals with differences between mathematics and

computer science. Knuth distinguished computer science from mathematics by ex-

amining their subject matters and approaches. Computer science deals with finite

constructions that are characterized by dynamic relationships, and uses algorithms to

deal with these dynamic relationships. Knuth listed three characteristics of computer

science that differentiate it from mathematics. First, finiteness (of space, but not of

time580) is a prerequisite of realizability. That is to say, infinitely large constructions

cannot be realized with computational instruments—but infinitely long computations

579Hacking, 1999:pp.84-92.

280

can be. Second, dynamic relationships are a prerequisite for modeling the dynamic

world (unless a stable “grand unified theory” can be formed). Third, algorithms

shift the focus from static models towards processes or automation. These three

characteristics of computer science boil down to realizability, or whether a given

task can be computed with some sort of mechanism.

It seems that in Knuth's computer science, facts are ontologically subjective—the

facts that computer science deals with exist because there are thinking creatures that

make them exist. Yet it seems that Knuth took these facts to be epistemologically

objective in the sense that they are not matters of preferences, evaluations, or moral

attitudes581.

Only two months after Knuth's article was published, Dijkstra also wrote, in the

same journal, about the differences and similarities between mathematics and pro-

gramming; Dijkstra called programming “an activity of mathematical nature”582.

Dijkstra pointed out three characteristics of the mathematics curriculum that are pos-

sibly detrimental to the cognitive skills needed by programmers583:

(1) a standard collection of concepts vs. concept-creating skills;

[1974] In the standard mathematical curriculum the student becomes famili-

ar (sometimes even very familiar!) with a standard collection of mathemat-

ical concepts, he [sic] is less trained in introducing new concepts himself.

(2) learning standard notation vs. ad-hoc notation (note that ad hoc is considered

positive in this sense, unlike the falsificationist sense);

[1974] In the standard mathematical curriculum the student becomes famili-

ar (sometimes even very familiar!) with a standard set of notational tech-

niques, he [sic] is less trained in inventing his own notation when the need

arises.

580This argument holds if matter is considered finite. Maximum storage space usage cannot exceed the limits of the
physical machine with which the computation is realized. Infinitely long computations can be set up, but they
most probably do not live up to the expectation and run infinitely. Consider, for instance, the suggested half-life
of proton and the predicted decay of matter to iron.

581cf. Searle, 1996:p.1.

582Dijkstra, 1974

583Dijkstra, 1974

281

(3) and shallow hierarchy vs. deep hierarchy;

[1974] In the standard mathematical curriculum the student often only sees

problems so “small” that they are dealt with at a single semantic level. As

a result many students see mathematics rather as the art of organizing sym-

bols on their piece of paper than as an art of organizing their thoughts.

Dijkstra's first observation was that programmers are expected to be able to express

themselves in both natural language and in formal systems—which, together, lead to

skills in concept creation. Whereas Pólya wrote that when solving a problem, math-

ematicians may need to formulate new questions about the problem, Dijkstra wrote

that in the process of problem-solving in computing, programmers often come up

with intermediate concepts and may need to construct their own formalisms584. This

may at first give the impression of problem solving as a class C-O-C problems

(closed starting points, open technique, closed goals), or what Kuhn called “puzzles”

in normal science. Dijkstra held that although concept creation can be found in

mathematics, it is especially characteristic of computer science. My interpretation is

that concept creation in computing is in effect the continuous (re-)creation of con-

ceptual schemes.

Whereas Knuth noted that computer science deals with finitary constructions and dy-

namic relationships585, Dijkstra's second comment seems to imply that programmers

(dynamically) re-create, or at least re-model, these relationships and concepts as they

work. Dijkstra wrote that programmers often need to manipulate a given formal

syntax in order to formulate a theory to justify their algorithm—which leads to the

ability to invent one's own formalisms.

In connection with his third comment, Dijkstra noted that programmers have to be

able to move between time grains the size of nanoseconds (one clock cycle586) to

time grains the size of hours (whole computations), and all the levels between. The

ratio between these time grains can easily be 1010—being able to move and operate

between this many orders of magnitude helps in mastering complexity. My inter-

pretation is that when programmers approach problems through computational tools,

they are not only (re-)defining relationships between a number of semantic levels

584Dijkstra, 1974; Pólya, 1957:pp.210-211.

585Knuth, 1974

586A clock cycle is the time period at which a computer performs one basic operation such as addition, or transfer-
ring a value from one register (temporary data storage) to another.

282

within computing, but also between the semantics of computing and the obscure se-

mantics of the world that the computers are a part of. That is, they are semantically

relating computers with their surroundings.

Yet the strongest argument of Dijkstra relates to theory. Dijkstra wrote,

[1974] In other words, given the problem, the programmer has to develop

(and formulate!) the theory necessary to justify his [sic] algorithm. In the

course of this work he will often be forced to invent his own formalism.587

That is, Dijkstra argued that often programming is, in effect, a formulation of theor-

ies. Of course, Dijkstra's approach to programming was different than many other

approaches at the time; it was “developing program and proof hand-in-hand”. Tak-

ing this approach into account, computer science, as seen by Dijkstra and Knuth, still

seems like an extraordinarily dynamic field. If programmers truly are constantly re-

shaping the conceptual framework (constructions) of computer science, if they are

looking for new ways of applying computing (relationships), and if they are often

developing new theories (tools) for the field, dynamism is not only an integral part

of the constructions of computer science but also an integral part of the autopoïetic

construction of computer science. Dynamism is not an integral part of relationships

in computations but it is also an integral part of relating computer science to its sur-

roundings.

An interesting question follows from Knuth's and Dijkstra's depictions of computer

science: If computer science (1) deals with algorithms, finitary constructions, dy-

namic relationships; and if it (2) deals with these facts by means of concept-creation,

ad-hoc formalisms, symbol systems, and theory-reconstruction; (3) can computer

science explain itself? In other words, can computer science as a theory-methodo-

logy explain computer science as a socially constructed phenomenon? Are social

phenomena reducible to sorts of computation? Some researchers do indeed present

computational “algorithmized” approaches to sociocultural phenomena588.

The Tug of War Between the Theoretical and Practical

Dijkstra's and Knuth's writings were addressed to the mathematical community,

which at the time often did not recognize the disciplinary identity of computer sci-

587Dijkstra, 1974

588Brent et al., 2000; Gabora, 1995; Easton, 2006

283

ence. Elsewhere, the pressures of the business world were building up on computer

science. At the same time as some leading computer scientists worked to gain the

recognition of the mathematical community, proponents of the practical, “real-life”

aspects of computer science worked to close the gap between the theoretical and

practical sides of computer science. They claimed that computer science in the aca-

demic sense had detached from the real world, and that the computer science of the

time had very little to do with computers589. Even more, some questioned the theor-

ies of computer science. Abraham Kandel wrote in the June 1972 issue of CACM,

[1972] Industry gets graduates from computer science departments with a

bag full of the latest technical jargon but no depth of understanding the real

computer systems and no concept of the problems they will be asked to

solve.

[...] It is quite obvious that there is no effective theory of computer science

as such. In fact, there are no effective models of computers.590

Naturally, effective is an ambiguous concept (see the discussion on pages 111ff. of

this thesis), and without stating the criteria for an effective theory of computer sci-

ence, opinions such as this have only discourse value. Be that as it may, comments

such as the one above became increasingly common. The demands of adding prac-

tical training and lab work to the university curriculum led to an increased interest in

software-oriented or commercially oriented computer science programs591, which

began to shape what computer science was in practice. That is, the needs of the soft-

ware industry guided the interests of researchers and teachers, which manifested in

what was taught in universities. George Glaser, the president of AFIPS (American

Federation of Information Processing Societies, Inc.) addressed the 10th annual meet-

ing and conference of the Inter-University Communications Council (Educom), stat-

ing,

[1974] A formal education in computer science is not an adequate—not

even appropriate—background for those who must design and install large-

scale computer systems in business environment. [...] The educational sys-

tem is providing nicely for a body of competent computer researchers and

589Kandel, 1972

590Kandel, 1972

591Pitts and Bateman, 1974

284

teachers but has done little to provide for the needs of those who must apply

computer technology, particularly in a business environment.592

Since computer systems by the 1970s had grown—and kept on growing—in size,

they were increasingly unmanageable without new approaches593. This was due to

the fact that large computational systems are unities of structured elements, irredu-

cible to the sum of component elements and structure594. (Because the complexity in

a system arises not from the parts of the system, but from the semantical and func-

tional connections between these parts, a system is more complex than the sum of its

parts.) The resulting problem was called the software crisis595. Academic computer

science of the time was accused of being unable to respond to the software crisis—

for instance, Michael J. Spier wrote in the ACM SIGOPS Operating Systems Re-

view,

[1974] [...] our current computer science, as it applies to operating systems,

does not provide us the necessary foundation in terms of which we would

understand and control programs of significant complexity. [...] The applic-

ability [of formal computer science disciplines] to the definition and global

design of operating systems is close to nil.596

This ineptitude led to a lack of university graduates who were able to “work effect-

ively in all phases of the development of large software systems”597—the interests

and expertise of industry did not meet the interests and expertise of academia. This

limitary problem concerned both industry and academia because neither was able to

maintain their ever-growing computing systems. As a response to the growing com-

plexity of computer systems, around the mid-1970s the systems approach (systems

analysis or systems engineering, which had began emerging as a field around 1950s)

began to gain popularity among computer scientists. Although there had been stud-

ies of complex systems, such as Herbert A. Simon's The Sciences of the Artificial598,

there was a lack of rigorous methodologies for mastering complexity.

592Glaser, 1974

593Sommerville, 1982:p.v; Campbell-Kelly & Aspray, 2004:pp.176-180.

594Spier, 1974

595Campbell-Kelly & Aspray, 2004:pp.176-180.

596Spier, 1974

597Egan, 1976

598Simon, 1981 (orig. 1969)

285

Software Engineering

Systems engineering had started developing when new tools and machines had be-

come so complex that it was no longer possible for a single individual to design

them599. In systems engineering; the life cycle process, high complexity, and the ap-

plication of system engineering techniques are recognized throughout the project life

cycle600. In computer science, the systems approach relies on scientific principles of

systemic synthesis rather than on algorithmic solutions601. A more specific term

software engineering was first introduced in 1968 at a conference held to discuss the

software crisis602. Although software engineering can be considered to be a sub-area

of systems engineering in general, it has also contributed to the development of sys-

tems engineering.

Note that systems engineering was a response to the problems that arose when the

complexity of systems exceeded the skills of a single person. I argue that if one

wishes to explain the ontological, epistemological, or methodological assumptions

that the designs of a system may incorporate, the emergence of systems engineering

signifies a shift from explaining individuals to explaining groups. That is, when one

wants to explicate the intentions behind building a complex system, collective inten-

tions and perhaps multiple intentions need to be catered for. The intentions and mo-

tivations for constructing the system may be heterogeneous and conflicting.

Ian Sommerville's characterization of software engineering, in his 1982 book Soft-

ware Engineering, reveals the crux of the heated 1970s debate. The debate was

about whether software engineering should be considered to be a branch of computer

science:

[1982] Software engineering is a practical subject. It is concerned with

building usable systems economically and, to this end, utilises appropriate,

rather than fashionable, techniques. The software engineer should be con-

servative—he [sic] cannot afford to experiment with each and every new

technique put forward by research scientists. His principal responsibility is

to produce a working system to specification, on time and within budget,

and the use of untested methods might compromise this intention. On the

599Sage, 1992:p.6.

600Shemer, 1987

601Egan, 1976

602Naur & Randell, 1969

286

other hand, he or she should not ignore new developments nor should they

be rejected simply because they are new.603

Sommerville's quote helps to explain why software engineering was rejected by the-

oretical computer scientists, programmers, and hardware specialists. Sommerville's

quote begins with a notion that software engineering is a practical subject that con-

trasts with the theoretical, mathematically oriented aspects of computing. The need

to achieve practical goals probably made it harder for software engineers to gain the

acceptance of mathematically oriented theoreticians. According to Sommerville's

definition, software engineering also concerns human issues, namely usability—

which juxtaposes software engineering with the (practical) electronic engineering

and programming aspects of computer science. Sommerville also emphasized the

economic motivation, which distances software engineering even further from the

mathematical sciences, towards business goals.

Sommerville continued with a relativist argument about appropriate techniques.

Substantially, anything (that gets the job done) goes. However, Sommerville's no-

tion of conservativeness and the disassociation from untested methods differentiates

the techniques of software engineering from the techniques of (progressive) re-

search (which is the focus of Feyerabend, Kuhn, and Popper). The key words in

Sommerville's definition of software engineering are production, operationality,

time frame, and budget—not, for instance, theory-creation or fact-finding. The em-

phasis of Sommerville's definition suggests that a software engineer should be a bri-

coleur604, an opportunist who has a toolbox full of different tools (methods) that help

him or her to accommodate to a variety of situations605. Although the bricoleur-

concept has been lauded by some qualitative research authorities, such as Denzin and

Lincoln606, I doubt that the theoretical computer scientists of the 1970s would have

appreciated the bricolage approach to research.

If software engineering is a practical, opportunistic, business-oriented, and close-to-

human work (exclusive of the research aspect) as it is described as Sommerville;

603Sommerville, 1982:pp.2-3.

604The concept of researcher-as-bricoleur is from Denzin and Lincoln, whose description of a competent researcher
is very similar to Feyerabend's (compare Denzin and Lincoln, 1994:pp.2-3 with Horgan, 1996:p.52). The
concept of bricolage is originally from Claude Lévi-Strauss, who used it in a somewhat derogatory sense (Lévi-
Strauss, 1966:pp.16-17).

605Horgan, 1996:p.52.

606Denzin and Lincoln, 1994:pp.2-3.

287

then it is easy to see why the computer scientists of the era wanted to dissociate from

software engineering. After all, in the early history of computing machinery, com-

puter science had been considered to be a second-class science, mainly because of its

practical bent and the impression of computing as a service operation607. The com-

puter scientists at the time might have been afraid that acknowledging software en-

gineering as an integral part of computer science could have undermined whatever

status computer science had achieved as a scientific discipline.

Sommerville's characterization is certainly not representative of the era's software

engineering in general. There was, indeed, no consensus about the definition of soft-

ware engineering at the time. Nonetheless, Sommerville's definition offers a good

example of the different levels of confrontation between what was at the time con-

sidered to be computer science and what was considered to be software engineering.

This confrontation was sometimes heated and it did not die out easily; for instance,

in 1989 Dijkstra wrote that software engineering, “The Doomed Discipline”, had ac-

cepted as its charter, “how to program if you cannot”608.

The Focus Turns to Programming

In the previous sections I noted that in the early days of computing, programming

was not considered worthy of the university stamp—neither by mathematicians609

nor by computer scientists610. But before the beginning of the 1980s, programming

had become established as an integral part of computing as a discipline. Consider

the following definition of computer science from a B.Sc program in computer sci-

ence, introduced by Khalil and Levy in ACM SIGCSE Bulletin;

[1978] Our (first order) definition is that computer science is the study of

the theory and practice of programming computers. This differs from the

most widely used definition by emphasizing programming as the central no-

tion and algorithms as a main theoretical notion supporting program-

ming.611

Although Khalil and Levy are mathematically oriented computer scientists, their

definition directly contradicts Knuth's opinion that algorithms are “the central core

607Aspray, 2000

608Dijkstra, 1989

609Aspray, 2000

610Atchison et al., 1968

611Khalil and Levy, 1978, underlining added.

288

of the subject and the common denominator which underlies and unifies the different

branches”612.

Khalil and Levy's foregrounding of programming derives, first, from their idea that

programming is to computer science as the laboratory is to the physical sciences and,

second, from the context of their definition—in their article Khalil and Levy intro-

duced a graduate program in computer science. Very much contrary to Dijkstra's

opinion, they believed that one cannot conceive of an understanding of computer sci-

ence without having experience in programming613. Khalil and Levy's position

clearly reflects an empiricist a posteriori tradition rather than a rationalist a priori

tradition and it focuses on techniques and instruments rather than on discovering

and proving laws (or designing classes of computations614). Khalil and Levy's focus

on programming may come from the needs of software engineering during and after

the software crisis: Khalil and Levy wrote that the graduates of their program are ex-

pected to have an “acceptable” level of professional expertise615. Professional ex-

pertise in Khalil and Levy's definition is mainly programming expertise.

In 1968, the ACM published a recommendation for a four-year program in computer

science, a report which later came to be known as Curriculum '68 (the report in

which the curriculum was published is known as the '68 report)616. The curriculum

guidelines encouraged university computer science departments to drop electronics

and hardware courses in favor of mathematics and algorithms courses617. It has been

argued that Curriculum '68 served as a “fundamental source document for the estab-

lishment of computer science education in the United States”618. However, it has

been also claimed that the Curriculum '68 report was of little interest to employers

and business practitioners, particularly when compared to alternative curricula ad-

vanced by the IEEE or the DPMA619. Critics such as Raymond Wishner and Richard

Hamming wanted to see topics that are more practical than theoretical included in

Curriculum '68—they wrote in CACM and JACM,

612Knuth, 1974. Remember Knuth is a mathematically-oriented computer scientist like Khalil and Levy.

613Khalil and Levy, 1978

614Dijkstra, 1972

615Khalil and Levy, 1978

616Atchison et al., 1968

617Ensmenger, 2001

618Austing et al., 1977

619Ensmenger, 2001; Wishner, 1968; Hamming, 1969

289

[1968] [...] Good education should not be solely directed towards academi-

cians whose only economic justification is to teach in order to turn out re-

cursively new generations of academicians.620

[1969] Were I setting up a computer science program, I would give relat-

ively more emphasis to laboratory work than does Curriculum '68, and in

particular I would require every computer science major, undergraduate or

graduate, to take a laboratory course in which he [sic] designs, builds, de-

bugs, and documents a reasonably sized program.621

Both Wishner and Hamming criticized the lack of emphasis on practical issues of

computing. Wishner argued that the Curriculum '68 addresses the needs of physical

scientists and engineers, but that it does not address the needs of business-systems

designers and information technologists. Even though the ACM did recognize the

growing importance of meeting business needs to the future of computing, the em-

phasis of the ACM was on research and education622. It was argued, for instance,

that the ACM wanted to see fundamental research in the field of data processing be-

fore the ACM would recognize business data processing as a topic of research623.

About ten years after the ACM had published Curriculum '68, the ACM Curriculum

Committee on Computer Science published an update to Curriculum '68: Cur-

riculum '78: Recommendations for the Undergraduate Program in Computer Sci-

ence624 (the report in which the curriculum was published is known as the '78 re-

port). During the ten years between 1968 and 1978, the definition of the field had

changed from a mathematically oriented definition to a more diverse definition.

During that decade there were major advances in the theory of computation, al-

gorithm analysis, and in the principles and theories for the design and verification of

algorithms and programs. At the turn of the 1980s many computer scientists, like

Anthony Ralston and Mary Shaw, believed that “there is nothing laughable about

calling computer science a science [anymore]”625.

The '68 report and '78 report seem to have both normative and descriptive character-

istics in the sense that they recommend what a computer scientist should know by

620Wishner, 1968

621Hamming, 1969

622Ensmenger, 2001

623Postley, 1960

624Austing et al., 1979. Though the publication is from March 1979, the report is named Curriculum '78.

625Ralston and Shaw, 1980

290

listing what computer scientists do. However, Goldweber et al. argued that soon

after the '78 report, the curriculum recommendations became descriptive (Goldweber

et al. called them “reactive”)626. Similar to the '68 report, the '78 report defines the

discipline by listing the topics included in the discipline. The '78 report, however,

does not define the discipline as strictly as the '68 report, because the authors of the

'78 report recognized that the report “is a set of guidelines, prepared by a group of

individuals working in a committee mode”627. In the report, the committee remarked

that they did not expect the report to satisfy everyone or intend it to be appropriate

for all institutions.

The '78 report is not just any curriculum proposition—it was directed at the whole

academic field of computing. The '78 report was the effort of a large number of re-

cognized individuals and institutions628, and, as such, it had certain authority.

However, the authors of the '78 report acknowledged that they had to leave a lot to

interpretation, that there was a degree of subjectivity in the committee decisions, and

that different educational institutions had different aims. Whereas the aim of the '68

committee was to specify a number of course combinations that would entitle a stu-

dent to receive a degree in computer science629, the objective of the '78 report com-

mittee was to “stimulate computer science educators to think about their

programs”630. The difference between the motivations and the content of the '68 re-

port and the '78 report is a sign of the dispersion of the discipline—it was no longer

possible to define what a computer scientist actually does.

In both the '68 report and the '78 report, computer science is divided into subareas.

The '68 report divides computer science into three subareas;

(a) information structures and processes,

(b) information processing systems, and

(c) methodologies.

The '78 report report divides computer science into four subareas;

1) programming topics,

626Goldweber et al., 1997

627Austing et al., 1979

628Austing et al., 1979

629Atchison et al., 1968

630Austing et al., 1979

291

2) software organization,

3) hardware organization, and

4) data structures and file processing.

Note the lack of a distinct subarea, theoretical foundations, that many computer sci-

entists might consider important. In the '68 report, models of computation is a sub-

topic of its own, but not in the '78 report. Theoretical topics, such as grammars,

automata, and complexity, in the '78 report are scattered amongst other topics. Other

subsequent curricula, which have been published in about ten-year intervals, follow

the same convention (see, for instance, the nine subject areas of Curriculum '91631).

My interpretation is that curriculum developers have considered theoretical topics so

central to computing that they need to pervade the whole curriculum.

What is also noticeable in the '78 report, compared to the '68 report, is the emphasis

on hands-on work. The authors of the '78 report wrote, “throughout the presentation

of the elementary level material, programming projects should be assigned”632. The

emphasis on programming is even more visible in the description of philosophy of

the discipline in the '78 report;

[1978] A specific course on structured programming or on programming

style, is not intended at the elementary level. The topics are of such import-

ance that they should be considered a common thread throughout the entire

curriculum and, as such, should be totally integrated into the curriculum.

They provide a philosophy of the discipline, which pervades all of the

course work.633

Over the course of ten years, the definition of computer science in the ACM cur-

riculum turned from a theoretical, mathematically based discipline that studies in-

formation structures into a programming and applications-centered discipline. Al-

though the topics in the '68 report and '78 report are quite similar, the focus had def-

initely shifted between the '68 report and the '78 report. Even the “philosophy of the

discipline” had changed from information structures into structured programming

and programming style. It may be a coincidence that the computer science cur-

riculum, including the philosophy of the discipline, shifted towards the needs of the

631Tucker et al., 1991

632Austing et al., 1979

633Austing et al., 1979

292

software industry during the years of software crisis. However, because the '78 re-

port is more of a descriptive than a normative account of the computing field, it

surely seems that the curriculum committee was just trying to keep pace with the

changes in computing practices634.

Separation from Mathematics

Whereas the critics of the '68 report criticized the '68 report for being too academic,

too theoretical, too narrow, and too impractical, the critics of '78 report criticized the

'78 report for lacking mathematics and for implicitly stating that “computer science

= programming”635. The difference between the emphasis on mathematics in the

two reports is indeed noticeable. Whereas the authors of the '68 report stood firmly

behind the mathematical viewpoint of computing, the authors of the '78 report did

not see mathematics as the cornerstone of computer science. The following two

quotes from '68 report and '78 preliminary report exemplify the shift of focus well:

[1968] The committee feels that an academic program in computer science

must be well based in mathematics since computer science draws so heavily

upon mathematical ideas and methods.636

[1977] [...] no mathematical background beyond the ability to perform

simple algebraic manipulation is a prerequisite to an understanding of the

topics [...] As was mentioned in the section on the core curriculum, math-

ematics is not required as a prerequisite for any of that material.637

However, the advocates of mathematically based computer science638 succeeded to

change the above mentioned part of the '78 preliminary report, and the final '78 re-

port included a more conventional wording:

[1978] An understanding of and the capability to use a number of mathem-

atical concepts and techniques are vitally important for a computer scient-

ist.639

634Although they interpret the '78 report as a normative curriculum, Goldweber et al. noted that the '78 report was a
reaction towards the rapidly changing field of computing (Goldweber et al., 1997).

635Ralston and Shaw, 1980

636Atchison et al., 1968

637Austing et al., 1977b

638See Ralston and Shaw, 1980; Davis, 1977.

639Austing et al., 1979

293

The leap from a science that is “well based in mathematics” to a science where “no

mathematical background beyond the ability to perform simple algebraic manipula-

tion is needed” would have marked a complete detachment from the mathematical

history of computing. The final wording was much more conventional, mentioning

the vital importance of a number of mathematical concepts and techniques. As com-

puter science began to achieve a a disciplinary identity, the institutional ties between

mathematics and computer science weakened steadily. In the August 1981 issue of

American Mathematical Monthly, Anthony Ralston explained the reason for the di-

vergence of the two disciplines during the 1970s, with four arguments640.

First, the importance of some of the traditional mathematical areas, such as numeric-

al analysis, decreased in computer science. (Note that the history of numerical ana-

lysis is hundreds of years old and that in numerical analysis computers are mostly

tools and not a topic of research as such.)

Second, Ralston argued that the difficulties that computer science had faced in being

recognized as a separate discipline from mathematics urged many computer scient-

ists to fight for the formation of departments of computer science separate from de-

partments of mathematics. Insofar as Ralston's second argument is correct, the sep-

aration between mathematics and computer science was partly a result of profession-

al pride.

Third, Ralston noted that from the early 1970s, the composition of computer science

faculties begun to shift from predominantly mathematicians to predominantly com-

puter scientists. This shift seems quite natural. As the first PhD-granting depart-

ment of computer science was founded 1962 and the first PhD was awarded in 1966,

during the early 1970s there could not have been many computer science PhDs

around to fill the faculty positions. As the number of PhDs in computer science

grew, it seems logical that the departments of computer science were increasingly

able to employ computer scientists instead of mathematicians.

Fourth, Ralston argued that people at mathematics departments were not very hospit-

able to the ideas and techniques of computer science. Ralston criticized the “com-

puter science = programming”-outlook, and spoke up for mathematics-based com-

puter science. Ralston wrote with Mary Shaw, “inevitably, for any science or any

640Ralston, 1981

294

engineering discipline, the fundamental principles and theories can only be under-

stood through the medium of mathematics”641.

In short, Ralston gave four reasons for the field of computer science's divergence

from the field of mathematics: Disciplinary changes, an insecure disciplinary iden-

tity, a growing number of people in the field of computing, and disciplinary dis-

agreements. Only the first one of Ralston's four arguments actually concerns the

academic and intellectual aspects of computer science. The other three arguments

are perhaps better explained by psychological, sociological, or anthropological as-

pects. For instance, Ralston's second argument can be explained as a resistance to-

wards an old adversary; Ralston's third argument can be explained as a growth of the

number of computer scientists and their placing in working life; and Ralston's fourth

argument can be explained as a difference between the cultures of abstractly oriented

mathematicians and practically oriented computer scientists.

Throughout the 1970s, descriptions and definitions of computer science increasingly

came to include practical issues. Computer science, as such, was claimed to be a le-

gitimized, mature discipline642, and the legitimization pressures moved increasingly

to subareas of computer science (such as software engineering643). Yet, during the

years between the early 1960s and the early 1970s the ones who worked with com-

puters were mostly professionals in computer programming. Jonathan Grudin wrote

that through the 60s and mid-70s, improving usability still meant improving pro-

grammer efficiency644. But during the 1970s, a significant change in computing took

place. This change, which had a significant impact on both the form and the content

of the field, was due to changes in the user base: The computer broke out of the

laboratory; it became available to Western office workers and to the general public.

641Ralston and Shaw, 1980

642Ralston and Shaw, 1980

643See, e.g., Pour et al., 2000; Holloway, 1995.

644Grudin, 1990

295

Emerging Interdisciplinarity

Life was simple before World War II. After that, we had systems.645

In the beginning of the 1970s, computer

programmers remained the principal

users of computers646. Human-com-

puter interaction was not yet a research

field of its own, but there was a signi-

ficant amount of research on the psy-

chology of computer programming and

programmer-computer interaction647.

Between 1965 and 1975 integrated cir-

cuit electronics648 reduced the cost of

computer power by a factor of a hun-

dred649. The reduced costs led to the computer breaking out of the laboratory, which

changed the user base dramatically. The new users of computing technology were

no longer committed to the technology per se.

Paul Ceruzzi noted that it is not clear, however, to what extent personal computing

was simply the result of a natural outcome of advances in semiconductor technology

or whether it was the result of a conscious effort to effect a social transformation of

computing650. The development of personal computing is too recent a phenomenon

to get a proper perspective of651. The development of personal computing is far from

being over, and the long-term consequences of personal computing are still speculat-

ive. Because this thesis focuses on the development of computing and not on the

consequences of it, in this section I discuss the transformation of computing during

the shift in the user base, rather than the consequences of it.

645Attributed to Grace Hopper in Schieber, 1987.

646Grudin, 1990

647Baecker et al., 1995:p.41.

648See Figure 18 on page 234 about the “third generation” of computers.

649Campbell-Kelly & Aspray, 2004:p.198.

650Ceruzzi, 1999

651Campbell-Kelly & Aspray, 2004:p.207.

296

IN THIS SECTION:

� What factors have led to the growing inter-

disciplinarity of computing as a discipline?

� What is the status of the von Neumann Ar-

chitecture and the Turing Machine?

� Where does the complexity of computer sys-

tems come from?

� How can one cope with complexity?

� To whom are computer scientists account-

able?

Shifts in the User Base, Status, and Content of Computing

As the ration of programmers to other computer users became increasingly smaller,

the psychology of programming became less central to the studies of interaction

between humans and computers652. The dramatic shift in the user base during the

1970s had an equally dramatic effect on the academic discipline of computing.

Whole fields of study such as HCI (or CHI)653, (management) information sys-

tems654, operating systems655, and networks656 were born and the field of computing

was again stretched in a number of directions. This era shaped computing into a

truly multi- or interdisciplinary field.

The media had, since the birth of computers, portrayed computers to the general

public with phrases such as “the robot Einstein” and the “tireless ally of science”657.

In 1959 some visionaries had already understood that computers are not just tools to

replace human computers, but that they offer some unprecedented opportunities—

Herb Grosch wrote in the Datamation,

[1959] The dream is wider than to produce a slick matrix inversion routine

or to simulate a [Burroughs] 205 [computer] on a [Burroughs] 220. It's to

remodel the whole world of the future with a tool unequaled for challenge

since the invention of the alphabet, to amplify human intelligence by organ-

izing and rationalizing the staggering flow of information that is the

nervous system of society.658

Yet, it still took some fifteen to twenty years before researchers at large stopped re-

garding computers as merely calculators. Towards the end of the 1970s an under-

standing that computer science is indeed an interdisciplinary science, and not easily

definable, emerged. In the Second International Conference on Software Engineer-

ing, Peter Wegner wrote a progressive characterization of computing;

652Baecker et al., 1995:p.41.

653Baecker et al., 1995:pp.38-43.

654Baskerville et al., 2000:p.63; Alavi & Carlson, 1992.

655Silberschatz et al. noted that operating systems have a longer history (Silberschatz et al., 2002:p.11), but Denning
argued that in the early 1970s, operating systems as a subfield of computer science made the transition from a
poorly understood set of techniques to a well-understood set of core principles (Denning, 1985).

656Denning, 1985

657Bowles, 1996

658Grosch, 1959

297

[1976] Computer science is in part a scientific discipline concerned with the

empirical study of a class of phenomena659, in part a mathematical discip-

line concerned with the formal properties of certain classes of abstract

structures, and in part a technological discipline concerned with the cost-ef-

fective design and construction of commercially and socially valuable

products.660

Peter Wegner's description in the passage above does not emphasize only one view-

point of computing. Wegner drew content from connections with empirical, math-

ematical, and engineering traditions. He extended the “phenomena” of computer

science to include “other [hu]man-made entities and concepts which owe their exist-

ence to the development of computers”661, which could be interpreted as an open in-

vitation for interdisciplinary studies. Under a somewhat loose interpretation of

Wegner's description, studies of individual phenomena, such as net addiction662; in-

terpersonal phenomena, such as net date and virtual rape663; social phenomena, such

as virtual communities664; or perhaps even abstract phenomena, such as information

society665 and collective intelligence666 would all belong to the field of computer sci-

ence. Loosely read, Wegner's description of computer science would be equal to the

classic Newell et al.'s 1967 description of computer science as the “phenomena sur-

rounding computers”667.

However, because neither Wegner nor Newell et al. could have predicted the phe-

nomenal changes in computing and its uses, it is perhaps best not to celebrate their

statements as wide-open or all-embracing normative accounts of computer science.

Wegner, for one, interpreted Newell et al.'s “phenomena” as algorithms, programs,

programming languages, and such668. Sociocultural phenomena are not explicitly or

implicitly included in either definition. Nevertheless, although Wegner's definition

was probably not meant as broadly as a modern-day reader might interpret it, it still

659The “phenomena” of computer science include digital computers, programming languages, algorithms, pro-
grams, and other human-made entities and concepts which owe their existence to the development of computers
(Wegner, 1976).

660Wegner, 1976–this definition will be compared later with one by Denning et al., 1989. Underlining added.

661Wegner, 1976

662Young, 1998

663Civin, 2000:pp.93-95.

664See, e.g., Rheingold, 2003.

665Castells, 1996; Castells, 1997; Castells, 1998

666See, e.g., Lévy, 1997.

667Newell et al., 1967

668Wegner, 1976

298

explicitly stresses an interplay of empirical research, formal theories, and design and

implementation, all of which are considered cornerstones of computing nowadays.

One of the founding fathers of artificial intelligence, Allen Newell, argued later that

information processing will change all disciplines, not only computer science669. In

1985 Newell claimed that scientists should be prepared for “some radical, and per-

haps surprising, transformations of the disciplinary structure of science (technology

included) as information processing pervades it”. Newell’s argument was that sci-

entists in the future would no longer do object-level research such as observing, ex-

perimenting, theorizing, testing, and archiving but they would do meta-level re-

search. In order to rise to the meta-level, scientists would need to understand activit-

ies of science so that they could make systems that can automatically do the trivial

object-level research. In a sense, Newell's prediction has come true in computational

sciences.

Societal Conscience Awakens

As the sophistication of computing technology increased, so did the anxiety about

the effects of computing technology on society. In 1969, Richard Hamming noted in

his Turing Award lecture,

[1969] We know that in this modern, complex world we must turn out

people who can play responsible major roles in our changing society, or

else we must acknowledge that we have failed in our duty as teachers and

leaders in this exciting, important field—computer science.670

The changes in attitude were soon reflected in computer science education. Already

in 1972, when computers were not yet available to the general public671, Horowitz,

Lee, and Shaw proposed a Computers and Society course for computer scientists672.

They concluded that if research is done without concern for its influences on all as-

pects of society, that research can become a destructive rather than constructive

mechanism. Horowitz, Lee, and Shaw gave examples of technologies that have had

both positive and negative effects, such as the automobile, nuclear power, and pesti-

669Attributed to Newell in Bobrow & Hayes, 1985.

670Hamming, 1969

671Paul Ceruzzi claimed that personal computing (the definition of which includes both technology and culture) was
invented in 1974 (Ceruzzi, 1999:p.72).

672Horowitz et al., 1972

299

cides673. The content of their proposed course is broad and also very similar to the

issues that are troubling today (including political, economic, cultural, social, and

moral issues).

The emerging trend of examining the relationship between computers and society

was evident in Khalil and Levy's curriculum of computer science674. They wrote,

“In the spirit of our times, an awareness of the social issues and controversies is

also important for the well-educated person”. For instance, starting as early as the

1970s, CACM had had extensive debates over the social responsibilities of comput-

ing professionals675. The status of social, philosophical, and ethical considerations in

curricula changed during the years between 1968 and 1978. Whereas the '68 report

states that “[social] issues are not the exclusive or even the major responsibility of

computer science”, the '78 report regards social, philosophical, and ethical issues “of

such importance to computer scientist that they must permeate the instruction at this

level.”676. Note, however, that those social, philosophical, and ethical issues concern

only the societal effects of introducing computing technology and not sociologically

or philosophically oriented meta-research of computer science.

The Limits of the Model Set by Turing and von Neumann

Social concerns were not the only concerns that the increasing speed of computers

brought about. In 1981, John Backus, who had been the head developer of FORTRAN

starting from 1954, expressed his pessimism about the programming tools of the

1980s677. Backus stated that while it was perhaps natural and inevitable that lan-

guages like FORTRAN should have developed out of the concept of the von Neumann

computer as they did, the fact that such languages have dominated computer scient-

ists' minds ever since is unfortunate. In Backus' opinion, people have come to regard

the DO, FOR, and WHILE statements, and the like, as powerful tools, whereas they are, in

fact, weak palliatives that are necessary to make the primitive von Neumann style of

programming viable at all—Backus wrote in the book History of Programming Lan-

guages,

673Horowitz et al., 1972

674Khalil and Levy, 1978

675See, for instance, the issues of CACM, July 1973 (a large debate on ethical code), and May 1974 (a large debate
on social and political questions).

676Atchison et al., 1968; Austing et al., 1979

677Backus, 1981:p.43.

300

[1981] [The] “von Neumann languages” [such as ALGOL and Backus' own

creation FORTRAN] create enormous, unnecessary roadblocks in thinking

about programs and in creating higher level combining forms required in a

really powerful programming methodology. [...] It is unfortunate because

their long-standing familiarity will make it hard for us to understand and

adopt new programming styles which one day will offer far greater intellec-

tual and computational power.678

In the light of new or experimental programming paradigms; such as object-oriented

programming, message-passing programming, reflective programming, and empiric-

al modeling; Backus seems to have been correct. Backus argued that once accus-

tomed to one programming paradigm, it may not be very easy to switch over to an-

other. It must be noted, though, that von Neumann's decisions were tied to the state-

of-the-art of von Neumann's time. Von Neumann did recognize the advantages of

parallel computation, but architectural design of the time was incapable of delivering

a parallel system, and techniques of multiprogramming had not yet been de-

veloped679.

When Donald Knuth was working on what were to become the most applauded

works in computer science, he faced a choice that dealt with Backus' concern: Knuth

needed to choose a programming language for the examples in his book The Art of

Computer Programming. Knuth made an original choice; the reference language in

his book series is a symbolic machine language called “MIX”680. Knuth stated that

in his book series, the choice of language was the hardest decision to make. He gave

six reasons for choosing the assembly language MIX681.

First, Knuth argued that with a machine-oriented language a programmer will not be

influenced by the design decisions of any particular language. Second, the programs

in the book are rather compact, and as such, expressible in assembly language.

Third, high-level languages are inadequate for discussing important low-level de-

tails. Fourth, Knuth argued that those who are more than casually interested in com-

puters, should be schooled in machine language, since it is a fundamental part of a

678Backus, 1981:p.43.

679Lee, 1996

680Knuth, 1968

681See Knuth, 1968, or Knuth, 1997:pp.viii-ix. These reasons change between editions of Knuth's book. In the 2nd
edition, Knuth noted that algebraic languages are more suited to numerical problems than to the nonnumerical
problems–in the 3rd edition this is not mentioned.

301

computer. Fifth, some machine language would be necessary anyway as output of

the software programs in many examples682. Sixth, new algebraic languages go in

and out of fashion, but Knuth wanted to emphasize concepts that are timeless.

Knuth's first, third, and sixth arguments are apparently an aim at universality;

however, the MIX symbolic assembly language is universal only to sequential von

Neumann-architecture designs (and not universal for all automatic computing, cf.

e.g., ZISC architecture683). Because experimental or unimagined future technologies

may be incommensurable with von Neumann-architecture, MIX cannot be taken as

universal in any true sense of the word684. For instance, John Backus called von

Neumann-architecture primitive and defective685. Although Knuth's algorithm ex-

amples are not influenced by any particular high-level programming language, they

are definitely influenced by one particular model of computation and a particular as-

sembly language. Note an interesting point: Knuth argued that using assembly lan-

guage is “much closer to reality”686 than using any high level language. He also

noted that assembly language is a fundamental part of a computer, and that assembly

language concepts are timeless687. The emphasis that Knuth gave to assembly lan-

guage operations suggests that Knuth took them as the non-divisible basic building

blocks of computer programming (or atomic operations—from Greek ������ , in-

divisible).

It would be naïve to think that von Neumann-architecture and Turing-computability

would, in someways, be the last word for machine computability, and I am not cer-

tain that many computer scientists would even claim that they are. Copeland and

Proudfoot wrote that the aim of Turing's 1936 paper688 was not to explain the limits

of machine computation, but to specify the simplest machine that can perform any

calculation that can be performed by a human mathematician who has unlimited

time, and who works with paper and pencil in accordance with some “rule-of-

682The emulator, trace, and monitor routines discussed in Chapter 1 of the first volume in Knuth's book series
(Knuth, 1997) deal with machine language. Chapter 12 (Programming Language Translation) in one of the
forthcoming volumes of Knuth's book series will probably deal with machine language input and output.

683Zero Instruction Set Computer (ZISC) imitates a neural network and it does not have a separation between CPU
and data. See Madani et al., 2001 for a brief explanation to ZISC-036 processor.

684Ultimately universal means something that is non-spatial, non-temporal, and absolutely epistemologically object-
ive.

685Backus, 1978. In this Turing Award lecture, Backus introduced the term “von Neumann bottleneck”.

686Knuth, 1997:p.ix.

687Knuth, 1997:p.ix.

688Turing, 1936

302

thumb” or rote method689. Turing himself went on to investigate the idea of ma-

chines, which he called o-machines (oracle machines), that can calculate mathemat-

ical tasks that the Universal Turing Machine (UTM) cannot690. Wegner and Goldin

argued that later, Turing considered also c-machines (choice machines), which added

interactive choice to computation as well as u-machines (unorganized machines),

which he planned for modeling the brain691. Piccinini wrote that according to Tur-

ing, there is no upper bound to the number of mathematical truths provable by intel-

ligent human beings, because they can invent new rules and methods of proof692.

Unlike the output of a machine, for which the rules have to be known, the output of a

human mathematician is not a computable sequence693. Following Turing's o-ma-

chines a number of hypercomputational models694 have been introduced in fields

such as neural computing695 and analog computation696 (yet there is a debate over

whether hypercomputation is indeed possible).

Richard Hamming questioned how long the Turing Machine model (or the von Neu-

mann-model) will last in the area of algorithms, since, from Hamming's point of

view, the Turing Machine model no longer modeled modern hardware well697. Ham-

ming noted a number of notions in classical algorithm books that are out of date with

modern hardware. For example, modern chips do not have “halt” instruction and

their cache memories and pipelines can greatly alter the running-time estimates of al-

gorithms, but the cache memories and pipelines are not under the control of the pro-

grammer. Whereas Knuth wrote in the Art of Computer Programming that assembly

concepts are timeless, in the later editions he also wrote that it must be admitted that

MIX is now quite obsolete and that MIX will be replaced with MMIX in the future

editions of the book698. Assembly languages do change as machine architectures

689Copeland & Proudfoot, 2000. Note that although an algorithm needs to halt at some point of its execution
(Knuth, 1997:pp.5-7), in order to be computable in the sense of the word used by Turing (Turing, 1936), a com-
putable process does not need to halt. Note also that unlimited time also assumes an unlimited life span for the
human mathematician.

690Turing, 1939

691Wegner and Goldin, 2003

692Piccinini, 2003

693Piccinini, 2003

694B. Jack Copeland called computation of functions or numbers that cannot be computed in the sense that Turing
(Turing, 1936) means it, hypercomputation (Copeland, 2002). Copeland gave a number of examples of models
of hypercomputation. See also Wegner and Goldin, 2003.

695Siegelmann, 2003

696MacLennan, 2003

697See Hamming, 1997.

698Knuth, 1997:pp.ix,124.

303

change, and essentially, nothing in the history of computing indicates that either lan-

guages or architectures are timeless.

I take it that von Neumann-architecture has gained enough technological momentum

so that it is, despite all of its limits, nowadays largely taken as a paradigm, as an un-

questioned foundation, for successful computation. There are, however, serious at-

tempts to break the barriers set by von Neumann-architecture and Turing-computab-

ility. Because of the special character of computer science as a human-made en-

deavor, these attempts are not responses to anomalies in the paradigm (which is

based on von Neumann-architecture and Turing-computability), but calculated at-

tempts to break the limits of the paradigm699. In a sense, Backus' critique of the von

Neumann-architecture700 and Knuth's choice of assembly language701 point towards

the awkwardness of the concept of programming paradigms—programming

paradigms are not paradigms in the Kuhnian sense because new programming

paradigms do not render old programming paradigms obsolete. Calling approaches

to programming paradigms is confusing and ungrounded; for instance, Knuth's

choice, assembly language, can co-exist with whatever approach Backus had in

mind.

Despite the fundamental importance of theoretical issues, when computers increas-

ingly spread to different disciplines and areas of work, understanding the fundament-

als of computation may not be a primary concern for most working people. Rather,

high-level and heavily context-dependent abstractional languages will be required in

order to empower workers (who use computers merely as tools) to program or repro-

gram them. Knuth's book series is, in the end, meant for people who want to under-

stand computing and computers and not for those who use them as tools.

699See Copeland, 2002; Copeland & Sylvan, 1999.

700Backus, 1978

701Knuth, 1968

304

The Complexity702 of Computer Systems

In 1969, Herbert A. Simon wrote in his book The Sciences of the Artificial,

[1969] An ant, viewed as a behaving system, is quite simple. The apparent

complexity of its behavior over time is largely a reflection of the complexity

of the environment in which it finds itself.703

A computer, vis-à-vis an ant, is an extremely simple system, or at least its function-

ing is reducible to a small number of extremely simple parts that function in a simple

and straightforward manner. The entities on each level of abstraction in computer

science (at large) work in a trivial manner. The apparent complexity of computing

and the computer is largely due to the complexity of the semantic interconnections

between abstraction levels in computing. In the following two subsections, I clarify

this argument. Note that on the following pages, Figures 22-24 are simplifications

of reality, and they are only meant to be suggestive sketches about the complexity of

computer systems—the reality of computer systems is even more complex. After I

have briefly discussed a number of abstraction levels in computer science, I examine

the possible sources of complexity between the highest and lowest levels of abstrac-

tion.

First, the operation of logic gates is simple and straightforward. However, when

large numbers of logic gates are cascaded to implement logic elements such as ad-

ders, multiplexers, and multipliers (see Figure 22), there are different implementa-

tion choices for each, some of them simpler, some more complex704.

702Complexity in the field of computing is an ambiguous term. For instance, computational complexity refers, gen-
erally, to how much time and space a certain computation requires and hierarchical complexity refers often to the
number, variety, and interrelations of a system's elements (see Rescher, 1998:p.1; Simon, 1981). In addition, in
holistic systems complexity refers to the unpredictability of a system due to emergent features of the system's
parts, the large number of interactions in the system, and the autonomous independence of the behavior of the
parts (see Rescher, 1998:p.2). Here the term complexity refers to a hierarchical complexity of a system and to its
unpredictability over time. A large number of different measures of complexity (about 45) can be found in Hor-
gan, 1996:p.303. See also a taxonomy of modes of complexity in Rescher, 1998:p.9. What is more, sociologist
John Urry noted that metaphors, theories, and concepts of complexity are also moving from natural sciences to
the field of sociology (Urry, 2004).

703Simon, 1981:p.64 (orig. 1969). Although Simon elides an exact definition of complexity (Simon, 1981:p.195),
his term hierarchical complexity is used in a way that it refers to a system's complexity, both in organizational
and in operational terms.

704Hennessy & Patterson, 1996:pp.”A-38”-”A-60”.

305

Second, the operation of each of the logic elements is simple, but when they are

coupled together to form parts of an execution unit—parts such as ALUs (Arithmetic

Logic Units), registers, and FPUs (Floating Point Units)—the connections between

logic elements and an execution unit become numerous and complex.

Third, the operation of the parts of an execution unit (ALUs, registers, and such) is

simple and straightforward, but the number of micro-operations (each of which in,

e.g., CISC (Complex Instruction Set Computer) architecture, utilize parts of the exe-

cution unit) per microinstruction is often large. What makes things more complex in

modern machines is that they often utilize superscalar processors (which have a

number of ALUs, FPUs, etc.), and that they are sped up by pipelining.

Fourth, the number of microinstructions per machine instruction is also large in typ-

ical CISC machines. That is, a single machine instruction (macroinstruction) usually

results in a number of microinstruction calls705. Again, things are made more com-

plex by the fact that some modern processors are internally RISC (Reduced Instruc-

tion Set Computer), but nevertheless emulate a CISC architecture.

Fifth, machine instructions, as such, are simple and unambiguous. However, the

number of machine instructions that statements, expressions, and the like in high-

level programming languages produce is large (see Figure 23) and their connection

with statements is complex, especially in code that is optimized in some way. Note

that in reality this picture is further complicated by the fact that the operating system

usually works as an additional layer between machine instructions and high-level

language706.

705Clements, 2000:p.232.

706Clements, 2000:p.213.

306

Figure 22: Abstraction Layers at the Machine Level

Logic gate Logic gate Logic gate

ALU Register

... Logic gate Logic gate Logic gate...

...

Microinstruction...Microinstruction Microinstruction...

Machine instruction

Microinstruction Microinstruction

Multiplier Adder Flip-flop Flip-flop Flip-flopDivider

Register

Sixth, statements and expressions in imperative programming languages like FORTRAN

are simple and unambiguous as such, but statement blocks, including loops, condi-

tional branches, and the like, are more complex and prone to errors.

Seventh, in procedural programming, statement blocks form functions or sub-

routines. Although the contents of statement blocks can be syntactically correct,

complexity arises from their use. Incorrect use of statement blocks—a lack, mis-

placement, or misuse of an initialization loop; common variables or other intercon-

nections between different blocks; redundant blocks; and other problems with state-

ment blocks—can cause confusion and errors.

Eighth, functions and subroutines usually form modules, libraries, or other encapsu-

lated entities. Although every single subroutine can be correct, their incorrect use or

incompatibilities between subroutines (e.g., errors with semantics, boundaries, error-

checking, unit disparities, or functioning) are the usual causes of errors. Again, the

errors are not due to the complexity of the subroutines (they are actually simple en-

tities with given input, output, boundaries, and other restrictions), but the errors are

due to their complex interrelations when put together.

Ninth, modules, libraries, and the like, constitute computer programs. Although a

module may work perfectly in one program, it may not do so in another. Two mod-

307

Figure 23: Abstraction Layers on a Language Level

Figure 24: Coarse Abstraction Levels on Network Scale

...

...

...

...

...

...

...

...

...

...

Machine InstructionMachine Instruction Machine Instruction

ExpressionStatement Statement

Statement BlockStatement Block Statement Block

SubroutineSubroutine Subroutine

ModuleModule Module

Program

Program...Program Program...

Software system

Networks

...Software System Software System...

ules may have incompatibilities due to their side-effects, and these incompatibilities

may not show any signs before the two modules are used together. Furthermore, the

underlying mechanisms in modules may have limitations that only materialize in

complex programs. For instance, Frederick P. Brooks, Jr., wrote in his book The

Mythical Man-Month about the difficulties that arise in large, complex programs and

complex systems707.

Tenth, full operating systems and other software systems (see Figure 24) include a

number of more or less interdependent computer programs. For instance, the router

at my home, the piece of hardware that forwards data packets between my computers

and the Internet, runs 56 programs (or tasks) simultaneously. Although a single pro-

gram may be simple and unambiguous, large collections of co-operating and concur-

rent programs exhibit vast complexity. For instance, Michael J. Spier visualized the

operating systems of the early 1970s as “a messy ball of spaghetti”708. Note that

there is a number of abstraction layers, firstly, between programs, and secondly,

between programs and the operating system, but, for simplicity's sake, they are not

included in Figure 24.

Eleventh, there are networks of computers, like the Internet, where each computer

can run different sets of software systems, yet all the connected computers need to be

interoperable to some degree. There is actually a large number of abstraction layers

between a software system and a network of computers709, but these layers are also

omitted from Figure 24 for the sake of brevity.

Although many complexities are excluded from this description of computer systems

—such as complexities that arise from data structures, real-time systems, interfaces

with an external environment, intermediate abstraction layers, data semantics, shared

objects, and so forth—the underlying complexity in this description is enormous.

Yet, the functional and structural definitions of the objects on every single level of

abstraction are simple. The examples above show that the complexity of computer

systems comes from the semantic connections between abstraction levels. Further-

707Brooks, 1975

708Spier, 1974

709For instance, the Open Systems Interconnection Reference Model, OSI model, has seven functional layers–phys-
ical, data link, network, transport, session, presentation, and application layers (see ISO standard 7498-1, avail-
able at www.iso.org).

308

more, the structure of this complexity is not an inherent structure of the world, but it

is a human construction—this is clarified in the following subsection.

The Sources of Complexity

There are a number of very practical questions that this complexity creates. For in-

stance, the term implementation level belongs to common computer science lan-

guage. Yet one might ask, “What exactly is the implementation level?”. Between

the top and bottom levels in Figures 22-24 (logic gates and computer networks) there

are a number of intermediate abstractions, so it is not clear where exactly the ab-

straction boundaries should be drawn. (Brian Cantwell Smith interpreted these is-

sues as ontological questions710.) If one considers the microinstruction level, espe-

cially in modern hardware, it is even difficult to say what is hardware and what is

software711.

The interconnectedness of each of the abstraction levels makes design difficult. For

instance, in a system with four semantic levels w-x—y-z, often when the semantic

gap between levels x and y is narrowed, the gap between levels w and x, as well as y

and z, may widen (w—x-y—z). It is a difficult question whether a wide semantic

gap, that is, complex semantic interconnections between two levels, should be pre-

ferred to a large number of semantic levels.

In Searle's ontology712, the chemical and physical behavior of the substances that lo-

gic gates are made of are brute facts. Once manufactured, the existence and proper-

ties of logic gates are independent of humans—they are ontologically objective facts.

It is a debatable matter whether axioms in Boolean logic (on which logic gates are

founded upon) are ontologically objective facts or not. The ontological status of ax-

ioms is irrelevant in the argument concerning the social construction of computer

systems anyway. That is because when logic gates are combined to create complex

logic elements such as multipliers, the decisions of how to combine them are made

by a number of arguments other than brute facts, logic, or physics, as discussed in

the following paragraph. Note that even the binary system is not chosen for com-

710Smith, 1998:p.27.

711James H. Moor noted the problem of hardware-software-division in Moor, 1978.

712Searle, 1996:p.7.

309

puters because of its superiority over other numeral systems, but because of the ease

and low cost of manufacturing binary elements713.

When logic gates are coupled to make logic elements, there is a number of possible

implementations, but none of them is optimal on all terms. Multipliers, for one, can

be implemented in a number of ways, including the Wallace tree, Booth's algorithm,

look-up tables, and so forth714. The implementation of a multiplier is a trade-off

between different kinds of aspects, and, as a result, some machines form products by

using simple shift-and-add operations, whereas some expensive, high-speed com-

puters use very large logic arrays involving hundreds of gates715. Different kinds of

needs result in different implementations. Adders, too, can be implemented by com-

bining logic gates in different ways, and all combinations have different benefits716.

The number of possible designs of an adder is, theoretically, infinite.

Alan Clements wrote that the design criteria of logic circuits are basically speed, the

number of interconnections (which influences the amount of wiring), and the num-

ber of packages (which influences the number of external pins)717. He further

claimed that that the design of logic circuits in reality is often affected by factors

“other than these” (the cost of silicon die, its testing, and its packaging are such

factors718). Some designs also consume more power than others (e.g., draining the

battery and producing heat), which is a crucial issue in some, but not in all, products.

As an example, Hennessy and Patterson719 compared three chips that all have been

designed to meet the same IEEE specifications. They noted that even though the

constraints have been the same, the designers have ended with completely different

implementations because of different design choices and different trade-offs.

There are a variety of reasons for the different design choices on the level of execu-

tion units. In addition to the above mentioned economical and manufacturing as-

pects, the choices that designers face are dependent on functional requirements, such

as the level of superscalarity and the number and depth of pipelines. The combina-

tion of adder/subtractors, and/ors, multiplexers, and other units that constitute a

713Clements, 2000:p.151.

714Clements, 2000:pp.194-200.

715Clements, 2000:p.194.

716See Swartzlander, 2004 in Tucker, 2004.

717Clements, 2000:p.32.

718Hennessy & Patterson, 1996:p.10.

719Hennessy & Patterson, 1996:pp.”A-61”-”A-63”.

310

functional ALU is large in even the simplest ALUs720. The more logic elements

there are in an execution unit, the more complexity there is between the seemingly

simple levels of execution units and the logic elements. The complexity often results

in flaws. For instance, a number of bugs in Intel's x86-series has been reported721. It

should be noted that the problems are not due to the complexity of any of the ele-

ments on each of these abstraction levels, but due to the large number and complex-

ity of the connections between abstraction levels. It is practically impossible to

provide a proof of the correctness of a computer722.

The Semantic Gap

In addition to economical, manufacturing, and functional reasons, there are also his-

torical reasons for the different design approaches: Hennessy and Patterson wrote

that the birth of CISC architecture dates back to the late 1960s and 1970s, when most

system programs were still written in assembly language723. At the time, researchers

had begun to understand that von Neumann machines do not adequately provide for

the constructs that occur in common programming languages724. The difference

between the concepts of high-level languages and the concepts of machine language

was called the semantic gap. For instance, loops in high-level languages have to be

implemented as conditional jumps in machine language, because there is no loop

construct in machine language. Glenford Myers argued that the large semantic gap

contributes to software unreliability, performance problems, excessive program size,

compiler complexity, and distortions of the programming languages725.

This semantic gap between the machine language and the high-level language cor-

responds to what I referred to above as complexity of the semantic interconnections

between abstraction levels in computing. Hennessy and Patterson were explicit

about the source of complexity in compiling high-level language into machine lan-

guage: “The complexity of a compiler does not come from translating simple state-

ments such as A=B+C. [...] Complexity arises because programs are large and

720See Leeser, 2004 in Tucker, 2004.

721For instance, Dr. Dobb's Microprocessor Resources: http://www.x86.org/secrets/intelsecrets.htm
(accessed September 27th, 2006). Dr. Dobb's Journal is one of the earliest magazines for computer hobbyists,
now published largely via the Internet.

722cf. Kidder, 1981:p.184.

723Hennessy & Patterson, 1996:p.114.

724Kavipurapu & Frailey, 1979

725Myers, 1978

311

globally complex in their interactions”726. The complexity of writing a correct com-

piler, Hennessy and Patterson argued, is a major limitation in the amount of code op-

timization that can be done. They advised that designers of computer architecture

should understand how compilers are written, and designers of compilers should un-

derstand architectures thoroughly727.

It seems that the more natural a language is for humans, the harder it is to translate to

machine language. Symbolic assembly language can be translated directly to ma-

chine language, but it is not very easy to read. Assembly language is especially un-

suitable for large programs. Procedural languages like C are usually not very com-

plex languages to compile, but their abstraction level is not very high, and hence

they are not at their best in very large programs. Some object-oriented languages

such as Java and Eiffel are complex languages to compile, but they are flexible re-

garding their automatic memory management, they are agnostic about many data

types, they have large ready-made libraries, and they are well-suited for large, dy-

namic projects.

In some machines there is a large semantic gap in how machine language is trans-

lated to the actual operations of the execution unit(s). Between the machine lan-

guage level and the execution units level is the microinstruction level. Johan

Stevenson and Andrew Tanenbaum wrote that decisions around choosing the in-

struction set are highly intuitive, and the choice depends on the skill and experience

of the designers728. In other words, the choices between varieties of RISC and CISC

architectures as well as which instructions to include in the chosen architecture, are

intuitive choices that designers make. The computer designers in the 1970s aimed at

reducing the semantic gap between high-level languages and machine languages by

increasing the complexity between machine language and execution units (CISC ar-

chitecture also reduces the number of memory accesses). That is, whereas in the

“old design” the compiler translated high-level statements into a large number of

simple machine language instructions, most of which had direct counterparts on the

execution unit level, in the “new design” the compiler translated high-level state-

ments into a small number of complex machine language instructions, which run a

726Hennessy & Patterson, 1996:p.95.

727Hennessy & Patterson, 1996:pp.89-91.

728Stevenson & Tanenbaum, 1979

312

large number of microinstructions on the execution unit level. Overall complexity

was not reduced—only the location of complexity was changed.

Digital design (i.e., design at the machine level) is always a delicate balance between

economics (e.g., the costs of the design effort), functionality (e.g., the complexity

and efficiency), architectural choices, power consumption and heat dissipation, de-

signers' preferences, standards, and so forth. The large number of competing designs

implies that if there is an ultimate architecture and implementation, it has not yet

been found.

Complexity on the Language Level

The complexity onthe language level is enormous. The semantic gap between ma-

chine instructions and basic statements and expressions was already discussed, so

only the complexity between statements (and expressions, which together are the ba-

sic building blocks of an imperative programming language) and complete function-

al programs is examined here. Frederick Brooks wrote in The Mythical Man-Month

that conceptual integrity is the most important consideration in software system

design729. However, the conceptual integrity of a programming language does not

guarantee the conceptual integrity of anything produced using that language, because

programmers can always produce a conceptual mess out of conceptual integrity.

(Moreover, in 1931 Kurt Gödel had already shown that any consistent formal sys-

tem, no matter how conceptually coherent, necessarily contains some propositions

that cannot be proven or disproven730.)

Statements and expressions in a high-level language are simple and clear. Also, the

purposes of statement blocks can be stated simply and clearly. However, combining

statements and expressions together to form statement blocks always leads to a se-

mantic gap between these two semantic levels. A number of semantical associations

need to be drawn between statements, expressions, variables, and the like, to imple-

ment the desired functioning of a statement block. Consider, for instance, the fol-

lowing piece of code from Kernighan and Ritchie's definitive C-language hand-

729Brooks, 1975:p.42.

730Gödel, 1931

313

book731 (the following code—a string copy routine—can be considered to be a part

of a statement block or all of it):

while(*p++=*q++);

In this syntactically- and semantically-correct code snippet, the number of semantic

associations is about as large as the actual number of characters in the code. By se-

mantic association, I refer to the different semantics, or meanings, that a syntactical

element, such as the assignment operator =, can have, depending on the context. For

instance, the assignment operator = is used here in two meanings. It assigns a value

and it returns a value. Firstly, the operator = denotes a semantic association (an as-

signment) between two variables p and q; that is, the operator = assigns the value of

p to be the same as the value of q. The * used before the pointer variable alters the

semantics of assignment so that the assignment is not done to the pointer variables,

but that the block of memory that p refers to is altered so that it becomes identical

with the block of memory that q refers to. Secondly, the operator = also denotes a

semantic association (return value) between the caller (the context; in this case, the

caller is the while statement) and the value that has been assigned.

The increment operators ++ in the code above are used in a postfix position in rela-

tion to the variables p and q. That is, in each case the incrementation is done after

the variable has been noted. Furthermore, the increment operator assigns the pointer

variable to refer to the next element in the array, so the absolute incrementation of

the pointer variable depends on the data type of the variable. The order of associ-

ation matters in a number of places: Unary operators like * and ++ associate from

right to left732, assignment expressions are noted after unary operators, and postfix

++ increments the value of the preceding variable after the value of the variable is

noted.

The statement after while is an empty operation, that is, a no-op or null statement.

The expression that while evaluates as its exit condition is the return value of the

assignment expression =, and in C language the semantical rule concerning character

data type in a Boolean expression is that anything different from '\0' is interpreted

as true, and only '\0' is considered false.

731Kernighan & Ritchie, 1988:p.106. This is the ANSI C string copy routine.

732Kernighan & Ritchie, 1988:p.95.

314

All the statements and expressions in the statement block (code snippet) above are

simple and clear. Also, the purpose of the statement block is simple: Copy the string

q to p, including the terminator character '\0'. The complexity in this code comes

from the number of semantical connections between the variables, operators, expres-

sions, and statements. Knowing the language syntax is hardly enough to cope with

language idioms such as the above-mentioned code snippet. Kernighan and Ritchie

noted that convenience with code like that comes with experience733. Note that there

are differences in the semantics of statement blocks between languages; for instance,

there are different conventions about whether a statement block defines a variable

scope or not, in different languages.

While statement blocks can be abstracted to be clear and precise, the subroutines that

they form are rarely so. For instance, in a software engineering handbook Code

Complete, Steve McConnell734 argued that the areas that most often cause problems

are the subroutine's interface, its scope, declaring and initializing data, its control

structures, and so forth. Although there can be a clear and precise understanding of

the definition of the subroutine, and although there can be a clear and precise under-

standing of each of the statement blocks, the semantical mesh between a subroutine

and its constituents causes problems.

It seems that complexity tends to increase towards the higher-level concepts. Be that

as it may, the discussion above should be enough to show that the locations of com-

plexity are thoroughly human choices. It cannot be shown that complexity could be

avoided, but it is certain that the sources of complexity on a number of semantic

levels come from human decisions. Edsger W. Dijkstra wrote that computer scient-

ists cannot know what level of simplicity can actually be obtained, but that it is cer-

tain that the central challenge of computing, “how not to make a mess of it”, has not

been met735. Especially it should come clear from this characterization of abstraction

levels that the complexity of the semantic network (not a hierarchy as one might ex-

pect) between a software system and a logic gate is dizzying. In the following sub-

section, a number of viewpoints of complexity in computer science are discussed.

733Kernighan & Ritchie, 1988:p.105.

734McConnell, 1993:p.67.

735Dijkstra, 1999; Dijkstra, 2001

315

Mastering Complexity

One of the pioneers of artificial intelligence (AI), Marvin Minsky, saw computer sci-

ence as the science of mastering semantical properties of super- and subclasses, or

different sizes of aggregates, or connections between complexes and entities736. In

this sense, Minsky leaned towards the inherent-structurist side rather than the nomin-

alist side—Minsky wrote in the book The Computer Age: A Twenty-Year View,

[1979] In many ways, the modern theory of computation is the long-awaited

science of the relations between parts and wholes; that is, of the ways in

which local properties of things and processes interact to create global

structures and behaviors.737

Prima facie this argument seems to include the structurist assumption that there is an

inherent hierarchy in the world, and that it is a hierarchy that a discipline such as

computer science can find. Herbert Simon has argued that when dealing with hier-

archical abstraction levels, subparts belonging to larger aggregates also interact in an

aggregate fashion738. That is, when one is dealing with abstractions, one does not

need to consider the interactions of single subparts because the interactions of large,

abstracted entities are those that matter. However, in computer science it is hard to

maintain any strict definition of the granularity of aggregate entities. For instance, it

is in principle possible to construct a program-level entity (a computer program)

from microinstruction-level entities in an architecture where there is no difference

between machine instructions and microinstructions.

James Moor even argued that the hardware-software distinction is a subjective and a

pragmatic distinction739. For instance, for the user of a microwave oven, the whole

thing is hardware. But for the engineer of a microwave oven there is often software

and hardware. For the systems programmer, circuitry is hardware, but a circuit de-

signer can see microprograms as software. A graphics programmer may not even

known which parts of his program are going to be hardware-accelerated and which

run on software.

736Minsky, 1979–however, Denning et al. claimed that the same statement also applies to physics, mathematics, and
philosophy (Denning et al., 1989).

737Minsky, 1979

738Simon, 1981:p.218.

739Moor, 1978

316

The abstraction levels in Figures 22-24 are artificial and they can be changed,

skipped, removed, or additional levels can be introduced. In fact, all these are done

quite often. For instance, (1) the abstraction levels between machine instructions

and execution units are vague in modern machines; (2) many high-level program-

ming languages allow in-line assembly instructions; (3) the operating system creates

a level between high-level language and assembly language; and (4) superscalarity,

pipelining, multiple logic elements, and multiple execution units make processor ab-

straction levels vague. But in the end, the structurist-nominalist debate cannot be

proven on either side, and at the moment it seems that there is no ultimately correct

answer for the question if the hierarchical abstractions of computer science are a

consequence of an inherent hierarchy of the world, or if hierarchical abstractions are

a tool for understanding an unorganized world.

Although Minsky's quotation740 in the beginning of this subsection seems to position

Minsky on the structurist side of the debate, that interpretation is undermined by

Minksy's rejection of the central role of mathematical logic in the representation of

knowledge. In fact, he denied the idea of universality, claiming that it is impossible

to find a fixed, universal logic applicable to all kinds of knowledge741. Many such

attempts have been made, but Minsky's outlook of incommensurability puts a high

price on fixed logic: All one's beliefs and knowledge must be made self-consistent,

and this is “essentially impossible to achieve”742. Therefore Minsky emphasized the

exploitation of certain, already-learned skills in building new knowledge in an inter-

disciplinary manner. Minsky's expectations of the future of computer science were

quite high. He wrote,

[1979] Like mathematics, [computer science] forces itself on other areas,

yet it has a life of its own. In my view, computer science is an almost en-

tirely new subject, which may grow as large as physics and mathematics

combined.743

If computer science is a truly interdisciplinary subject that has a distinct disciplinary

identity that is not fully dependent on other subjects, researchers of today have a

golden opportunity to document the birth of a discipline. This, of course, calls for

740Minsky, 1979

741Minsky, 1979

742Minsky, 1979

743Minsky, 1979

317

investigating the processes that give birth to the discipline, but the methodological

base of computer science seems inadequate for such an investigation. In Section 4.2

I analyze some complementary, qualitative research approaches to meta-research on

computer science and present examples of existing qualitative meta-research on

computer science.

Artificial Intelligence

The inclusion of artificial intelligence (AI) in computer science brings new disciplin-

ary viewpoints into computer science. For example, psychology, linguistics744, and

philosophy745 are intertwined with computing in AI. The roots of AI are in (1) the

conceptual development in the nineteenth century that brought a representational

model of thinking, (2) the progression in logic from symbolization to Boolean logic

to predicate calculus, and (3) the development of computational instruments through

Babbage's mechanical tools to the modern computer746. Although AI has a long his-

tory, Vernon Pratt argued that there is no continuum, plan, or story in this history,

but a number of projects, each different; some of them have been successful, some

have been abortive, all for different reasons747. In retrospect, Brooks has criticized

the attention that the field of AI got during 1970s and 1980s, arguing that too large a

fraction of the national public investment in computer science research went to AI,

compared to other promising opportunities748. And in Brooks' opinion, more serious

than the wasted dollars, was “the diversion of the very best computer science minds

and [...] academic laboratories.”749

Although theories, concepts, and methodologies from psychology, linguistics, and

philosophy are used in AI, AI is not considered to be a part of psychology, linguist-

ics, or philosophy. Those disciplines are tools that are used in research on AI. In the

early years of computer science, it was argued that because computer science utilizes

theories, concepts, and methodologies from mathematics, it should also be con-

sidered to be a part of mathematics. My interpretation is that the fact that studies of

AI may also contribute to the disciplines of psychology, linguistics, or philosophy is

744Charniak and McDermott, 1985:pp.87-167 (Chapter 3: “Vision”) and pp.169-254 (Chapter 4: “Parsing Lan-
guage”) make the connections clear.

745Minsky, 1979

746Pratt, 1987:p.2.

747Pratt, 1987:pp.1-7.

748Brooks, 1996

749Brooks, 1996

318

not substantive in the identity of the field of AI—AI can have a unique disciplinary

identity regardless of its intellectual origins and where its results are applicable. The

relationship of disciplines and auxiliary disciplines is discussed further in Section

4.3.

How to Bridge the Semantic Gaps?

Edsger Dijkstra's article in the June 1974 issue of American Mathematical

Monthly750 may have contributed to how Minsky regarded computer science751; Dijk-

stra wrote that as a consequence of the hierarchical nature of computer systems, pro-

grammers gain agility with which they switch back and forth between various se-

mantic levels, between global and local considerations, and between macroscopic

and microscopic concerns. Dijkstra regarded this agility as being an extraordinary

ability among scientists. Dijkstra's position was further elaborated in a polemical

article published in the summer 1987 issue of Abacus752, where Dijkstra made a case

about the uniqueness of computing science. Dijkstra considered the complexity in

computing to exist not only in the semantical domain but also in the ratios between

the time grains of phenomena in computing—he wrote in Abacus,

[1987] The ratio between an hour (for the whole computation) and several

hundred nanoseconds (for an individual instruction) is 1010, a ratio that

nowhere else has to be bridged by a single science, discipline, or techno-

logy.753

There is substantial semantical complexity in domains of computing, and the com-

plexity can be argued to be thoroughly human-made. In a similar manner, if there is

any substantial semantical complexity in the domain of time, then it is thoroughly

human-made.

Dijkstra's use of both orders of time754 and semantic levels755 as indicators of the

complexity of the domain of computing should be noted. It seems that orders of

750Dijkstra, 1974

751Minsky, 1979

752Dijkstra, 1987

753Dijkstra, 1987. Actually, photographs of objects of interest in physics range in size from 10 -16 to 1025 meters. “A
ratio of 1041 is a very large difference in scale, even for a computer scientist; moreover, physicists do not rule
out the study of even larger, or even smaller, objects” (Stewart, 1995). However, Dijkstra might have meant that
computer scientists may deal with very large ratios within a single project.

754Dijkstra, 1987

755Dijkstra, 1974

319

time and semantical complexity are not separate, but interdependent to some degree.

Reducing the number of orders of time that the execution of a computable task takes

is sometimes done by rearranging and redesigning abstraction levels and connections

between and within them—for instance, by redesigning languages, compilers, and

their connections with underlying architecture.

Firstly, rearranging and redesigning abstraction levels to be better suited for human

reading and for quick comprehension tends to increase the amount of time that it

takes to execute a program that solves a computational task (time can be measured

in, for instance, clock cycles). Secondly, reducing the time that it takes to execute a

program that solves a computational task is often done by creating or modifying the

algorithm central to the task, and there is often a trade-off between simplicity and

speed—simpler solutions are often slow, whereas faster solutions are often complex.

For an extreme example of the first of the two arguments above, take the assembly

language and Java language. Assembly language generates fast code but it can be

cumbersome to use, whereas Java generates slower code but allows one to produce

highly functional programs much faster. For an example of the second of the two ar-

guments above, take sorting algorithms. It is not by coincidence that the first sorting

algorithm that students are taught is usually the bubble sort algorithm. The bubble

sort is simple, although its time complexity is not the lowest possible. The time

complexity of the quicksort is lower, but its functioning is arguably more complex to

understand than that of bubble sort. Creating a new algorithm to solve a task means

assigning new semantics to variables, data, and operations, and often new variables

and operations are needed. Note, however, that semantical simplicity need not al-

ways mean better or worse time complexity in comparison to semantical complexity.

In the 1970s and 1980s Dijkstra claimed that computer scientists switch agilely

between global and local considerations and between macroscopic and microscopic

concerns. A later article by Dijkstra implies that by the year 2001 he did not have

high hopes for computer scientists' agility any more. Dijkstra wrote that computer

scientists should be deeply ashamed about the bug-ridden software of today756. It

seems that computer scientists are particularly good at mastering complexity in

strictly bounded realms (microcosmoses), such as the distinct levels of Figures 22-

756Dijkstra, 2001

320

24, but as bugs in nearly all software and especially software systems show, com-

puter scientists invariably fail at coalescing a number of microcosmoses into coher-

ent systems (macrocosmoses). Complexity of a computational system arises, at

least, from errors caused by the depth of semantic gaps, from errors caused by the

number of semantic levels, and from errors caused by the number of entities on each

semantical level.

Computer scientists can successfully construct technological microcosmoses which

are based on exactitude, and manage the complexity within them. The rules of mi-

crocosmoses can be made very exact and unambiguous. However, when computer

science moves outward to study even larger and more unpredictable entities such as

computer networks, exactness decreases. The unpredictability in very large systems

does not come only from bugs in computer hardware and software, but also from the

real world's power outages, electrical interference, faulty machinery and cabling, in-

tentional actors (humans), and even malicious code and malicious intentional act-

ors757. There is a large amount of inexactness in the real world.

Coming of Age

In April of 1990, the Computer Science and Technology Board (CSTB) of the Na-

tional Research Council of the U.S. formed a committee to assess the scope and dir-

ection of computer science and technology758. The project was motivated by the ob-

servation that the intellectual focus of computer science (and engineering) was chan-

ging significantly, and so was the environment where computing technology was be-

ing applied. The committee noted that the increasing utility of computing in all as-

pects of society was creating demands for computing technology that would be more

powerful and easier to use759. The committee characterized the changing field with

three judgments, expressing a broad view of computer science and engineering:

[1992] Computer science and engineering is coming of age. [...] It has es-

tablished a unique paradigm of scientific inquiry that is applicable to a

wide variety of problems. [...Thus,] intellectually substantive and challen-

ging CS&E problems can and do arise in the context of problem domains

outside CS&E per se.

757Note that no amount of source-level verification or scrutiny can protect a programmer from using untrusted code
(Thompson, 1984). For instance, Trojan horses (a sort of malicious code) can be inserted on any level of soft -
ware–they can lay in a compiler, an assembler, a loader, or even hardware microcode (Thompson, 1984).

758Hartmanis et al., 1992

759Hartmanis et al., 1992

321

[...] The traditional separation of basic research, applied research, and de-

velopment is dubious. [...] Distinctions between basic and applied research

are especially artificial, since both call for the exercise of the same scientif-

ic and engineering judgment, creativity, skill, and talent.

[...] The growing ubiquity of computing within society places a premium on

the largest possible diffusion of CS&E expertise to all endeavors in a soci-

ety whose computing applications stress the existing state of the art.760

It should be noted that the committee's report (hereafter referred to as the Hartmanis

Report) explains the future directions of national funding, which was also obvious in

the recommendations that the committee set—funding was directed to research areas

that best supported national endeavors. For example, the development of high per-

formance computing and communications programs was a top funding priority be-

cause (1) it was seen to be essential to the nation's future economic strength and

competitiveness, (2) it was considered to be among the grand challenges of sciences,

and (3) interdisciplinary and applications-oriented computer science and engineering

(CS&E) research was on the rise761.

The report was criticized right after its publication—Three months after the publica-

tion of the report, Eric A. Weiss commented on the report, writing, “We may confid-

ently expect that [the report] will have the same minimal effect of its predecessors”762

. However, the Hartmanis report put forward some views of computing that al-

though not exactly new, were something that had not really been written in an offi-

cial report or published in a widely read and oft-quoted journal (CACM). The Hart-

manis report made some bold suggestions, which I discuss in the following para-

graphs.

The reference to computer science and engineering (CS&E) instead of computer sci-

ence (CS) is a statement in its own right. Grouping computer science and engineer-

ing together implies that computer science and computer-related engineering are not

separate disciplines. This interpretation is congruent with the argument in Hartmanis

report that distinctions between basic and applied research are artificial.

760Hartmanis et al., 1992

761Hartmanis et al., 1992

762Weiss, 1993

322

The committee noted the obvious: Some intellectually challenging computational

and engineering problems arise in problem domains outside computer science and

engineering. Rather than deepening the theoretical and experimental science base of

computer science and engineering, the committee's overall judgment was that “more

benefit is likely to accrue to the field and the nation if the broadening course is

taken”763. The committee noted that relatively few researchers were devoted to in-

terdisciplinary and applications-oriented work and that relatively many were de-

voted to investigating problems at the core of computer science and engineering.

However, the committee believed that the former, interdisciplinary and applications-

oriented work was likely to have a more significant impact than the latter, basic re-

search.

Accordingly, the committee decided to recommend broadening the field (CS&E).

Especially the committee urged academic computer science and engineering to (1)

increase interdisciplinary interchange; (2) support computing in areas of economic,

commercial, and social significance; (3) abandon artificial distinctions among basic

research, applied research, and development; and (4) enhance the cross-fertilization

of ideas in CS&E between theoretical underpinnings and experimental experience.764

John R. Rice noted that the Hartmanis report signified a change in the funding of the

discipline765. Earlier computer scientists were able to just get the money, irrespective

of societal, economic, national, environmental, or extra-disciplinary consequences.

If the recommendations in the Hartmanis report were followed, the field would have

to earn its support by making the case that computer science research will have sig-

nificant societal benefits. Peter Wegner criticized the principle that research should

be judged by its practical impact, when he argued that researchers might lose their

motivation if the aims of science were externally imposed766. This discussion comes

back to the two arguments discussed in Chapter Two.

On one hand, from the Kuhnian point of view, proper science must be able to set its

own standards for recruiting scientists and evaluating their work767. The viewpoint

of sociologist C. Wright Mills was consistent with the viewpoint of Kuhn; Mills

763Hartmanis et al., 1992

764Hartmanis et al., 1992

765Rice, 1993

766Wegner, 1993

767Fuller, 2003:pp.45-46.

323

noted that if science is not autonomous, it cannot be a publicly responsible enter-

prise768. On the other hand, Popper and Feyerabend wrote that science cannot work

like the Mafia, a royal dynasty, or a religious order769. My position is that if com-

puter science gets funding for its functions from society, it must be responsible to so-

ciety and there must be control mechanisms that are external to computer science.

The committee further noted that the core of CS&E is highly dynamic, as a result of

rapid changes in the field. The committee's image of computer science and engin-

eering was that of (1) a collection of vaguely separated fields (2) connected by an

unstable core.

However, when the committee stated that CS&E can be applied in a variety of fields

of study, the committee did not state that (1) if computer science is applied as a tool

for disciplines such as physics or social sciences, then those disciplines would be-

come subsumed under computer science or that (2) if computer science is applied as

a tool for disciplines such as physics or social sciences, then those disciplines would

subsume computer science. Physicists still study physical phenomena, using com-

puter models as tools, and social scientists still study human phenomena, employing

computers as tools. This discussion is taken under consideration in Section 4.3.

768Mills, 1959:p.106.

769Feyerabend, 1970; Fuller, 2003:p.46.

324

Recent Definitions

The question 'What can be automated?' is one of the most inspiring

philosophical and practical questions of contemporary civilization.770

In the beginning of the 1980s com-

puters had spread to many homes in the

Western countries. Interface design

specialists were turning their focus to-

wards understanding the context of use,

the goals and activities of end users771,

and the group interactions of end

users772. Since the 1990s there has been

a clear shift towards human-centered

computing773. Respectively, the atten-

tion devoted to the social implications of computing has continued to increase774. A

new understanding of the importance of application areas to the development of

computing has also emerged775.

It is not certain where the frontier incidents of today's computer science take place:

perhaps around open-source and open-content776, the cultural roots of computer sci-

ence777, or around interactive computation and the limits of computation778. Cur-

rently the debate about the possible extensions and definitions of computer science is

still lively779. In this section I analyze the past president of ACM Peter J. Denning's

“fundamental question underlying all of computing” and stretch Denning's funda-

mental question into a more apt form for today's computing; discuss recent discus-

770Forsythe, 1969

771Cockton, 2004

772Grudin, 1990

773See, e.g., Shneiderman, 2002; Weiser & Brown, 1997; Negroponte, 1995; Dertouzos, 2001; Cockton, 2004.

774Although there have been debates about the impact of computer uses on different aspects of society throughout
the history of modern computing (for a good survey see Martin, 1993). Academic debate dates back long too:
The ACM SIGCAS (Special Interest Group on Computers and Society) newsletter has been published since
1970.

775Hopcroft, 1987

776Samoladas et al., 2004; Cusumano, 2004; Johnson, 2005; Stallman, 2005; Bowyer, 2006

777Schreiber, 2005; Tedre et al., 2006

778Kugel, 2005; Wegner & Goldin, 2006

779Crowcroft, 2005; Denning, 2005; Klawe & Shneiderman, 2005; Guntheroth, 2006; Poon, 2006; Argamon &
Olsen, 2006

325

IN THIS SECTION:

� What is the fundamental question being

asked in the discipline of computing?

� What are the main research topics in the dis-

cipline of computing?

� What are the recent debates about computing

about?

� Can computing be separated from societal

issues?

sions about the identity of computer science; analyze Frederick P. Brooks Jr.'s con-

cerns about computing; and ask whether debates about the name of the field should

be passé by now.

What Can Be Automated?780

In his article in the January-February 1985 issue of American Scientist, Peter Den-

ning defined computer science as “the body of knowledge dealing with the design,

analysis, implementation, efficiency, and application of processes that transform in-

formation”781. The aspects that Denning listed were not new, but by noting that com-

puter science does not deal with calculation only, Denning arrived at what he called

the fundamental question underlying all of computer science, “What can be auto-

mated?”782. (Later Denning et al. changed the question to“What can be (effectively)

automated?”783.) This question has been often argued to define the topic area of

computer science784, but in my opinion, regarding this question as the fundamental

question of computer science is an oversimplification. In this and the following sub-

sections, I criticize Denning's “fundamental question underlying all of computer sci-

ence” from modern computer science points of view and I present a “fundamental

question” that is more in line with the topic area of today's computer science than

Denning’s original question.

In addition to his fundamental question (singular) underlying all of computer sci-

ence, Denning listed eleven topic areas of computer science and outlined the funda-

mental questions (plural) asked in each topic area. Denning had 50 questions alto-

gether.

The fundamental questions in most of Denning's topic areas of computer science are

not all related to the fundamental singular question “What can be (effectively) auto-

mated?”. In fact, in 19 out of the 50 fundamental questions that Denning mentioned,

780The title “What Can Be Automated?” is borrowed from the title of the 1980 report of the NSF Computer Science
and Engineering Research Study (COSERS), What Can Be Automated? (Arden, 1980).

781Denning, 1985

782Denning attributed the question to the COSERS report (Arden, 1980). The COSERS report correctly attributes
the question to Forsythe (Arden, 1980, preface).

783Although Denning noted the demand for effectiveness already in 1985 (Denning, 1985), he did not include the
word effective in the “fundamental question” at the time. The word effective was added to the “fundamental
question” in Denning et al., 1989.

784See the entry “Computer Programming and Computer Science” (Knuth, 1992) in the Academic Press Dictionary
of Science and Technology (Morris, 1992).

326

the question deals with how instead of what785. Denning's 50 fundamental questions

include questions such as “How can large databases be protected from inconsisten-

cies generated by simultaneous access [...]?”, “How can the fact that a system is

made of components be hidden from users who do not wish to see that level of de-

tail?”, and “What basic models of intelligence are there and how do we build ma-

chines that simulate them?”.

Answers to questions that ask what are different from answers to questions that ask

how. The question “What can be automated?” divides all possible processes into

those processes that can be automated and those processes that cannot be automated.

Conversely, there may be many correct answers to “How can process p be auto-

mated?”. For instance, process p could be automated by using either approach a, ap-

proach b, or approach c. Approaches a, b, and c can all be optimal in their use of

space, time, and other resources, or they can all be non-optimal in different ways.

The difference between questions that ask what and questions that ask how can be

seen in the formulation of the questions. The question “What can be automated?”

seems like a generic question that concerns all phenomena. The question does not

specify the object (e.g., “Which processes (things, tasks, etc.) can be automated?”).

On the contrary, the questions that ask how things can be automated without an ex-

ception specify the object (e.g., “How can one automate p?” or “How can one auto-

mate p(f(x))?”786).

The question “What can be automated?” is a theoretician's question, and the theor-

etician should not be concerned about the specific technology that might be used to

automate process p, be the technology electronics, optics, pneumatics, or magic787.

The question “How can process p be automated?” is a practitioner's question, and

the practitioner needs to make a number of design choices concerning the imple-

mentation of the technology that automates process p.

I suggested earlier the underrepresentation problem788 (i.e., “Given a number of

models that all successfully model and predict different aspects of a phenomenon,

but that all are flawed in some way(s), how does one determine which model to

785The number of Denning's questions (excluding subquestions) is 50, and the word how appears in 19 questions.

786p denotes a single process, and p(f(x)) denotes a class of processes that share the same essential properties f(x),
which render the class of processes to be possible to be automated.

787This is how Edsger W. Dijkstra characterized the theoretician's position (Dijkstra, 1986).

788See Section 2.1, page 60 and Section 2.3, page 155.

327

use?”), which I argued to be more suitable for computer science than the underde-

termination problem suggested by Willard v.O. Quine789. The underrepresentation

problem is especially valid in the practitioner's problem; “How can process p be

automated?”. In the previous section I showed that there is not always a single op-

timal way to implement a technology that automates process p. Respectively, the

underrepresentation problem for a practitioner reads, “Given a number of different

implementations that all automate the process p but that all have non-optimal as-

pects, how does one determine which implementation is best?”.

Similar to the underdetermination problem, there is no solution for the underrepres-

entation problem. If none of the implementations that automate process p are optim-

al in all aspects, the choice of implementation depends on the practitioner’s opinion,

experience, and proficiency. The practitioner has to weigh the relative significances

of non-optimal and optimal aspects of different implementations and then make a

decision about the implementation. Note, however, that although notions of signific-

ance are ontologically subjective, they can still be epistemologically objective. Al-

though notions of significance do not exist without people ascribing degrees of signi-

ficance to phenomena, people in a given community can feel the same about the sig-

nificances of aspects of phenomena.

Because the answer to the question “Can process p be automated?” is a singular

yes/no answer, and because the number of processes in the world is essentially infin-

ite, theoreticians often approach the question “What can be automated?” by asking,

“Why can some processes be automated?” or “What kinds of properties are typical

of processes that can be automated?”. For the practitioner, the singular question

“Can process p be automated?” is important: If the answer is yes, the practitioner

asks, “How can process p be automated?”, and perhaps even, “Which implementa-

tion automates process p best?” (In the latter question the practitioner may have to

make subjective choices because of the underrepresentation problem). The practi-

tioner, too, can ask questions such as “What kinds of problems do certain implement-

ations automate best?”. In Figure 25, processes 1 to 5 are singular instances in an

infinitely large set of processes. Except for some special cases, a theoretician is not

interested in studying an infinite number of single cases, because it would take infin-

itely long to do so. Conversely, the practitioner usually works with single cases.

789See Quine, 1980:pp.37-41.

328

The area marked by p(f(x)) in Figure 25 is a class of processes that share the same

essential properties f(x). These properties either make the processes in p(f(x)) pos-

sible to be automated or impossible to be automated. Theoreticians in the field of

computing are generally interested in finding classes of processes that can be auto-

mated; the ultimate goal of a theoretician is to find the essential property that would

divide all processes into those processes that can be automated and those processes

that cannot be automated. For instance, the Church-Turing Thesis was earlier con-

sidered to divide all processes into those processes that can be automated and those

processes that cannot be automated790. One of a theoretician’s tasks is to provide

proofs that classes of processes belong either to those that can be automated or to

those that cannot be automated. When a theoretician devises a proof about a class of

processes, the theoretician inevitably faces the question “Why can this class of pro-

cesses be automated?”.

The Denning Report

In the 1980s, computer science had been diversifying rapidly, and the old debate

about the essence of computer science still continued. In the spring of 1985, the

ACM and the IEEE Computer Society formed a task force to describe the intellectu-

al substance of the field in a “new and compelling way” (hereafter referred to as

Denning's task force)791. Denning's task force finished their report (hereafter referred

to as the Denning Report) in 1989, defining computing as a discipline792 as;

[1989] The systematic study of algorithmic processes that describe and

transform information: their theory, analysis, design, efficiency, implement-

790See Hopcroft, 1987. Nowadays there have been doubts if the limits of what the Turing machine can compute are
also the limits of what can be mechanically computed in general (Copeland, 1997; Copeland & Sylvan, 1999;
Copeland & Proudfoot, 2000).

791Denning et al., 1989

792“Discipline of computing” here includes “all of computer science and engineering” (Denning et al., 1989).

329

Figure 25: Singular Processes p1..p5 and a Class p(f(x)) of Processes

p
1

p
2

p
3

p
4

p
5

p(f(x))

ation, and application. The fundamental question underlying all computing

is, “What can be (effectively) automated?” 793

Denning's task force noted that in the discipline of computing (computer science and

computer engineering), science and engineering cannot be separated because of the

fundamental emphasis on efficiency. The definition of Denning's task force has been

widely cited and it can be considered to be a milestone in the field of computing. In

addition to the short definition above, the task force characterized computing as a

discipline as the intersection of three major research paradigms: theory, abstraction

(modeling), and design. The Denning Report includes the following characteriza-

tions of each major research paradigm:

� Theory is the bedrock of the mathematical sciences: Applied mathem-

aticians share the notion that science advances only on a foundation of

sound mathematics.

� Abstraction (modeling) is the bedrock of the natural sciences: Scientists

share the notion that scientific progress is achieved primarily by formu-

lating hypotheses and systematically following the modeling process to

verify and validate them.

� Design is the bedrock of engineering: Engineers share the notion that

progress is achieved primarily by posing problems and systematically fol-

lowing the design process to construct systems that solve them794.

In the Denning Report it is argued that many debates about whether computer sci-

ence belongs more to one of the above mentioned paradigms than to others are im-

plicitly based on an assumption that one of the three is more fundamental than the

others. Denning et al. claimed that a closer examination of computing reveals that

the three paradigms are so intricately intertwined that it is irrational to say that any

one is fundamental.

For example, instances of theory appear at every stage of abstraction and design, in-

stances of modeling at every stage of theory and design, and instances of design at

every stage of theory and abstraction795. The task force noted that although the three

793Denning et al., 1989 (short definition)

794Denning et al., 1989. Note that design is the central issue when dealing with artifacts, or objects created by
people, as opposed to those occurring naturally (Freeman and Hart, 2004).

795Denning et al., 1989

330

paradigms are inseparable, they are distinct from one another because they represent

separate areas of competence. Although design is sometimes considered to be a non-

academic subject, it has been argued that without the science of design many of the

opportunities of computing would be thrown away796.

It should be noted that a similar division of computer science into theory, modeling,

and design had been suggested in a number of places before the Denning Report.

One such division is found in Purdue University's first computing curriculum in

1962—computer science in Purdue was divided into theory, numerical analysis, and

systems797. These correspond roughly to theory, modeling, and design. More inter-

estingly, another definition of computer science, strikingly similar to the one in the

Denning Report, was presented in 1976 by Peter Wegner in the second IEEE confer-

ence on software engineering798.

Wegner described computer science as being a part mathematical, part scientific, and

part technological discipline. Wegner wrote that the mathematical part was “con-

cerned with the formal properties of certain classes of abstract structures”, that the

scientific part was “concerned with the empirical study of a class of phenomena”,

and that the technological (engineering) part was “concerned with the cost-effective

design and construction of commercially and socially valuable products”. The only

part that differs between Wegner's definition and the Denning Report is the engin-

eering part. Whereas Denning's task force emphasized processes, Wegner under-

scored goal-orientation. He wrote,

[1976] Research in engineering is directed towards the efficient accom-

plishment of specific tasks and towards the development of tools that will

enable classes of tasks to be accomplishment more efficiently.799

Yet Wegner also mentioned the process-nature of the engineering part. He divided

the engineering part of computer science into two parts; practical engineering and

research-based engineering. Wegner wrote,

[1976] [The problem-solving paradigm of the practicing engineer] generally

involves a sequence of systematic selection of design decisions which pro-

gressively narrow down alternative options for accomplishing the task until

796Freeman and Hart, 2004

797Rice and Rosen, 2004

798Wegner, 1976

799Wegner, 1976

331

a unique realization of the task is determined. [The research engineer] may

use the paradigms of mathematics and physics in the development of tools

for the practicing engineer, but is much more concerned with the practical

implications of his research than the empirical scientist or mathematician.800

Although it is clear that Denning's task force was not the first to divide the discipline

of computing into theory, modeling, and design, Denning's task force was apparently

not aware that that type of a division had been proposed many times before. (They

did not cite or acknowledge Wegner's conference paper801.)

Ed Lee, in the 34th IEEE Computer Society International Conference, San Fran-

cisco, presented a definition of computing that was much different from Denning’s

definition, yet Lee’s and Denning et al’s definitions were both presented in 1989.

Ed Lee wrote,

[1989] Computer science is the field of human endeavor that includes the

study, the design and the use of machine based data processing and control

systems to enhance peoples' ability to study information, perform work or

explore reality.802

In Lee’s opinion, the focus of human-made computer science is the human. He

wrote, “Neither a computer nor the teaching of computer science has any value or

meaning outside of its impact on people”803. Lee's definition of computer science

places the human, not the computer at the core of computer science. In other words,

computer science has no intrinsic value, but it only acquires value through its effects

on people or society. This view could be called human-centered computing804.

There are a variety of terms that are similar to human-centered computing; for in-

stance, Shneiderman's new computing, Mahmood's end-user computing, and John-

son's user-centered technology805. All those terms have their strengths but also have

their weaknesses: Shneiderman's term, new computing, emphasizes a shift from “old

800Wegner, 1976

801Note that the conference proceedings where Wegner’s paper was published also included papers by two out of
seven members of the task force–Peter J. Denning and David Gries; that is; Proceedings of the 2nd International
Conference on Software Engineering, 1976, San Francisco, California, United States, October 13 - 15, 1976.
Denning's paper Sacrificing the calf of flexibility on the altar of reliability appears on pages 384-386, and Gries'
paper An illustration of current ideas on the derivation of correctness proofs and correct programs appears on
page 200.

802Lee, 1989

803Lee, 1989

804The term also appears in the name of the book by Harris et al., 2003.

805See Shneiderman, 2002; Mahmood, 2002; Johnson, 1998, respectively.

332

computing” (which is about what computers could do) to “new computing” (which is

about what users can do), but, although the content of Shneiderman's new computing

is rich and human-centered, the term new computing itself is vague (today's new

computing is tomorrow's old computing). Mahmood's term, end-user computing,

and Johnson's term, user-centered technology, both focus on the human aspects of

computing, but user in both Mahmood's and Johnson's terms implies that a human is

active in his or her interaction with computing technologies.

Quite the contrary, a human is often not active in his or her interaction with comput-

ing technologies. I have noted earlier806 that there was a large technological shift in

the period between the early 1990s and mid-2000s: The increased affordability,

miniaturization, integration, and interoperability of information and communication

technology took computing machinery from the desktop to the pocket, from cable-

bound to wireless, from rare to ubiquitous, and from shared to private. In addition,

during the period between the early 1990s and mid-2000s the amount of technology

increased, its forms diversified, and information and communication technology

gradually became an integral and commonplace part of many people's lives in indus-

trial countries. Computing technologies have pervaded everyday life; people use

computing technology when they turn off their alarm in the morning, heat their

breakfast, drive their cars to work, collaborate with their colleagues, call their

friends, and entertain themselves807. But computing technologies are also often act-

ive when people do not even know they are there: when switching lights on and off,

regulating room temperatures, monitoring traffic, and so forth.

Although the ubiquity and the number of technologies have increased, the need for

people to be active users of computing technology has not increased to the same ex-

tent, because new computing technologies often work without people having to be

aware of them (ubiquitous computing808). Because very often people are in contact

with computing technology without knowing it, and because the verb use seems to

connote some kind of conscious intention to use technology, I prefer the term hu-

806As a co-author in Kamppuri et al., 2006; As a co-author in Kamppuri et al., 2006b.

807Kamppuri et al., 2006

808Weiser, 1993

333

man-centered computing to the terms user-centered computing and end-user com-

puting. I agree, however, that the choice of the term is debatable809.

Although it can be argued that the birth of human-centered computing happened in

the 1980s when the focus of interface design begun to turn towards end users810; it

can also be argued that the shift from machine-centered computing to human-

centered computing is still largely incomplete. Note that neither the theoretician's

questions “What can be effectively automated?” and “Why can class p(f(x)) of pro-

cesses be automated?” nor the practitioner's questions “Can process p be

automated?” and “How can process p be automated?” include, explicitly or impli-

citly, any questions about why processes should be automated at all. The theoreti-

cian's and practitioner's questions belong clearly to machine-centered (“old”811) com-

puting.

Questions such as “Should process p be automated or not?”, “Why should process p

be automated?”, “When should process p be automated and when not?”, and “What

individual or societal consequences does automating process p have?” impugn

whether some specific processes should be automated812. These questions belong

clearly to human-centered (“new”813) computing. I noted earlier in this thesis that, in

the late 1950s, C. Wright Mills warned his readers about the division between the

general public, who do not understand technology, and technologists, who do not un-

derstand anything other than technology814. Fortunately, Mills' division is unlikely to

exist as sharply as Mills described it; it is more likely that each individual also un-

derstands technology to some degree, and each individual understands also

something else to some degree. Be that as it may, the creators of technology must

bear some responsibility for the uses of their technology.

In 1966 C.P. Snow wrote that people with a variety of abilities, not only technologic-

ally oriented abilities, must study, control, and humanize the effects of the computer

revolution815. Snow wrote that unlike our ancestors, who could not foresee the ef-

809In the ACM publication interactions [sic] Donald Norman made a case against the whole concept of human-
centered design (Norman, 2005).

810Baecker et al., 1995:41; Grudin, 1990; Shneiderman, 2002:p.11.

811Shneiderman, 2002

812For instance, Kimmo Raatikainen proposed that questions “What should we allow to be automated” and “What
should we automate” belong also to the questions of computer science (Raatikainen, 1992).

813Shneiderman, 2002

814Mills, 1959:p.175.

815Snow, 1966

334

fects of the first industrial revolution, there is no excuse for the people of today to

not control the computer revolution. However, the chances are that the methodolo-

gical, conceptual, and theoretical framework of computer science, as described in,

for instance, the Denning Report816, turns out to be insufficient to deal with the

changes brought about by the computer revolution. The chances are also that the

framework of computer science turns out to be insufficient for selecting, recording,

understanding, explaining, analyzing, or predicting phenomena in the field of human

affairs.

The questions of machine-centered computing are descriptive questions, questions

about “what is”, whereas many of the questions of human-centered computing are

normative questions, questions about “what ought to be”. David Hume argued that

answers to descriptive questions cannot be derived from answers to normative ques-

tions and vice versa817. If the field of computing is shifting towards human-centered

computing as it has been described818, and if Mills' and Snow's warnings about the

separation of technologists and general public is true, then the professionals of com-

puting face new questions to which the theoretical-methodological-conceptual tool-

box of computer science may offer little help. The field has been amended before:

For instance, the ACM Code of Ethics and Professional Conduct819 deals with the

ethical responsibilities of computing professionals. That is, the practitioners of the

field of computing are already expected to be knowledgeable about some ethical

questions.

One might argue that contemplating on ethical issues does not belong to computer

scientists but to philosophers. This argument has a number of problems because

computer science is not detached from society. The products of computer science

are used in society and its scientific activities are made possible by society. Receiv-

ing funding from external sources entails ethical questions such as the motives of the

funders, scientists' obligations to funders, and the economic pressure to demonstrate

progress. Effects on society entail ethical questions such as who is affected by tech-

nology, how they are affected, and if such effects are desirable. The role of layper-

sons in decision-making, that is, who should make decisions about technology, is

816Denning et al., 1989

817Hume, 1739:Book III, pp.507-521.

818See, e.g., Shneiderman, 2002; Grudin, 1990; Weiser & Brown, 1997; Negroponte, 1995; Dertouzos, 2001.

819http://www.acm.org/constitution/code.html (accessed September 27th, 2006)

335

also an important issue. Computer scientists, who know the possibilities, limitations,

and side-effects of computing technology better than anyone else, have expert know-

ledge that philosophers do not have. Although it might be beneficial for computer

scientists to understand societal and philosophical issues, it might also be beneficial

for people from the humanities and social sciences to understand technological is-

sues.

The theoretician's questions, the practitioner's question, and the human-centered

question are portrayed in Figure 26.820 All those questions are important in them-

selves and it is important to conduct research in non-intersecting areas, too.

However, whereas in machine-centered computing the production of effective and

reliable computing and communications machinery takes place in the area delineated

by the question “How do we automate things reliably and efficiently?”, in human-

centered computing the responsible production of useful computing and communica-

tions machinery takes place in the intersection marked with light gray.

In contrast to Denning's fundamental question underlying all of computer science,

“What can be (effectively) automated?”, the modern version of the fundamental

question underlying all of computer science should be, “How can one effectively

automate processes that can be automated and that should be automated?”. This

question includes the practitioner's question, “How can process p be automated?”,

the theoretician's question, “What can be effectively automated?”, and the human-

centered question “What should be automated?”. All three aspects are necessary,

but answers to them they lie in different domains of knowledge. “What can be auto-

820Figure 26 is from Tedre, Matti (2006) What Should be Automated–The Question Underlying Human-Centered
Computing. To be presented at the HCM2006 International Workshop on Human-Centered Multimedia, October
27, 2006, Santa Barbara, USA.

336

Figure 26: Four Fundamental Questions in Human-Centered Computing

mated?” belongs to the domain of theoretically oriented computer science. “What

should be automated?” belongs to the domains of the humanities and social sciences.

“How can one effectively automate ...?” belongs to the domain of engineering-ori-

ented computer science.

A New Era of Growth

By the late 1980s, the discussion about the disciplinary identity of computer science

had still not yet ceased. In 1987, Edsger Dijkstra wrote that the “incoherent bunch

of disciplines” that began computer science, hardly appealed to the intellectually-dis-

cerning palate of mathematicians. What Dijkstra called computing science deals

with what is common to the use of any computer in any application: Dijkstra wrote

in Abacus,

[1987] The computing scientist could not care less about the specific tech-

nology that might be used to realize machines, be it electronics, optics,

pneumatics, or magic. At the same stroke, computing science separated it-

self from all the specific problems of embedding computers meaningfully in

some segment of some society.821

In the late 1980s, Dijkstra's view that computing science should be completely de-

tached from its surroundings did not draw much support. Perhaps the reason is that

also those theoreticians to whom Dijkstra referred to as computing scientists were

content being compartmentalized within the discipline of computer science. Non-

etheless, much of Dijkstra's critique is still valid. For instance, Dijkstra made a point

that iterative design is the paradigm for the pragmatist who is stuck in a vicious

circle of testing-debugging, because testing can only reveal the existence of bugs;

not their non-existence822.

Dijkstra argued that computing scientists did not face the problem of iterative design

because computing scientists’ programs have been rigorously proven correct823.

Note, however, that I noted earlier in this thesis that human errors can occur in any

part of the program-construction process (see page 278 of this thesis, footnote 572).

Proving a program correct does not mean that the program corresponds to the proof;

that is, that the translation from proof to program was done correctly.

821Dijkstra, 1987

822Dijkstra, 1974

823Dijkstra, 1987

337

Dijkstra’s argument for developing proof and program hand in hand can be ques-

tioned from a surprising direction—cryptanalysis (the following argument is a con-

crete example of James H. Fetzer's conceptual criticism of program verification824).

It has been discovered that many cryptographic algorithms can be broken by ob-

serving the cryptosystem, that is, by observing the physical tool that implements the

algorithm. For instance, timing attacks are based on the fact that given enough in-

formation about the timing of operations during the running of an algorithm, it is of-

ten trivial to break the cipher825. The weakness of the cryptosystem does not come

from the algorithm per se but from its implementation826. No matter how rigorously

a “computing scientist” would translate the proof to program, the program can fail

its purpose—not because of flaws in any part of the algorithm or the translation pro-

cess, but because computers, unlike algorithms, are not abstract objects827. It seems

that contrary to what Dijkstra argued, there are cases when the computer scientist

must know the machine details.

In other words, Dijkstra wanted to distance the computing scientist from the real

world—he wanted computing scientists to work in the abstract world of computa-

tion. Dijkstra criticized software engineers for making a mess out of programming.

In Dijkstra's ideal world, there are no bugs, because programs are proven correct,

and there are no timing attacks, because formulæ are not timed. It seems unfair that

Dijkstra criticized other practitioners of making a mess of a job Dijkstra would not

be ready to undertake. By not acknowledging real world needs, Dijkstra only foisted

the problems upon others. The moment one wants to utilize computing scientists'

programs, someone needs to convert the program to some programming language

(which immediately risks bugs in the program), and take the program into the unpre-

dictable, uncontrollable, uncertain, inexact, analogous, and ambiguous world.

Even though Dijkstra's critique is valid to some extent, it has had minimal impact on

the practice of computing. One of the reasons is the limited utility of program veri-

fication in real-world systems, as noted by Brian Cantwell Smith and James H. Fet-

zer828. The field of computing was already, at the time of Dijkstra's writing, much

824Fetzer, 1988

825Kelsey et al., 2000

826See Bar-El et al., 2004.

827This remark is based on an oral communication by mr. Olli Vertanen (February 17th 2006).

828Fetzer, 1988; Smith, 1996

338

broader than Dijkstra's vision of the field. And contrary to Dijkstra's intention to

define the field of computing narrowly, there was pressure to broaden it further, as

John E. Hopcroft stated in his 1986 Turing Award lecture829.

Hopcroft was concerned about the scientific base of computer science falling behind

the technological base. He wrote,

[1987] Much of the credit for the emergence of computer science as a dis-

cipline rests with the dedication and commitment of a relatively small num-

ber of researchers who had a vision of the potential of computing and the

perseverance to make this vision a reality.830

Hopcroft recognized that there is a dualistic relationship between computer science

and its surroundings. He wrote,

[1987] Today, there are signs that computer science is turning to applica-

tions areas. As it contributes its models, tools, and techniques to these new

fields, they in turn will contribute new ideas and methodologies that will

greatly enrich and expand the scope of computer science.831

Hopcroft regarded application areas as the key to a new era of growth in computer

science. His vision was that ideas and methodologies from disciplines other than

computer science could contribute to computer science. That is, extending the dis-

cipline of computing with perspectives from other disciplines would be beneficial to

computing—Hopcroft expected it to lead to a new era of growth in computer sci-

ence.

In 1987, new uses of computers had already had a major impact on society and on

the way people think and live. Hopcroft stated that he regarded computer science as

the means to take people to a higher plane of knowledge about the world, especially

in understanding different intellectual processes. Hence, Hopcroft urged his fellow

computer scientists to “formulate a new vision, to shape the goals for the next gener-

ation of researchers”832. Formulating a new vision and shaping new goals was, in

Hopcroft's opinion, the responsibility of his contemporaries.

829Hopcroft, 1987

830Hopcroft, 1987

831Hopcroft, 1987

832Hopcroft, 1987

339

The only thing required from computer scientists, according to Hopcroft, was per-

sonal commitment. He wrote, “We must also commit ourselves to the future of com-

puter science before fully discerning its shape.”833 Even though Hopcroft wrote that

computers have penetrated almost every aspect of life, including medicine, educa-

tion, and economics, and even though Hopcroft predicted that computers will alter

people's lives even more dramatically in the future, Hopcroft's “commitment” did

not include responsibility or accountability for any of these changes. Hopcroft

called for a national commitment to computer science, including universities and

policymakers, but nowhere in Hopcroft's vision did he call for responsibility from

the side of computer scientists.

What's In a Name? (Part I)

Although the debates over the disciplinary identity of computing have become infre-

quent, they still surface every now and then. In the December 1995 issue of IEEE

Computer, George McKee wrote that science (in computer science) refers to “the set

of intellectual and social activities devoted to the generation of new knowledge

about the universe”834. (Note that McKee did not further discuss the concept of sci-

ence—cf. page 31 of this thesis.) McKee argued that computer science should be re-

placed with a term that does not include science, such as computics;

[1995] The fundamental issue is about intellectual honesty and the self-re-

spect it engenders. If computists are just acting like scientists and not actu-

ally doing science, they shouldn't use the word [science] to describe their

discipline.835

McKee noted that mathematicians have acknowledged the nonscientific nature of

mathematics by choosing the name of the field to end with “-ics”. Considering the

naming of other established fields of scientific inquiry, I find McKee’s critique con-

fused: Very few natural sciences include the term science in their name836, but a

number of non-natural sciences such as social science, political science, and cognit-

ive science do. In addition, there is no prototypical similarity between disciplines

that end with “-ics”. Physics deals with natural laws and ontologically objective

phenomena, but linguistics and economics deal with constructed realities and ontolo-

833Hopcroft, 1987

834McKee, 1995

835McKee, 1995

836Environmental science and neuroscience are among the few exceptions.

340

gically subjective phenomena. A better critique of the science part of computer sci-

ence than McKee’s was given by Frederick P. Brooks Jr. in his ACM Allen Newell

Award lecture. In his lecture, Brooks argued that a folk adage of the academic pro-

fession says, “Anything which has to call itself a science, isn't.”837 By Brooks' cri-

terion, physics, chemistry, history, and anthropology may be sciences; political sci-

ence, social science, and computer science definitely are not.

Brooks made a distinction between a scientist and an engineer: The scientist builds

in order to study, and the engineer studies in order to build. He wrote that unlike the

disciplines in the natural sciences, computer science is a synthetic, engineering dis-

cipline. Hence, Brooks wrote,

[1996] If our discipline has been misnamed, so what? Surely computer sci-

ence is a harmless conceit. What's in a name? Much. Our self-misnaming

hastens various unhappy trends.838

The first unhappy trend that Brooks mentioned is that the self-misnaming of com-

puter science implies that computer scientists have to accept a perceived pecking or-

der that respects natural scientists highly and engineers less so. Brooks believed that

computer scientists seek to appropriate the natural science station for themselves.

As I see it, the “pecking order” is currently implied in academical terminology at

large, not only in the naming of computer science. Pure science sounds as it were

free of the impurities that applied science contains. However, although the common

connotations of the term pure science may mix descriptive aspects (where the term

refers to a set of activities or ways of conducting research) and normative aspects

(where the term implies that pure science is superior to applied science), the names

do not seem to be the crux of the matter. I do not see how the pecking order that

Brooks mentioned would cease to exist, no matter how the field were renamed or

which station computer scientists sought to appropriate. There is something deeper

than mere naming in the tug of war between the pure and applied sciences—after all,

as Knuth noted, disciplines such as mathematics and chemistry are far from what

their etymology indicates839.

837Brooks, 1996

838Brooks, 1996, emphasis in original underlined.

839Knuth, 1985

341

The second unhappy trend that Brooks mentioned comes from the argument that in

the sciences the discovery of facts and laws is taken as an end itself. A new fact or a

new law is an accomplishment in science. Brooks wrote that if computer scientists

regard themselves as scientists, then computer scientists will regard the invention

and publication of endless varieties of computers, algorithms, and languages as an

end. However, it is not certain if this unhappy trend has yet come to pass. On one

hand, one might count, for instance, the number of conference paper titles advert-

ising novelty as the paper's main contribution and draw conclusions about the pervas-

iveness of that unhappy trend. On the other hand, Brooks' view of “the computer

scientist as a toolsmith”840 seems an equally appropriate description of the field

today. The trends towards human-centered841 or value-centered842 computing as well

as the emergence of new topic areas between computer science and many other dis-

ciplines (such as computational physics and computational biology) are driving a

type of computer science in which computers are seen as tools, not as proper ends

per se.

The third unhappy trend that Brooks mentioned is that computer scientists tend to

forget the users and their real problems. He wrote that computer scientists tend to

climb into ivory towers to dissect tractable abstractions of once-real problems in eso-

teric vocabularies. The tractable abstractions may have left the essence of the real

problem behind. Brooks wrote that the surfacing of esoteric vocabularies is a sign of

this trend.

Brooks is not alone in his concern about the distance between theoretical scientists’

work and practical problems843. Brooks also argued that increasingly esoteric vocab-

ularies pose a problem for computing, and that those vocabularies are symbols of the

distance between the domain of computing and other domains of life. I interpret the

appropriation of established philosophical terminology, such as ontology and

agency844 in nonphilosophical topics, as an embodiment of this unhappy trend.

840The title of Brooks' article is The Computer Scientist as Toolsmith (Brooks, 1996).

841See, e.g., Shneiderman, 2002; Weiser & Brown, 1997; Negroponte, 1995; Dertouzos, 2001.

842Gilbert Cockton wrote that value; be it political, personal, organizational, cultural, experiential, spiritual, or eco-
nomic; must drive the field of human-computer interaction (Cockton, 2004).

843cf., e.g., Knuth, 1991

844See, e.g., Castel, 2002; Sánchez et al., 1994.

342

Donald Knuth's article in the November 1991 issue of Theoretical Computer Science

is in line with Brooks' concern about the distance between scientists’ work and

everyday problems845. Knuth wrote that theory and practice in computer science are

more intimately connected than in any other discipline—“They live together and

support each other”. In his article, Knuth criticized “pure” science:

[1991] [...] there was a time when the only applied mathematics you could

find in [Journal of Pure and Applied Mathematics] consisted of applications

to pure mathematics itself! When theory becomes inbred—when it has

grown several generations away from its roots, until it has completely lost

its touch with the real world—it becomes sterile.846

Knuth advised those computer professionals who spend most of their time on theory

to start turning some of their attention to practical things. He wrote to them, “It will

improve your theories”. Similarly, Knuth advised those computer professionals who

spend most their time with practice to start turning some of their attention to theoret-

ical things—“It will improve your practice”.847

The discussion about the importance and inseparability of theory and practice is a

sign that the distinction between theoreticians and practitioners is becoming more

subtle. In addition, Denning et al.'s definition of computing as a discipline848, intro-

duced earlier in this thesis, consisted of three different but separate aspects of com-

puting: theory, modeling, and design. Although practice can be understood as en-

compassing both modeling and design, I argue that there is still another aspect that

should be recognized as an inseparable part of computing as a profession—the so-

cial-ethical aspect.

In a society where computing technology is a catalyst of change, computer scientists;

who understand the restrictions, capabilities, prospects, and threats of computing

technology better than anyone else; must also take responsibility for the technology

they create. Although computing technology is not the cause of social change, it

makes new social, organizational, and economic changes possible, and the kinds of

changes it makes possible are influenced by the forms of technology849.

845Knuth, 1991

846Knuth, 1991

847Knuth, 1991

848Denning et al., 1989

849See, e.g., Castells, 2000; Castells, 2001:pp.36-61; Florida, 2003:p.26; Fiske, 1994.

343

One might argue that computer science and its products are value-free, and that it is

not in the computer scientist’s power to regulate what other people do with comput-

ing technology. Even if computer science were value-free, the flaw in Kuhn’s nor-

mal science that Fuller, Popper and Feyerabend pointed out applies well to the afore-

mentioned argument850.

If computer scientists would want to avoid the flaw in normal science that Fuller,

Popper, and Feyerabend described, computer science should have the same safe-

guards that modern democracies have—safeguards which regularly force politicians

to be accountable to people other than themselves851. My question is, paraphrasing

Feyerabend852, “If computer scientists are only accountable to themselves, then what

essentially makes computer science different from primitive social formations such

as the Mafia, a royal dynasty, or a religious order?”. Fuller noted that an élitist vis-

ion of untouchable science should have no place in today’s world, where the costs

and benefits of science loom as large as the costs and benefits of any other public

initiative. Taking into account the multi-billion dollar investments in computer sci-

ence by governments, institutions, and organizations, and taking into account the

powerful impacts that computer science and technology enable on individuals and

societies, computer scientists cannot think of their enterprise as a private playpen.

Knuth wrote that those computer professionals who focus on theory should pay at-

tention to practical things. He continued that those computer professionals who

work with practical things should pay attention to theoretical things.853 It has been

noted many times that another important area that computer professionals should fo-

cus on, is their awareness of their surroundings, that is, how their work can be used

and misused in society854. The ethical code of the ACM is directed towards those is-

sues.

The fourth trend that Brooks mentioned is that if computer scientists honor the more

mathematical and abstract parts of computer science more, and the practical parts

850Feyerabend, 1970; see Fuller, 2003:p.46. See also Section 2.1, page 84.

851cf. Fuller, 2003:p.46.

852cf. Feyerabend, 1970; cf. Fuller, 2003:p.46.

853Knuth, 1991

854See Kling, 1980 for examples.

344

less, young and brilliant minds will be “misdirected” away from challenging and im-

portant practical problems855.

In light of the history of computing machinery, and insofar as practical matters are

important at all, Brooks' notion is warranted. It has been argued that one of the reas-

ons why pre-war British scientists working in the field of computing had less success

than their American counterparts was that the British scientific community resisted

and ignored practical research856. In the U.S., where the engineer was the hero of the

new century857, applied (engineering) science flourished and resulted in advances in

computing machinery, but in Britain, where the theoretical sciences were revered, all

the students who got scholarships went to study theoretical subjects858. My interpret-

ation of Brooks’ fear is that if his dystopia were to come true on a large scale, the

field of computing could stagnate. (There are, however, alternative fixes to the

problems in computer science. For instance, Dijkstra wrote that computing profes-

sionals should seek to fight the shoddy quality of software by concentrating on form-

al, theoretical methods859.)

In summary, Brooks argued that there are four unhappy trends that computer science

is following: (1) accepting a pecking order where theory is respected more than prac-

tice; (2) regarding the invention and publication of endless varieties of computers,

algorithms, and languages as an end; (3) forgetting the users and their real problems;

and (4) directing young and brilliant minds towards theoretical subjects.

To resist these four unhappy trends, Brooks suggested a driving-problem approach,

which relies on working on the problems of another discipline. Brooks argued that

working on a field different than computer science helps the computer scientist for

five main reasons860. First, it aims the computer scientist at relevant problems, not

just at exercises or at toy-scale problems. Second, it keeps the computer scientist

honest about success and failure, so that he or she does not fool himself or herself

easily. Third, it makes the computer scientist face the whole problem, not just the

easy or mathematical parts. Fourth, facing the whole problem forces the computer

855Brooks, 1996

856Bowles, 1996

857Bowles, 1996; Kevles, 1987:p.293.

858Bowles, 1996

859Dijkstra, 1989; Dijkstra, 1999

860Brooks, 1996

345

scientist to learn or develop new computer science, often in areas that would have

never otherwise been addressed. That is, working on a field other than computer sci-

ence also benefits computer science. Brooks' fifth reason is that working in a field

other than computer science is just plain fun. Brooks' text is a strong argument for

engineering-oriented computer science, which is an enterprise where the value of

products is judged according to their utility or usefulness.

A New Species Among The Sciences

The 1993 Turing Award winner, Juris Hartmanis, took an opposite view to the view

of Brooks. Whereas Brooks wrote that computer science is not a proper science,

Hartmanis argued that computer science differs so fundamentally from the other sci-

ences that it has to be viewed as a new species among the sciences, especially be-

cause it deals with human-made phenomena that are explored by human-made

paradigms and methods861. Hartmanis wrote that computer science is laying the

foundations and developing the research paradigms and scientific methods for the

exploration of the world of information and intellectual processes that are not dir-

ectly governed by physical laws.

The difference between Brooks and Hartmanis' views seem to be mainly due to their

different views about the definition of science. If one thinks about science as Brooks

did—as a “branch of study concerned with the observation and classification of

facts, especially with the establishment and quantitative formulation of verifiable

general laws”862, then many areas of computer science are not science proper. Hart-

manis' view of science was different. Hartmanis noted that computer science is not

about verification, but that theory and experimentation in computer science are fo-

cused “more on the how than the what”863. He believed that the results of theoretical

computer science are judged, for instance, by the insights they reveal about various

models of computing, and that the results of experimentation are judged by demon-

strations that show the possibility or feasibility of doing things that were earlier

thought to be impossible or unfeasible.

From the viewpoint of the philosophy of science, Brooks' view of science as verific-

ation was flawed. Early in the 20th century, Popper refuted the notion of fact veri-

861Hartmanis, 1994

862Brooks, 1996

863Hartmanis, 1994

346

fication in science. But Hartmanis' view of science has also faced criticism. While

Hartmanis regarded computing as a new kind of a science, N.F. Stewart responded to

Hartmanis by writing that computer scientists should strive to make computer sci-

ence similar to the natural sciences864. According to Stewart, the traditions of com-

puting inhibit its development into a proper science. Michael C. Loui, in response to

Hartmanis, noted that it would be more appropriate to call computer science a new

species of engineering865. In addition to Hartmanis, Loui, and Stewart, Marvin Min-

sky had also noted the difficulties of actually defining computer science:

[1979] Computer science has such intimate relations with so many other

subjects that it is hard to see it as a thing in itself.866

The views of Hartmanis and Minsky raise a question: How can these distinguished

Turing Award-winning computer scientists see their science in completely disparate

ways? It might be simply because both of them, and many other opposing views

too, are right. Gal-Ezer and Harel noted that computer science is definitely a new

and important science (Hartmanis’ view), but its relationships with other fields like

mathematics, physics, electrical engineering, and life sciences such as brain research

and human genome research are also very significant (Minsky’s view)867. Finally, it

should be noted that without some serious qualifications, arguments like Stewart's,

that computer scientists should aspire to shape computer science to be more like nat-

ural sciences, are inherently flawed insofar as computer science is not a natural sci-

ence—that is, insofar as computer science does not deal with naturally occurring

phenomena868.

Computational Science

One of the newer topics that brings together theory and practice in computing is

computational science. In 1993 computational science was an emerging topic whose

place in the scientific world was still unclear. Ten years afterwards, in 2003, the top-

ic was included in the list of core technologies of computing869. According to D.E.

864Stewart, 1995

865Loui, 1995

866Minsky, 1979

867Gal-Ezer and Harel, 1998

868For instance, Donald Knuth, argues that computer science is an unnatural science, which deals with artificial
things (Knuth, 2001:p.167).

869Denning, 2003 (See page 69 of this thesis).

347

Stevenson, the “Clemson View” (named after Stevenson's university) of computa-

tional science is as follows:

[1993] Computational science is an emerging discipline characterized by

the use of computers to provide detailed insight into the behavior of com-

plex physical systems. [...] The proper subject of computational science is

proper modeling and correct computation.870

According to Stevenson, computer science students can easily see computer science

devoid of meaning and programming devoid of empirical import871. He argued that

elementary algorithm books present algorithms for minimum spanning trees but do

not explain what minimum spanning trees are used for. Problem solving in com-

puter science, according to Stevenson, teaches problem solving devoid of problems.

On the contrary, Stevenson argued that computational science addresses problems

that have important implications for humankind.

There is indeed a number of high-technology, high-publicity achievements that can

be attributed to computational science, such as the Human Genome Project,

SETI@home, and numerical weather prediction872. These projects and fields are not

considered to be computer science, but none of them would be viable without com-

puter science and computing technology. It has to be noted that the relationship

between computational science and computer science is not a one-way relationship.

That is, although computational science benefits from computer science, in the

aforementioned three topics in computational science the topic areas have spurred

new technologies, new approaches to automation, and new computational strategies

—all of which benefit computer science873.

In 1993 Stevenson wrote that computational science is an interdisciplinary undertak-

ing that could use computer science as an active partner—but that could quickly de-

velop computer support without computer science. However, it seems that thirteen

years after Stevenson's argument, computational science is very tightly coupled with

computer science. The topics in three major journals in computational science—Sci-

entific Computing World, IEEE Computing in Science & Engineering, and SIAM

870Stevenson, 1993

871Stevenson, 1993

872See Collins et al., 2003 about the Human Genome Project; Shirts & Pande, 2000 and Anderson et al., 2002 about
the SETI@Home Project; and Gneiting & Raftery, 2005 about numerical weather prediction.

873Collins et al., 2003; Shirts & Pande, 2000; Anderson et al., 2002; Gneiting & Raftery, 2005

348

Journal on Scientific Computing—deal with a wide variety of topics, most of which

are closely related to computer science.

What's in a Name? (Part II)

Even very recently computer science has been defined by listing its constituents.

The following quote is from a computer science textbook by Glenn Brookshear:

[2003] Computer science is the discipline that seeks to build a scientific

foundation for such topics as computer design, computer programming, in-

formation processing, algorithmic solutions of problems, and the al-

gorithmic process itself.874

There seems to be as many listings as there are computer scientists. Brookshear's

description of computer science suffers from two common problems that are almost

contradictory. Firstly, Brookshear attempted to narrow the focus of computer sci-

ence by mentioning some of its topics, but mentioning some topics inevitably gives

less emphasis to other topics that other computer scientists might consider the most

important in computer science. Secondly, Brookshear left the list open for arbitrary

additions by using the phrase “such topics as”. An additional problem with using

lists of topics as a definition of a discipline is that it is assumed that all the topics are

definable themselves. Because of these problems, Brookshear's definition of com-

puter science has little informational value. It is close to impossible to characterize

the whole academic field of computing by making a list of topics with which all re-

searchers would unanimously agree. In this sense, Denning’s interrogative approach

to defining the discipline of computing (“What can be effectively automated?”) of-

fers a better overview of computing.

In his letter to the editor in the March 1988 issue of CACM, Peter Kugel hinted back

to the 1967 definition of computer science by Newell et al.875, when Kugel asked,

“Lots of people drive cars but that does not justify an 'automotive science'. Do com-

puters justify a 'computer science'?”876. Among other questions, Kugel asked wheth-

er computer science should be redefined, and wrote:

[1988] Perhaps our [computer scientists'] role is like that of logic in the me-

dieval curriculum that was supposed to sharpen the mind. Perhaps we de-

874Brookshear, 2003:p.1.

875Newell et al., 1967

876Kugel, 1988

349

serve a place in the curriculum only to remind students that, as William

James wrote in 1899, “laboratory work and shop work ... give honesty; for

when you express yourself by making things, and not by using words, it be-

comes impossible to dissimulate your vagueness or ignorance by

ambiguity”.877

The second part of Kugel's quote raises the same concern that Richard W. Hamming

wrote about in 1969—that computer science without concrete applications would be-

come idle speculation, “hardly different from that of the notorious Scholastics of the

Middle Ages”878. Although Kugel's tone implies pessimism about the role of com-

puter science as merely a tool to sharpen the mind, philosopher of computing Brian

Cantwell Smith saw the same phenomenon in an optimistic light. In On the Origin

of Objects, Smith wrote that computation is not a topic of a single discipline, “Com-

putation is not a subject matter”879. Smith's argument is that as computing becomes

an integral part of the humanity’s body of knowledge, it would be a mistake to think

that anthropologists, sociologists, journalists, educators, etc., would be just users of

computation880. On the contrary, Smith argued that they participate in the invention

of computing—creating user interfaces, proposing architectures, rewriting the rules,

and so forth. Incidentally, in a sense, Smith answered to Kugel's question (see the

following question by Kugel and a notion by Smith—the original texts are not con-

nected):

[1988] Lots of people drive cars but that does not justify an 'automotive sci-

ence'. Do computers justify a 'computer science'?881

[1998] Computers turn out in the end to be rather like cars: objects of ines-

timable social and political and economic and personal importance, but not

the focus of enduring scientific or intellectual inquiry.882

In the March 1985 issue of American Mathematical Monthly, Donald Knuth ex-

pressed his opinion about the name of the field of computing:

[1985] I suppose the name of our discipline isn't of vital importance, since

we will go on doing what we are doing no matter what it is called; after all,

877Kugel, 1988

878Hamming, 1969

879Smith, 1998:p.73.

880Smith, 1998:p.360.

881Kugel, 1988

882Smith, 1998:p.74.

350

other disciplines like Mathematics and Chemistry are no longer related very

strongly to the etymology of their names.883

In 1996, Frederick P. Brooks, Jr., asked rhetorically “What's in a name? Much”884.

Knuth’s answer seems to be, “not much”. The discussion about the name of the field

may have been vital when it was necessary to distinguish computer science from en-

gineering and mathematics. After all, when the discipline of computing was young,

the organization of universities as well as the different granting foundations and in-

stitutions probably did require computing to have a disciplinary identity885. Also the

public image of computing as a discipline, including its name, may have had an ef-

fect on the early development of computing886, but there is little point in discussing

the name for the field of computing anymore. As George Forsythe noted, in a purely

intellectual sense such jurisdictional questions are sterile and a waste of time887.

883Knuth, 1985

884Brooks, 1996

885Forsythe, 1968

886Hamming, 1969

887Forsythe, 1968:p.455.

351

Research in the Discipline of Computing

To understand information processes, computer scientists must

observe phenomena, formulate explanations, and test them.

This is the scientific method.888

It has been argued that computer scient-

ists publish relatively few papers with

experimentally validated results889. In

addition, it has been argued that re-

search reports in the discipline of com-

puting rarely include an explanation of

the research approach in the abstract,

key word, or research report itself890,

which makes it difficult to analyze how

computer scientists arrived at their results.

Methodology in Computing Curricula

Robert Glass argued that the typical computing researcher draws his or her research

skills from (1) a background of mentoring—master-apprentice relationships with

senior professors in a PhD program—and from (2) patterning activities—examining

the writings of successful prior researchers891. Kuhn would probably have regarded

this kind of transfer of knowledge as an excellent case of “paradigm as exemplar”.

In the Kuhnian view, exemplars are sets of concrete puzzle-solutions that are used as

models or examples, and that replace the explicit rules of normal science892.

However, although learning from exemplars might work for some computer scient-

ists, it is not certain if exemplars can give the typical computer scientist the method-

ological knowledge that choosing and using methods and techniques requires.

888Tichy, 1998. Emphasis in original.

889Tichy et al., 1995

890Vessey et al., 2002

891Glass, 1995

892Kuhn, 1996:pp.187-191. See also page 67 of this thesis.

352

IN THIS SECTION:

� What are the research approaches taken in

computer science?

� What kinds of meta-research are there in the

field of computing?

� What is the methodology of computer sci-

ence?

� Can anarchism in science be justified?

Research methodology893 courses in typical computer science curriculum are rare; for

instance, the official ACM/IEEE curriculum recommendations (CC2001894) do not

include a course on methodology. Yet, CC2001 has a number of courses that deal

with techniques or methods; such as courses in formal methods, proof techniques, al-

gorithmic strategies, and methods and tools of analysis in social and professional is-

sues. It is briefly mentioned in CC2001 that students ought to have an understanding

of the scientific method895 and that topics concerning methods should be found

throughout the curriculum. But the scientific method is just a broad set of principles,

not an actual method of inquiry. The scientific method does not deal with issues

such as what to measure, how to measure it, or the validity and reliability of meas-

urement.

More discussion on methods in CC2001 can be found in, for instance, SE6 (valida-

tion and verification), DS3 (proof techniques), PF2 (problem-solving strategies),

AL1 (algorithmic analysis and empirical measurement), OS11 (evaluation models),

HC1 (hypotheses, experimental results, correlations, sciences of psychological and

social interaction), HC3 (usability tests, interviews, surveys, and experiments), and

HC4 (task analysis). But the only course on methodology that is suggested in

CC2001 is Programming Methodology896. The course does not actually address

methodological issues broadly. Introducing methods (techniques, procedures, or

tools of inquiry) without methodology (principles and foundations of methods) is

shallow at best, misguiding at worst. It is dubious if one can use a tool without

knowing its limitations, pitfalls, methodological and epistemological linkages, and

theoretical burdens.

Because there is ambiguity about the research approaches used in computer science,

in this section I chart the research approaches and methods in the field of computing.

I also analyze some of the meta-research in the field of computing.

893See Section 1.3, page 13 of this thesis for a definition of the terms method, methodology, and research approach.

894Denning et al., 2001

895See Section 9.1.2 of Denning et al., 2001.

896Topics in SP3 Methods and tools of analysis are: “Making and evaluating ethical arguments; Identifying and
evaluating ethical choices; Understanding the social context of design; and Identifying assumptions and values”
(Denning et al., 2001:p.143).

353

Research Approaches and Methods in Computer Science

Gordana Dodig-Crnkovic has summarized research in computing using four categor-

ies: modeling, theory, experimentation, and simulation897. Dodig-Crnkovic’s cat-

egories are very similar to Denning et al.’s categories: theory, modeling, and

design898. In Dodig-Crnkovic’s view, modeling is common to the three other cat-

egories (theory, experimentation, and simulation) because in all sciences a phe-

nomenon of interest must be simplified before it can be studied. That is, researchers

cannot record and analyze all the variables in a study; they have to exclude most. In

fact, it cannot even be said that researchers exclude variables, but that they include

some variables and that all others are excluded. This is due to the fact that the num-

ber of superfluous variables, such as the color of the nearest hat, is infinite.

In Dodig-Crnkovic’s description, theoretical research is done following the classical

logico-mathematical tradition—building theories of logical systems with stringent

definitions of objects (axioms) and operations (rules) for deriving and proving theor-

ems. In Dodig-Crnkovic’s description, experimentation is done following the sci-

entific method, that is, observing phenomena, formulating explanations and theories,

and testing those explanations and theories (this corresponds to Denning et al.’s ab-

straction, i.e., modeling). In Dodig-Crnkovic’s description, simulation is done, for

instance, in visualization, computer-based modeling, and numerical analysis, and

simulation refers mainly to computational science. Denning et al.’s design seems

like a broader category than Dodig-Crnkovic’s simulation. Whereas Dodig-

Crnkovic underplayed the role of design in computer science, Denning et al. em-

phasized the engineering method—that is, according to Denning et al., the cycle that

consists of defining requirements, defining specifications, designing and implement-

ing, and testing.

In a recent analysis of research in the field of computing Glass, Ramesh, and Vessey

divided computing into three subfields: computer science, software engineering, and

information systems899. Glass et al.’s report was based on 1485 articles from a set of

recognized journals from each of the three subfields between the years 1995-1999.

897Dodig-Crnkovic, 2002

898Denning et al., 1989

899Glass, Ramesh, and Vessey's article was published in a number of journals. See, for instance, Glass et al., 2004;
Ramesh et al., 2004.

354

Their sample consisted of 628 articles from computer science, 369 articles from soft-

ware engineering, and 488 articles from information systems.

Glass et al. found that in computer science and software engineering the research

approaches were mainly formulative—that is, formulating a process, method, al-

gorithm, concept, model, or framework. In information systems the research ap-

proaches were mainly evaluative—that is, conducting deductive, interpretive, or oth-

er kinds of evaluations (see Figure 27)900.

Glass et al. also found that the preferred research method in computer science is

mathematical analysis901, in software engineering the preferred methods are concep-

tual analysis and concept implementation, and in information systems a variety of

methods can be found (see Figure 28)902.

The rich variety of topics in the subfields of computing is matched by the rich vari-

ety of research approaches and methods used. Especially in the subfield of informa-

tion systems, researchers utilize a wide variety of methods. That is, there is no dom-

inant method or approach in the subfield of information systems.

900Glass et al. do not present figures such as Figure 27 and Figure 28; figures presented here are aggregates of Glass
et al.’s findings.

901Ramesh et al., 2004 use the term conceptual analysis based on mathematical techniques.

902Note that in Figure 28 laboratory experiment means experiments with human participants. Note also that Figure
28 does not include all the methods that Glass et al. identified. Only the methods that have been used in more
than 5% of the articles in any of the three subfields are included. For instance, data analysis was used in only
0.2% of articles in computer science, in 2.2% of the articles in software engineering, but in 5.3% of the articles in
information systems; therefore data analysis is included in Figure 28. In absolute numbers this means that in or-
der to be included in Figure 28, a research method should have been used in more than 31 (out of 628) articles on
computer science, or in more than 18 (out of 369) articles on software engineering, or in more than 24 (out of
488) articles on information systems.

355

Figure 27: Research Approaches in Computing Disciplines

Computer Science Software Engineering Information Systems

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Formulative

Evaluative

Descriptive

When Glass et al. looked at the reference disciplines used in computing subfields,

they found software engineering to be 98.1% self-referential; that is, they found that

researchers in software engineering referred primarily to other research in software

engineering. References outside the field of software engineering were rare. They

also found that in computer science 89.3% of the references were self-referential and

that 8.6% of the references were to mathematics. The reference disciplines in the

subfield of information systems were found to be diverse. In information systems

only 27.2% of the references were to other studies in information systems. The rest

of the references were to management (18.0%), economics (11.1%), cognitive psy-

chology (10.7%), social and behavioral science (9.0%), management science (6.6%),

and others.

However extensive Glass et al.'s study may be, it may not adequately describe what

actually happens in computer science research. The granularity of the method cat-

egories in Glass et al.'s study is coarse (e.g., there is actually a large number of meth-

ods that belong to the broader category field study). Glass et al.’s classification

scheme was not developed during their study, but it was borrowed from another

study903. Also, the choice of mainstream journals may have biased the sample of art-

icles towards mainstream research so that alternative methods may have gotten lesser

903The scheme is borrowed from Morrison & George, 1995.

356

Figure 28: Research Methods in Computing Disciplines

Computer Science Software Engineering Information Systems

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Other

Laboratory experiment

Field study

Data analysis

Case study

Concept implementation

Mathematical analysis

Conceptual analysis

attention. This is not to criticize Glass et al.’s study, but to note that in addition to

the typical methods in computing that Glass et al.'s research approach highlighted, a

number of other methods can easily be found. Even mainstream journals in com-

puter science have proposed, for instance, a hermeneutic approach and an action re-

search method904. Indeed, when one starts to dig deeper into the subdisciplines of

computing, it turns out that computer scientists are quite flexible in their research ap-

proaches.

Glass et al. grouped research approaches into descriptive, evaluative, and formulat-

ive approaches. There are also different classification schemes for research ap-

proaches in the field of computing, such as a classification into (1) formal theory,

design and modeling, empirical work, and hypothesis testing905; a classification into

(2) observational methods, historical methods, and controlled methods906, a classific-

ation into (3) quantitative methods, qualitative methods, and benchmarking907; and a

classification into (4) scientific methods, engineering methods, empirical methods,

and analytical methods908. Although some of these classes are named methods, they

are so broad that they actually describe sets of methods or research approaches.

If one considers specific methods instead of research approaches, there is a rich vari-

ety of methods in the field of computing. In the theoretically oriented subfield of

computer science, the methods include mathematical proofs, simulations, and proofs

of concept by implementation909. In the subfield of software engineering, “methods”

have been reported to include project monitoring, quantitative and qualitative case

studies, assertion, field studies, analysis of legacy data, lessons-learned (post-project

meta-research); static analysis, quantitative and qualitative experiments, replicated

experiments, synthetic environment experiments, dynamic analysis, quantitative and

qualitative surveys, screening, effects analysis, benchmarking, simulation910, and

participatory design911.

904West, 1997; Avison et al., 1999; Baskerville, 1999. Published in Communications of the ACM and Communica-
tions of AIS.

905Tichy et al., 1995

906Zelkowitz & Wallace, 1997

907Kitchenham, 1996

908Glass, 1995

909Ramesh et al., 2004

910Combined from Zelkowitz & Wallace, 1997 and Kitchenham, 1996.

911Muller et al., 1993

357

Glass et al. found that information systems is the subfield of computing that has the

most diversity in terms of research methods and reference disciplines. Other meta-

researchers in computer science have found the same: Research methods in the sub-

field of information systems have been reported to include many of the methods

used in theoretically oriented computer science and software engineering, plus,

“methods” such as, laboratory experiments with human subjects, field experiments,

case studies, surveys, ex post descriptions912; field studies913; conceptual studies, re-

views/tutorials914; forecasting, game/role playing, subjective/argumentative methods,

descriptive/interpretive methods915; interviews, qualitative content analysis, ethno-

graphy/hermeneutics, grounded theory, critical theory, consultancy916; futures stud-

ies, questionnaires917, and organizational ethnography918.

Note that some of the methods listed here are broad categories, some narrow and

specific, but their sheer number and variety clearly demonstrate the multiplicity of

methods used in the discipline of computing. Often methods are mixed to offer a

wider perspective on a topic919. In a sense, some of the research in the field of com-

puting might be characterized as a bricolage (see page 188 of this thesis). The num-

ber of methods used by computer scientists920 is large, but as I noted earlier, com-

puter sciencists are not necessarily given a thorough methodological training. It is

uncertain if the background of mentoring and patterning activities921, and the current

official computing curriculum922 can give the computer-scientist-as-bricoleur the ne-

cessary knowledge to move between research paradigms. Denzin and Lincoln used

the term researcher-as-bricoleur in a laudatory sense, whereas Lévi-Strauss used the

same term in a derogatory sense. Whether computer-scientist-as-bricoleur is a laud-

912Ex post description means that interest in reporting the results of the project develops after the project is com-
plete (or is partially complete) (Alavi & Carlson, 1992). Note that Alavi and Carlson did not to use the well-es-
tablished phrase ex post facto.

913Alavi & Carlson, 1992

914Lai & Mahapatra, 1997

915Galliers & Land, 1987

916Mingers, 2003–see also Mingers, 2001.

917Choudrie & Dwivedi, 2005

918Walsham, 1995

919See Johnson & Onwuegbuzie, 2004 for mixed-methods research.

920The term computer scientist in this context covers the professionals in all disciplines of computing, not only the-
oretical computer science, software engineering, or information systems.

921Glass, 1995

922Denning et al., 2001

358

atory or a derogatory term depends on how well the computer-scientist-as-bricoleur

knows and handles the variety of methods.

Eclecticism and Opportunism

Tichy et al. have argued that computer science does not conform to the falsification-

ist ideals of (experimentalist) science923. Computer science does not seem to con-

form to the Kuhnian ideal either, as it is very difficult to find an overarching para-

digm in computer science, and because alternating between research paradigms

without conflicts is difficult924, or even impossible. Based on the methodological

nonconformity of computer scientists, computer scientists’ work may conform best

to Feyerabend’s theory of science. In Feyerabend’s characterization of science, sci-

entists have certain ideas that work until a new situation turns up, and then they try

something else925. In Feyerabend’s account, scientists are opportunists above all

else.

I noted earlier that there are arguments that (1) the computer science curriculum does

not include rigorous studies in computer science research methods; (2) computer sci-

entists learn their research skills from examining earlier research (mostly in com-

puter science); (3) research papers in computer science rarely include a methodology

section; and (4) computer scientists utilize a large variety of methods. Insofar as

these arguments are correct, they imply that computer science is a methodologically

eclectic discipline.

Methodological opportunism and eclecticism (which also usually entails epistemolo-

gical eclecticism) is not necessarily a negative approach to research. As long as re-

searchers are knowledgeable about the methodological and epistemological frame-

works in which they operate, they can disregard epistemology and make informed

crossings of methodological boundaries. For instance, if a researcher studies how

people use a particular software system, mixing a statistical study of task completion

times with user interviews is perfectly appropriate (and often even advisable) as long

as the researcher knows the frameworks in which each of the methods of inquiry op-

erate. Conscious breaches of methodological and epistemological norms can be

characterized as methodological and epistemological anarchism. Research that does

923Tichy et al., 1995; Tichy, 1998

924Denzin and Lincoln, 1994:pp.2-4.

925Feyerabend in an interview in 1992, reported in Horgan, 1996:p.52.

359

not conform to any established frameworks can be good and fruitful too, but re-

searchers entering such enterprises must be especially knowledgeable of their an-

archism, and especially capable of proposing their arguments based on the argu-

ments' credibility926. Informed anarchism is one thing, ignorant anarchism another.

Meta-Research in Computer Science

All of the aforementioned methods in the various fields of computing are applied to

the subjects of computer science. Meta-research in computer science (excluding

software engineering, parts of which can be considered to be meta-research) employs

a much narrower set of methodologies. Meta-research in computer science has been

done mostly using content analysis (or through the classification study, which is a

subcategory of content analysis)—for instance, the studies by Alavi and Carlson,

Tichy et al., Vessey et al., Palvia et al., and Glass et al.927 used varieties of content

analysis. The articles in IEEE Annals of the History of Computing and most books

on the history of computing employ historical research methods, mostly primary-

and secondary-source, descriptive, chronological research.

There is an abundance of analytical arguments about the status quo of computer sci-

ence; that is, they are not based on empirical findings, but on the credibility of the

analysis and argument. Most of the discussion about computer science as a discip-

line quoted in this and previous chapters are based on the analytical tradition. The

philosophy of computing is also largely based on the analytical tradition (not in the

sense of analytical philosophy or mathematical analysis).

Some authors, such as Robert L. Glass and Tichy et al.928, who have conducted meta-

research in the field of computing have argued that the analytical research tradition

is “seriously flawed” and “alarming” because the analytical research tradition does

not necessitate the use of empirical studies to empirically validate hypotheses, mod-

els, or designs. However, the meta-research done by Glass, as well as that by Tichy

et al., are flawed in the very same manner that they criticize. Glass and Tichy et al.

were of the opinion that there is too little empirically validated research in computer

science, but neither Glass nor Tichy et al. have empirically validated that empirically

926For instance, Galileo Galilei was such a researcher. Feyerabend argued that Galileo used not only brilliant argu-
mentation, but also propaganda and psychological tricks (Feyerabend, 1993:p.65).

927Alavi & Carlson, 1992; Tichy et al., 1995; Vessey et al., 2002; Palvia et al., 2003; Glass et al., 2004

928Glass, 1995; Tichy et al., 1995

360

validated research is beneficial for computer science. In the following, I discuss

Tichy et al.’s article more thoroughly.

Tichy et al. (i) surveyed 400 research articles in the field of computing and classified

the research approaches taken in the articles; (ii) surveyed and classified the research

approaches taken in two non-computing journals; (iii) and evaluated the quality of

the articles—Tichy et al. “used the fraction of space each [design and modeling] art-

icle devotes to evaluation as an indicator of quality”929.

However, although Tichy et al. embraced and called for empirical studies, they did

not empirically validate three essential assumptions underlying their argument: (1)

that the quality of an article and space devoted to empirical validation in the article

are correlates; (2) that empirical, quantitative validation is a sine qua non of first-

class science; and (3) that computer science and natural sciences are commensurable.

That is, in their critique of computer science, Tichy et al. did not establish why the

standards of computer science should be the same as in the natural sciences. Even if

they had established that computer science and natural sciences are commensurable,

they should have established that it is computer science that is flawed and not the

other sciences.

Tichy et al. (1) wrote that their “collective impressions” support a positive correla-

tion between the quality of experimental evaluation and the amount of space devoted

thereto; (2) quoted Donald Knuth and Peter J. Denning to support their view that ex-

perimentation should be at the heart of computer science; and (3) referred to a num-

ber of informal discussions with a number of computer scientists to point out the

feelings that computer scientists have about the standards of computer science.

Tichy et al. conceded that they have not validated their assumption that quality of

experimental evaluation and the amount of space devoted to the description of ex-

perimental evaluation have a positive correlation. However, Tichy et al. have not

considered that the quality of design/modeling research and the space devoted to em-

pirical validation in a report might not always be correlates. Some of the most influ-

ential and epochal design arguments in computer science have been introduced

without any empirical tests at all. For instance, Dijkstra’s article “GO TO Statement

929Tichy et al., 1995

361

Considered Harmful”930 (in which Dijkstra presented structured programming) had a

tremendous impact on program design, yet no research was ever performed to meas-

ure the value of Dijkstra’s argument931.

Both quotes that Tichy et al. have chosen to support their conviction about the decis-

iveness of experimentation in computer science seem ill-chosen for Tichy et al.’s

purposes. First, they cite Knuth’s well-known remark “Beware of the bugs in the

above code; I have only proved it correct, not tried it.”932. Knuth’s remark is from a

memo with a formal proof of program correctness, but Tichy et al. specifically ex-

clude “formally tractable propositions, e.g., lemmata and theorems and their proofs”

from their study. Second, they cite Peter J. Denning, but in that particular article

Denning made a peculiar argument:

[1980] The hypothesis may concern a law of nature—for example, one can

test whether a hashing algorithm's average search time is a small constant

independent of the table size by measuring a large number of retrievals.933

It is difficult for me to see in which sense the average search time of a hashing al-

gorithm A (which is a human construction) implemented on a computer brand B

(which is a human construction, and where both A and B rely on the framework of

modern computation, which is a human construction), would be a law of nature in

the sense that it would tell anything about nature proper—that is, about naturally oc-

curring phenomena (see page 120ff. in this thesis). Denning seems to be confused

about laws of nature.

Although I share Tichy et al.'s subjective feeling that too little empirical work is be-

ing conducted in the field of computing, I must note that Tichy et al. did not empiric-

ally validate all their claims. Their arguments are not based on experimentation

only, but also on the credibility of their argumentation. I argue that the reason for

the lack of empirical validation of their argument is that Tichy et al.’s claims cannot

be exhaustively empirically validated. This problem ultimately derives from the

fundamental separation of normative and descriptive claims (often called Hume’s

930Dijkstra, 1968

931Glass, 2005; MacLennan, 1999:pp.126-127.

932Knuth, Donald E. (1977) Notes on the van Emde Boas construction of priority deques: An instructive use of re-
cursion. A memo sent to Peter van Emde Boas, Bob Tarjan, and John Hopcroft, March 29, 1977. Knuth’s com-
ment available at Knuth’s web page http://www-cs-faculty.stanford.edu/~knuth/faq.html (accessed
September 27th, 2006).

933Denning, 1980b

362

Law934). It is impossible to make normative claims about science and rest those

claims solely on the reliability and validity of research findings. I will elucidate this

argument in the following pages.

Even if, in the field of natural sciences, the quality of research would correlate with

the amount of empirical verification, and even if the quality of an article and space

devoted to empirical validation in that article would correlate, Tichy et al. would still

have needed to argue why computer science, a non-natural (unnatural935) science,

should be judged according to the standards of natural sciences (i.e., they would still

have needed to argue why computer science and natural sciences are commensur-

able). It would be especially difficult to make such argument without deriving

“what ought to be” from “what is” (see page 35 of this thesis).

There is a fundamental difference between argumentation in research that makes de-

scriptive claims and argumentation in research that makes normative claims. Based

on Hume’s Law only research that makes only descriptive claims can be, even in the-

ory, argued exhaustively with empirical results. If a researcher makes a normative

claim, there is no empirical study that can be used to prove the claim, so the re-

searcher has to rely on the credibility of his or her analysis and argument. Normat-

ive arguments are value statements, and they cannot be based on empirical results936.

Normative Arguments Cannot Be Based on Empirical Results

Let me give an example. Suppose that a researcher argues that increasing experi-

mentation would be beneficial to computer science. He or she can, for instance, take

two groups of computer scientists and double the amount of experimentation that

group 1 does but keep the experimentation that group 2 does the same. The re-

searcher can then measure the outcomes of the two groups and establish, for in-

stance, that the products of group 1 are faster, more reliable, or more usable than the

products of group 2. The researcher can make hundreds of similar tests, and become

convinced that there is are positive correlations between amount of experimentation

and speed, reliability, or usability. After the comparisons, the researcher has estab-

lished a descriptive claim which states, for instance, that “The amount of experi-

934Hume, 1739:Book III, pp.507-521. See the discussion in Section 2.1, pages 35ff. in this thesis.

935Knuth, 2001:p.167. See the argumentation in Section 2.2, pages 129ff. in this thesis.

936It is a debated issue in contemporary philosophy if normative claims can be proven correct at all (Richmond
Campbell (2004) in Stanford Encyclopedia of Philosophy: Moral Epistemology).

363

mentation correlates positively with the speed, reliability, and usability of software”,

and in theory, there is no upper limit of how reliable the claim can be.

However, because the researcher argues that increasing experimentation would be

beneficial to computer science, he or she has to establish one more claim: That

speed, reliability, or usability is beneficial to computer science. Unfortunately to the

researcher, there is no empirical experiment that he or she can rely on if he or she

wants to establish what is beneficial, because statements of beneficialness are value

statements.

There are, however, some senses in which one could make the claims above. Firstly,

if the researcher stated that computer science is a science that examines how to effi-

ciently automate tasks, then it indeed would be a fact that a speed increase is benefi-

cial to computer science (and respectively, increased experimentation would be be-

neficial to computer science), but the fact would be true only by definition, not true

by any objective sense. Changing the definition of computer science would change

the truth of the claim. Additionally, the statement would not help in making claims

about usability of reliability.

Secondly, if the researcher conducted a poll where 100% of interviewees said that

success of computer science is measured by how well computer scientists manage to

make things usable, then it indeed would be a fact that according to the people in-

cluded in the poll, improved usability is beneficial to computer science (and respect-

ively, increased experimentation is beneficial to computer science), but the fact

would be true by consensus, not true by any objective sense. Another poll with dif-

ferent people or at a different time could lead to different results. Strictly speaking,

attributes of technology are value-free (see pages 140ff. of this thesis), and also in

practice, for instance, speed can lead to benevolent as well as malicious results.

Take, for instance, the efficiency of a sorting algorithm and the efficiency of a net-

work virus.

Normative claims inevitably include a hidden or explicit value premise, such as “in-

creased speed is desirable”, or “ease of use is desirable”, and therefore they are as-

sessed according to their plausibility, credibility, and desirability. Credibility, of

course, can be increased with experimentation, but ultimately it has to be based on

human judgment. Much of the meta-research in computer science is only descript-

364

ive, that is, the researchers have refrained from making claims about whether the

status quo of research in computing is desirable or not. I do not have an objection to

meta-research with normative claims either, as long as the value statements they

contain are explicit and not hidden. Making value statements explicit is a difficult

task for a researcher though; in practice one has to accept many normative claims in

research articles by inferring what the article authors' valuations were.

Tichy’s later argument for increasing experimentation in computer science, pub-

lished in the June 1998 issue of IEEE Computer937, faces the same difficulties as

Tichy et al.’s earlier argument. Tichy assumed that (1) the primary subject of in-

quiry in computer science is information; and (2) although information is neither en-

ergy nor matter, it should be studied following the traditional scientific method. Ob-

jections to these assumptions are easy to formulate. For instance, if the primary fo-

cus of computer science is defined as something other than information, Tichy’s ar-

gument faces difficulties. Similarly, if information is irreducible, emergent, or epi-

stemologically subjective (always interpreted), Tichy’s argument faces difficulties.

Tichy assumed falsificationist ideals and a reductionist view of information, but if

one adopts a different philosophy of science or a different assumption about the es-

sence of information (or if one questions the definition of the term information,

which is not very difficult because the term information is notoriously ambiguous),

one can equally successfully argue for, for instance, a hermeneutic research tradition

instead of the scientific method.

937Tichy, 1998

365

Section Overview

Although I am not looking for particular trends in the development of computing as

a discipline, and although I have not done a formal analysis of the sample articles,

looking at how discussions about the discipline have developed reveals a number of

overarching motifs that may partly explain the development of the discipline. I have

identified three particularly lucid endeavors.

The first motif in my sample of articles is external detachment: In these articles the

authors have argued that computing is a new discipline instead of being a part of

some other discipline. Their prime motivation is descriptive—to argue for a recog-

nition of computing as an autonomous discipline based on the uniqueness of com-

puter science, and thus to argue for a redrawing of disciplinary boundaries. In these

articles the authors have usually contrasted computing with mathematics or engin-

eering, or discussed science in general terms938.

The second motif is internal collectiveness: In these articles the authors have tried to

formulate an overarching understanding of computing as a discipline. There are dis-

cussions about the academic credentials of the discipline, as well as discussions

about who is considered to be a computing professional. There are both descriptive

and normative characteristics in these discussions. On one hand, some authors have

tried to develop a collective picture of computing as a discipline by describing what

computer scientists actually do939. On the other hand, some authors have tried to

lead computer scientists by arguing for what computer scientists should do. Normat-

ive accounts have been approached basically from two directions: Some authors

have weighed aspects of computing and then argued for the practical importance of

some aspects (such as programming) over others, whereas other authors have argued

for an intellectual or conceptual supremacy of one viewpoint of computing (such as

formal proofs of correctness) over others940.

The third motif is internal expansion: In these articles the authors have argued for an

extension of the discipline to topics that have not been previously considered to be

938See, e.g., Newell et al., 1967; Forsythe, 1968; Hamming, 1969; Knuth, 1974; Dijkstra, 1974.

939See, e.g., Forsythe, 1967; Atchison et al., 1968; Austing et al., 1979; Denning et al., 1989; Hartmanis et al.,
1992; Brookshear, 2003:p.1.

940See, e.g., Hamming, 1969; Minsky, 1970; Naur, 1966; Dijkstra, 1972; Khalil and Levy, 1978; Lee, 1989.

366

part of the discipline. There are both descriptive and normative motivations. Firstly,

some authors have argued that people in the field of computing are actually doing a

certain topic already, and that the topic should therefore be formally identified as a

subfield of computing (such was the case with, e.g., networks and operating sys-

tems941). Secondly, some authors have argued that it is important to steer some effort

to some new topics that have traditionally not been a part of the discipline (such was

the case with, e.g., HCI and software engineering942).

It should be noted that the separation of the above-mentioned endeavors into normat-

ive and descriptive is somewhat rough; some descriptions of computing could with

ease be read as guidelines to computing proper. The same problem of ambiguity

between normative and descriptive accounts of science was visible in Kuhn’s nor-

mal science: Philosophers of science criticized Kuhn for ambiguity about the nature

of his account of science943. (Note that Kuhn’s account was not criticized as much

for making normative claims as for not making normativity clear.)

Kuhn indeed conceded that his work includes both descriptive and normative sides,

but argued that if one has a theory of how science works, that theory must have some

implications for how scientists should work944. Note that the key word in Kuhn’s

reply is some: The less emphasis the word some is given, the stronger becomes the

objection that if the norms of science are drawn only by efficiency, then no practices

are ruled out—not even the most unethical ones. But if computer scientists have to

abide by ethics, then a normative account of computer science cannot include uneth-

ical practices. That is, then a normative account of computer science cannot be

based on scientific arguments only. In effect, insofar as computer scientists are

members of society and bound by the norms of society, scientific practice and societ-

al norms cannot be separated—and insofar as scientists are moral people, scientific

practice cannot be separated from ethical questions.

941See, e.g., Glass, 2005 for an overview of software history; Rosen, 1972 for the development of operating systems
between 1965 and 1975; and Spier, 1974 for an early explanation of why operating systems deserve a subdiscip-
line of its own.

942See, e.g., Naur & Randell, 1969; Minsky, 1979; Simon, 1981; Hopcroft, 1987; Stevenson, 1993; Sommerville,
1982:pp.2-3; Baskerville et al., 2000:p.63. See also Randell, 1979 for a historical account of the emergence of
software engineering and Baecker et al., 1995 for a history of HCI.

943Feyerabend, 1970

944Kuhn, 1970

367

There is significant chronological overlap between the three motifs mentioned above

—external detachment, internal collectiveness, and internal expansion. The detach-

ment of computing from the disciplines that gave birth to computing began in the

1950s, and, as computing as a discipline gradually gained legitimacy, significant de-

bates about the disciplinary autonomy of computing ceased after the 1970s. Expan-

sion has been a characteristic of the field of computing throughout the existence of

the field; for instance, there are topics of computing such as artificial intelligence,

human-computer interaction, and software engineering that are considered to belong

to the field of computing today, but that were once rejected. Computing as a discip-

line has also been overshadowed by an identity crisis throughout its history; every

decade the boundaries of the discipline have been redrawn, and every decade the de-

bates about the disciplinary identity of computing have taken new forms.

There have been different categorizations of different aspects of computing. One of

the most oft-quoted, but perhaps the most vague, is the dichotomy between science

and art945. This dichotomy emphasizes the logico-rational side of computing and the

creative crafting side of computing. Variations of the same juxtaposition can be seen

in the division between abstract and pragmatic946, theory and practice947, form and

content948, academy and industry949, computing and computer950, algorithms and pro-

grams951, science and technology952, and so forth953.

The characterization of computing through its scientific and practical aspects unne-

cessarily excludes important characteristics of computing. An alternative categoriza-

tion of the different aspects of computing is the tripartite of the field into its math-

ematical, scientific, and technological aspects954. This division is also characterized

as theory, modeling, and design955, as well as theory, numerical analysis, and sys-

945Forsythe, 1967

946Forsythe, 1968

947Knuth, 1991; Minsky, 1970

948Minsky, 1970

949Kandel, 1972; Egan, 1976

950Dijkstra, 1987; Dijkstra, 1972; Brooks, 1996

951Khalil and Levy, 1978

952Hopcroft, 1987

953One can easily come up with dozens of similar juxtapositions, e.g., universal vs. particular; scholarly vs. profes-
sional; abstract vs. concrete; global vs. local; objective vs. subjective; formal vs. intuitive; form vs. function;
general vs. particular; pure vs. applied, etc.

954Wegner, 1976

955Denning et al., 1989

368

tems956. I argued that in addition to the theory, modeling, and design aspects of com-

puting, an ethical component is necessary, because the decisions that computer sci-

entists make are not separate from societal concerns—if simply for the fact that

neither computer scientists nor products of computer science are outside of society.

There is a broad variety of definitions of computer science which include an equally

broad variety variety of research subjects of computer science. The subject of com-

puter science has been argued to be, for instance, information957, computers958, al-

gorithms959, information structures and processes960, computing machines (actual or

potential)961, the phenomena surrounding computers962, information processing sys-

tems963, the nature of data and use of data964, classes of computations965, computer

programming966, complexity967, automation968, users969, and models970.

In a similar vein, computer science as an activity has been argued to include, for in-

stance, representing, processing971, designing972, mastering complexity973, formulat-

ing974, programming975, doing empirical studies976, and modeling977. Computer sci-

ence has been conceptualized as mathematics, as engineering and design, as an art,

as a science, as a social science, and as an interdisciplinary endeavor978.

This gamut of topics and approaches does not fit under a single epistemological or

methodological system. To cope with this variety, computer scientists have em-

956Rice and Rosen, 2004

957Forsythe, 1967; Finerman, 1970

958Forsythe, 1968; Hamming, 1969; Brooks, 1996

959Knuth, 1974; Denning et al., 1989

960Atchison et al., 1968

961Finerman, 1970

962Newell et al., 1967

963Atchison et al., 1968

964Naur, 1966; Lee, 1989

965Dijkstra, 1972

966Khalil and Levy, 1978

967Dijkstra, 1999; Dijkstra, 2001; Simon, 1981; Minsky, 1979

968Denning et al., 1989

969Lee, 1989; Shneiderman, 2002; Mahmood, 2002; Johnson, 1998

970Stevenson, 1993; Denning et al., 1989

971Forsythe, 1967

972Dijkstra, 1972; Forsythe, 1967; Denning et al., 1989

973Dijkstra, 1974

974Dijkstra, 1974

975Khalil and Levy, 1978

976Wegner, 1976

977Denning et al., 1989; Stevenson, 1993

978Goldweber et al., 1997

369

ployed methods from a diversity of fields. In this sense, computer scientists are

jacks-of-all-trades. However, it is not certain if the resulting computer science is

valid in any of the fields that are utilized in computer science. This may be due to

the fact that computer science curricula frequently lack the sine qua non of research-

er-as-bricoleur: a broad education in methodologies.

It seems that situating computing in the scientific, technological, economical, insti-

tutional, cultural, philosophical, personal/individual, and political context opens

new windows to why computing has developed as it has. Even if one knew the cur-

rent state of computing field inside out, it would be difficult to claim to understand

computing if one did not know the circumstances in which computing had de-

veloped. There is a difference between knowing what is, and knowing why it is, and

social studies of computer science is perhaps needed to explain the whys of computer

science.

For instance, one could determine that FORTRAN is the dominant language in scientific

computations, but without knowing the history of FORTRAN one does not why does it

dominate (it is certainly not for the technical merits of FORTRAN). One could speak

with confidence about a division of the discipline of computing into theory, model-

ing, and design, but without knowing the history of the discipline one does under-

stand why the tensions between these three parts exist. In a similar vein, it is a mat-

ter of disciplinary self-understanding to be aware of the background of the software

crisis and its suggested solutions, the sociocultural history of the stored-program-

paradigm, the philosophical criticism of iterative design, the recurring polemics

about the term computer science, and so forth. Those topics fall within the area of

social studies of computer science. In the following chapter I characterize and ana-

lyze my vision of social studies of computer science.

370

4.Social Studies of Computer Science

Social studies of computer science, as

an extension of computer science, refers

to a multidisciplinary, multi-method ap-

proach to computer science, but in this

thesis some specific reference discip-

lines, in relation to social studies of

computer science, are foregrounded:

sociology, history, anthropology, and

philosophy. Using these four discip-

lines as prototypical labels for social studies of computer science does not mean that

social studies of computer science should be limited to these four disciplines. Social

studies of computer science could be done from the point of view of many other dis-

ciplines, too, such as psychology, communication studies, or economics. Fore-

grounding sociology, history, anthropology, and philosophy is, however, usual in so-

cial and cultural studies of science1.

In the previous chapter I raised doubts whether the methodological toolbox of com-

puter science would be adequate for selecting, recording, understanding, explaining,

analyzing, or predicting human phenomena. In this chapter I focus on some qualitat-

ive methods that are common in the social sciences and humanities (albeit there is a

lot of quantitative research in the social sciences and humanities, too2). I take it that

computer scientists are more familiar with quantitative than qualitative research

methods, and in this chapter I focus on the less familiar, qualitative methods. It must

be noted that social studies of computer science should be open for alternative and

complementary research approaches.

Opening the door for various kinds of research has its flip side, too. Norman Denzin

and Yvonna Lincoln argued that it is very difficult to move from paradigm to anoth-

er paradigm within one study, because scientific paradigms are overarching philo-

sophical systems3. Yet they also noted that there is fundamental difference between

paradigms and perspectives in research. They wrote that one can more easily move

1 Pickering, 1995:pp.215-217.

2 Bernard, 1995

3 Denzin and Lincoln, 1994:p.2

371

Our objective in this book is to state precisely

and clearly where and why sociological analysis

is necessary in the understanding of scientific

knowledge. Our main method is to present his-

torical case studies. We then show how sociolo-

gical analysis applies in these cases, and how it is

an essential complement to even the most in-

sightful interpretations derived from other per-

spectives.

Barnes, Bloor, & Henry (1996)

Scientific Knowledge: A Sociological Analysis

from perspective to perspective within the same study because perspective is a looser

concept than paradigm. Denzin and Lincoln continued that the use of multiple

methods, multiple empirical materials, multiple perspectives, or multiple observers

to understand a phenomenon—sometimes called triangulation, and lately crystalliz-

ation—is often used to add rigor, breadth, or depth to investigation4. Limiting the

discussion in this chapter to a few qualitative research methods is not a position to-

wards either quantitative or mixed-method research, but a practical choice given the

target audience of this thesis, computer scientists. The research approaches and

viewpoints presented in this chapter are chosen because they produce different kinds

of knowledge than the common theoretical-modeling-scientific toolbox of computer

science does.

The first aim of this chapter is to form an overall picture of the academic location for

fields such as sociology, history, anthropology, and philosophy as extensions of

computer science. The second aim of this chapter is to establish the intellectual con-

tribution of social studies of computer science. Having these two aims in mind, in

this chapter a descriptive account of computer science is formed first (Section 4.1),

followed by an articulation of how computing could benefit from sociological, his-

torical, anthropological, and philosophical perspectives (Section 4.2). Then I argue

why research done from these perspectives belongs to computer science and not to

sociology, history, anthropology, or philosophy (Section 4.3), and finally I discuss

some implications of this study (Section 4.4).

4 Denzin and Lincoln, 1994:p.2. See Stake, 1994, for discussion about triangulation in case studies; see Johnson
& Onwuegbuzie, 2004, for a discussion about arguments for and against mixed method research.

372

4.1.Computer Science: an Efficient Anarchy

By claiming that they can contribute to software engineering, the

soft scientists make themselves even more ridiculous.

(Not less dangerous, alas!)5

In the beginning of Chapter Two I

noted that there are multiple interpreta-

tions of the term science. Also, com-

puter science can be understood in a

number of ways. For instance, it can be

understood as specific classes of activ-

ities, such as modeling, creating theor-

etical explanations, developing, auto-

mating, or designing6. It can be understood as a way of thinking7 in which an indi-

vidual is able to switch between abstraction levels and simultaneously consider mi-

croscopic and macroscopic concerns8. It can also be understood as an umbrella term

for a large variety of topics, such as robotics, e-commerce, visualization, and data

mining9. Computer science can be understood as a rigid institution (e.g., “academic

computer science”), but computer science can also be understood as having a tem-

poral dimension, thus forming a historical continuum: “the 45-year path of computer

science”. It can be understood as broadly as studies of phenomena surrounding

computers10 or as narrowly as computer science = programming11. Computer sci-

ence can be interpreted as the intersection or union of subjective and objective, or

heuristic and formalistic issues: the art and science of processing information12.

Computer science can be also understood as a profession13. Many of these interpret-

ations of computer science can have both normative and descriptive meanings, and

5 Dijkstra, 1975b

6 Denning et al., 1989

7 Arora & Chazelle, 2005

8 Dijkstra, 1987; Dijkstra, 1974; Knuth, 1974

9 Zadeh, 1968; Denning, 2003

10 Newell et al., 1967

11 See, e.g., Denning, 2004, Denning et al., 1989, Ralston, 1981, Ralston and Shaw, 1980.

12 Forsythe, 1967

13 See Computing Sciences Accreditation Board's web page for Computer Science: The Profession:
http://www.csab.org/comp_sci_profession.html (accessed September 27th, 2006)

373

IN THIS SECTION:

� A characterization of computer science for

the rest of the chapter.

� What is the theoretical-conceptual frame-

work of computer science?

� Is methodological and epistemological an-

archism detrimental to computer science?

they can be combined, pooled, and re-organized to produce an even greater variety

of interpretations of computer science.

Although the purpose of this thesis is not to offer yet another definition of computer

science, for clarity’s sake it is necessary to characterize how the term computer sci-

ence is used in this chapter. In this and following sections, the term computer sci-

ence is used as a loose collection of topics and concepts regarding studies of com-

puters and phenomena surrounding computers, that is, studies that aim at contribut-

ing to knowledge about automatic computation or at refining computational tools,

theories, concepts, or processes. In this sense, computer science can include topics

and concepts from fields such as hardware design, human-computer interaction, in-

formation systems, computer architectures, multimedia design, and programming

languages.

Because of the vagueness of the term computer science, some qualifiers of the term

are used hereafter when necessary. Computer science qua activity refers to the ex-

plicit and implicit practices, methods, uses of tools, meaning negotiations, or other

modi operandi that are a part of the activities of computer science. Computer sci-

ence qua knowledge refers to the implicit or explicit conceptual and theoretical

frameworks, methodologies, epistemological and ontological presuppositions, shared

knowledge, tacit knowledge, or other types of information that are a part of the

knowledge of computer science available in the public domain.

I do not wish to set a temporal limit on the use of the term computer science in this

context—therefore, the abacus, systems of numeration, and other old inventions, as

well as the tacit or explicit theories of how they work, can be understood as the con-

stituents and products of computer science. Insofar as it can be said that scholars in

Ancient Greece worked on biology and physics, computer science can be said to

have a long history, too. For instance, ethnocomputational14 concepts and mechan-

isms such as the Antikythera mechanism (65 B.C.), Inca Quipus (as far as 3000 B.C.),

Bamana sand divination, many African fractal concepts, and, certainly, the ancient

concept of the algorithm15 can be considered to belong to computer science.

However, my discussion focuses on the past 60 or 70 years of computer science.

14 A term from Tedre et al., 2006.

15 See Solla Price, 1959; Ascher & Ascher, 1981; Eglash, 1997; Eglash, 1999; Zemanek, 1979, respectively.

374

There are parts of computer science that are considerably stable in the sense that they

have served as an uncontested basis for research for long periods of time. Of these

considerably stable parts of computer science, perhaps the one that is most well-

known and the most associated with computer science is the stored-program para-

digm, which was formed during the early 20th century, and was epitomized in the

First Draft of a Report on the EDVAC and the construction of BINAC and EDSAC16.

Although many constituents of modern computer science—such as algorithms, the

universal Turing Machine, and the stored-program-paradigm—date back a long

time, the field at large has changed radically between the 1940s and 2000s.

Although there are considerably stable parts of computer science, knowledge about

computing, activities of computer scientists, and computer science as a discipline

have changed significantly after the conception of digital electronic computing. For

instance, researchers of computational complexity have constantly redrawn the prac-

tical boundaries of computing, practices of program and model construction have

changed, and concerns about efficiency (and usability) have led to new fields such as

software engineering and human-computer interaction17. Computer science is today

considered to include fields such as software engineering, the social implications of

computing, knowledge representation and reasoning, data modeling, network secur-

ity, and human-computer interaction18. Those fields have sometimes arisen from the

intersection of computer science and other disciplines, sometimes from specialized

topics in computer science, but they had not been research fields of their own before

the emergence of digital computing.

Research in Computer Science

I shall not repeat the discussion about the different designations of either the com-

puter or the science part of the term computer science. Both parts are disputed.

Surely, the term science in computer science is not a technical notion that would

define the content or form of the discipline, but computer science certainly is a popu-

lar notion and a commonly used term. The inclusion of science to describe the dis-

cipline was done either implicitly or explicitly over the course of time, and the fre-

quency of discussion about the term computer science (see Chapter 3.4, passim) sug-

16 Neumann, 1945; Worsley, 1950; Mauchly, 1979

17 Grudin, 1990

18 Denning et al., 2001:p.17.

375

gests that the inclusion of science to describe computer science was chosen deliber-

ately.

The number of research topics in computer science has increased since the official

establishment of the discipline, and the topics have also diversified. The 25-item list

of computer science topics in 1968 (Figure 21, page 269) consists of mathematical

and engineering topics, but the 30-item list of computer science topics in 2003 (Fig-

ure 7, page 69) consists of a variety of topics such as e-commerce, workflow, human-

computer interaction, and computational science that have arisen from the cross-sec-

tion of computer science and other fields such as business, psychology, cognitive

science, sociology, and natural sciences. The perspectives on what kinds of research

are considered to be computer science have changed over the 35 years between 1968

and 2003, and even more over the 60 year-history of electronic, digital computing.

Computer scientists of the 1950s might not have considered intellectual property is-

sues, software project management, graphics and visual computing, or data modeling

as computer science at all. For instance, as late as 1968, computer scientists were

hesitant to include even such technical topics as programming under the umbrella of

computer science19.

A comparison of the official curricula recommendations between 1968 and 1996

suggests that the research approaches have also diversified after 1968. Curriculum

'68 is strictly computer-centered and mathematical, whereas, around the year 1996,

interdisciplinary and multidisciplinary trends are writ large on curricula20. The num-

ber of utilized and approved research approaches has increased simultaneously with

the increase of the number of topics of computer science.

Scientific Statements in Computer Science

There is uncertainty about what are scientific statements in computer science. Be-

cause of the insurmountable ambivalence of the term facts (discussed in Chapter

Two), I use a more relaxed term, scientific statements, instead. In this section, the

term scientific statements in computer science refers to statements that are meant to

be either (1) a basis for future computer science; (2) alternatives to, refutations of, or

criticisms of earlier scientific results, or (3) information for extra-scientific stake-

19 Atchison et al., 1968

20 See Goldweber et al., 1997, who discuss the development of computing curricula, including, for instance, Atchis-
on et al., 1968; Austing et al., 1979; Tucker et al., 1991; and Denning et al., 1989.

376

holders such as educators, policy-makers, and the general public. The notion of sci-

entific statements is not a technical but an intuitive one, and as such, it is, in the end,

subjectively interpreted.

During the first half of the history of digital electronic computing, 1945-1975, when

computer science was considered to be a mathematical and engineering discipline,

the natural scientific community at large was geared towards proving or falsifying

theorems21. I have shown earlier that, in practice, computer scientists at the time did

not work like falsificationists ought to have worked. It has been argued that com-

puter scientists today do not conform to the falsificationist ideals either22.

In 1968 Dijkstra made a normative statement that “the GO TO statement should be ab-

olished from all ‘higher level’ programming languages” based on his subjective ob-

servation that GO TO statements increase code entropy23. Although no empirical re-

search was ever performed to measure the truth value of Dijkstra’s hypothesis of the

problematic nature of GOTOs, computer scientists gradually shifted towards less GO

TOs in programming24. Dijkstra’s statement was not founded on empirical results or

formal proof but on his experience. The persuasiveness of Dijkstra’s statement ori-

ginates from somewhere else than its scientific merits—perhaps it originates from

the intuitiveness of his statement and from his colorful and persuasive language

evident in, for instance, phrases such as “the use of the GO TO statement has such dis-

astrous effects”, “as wise programmers aware of our limitations”, “[the] GO TO state-

ment [...] is just too primitive”, and “an invitation to make a mess of one’s program”.

If Dijkstra's statement “GO TOs are harmful” can be considered to be a scientific state-

ment (instead of a pseudo-scientific statement) in falsificationist terms, the condi-

tions under which the statement is falsified must be clear25. For instance, it could be

asked if Dijkstra’s statement is falsified if one can find one case in which a GO TO de-

creases code entropy. Knuth showed that it is possible to program in a structured

manner using GO TOs26, yet computer scientists still have not considered Dijkstra's

statement to have been falsified (or, alternatively, GOTOless programming is popular

21 Chalmers, 1976:pp.1-4,59-61.

22 Tichy et al., 1995; Tichy, 1998

23 Dijkstra, 1968

24 Glass, 2005; MacLennan, 1999:pp.126-127.

25 Popper, 1959:pp.65-66.

26 Knuth, 1974b

377

despite the refutation of Dijkstra's statement). In falsificationist terms, if one cannot

divide findings into those that permit Dijkstra's statement and those that falsify Dijk-

stra's statement, Dijkstra's statement is not falsifiable, and as such, it should be con-

sidered to be pseudo-science. (Indeed it is a difficult task to state clearly when Dijk-

stra's statement would be refuted.)

On one hand, it might be difficult to consider Dijkstra’s statement to be a scientific

statement because it has not been empirically tested. On the other hand, much re-

search and practice in computer science has been built on the assumption that GO TOs

are harmful for the clarity of code. One way to take Dijkstra’s statement is as a folk

theorem, a hypothetical statement or theorem, which is widely held but has not been

not empirically tested. However, although it has been argued that there are many

folk theorems in computer science27, their place in the conceptual and theoretical

framework of computer science is dubious.

Social Constructionism in Computer Science

In the wake of social constructionism in the early 1960s, the factuality of positivist

statements about science (“facts”) as well as the mechanisms of falsificationism in-

creasingly came to be questioned. Kuhn's work28 questioned the foundations of sci-

entists' work in the modeling and design fields of computer science, and Lakatos'

work29 questioned the foundations of mathematical proofs, which are typical of the-

oretical computer science. Both Kuhn's and Lakatos' arguments have been em-

ployed in computer science. For example, in his 1978 Turing Award speech The

Paradigms of Programming, Robert W. Floyd characterized changes in program-

ming with the Kuhnian term paradigm (in my opinion, incorrectly30). In the May

1979 issue of CACM, De Millo et al. wrote the following about social processes and

proofs of theorems and programs: “Contrary to what its name 'proof' suggests, a

proof is only one step in the direction of confidence”31. DeMillo et al. argued that,

27 Harel, 1980; Denning, 1980

28 Kuhn, 1996 (orig. 1962)

29 Lakatos, 1976; Lakatos, 1970

30 Floyd, 1979. Floyd apparently used the term paradigm in the meaning of an exemplar (discussed in Kuhn,
1996:187-191). This meaning of paradigm is indeed more suitable for programming paradigms than the more
common understanding of a paradigm as a disciplinary matrix. However, Floyd did not mention any anomalies
that would have ever triggered a paradigm shift in programming. My interpretation is that Floyd used the term
paradigm in a different way than Kuhn did.

31 De Millo et al., 1979

378

for instance, proofs of program correctness are social constructs, and referred to

Lakatos' work.

In 1980, in two separate issues of CACM, David Harel and Peter Denning discussed

a number of folk theorems or folk myths in computer science, theorems which are

simple, intuitive, widely believed, of obscure origin—and some of which are false32.

These are, Denning wrote, usually referred to as “well-known” theorems. Today

there are even a number of rules-of-thumb called “laws” in computer science—take

for instance, Moore's Law, Rock's Law, Machrone's Law, Metcalfe's Law, and

Wirth's Law33. It is strange that there do not seem to be many objections to the lax

use of the term law in the field of computing. Although one might argue that all

computer scientists know that those rules-of-thumb are not laws proper, negligent

use of the term law blurs its meaning.

The unclarity about the nature of research results in computer is also visible in how

computer science is done. It is difficult to single out a theoretical framework for

computer science; should any of the dominant frameworks of science be adopted as

a normative framework for computer science proper, some established topics from

the descriptive framework of computer science would be excluded. The fact that no

single methodological system is applicable to the methods of inquiry in computer

science means that computer science is methodologically disunited. The fact that

there is no consensus about the nature (epistemological status) of research results in

computer science means that computer science is epistemologically disunited. If dif-

ferent epistemological and methodological stances towards phenomena in computer

science are kept apart, computer science can be characterized as a multidisciplinary

enterprise. If different epistemological and methodological stances towards phe-

nomena in computer science are blended, computer science can be characterized as

an interdisciplinary enterprise.

Anarchism in Computer Science

Multidisciplinary approaches to science employ research approaches from a number

of disciplines to offer a variety of perspectives of the same phenomena. In mul-

tidisciplinary approaches, the different research approaches are utilized without

32 Harel, 1980; Denning, 1980

33 Ross, 2004

379

modification. Interdisciplinary approaches blend two or more disciplines together

to form a new field or approach. Sciences that can be characterized as interdisciplin-

ary include, for instance, biocomputing (computer science, biology, and biotechno-

logy)34 and quantum computing (modern physics, computer science, and material

science)35.

Computer science can be characterized as an interdisciplinary science to some de-

gree: Computer science originates from numerous disciplines, yet it offers unique

systems of explanation, such as computational models and algorithms. Computer

science is not an antidisciplinary synthesis, though. Characteristically, antidisciplin-

ary syntheses eliminate the friction between and around the different research ap-

proaches36. Quite the contrary to antidisciplinarity, and in addition to interdisciplin-

arity, computer science bears some characteristics of a multidisciplinary science: A

number of incompatible research approaches are used in different branches of com-

puter science. The boundaries around disciplines that have come together to form

computer science still exist within computer science, and the boundaries distinguish

labels such as theoretical computer science, human-computer interaction, and com-

puter architectures.

There is no stern watchdog Computer Science to enforce methodological regimenta-

tion and to rule out non-legitimate, ill-suited, or inappropriate methods, tools, or ap-

proaches. It is, in fact, difficult to imagine a united methodology or epistemology

for computer science, due to the vast number of different sorts of concepts computer

scientists have to cope with—computer scientists have to work with, for instance, lo-

gic elements, software systems, network protocols, and human-computer interfaces.

The results and statements in the field of logic circuit design are different from the

results and statements in, for instance, software engineering, information retrieval,

and robotics. The multiplicity of epistemological and methodological views render

computer science a methodologically and epistemologically eclectic discipline. That

is, there is no methodology or epistemology that would be commonly agreed upon as

being superior to other methodological or epistemological views.

34 Thacker, 2004:p.99.

35 Berman et al., 1998:p.1.

36 See Pickering, 1995:p.216 for antidisciplinary new synthesis. Note that antidisciplinary does not mean anti-sci-
ence. There is a number of other approaches related to inter- and multidisciplinarity, such as crossdisciplinary
and transdisciplinary approaches, but the differences between the different multiperspectival approaches are not
the focus of this thesis.

380

Despite the methodological and epistemological multiplicity in computer science,

the unwritten science policy or attitude in computer science cannot be said to be lais-

sez-faire, non-interference, or pluralism. There can actually be strict rules within

branches of computer science (for instance, theoretical computer science relies

strictly on positivist methodology), representatives of different branches may con-

sider other branches as less worthy37, and proponents of some approaches to scientif-

ic inquiry may impose their approaches on others38. However, although individual

computer scientists may be strict about their views of science, computer scientists as

a professional group cannot be said to profess positivism, constructionism, postposit-

ivism, objective or subjective Bayesianism, or such. If there is a term to describe

computer scientists as a professional group, it is opportunism.

In their education, computer scientists get very little or no methodological training,

but they usually learn through mentoring and exemplars. A conscious methodolo-

gical non-regimentation and a disregard of frequent calls for more methodological

rigor render computer science an epistemologically and methodologically anarchist

discipline. Note that neither those sociologists of scientific knowledge who argue

for rather anti-realist views of scientific knowledge nor those philosophers of science

who advocate anarchistic science, claim that all science is equally important39.

However, not all sociologists of knowledge nor all philosophers of science believe

that there is a single correct approach to intellectual inquiry.

The Outcomes of Anarchism

During the past 60 years, research in computer science has helped the creation of a

number of new research fields, spurred research in other disciplines, deepened

knowledge about automatic computing, and advanced computing technologies. My

reading of the history of computer science is that computer science has been effi-

cient40 because of anarchism, not despite it. Anarchism had already been woven into

computer science (from different disciplinary threads) from the beginning of early

electronic computing. The birth of the stored-program-paradigm was already a res-

ult of a successful combination of a number of epistemologically and methodologic-

37 Glass et al., 2004

38 Tichy, 1998

39 See Hacking, 1999:p.65; See Horgan, 1996:pp.52-54.

40 Efficient as a term refers to a high ratio of output to input. It should not be confused with effective, which refers
to having an intended or expected effect (AHD, 2004).

381

ally incompatible disciplines. Over the past 60 years, computer science has been in-

fluenced by a large and eclectic bunch of disciplines. Had computer scientists ad-

hered to a single normative theory of science, it would have been impossible to util-

ize the theories, concepts, models, or methods of incompatible disciplines. For in-

stance, Goldweber et al. argued that anthropology, applied psychology, computer

science, cultural studies, economics, ergonomics, ethics, history, linguistics, manage-

ment, mathematics, philology, philosophy, semiology, sociology, and politics have

been relevant to the development of computing41. Goldweber et al. argued that one

cannot do justice to this diversity by applying a single disciplinary perspective.

In addition, without anarchism in computer science, the innofusion of many innova-

tions in computer science could have been much slower (and some innovations

might have not been introduced at all). For instance, the quick innofusion of innova-

tions such as the stored-program-paradigm, high-level programming languages, and

structured programming can be attributed to technoscientific anarchism—that is, to

the fact that those innovations did not need to undergo rigorous empirical testing be-

fore earning an official stamp of approval. Instead, those innovations are products of

(and still subject to) the mangle of practice.

Anarchism can also be seen in that many innovations in computer science have been

contrived despite the lack of support by the establishment (sometimes even despite

strong opposition from the establishment). Two especially lucid examples arise

from the narrative in Chapter Three: Firstly, the academic establishment was

strongly opposed to the construction of ENIAC, and secondly, high-level program-

ming languages were developed despite the resistance of the computer science com-

munity. It is not, however, my purpose to argue whether or not anarchism ought to

be a tenet of computer science, but just to note that it seems to be the primus motor

of change in computer science.

The functioning of Kuhnian normal science is well-known. The logic of scientific

discovery, confirmation, and justification in falsificationism is well-documented. In-

sofar as computer science is not a strictly regimented discipline but an eclectic, op-

portunistic, and anarchistic discipline and insofar as knowing the modi operandi of a

discipline is considered to be important, the workings of computer science deserve to

41 Goldweber et al., 1997

382

be researched in their own right. In the following section I describe some view-

points that social studies of computer science can offer and what kinds of knowledge

those viewpoints produce.

383

4.2.Approaches to Social Studies of Computer Science

It is difficult to conceive how the behavioral and social sciences could be

simultaneously trivial, useless, unscientific, and threatening.42

Anthony Ralston attributed four reasons

to computer science's diverging from

mathematics: disciplinary changes, an

insecure disciplinary identity, a growing

number of people in the field of com-

puting, and disciplinary disagree-

ments43. Only one of Ralston's reasons,

disciplinary changes, can be explained

in solely (contemporary) technical and

computational terms. I argued earlier

that the other three reasons are perhaps

better explained in other terms, such as

in psychological, sociological, or anthropological terms (p. 295).

In Chapter Three I presented a number of historical accounts of computer science

that suggest that modern computer science was born in the 1940s as a result of a

number of organizations, a number of top people, many coincidences, a variety of

disciplines, an uncommon political situation, a certain culture, unusually liberal

funding, and a number of technical and scientific breakthroughs. If it is true that one

cannot understand even a single, static affair in a society without understanding his-

tory44, one certainly cannot understand a multifaceted and dynamic phenomenon

such as computer science without the use of historical materials. Modern computer

science has been surrounded and shaped by a vastly complex conjunction of affairs

since the 1940s.

Due to their rich and colorful history, computer science and computer technologies

include plenty of phenomena, the form and functioning of which cannot be ex-

plained in terms internal to those phenomena. For instance, one cannot explain the

42 Smelser, 1988:p.14.

43 See Ralston, 1981.

44 Mills, 1959:p.149.

384

 IN THIS SECTION:

� What kinds of new viewpoints can social

studies of computer science contribute to our

understanding of computer science?

� What do all the ethno-approaches have to do

with computer science?

� Are all the viewpoints in social studies of

computer science actually new to computer

science?

� What is the point of case studies?

� How does one give proofs of correctness in

social studies of computer science?

design and the (non-)diffusion of any programming language by referring solely to

computer science qua knowledge. It has been argued that understanding the design

and diffusion of any programming language requires understanding its history and

the original motivations which provided the impetus for its development in the first

place45.

So it is implausible that one could understand the current state, a static snapshot, of

computer science qua knowledge without understanding its history. It is nearly tau-

tological that one cannot understand why computer science qua knowledge is what it

is without understanding its history. Insofar as history is understood as a human his-

tory, then history is a cultural and societal (and economic, political, ideological, etc.)

history. And insofar as computer science is a product of an array of sociocultural

forces, any portrayal of computer science is a historically, culturally, and societally

specific image. Finally, it is tautological that computer science qua human activity

always happens in some philosophical, historical, and sociocultural framework. (I

certainly do not mean that computer science that is situated in a historical, cultural,

and societal framework could not be objective. Objectivity can be defined in a num-

ber of ways that permit comparisons of socially constructed knowledge46.)

In addition, I must make a side note that one can legitimately adopt the positivist

viewpoint and argue that sciences are free of any historical, cultural, and societal in-

fluences (although the credibility of such an argument may not be straightforwardly

established). However, it is equally legitimate to adopt a constructionist viewpoint

and argue that understanding computer science requires understanding its historical,

cultural, and societal context.

The importance of historical, cultural, and societal self-understanding of computer

science are explicitly noted in both the Computing Curricula 1991 and 2001:

[1991, 2001] Undergraduates also need to understand the basic cultural,

social, legal, and ethical issues inherent in the discipline of computing.

They should understand where the discipline has been, where it is, and

where it is heading. They should also understand their individual roles in

this process, as well as appreciate the philosophical questions, technical

45 cf., e.g., Denning, 2003; Rosenblatt, 1984

46 For instance, John Searle wrote, “[T]he contrast between epistemic objectivity and epistemic subjectivity is a
matter of degree.” (Searle, 1996:p.8).

385

problems, and aesthetic values that play an important part in the develop-

ment of the discipline.47

The courses that concern social and professional issues in computing in the Comput-

ing Curricula 2001 are various: the courses cover the history of computing (SP1), the

social context of computing (SP2), methods and tools of analysis (SP3), professional

and ethical responsibilities (SP4), risks and liabilities (SP5), intellectual property is-

sues (SP6), privacy and civil liberties (SP7), computer crime (SP8), economic issues

in computing (SP9), and philosophical frameworks (SP10)48.

The Contribution of Social Studies of Computer Science

Similar to other kinds of intellectual inquiry, social studies of computer science also

works within a certain conceptual and theoretical framework, and entails a number

of assumptions. In this thesis, those assumptions are, in broad terms, those entailed

in the constructionist, contingent, non-relativist, and nominalist viewpoints to sci-

ence. My perspective of social studies of computer science operates within that

framework of assumptions. In other words, social studies of computer science, as

understood in this thesis, entails the assumptions that much of people's knowledge is

constructed (rather than absolute), that the history and development of current com-

puter science is one out of an infinite number of possible routes (rather than an inev-

itable course), that there is a world of ontologically and epistemologically objective

things (rather than only subjective statements about the world), and that many of the

observed hierarchies and structures in computer science are constructed in order to

give structure to the discipline (rather than being a result of an inherently structured

world).

From a narrow point of view, social studies of computer science should have a place

within computer science if social studies of computer science can contribute to

knowledge about the subjects of computer science (see the characterization of com-

puter science on page 374). From a broad point of view, if one considers disciplin-

ary self-understanding to be a part of a mature discipline49, then one should also ac-

knowledge research that can contribute to the meta-theories, meta-knowledge, onto-

47 Tucker et al., 1991:p.73; Denning et al., 2001:p.141.

48 Denning et al., 2001:pp.141-146.

49 Barry Barnes, David Bloor, and John Henry have defended this argument well in Barnes et al., 1996:pp.iix-xii.
They wrote, “We see the sociology of scientific knowledge as part of the project of science itself, an attempt to
understand science in the idiom of science.” (p.iix).

386

logy, epistemology, and methodology of a particular discipline. For example, De

Millo et al.'s research on theory-formation in computer science is a contribution to

the meta-theories of computer science50, Harel's research on theorems that are un-

tested yet widely held contributes to the meta-knowledge of computer science51, Bri-

an Cantwell Smith's On the Origin of Objects is a study of the ontology and the epi-

stemology of computer science52, Kidder and Suchman have contributed to the un-

derstanding of how computer scientists actually work53, and there are numerous ex-

amples of research on the methodology of computer science54. Other aspects of a

broad interpretation of computer science can be considered to be, for example, so-

ciocultural impacts of computing and computing ethics. The left-hand oval (with the

dotted line) in Figure 29 portrays the narrow interpretation of computer science and

the right-hand oval (with the dotted line) in Figure 29 portrays the broad interpreta-

tion of computer science (MO in Figure 29 stands for modi operandi, that is, tech-

niques or methods of working).

The status of social studies of computer science as a part of the discipline of com-

puter science depends on one's view of computer science. If one were to agree that

disciplinary self-understanding is a part of a scientific discipline, it follows that if it

can be shown that social studies of computer science contributes either to knowledge

concerning automatic computation or to meta-knowledge about computer science,

then the social studies of computer science should have a place within computer sci-

ence. Naturally, one need not consider just any type of research that could possibly

50 De Millo et al., 1979

51 Harel, 1980; see also Denning, 1980; Ross, 2004.

52 Smith, 1998

53 e.g., Suchman, 1987; Kidder, 1981

54 Tichy et al., 1995; Glass, 1995; Alavi & Carlson, 1992; Vessey et al., 2002; Palvia et al., 2003 Glass et al., 2004

387

Figure 29: Narrow and Broad Interpretations of Computer Science

Knowledge concerning

automatic computation

Knowledge

concerning automatic

computation

Meta-knowledge

about computer

science

Sociocultural

impacts

of computing

Computing

ethics

Knowledge about

computer scientists

(MO, work, etc.)

contribute to computer science as being computer science. Ultimately the com-

munity of duly recognized computer scientists judge what they will accept as being

computer science proper. Researchers who consider their research to be computer

science can only be persuasive about the positive contribution of their research to

computer science and hope that other computer scientists think so, too.

I will portray the intellectual contribution of social studies of computer science to the

broader field of computer science by referring to some aspects of research that social

studies of computer science entails. I discuss (1) three different sources of informa-

tion, (2) a linkage to the sociohistorical context, (3) ethnomethodology, (4) ethno-

graphic methods, (5) a non-generalizing focus on cases, and (6) measures of inter-

pretive research. Those six research aspects are not a central part of traditional com-

puter science, albeit they are not completely excluded from computer scientists' tool-

boxes. I connect my discussion with examples of existing studies of computer sci-

ence in order to show that computer science qua knowledge has benefited when re-

searchers have incorporated those aspects of research in their inquiry.

It is not necessary for my argument to discuss research methods or research ap-

proaches in a very detailed manner. It is, in fact, difficult to say anything very con-

clusive about qualitative methods without going into too much detail. As an ex-

ample of broadness vs. detail, consider The Handbook of Qualitative Research, ed-

ited by Norman Denzin and Yvonna Lincoln55. The second edition of the book has

643 pages and 36 relatively broad chapters, resulting as a handbook of non-specific

guidelines (e.g., Chapter 15: Ethnography and Participant Observation). The third

edition of the book has 1210 pages and 45 specific chapters, resulting in an encyclo-

pedia of narrowly applicable, specialized methods (e.g., Chapter 21: Critical Ethno-

graphy as Street Performance).

I do not discuss paradigm choices, methodological issues, or research design here,

either. They are not of primary importance in charting the possibilities that social

studies of computer science could provide. Of course, in actual social studies of

computer science, research design and paradigm commitment (or non-commitment)

have to be catered for and made clear, because they set the basis for the strategies of

inquiry, form a framework for the research, outline the scope of the research, and

55 Denzin and Lincoln, 1994; Denzin & Lincoln, 2005

388

bound the applicability of the research results. Although discussing methods without

explicitly discussing methodology is somewhat risky, I have in this thesis discussed

philosophical aspects of research widely enough so that the basic methodological

grounds are in place for the discussion in the rest of this section.

Social Studies of Computing

The constructionist paradigm is not unknown in the discipline of computing. Con-

structionist views of knowledge can be found in computer science topics that are in

close contact with the social sciences, humanities, or education field—for instance,

the first of the following two quotations is from the field of computer science educa-

tion and the second is from the history of computing.

I think it is important to remember that definitions are arbitrarily created by

human beings. [...] It is important to remember that people who saw the

computer as a new and novel experience created the definitions of computer

science that exist today.56

Yet the ideas behind computers are so common and so accepted that we

tend to forget the human qualities that produced them.57

Some eminent computer scientists have also stressed the ontologically subjective

nature of computing. Peter Naur’s book Computing: A Human Activity58 is com-

prised of a large number of Naur's articles and essays that emphasize the notion that

the field of computing is both a humanly constructed and constructive endeavor.

That is, computing is “a human activity involving certain human purposes and in-

tents, certain human insights, and certain [hu]man-made tools and techniques”, but

the field of computing is also a “field that is remarkable for its feats of design and

constructions of active devices of hitherto unheard of complexity and effective-

ness.”59 In Naur’s opinion, careful analysis of the issues of computing lead, to some

extent, to a concern for human issues, whether they are more appropriately denoted

as psychological or sociological issues. Also, Dirk Siefkes has investigated the in-

fluences that the social and cultural backgrounds have had on computing machinery

and computer science60.

56 McGuffee, 2000

57 Grier, 2002

58 Naur, 1992

59 Naur, 1992:pp.xiii, xiv.

60 Siefkes, 1997 in Freksa et al., 1997.

389

Rob Kling (1944-2003) was probably the first to use the term social studies of com-

puting61. Kling’s research was both on the impact of computers on society and on

the impact of society on computing and information systems. The same term has

been used, for instance, in Philip E. Agre's studies of technological discourse62, and

in the book Virtual Society? Technology, Cyberbole, Reality, edited by Steve Wool-

gar63. In the field of science and technology studies there is a wide variety of soci-

ologically, historically, anthropologically, and philosophically oriented research

about the different aspects of computing64. Often such research studies go under an

umbrella term, such as STS or SSK.

There is a slight difference between the terms social studies of computer science and

social studies of computing. One can interpret the former as denoting an emphasis

on the academic discipline computer science, and the latter as denoting a broad focus

on all computing. Because this thesis concerns an extension of computing as a dis-

cipline, I use the term social studies of computer science.

Three Sources of Information

The disciplines that have been referred to throughout this thesis—sociology, history,

anthropology, and philosophy—can each contribute a unique viewpoint to social

studies of computer science. The research approaches that are either explicitly dis-

cussed in this section or implicit in the sources of this section can be categorized, ac-

cording to their source of information, into

(1) those that study phenomena in situ, or what people do (for instance, an ethno-

graphic observation of practices of computer science in a real setting, or ob-

servational field studies at locations that play a part in the innofusion of com-

puter systems—locations such as academic institutions, computer manufac-

turers, professional institutions, government offices, homes);

61 Kling, 1980; see also Wellman & Hiltz, 2004.

62 Agre, 1995

63 Woolgar, 2002. The rubric social studies of computing has also been used by, for instance, Dr. Ron Eglash from
Rensselaer Polytechnic Institute, Dr. Philip Brey from the University of Twente, and Dr. Anne Fitzpatrick from
Virginia Polytechnic Institute and State University.

64 Such as Viller & Sommerville, 1999; Crabtree et al., 2000; Hartswood et al., 2002; Suchman, 1987; Godin,
1997; Olazaran, 1996; MacKenzie, 1993; Bowker, 1993; Forsythe, 1993; Kidder, 1981.

390

(2) those that study reports of phenomena, or what people say (for instance, in-

terviews with people in the computing field or discourse analysis of debates

about computing); and

(3) those that study mute evidence like written texts and artifacts, the creators of

which are not alive or cannot be interviewed (for instance, studies of historic-

al records, old or new computational instruments, or statistics).

The boundaries of these three categories (research of reports, research in situ, and

research of mute evidence) are admittedly vague. However, it does not really matter

if all studies that can be considered to be social studies of computer science do not fit

well under any single category because these categories are not presented in order to

define social studies of computer science, but in order to present some practicable

conceptual categories for types of social studies of computer science. It is easy to

find studies that have aspects belonging to each of these three categories. Take soci-

ologist Manuel Castells' commended trilogy on the information society, for in-

stance65. Castells' research includes statistical and other data on social, technologic-

al, and economic developments in different parts of the world66. Drawing on that

data, Castells made a number of arguments about the information society, and his

analysis has been acknowledged by a large number of authors67.

Castells mainly does research on reports; he does research on the contemporary

commentaries and arguments of other philosophers, sociologists, policy-makers, and

so forth. It can be argued that Castells' research also has some characteristics of re-

search on mute evidence; because many artifacts and structures of information soci-

ety that Castells described date back a long time and their creators are dead or un-

known. Because Castells is an active and dynamic part of a number of cultures that

he describes, one could argue that Castells' research also has some characteristics of

research in situ. His research is not, however, explicitly based on in situ observa-

tions, and the research is not research in situ in the primary meaning of the term. It

is difficult, and perhaps not even desirable, for a researcher who studies a phe-

nomenon to remain a complete outsider to the phenomenon—yet being an insider to

a phenomenon does not render one's research in situ.

65 Castells, 1996; Castells, 1997; Castells, 1998

66 Saukko, 2005 in Denzin & Lincoln, 2005.

67 See Saukko, 2005 for references.

391

This thesis can be interpreted to be research on reports because much of this thesis,

especially Section 3.4, deals with near-contemporaneous commentaries about the

field. That is, the source material in this thesis consists largely of recent statements

about computer science, which were articulated by contemporary computer scient-

ists, which were addressed to other computer scientists, and the authors of which are

still alive. This thesis, especially Section 3.3, also has characteristics of studies of

mute evidence because some of the sources in this thesis are archive materials that do

not allow for interaction or commentary.

The Sociohistorical Context of Computer Science

No matter in what terms the shaping of computer science is presented, if computer

scientists wish to retrospectively understand the reasons why computer science and

computing have shaped as they have, the methods of those computer scientists must

include historical methods. This is because computer science and computing are al-

ways situated in some sociohistorical context. It should be noted that historians of-

ten use terms such as military historian or social historian to denote their theoretical

emphasis68—in a similar vein, historian of computer science is used in order to clari-

fy the specific focus of the historical inquiry.

A historical study of computer science needs to link aspects of computing with

changes of some kind69, be they social, cultural, algorithmic, technological, or con-

ceptual changes. If a researcher merely reports on some static aspects of computing

in the past without a discussion of why those aspects are as they are or how those as-

pects have become to be, the study might best be called archeology rather than his-

tory70.

One just cannot take historical accounts and use them as uncontested facts71. To un-

derstand historical documents or other historical information, the historian of com-

puter science must have a point of view; interpretation is not possible without a point

68 cf, e.g., Tuchman, 2004 in Lewis-Beck et al., 2004.

69 cf. Lemon, 2003:pp.294-295.

70 Computer archeology might be a fruitful idea; there are, in the spirit of Michel Foucault's The Archæology of
Knowledge (i.e., a method of historical analysis freed from the anthropological theme), studies in media arche-
ology, such as: Zielinski, Siegfried (2006) Deep Time of the Media. Toward an Archaeology of Hearing and See-
ing by Technical Means. MIT Press, Cambridge, MA, as well as Huhtamo, Erkki; Parikka, Jussi; Sihvonen,
Tanja (eds.) (forthcoming, 2007) Archæologies of Media.

71 Tuchman, 1994

392

of view72. (Perhaps surprisingly, Popper made the same point explicit in natural sci-

ences. He wrote that natural scientists cannot collect data without having a point of

view, “A science needs points of view, and theoretical problems”73.) Although the

ideal of history-writing in the early twentieth century was to be true to the scientific

method74, modern history is chiefly interpretive75.

Narrative as a form of history-writing is especially dependent on happenings76. For

instance, it is not very revealing about the history of programming languages to

write, “In the early 1950s machine language programming was popular and in the

early 1960s FORTRAN was a popular programming language”. A narrative becomes

meaningful only when it links happenings. For instance, the historian may expound

on why there was a shift from machine language programming to high-level pro-

gramming, who began the shift, what factors contributed to the shift, and how the

shift actually happened—the shift certainly did not happen overnight. An analytic

history of computer science should not only explicate, for instance, what is “a (stat-

istically) typical 1950s computer scientist” (e.g., a young male, in his 30s, with a

background of electrical engineering or mathematics), but also explain the reasons

why typical computer scientists of the 1950s shared those characteristics and how

those characteristics affected computer science qua knowledge77.

A historian of computer science has to be familiar with the main lines of his or her

topic, and from this familiarity arises the point of view according to which the re-

searcher chooses, reads, and analyzes the historical material78. Computer science

and electronic computing are old enough that a historical study of computer science

can include both (1) secondary sources, such as works of communications special-

ists, literary critics, or historians; reference guides; references of good monographs,

or citation indexes, as well as (2) primary sources, found in, for instance, archives,

statistics, censuses, letters, diaries, newspapers, or popular literature79. Whereas the

authors of primary sources are always eyewitnesses to the phenomena they report,

72 Tuchman, 1994

73 Popper, 1959:p.88.

74 Hofstadter, 1968; Gottschalk, 1950:pp.230-231.

75 Hofstadter, 1968

76 Lemon, 2003:pp.298-301.

77 See Lemon, 2003:pp.295-297 for analytical and descriptive histories. Note that this thesis clearly is not an ana-
lytical history of computer science.

78 Tuchman, 1994

79 Tuchman, 1994

393

the authors of secondary sources have not been first-hand witnesses of the phenom-

ena they write about80. Note that in historical studies the researcher is never expec-

ted to first gather the facts, and then arrive to a theory. In fact, any historical ques-

tion implies a theory, for without a theory, the researcher is haphazardly collecting a

conglomeration of shapeless facts81.

The importance of the historical research about computers has been acknowledged82,

and the history of computer science (or computing) as a research field is well-estab-

lished. The works on the history of computing include monographs as well as journ-

al articles. A prime example of a history of computer science journal is the IEEE

Annals of the History of Computing, which has been published quarterly since 1979.

The monographs include, for instance, general histories of computers83, topic-specif-

ic books84, works on the history of modern computers85, and works on the general

history of computation86. Many of these historical accounts offer sociohistorical in-

terpretations of the discipline of computing.

Historical research on computer science, such as the kind of research published in

the Annals, includes not only the analysis of texts, but also the analysis of other mute

evidence, such as devices, parts of devices, blueprints, diagrams, components, and

other material traces. The problem of interpretation of mute evidence is that there

may no longer be anybody alive to articulate the intentions behind the creation of the

material87. This problem of interpretation and credence is, however, not unique to

historical research. It has been argued that in all types of interactive research the

analyst has to decide whether or not to take commentary at face value and how to

evaluate spoken or unspoken responses88. In fact, social scientists have increasingly

used historical methods and historians have increasingly used social sciences' meth-

ods89.

80 Gottschalk, 1950:p.53.

81 Tuchman, 2004

82 See, e.g., Zhang & Howland, 2005; Lee, 1996; Lee, 1996b.

83 Campbell-Kelly & Aspray, 2004

84 Sammet, 1969

85 Flamm, 1988

86 Williams, 1985

87 Hodder, 1994

88 Hodder, 1994

89 Tuchman, 2004; Hofstadter, 1968 in Lipset & Hofstadter, 1968.

394

If there is no way to gather indigenous commentary, material artifacts pose special

problems for historians of computer science90. A similar problem is discussed earlier

in this thesis; it is noted that it is impossible to understand an unknown artifact with

certainty without knowing the intentions of the creators of the artifact (see p.131 of

this thesis). Historians have argued that there is no “original” or “true” meaning of

an artifact outside a specific sociohistorical context91. Von Neumann's First Draft of

a report on the EDVAC92 is an example of mute evidence that needs to be situated in

its sociohistorical context in order to be understood. It is difficult to capture von

Neumann's intentions, motivations, and meanings, and his metaphor transfer from

neuropsychology to computing technology (p.213 of this thesis) blurs even the tech-

nological parallels between von Neumann's draft and the language of today's com-

puter science. Artifacts are always produced under certain material conditions em-

bedded within social and ideological systems93, and the EDVAC plans were pro-

duced in an especially rare social, political, cultural, and economic situation.

A narrative history of computer science portrays a living computer science instead of

a gallery of snapshot images. Many “milestone” concepts and events in computer

science have in reality been far from discrete steps—the milestone concepts and

events have often been multifaceted issues, and they have formed as a result of con-

troversies, debates, and power struggles. Besides just representing important “les-

sons learned”, these dynamic controversies are important because everything that is

considered to belong to the core knowledge of computer science is traceable to a

number of controversies or discussions94. Looking backward to discover parallels

and analogies to modern technology can provide the basis for developing the stand-

ards by which the viability and potential for a current or proposed activity is

judged95.

Although this thesis does not fully fulfill the criteria of a historical study of com-

puter science, Section 3.3 of this thesis is based on an analysis of primary and sec-

ondary sources on the history of computing. Note, however, the lack of a historical

framework, which would have connected the narrative in Section 3.3 to history at

90 cf. Hodder, 1994

91 cf. Hodder, 1994; Hodder's argument is about texts.

92 Neumann, 1945

93 Hodder, 1994

94 Robert L. Glass argued for the importance of knowing the “milestones” in a manner similar to this (Glass, 2005).

95 Lee, 1996

395

large and which would have been necessary for a historical study. The interpretation

of the sources in Section 3.3 is not done with a historical framework, but with the

conceptual framework presented in Chapter Two. Whereas a postmodernist histori-

an might have read the source material as texts that purposively or inadvertently took

sides in some sort of struggles for power96, in this thesis the goal is much more mod-

est—to merely treat the source material as accounts that more or less capture the es-

sence of a specific phenomenon, at a specific time, at a specific place.

Ethnomethodology

Even if there were a methodology proper of computer science, that methodology

may not correspond to how computer scientists actually investigate computing, to

how they give structure and meaning to computing, or to how they sustain and man-

age that knowledge. That is, if there were rigorous, official set(s) of methods of

computer science, the practices of computer scientists still might not match those of-

ficial set(s) of methods. How people give structure and meaning to knowledge and

how they sustain and manage that knowledge are the focus of ethnomethodology97.

Similar to methodology, ethnomethodology is not a method in any straightforward

sense98; it is more of a study of specific actions, “people's methods”, which constitute

the social activities of a group of people99. An argument could be made about the re-

lationship between ethnomethodology and well-formulated systems of inquiry.

Namely, if there were a well-formulated and extensive methodology of computer

science, it could be argued that ethnomethodologists could not say much about com-

puter science. It could be argued that ethnomethodologists studying computer sci-

ence would find the same phenomena that had been written down already.

However, ethnomethodology has been successfully used in studies of how scientists

of different disciplines, including mathematics and natural sciences, create and main-

tain knowledge100. Although scientific methods can be highly technical, they are

96 Tuchman, 2004. See also Lemon, 2003:pp.370-389 for a philosophical account of the problems of postmodern-
ism in history-writing.

97 Holstein & Gubrium, 1994; Denzin and Lincoln, 1994:p.204; The term ethnomethodology originates from Har-
old Garfinkel's book Studies in Ethnomethodology (Garfinkel, 1967).

98 The term methodology is tricky: it can refer to (1) a set of principles and assumptions that underlie a set of meth-
ods; but also to (2) a study or theoretical analysis of such working methods (AHD, 2004). Unfortunately, both
meanings are necessary in this subsection. The plural methodologies refers to various sets of methods.

99 Lynch, 2004; Lynch, 1996

100Clayman, 2001

396

specialized instances of the much broader social phenomenon: Scientific methods

are instructions that enable members to reproduce a community's practices101. When

ethnomethodologists study natural sciences, they delve into the unexplicated, ob-

scure foundations and features of practices that are not mentioned in the formal

methodological prescriptions or reports102. It must be noted that ethnomethodology

is not a search for subjective meaning—ethnomethodological descriptions rarely

take the form of first-person experiential reflections103. More often, such descrip-

tions are written in the third person, without privileging a “private” or individual

vantage point104.

Even if there were a rigorous and well-formulated methodology of computer sci-

ence, the only case when ethnomethodologists could not say anything new about the

methods and practices of computer science is that case in which all the practices of

creating, maintaining, using, abusing, proving, refuting, negotiating, accommodat-

ing, appropriating, or contextualizing knowledge would already be explicit.

However, if there is no well-formulated, rigorous, and all-extensive methodology of

computer science; or even if there is a formal methodology of computer science that

is not always followed to the letter, ethnomethodology delivers an especially attract-

ive promise: That of explicating the actual ways of constructing and managing

knowledge in computer science. This could be called, for instance, the in situ meth-

odology of computer science or the tacit methodology of computer science.

In other words, ethnomethodological approaches in social studies of computer sci-

ence may benefit computer science (both as an activity and as a body of knowledge)

to the extent that they can expose how the philosophical, theoretical, conceptual, and

methodological frameworks of computer science are created, maintained, and man-

aged. For instance, ethnomethodological studies may be revealing about the man-

ners in which new innovations are conceptualized by groups of computer scientists

and other stakeholders; the processes through which conceptual consensus is

achieved; how epistemologically subjective results in computer science are commu-

nicated, confirmed, adopted, objectified, and institutionalized into epistemologically

objective facts; how knowledge is transmitted; how computer science qua know-

101Lynch, 2004

102Clayman, 2001; Lynch, 2004

103Lynch, 2004

104Lynch, 2004

397

ledge gives meaning to computer science qua activity and the results of computer

science; how computer science qua activity generates computer science qua know-

ledge; and how both intra-scientific and extra-scientific contradictions are dealt with.

The practical value of ethnomethodology has been recognized in software engineer-

ing, human-computer interaction, and other kinds of research on the relationship of

work and computers, and there is quite much ethnomethodological research in those

fields105. There are also reports on how epistemologically subjective proofs are cre-

ated and transformed into epistemologically objective facts in computer science106.

Such reports shed light on the very foundations of knowledge creation in the com-

puting disciplines. (Note that a nominalist or an anti-realist position to scientific

knowledge is not a sine qua non of social studies of science. Social studies of sci-

ence may well build on, for instance, Searlean ontology107.)

In addition to the aforementioned studies in which ethnomethodology has been used

to study the users of computational systems, there is also research on the methods

and practices used in computer science. There is research on, for instance, how rhet-

orics in discourse have influenced technological decisions108; how contingent social

elements affect the closure of scientific debates109; how some mathematical parts of

computer science are negotiated, rather than deduced110; what kinds of rhetorical

strategies have been used in arguing for the universality of computing technology111;

and how knowledge engineers' epistemological stances are reflected in artificial in-

telligence technology112.

105Viller & Sommerville, 1999; Crabtree et al., 2000; Clayman, 2001; Hartswood et al., 2002; Lucy A. Suchman
expresses her ethnomethodological viewpoint in her book Plans and Situated Actions (Suchman, 1987:pp.49-
50). The whole issue of European Journal of Information Systems 13(3) (Sept. 2004) was dedicated to interpret-
ive approaches to information systems and computing, e.g., ethnography, ethnomethodology, phenomenology,
“technomethodology”, and hermeneutics.

106See Richard De Millo et al.'s theoretical review Social Processes and Proofs of Theorems and Programs (De
Millo et al., 1979).

107See Bloor, 1996. For Searle's ontology see Searle, 1996:p.7.

108Godin, 1997, examines the rhetorics surrounding the innofusion of a health technology.

109Olazaran, 1996, examines how Minsky's and Papert's proofs and arguments were interpreted as showing that
neural nets were not a fruitful approach to artificial intelligence.

110MacKenzie, 1993, examines how the IEEE standard for floating-point arithmetic arose as a result of negotiation.

111Bowker, 1993, explains the arguments that the practitioners of cybernetics used to varying degrees to argue that
they were producing a new, universal science.

112Forsythe, 1993, draws on ethnographic material about knowledge engineers' work, shows that building a know-
ledge-based system necessarily involves interpretation and selection, and suggests that knowledge engineers
should be trained in qualitative social science.

398

The knowledge construction processes in computer science have been mostly ex-

amined using analytical methods113. Ethnomethodological research at large is often

ethnographic and pays especially close attention to the interactional, discursive as-

pects of the study setting114. For instance, whereas in traditional ethnographic re-

search on computer science one might assume that the language of computer science

is a neutral conduit for description, in ethnomethodologically oriented research on

computer science, descriptions, accounts, or reports should be treated not merely as

being about some social world as much as being constitutive of that world115.

Ethnomethodological investigations can be conducted with a variety of methods. If

the organization of social interaction is the focus of an ethnomethodological invest-

igation, ethnomethodology is often coupled with conversation analysis116. Ethno-

methodological studies usually require extensive participant observation in special-

ized work settings117. Ethnomethodological studies include both methodological in-

vestigations (systematic reflections about the methods and efforts to design methods)

as well as methodic practices (in the sense of practices performed in accordance with

some methodological design)118.

In summary: although it cannot be said that there is an ethnomethodological tradition

in the field of computer science, ethnomethodology is not unknown to computer sci-

entists, either. In the computer science literature there are studies in which ethno-

methodology has been explicitly utilized as well as studies that can be characterized

as ethnomethodology. The majority of the ethnomethodological studies in computer

science literature report on the users of information technologies and are aimed at in-

forming, for instance, system designers, interface experts, and software engineers.

Also present are ethnomethodological investigations in which the practices and be-

haviors of computer scientists are studied, yet those studies are more commonly

aimed at informing sociologists than they are aimed at informing computer scient-

ists. As far as understanding how computer science actually works and how com-

puter scientists actually work can benefit computer science, ethnomethodological re-

search on computer scientists' work can inform computer science.

113De Millo et al., 1979; Crabtree, 2004; Hartswood et al., 2002

114Holstein & Gubrium, 1994

115Holstein & Gubrium, 1994

116Holstein & Gubrium, 1994; Lynch, 2004

117Lynch, 2004

118Lynch, 2004

399

Ethnographic Methods

Although ethnographic methods can be used in social studies of computer science to

gather knowledge about the social world of computer science (in, e.g., ethnomethod-

ological research), they can also be utilized to benefit computer science qua know-

ledge. In this subsection I discuss what ethnographic methods can bring to computer

science and in what kinds of studies of computer science ethnographic methods are

already being used.

I noted earlier in this thesis that systems engineering was developed as a response to

the problems that arose when the complexity of systems became too great for one

person to cope with. Even though systems engineering can be considered to be a re-

sponse to a problem in management rather than a response to a problem in computer

science, software engineering was developed specifically to sort out the software

crisis. Software engineering focuses on problems unique to computer science.

The complexity of new projects and systems necessitates broad approaches to under-

standing system development. Suppose that one wants to explain the ontological,

epistemological, methodological, or material assumptions, decisions, foci, or com-

promises that system design may incorporate. It is not enough to study individual

actors and their surroundings because systems are no longer designed or managed by

individuals; studying groups is necessary. That is, when explicating the design de-

cisions behind a complex system, collective or multiple perspectives need to be ac-

counted for. Ethnographic methods offer researchers of computer science a unique

way of understanding the processes and dynamics behind, for instance, computer ar-

chitecture design. Instead of historical studies, which are conducted in retrospect,

ethnographic methods are studies of the present—studies of computer science in the

making.

It must be noted that the term ethnography has been used in a large variety of mean-

ings. One characterization of that ethnography is the “art and science of describing

a group or culture”119. The data of ethnography are derived from the direct observa-

tion of behavior in particular groups120. As a verb, doing ethnography merely means

119Fetterman, 2004. Note that the original meaning of ethnography is the book-length record of anthropologist's
observations and analysis about his or her involvement in a community (Agar, 2001).

120cf. Conklin,1968 in Sills, 1968.

400

the collection of data that describe (some parts) of a culture121. Michael H. Agar

noted that roughly speaking, a researcher using the scientific method seeks universal

laws, emphasizes control of the research process, preserves the initial assumptions

throughout the study, relies on linear models, and represents data with numbers122.

Agar continued that by contrast, again roughly speaking, a researcher using ethno-

graphy seeks local particulars, emphasizes adaptability in the course of study, devel-

ops new concepts over the course of the study, relies on systemic and processual

models, and represents data more often with words than with numbers123. The prom-

ise of ethnography in social studies of computer science lies in the extent to which

ethnography succeeds in eliciting the perspectives and realities of computer scient-

ists124. That is, the promise lies in the extent to which ethnography can explain how

the activities of computer scientists create the body of knowledge of computer sci-

ence.

It is a common misunderstanding that all ethnography is qualitative research, and

this misunderstanding probably arises from rough characterizations of ethnography,

such as the ones above. There are a variety of ethnographic methods, but usually

they share the same features: (1) exploring phenomena rather than testing hypo-

theses; (2) emphasizing unstructured data instead of analytic categories; (3) focusing

on cases in detail instead of large populations, and (4) explicitly interpreting the

meanings and functions of human actions125. However, even those ethnographic

methods that rely on unstructured data instead of static categories or rely on a her-

meneutic approach cannot avoid the inscription error that is involved in all human

inquiry126. Because ethnographers cannot report all of their sense experiences, they

have to make choices about aspects of the phenomena to report, and thus, in these re-

ports an inscription error is inevitable.

Traditional ethnographic methods usually incorporate participant observation, in

which the ethnographers are expected to live in some specific society or with some

specific group for an extended period of time (it has been argued that the ideal is

about 2 years), actively participate in the daily life of its members, and carefully ob-

121See, e.g., Bernard, 1995:p.16; Agar, 2001 in Smelser & Baltes, 2001; Conklin,1968.

122Agar, 2001

123Agar, 2001

124Fetterman, 2004 argued that this the aim of ethnographers is to elicit the insider's or emic perspective or reality.

125Atkinson & Hammersley, 1994

126See Smith, 1998:pp.50-52 for inscription error.

401

serve all aspects of their life as a way of obtaining material for their study127. Ethno-

graphic methods in social studies of computer science may reveal some aspects in

the practices of computer scientists that have direct consequences on computer sci-

ence qua knowledge. Lately ethnographers have begun to engage critically with

their own participation within the (auto)ethnographic frame128, which marks a shift

from participant observation to the observation of participation129.

Tracy Kidder's The Soul of a New Machine130 is an example of an ethnographic-type

participant observation in the field of computing. Kidder observed a group of engin-

eers at Data General from 1978 to 1980—the whole period of a design, implementa-

tion, testing, and release of a new 32-bit minicomputer (which became the Data Gen-

eral Eclipse MV/8000). In his book, Kidder described the company work environ-

ment and the machine, concentrating on not only technological decisions, but also on

things such as the engineers' emotions, the birth of innovations, bottom-up manage-

ment, the dedication and motivations of the engineers, the pressures caused by tight

schedules, disappointments, and engineering artistry. Kidder discussed how archi-

tectural design is actually done, the challenge of designing a new 32-bit architecture

while maintaining downward compatibility to legacy architecture, decisions con-

cerning microcode, instruction set, registers, diagnostics, input/output, types of com-

ponents used, and so forth. A competent computer scientist can get acquainted with

the architecture of Data General Eclipse MV/8000 computer by studying its blue-

prints and specifications. Kidder's book offers some viewpoints on why the architec-

ture is what it is.

Ethnographic methods aim at describing and interpreting social phenomena such as

ways of working, group relationships, communication, metaphors, and tropes131.

Ethnography (as well as participant observation) is a uniquely humanistic, interpret-

ive approach132. Perhaps because of this uniqueness, ethnographic methods are

sometimes contested, even in qualitative research133. Be that as it may, since ethno-

graphic methods emphasize understanding phenomena in their rich sociohistorical

127Tedlock, 2005; Atkinson & Hammersley, 1994; Bernard, 1995:p.78.

128Tedlock, 2005

129Denzin & Lincoln, 2005:p.380.

130Kidder, 1981

131Atkinson & Hammersley, 1994

132Atkinson & Hammersley, 1994

133Denzin and Lincoln, 1994:p.203.

402

contexts, ethnographic methods can be utilized in order to examine, for instance, pat-

terns of production of scientific results, innovation, and standards in computer sci-

ence; it can be utilized to study mechanisms of technological production, design, ad-

option, rejection, diffusion, non-diffusion; and so forth. In fact, scientists today have

a unique opportunity to examine and document the early formation of the discipline

—modern computer science is no older than 60 years, and some authors have argued

that many parts of computer science, such as information systems and software en-

gineering, are, in Kuhn's terms, still at the pre-paradigm stage of scientific develop-

ment134.

Focus on Cases

Many studies in computer science aim at generalizability; computer scientists often

generalize to the populations from which their data are sampled. That is, computer

scientists often argue that their results are applicable to all similar data. In research

where generalizations are made, the significance of single cases is often downplayed.

In those studies in social studies of computer science that aim at contributing to com-

puter science qua knowledge by explaining how and why computer science has

taken its current form, single cases are important. Single cases, such as Donald

McKenzie's case of the negotiation of floating-point arithmetic135, are important be-

cause they can offer information about the hows and whys of technoscience (yet

single cases can also contribute to generic theories about technoscience).

The term case study can be understood as a method, but here it is understood as the

focus of a specific study. When case study is understood as an indicator of the focus

of the study, case studies can be quantitative or qualitative, although many studies

that are labeled as case studies are qualitative136. The driving question behind case

studies is, “What can be learned from the single case?”137. However, it is typical of

case studies that the researcher is ultimately interested in a process, or in a popula-

tion of cases138.

Of the different varieties of the case study, instrumental and collective case studies

are beneficial for social studies of computer science. Instrumental case studies are

134Wernick & Hall, 2004

135MacKenzie, 1993

136Stake, 1994

137Stake, 1994

138Denzin and Lincoln, 1994:p.203; Denzin & Lincoln, 2005:p.380.

403

conducted because the researcher believes that a particular case may provide insight

into an issue, theory, concept, technology, or such139. Collective case studies are in-

strumental case studies extended to a several cases140.

Many philosophers of science use instrumental, historical case studies in their argu-

mentation. For instance, Kuhn's The Structure of Scientific Revolutions goes into the

particular details of the histories of oxygen, X-rays, and the Copernican revolution;

Lakatos' book Proofs and Refutations focuses on the development of a single for-

mula (Euler's formula), and Feyerabend's Against Method details Galileo Galilei's

work141. These philosophers of science engaged in analytical discourse about what

their cases reveal about science. In the Section 3.3 of this thesis I discuss a number

of cases that I take to be particularly revealing about the development of the discip-

line of computing.

The book Funding a Revolution: Government Support for Computing Research142 in-

cludes five case studies in computer science: relational databases, the Internet and

the World Wide Web, theoretical computer science, artificial intelligence, and virtu-

al reality. These five case studies take the form of a historical narrative. Although

the book is a report of a study that aimed at understanding some economic questions

about computing and communications, the five case studies also reveal much about

the development of technologies. The authors rationalized their choice of a historic-

al narrative by arguing that a historical narrative allows analogies to be drawn

between events that occurred decades apart and that a historical narrative can accom-

modate complexity more easily than can a tightly-structured analytical essay. The

authors also wrote that the case studies in the report “present finely nuanced ac-

counts that convey the ambiguities and contradictions common to real-life experi-

ences”143.

Evaluation of Studies of Social Reality

The crux of qualitative research is not numbers and proofs. Unlike the subjects of

mathematics and logic, the subjects of disciplines such as sociology, history, anthro-

pology, and philosophy are often not well-structured, logical, coherent, or well-

139cf. Stake, 1994

140Stake, 1994

141Kuhn, 1996 (orig. 1962); Lakatos, 1976; Feyerabend, 1993 (orig. 1975).

142NSR Computer Science and Telecommunications Board, 1999; chaired by Thomas Hughes.

143NSR Computer Science and Telecommunications Board, 1999:p.3.

404

defined. The concept of culture, for instance, is troublesome—some anthropologists

have even argued that because of the vagueness of that concept, it should be dis-

carded144. Hypotheses about “the laws of social reality” are rare, although computer

scientists have presented discrete models to describe, for instance, culture and soci-

ety145. As long as there is no axiomatic system of social reality, it is not possible to

prove hypotheses about social reality correct. Of course, researchers can (and do)

make models of aspects of social reality, and these models may be quite accurate in

predicting social events, yet nothing in the success of a model proves the model cor-

rect (although its success may prove it very useful).

For an example of the difficulties of evaluating social sciences—difficulties that

mathematical disciplines do not have—take Manuel Castells' research on the inform-

ation society146. Although Castells' trilogy has been widely lauded, it has also been

criticized. It has been argued that there is a certain blind spot, typical of realism, in

Castells' work147. Namely, Paula Saukko noted that many realists believe that an

analysis of, for example, statistics, can reveal how the world “really” is to the re-

searcher148. She wrote that realists do not generally acknowledge that the categories

they use for excavating the “truth” out of the data can be biased by politics, culture,

organizations, or such. Quite the contrary, even statistical analysis has been argued

to be anything but an objective tool; for instance, national traditions and preferences

in statistical research affect statistical surveys149.

If one were to agree that changes in technology follow from choices that mirror the

social relations of innofusion, it would be an error to assume that having exposed the

choices and their motifs, one could simply deduce the rest of reality from them150.

Researchers who assume that by unearthing the social, cultural, economic, institu-

tional, personal, and other human variables they can converge on the “true” state of

affairs commit the inscription error151.

144For discussion see Abu-Lughod, 1991 in Fox, 1991; Brumann, 1999.

145Gabora, 1995; Brent et al., 2000. Also Harold Kincaid argued that there are indeed laws in social sciences (Kin-
caid, 2004).

146Castells, 1996; Castells, 1997; Castells, 1998

147Saukko, 2005

148Saukko, 2005

149Desrosières, 1996 in Hantrais & Mangen, 1996.

150Noble, 1999

151Smith, 1998:pp.50-53.

405

Inscription error, in this context, refers to the phenomenon where a researcher first

creates a model or a tool, such as a classification system or conceptual framework,

and then reads results gathered with this model or tool as if the results were inde-

pendent empirical discoveries. Models and tools such as classification systems, con-

ceptual frameworks, data structures, or computational models are influenced by the

researcher's existing knowledge about the domain, as well as by the epistemological

and methodological commitments of the researcher. In the field of statistics, differ-

ences in classification systems and their changes over time are actually seen today as

phenomena that deserve to be examined in their own right152.

Measures of Research

There are a variety of measures of research quality in the humanities and social sci-

ences, and it has been argued that there is a particularly marked lack of agreement in

academia about the appropriate basis for “confirmation procedures” in research153. I

present here a number of measures of research quality that might be less known than

validity and reliability, yet which should be considered in social studies of computer

science. The concepts presented here are controversial, and the aim of this discus-

sion is not to participate in the debate about qualitative research criteria but to intro-

duce alternative criteria of research to the readers whose background is in quantitat-

ive research.

Ian Hodder argued that the “twin struts of confirmation” are coherence and corres-

pondence154. (Confirmation here does not refer to a proof, but to increasing the cred-

ibility of an argument.) Internal coherence is the degree to which the parts of an ar-

gument do not contradict each other and to which the conclusions follow from the

premises155. Internal coherence is to some extent, a subjective measure, because

what is considered to be a sound argument may differ between disciplines and

between individuals. That is, what is considered to be a sound argument in the field

of logic may differ from what is considered to be a sound argument in anthropology.

Ultimately, the audience interprets and judges every argument in interpretive re-

search.

152Desrosières, 1996

153See Hodder, 1994.

154Hodder, 1994

155Hodder, 1994

406

External coherence refers to the degree to which the interpretation of material fits

theories, models, or interpretations accepted within and outside the discipline156. As

there is no grand theory of everything (yet)157 (nor a grand theory of social reality),

only very trivial arguments can be externally fully coherent. Note the difference to

mathematics: It is common that in mathematics either the conclusions follow from

the premises or they do not—there is no “degree of coherence”. (However, it has

been argued that the quality of a mathematical proof is also a subjective measure

rather than an objective, external, or universal measure158.)

Correspondence between data and theory is an essential part of a coherent argument.

The notion of correspondence between theory and data does not imply the absolute

objectivity and independence of theory and data, but it rather embeds the fit of data

and theory within coherence159. The data are made to cohere by being linked within

theoretical arguments160. Similarly, the coherence of the arguments is supported by

the fit to data. The more robust fit there is between data and theory, the better cor-

respondence they can be said to have.

The concepts of correspondence and coherence are portrayed in Figure 30. Corres-

pondence expresses how well sets of data cohere within the selected theoretical

156Hodder, 1994

157It has been argued that authors such as Stephen Wolfram (Wolfram, 2002) and Andrew Pickering (Pickering,
1995) have both, in their own ways, aimed at a “Theory of Everything” (Gingras, 1997; see also the popular art-
icle in The Economist, May 30th 2002, US edition, pp.79-80: “The Emperor's New Theory”.)

158Lakatos, 1976; De Millo et al., 1979

159Hodder, 1994

160Hodder, 1994

407

Figure 30: Correspondence and Coherence in Research

framework in the study, internal coherence expresses how well arguments and con-

clusions follow from the data and theory, and external coherence expresses how well

the conclusions and arguments resonate with other pieces of research and theory.

In addition to the traditional measures of validity; such as instrument validity, face

validity, data validity, and criterion validity161; there are a variety of less frequent

measures of validity that should be considered in social studies of computer science,

such as those mentioned by Paula Saukko: contextual validity, dialogic validity, and

self-reflexive validity162. According to Saukko, contextual validity refers to the thor-

oughness and defensibility of the analyses of social, historical, political, or economic

processes and structures. She continued that dialogic validity refers to the extent to

which research is able to expose tacit, experienced, emotional, and embodied know-

ledge and understanding163. Saukko wrote that self-reflexive validity is based on the

critical reflection of how social discourses shape or mediate people's self-experi-

ences and the experiences of their environment. She noted that self-reflexivity refers

to the extent to which the researcher is aware of the discourses that guide the re-

search analysis itself.

Although contextual, dialogic, and self-reflexive validity are subjective measures, it

must not be forgotten that validity is never an objective measure164. H. Russell Bern-

ard wrote that ultimately, the validity of a concept depends on two things: the utility

of the device that measures it, and the collective judgment of the scientific com-

munity165. Even the validity of physical concepts, such as force, is ultimately sub-

jective. One can hit golf balls with different velocities to demonstrate the concept of

force. It appears that the concept of force is quite valid—the concept can be utilized

to predict the acceleration and the trajectory of the golf balls quite accurately. It ap-

pears that the concept is reliable, too—the concept of force can be utilized in a large

number of different tests, and few or no anomalies are encountered in those tests.

The scientific community has a high degree of agreement that the concept of force

portrays and predicts changes of momentum well. However, much in a Popperian

manner, it cannot be said that the validity of the concept of force as a cause of accel-

161Bernard, 1995:pp.38-42.

162Saukko, 2005

163Saukko, 2005

164Bernard, 1995:p.43.

165Bernard, 1995:p.43.

408

eration has been proven à la mathematics—beyond any doubt—but only that it has

withstood a rich variety of tests without contradicting results, and that therefore, the

concept of force as a cause of acceleration is valid to very high degree.

Ian Hodder166 attributed three other criteria to the success of research: fruitfulness

(how many new directions, new lines of inquiry, new perspectives are opened up),

reproducibility (the extent to which other people, perhaps with different perspect-

ives, come to the same results), and intersubjective agreement (on a science that bal-

ances between a number of disciplines, the adequacy of the results to these discip-

lines).

Research that attacks an obstacle that hinders progress in a number of topics167 often

turns out to be especially fruitful. That is, there are certain obstacles that, after they

are overcome, allow a number of topics to be pursued. There is a large number of

examples of especially fruitful research projects in computer science that have

solved some sorts of reverse salients and that have, consequentially, opened new top-

ics. Take, for instance, the stored-program concept in the 1940s, compilers in the

1950s, packet-switching networks in the 1960s, public-key cryptography in the

1970s, the graphical interface in the 1980s, the world wide web at the turn of the

1990s, and decentralized file-sharing in the 2000s. There are proofs of concept in,

for instance, DNA computing and quantum computing, and a practicable implement-

ation of either one would yield new opportunities. Research on DNA computing and

quantum computing may or may not turn out to be very fruitful—but taking into ac-

count the history of computing it is also likely that new research openings come

from surprising directions.

I have now discussed a number of research aspects that might turn out to be useful in

social studies of computer science, yet that do not necessarily belong to the tradition-

al computer scientists' toolbox. These aspects of research are an example of the new

viewpoints that a humanities and social sciences-based approaches can bring (and

have brought) into understanding computer science and computing. Of course no

two studies are the same, and the utilized research aspects follow from the research

questions in each study, the pragmatic and theoretical interests in each study, and the

166Hodder, 1994

167Obstacles that hinder progress in a number of topics have been called “reverse salients” (MacKenzie and Wajc-
man, 1999 :pp.11-12).

409

theoretical and conceptual frameworks in each study. The modern computer scient-

ist-as-a-bricoleur ought to be cognizant of different research approaches; the com-

puter scientist working with social studies of computer science needs a full toolbox

and the knowledge of how to use those tools appropriately.

410

4.3.What Makes a Study Computer Science?

In spite of the numerical analysts' claims for the fundamental importance

of [mathematics], a surprising amount of computer science activity

requires comparatively little of it.168

Even if one acknowledged that under-

standing computer science qua know-

ledge requires understanding its history

and its sociocultural surroundings, and

even if one agreed that social studies of

computer science is a valid topic, one

could argue that research in social stud-

ies of computer science belongs to the

domains of, say, sociology, history, anthropology, and philosophy. In this section I

consider different ways to interpret the home field of interdisciplinary studies. I ana-

lyze four ways to formulate a statement about the relationship between a main dis-

cipline and an auxiliary discipline: (1) the auxiliary discipline remains independent

of the main discipline; (2) the auxiliary discipline is subsumed by the main discip-

line; (3) the auxiliary discipline subsumes the main discipline; and (4) the auxiliary

discipline and the main discipline create a new, independent discipline. I refer to

these as statements 1-4. I also expound on my argument why social studies of com-

puter science belongs to the field of computer science.

What Is the Relationship Between a Science And Its Tool?

In this section, by discipline I refer to an established branch of knowledge that is sig-

nificantly different from other branches of knowledge and that has a clearly defined

subject area, such as sociology, philosophy, physics, mathematics, or anthropology.

In this section, by field of study or field I refer to a branch of knowledge that is more

specific than a discipline, but which also has its own defining characteristics. Dis-

ciplines usually incorporate a number of fields of study; for instance, endocrinology,

microbiology, and physiology are all fields of the discipline of biology. In this sec-

tion, by research topic I refer to a specific topic within a field of study; for instance,

logic programming is a topic of the field of programming, which belongs to the dis-

168Hamming, 1969

411

IN THIS SECTION:

� What is the relationship between science and

auxiliary science?

� What kinds of research can be considered to

be computer science?

� What kinds of methodological and epistemo-

logical commitments must computer science

make?

cipline of computer science. It has to be noted that many boundaries between discip-

lines, fields, and topics are somewhat arbitrary and blurry, and therefore the terms

rely, to some degree, on intuition.

By main discipline I refer to the discipline that traditionally has been connected with

a specific subject. For instance, the main discipline that studies quarks is physics,

the main discipline that studies human interactions is sociology, and the main discip-

line that studies automatic computation is computer science. By auxiliary discipline

I refer to the discipline that provides additional tools for research in a main discip-

line. For instance, physics and social sciences can use tools provided by computer

science, and computer science can use tools provided by mathematics or social sci-

ences. Note that auxiliary discipline does not mean that the discipline would not be

worthy of academic studies per se, but that its tools and theories are used in other

disciplines too. Mathematics, for instance, is an auxiliary discipline for many other

fields.

I use computational sciences as an example for my argument. There is a field called

computational physics. In computational physics, computers are used to numerically

model and simulate physical processes169. Without computers, computational phys-

ics would not exist, but computational physics is still a field of physics, not a field of

computer science. Surely, some computer scientists also refine the tools of computer

science so that they are better suited for computational physics, but computational

physics is still a field of physics.

Of the four statements presented above (see p.411 of this thesis), neither Statement 2

(i.e., the auxiliary discipline is subsumed by the main discipline) nor Statement 3

(i.e., the auxiliary discipline subsumes the main discipline) are all-extensive descrip-

tions of the current practice, or desirable normative accounts of practice. Statement

2 is not a correct descriptive account because although computer science uses math-

ematics as a tool, mathematics is not considered to be a part of computer science.

Statement 3 is not a correct descriptive account because although physics uses com-

puter science as a tool, physics is not considered to be a part of computer science. If

statements 2 and 3 are taken as normative accounts of science, then borrowing tools

between disciplines would result in merging disciplines. Statements 2 and 3 are de-

169Denning, 1991

412

sirable normative accounts only if one wishes there to be a small number of extens-

ive ur-disciplines that do not share anything with other ur-disciplines.

Statement 4 (i.e., the auxiliary discipline and the main discipline create a new, inde-

pendent discipline) is a valid descriptive account to some extent. The contact points

of two disciplines often bring about new research topics or fields, such as computa-

tional geography, mathematical sociology, and physical chemistry. However, it

seems that usually those contact points indeed bring about research topics or fields,

but not disciplines. (Note, however, that also computer science was born from a

number of fields, and it is now argued to have a disciplinary identity.) Statement 4

is controversial as a normative account because if borrowing tools from other discip-

lines would breed new disciplines, the number of disciplines would grow to be

enormous.

Statement 1 (i.e., the auxiliary discipline remains independent of the main discipline)

is not an all-extensive descriptive account or a flawless normative account either, but

Statement 1 seems to describe the current interplay of disciplines well. Following

Statement 1 would keep the boundaries and relationships of different kinds of sci-

entific inquiry relatively stable. Given that one does not want scientific inquiry to

collapse into a small number of ur-disciplines or want scientific inquiry to disperse

into a very large number of microdisciplines, Statement 1 seems to also be a good

normative account.

Table 3 presents my interpretation of the relationship between auxiliary and main

disciplines when an auxiliary discipline is considered to be independent of a main

discipline (statement 1). The rows in Table 3 represent fields or research topics.

The first column specifies the research subject in each field, the second column spe-

cifies who defines the foci of the field, the third column specifies who provides tools

for research in the field, the fourth column specifies who explains the results in the

field, and the fifth column specifies which discipline benefits from the research.

The field of computational physics (quantum mechanics) is presented on the first

data row. In this branch of computational physics, the foci of the research on quarks

is defined by physicists, not computer scientists. Computer science provides the

tools for studying quarks, but the results are explained by physicists, not computer

413

scientists. Physics benefits the most from computational physics, but the collabora-

tion may also benefit computer science.

Table 3: Examples of Auxiliary and Main Disciplines

Subject Who defines foci Who provides tools Who explains results Beneficiary

Quarks Physicists Computer scientists Physicists Physics

Culture Anthropologists Computer scientists Anthropologists Anthropology

Complexity Computer scientists Mathematicians Computer scientists Computer science

Programs Computer scientists Anthropologists Computer scientists Computer science

Similarly, on the second data row, when anthropologists conduct a cultural domain

analysis with a computer, the subject is culture, and the foci are defined by anthropo-

logists. Although computer science provides the tools for anthropologists, such as

the ANTHROPAC program, the results are explained by anthropologists, and anthropo-

logy qua knowledge benefits the most.

On the third data row of Table 3, when computer scientists study, for instance, com-

putational complexity, the foci are defined by computer scientists. Although com-

puter scientists use the tools borrowed from mathematics, computer scientists ex-

plain the results and computer science qua knowledge is the main beneficiary of the

collaboration.

In the same manner, on the fourth data row, when computer scientists study pro-

grams, the foci are defined by computer scientists. Although computer scientists can

use tools borrowed from anthropology, computer scientists explain the results and

are the main beneficiaries of the collaboration170.

Note that there is research which contributes to theories of computer science and re-

search which contributes to theories about computer science (theories about theories

can be called meta-theories, yet meta-theories are not the kind of research I mean

here). The research which contributes to theories of computer science consists of,

for example, studies which describe, analyze, revise, or refute the subjects of com-

puter science (e.g., algorithms, interfaces, or architectures). The research which con-

tributes to theories about computer science consists of, for example, studies which

170For instance, the studies on programming cultures by Rajlich et al. might have benefited from anthropological
methods (see Rajlich et al., 2001; Wilde et al., 2001). Studies in computer science that have benefited from an-
thropological methods include, for instance, Lucy A. Suchman's research (Suchman, 1987).

414

describe how computer scientists work and studies which describe how computer

scientists should work if they want their science to flourish.

To Which Field Does Social Studies of Computer Science Belong?

It would not be especially unorthodox to argue that If research aims at honing theor-

ies, practices, models, philosophy, or other aspects of computing, then the research

is computer science. The crux of this argument is that it does not commit research to

any methodology, conceptual framework, or theoretical framework. It represents an

epistemological anarchist view, which is arguably a characteristic of computer sci-

ence already: It does not matter what methods and standpoints a computer scientist

uses for studying computer science as long as the research is aimed at the benefit of

computer science. If the aim of the research is to benefit mainly some other discip-

line, then the research may be classified as belonging to some other discipline, not

computer science. Granted, there is a number of difficulties with this argument. For

instance, it is often difficult to say what kinds of research benefit a discipline; often

the short-term beneficiary of a study is different from the long-term beneficiary of

that study and often fruitful research has multiple direct or indirect beneficiaries.

This debate drifts back to the philosophy of science, and I must concede that there is

no criteria according to which one can tell with certainty if a research benefits

mainly computer science or some other discipline. Ultimately, the scientific com-

munity always decides what is computer science and what is not.

Some might consider it unorthodox to argue that it would be irresponsible to deny

any (ethical) methodology at any point of time because people do not know which

methodologies may reveal unexpected features of computing. Certainly, sometimes,

in some settings, some methodologies are more productive than others, but I argue

that there is no single methodology that is more productive than all the others, at all

settings, at all times171. (And I would not dare to say that a certain methodology

would not be useful in any setting ever.) I do not go to the extent of saying that soci-

ety should support all kinds of methodologies in all settings—I am sure that some

methodologies are ineffective in some settings, and I am sure that the cost-benefit ra-

171It can be debated if the systematic refusal of methodology can be considered to be methodology itself. Regard-
less, it seems implausible that the systematic refusal of methodology would be beneficial at all settings, at all
times.

415

tios of some methodologies in some settings can be poor. But the cost-effectiveness

of methodologies in general is not within the scope of this thesis.

The aim of social studies of computer science is to enhance or enrich the understand-

ing of computer science qua knowledge by using the methodological toolboxes of,

for instance, sociology, history, anthropology, and philosophy. Social studies of

computer science can also aim at refining the tools of computer science, computer

science qua activity. Social studies of computer science aims to benefit the discip-

line of computing, offers new viewpoints to computing, and enlarges knowledge on

computing. Social studies of computer science does not aim at refining the under-

standing or tools of, say, sociology, history, anthropology, or philosophy, but utilize

their tools of investigation. The methodologies of sociology, history, anthropology,

and philosophy are added to the toolbox of computer science in order to have a bet-

ter repertoire of conceptual, theoretical, and methodological frameworks for under-

standing computer science.

Note that if researchers study, for instance, the subculture of software engineers, the

mental models of programmers, the communication patterns of HCI specialists, or

the metaphysical assumptions of theoretical computer scientists, and if their research

is intended to add to the theories, models, concepts, or such of social sciences, then

the research belongs to the field of social sciences and not to computer science.

However, if researchers study programmers' cultures, and if their research is inten-

ded to benefit computer science, then the research belongs to computer science. An

example of the latter is Václav Rajlich et al.'s study, which shows that effective com-

prehension of software requires viewing legacy programs not simply as products of

inefficiency and stupidity, but as artifacts of the circumstances in which they were

developed172.

The theoretical soundness of arguments about which kinds of studies belong to com-

puter science is one bone of contention—it is another controversy whether social

studies of computer science can ever actually offer any new viewpoints on computer

science. Based on Section 4.2, I take it that there is already a body of research that

can be taken as social studies of computer science and that has contributed to com-

172Rajlich et al., 2001

416

puter science qua knowledge. The status of such studies as a legitimate branch of

computer science has not been established, though.

I argued in Section 3.4 that in the debates about the essence of computer science

there have been internally expansive motifs—that is, arguments for an extension of

computer science to include topics that have not been previously considered to be a

part of the discipline (see p.366 in this thesis). I also argued that those motifs come

in two forms: descriptive and normative.

The descriptive, expansive arguments are similar to my argument that (1) computer

science is already being studied successfully from the perspectives of sociology, his-

tory, anthropology, and philosophy, and (2) that social studies of computer science

should be considered to be a part of the discipline because it is already an implicit

part of the discipline. The normative, expansive arguments are similar to my argu-

ment that (1) restricting scientific inquiry in any way is detrimental to science (al-

though scientists still must operate ethically) and, (2) therefore, researchers cannot

exclude any tools of inquiry. That is, sociological, historical, anthropological, philo-

sophical, and all other kinds of research that are aimed at benefiting computer sci-

ence should be a part of computer science (however computer science is defined).

417

4.4.Discussion

We need a hermeneutic computer science.173

I have now presented an argument

about the opportunistic or anarchistic

nature of computer science, suggested

some complementary approaches to sci-

entific inquiry in computer science, and

rationalized the interdisciplinary and

disciplinary connections of social stud-

ies of computer science. In this section

I analyze the making of normative and

descriptive statements about computer

science, present a characterization of

computer science in the mangle174, argue that many aspects of computer science that

arise from the mangling character of computer science can be captured with social

studies of computer science, and propose an addition to the ACM Computing Classi-

fication System: K.9 (Social Studies of Computer Science).

In terms of normative and descriptive accounts of computer science, there are two

basic questions that need to be asked and there are two basic subjects of those ques-

tions. The questions are the normative and descriptive questions: “Is it desirable to

have x?” and “Is it possible to have x?”175. In the same context, the subjects x of

those two questions can be “normative accounts of computer science” or “descript-

ive accounts of computer science”. From these premises one can derive four ques-

tions. In the following two subsections I ask two of those four questions—those that

are relevant to this thesis. I ask if it is desirable to have a single normative account

of computer science, and I ask if it is possible to have a single descriptive account of

computer science.

173West, 1997

174Andrew Pickering's term (Pickering, 1995).

175In Consolations for the Specialist (Feyerabend, 1970) Feyerabend raised two questions about the Popperian doc-
trine; he asked if it is possible to have science as Popper portrayed it, and if it is desirable to have science as Pop-
per portrayed it.

418

 IN THIS SECTION:

� Is it possible to have one account of com-

puter science?

� Is it desirable to have one account of com-

puter science?

� How is computer science in practice done?

� What is the contribution of social studies of

computer science to computer science qua

knowledge?

� What disciplinary implications does social

studies of computer science have?

On Normative Accounts of Computer Science

My normative question is, “Is it desirable to have one normative account of com-

puter science?”. The debate between “Popperians” and “Kuhnians” has been dis-

cussed in this thesis already, so I will get straight to the point. The “Feyerabendian”

argument is that forcing any single ontological, epistemological, or methodological

account of scientific inquiry is forcing a dogma onto thinking. It is a forceful occu-

pation of intellectual territory; it is nothing short of shackling innovation, inference,

argumentation, and perhaps all thinking, within the limits of one ontology, epistemo-

logy, or methodology.

It might be a matter of some concern that a dogmatic view of computer science con-

tradicts what some people may hold as the ideals of science, such as scientists' free-

dom to set their own goals, to pursue their inquiries in a field of their choice, or to

choose whatever approaches they feel are necessary for their work176. It is definitely

an important matter that a dogmatic view of science requires instant clarity of re-

search—that is, research results must be explainable in terms of preordained, select

theoretical and conceptual frameworks.

There cannot be radically new innovations (radical in the sense that those innova-

tions would shake the foundations of computer science) if new ideas are bound to the

explanatory power of computer science as it exists at a given time. If one celebrates

the ultimate supremacy of the current theoretical framework of computer science,

then the limits of computer science cannot be probed from incommensurable points

of view, and a scientific revolution in computer science is not possible (because re-

volutions, at least Kuhnian ones, are transitions between incommensurable frame-

works).

From an idealistic point of view, the only normative account of computer science

that does not restrict progress in any way is the anarchistic philosophy of science.

But at the same time it should also be conceded that the phrase “does not restrict pro-

gress” is not equal to the phrase “promotes progress”. Although the anarchistic ac-

count of science allows for novel initiatives to be created, some other accounts of

science, although more restrictive, may better further progress towards some goals.

Note, however, that following the anarchistic philosophy of science does not forbid

176See Subramanyam, 1981:p.50 for a discussion on scientific freedoms.

419

scientists from even the strictest methodological regimentation if the scientists feel

that regimentation is necessary. If scientists do not wish to close any doors for pro-

gress, scientists can choose to be opportunists and use whatever ethical approaches

they find necessary to achieve their goals.

Despite the difficulty of making grand normative statements about science, there is

one normative element that I believe the majority of computer scientists, regardless

of their field of research, would say should belong to the normative account of com-

puter science: the ethics of research. Nihilists debarred, computer scientists, as act-

ive members of society, must adhere to the norms and ethics of their society. Re-

gardless of their ontological, epistemological, or methodological standpoints, all re-

searchers must work ethically. The problems with the justification of certain ethical

prescriptions in research are the same as the problems that are studied in the field of

ethics.

Although all normative claims (with the exception of renouncing all normative

claims) restrict intellectual inquiry, in practice computer scientists frequently give

various descriptions of the world as well as “practical” prescriptions of how com-

puter science should be done. Although normative questions are cleanly severed

from descriptive questions by Hume's Guillotine (see page 35 of this thesis), in com-

puter science normative and descriptive statements intertwine. In the following sub-

sections I discuss the anatomy of descriptive statements in computer science and the

ways in which descriptions gain “practical” normative value.

On Descriptive Accounts in Computer Science

My descriptive question—the one I mentioned in the beginning of this section—is,

“Is it possible to have a single descriptive account of computer science?”. The diffi-

culty of answering my descriptive question comes from the vagueness of the object

of the question—computer science. As I have shown earlier, especially in sections

3.3 and 3.4, it is hard to conceive of an account of computer science which would

not downplay research in any subfield of computing, but which would still be an in-

formative account of computer science.

Depending on the reading of the term computer science, one can arrive at different

ends regarding my question above. If computer science is defined as a mathematical

science, a variety of descriptive accounts of computer science can be argued for—

420

that is, there can be meaningful discussion about the ontology, epistemology, and

methodology of computer science. But if the subjects of computer science are multi-

form (formulæ, machines, programs, people, usability, and so forth) it is difficult to

come up with an overarching ontological, epistemological, and methodological out-

look that would describe computer science correctly177. The number of disparate

academic disciplines today is a living example that the world (physical and social)

does not seem to surrender to narrowly focused inquiries.

Mathematical and computational models are precise and unambiguous, yet they are

confined to the abstract world of mathematics and they fail to capture the richness of

reality. Narratives and ethnographies are rich in dimensions and sensitive to detail,

yet equivocal and context-dependent. Narratives have little use in deriving formulæ,

and formal proofs have little explanatory power regarding usability. It is difficult to

see how a single descriptive account of computer science could accommodate soft-

ware engineering, complexity theory, usability, the psychology of programming,

management information systems, virtual reality, and architectural design.

To the question, “Is it possible to have one descriptive account of computer

science?”, I am compelled to answer that given the diversity of research that goes

under the name computer science, faithful descriptive accounts of current computer

science are either narrow and applicable to only some subfields of computer sci-

ence178, or—when the descriptive account concerns computer science at large—so

broad that they do not exclude much179. It is very difficult to imagine an informative

and extensive ontological, epistemological, or methodological account of computer

science.

When attempting to describe computer science it will always be easy to make coun-

terarguments and numerous counterexamples; nonetheless, I describe my view of

how the growth of knowledge180 in computer science works in general. In the next

177I have shown earlier in this thesis that even in technically-oriented branches, computer scientists do not work as,
for instance, falsificationists ought to work. That is, computer scientists do not formulate hypotheses and then
try to falsify them. Kuhn's philosophy of science is not much help in describing computer science either, because
Kuhn's philosophy is a generic account of science, and it does not offer much help in making a distinction
between what could be considered “paradigmatic computer science” and “non-paradigmatic computer science”.

178e.g., Dijkstra, 1974

179e.g., Newell et al., 1967

180I do not take positions on the determinism or progress implied in the term growth of knowledge, but I use the
term because it is an established term. Alternative terms that have different emphases are, for instance, (re)con-
struction of knowledge, the mangle, and (re)shaping of science.

421

subsections, based on sections 3.3 and 3.4, I discuss the formation of “practical”

normative statements in computer science.

“Practical” Normative Statements in Computer Science

As I have already noted, the broadness of computer science makes it especially diffi-

cult to describe how computer science is actually done, or to describe how computer

science should be done—the same accounts of computer science should cover in-

quiries about nature as well as inquiries about people and groups. However, because

computer scientists frequently do make “practical” normative statements (or heurist-

ics, or rules-of-thumb, or general rules), a practical computer scientist might ask, “on

what grounds, and by which processes, are normative statements about computer sci-

ence made and followed?”.

I argued in Section 3.4 (page 363ff.) that normative arguments about computer sci-

ence cannot be based on empirical evidence only. Because normative arguments in-

evitably include a hidden or explicit value premise, they must ultimately be assessed

according to their desirability, plausibility, and credibility. I noted that the credibil-

ity of normative arguments can be increased with experimentation, forceful argu-

mentation, and cogent analysis, but that ultimately the acceptance of normative argu-

ments is based on human judgment.

The line between scientific, descriptive statements and normative statements in com-

puter science is often vague. Scientific statements and findings about how “things

are” are often also meant as normative statements about how computer scientists

should do their work if they want their work to flourish. Take, for instance, a hypo-

thetical (prototypical) study where researchers reported that a certain disposition of

menu items in a piece of software led to an average 15% increase in the productivity

of people using that particular software181. If those researchers were to argue that be-

cause of this increase in productivity a certain disposition of menu items should be

favored, these researchers would be making a normative statement from a descript-

ive statement. “Casual” or “implied” normative statements based on scientific find-

ings, such as the previous example, are commonplace in computer science. One

might interpret this characteristic of computer science as giving computer science an

engineering flavor; heuristics are, according to Billy Vaughn Koen, the cornerstone

181Studies similar to this are numerous. Take, for instance, those by Arnold, 1989 and Somberg, 1987.

422

of the engineering method182. Follow-up questions immediately arise: “How do

heuristics in computer science form?”, “How do individual heuristics in computer

science become a part of the body of knowledge of computer science?”, and “By

which rules does one compare and choose between competing heuristics?”.

The Mangle in Computer Science

My interpretation of the mechanisms of the growth of knowledge in computer sci-

ence, based on the sources in sections 3.3 and 3.4, is that scientific statements about

the subjects of computer science, computer science qua knowledge, gain their cred-

ibility through demonstrations, publicity, and debate. Those statements gain their

credibility via conjectures, modifications, proofs, refutations, critique, and adjust-

ments. Instead of following any given set of rules of computer science proper, com-

puter scientists present theories, demonstrate techniques, or implement mechanisms,

and then submit those theories, techniques, or mechanisms for public criticism.

Through a continuous mangle of practice183—corrections to theories, honing of tech-

niques, improvements of mechanisms, negotiations between stakeholders, debates,

power struggles, and constant criticism—some theories and techniques gradually be-

come a part of the relatively stable core184 of computer science. That is, theories and

techniques gradually increase their epistemological objectivity185. Similarly, the

knowledge that researchers gain when they construct and hone instruments is gradu-

ally crystallized into heuristics and theories about instruments, which, in part, gradu-

ally become a part of the relatively stable core of computer science. This relatively

stable core can be considered to be a sort of Kuhnian set of exemplars that guide the

work of computer scientists. In this sense it could be said that over the course of

time scientific statements gain normative value.

It should be noted that many normative statements about computer science are not

falsifiable. For instance, the statement that GOTOs increase code entropy was never

formulated in a falsifiable form—that is, in a form that would have created a non-

empty class of potential falsifiers of that statement186. The stored-program concept

was never formulated as a falsifiable hypothesis. An argument that “computer sci-

182Koen, 1987; Koen, 2003

183Pickering's term (Pickering, 1995).

184Lakatos' term (Lakatos, 1970).

185In Searle's terms (Searle, 1996).

186In Popper's terms (Popper, 1959:pp.65-66).

423

ence (as a body of knowledge or as a class of practices) can benefit from sociologic-

al, historical, anthropological, and philosophical viewpoints” is not falsifiable either.

That is, there are no potential falsifiers of the argument. Nevertheless, the lack of

falsifiability has not stopped computer scientists before, and I see no reason that it

should stop computer scientists in the future. In this sense, however, it might be

more appropriate to talk about heuristics instead of scientific statements in computer

science. (However, the term heuristic has not been firmly established in computer

science language, perhaps because heuristics are more of a feature of engineering

than a feature of science.)

Three Positions on Public Debate

If public debate is considered to be a part of the formation of computer science, it

should be asked, “Against which conceptual and theoretical framework are the theor-

ies, techniques, or theories about instruments in computer science criticized?”187. In

the absence of a generic conceptual and theoretical framework for intellectual

achievement (i.e., a Grand United Theory or Theory of Everything), theories, tech-

niques, heuristics, and theories about instruments always rely more on one conceptu-

al/theoretical framework than others. For instance, it could be argued that theories

about public-key cryptography rely largely on a logico-mathematical framework and

computational complexity; interface design techniques rely largely on frameworks of

design, psychology, ergonomics, and cognitive science; and architectural design re-

lies largely on frameworks of physics, electronics, and logic design. Regarding the

framework to be used for evaluating theories, techniques, or theories about instru-

ments, one could argue for at least three different positions: I call these positions the

absolutist position, the monodisciplinary position, and the intersubjectivist position.

In the absolutist position the authors of the theory, technique, or theory of an instru-

ment define the framework in which their theory, technique, or instrument should be

criticized. However, adopting the absolutist position risks leading to a science in

which every research result could be insulated from even the most trivial of criticism

by purposefully choosing the frameworks within which criticism is applicable.

187In the mangle theory, Pickering identifies the parts of the mangle to be theories, instruments, and the theories
about how the instruments work (Pickering, 1995).

424

In the monodisciplinary position, the frameworks on which a theory, a technique, or

a theory of an instrument relies are also the frameworks on which any critique

should rely. This position is a fertile breeding ground for chauvinistic science (see

page 113 of this thesis); that is, this position allows extending the rules and explana-

tions from one “protodiscipline” to other disciplines, while simultaneously keeping

the protodiscipline impervious to any outside influences.

It first looks like intellectual overkill to take the intersubjectivist position that every

theory, technique, or theory of an instrument could be criticized from any conceptu-

al/theoretical point of view. The possible discomfort with the intersubjectivist posi-

tion is due to the fact that in the intersubjectivist position the number of possible

frameworks for criticism is infinite.

Theoretically speaking, if intersubjective agreement (which refers to the adequacy of

research results to different disciplines, see p.409) is regarded as one measure of re-

search, the intersubjectivist position is a natural position. The higher the intersub-

jective disagreement about a given theory, technique, or theory of an instrument, the

lower the credibility of that theory, technique, or theory of an instrument. For in-

stance, if a certain technique for user interface design is credibly criticized from a

mathematical or a technical point of view, the intersubjective agreement about that

technique decreases. The more criticism that a certain technique for user interface

design faces, the less credible it becomes.

Practically speaking, adopting the intersubjectivist position might not be much dif-

ferent from adopting the monodisciplinary position because in practice different con-

ceptual and theoretical frameworks are incommensurable to some degree. For in-

stance, sociological concepts and theories are not very efficient for criticizing integ-

rals, and mathematical proofs are of little use for criticizing claims about human-

computer interaction.

I consider the greatest flaw of the intersubjectivist position to be relativism about cri-

ticism. Whereas in the absolutist position there is the danger of excessive detach-

ment of theories, techniques, or theories of instruments, in the intersubjectivist posi-

tion there is the danger of excessive relativism of theories, techniques, or theories of

instruments. In the absolutist position the value of theories, techniques, and theories

of instruments can be detached from any external references, but in the intersubject-

425

ivist position theories, techniques, and theories of instruments gain their value from

external references. In the absolutist position the boundaries of criticism can be set

so strictly that there is no room for any criticism, and in the intersubjectivist posi-

tion, when all criticism should be taken at face value, any critique can be adequate

and to-the-point from some perspective.

I agree that neither shutting out criticism, taking the chauvinistic attitude towards

criticism, nor becoming overwhelmed by criticism holds a normatively superior sta-

tion over the other two positions. Descriptively speaking, computer scientists do not

seem to be united behind any of the three positions mentioned above (absolutist,

monodisciplinary, or intersubjectivist positions). Practical computer science is a

mixture of receptivity and tenacity; computer scientists can at the same time draw on

a number of disciplines and be stubborn in the face of multidisciplinary opposition.

Take, for instance, Harvard's Howard Aiken, who led a multidisciplinary laboratory,

yet who stubbornly resisted development steps in physics and computer science (see

p.225 of this thesis) and Moore School's Eckert and Mauchly, whose multidisciplin-

ary team opposed the scientific establishment of the time and built the ENIAC (see

p.204 of this thesis).

In light of the sources in sections 3.3 and 3.4, I am compelled to say that instead of

any of the three positions above, the mangle of practice (a cycle of conjectures,

demonstrations, and implementations, as well as criticism, corrections, refutations,

negotiations, and improvements) maintains a continuous redefinition of the descript-

ive and normative frameworks of computer science. There is no fixed conceptual or

theoretical framework of computer science—whenever it is written down, the next

moment it has already been altered. There are no fixed normative frameworks in

computer science either—what is considered to be desirable in computer science

today may not be that tomorrow. Some modern philosophers of science and sociolo-

gists of science argue that the lack of fixed frameworks is neither uncommon nor un-

desirable in any science188.

188Pickering, 1995; Feyerabend, 1993

426

The Mangle in Practice

In terms of computer science, Pickering's description of the “mangle of practice”189

does not rule out the epistemological objectivity of scientific statements. Although

all computer scientists have their own motifs, goals, visions, beliefs, and agenda, the

computer science community and the “resistances” of the physical (and, indeed,

computational) world constantly force a revaluation of the status of theories, tech-

niques, and theories of instruments190. In the mangle, those theories, techniques, and

theories of instruments that are thickly woven into the fabric of other theories, tech-

niques, and theories of instruments; that are socially stabilized; and that have a ro-

bust fit with the physical and computational world; have a strong degree of epistem-

ological objectivity191.

I argued earlier (p.379) that (1) the fact that no single methodological system is ap-

plicable to the methods of inquiry in computer science means that computer science

is methodologically disunited, and that (2) the fact that there is no consensus about

the nature (the epistemological status) of research results in computer science means

that computer science is epistemologically disunited. Methodological and epistemo-

logical disunity need not always be detrimental to a discipline, though. Although a

methodological and epistemological disunity may cause conflicts within a discipline,

as well as an untenable mingling of research paradigms, it also enables multi-method

validation and connections to a wide variety of disciplines. Methodological and epi-

stemological isolationism could inhibit alternative hypotheses and discourage com-

plementary support that multi-method cross-checking of research results can offer.

Note that the intersubjectivist position is valuable only if intersubjective agreement

is considered to affect the acceptance of a theory, technique, or theory of an instru-

ment. If the value of theories, techniques, and theories about instruments is con-

sidered to be an intrinsic or field-specific feature, then the intersubjectivist position

is meaningless. In Pickering's description of how science works, it is evident that in-

tersubjective agreement affects the innofusion of theories, techniques, or theories of

189Pickering, 1995

190See the sections on objectivity, historicity, and relativity in Pickering, 1995:pp.194-212.

191I use Searle's meaning of the term epistemological objectivity here (Searle, 1996:p.8). Note, however, that Pick-
ering and Searle, whose books were published around the same time, do not refer to each other (Pickering, 1995;
Searle, 1996).

427

instruments. In addition, in the mangle the success of theories, techniques, and the-

ories of instruments also depends on their fit to non-scientific and physical realities.

One can take the mangle theory to the extreme and argue that there are really no sci-

entific and extra-scientific arguments, but that everything affects everything. Fortu-

nately one does not need to adopt such an extreme view to argue that social studies

of computer science can capture something essential about computer science. If one

agrees that the acceptance of scientific statements is not solely based on the credibil-

ity of the statements themselves, but on their fit to the existing framework of science,

society, and the physical world, one can argue that social studies of computer science

can capture something unique about the mangle of computer science.

Social studies of computer science can reveal how computer science is created and

maintained. Social studies of computer science can explain how the statements in

computer science are externalized, objectified, internalized, and reified192; that is, it

can explain the processes through which many things that computer scientists pro-

duce are afterwards perceived as something other than human products. Social stud-

ies of computer science can explicate implicit assumptions, shared attitudes, and tacit

knowledge. Social studies of computer science produces unique meta-knowledge of

computer science. Meta-knowledge (knowledge about knowledge) is an important

aspect of understanding computer science, because it can offer insight into even the

most insightful theories of computer science.

The Disciplinary Implications of Social Studies of Computer Science

Social studies of computer science can be considered to be studies that situate and

investigate computer science in its scientific, technological, social, historical, cultur-

al, linguistic, political, economic, institutional, personal/individual, and other so-

cially constructed frameworks. Social studies of computer science offers a view of

computer science (qua knowledge and qua activity) in which more than merely the

technological aspects of computer science are explicitly considered to be influential.

As an umbrella term for different kinds of studies, social studies of computer science

is methodologically, epistemologically, and ontologically uncommitted, but specific

social studies of computer science can be committed to specific research philo-

sophies.

192Berger and Luckmann's terms (Berger & Luckmann, 1966).

428

Because of the multidisciplinarity of social studies of computer science, social stud-

ies of computer science can be considered to be a branch of computer science, soci-

ology, history, anthropology, and philosophy, depending on the focus, angle, and

aims of each study. Those kinds of investigations of social studies of computer sci-

ence whose subject is meta-knowledge about the theories, practices, models, philo-

sophy, or other aspects of computing can easily be considered to be a part of com-

puter science and not a part of, say, sociology. It is much harder to categorize those

kinds of social studies of computer science investigations that have a humanistic

subject—subjects such as computer scientists' culture, the information distribution

channels in computer science, or the social processes of proofs and theorems. The

community of computer scientists is ultimately the judge of what kinds of research

are included under the umbrella of computer science. However, situating social

studies of computer science under clearly defined categories may not always be

practical or reasonable. After all, those kinds of research that are most fruitful—

those that benefit the largest number of disciplines—are the most valuable from the

intersubjective point of view.

Social studies of computer science investigations might create more questions than

answers. Keeping the doors open for sociological, historical, anthropological, or

philosophical investigations of computer science may not increase the probability of

triggering radically new ideas in computer science much. Instead of being a source

of a revolutionary flux of radically new ideas, acknowledging social studies of com-

puter science is rather a matter of disciplinary honesty and self-understanding (which

is by no means a more modest undertaking than being a source of new ideas).

Social studies of computer science might not provide many answers to the current

questions of computer science, such as “Can process p be automated?”, “What is the

most efficient implementation for automating process p?”, or “What kind of inter-

face for instrument i creates the least cognitive overhead?”. The logico-mathematic-

al, modeling-based, and design-oriented branches of computer science can deliver

answers to those questions.

Researchers of social studies of computer science focus on those aspects of computer

science that are beyond the reach of computational theories, practices of design, or

computational modeling. Researchers of social studies of computer science pose

429

questions such as “Why is the form and function of implementation n as it is?”,

“Which aspects of computer science are contingent and why?”, “What reasons are

there behind the popularity or unpopularity of certain programming languages?”, and

“Why is the stored-program paradigm dominant?”. These questions cannot be

answered from solely logico-mathematical, design, or modeling points of view. The

answers to these questions require, for instance, sociological, historical, anthropolo-

gical, and philosophical approaches.

Research that can be considered to be social studies of computer science is nowadays

conducted by, for example, computer scientists, researchers of science and techno-

logy studies, interface designers, management information systems specialists, and

historians of computing. The knowledge produced by social studies of computer sci-

ence does not necessarily clash with the knowledge produced by other, more techno-

logically- or mathematically-inspired branches of computer science. Rather than

clashing with existing knowledge, social studies of computer science offers alternat-

ive viewpoints on the topics of computer science; it offers meta-knowledge about

computer science. Social studies of computer science can be considered to be a

complementary part of the multidimensional enterprise that computer science has

been since the birth of modern electronic computing.

It has to be acknowledged, though, that the aims of social studies of computer sci-

ence are not solely descriptive. In the sense that social studies of computer science

offers alternative explanations of concepts, theories, instruments, techniques, meth-

ods, or designs of computer science, social studies of computer science can have

normative aims too. In this sense, social studies of computer science can indeed be

understood as questioning the legitimacy and foundations of some aspects of com-

puter science. Questioning and contradicting is, of course, an essential condition for

the growth of knowledge.

Those studies that I consider to be examples of social studies of computer science

(Section 4.2), are consistent with current trends in science and technology studies in

the sense that those studies refrain from making arguments about sciences at large.

Instead of making arguments about science at large, current research in social studies

of computer science has focused on issues of computer science as a unique branch of

science. Unfortunately, because fields such as sociology of scientific knowledge

430

(SSK) and STS are relatively young fields, it is too early to say if research in those

fields has affected science or the way science is conducted.

An Essential Part of Mature Computer Science

It has been argued that disciplinary self-understanding is an essential part of a sci-

entific discipline193. In a similar manner, social studies of computer science, as por-

trayed in this thesis, is an essential part of the disciplinary self-understanding of

computer science. It produces meta-knowledge about computer science. It helps

computer scientists to understand the degree to which aspects of computer science

rely on brute facts and the degree to which aspects of computer science are social

constructs. It allows (but does not force on anyone) a realist philosophy, while it

maintains that statements about reality are always socially constructed. It offers al-

ternative angles on computer science qua knowledge and qua activity. It allows one

to be critical about technological determinism, milestones, and machinery, and it

helps one to understand the human-made character of theories and technologies. So-

cial studies of computer science may not offer insight into the brute functioning of

computing technology or into the logico-mathematical structures of the formal, de-

ducted theories, but it does offer insight into why and how the technological-theoret-

ical frameworks of computing have been constructed the way they have.

In Section 4.1 I noted that I use the term computer science here as a loose collection

of concepts regarding studies of the computers and the phenomena surrounding com-

puters; studies which aim at contributing to knowledge about automatic computation

or at refining computational tools, theories, concepts, or processes (p.374). In Sec-

tion 4.2 I expanded on how disciplinary self-understanding belongs to the project of

computer science as a discipline (p.386). Social studies of computer science can re-

spond to both characterizations of computer science (see Figure 29 on p.387 of this

thesis).

Social studies of computer science can aim at contributing to knowledge about auto-

matic computation by exposing essential human-constructed aspects of computer

science. For instance, Harel's and Denning's arguments questioned a number of

widely held “facts” of computer science194. Social studies of computer science can

193Barnes et al., 1996:pp.iix-xii.

194Harel, 1980; Denning, 1980

431

also aim at contributing to meta-knowledge about computer science by, for instance,

offering knowledge about the social and psychological mechanisms that construct

and maintain the tools, theories, concepts, and processes of computer science. For

instance, Kidder's and Suchman's ethnographic studies reveal patterns of activities

that are central to the technological and scientific production of computer science195.

There are different kinds of social studies of computer science in the different

branches of computer science, but it is difficult to find a suitable category for social

studies of computer science in the ACM CCS (Computing Classification System196)

—suitable in the sense that the human or sociocultural perspective would be explicit

and it would be clear that those studies produce meta-knowledge about computer sci-

ence. In the absence of an ACM CCS category that would underline the unique

character of social studies of computer science, many articles that are, in essence, so-

cial studies of computer science are categorized into the branches of computing that

those articles seem to benefit best197. In this sense, it has already been recognized

that social studies of computing can benefit computing qua knowledge. Sometimes,

however, social studies of computer science are classified into general categories198.

The ACM category that best denotes a sociocultural or human perspective is K

(Computing Milieux)199, and many social studies of computer science are indeed

tagged K.*. The subcategories of K, however, currently consist mainly of topics

whose main concern is the societal impacts of computing, not the impact of society

on computing or the social construction of computing (see Table 4).

195Kidder, 1981; Suchman, 1987

196See http://www.acm.org/class/1998/ (accessed September 27th, 2006).

197Avison et al.'s article Action Research (Avison et al., 1999) is categorized H.1.1 (Systems and Information The-
ory / Information Theory), K.6.1 (Project and People Management / Systems Development). Hirschheim and
Klein's article Four Paradigms of Information Systems Development (Hirschheim & Klein, 1989) is categorized
K.6.1 (Project and People Management / Systems Development), H.4 (Information Systems Applications), and
K.4 (Computers and Society). Tedre et al.'s Ethnocomputing: ICT in Cultural and Social Context (Tedre et al.,
2006) is categorized K.6.1 (Project and People Management), H.1.1 (Systems and Information Theory), and K.4
(Computers and Society).

198For instance, Dave West's article Hermeneutic Computer Science (West, 1997) is in category A (General Literat-
ure).

199The categories A-J in ACM Computing Classification System [1998] are (A) General Literature; (B) Hardware;
(C) Computer Systems Organization; (D) Software; (E) Data; (F) Theory of Computation; (G) Mathematics of
Computing; (H) Information Systems; (I) Computing Methodologies; and (J) Computer Applications.

432

Table 4: Top Two K.* Sublevels in ACM CCS [1998]200

K.1 THE COMPUTER INDUSTRY

Markets

Standards

Statistics

Suppliers

K.5 LEGAL ASPECTS OF COMPUTING

K.5.0 General

K.5.1 Hardware/Software Protection

K.5.2 Governmental Issues

K.5.m Miscellaneous

K.2 HISTORY OF COMPUTING

Hardware

People

Software

Systems

Theory

K.6 MANAGEMENT OF COMPUTING AND

INFORMATION SYSTEMS

K.6.0 General

K.6.1 Project and People Management

K.6.2 Installation Management

K.6.3 Software Management (D.2.9)

K.6.4 System Management

K.6.5 Security and Protection (D.4.6, K.4.2)

K.6.m Miscellaneous

K.3 COMPUTERS AND EDUCATION

K.3.0 General

K.3.1 Computer Uses in Education

K.3.2 Computer and Information Science Education

K.3.m Miscellaneous

K.7 THE COMPUTING PROFESSION

K.7.0 General

K.7.1 Occupations

K.7.2 Organizations

K.7.3 Testing, Certification, and Licensing

K.7.4 Professional Ethics (K.4)

K.7.m Miscellaneous

K.4 COMPUTERS AND SOCIETY

K.4.0 General

K.4.1 Public Policy Issues

K.4.2 Social Issues

K.4.3 Organizational Impacts

K.4.4 Electronic Commerce (J.1)

K.4.m Miscellaneous

K.8 PERSONAL COMPUTING

Games [*]

K.8.0 General

K.8.1 Application Packages

K.8.2 Hardware

K.8.3 Management/Maintenance

K.8.m Miscellaneous

Because there are a good variety of studies which borrow tools from the social sci-

ences and humanities, which produce unique socioculturally sensible information

about the knowledge as well as the construction of knowledge in computer science,

and which clearly belong to computer science, there is a need for category K.9 (So-

cial Studies of Computer Science) in the ACM classification system.

Tagging a publication K.9 would indicate (1) the choice of a sociological, historical,

anthropological, philosophical, or other social sciences- or humanities-based per-

spective, and (2) the production of meta-knowledge about computer science qua

knowledge and qua activity. In a manner similar to sociology, history, anthropo-

logy, and philosophy, the methods of social studies of computer science can be qual-

itative, quantitative, or mixed-methods. Since ACM-published articles are often giv-

200Source http://www.acm.org/class/1998/ (accessed September 27th, 2006). Republished here with permis-
sion of the ACM (permission granted for digital and printed publications).

433

en more than one category tag, tagging a publication K.9 does not exclude the article

from any other categories.

In fact, in the sense I described in Section 4.3, some of the current K.* classes (see

Table 4) are less about the discipline of computer science than my proposed K.9

(Social Studies of Computer Science). That is to say, in Section 4.3, I argued that if

research aims at honing theories, practices, models, philosophy, or other aspects of

computing, then the research is computer science (page 415 of this thesis). Many of

the K.* categories are geared towards understanding something other than aspects of

computing—take, for instance, K.5 (Legal Aspects of Computing), K.4.1 (Public

Policy Issues), and K.6.1 (Project and People Management). If one agrees that

those categories—the aim of which is not exclusively to understand automatic com-

putation or computer science but rather to understand the impact of computing tech-

nologies on society—belong to computer science, it should be easy to agree that K.9

(Social Studies of Computer Science), the aim of which is to understand computer

science, is at least an equally legitimate part of computer science.

434

5.Conclusion

This research stems from the oft-stated need to explore the connections between

technology, academia, institutions, the sciences, social milieux, human practices,

economic concerns, agenda, ideologies, cultures, politics, arts, and the other techno-

logical, theoretical, and human aspects of the world. The rationale of this thesis is

simple: If perspectives from disciplines such as sociology, history, anthropology,

and philosophy can positively contribute to the body of knowledge, meta-know-

ledge, or practices of computer science, then one can reasonably argue for an exten-

sion of computer science with those perspectives.

In this chapter I restate the findings and insights of my research. I have made my ar-

guments in Chapters Two, Three, and Four, and there are neither references nor any

new arguments in this chapter. I finish this chapter by evaluating how well my re-

search findings respond to my research questions and by considering research ques-

tions that arise from this research.

I begin by outlining the conceptual framework of this thesis (which is reported in

Chapter Two). I continue by presenting my analysis of the development of comput-

ing and computer science in light of my conceptual framework (this analysis is de-

scribed in Chapter Three). From there I continue to analyze two particularly clear

models that can explain technical and scientific change in computer science, to ana-

lyze the workings of computer science, and to describe the anatomy of proofs and

assertions in computer science (that analysis is described in Chapter Three and

Chapter Four, passim). hyppy

Following that, I discuss the “fundamental question underlying all of computing”

(which is discussed in detail in Section 3.4). Then I present my argument about ec-

lecticism, opportunism, and anarchism in computer science (the argument is presen-

ted in more detail in Section 4.1). After that, I briefly summarize the implications of

my philosophical position on this research. I continue by describing the place and

role of computer science in society (summarized from Chapters Two, Three, and

Four), outlining social studies of computer science (described in Sections 4.2 and

4.3), and proposing the implications of this thesis for computer science (summarized

from Chapter Four). I finish this chapter with an evaluation of this thesis.

435

The Philosophy of Computer Science

The philosophy of computer science is in disarray. Despite some attempts to devel-

op the philosophy of computer science à la the philosophy of physics and the philo-

sophy of mathematics, there is no common understanding of the content, aim, focus,

or even topic of the philosophy of computer science. It is disputable whether com-

puter scientists can be said to adhere to the precepts of any single major philosophy

of science. Many branches of computing lack uniform laws, design principles, well-

established and well-grounded guidelines, or other aspects that a scientific paradigm

should have. Because there is no clear philosophical framework for computer sci-

ence research, each researcher has to either adopt one from other sciences or con-

struct his or her own from scratch. In an interdisciplinary science like computer sci-

ence, constructing a holistic philosophical framework might be a difficult task,

though. Researchers may need to adopt different kinds of conceptual, theoretical,

methodological, and philosophical frameworks for each research study. In this

sense, the term philosophy of computer science might perhaps be better construed as

an umbrella term for a number of eclectic frameworks, concepts, and theories, than

construed as a holistic, all-inclusive single framework.

It seems that trying to find a middle-way between different kinds of extreme ac-

counts of science and technology leads to yet new extremes. All extreme positions,

such as naïve positivism and relativism, face difficulties, and none of them are abso-

lutely superior over the others. Only a variety of pragmatic accounts prevail.

Hence, in this thesis I do not argue for a theoretical framework, but for a conceptual

framework in which I bring together a number of theories of science and technology

that resonate well with the historical development and the working mechanisms of

computing and computer science.

My conceptual framework includes concepts from a number of major philosophies

of science, yet I do not tie my research to any one of them specifically. For instance,

in the context of computer scientists' work I use Popper's and Feyerabend's termino-

logy, in describing the development of computer science I use Kuhn's terminology,

and in describing the anatomy of proofs in computer science, I use Lakatos' termino-

logy. The epistemological and ontological aspects of my conceptual framework are

built on John Searle's realist ontology, which also is successful at explaining socially

436

constructed reality. In Searle's ontology, there are facts that do not depend on any

attitudes people may have about them. However, people can attach particular mean-

ings to objects or facts—or create new facts altogether. Those facts exist only when

people, who bear those facts, exist, and they cease to exist when people, the fact-

bearers, cease to exist.

On one hand, acknowledging brute facts enables computer scientists to be true to the

working mechanisms of the physical world, which is important because physical

reality determines some characteristics and limits of automatic computation. On the

other hand, the recognition of institutional facts allows for explanations of socially

constructed things that would not exist without people, such as money, labels,

names, and theories. Institutional facts are important because names, labels, theor-

ies, arguments, and other constructed facts constitute a part of the reality with which

computer scientists work.

The chemical and physical behavior of the substances that computers are made of

does not depend on humans. Everything else in the domain of computers is socially

constructed. For instance, the arrangement of logic gates, the radix of numeral sys-

tems, the design choices of execution units, abstraction layers, and hierarchies are in-

tuitive choices that computer designers make. Designers make their choices based

on economics, functionality, architectural choices, power consumption, heat dissipa-

tion, standards, design preferences, and so forth. Although computer designs are

completely human-made, one cannot tell for certain if the hierarchical structures of

computer systems are a consequence of an inherent hierarchy of the world, or if they

are a tool for understanding an inherently unorganized world.

Algorithms and programs, however, do not have a clear place in Searle's ontology.

The seemingly innocent claim that algorithms are ontologically objective—that they

exist independently of people—is, in fact, a very controversial claim. If one claims

that all computer programs are ontologically objective, then one claims, in effect,

that Microsoft Word exists independently of humans. In the natural science sense, it

would sound more odd to say that mathematical and logical truths exist regardless of

people than to say that they exist only with people. Namely, to argue that mathemat-

ical and logical truths exist regardless of people would be to argue that something

437

immaterial can exist and that people would somehow have access to those immateri-

al things.

Even if it could be agreed upon that algorithms, logic, and mathematical objects do

not exist regardless of humans or other intelligent beings conceptualizing them, al-

gorithms, logic, and mathematical objects could still be epistemologically objective.

An algorithm A that is able to perform function f, performs function f independently

of anybody's attitudes or feelings towards the algorithm. It is an objectively ascer-

tainable fact that algorithm A performs function f. Rather than arguing for the uni-

versality and non-temporality of algorithms, my position is that algorithms are con-

structions, which cannot be considered to be correct or incorrect in any absolute

sense, but which are useful in a limited context. Algorithms are correct or incorrect

only within a certain logico-mathematical-technological framework, but within that

framework their correctness or incorrectness is an objectively ascertainable fact.

Contingencies Surrounding Computing

Historians of computing have argued that the circumstances in which the ENIAC

and EDVAC were developed were brought together by the political situation, the

war effort, advancements in science and engineering, new innovations in instrument-

ation, interdisciplinarity, influential individuals, coincidences, a disregard for costs,

and a number of other sociocultural factors. In a similar manner, the founding of the

office computer business in Britain was a result of a number of sociocultural, eco-

nomic, and technological factors mixed with extraordinary foresight, or, simply,

contingency.

Also, the development of high-level programming languages has been attributed to a

number of influential sociocultural factors. Organizations, institutions, sponsors,

and profit-making companies played a major part in the early development of pro-

gramming languages. The purposes, problem domains, and functional requirements

of languages influenced language design. And also individuals—their backgrounds,

motivations, and mental models—were influential in how programming languages

developed. It has also been argued that culture affects, for instance, the amount of

funding a field gets, the valuation of theory and practice, the foci of research, the

popularity of technological disciplines, and public support.

438

The contingency thesis states that the current state of affairs in technoscience could

have developed through a very different course than it did, and that a successful al-

ternative to current technoscience does not need to have any commonalities with cur-

rent technoscience. Adopting the contingency thesis brings with it the possibility for

alternative paths in computing: Had the people at Moore School been, say, Vannevar

Bush, Konrad Zuse, and Alan Turing instead of Eckert, Mauchly, von Neumann, and

Goldstine, computer technology might have developed in a very different way; had

some of the circumstances of the British computing scene been different, British of-

fice computing might have developed in a different way; had the starting points for

the development of high-level programming been different, the means of command-

ing the computer might be very different from what it is today.

There are no means for proving the contingency thesis right or wrong. Because re-

searchers of today can only speculate on alternative routes that computing might

have taken, one can only argue for the contingent character of the current situation. I

argue that the computing of today is just one possible path of an infinite number of

paths—there is no necessary path for technological development.

The Stored-Program Paradigm

If one were to examine computing from the Kuhnian point of view, it would be hard

to find scientific crises or accumulating anomalies in the history of electronic com-

puting. Even the most decisive changes in the field of computing—the shift from

mechanical to electronic computation and the conception of the stored-program

computer—were not results of anomalies. The conception of the stored-program

computer was not a refutation of anything, but a shift to a technical and theoretical

paradigm—to the stored-program paradigm. The stored-program paradigm,

however, entails only a technical model and a theoretical framework. It does not

dictate forms of inference, logic of justification, modes of argumentation, practices

of research, conventions for settling scientific disputes, or other aspects of a scientif-

ic paradigm. Regarding inference, logic, argumentation, or other kinds of conven-

tions and practices, computer scientists rely on various scientific paradigms.

The stored-program concept marked the birth of a theoretical and technological para-

digm in computing. The blueprints for EDVAC introduced a number of concepts

that lacked counterparts in the technoscience of the time (e.g., memory addresses and

439

registers). Because those concepts were incommensurable with the science of the

time, there could not be a continuation (or explanation, or reduction) between old

and new concepts. The concept register, for instance, did not have a counterpart in

the pre-stored-program world. Post-stored-program computing was incommensur-

able with pre-stored-program computing.

Currently, von Neumann-architecture has gained enough momentum that it is, des-

pite all of its limitations, largely taken as an unquestioned foundation for successful

automatic computation. Nonetheless, there are serious attempts to break the barriers

of von Neumann-architecture and Turing-computability. Those attempts are not re-

sponses to anomalies in the von Neumann-architecture and Turing-computability,

but attempts to break the limits set by them. The Kuhnian concept of paradigms, al-

beit oft-utilized, may not be fully applicable to technological change.

Technological Momentum

If one is concerned about the effect of technology on society, or on people, one is a

technological determinist to some degree. That is, if and only if one believes that

technology can have an effect on society, one can be worried about the sociocultural

effects of technological change. Technological determinism comes in a variety of

types and in spectra of degrees, but the crux of technological determinism does not

seem to be about technology as much as it is about a technofetish in which human

progress is measured by the sophistication of technological artifacts. But technolo-

gical abundance is a poor measure of human or cultural progress—for instance,

democracy, equality, and human rights are not results of technological development.

My conceptual framework includes Thomas Hughes' brand of technological determ-

inism, called technological momentum, in which both social constructionism and

technological determinism are characteristics of the development of technological

systems. Young technological systems exhibit characteristics of social construction,

but the more widespread and more established technological systems become, the

more characteristics of technological determinism they exhibit.

Hughes' temporal axis in technological determinism gives epistemological objectiv-

ity an interesting twist: The recognition of newly-born innovations is an epistemolo-

gically subjective matter, but usually the older and more prevalent innovations be-

come, the more epistemological objectivity they gain. The increase in epistemolo-

440

gical objectivity is closely linked with those innovations becoming more rigid, less

responsive to outside influences, and thus more deterministic by nature.

The non-discrete nature and temporal dimension of epistemological objectivity are

important in this thesis for a number of reasons. Firstly, they are of use in propor-

tionating and locating computing with other, usually older disciplines. Secondly,

they help to understand change and stability in computing. Thirdly, they help to un-

derstand computing as a cause and as an effect—technologies are shaped by society

but they can also be used to shape society.

Technological Momentum in Computer Science

The growth of technological momentum is evident in a number of my examples of

the history of electronic computing. In those examples, the birth of innovations has

taken place due to a contingent convergence of various sociocultural and technos-

cientific factors, but in the course of time the innovations have grown rigid and be-

come institutionalized. In the following text I present three particularly lucid ex-

amples of the growth of technological momentum.

Firstly, in the early days of electronic digital computing there was great uncertainty

about research directions, and most computing machines of the time differed from

each other in their architecture, design, constraints, and working principles. Over the

course of time knowledge about the directions of computing accumulated, and re-

searchers increasingly followed traditional paths which others had tread. This is tra-

ditionally called the growth of knowledge, yet it is also characteristic of the growth

of technological momentum.

Secondly, previous design choices and compatibility issues did not hinder early com-

puter designers so they were able to start with a tabula rasa. But, over time, comput-

ing systems became more complex and more interdependent. As the number of

computer installations grew, the design decisions of computing had to be increas-

ingly based on compatibility. The first united architecture, the IBM System/360,

marked a definite turning point in the change from social constructionism to techno-

logical determinism in computing machinery.

Thirdly, the early construction of FORTRAN was directed by sociocultural and personal

motivations, as well as economical and institutional considerations. The more

441

FORTRAN developed and the wider it spread, the more it institutionalized and the more

rigid it became. Over time FORTRAN gained momentum that had a tremendous impact

on the subsequent development of computing. FORTRAN achieved such an institution-

al status that it is even today regarded as the lingua frança of scientific computing.

As FORTRAN gained technological momentum, it became more a shaper of its environ-

ment than shaped by it. FORTRAN was followed by much more elegant programming

languages, especially ALGOL. Although ALGOL was supported by a large number of in-

fluential stakeholders, it was never able to gain the momentum FORTRAN did, and it

never became a similar shaper of computing practice. (ALGOL was a significant con-

ceptual milestone and a shaper of academic computing, though). FORTRAN's colossal

technological momentum made it the de facto standard of computing for a long time.

The shift from machine language programming to high-level language programming

was not, however, a paradigm shift in the Kuhnian sense. The chaotic state of early

programming was restrictive in many senses—it barred non-specialists, separated

computer brands, and hindered portability. It is true that this chaos seems like a

computing version of Kuhn's pre-science state. But although there was clearly a re-

volution, it was not a Kuhnian revolution: Firstly, higher-level languages did not re-

place machine languages, but provided a powerful alternative (machine-language

programming is still needed); secondly, there were no anomalies that had led to a

crisis. The introduction of high-level language programming and the standardization

of languages built on earlier work in computing and did not refute or make obsolete

any earlier work in computing.

The Mangle of Practice

Technological and intellectual changes in computer science are well explained by

Andrew Pickering's mangle of practice, which describes the development of science

and technology as an ongoing cycle of development and revision of (1) theories and

models, (2) the design and theory of instruments and how they work, and (3) the in-

struments themselves. When a computer scientist works, usually things do not go as

planned—the world resists. He or she accommodates to this resistance by revamp-

ing some or all parts of the theoretical-technological structure, and tries again. In the

end, the computer scientist hopes to get a robust fit between the theoretical and tech-

nological elements of a research study. In addition, researchers often need to accom-

442

modate for sociocultural factors, too—technoscience is not developed in a vacuum

but within a dynamic network of societal, economic, cultural, institutional, ideolo-

gical, political, philosophical, and ethical factors.

The birth of the stored-program paradigm is a prime example of the mangle in com-

puting. The researchers at Moore School of Electrical Engineering had their theories

of computation, their prototype machines, and their theories of how their machines

should work. They had to deal with numerous dead-ends—sometimes even know-

ingly; had to devote considerable effort to developing peripheral components, test

equipment, and component technologies; had to revise their theories and concepts

often; and had to spend a great deal of effort convincing other stakeholders about the

value of computing. Through numerous accommodations; such as revisions of the-

ories, modifications of components, and rebuilding of instruments; the researchers at

Moore School gradually arrived at the stored-program concept.

The mangle of practice also applies to the mechanisms of the growth of knowledge

in computer science. In computer science, scientific statements about the subjects of

computer science gain their credibility through demonstrations, publicity, and de-

bate. Those statements gain their credibility via conjectures, modifications, proofs,

refutations, critique, and adjustments. Instead of following any given set of rules of

computer science proper, computer scientists present theories, demonstrate tech-

niques, or implement mechanisms, and then submit those theories, techniques, or de-

scriptions of mechanisms for public criticism.

Through a continuous cycle of corrections to theories, honing of techniques, im-

provements of mechanisms, negotiations between stakeholders, debates, power

struggles, and constant criticism, some theories and techniques gradually become a

part of the relatively stable core of computer science. Similarly, the knowledge that

researchers gain when they construct and revamp instruments is gradually crystal-

lized into theories about instruments, which, in part, gradually become a part of the

relatively stable core of computer science. That is, theories, techniques, and theories

about instruments gradually increase their epistemological objectivity. Practical

computer science is a mixture of receptivity and tenacity; computer scientists can at

the same time draw on a number of disciplines and be stubborn in the face of mul-

443

tidisciplinary opposition. It should also be noted that the knowledge-cultivating

mechanisms can differ between branches of computer science.

I argue that the mangle of practice—a cycle of conjectures, demonstrations, and im-

plementations, as well as criticism, corrections, refutations, negotiations, and im-

provements—maintains a continuous redefinition of the theoretical-conceptual

frameworks of computer science. There are no fixed conceptual, theoretical, or

methodological frameworks of computer science. The theoretical-conceptual frame-

work of computer science looks different when viewed from alternative perspect-

ives. There is no normative account of computer science either (with the possible

exception of ethical norms)—what is considered to be a good practice today may not

be that tomorrow.

It must be noted that the mangle is not a relativist position. The mangle of practice

does not rule out the epistemological objectivity of scientific statements. Although

all computer scientists have their own motives, goals, visions, beliefs, and agenda,

the computer science community and the resistances of the subject area of computer

science constantly reappraise the epistemological objectivity of theories, techniques,

and theories of instruments. The resistances can arise from unfamiliar aspects of

physical reality; from problems and uncertainties with the human-built structures of

computation; from inadequate knowledge of the users and the social world; and from

a deficient fit between the physical, computational, and social worlds. In the

mangle, those theories, techniques, and theories of instruments that are deeply

woven into the fabric of other theories, techniques, and theories of instruments; that

are socially stabilized; and that have a robust fit with the physical, computational,

and human world have strong epistemological objectivity.

Computer Science

There are parts of computer science, such as the stored-program paradigm, that have

served as an uncontested basis for research for long periods of time. Nevertheless,

the field at large has changed radically between the 1940s and the 2000s. Even be-

fore the software crisis in the late 1960s, there was a wide divergence of opinion on

what computer science was and what it should become. The software crisis and the

emergence of business computing fueled the diversification.

444

In the early days of modern computing, computer scientists yearned for the recogni-

tion of mathematicians and natural scientists. Until the mid-1970s computer science

was indeed conceived as a theoretical, mathematically based discipline. During the

software crisis, computer science gradually evolved a programming and applica-

tions-centered dimension. Throughout the history of computing, shifts in the user

base of computing have been paralleled by changes in the academic discipline of

computing. Especially in the 1970s a number of fields of study; such as HCI, MIS,

operating systems, and networks; emerged, and the 1970s indeed saw the shaping of

computing into a truly multidisciplinary or interdisciplinary field.

At present there is a wide array of mutually incompatible viewpoints to what com-

puter science is and what computer scientists do. Differences between the views

arise largely from emphasizing some aspects of computing at the expense of some

other aspects of computing. The breadth of the field of computer science makes it

especially difficult to describe how computer science is actually done, or to pre-

scribe how computer science should be done—the same accounts of computer sci-

ence should cover inquiries about the physical world, about mathematics and logic,

as well as about people, groups, and activities. It is difficult to see how a single de-

scriptive or normative account of computer science could accommodate software en-

gineering, complexity theory, usability, the psychology of programming, manage-

ment information systems, virtual reality, and architectural design.

No single methodological system is applicable to the methods of inquiry in computer

science, and there is no consensus about the ontological and epistemological nature

of research results in computer science. There is no stern watchdog Computer Sci-

ence to enforce methodological regimentation and to rule out non-legitimate, ill-

suited, or inappropriate methods, tools, or approaches. It is difficult to imagine an

overarching philosophy for a science, the topics of which vary from logic to soft-

ware engineering, from artificial intelligence to complexity theory, and from digital

design to human-computer interfaces.

Mathematical and computational models, on one hand, are precise and unambiguous,

yet they are confined to an abstract world of mathematics and they fail to capture the

richness of reality (physical, social, or even computational). Narratives and ethno-

graphies are rich in dimension and sensitive to detail, yet equivocal and context-de-

445

pendent. Narratives have little use in deriving formulæ, and formal proofs have little

explanatory power regarding usability. The diversity of necessary research ap-

proaches renders computer science a methodologically and epistemologically eclect-

ic discipline.

Difficulties in the natural sciences most probably stem from unfamiliar, unrecog-

nized, or unknown complexities in the interdependencies of the physical world. Dif-

ficulties in the social sciences most often stem from complexities of the social real-

ity. But when a computer scientist encounters problems, the difficulties stem pre-

dominantly from computer scientists' earlier work—computer scientists have

brought about the clarity or complexity of their own discipline. Earlier theoretical,

conceptual, and design choices in computer science define the basis for future chal-

lenges. Computer scientists are much more responsible for the complexity of com-

puter science than physicists, chemists, biologists, sociologists, or anthropologists

are responsible for the complexity of their disciplines.

Computer scientists are particularly good at mastering complexity in strictly

bounded realms (microcosmoses), but computer scientists invariably fail at coales-

cing a number of microcosmoses into coherent systems (macrocosmoses). Techno-

logical microcosmoses are based on exactitude, predictability, discreteness, and de-

terminism, and complexity is manageable in microcosmoses in which all variables

can be controlled. Although computational microcosmoses can be made very exact

and unambiguous, when one moves outward to study larger entities such as com-

puter networks, ambiguity and unpredictability increases.

The unpredictability in very large systems does not come only from design flaws on

single abstraction layers, but also from the ambiguity of interconnections between

semantic levels. In the largest-scale macrocosmoses, unpredictability comes from

the world outside the computational boundaries—power outages, electric interfer-

ence, faulty machinery and cabling, intentional actors (humans), transmission errors,

faulty machinery and code, and even “malicious” code and malicious intentional act-

ors. In many branches of computer science, researchers cannot count upon the ex-

actitude, predictability, discreteness, and determinism of computational systems.

Computer science is an extraordinarily dynamic field. The objects that computer

scientists study are dynamic, and computer science as a field is extraordinarily dy-

446

namic. Programmers constantly reshape the conceptual framework (constructions)

of computer science, they constantly generate new ways of applying computing (re-

lationships), and they regularly develop new theories, models, and tools for their

purposes. In other words, dynamism is an integral part of the constructions that

computer scientists create, but also an integral part of the autopoïetic construction of

computer science. Dynamism is an integral part of relationships between the objects

of computer science, but also an integral part of relating computer science to its sur-

roundings.

Because it is very hard to define computer science in any categorical manner, as a

very general rule one could argue that if research aims at honing the theories, prac-

tices, models, philosophy, or other aspects of automatic computing, then that re-

search is computer science. Because it is impossible to circumscribe the methodo-

logy proper of computer science, it does not matter what methods and standpoints a

computer scientist uses for studying computer science as long as the research is

aimed at the benefit of computer science. I argue that it would be irresponsible to

deny any (ethical) methodology at any point of time because people do not know

which methodologies may reveal unexpected features of computing. Granted, it is

easy to question the characterization of computer science above by asking, for in-

stance, “What exactly is computing?”, “What if a study benefits many disciplines?”,

and “How can one tell what contributes to computing and what does not?”. Ulti-

mately, the scientific community always decides what is computer science and what

is not (yet the community usually does not agree).

Proofs and Assertions

A computer scientist can run an extensive array of tests and become convinced about

the statistical correlation between some variables. Descriptive claims, such as “The

amount of experimentation correlates positively with the speed, reliability, and us-

ability of software”, can be based on such tests. However, the argument that experi-

mentation is beneficial for computer science cannot be based on experimentation,

because statements of beneficialness are value statements.

Normative statements cannot be based on consensus or definitions (what value state-

ments can be based on is indeed a debated issue). Normative statements follow a set

of rules different from descriptive statements; for instance, they require establishing

447

desirability and credibility. Certainly, one can increase the credibility of normative

arguments in computer science with broad experimentation, cross-checking of res-

ults, elimination of superfluous variables and external inference, valid inference, in-

dependent confirmations, and a good fit with existing knowledge, but ultimately the

acceptance of normative arguments is based on human judgment.

It is unlikely that outside axiomatic systems, assertions can be proven correct. Also,

falsificationism fails to capture the essence of scientific justification. Statements

such as “GO TOs increase code entropy” and “Good modularization reduces mainten-

ance costs” are examples of statements that are very difficult to put into a falsifiable

form, and in a falsifiable form they may not be very useful anymore.

Even though computer science works according to Boolean logic, Boolean logic

hardly applies to all aspects of computer science. Unlike Turing-computation, mod-

ern computing is not of the form “input-process-output”, but a mesh of interrelated,

interactive, complex, chaotic systems of actors. The actors in that mesh are com-

puters and other instruments, but the actors are also people and natural phenomena

that interact with computers through a variety of interfaces. The causal systems that

computers are a part of, and in which computers interact, are non-discrete, non-quan-

tifiable, sometimes intentional, uncertain, dynamic, and exceedingly complex.

Qualitative questions and ambiguities cannot be exorcised from even the most quant-

itative studies of computer science. Computational instruments and their semantic

content are created for a purpose (they exist for some purpose), and they work ac-

cording to some imperfect, simplified, pruned models of reality. Programmers cre-

ate static models from a dynamic, complex, and infinite world, and it is impossible

to copy-paste aspects of dynamic reality into a static model without losing some

qualities of those dynamic aspects. Even mathematical and scientific theories are

made for some purposes, they entail hidden assumptions, and their acceptance is a

matter of belief.

Theories, models of computation, and tools are not intentional, but theories, models,

and tools are constructed by scientists who are intentional. If there are any practical

purposes or intentions behind constructing things, then those things cannot be fully

understood without understanding the practical purposes or intentions that motivated

their creation in the first place. Specifically, one cannot fully understand the func-

448

tion of the computer without understanding the intentions of its designers. Granted,

one can understand the functioning of the computer, or how the computer works,

without knowing the intentions of the designers of the computer. But one cannot

know with certainty the function of the computer without knowing the intentions of

those who designed it.

What Should Be Automated?

It has been argued that the most fundamental question underlying all of computer

science is “What can be (effectively) automated?”. Taking into account the develop-

ment of computing towards user-, human-, or value-centered computing, the afore-

mentioned fundamental question is passé; it belongs to the realm of the old, ma-

chine-centered computing. I suggest that a more apt fundamental question underly-

ing all of human-centered computing should include the theoretical what, the prac-

tical how, and the ethical why. The fundamental question should be, “How can one

effectively automate processes that can be automated and that should be

automated?”.

The theoretical, practical, and ethical parts of the fundamental question are equally

difficult and equally important. The theoretical problem, “What can be

automated?”, is fundamentally unresolved and fundamentally difficult. In the prac-

tical problem, “How can one automate p?” the solution is usually underrepresented

by models, so the choice of the implementation depends on the practitioner's opin-

ion, experience, and proficiency. The ethical problem, “What should be

automated?”, requires a deep understanding of, for instance, the civic obligations,

duties, and liberties; the different conceptions of what is desirable and valuable; the

sociocultural differences between laws, norms, and morals; and so forth. Social is-

sues have, ever since the 1970s, been a recognized and important part of computer

science education, and social issues even have their own Computing Reviews cat-

egory (K).

An Efficient Anarchy

Methodological concerns do not play a crucial part in computer scientists' work.

Methodological descriptions are often omitted from research reports in computer sci-

ence. Computer science students usually learn their research skills from mentoring

by their professors and from imitating previous research. Typical computer science

449

curricula do not include courses on research methodology, yet computer scientists

utilize a wide array of research methods, and often combine methods in order to gain

a wider perspective on the topic. In a sense, many computer scientists might be

characterized as bricoleurs—as researchers who work between competing

paradigms. However, it is not certain if the resulting bricolage is valid from the per-

spective of any of the research approaches entailed in the bricolage.

The community of computer scientists has not in the past conformed, and does not

currently conform, to any major philosophies of science. The diversity of research

approaches necessary to computer science renders computer science a methodologic-

ally and epistemologically eclectic discipline. Based on the methodological and epi-

stemological nonconformity of computer scientists, computer scientists can be char-

acterized as opportunists. The eclecticism and opportunism of computer science,

combined with conscious breaches of methodological and epistemological norms,

render computer science an anarchistic enterprise.

The computer scientist-as-a-bricoleur should be familiar with a number of

paradigms, but also be aware that paradigms are more or less incompatible. Scientif-

ic paradigms; which are comprised of particular ontological, epistemological, and

methodological views; cannot easily be mixed. Although much of the innately inter-

disciplinary research in computer science can be characterized as bricolage, the

training of computer scientists does not prepare them for research with multiple

paradigms. It is even dubious whether the general training of computer scientists

prepares them for research within any single paradigm.

Informed anarchism need not be detrimental to science though. Interdisciplinary

work was crucial in the shift from electromechanical computation to electronic com-

putation; interdisciplinarity also spurred new ideas within traditional disciplines. I

argue that an eclectic combination of incommensurable crafts and sciences creates an

ontological, epistemological, and methodological anarchy, which inhibits dogmatism

because no ontology, epistemology, or methodology can claim superiority over oth-

ers. In an interdisciplinary situation many theoretical or metatheoretical issues,

counterarguments, alternatives, or disciplinary controversies have to be elided for

practical reasons. Superficial knowledge about powerful ideas enables researchers

to utilize concepts or innovations without getting mired in field-specific debates.

450

But utilizing superficial knowledge also elevates the risk for interdisciplinary re-

searchers to get mired in problems that an expert would avoid, adopting folk theor-

ems as laws, and using research methods in superficial, incorrect, and contradictory

ways.

Since 1945 computer scientists have deepened both the theoretical and technical

knowledge about computing, and computer science has also worked as a catalyst in

the creation of new research fields and spurred research in other disciplines. I argue

that computer science has been efficient because of anarchism, not despite it. An-

archism has been woven tightly into the fabric of computer science from the begin-

ning of early electronic digital computing. For example, the birth of the stored-pro-

gram-paradigm was a result of a successful combination of a number of epistemolo-

gically and methodologically incompatible disciplines such as logic, electrical engin-

eering, mathematics, physics, and radio technology. Since 1945 computer science

has been influenced by a large and eclectic bunch of disciplines.

Many innovations in computer science have been spurred despite the lack of support

by the academic establishment, and sometimes even despite strong opposition by the

establishment. In addition, without anarchism in computer science, the innofusion of

many innovations in computer science could have been much slower, and some in-

novations might have not been introduced at all. For instance, computer scientists

widely adopted Dijkstra's the “GO TO statement considered harmful” hypothesis

without ever testing it empirically.

The dogmatic demand for reducibility or “instant clarity” in computing is a

hindrance for (at least) two reasons: one practical, one ideological. Practically

speaking, if new ideas in computing have to be explained in terms of current aca-

demic computer science, the power of expression of new concepts is reduced to the

power of expression of current academic computer science. In other words, the de-

mand for reducibility sets an upper limit for what can be expressed by any new the-

ory, and that limit is bounded by what can be expressed through the science of that

time. Ideologically speaking, the demand for instant clarity elevates academic com-

puter science to the intellectual standard status. If one demands instant clarity, any

concept that cannot be clarified by showing a counterpart in current science is auto-

matically considered to be inferior in comparison to the concepts of current science.

451

The above-mentioned anti-dogmatic arguments against the demand of reducibility

are well in line with the fact that a dogmatic view of computer science contradicts a

number of ideals of science, such as scientists' freedom to set their own goals, to pur-

sue their inquiries in a field of their choice, or to choose whatever approaches they

feel are necessary for their work. A requirement of instant clarity from research—

requiring that research results must be explainable in terms of preordained, select

theoretical and conceptual frameworks—is clearly untenable. There cannot be radic-

ally new innovations if new ideas are bound to the explanatory power of computer

science as it exists at a given time.

In some circles there is a high degree of confidence in the explanatory power of

computer science when applied to the wide array of fields of scientific and human

inquiry. Consequently, there are tendencies to extend computational explanations to

different disciplines. Computational models of social reality may be very useful in

offering alternative explanations of social interactions. However, an algorithmiza-

tion of the humanities and social sciences; when combined with a hierarchical view

of sciences, a systematic deprecation of interpretive modes of explanation, and an

enthroning of logico-mathematical inference; is nothing short of a forceful occupa-

tion of intellectual territory. This intellectual takeover has chauvinistic characterist-

ics when it comes coupled with an asymmetric, systematic denial of sociocultural in-

terpretations of computing.

Constructionism and Intersubjectivism

Certainly, my framework is not a structurist or an inevitabilist one, but a construc-

tionist one. In examining the development of computing, I consider the circum-

stances in which development happens to influence and shape development. The so-

ciocultural, academic, and political environments (and all other environments) of re-

searchers affect the directions and forms that computing and computational theories

take. Indeed, these environments make development possible in the first place.

There is no “natural direction” towards which the development of computing neces-

sarily must head but the development of computing is subordinate to certain cultural,

social, historical, political, ideological, institutional, economic, technological, and

scientific milieux.

452

Constructionism has some ramifications for my thesis. It offers a basis for my ana-

lysis of the development of computing. In the constructionist framework, studies of

computing from perspectives from disciplines such as sociology, history, anthropo-

logy, or philosophy can offer insights into why computing is what it is. But con-

structionism also confines my research to a certain framework. I conduct my re-

search and make my conclusions within the constructionist framework, and my argu-

ments may not be cogent outside the constructionist framework.

My work also works within the intersubjectivist framework. Theoretically speaking,

if the adequacy of research results to different disciplines is regarded as one measure

of research, then any critique of research results must be recognized, regardless of

the field on which the critique is based. The higher the intersubjective disagreement

about a given theory, technique, or theory of an instrument, the lower the credibility

of that theory, technique, or theory of an instrument. The intersubjectivist position is

not a relativist position; there can still be apposite critique and irrelevant critique,

and there can still be well-founded critique and groundless critique.

Practically speaking, it might not make much difference whether a critique of re-

search is freely based on any certain field, intellectual tradition, or school—academ-

ic, non-academic, expert, or non-expert alike. In practice, different conceptual and

theoretical frameworks are incommensurable to some degree and people in different

trades have different concerns. For instance, sociological concepts and theories are

not very efficient for evaluating integrals, and mathematical proofs are of little use

for evaluating claims about human-computer interaction. Furthermore, sociologists

may not usually be interested in evaluating mathematicians' work and vice versa.

Computer Science in Society

Computers and digital communication technologies are an everyday part of Western

people's lives, and they weave well into the fabric of modern Western economies,

work, socialization, leisure time, governing, media, and many other aspects of life.

There is a vast amount of research on how the use of information and communica-

tion technologies changes societal phenomena. Today's researchers have few ex-

cuses for not controlling the ramifications that using computer technology has on so-

cieties.

453

Although technology per se is value-free, the development and the use of technolo-

gies are always processes in which the developers and users of technology have a

number of motivations. Unlike technologies, conscious human actions are not

value-free. There is a distinction between technology per se and the production or

use of technology. Technologies are unintentional objects and concepts and uninten-

tional objects and concepts do not have morals. Technologies per se are no more

good, evil, benevolent, or malicious than they are happy, sad, angry, or meek. This

is not to say that the designers of technology are free of responsibility. The design-

ers of technologies have motivations and morals and they must, with the users of

technologies, carry the responsibility and the pang of conscience that come from cre-

ating technologies that can be used for unethical purposes. Although computer sci-

entists cannot be held responsible for the unintended consequences or unforeseen

malicious uses of technology, they must be held responsible for the foreseeable ef-

fects and side-effects of technology, and they must be able to justify their choices.

Computer science, as an institution, must be governed by similar safeguards that

govern other quarters of modern democracies. Computer science is not separate

from society, but it affects society and is affected by society. Computer science can-

not be élitist and accountable only to itself; as an institution that is run at society's

expense and that is an irrevocable part of society, computer science must also be ac-

countable to society.

If anyone can be accountable for what kinds of technologies are created, ultimately

the ones accountable are those who create technology. In a society where computing

technology is a catalyst of change, computer scientists—who understand the restric-

tions, capabilities, prospects, and threats of computing technology better than anyone

else—must also take responsibility for the technology they create. However, the

chances are that the methodological, conceptual, and theoretical frameworks of com-

puter science turn out to be insufficient to deal with the changes brought about by

the computer revolution. The chances are also that the frameworks of computer sci-

ence turn out to be insufficient for selecting, recording, understanding, explaining,

analyzing, or predicting phenomena in the field of human affairs.

454

Social Studies of Computer Science

Computer science and computing technologies are products of phenomena that can-

not be fully explained using only computational theories and concepts. One cannot

understand why many parts of computer science are what they are without under-

standing their history because computer science is always produced in some philo-

sophical, historical, and sociocultural framework. Any portrayal of computer sci-

ence is a historically, culturally, and societally specific image. For instance, one

cannot explain the design and diffusion of a programming language by referring to

computational theories. Understanding the design and diffusion of concepts and

technologies of computer science often requires understanding their history and the

original motivations that provided the impetus for their development in the first

place.

Historical methods can be utilized in order to retrospectively appreciate the reasons

computer science has shaped as it has. Understanding the sociohistorical roots of

computer science is important because sociohistorical understanding offers import-

ant “lessons learned”; sociohistorical understanding can be used to trace concepts

and technologies to their origins in challenges, controversies, and discussions and

thus helps one to judge which developments are contingent and which are necessary;

it enables one to discover parallels and analogies to modern technology that can be

used for reassess current and future developments; it makes it possible to link hap-

penings and assess the reasons for those happenings; and instead of a gallery of

“milestones”, it portrays a picture of living computer science, with all its nuances,

controversies, debates, and power struggles.

Whereas historical methods offer insight into the past of computing, ethnomethodo-

logical research offers insight into the present. Regardless of whether one accepts

that computer science has rules or not, how computer science is actually done may

be a different story altogether. Ethnomethodological studies of computer science

aim at explicating the actual processes of constructing and managing knowledge in

computer science—that is, the in situ or tacit methodology of computer science.

Ethnomethodological research delves into the tacit, ambiguous, and complex prac-

tices of, for instance, creating, maintaining, using, abusing, proving, refuting, negoti-

ating, accommodating, appropriating, and contextualizing knowledge.

455

Ethnomethodological approaches can expose how the philosophical, theoretical, con-

ceptual, and methodological frameworks of computer science are created, main-

tained, and managed. For instance, ethnomethodological studies may reveal the

manners in which new innovations are conceptualized by groups of computer scient-

ists and other stakeholders; the processes through which conceptual consensus is

achieved; how epistemologically subjective results in computer science are commu-

nicated, confirmed, adopted, objectified, and institutionalized into epistemologically

objective facts; the knowledge transmission channels between academic and non-

academic stakeholders; how computer science qua knowledge gives meaning to

computer science qua activity and the results of computer science; how computer

science qua activity generates computer science qua knowledge; and how both intra-

scientific and extra-scientific contradictions are dealt with. In a word, ethnomethod-

ological studies shed light on the very foundations of knowledge creation and main-

tenance in the computing disciplines.

After the Second World War systems engineering was developed as a response to the

problems that arose when the complexity of systems exceeded the skills of a single

person. Social studies of computer science must follow the same development lines.

In explaining the ontological, epistemological, or methodological assumptions that

the designs of a system may incorporate, social studies of computer science must be

able to explain groups, not only individuals. That is, when one wants to explicate

the intentions behind building a complex system, collective intentions and perhaps

multiple intentions need to be catered for. The intentions and motivations for con-

structing the system may be heterogeneous and conflicting. Ethnographic methods

offer a tool for, for instance, ethnomethodological studies, and it has been used in,

for instance, understanding the processes and dynamics behind computer architec-

ture and systems design.

Ethnographic methods are used in describing and interpreting social phenomena—

such as ways of working, group relationships, communication, metaphors, and

tropes. Researchers doing ethnographic research usually explore phenomena rather

than test hypotheses, emphasize unstructured data instead of analytic categories, fo-

cus on detailed cases instead of large populations, and explicitly interpret the mean-

ings and functions of human actions. Ethnographic methods can be utilized in order

to examine patterns of production of scientific results, innovation, and standards in

456

computer science in their rich sociohistorical contexts; it can be utilized to study

mechanisms of technological production, design, adoption, rejection, diffusion, non-

diffusion, and so forth; and it can be used today to examine and document the early

formation of a new discipline.

In social studies of computer science, ethnographic methods may help to elicit the

perspectives, realities, and group interactions of computer scientists. Those per-

spectives, realities, and group interactions may reveal some aspects in the practices

of computer scientists that have direct consequences on computer science qua know-

ledge. That is, ethnography can explain how computer scientists and other stake-

holders create computer science and computing technology.

The crux of sociological, historical, anthropological, and philosophical research is

not numbers and proofs. That is because the subjects of disciplines such as soci-

ology, history, anthropology, and philosophy are often not well-structured, logical,

coherent, or well-defined. This is not to say that quantitative methods or mixed-

methods would not have their place in social studies of computer science; disciplines

such as sociology and anthropology successfully utilize a wide array of quantitative

methods too. Quantitative methods and qualitative methods are useful for different

purposes. Social studies of computer science can be about exploring and interpret-

ing, but they can also be about explaining and predicting.

Social studies of computer science can aim at revealing the nuances, ambiguities,

and contradictions of single cases, but social studies of computer science can equally

well aim at generalizing. Single cases can be informative about the hows and whys

of technoscience. It is indeed common in the philosophy of science to draw from in-

strumental, historical case studies and to engage in analytical discourse about what

those cases reveal about science in general.

The Promise of Social Studies of Computer Science

Disciplinary self-understanding is an essential part of a scientific discipline. Social

studies of computer science, as portrayed in this thesis, is an essential part of the dis-

ciplinary self-understanding of computer science. It produces meta-knowledge

about computer science. It helps computer scientists to understand the degree to

which aspects of computer science rely on brute facts and the degree to which as-

pects of computer science rely on social constructs. It allows researchers (but does

457

not force anyone) to adopt a realist philosophy, while researchers can maintain that

statements about reality are always socially constructed. It offers alternative angles

on computer science qua knowledge and qua activity. It allows one to be critical

about technological determinism, milestones, and machinery, and it helps one to un-

derstand the synthetic character of theories and technologies. Social studies of com-

puter science may not help one to understand the raw functioning of technology, but

it does allow one to see the big picture—the whys and hows of computer science.

Instead of being a source of radically new ideas about automatic computation, social

studies of computer science is a matter of disciplinary honesty and self-understand-

ing. Social studies of computer science might not provide many answers to the tech-

nical questions of computer science, such as “Can process p be automated?”, “What

is the most efficient implementation for automating process p?”, or “What kind of

interface for instrument i creates the least cognitive overhead?”. The logico-math-

ematical, modeling-based, and design-oriented branches of computer science can de-

liver answers to those questions. It is not, however, clear if computer science can

explain itself. It is not clear if computer science as a theory-methodology can ex-

plain computer science as a socially constructed phenomenon.

Social studies of computer science study those aspects of computer science that are

beyond the reach of computational theories, design, or modeling. Social studies of

computer science pose questions such as “Why is the form and function of n as it

is?”, “Which aspects of computer science are contingent and why?”, “Why have

some programming languages diffused better than others?”, and “What are the reas-

ons behind the dominance of the stored-program paradigm?”. Those questions can-

not be answered from solely logico-mathematical, design, or modeling points of

view. The answers to those questions require, for instance, sociological, historical,

anthropological, and philosophical approaches.

There are two essential arguments for the inclusion of social studies of computer sci-

ence into the official body of knowledge of computer science. The first argument is

a practical argument: Computer science is already being studied successfully from

the perspectives of sociology, history, anthropology, and philosophy—therefore ac-

knowledging the status of social studies of computer science is just a formal stamp

of approval. The second argument is an ideological argument: Restricting possibly

458

fruitful viewpoints can be detrimental to science, and therefore acknowledging the

status of social studies of computer science is an obligation, not a concession.

If one agrees that the acceptance of scientific statements is not solely based on the

credibility of the statements themselves, but on their fit to the existing framework of

science, society, and the physical world, one can argue that social studies of com-

puter science can capture something unique about the mangle of computer science.

That is, social studies of computer science can reveal how computer science is cre-

ated and maintained. It can explain how the statements in computer scientists are

externalized, objectified, internalized, and reified—that is, how computer scientists

produce things that are afterwards perceived as something other than human

products. It can explicate implicit assumptions, shared attitudes, and tacit know-

ledge. It can produce unique meta-knowledge of computer science. Meta-know-

ledge is an important aspect of understanding computer science because it can offer

insight into even the most insightful theories of computer science.

Social studies of computer science can be considered to be studies which situate and

investigate computer science in its social, historical, cultural, linguistic, political,

economic, and other socially constructed frameworks. The aim of social studies of

computer science is to offer a view of computer science in which not merely techno-

logical and theoretical aspects of computer science, but also sociocultural factors, are

explicitly taken into consideration. Although social studies of computer science en-

tails some constructionist features, as an umbrella term for different kinds of studies,

social studies of computer science is philosophically uncommitted. Specific pieces

of research within social studies of computer science can, of course, be committed to

specific research philosophies.

Honing theories, practices, models, philosophy, or other aspects of computing can be

done from two angles. First, one can study the subjects of computer science and

hope to reveal something new about those subjects. Second, one can study research

in computer science and hope to reveal something in the workings of computer sci-

ence that reveals either new aspects about the subjects of computer science or about

computer science. The former angle is called research and the latter angle might be

called meta-research. The former, research, can be, for instance, studies which de-

scribe, analyze, revise, or refute the subjects of computer science (e.g., algorithms,

459

interfaces, or architectures). The latter, meta-research, can be, for instance, studies

which describe how computer science researchers work and arguments which de-

scribe how computer science researchers should work if they want their science to

flourish.

Much of social studies of computer science is meta-research. The aim of social stud-

ies of computer science can be to enhance or enrich the understanding of subjects of

computer science, but the aim can also be to reveal something about computer sci-

ence as activity or to refine the frameworks of computer science. The aim of social

studies of computer science is not refinement of, say, sociological, historical, anthro-

pological, or philosophical theories. Social studies of computer science need not

clash with existing body of computer science knowledge, but it offers alternative

viewpoints to the topics of computer science, portrays reasons and causes in com-

puter science, and builds meta-knowledge about computer science. In this sense, so-

cial studies of computer science may question the legitimacy and foundations of

some aspects of computer science.

It is often difficult to find a suitable category in the ACM Computing Classification

System for the existing pieces of research that can be considered to be social studies

of computer science. There is no category for studies that contribute to computer

science and that entail a sociocultural perspective or produce meta-knowledge about

computer science. Because there already are a good variety of studies that borrow

tools from the social sciences and humanities, that produce unique socioculturally

sensible information about the knowledge as well as the construction of knowledge

in computer science, and that clearly belong to computer science, there is a need for

category K.9 (Social Studies of Computer Science) in the ACM classification system.

Tagging a publication K.9 would indicate the choice of a sociological, historical, an-

thropological, philosophical, or other social sciences or humanities-based perspect-

ive and the production of meta-knowledge about computer science. The subcategor-

ies K.9.* can denote the types of research more specifically.

460

Epilogue

My research questions, presented in Chapter One, were

Question 1: Is there a need to broaden computer science with perspectives

from disciplines such as sociology, history, anthropology, or philosophy?

Question 2: If there is a need to broaden computer science, what kind of ar-

guments support such an extension?

Question 3: What consequences may a broad, socioculturally receptive view

have on computer science?

My answer to the first question is yes, and I outline the arguments for Question 2 be-

low. Computer science is a broad discipline, and many aspects of computer science

are under dispute. I have discussed debates about, for instance, the content, form,

methodologies, methods, epistemological status of results, inference patterns, se-

mantics, standards, focus, education, modes of argumentation, logic of justification,

and conventions for settling scientific disputes in computer science. I have also dis-

cussed the ways in which computer science and technology develop, and argued that

a wide array of factors influence technoscientific development in computer science.

Those factors include not only technoscientific, but also non-technical and non-sci-

entific factors such as societal, economic, cultural, institutional, ideological, politic-

al, philosophical, and ethical factors.

I have argued that neither the form and practices in current computer science nor the

elements of development of computer science are fully explainable using the con-

ceptual-theoretical framework of computation and technology. If it is important for

computer science that there is an understanding of the ways in which computer sci-

entists create, maintain, and manage knowledge in computing and an understanding

of how theories and technologies have developed and develop, then computer scient-

ists need methods that are rooted in disciplines such as sociology, history, anthropo-

logy, and philosophy.

As a consequence of acknowledging a socioculturally receptive view; regardless of

whether the methods of sociology, history, anthropology, and philosophy are already

a part of computer science or not; their role in offering disciplinary insight must be

acknowledged (Question 3). This is best done by adding a new category to the ACM

461

Computing Classification System: K.9 (Social Studies of Computer Science), which

would be an indication of research that aims at contributing to computer science by

producing unique socioculturally sensible information about knowledge and know-

ledge-construction in computer science.

I have offered clear answers to all my three research questions. Simplified: (1)

There is a need to extend computer science, because (2) profound disciplinary self-

understanding requires utilizing socioculturally receptive methods of inquiry. Con-

sequently, in order to officially acknowledge the importance of meta-knowledge of

computer science (3) social studies of computer science should be acknowledged as

a field of study in the ACM Computing Classification System.

My research was theoretical and it followed the tradition of philosophical hermen-

eutics. I have formed a conceptual framework, traced some contingent elements in

the history of a number of innovations and changes in computing, and situated those

historical elements in my conceptual framework. The literature in this thesis is typ-

ical of science and technology studies, and the majority of my sources deal with

central issues, or have been in a central position, in the development of computer sci-

ence. I have coupled my critical interpretation of the history and development of

computing with an analysis of those central issues.

My argument is in line with the current research trends in the field of science and

technology studies. The consequences I propose are congruent with the develop-

ments in, for instance, the sociology of scientific knowledge, the philosophy of sci-

ence, the philosophy of technology, and the history of technology. However, during

the course of this research topics have arisen that deserve more attention. I outline

some of the questions below I believe are most central to my argument.

Firstly, a more thorough review of existing research in social studies of computer

science would be useful, and it might lead to a classification or a taxonomy of differ-

ent kinds of studies of social studies of computer science. It might also be interest-

ing to see how those studies have been classified in the ACM Computing Classifica-

tion System as it stands.

Secondly, a wider analysis of research approaches that could be utilized in develop-

ing the disciplinary identity and self-understanding of computer science would be

useful. In this thesis I have taken only a few examples from qualitative approaches,

462

but the possible contribution and limitations of a wider array of qualitative and

quantitative methods, as well as an analysis of mixed-methods studies, would

strengthen the prospects of social studies of computer science by building a strong

methodological basis.

Thirdly, the philosophy of computer science needs development. Currently the

philosophy of computer science is seriously underdeveloped. The philosophy of

computer science is not the philosophy of artificial intelligence, the philosophy of

computing, or the philosophy of science. There is a need for a philosophical frame-

work that focuses specifically on computer science and that can cater to the ec-

lecticism of computer science. There is a need for a philosophy of computer science

that can accommodate the theoretical, empirical, design-based, and metatheoretical

strands of computer science.

463

References

Abu-Lughod, Lila (1991) Writing Against Culture. In Richard G. Fox (ed.) (1991): "Recapturing Anthropology. Working in the

Present": pp. 137-60.

Ackoff, Russell L. (1978) The Art of Problem Solving . John Wiley & Sons, Inc.: New York.

Agar, M.H. (2001) Ethnography. In Smelser & Baltes (eds.) (2001): "International Encyclopedia of the Social & Behavioral

Sciences Vol.7": pp. 4857-4862.

Agre, Philip E. (1995) From High Tech to Human Tech: Empowerment, Measurement, and Social Studies of Computing.

Computer Supported Cooperative Work (CSCW) 3(2): pp. 167-195.

AHD (2004) The American Heritage Dictionary of English Language Online (2004). Available at http://www.bartleby.com/61

Alavi, Maryam; Carlson, Patricia (1992) A Review of MIS Research and Disciplinary Development. Journal of Management

Information Systems 8(4): pp. 45-62.

Alt, Franz L. (1962) Fifteen Years ACM. Communications of the ACM 5(6): pp. 300-307.

Anderson, David P.; Cobb, Jeff; Korpela, Eric; Lebofsky, Matt; Werthimer, Dan (2002) SETI@home: An Experiment in Public-

Resource Computing. Communications of the ACM 45(11): pp. 56-61.

Arden, Bruce W. (ed.) (1980) What Can Be Automated?: Computer Science and Engineering Research Study . MIT Press:

Cambridge, MA, USA.

Argamon, Shlomo; Olsen, Mark (2006) Toward Meaningful Computing. Communications of the ACM 49(4): pp. 33-35.

Aris, John (2000) Inventing Systems Engineering. IEEE Annals of the History of Computing 22(3): pp. 4-15.

Arnold, Lola M. (1989) Item Selection From Menus: The Influence of Menu Organization, Query Interpretation, and

Programming Experience on Selection Strategies. SIGCHI Bulletin 21(1): pp. 81-85.

Arora, Sanjeev; Chazelle, Bernard (2005) Is the Thrill Gone?. Communications of the ACM 48(8): pp. 31-33.

Arthur, W. Brian (1999) Competing Technologies and Economic Prediction. In MacKenzie, Donald; Wajcman, Judy (eds.)

(1999): "The Social Shaping of Technology": pp. 106-112.

Ascher, Marcia; Ascher, Robert (1981) Mathematics of the Incas: Code of the Quipu . Dover: Mineola, NY, USA.

Ascher, Marcia (2002) Mathematics Elsewhere: An Exploration of Ideas Across Cultures . Princeton University Press: Princeton,

New Jersey, USA.

Asner, Glen R. (2004) The Linear Model, the U.S. Department of Defense, and the Golden Age of Industrial Research. In

Grandin et al. (eds.) (2004): "The Science-Industry Nexus: History, Policy, Implications": pp. 3-30.

Aspray, William (2000) Was Early Entry a Competitive Advantage? US Universities That Entered Computing in the 1940s.

IEEE Annals of the History of Computing 22(3): pp. 42-87.

Atchison, William F.; Conte, Samuel D.; Hamblen, John W.; Hull, Thomas E.; Keenan, Thomas A.; Kehl, William B.;

McCluskey, Edward J.; Navarro, Silvio O.; Rheinboldt, Werner C.; Schweppe, Earl J.; Viavant William; Young, David M. (1968)

Curriculum '68, Recommendations for Academic Programs in Computer Science. Communications of the ACM 11(3): pp. 151-

197.

Atkinson, Paul; Hammersley, Martyn (1994) Ethnography and Participant Observation. In Denzin, Norman K.; Lincoln, Yvonna

S. (eds.) (1994): "Handbook of Qualitative Research": pp. 248-261.

Austing, Richard H.; Barnes, Bruce H.; Engel, Gerald L. (1977) A Survey of the Literature in Computer Science Education Since

Curriculum '68. Communications of the ACM 20(1): pp. 13-21.

464

Austing, Richard H.; Barnes, Bruce H.; Bonnette, Della T.; Engel, Gerald L.; Stokes, Gordon (1977b) Curriculum

Recommendations for the Undergraduate Program in Computer Science: A Working Report of the ACM Committee on

Curriculum in Computer Science. ACM SIGCSE Bulletin 9(2): pp. 1-16.

Austing, Richard H.; Barnes, Bruce H.; Bonnette, Della T.; Engel, Gerald L.; Stokes, Gordon (eds.) (1979) Curriculum '78:

Recommendations for the Undergraduate Program in Computer Science. Communications of the ACM 22(3): pp. 147-166.

Avison, David; Lau, Francis; Myers, Michael; Nielsen, Peter Axel (1999) Action Research. Communications of the ACM 42(1):

pp. 94-97.

Backus, J. W.; Bauer, F. L.; Green, J.; Katz, C.; McCarthy, J.; Perlis, A. J.; Rutishauser, H.; Samelson, K.; Vauquois, B.;

Wegstein, J. H; van Wijngaarden, A.; Woodger, M.; Nauer, P. (1963) Revised report on the algorithm language ALGOL 60 .

Communications of the ACM 6(1): pp. 1-17.

Backus, John W. (1959) The Syntax and Semantics of the Proposed International Algebraic Language of the Zurich ACM-

GAMM Conference. (UNESCO) Information Processing: Proceedings of the International Conference on Information

Processing. June 15-20, Paris, France: pp. 125-132.

Backus, John (1978) Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its Algebra of

Programs. Communications of the ACM 21(8): pp. 613-641.

Backus, John (1981) The History of Fortran I, II, and III. In Wexelblat, 1981: "History of Programming Languages": pp. 25-45.

Baecker, Ronald M.; Grudin, Jonathan; Buxton, William A.S.; Greenberg, Saul (eds.) (1995) Readings in Human-Computer

Interaction: Toward the Year 2000 (2nd ed.). Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA.

Bamford, Greg (1993) Popper's Explications of Ad Hocness: Circularity, Empirical Content, and Scientific Practice. British

Journal for the Philosophy of Science 44(2): pp. 335-355.

Bar-El, Hagai; Choukri, Hamid; Naccache, David; Tunstall, Michael; Whelan, Claire (2004) The Sorcerer's Apprentice Guide to

Fault Attacks. (Proceedings of the) Workshop on Fault Detection and Tolerance in Cryptography. June 30, 2004, Florence, Italy:

pp. N/A. Available at Cryptology ePrint Archive: Report 2004/100.

Barnes, Barry; Bloor, David; Henry, John (1996) Scientific Knowledge: A Sociological Analysis . The University of Chicago

Press: London, UK.

Baskerville, Richard; Stage, Jan; DeGross, Janice I. (eds.) (2000) Organizational and Social Perspectives on Information

Technology . Kluwer Academic Publishers: Norwell, Mass., USA.

Baskerville, Richard L. (1999) Investigating Information Systems with Action Research. Communications of AIS 2(article 19):

pp. 2-31.

Bauer, F.L.; Wössner, H. (1972) The "Plankalkül" of Konrad Zuse: A Forerunner of Today's Programming Languages.

Communications of the ACM 15(7): pp. 678-685.

Bauer, Walter F.; Juncosa, Mario L.; Perlis, Alan J. (1959) ACM Publication Policies and Plans. Journal of the ACM 6(2): pp.

121-122.

Bemer, Robert W. (1984) Computing Prior to FORTRAN. Annals of the History of Computing 6(1): pp. 16-18.

Ben-Ari, Mordechai (2001) Constructivism in Computer Science Education. Journal of Computers in Mathematics and Science

Teaching 20(1): pp. 45-73.

Berger, Peter L.; Luckmann, Thomas (1966) The Social Construction of Reality: A Treatise in the Sociology of Knowledge .

Allen Lane: London, UK.

Bergin, Thomas J., Jr.; Gibson, Richard G., Jr. (eds.) (1996) History of Programming Languages II . ACM Press: New York, NY,

USA.

Berkeley, George (1971 [1734]) A Treatise Concerning the Principles of Human Knowledge . The Scolar Press ltd.: Menston,

Yorkshire, England.

Berman, Gennady P.; Doolen, Gary D.; Mainieri, Ronnie; Tsifrinovich, Vladimir I. (1998) Introduction to Quantum Computers .

World Scientific: Singapore.

Bernard, H. Russell (1995) Research Methods in Anthropology: Qualitative and Quantitative Approaches (2nd ed.). AltaMira

Press: Oxford, England.

465

Beynon, Meurig; Russ, Steve (1995 [1994]) Empirical Modelling of Requirements . Warwick University, Department of

Computer Science Research Reports CS-RR-277: Warwick, UK.

Bhatt, Chetan (2004) Doing a Dissertation. In Seale, Clive (ed.) (2004): "Researching Society and Culture (2nd ed.)": pp. 410-

430.

Bijker, Wiebe E.; Law, John (eds.) (1992) Shaping Technology / Building Society. Studies in Sociotechnical Change . MIT

Press: Cambridge, Mass., USA.

Bijker, Wiebe E.; Hughes, Thomas P.; Pinch, Trevor J. (eds.) (1987) The Social Construction of Technological Systems: New

Directions in the Sociology and History of Technology . MIT Press: Cambridge, MA, USA.

Bijker, Wiebe E. (1992) The Social Construction of Fluorescent Lighting, or How an Artifact Was Invented in Its Diffusion

Stage. In Bijker and Law (eds.) (1992): "Shaping Technology / Building Society: Studies in Sociotechnical Change": pp. 75-101.

Bimber, Bruce (1994) Three Faces of Technological Determinism. In Smith, Merritt Roe and Marx, Leo (eds.) (1994): "Does

Technology Drive History? The Dilemma of Technological Determinism": pp. 80-100.

Bloor, David (1971) Two Paradigms For Scientific Knowledge?. Science Studies 1971(1): pp. 101-115.

Bloor, David (1976) Knowledge and Social Imagery . Routledge & Kegan Paul: London.

Bloor, David (1996) Idealism and the Sociology of Knowledge. Social Studies of Science 26(4): pp. 839-856.

Bobrow, Daniel G.; Hayes, Patrick J. (1985) Artificial Intelligence - Where Are We?. Artificial Intelligence 25(1985): pp. 375-

415.

Borba, Marcelo C. (1990) Ethnomathematics and Education. For the Learning of Mathematics 10(1): pp. 39-43.

Bouillon, Hardy (1998) Book review: "Gunnar Andersson, Criticism and the History of Science. Kuhn's, Lakatos's, and

Feyerabend's Criticisms of Critical Rationalism". Journal for General Philosophy of Science 29(1998): pp. 133-135.

Bowker, Geof (1993) How to be Universal: Some Cybernetic Strategies, 1943-70. Social Studies of Science 23(1): pp. 107-127.

Bowles, Mark D. (1996) U.S. Technological Enthusiasm and the British Technological Skepticism in the Age of the Analog

Brain. IEEE Annals of the History of Computing 18(4): pp. 5-15.

Bowyer, Adrian (2006) Who Do You Trust? (Letter to CACM Forum). Communications of the ACM 49(5): pp. 13.

Bremer, Manuel E. (2003) Do Logical Truths Carry Information?. Minds and Machines 13(2003): pp. 567-575.

Brent, Edward; Thompson, Alan; Vale, Whitley (2000) A Computational Approach to Sociological Explanations. Social Science

Computer Review 18(2): pp. 223-235.

Brey, Philip (2003) The Social Ontology of Virtual Environments. American Journal of Economics and Sociology 62(1): pp.

269-282.

Bright, Herbert S. (1984) Early FORTRAN User Experience. Annals of the History of Computing 6(1): pp. 28-30.

Brooks, Frederick P., Jr. (1975) The Mythical Man-Month: Essays on Software Engineering . Addison-Wesley: Reading, Mass.,

USA.

Brooks, Frederick P., Jr. (1996) The Computer Scientist as Toolsmith II. Communications of the ACM 39(3): pp. 61-68.

Brookshear, J. Glenn (2003) Computer Science: an overview (7th edition). Addison-Wesley: New York.

Brumann, Christoph (1999) Writing for Culture: Why a Successful Concept Should Not Be Discarded. Current Anthropology

40(Supplement/February): pp. S1-S27.

Bucchi, Massimiano (2004) Science in Society: An Introduction to Social Studies of Science . Routledge: London and New York.

Bunge, Mario (1979 [2003]) Philosophical Inputs and Outputs of Technology. In Scharff & Dusek (eds.) (2003): "Philosophy of

Technology: The Technological Condition": pp. 172-181.

Bunge, Mario (1998) Philosophy of Science (revised ed.) Vol. 2: From Explanation to Justification . Transaction Publishers:

New Brunswick .

Burnette, Charles (2004) Forum: Put Cognitive Models in CS and Its Curricula. Communications of the ACM 47(2): pp. 12.

466

Bush, Vannevar (1945) As We May Think. The Atlantic Monthly July(s.n.): pp. n.a..

"C.J.A." (1967) In Defense of Programmers. Datamation (Letters to the Editor) 13(9): pp. 15.

Campbell-Kelly, Martin; Aspray, William (2004) Computer: A History of the Information Machine (2nd ed.). Westview Press:

Oxford, UK.

Campbell-Kelly, Martin; Williams, Michael R. (1985 [1946]) The Moore School Lectures . The MIT Press: Cambridge, Mass.,

USA.

Carr, John W. Jr. (1957) Inaugural Presidential Address. Journal of the ACM 4(1): pp. 5-7.

Castel, Felipe (2002) Ontological Computing. Communications of the ACM 45(2): pp. 29-30.

Castells, Manuel (1996) The Information Age: Economy, Society and Culture, Volume I: The Rise of the Network Society (2nd

ed.). Blackwell Publishing: UK.

Castells, Manuel (1997) The Information Age: Economy, Society and Culture, Volume II: The Power of Identity (2nd ed.).

Blackwell Publishing: UK.

Castells, Manuel (1998) The Information Age: Economy, Society and Culture, Volume III: End of Millennium (2nd ed.).

Blackwell Publishing: UK.

Castells, Manuel (2000) Materials for an Exploratory Theory of the Network Society. The British Journal of Sociology 51(1): pp.

5-24.

Castells, Manuel (2001) The Internet Galaxy: Reflections on the Internet, Business, and Society . Oxford Press: Oxford, Great

Britain.

Ceruzzi, Paul (1997) Crossing the Divide: Architectural Issues and the Emergence of the Stored Program Computer, 1935-1955.

IEEE Annals of the History of Computing 19(1): pp. 5-12.

Ceruzzi, Paul (1999 [1996]) Inventing Personal Computer. In MacKenzie, Donald; Wajcman, Judy: "The Social Shaping of

Technology": pp. 64-86.

Chalmers, Alan F. (1976 [1999]) What is This Thing Called Science? (3rd. edition). University of Queensland Press: Queensland,

Australia.

Charniak, Eugene; McDermott, Drew (1985) Introduction to Artificial Intelligence . Addison-Wesley: Reading, Mass., USA.

Choudrie, Jyoti; Dwivedi, Yogesh Kumar (2005) Investigating the Research Approaches for Examining Technology Adoption

Issues. Journal of Research Practice 1(1): pp. Article D1.

Civin, Michael (2000) Male, Female, Email: The Struggle for Relatedness in a Paranoid Society . Other Press: New York, NY,

USA.

Clayman, S.E. (2001) Ethnomethodology: General. In Smelser, Neil J.; Baltes, Paul B. (eds.) (2001): "International Encyclopedia

of the Social & Behavioral Sciences vol.7": pp. 4865-4870.

Cleland, Carol E. (2001) Recipes, Algorithms, and Programs. Minds and Machines 11(2): pp. 219-237.

Clements, Alan (2000 [1985]) The Principles of Computer Hardware (3rd ed., uncorrected preliminary edition). Oxford

University Press: New York, NY, USA.

Cockton, Gilbert (2004) Value-Centred HCI. (ACM) Proceedings of the NordiCHI '04. October 23rd-27th 2004, Tampere,

Finland: pp. 149-160.

Cohen, Morris R.; Nagel, Ernest (1934) An Introduction to Logic and Scientific Method . Hartcourt, Brace & World: New York,

USA.

Cohen, I. Bernard (1998) Howard Aiken on the Number of Computers Needed for the Nation. IEEE Annals of the History of

Computing 20(3): pp. 27-32.

Colburn, Timothy R. (2000) Philosophy and Computer Science . M.E. Sharpe: Armonk, NY, USA.

Collins, Francis S.; Morgan, Michael; Patrinos, Aristides (2003) The Human Genome Project: Lessons from Large-Scale Biology.

Science 300(5617): pp. 286-290.

467

Comrie, Leslie John (1944) Recent Progress in Scientific Computing. Journal of Scientific Instruments 21(8): pp. 129-135.

Conklin, Harold C. (1968) Ethnography. In Sills, David L. (ed.) (1968): "International Encyclopedia of the Social Sciences

vol.5": pp. 172-178.

Conte, S.D.; Hamblen, John W.; Kehl, William B.; Navarro, Silvio O.; Rheinboldt, Werner C.; Young, David M.; Atchinson

William F. (1965) An Undergraduate Program in Computer Science - Preliminary Recommendations. Communications of the

ACM 8(9): pp. 543-552.

Copeland, B. Jack; Proudfoot, Diane (2000) What Turing Did after He Invented the Universal Turing Machine. Journal of Logic,

Language, and Information 9(4): pp. 491-509.

Copeland, B. Jack; Sylvan, Richard (1999) Beyond the Universal Turing Machine. Australasian Journal of Philosophy 77(1): pp.

46-67.

Copeland, B. Jack (1997) The Broad Conception of Computation. American Behavioral Scientist 40(6): pp. 690-716.

Copeland, B. Jack (2002) Hypercomputation. Minds and Machines 12(4): pp. 461-502.

Copeland, B. Jack (2004) Unfair to Aiken. IEEE Annals of the History of Computing 26(4): pp. 35-37.

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (1998) Introduction to Algorithms . The MIT Press: Cambridge,

Masschusetts.

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (2001) Introduction to Algorithms (Russian translation) . MIT

Press: Moscow, Russia.

Correll, Quentin (1958) Letters to the Editor. Communications of the ACM 1(7): pp. 2.

Cortada, James W. (1993) Before the Computer: IBM, NCR, Burroughs, and the Industry They Created, 1865-1956 . Princeton

University Press: Princeton, N.J., USA. (Cited in Ceruzzi, 1997; original unavailable)

Couvalis, George (1997) The Philosophy of Science: Science and Objectivity . Sage Publications: London, UK.

Crabtree, Andy; Nichols, David M.; O'Brien, Jon; Rouncefield, Mark; Twidale, Michael B. (2000) Ethnomethodologically

Informed Ethnography and Information System Design. Journal of the American Society for Information Science 51(7): pp. 666-

682.

Crabtree, Andy (2004) Taking Technomethodology Seriously: Hybrid Change in the Ethnomethodology-Design Relationship.

European Journal of Information Systems 13(3): pp. 195-209.

Croarken, Mary G. (1992) The Emergence of Computing Science Research and Teaching at Cambridge, 1936-1949. IEEE Annals

of the History of Computing 14(4): pp. 10-15.

Croarken, Mary (1993) The Beginnings of the Manchester Computer Phenomenon: People and Influences. IEEE Annals of the

History of Computing 15(3): pp. 9-16.

Crowcroft, Jon (2005) On the Nature of Computing. Communications of the ACM 48(2): pp. 19-20.

Cusumano, Michael A. (2004) Reflections on Free and Open Software. Communications of the ACM 47(10): pp. 25-27.

Datamation (1962) Editor's Readout: The Certified Public Programmer. Datamation 8(3): pp. 23-24.

Davis, Ronald L. (1977) Recommended Mathematical Topics for Computer Science Majors. ACM SIGCSE Bulletin 9(3): pp.

51-55.

Day, James (1993) Theoretical Research. In Nickerson, Eileen (ed.) (1993): "The Dissertation Handbook": pp. 76-87.

De Meuter, Wolfgang; Costanza, Pascal; Devos, Martine; Thomas, Dave (2002) Feyerabend: Redefining Computing. Lecture

Notes in Computer Science (Springer-Verlag) 2548(Jan 2002): pp. 197-202.

De Millo, Richard A.; Lipton, Richard J.; Perlis, Alan J. (1979) Social Processes and Proofs of Theorems and Programs.

Communications of the ACM 22(5): pp. 271-280.

Denning, Peter J. & Metcalfe, Robert M. (eds.) (1997) Beyond Calculation: The Next Fifty Years of Computing . Springer-

Verlag: New York, NY, USA.

468

Denning, Peter J. (Chairman); Comer, Douglas E.; Gries, David; Mulder, Michael C.; Tucker, Allen; Turner, A. Joe; Young, Paul

R. (1989) Computing as a Discipline. Communications of the ACM 32(1): pp. 9-23.

Denning, Peter J.; Chang, Carl (chairmen) and CC2001 Task Force (2001) Computing Curricula 2001 . IEEE and ACM.

Available on-line at www.computer.org: .

Denning, Peter J. (1980) On Folk Theorems, and Folk Myths. Communications of the ACM 23(9): pp. 493-494.

Denning, Peter J. (1980b) What is Experimental Computer Science?. Communications of the ACM 23(10): pp. 534-544.

Denning, Peter J. (1985) The Science of Computing: What is computer science?. American Scientist 73(Jan.-Feb.): pp. 16-19.

Denning, Peter J. (1991) Computing, Applications, and Computational Science. Communications of the ACM 34(10): pp. 129-

131.

Denning, Peter J. (1992) Educating a New Engineer. Communications of the ACM 35(12): pp. 82-97.

Denning, Peter J. (2003) Great Principles of Computing. Communications of the ACM 46(11): pp. 15-20.

Denning, Peter J. (2004) The Field of Programmers Myth. Communications of the ACM 47(7): pp. 15-20.

Denning, Peter (2004b) Forum: Author Responds. Communications of the ACM 47(2): pp. 12-13.

Denning, Peter (2005) Look Beyond Abstraction to Define Computing (Letter to CACM Forum). Communications of the ACM

48(5): pp. 11-12.

Denzin, Norman K.; Lincoln, Yvonna S. (eds.) (2005) The SAGE Handbook of Qualitative Research (3rd ed.). SAGE

Publications: London, UK.

Denzin, Norman K.; Lincoln, Yvonna S. (eds.) (1994) Handbook of Qualitative Research . SAGE: London.

Dertouzos, Michael L. (2001 [2002]) The Unfinished Revolution (Perennial paperback ed. 2002). Perennial / HarperCollins: New

York, NY, USA.

Desrosières, Alain (1996) Statistical Traditions: an Obstacle to International Comparisons?. In Hantrais, Linda; Mangen, Steen

(eds.) (1996): "Cross-national Research Methods in the Social Sciences": pp. 17-27.

Dijkstra, Edsger W. (1968) Go To Statement Considered Harmful. Communications of the ACM 11(3): pp. 147-148.

Dijkstra, Edsger W. (1968b) A Constructive Approach to the Problem of Program Correctness. BIT 8(1968): pp. 174-186.

Dijkstra, Edsger W. (1972) The Humble Programmer. Communications of the ACM 15(10): pp. 859-866.

Dijkstra, Edsger W. (1974) Programming as a Discipline of Mathematical Nature. American Mathematical Monthly 81(June-

July): pp. 608-612.

Dijkstra, Edsger W. (1975) Correctness Concerns And, Among Other Things, Why They Are Resented. (ACM) Proceedings of

the international conference on Reliable software. April 21 - 23, 1975, Los Angeles, California, USA: pp. 546-550.

Dijkstra, Edsger W. (1975b) How do we tell truths that might hurt?. In Dijkstra, Edsger W. (1982): "Selected Writings on

Computing: A Personal Perspective": pp. 129-131.

Dijkstra, Edsger W. (1982) Selected Writings on Computing: A Personal Perspective . Springer-Verlag: Germany.

Dijkstra, Edsger W. (1986) On a Cultural Gap. The Mathematical Intelligencer 8(1): pp. 48-52.

Dijkstra, Edsger W. (1987) Mathematicians and Computing Scientists: The Cultural Gap. Abacus 4(4): pp. 26-31.

Dijkstra, Edsger W. (1989) On the Cruelty of Really Teaching Computer Science. Communications of the ACM 32(12): pp.

1398-1404.

Dijkstra, Edsger W. (1999) Computing Science: Achievements and Challenges. ACM SIGAPP Applied Computing Review 7(2):

pp. 2-9.

Dijkstra, Edsger W. (2001) The End of Computing Science?. Communications of the ACM 44(3): pp. 92.

Dodig-Crnkovic, Gordana (2002) Scientific Methods in Computer Science. (Promote IT 2002) Proceedings of the Conference for

the Promotion of Research in IT at New Universities and at University Colleges in Sweden. April 22-24, Billingehus, Skövde,

Sweden: pp. 1D1.

469

Dodig-Crnkovic, Gordana (2003) Shifting the Paradigm of Philosophy of Science: Philosophy of Information and a New

Renaissance. Minds and Machines 13(2003): pp. 521-536.

Duhem, Pierre (1977 [1914]) The Aim and Structure of Physical Theory (2nd edition, 3rd reprint). Atheneum: New York, USA.

Dumas, Joseph S.; Redish, Janice C. (1999) A Practical Guide to Usability Testing (revised ed.) . Intellect: Portland, OR, USA.

Easton, Thomas A. (2006) Beyond the Algorithmization of the Sciences. Communications of the ACM 49(5): pp. 31-33.

Eaton, Robert J. (2004) The Internet Has Transformed the Economy. In Egendorf (ed.) (2004): "The Information Revolution:

Opposing Viewpoints": pp. 38-43.

Eckert, John Presper (1946) A Parallel Channel Computing Machine. In Campbell-Kelly, Martin; Williams, Michael R. (eds.)

(1985): "The Moore School Lectures": pp. 527-542.

Edson, Joanne; Greenstadt, John (editor-in-chief); Greenwald, Irwin; Jones, Fletcher R.; Wagner, Frank V. (eds.) (1956) SHARE

Reference Manual for the IBM 704 . Loose-leaf copy: IBM.

Egan, L.G. (1976) Closing the "Gap" Between the University and Industry in Computer Science. ACM SIGCSE Bulletin 8(4):

pp. 19-25.

Egendorf, Laura K (ed.) (2004) The Information Revolution: Opposing Viewpoints . Greenhaven Press: USA.

Eglash, Ron (1997) Bamana Sand Divination: Recursion in Ethnomathematics. American Anthropologist 99(1): pp. 112-122.

Eglash, Ron (1999) African Fractals: Modern Computing and Indigenous Design . Rutgers University Press: New Jersey, USA.

Eisenberg, Michael (2003) Creating a Computer Science Canon: a Course of "Classic" Readings in Computer Science. (ACM)

Proceedings of the SIGCSE '03 Conference. February 19-23, Reno, Nevada, USA: pp. 336-340.

Encyclopædia Britannica Online (2004). Available at www.eb.com

Ensmenger, Nathan L. (2001) The 'Question of Professionalism' in the Computer Fields. IEEE Annals of the History of

Computing 23(4): pp. 56-74.

Farrell, Robert P. (2001) Feyerabend's Metaphysics: Process-Realism, or Voluntarist-Idealism?. Journal for General Philosophy

of Science 32(2001): pp. 351-369.

Feferman, Solomon (ed.) (1986) Kurt Gödel: Collected Works, Volume I, Publications 1929-1936 . Oxford University Press:

New York, USA.

Ferry, Georgina (2003) A Computer Called LEO: Lyons Teashops and the World's First Office Computer . Fourth Estate:

London, UK.

Fetterman, David M. (2004) Ethnography. In Lewis-Beck et al. (eds.) (2004): "The SAGE Encyclopedia of Social Science

Research Methods Vol.1": pp. 328-332.

Fetzer, James H. (1988) Program Verification: The Very Idea. Communications of the ACM 31(9): pp. 1048-1063.

Feyerabend, Paul (1970) Consolations for the Specialist. In Lakatos and Musgrave (eds.): "Criticism and the Growth of

Knowledge": pp. 197-230.

Feyerabend, Paul (1975) How to Defend Society Against Science. Radical Philosophy 11 (Summer 1975): pp. 3-8.

Feyerabend, Paul (1987) Farewell to Reason . Verso: London, Great Britain.

Feyerabend, Paul (1993 [1975]) Against Method (3rd. edition). Verso: New York.

Feyerabend, Paul (1994) Art as a Product of Nature as a Work of Art. World Futures: The Journal of General Evolution

40(1994): pp. 87-100.

Feyerabend, Paul (1995) Killing Time: The Autobiography of Paul Feyerabend . The University of Chicago Press: Chicago and

London.

Finerman, Aaron (1970) Comment on Amsterdam IFIP Conference on Computer Education. Communications of the ACM

13(11): pp. 702.

470

Firestone, Joseph M.; McElroy, Mark W. (2003) Key Issues in the New Knowledge Management . Elsevier Science: Burlington,

MA, USA.

Fiske, John (1994) Audiencing: Cultural Practice and Cultural Studies. In Denzin, Norman K.; Lincoln, Yvonna S. (eds.) (1994):

"Handbook of Qualitative Research": pp. 189-198.

Flamm, Kenneth (1988) Creating the Computer: Government, Industry, and High Technology . Brookings Institution:

Washington, D.C., USA.

Fleck, James (1999) Learning by Trying: the Implementation of Configurational Technology. In MacKenzie, Donald; Wajcman,

Judy (eds.) (1999): "The Social Shaping of Technology": pp. 244-257.

Florida, Richard (2003) The Rise of the Creative Class: And How It's Transforming Work, Leisure, Community and Everyday

Life . Basic Books: New York, USA.

Floridi, Luciano (1999) Philosophy and Computing: an Introduction . Routledge: London.

Floridi, Luciano (2002) What is the Philosophy of Information?. Metaphilosophy 33(1-2): pp. 123-145.

Floridi, Luciano (2003) Two Approaches to the Philosophy of Information. Minds and Machines 13(2003): pp. 459-469.

Floridi, Luciano (ed.) (2004) The Blackwell Guide to the Philosophy of Computing and Information . Blackwell Publishing:

Cornwall, UK.

Floridi, Luciano (2004b) Information. In Floridi, Luciano (ed.) (2004): "The Blackwell Guide to the Philosophy of Computing

and Information": pp. 40-61.

Floyd, Robert W. (1979) The Paradigms of Programming. Communications of the ACM 22(8): pp. 455-460.

Forsythe, George E. (1967) A University's Educational Program in Computer Science. Communications of the ACM 10(1): pp.

3-11.

Forsythe, George E. (1968) What to Do Till the Computer Scientist Comes. American Mathematical Monthly 75(May 1968): pp.

454-461.

Forsythe, George (1969) Computer Science and Education. (IFIP) Proceedings of IFIP Congress 1968. August 5th-10th 1968,

Edinburgh, UK: pp. 92-106 (Volume 2).

Forsythe, Diana E. (1993) Engineering Knowledge: The Construction of Knowledge in Artificial Intelligence. Social Studies of

Science 23(3): pp. 445-477.

Fox, Richard G. (ed.) (1991) Recapturing Anthropology: Working in the Present . School of American Research: Santa Fe., New

Mexico, USA.

Frankston, Bob (1997) Beyond Limits. In Denning, Peter J; Metcalfe, Robert M. (eds.) (1997): "Beyond Calculation: The Next

Fifty Years of Computing": pp. 43-57.

Freeman, Peter; Hart, David (2004) A Science of Design for Software-Intensive Systems. Communications of the ACM 47(8):

pp. 19-21.

Freksa, Christian; Jantzen, Matthias; Valk, Rüdiger (eds.) (1997) Foundations of Computer Science: Potential-Theory-Cognition

(Lecture Notes in Computer Science 1337). Spinger-Verlag: Berlin, Germany.

Frenkel, Karen A. (1988) The Art And Science of Visualizing Data. Communications of the ACM 31(2): pp. 110-122.

Fuller, Steve (2003) Kuhn vs. Popper: The Struggle for the Soul of Science . Icon Books: UK.

Gabora, Liane (1995) Meme and Variations: A Computational Model of Cultural Evolution. In Nadel, Lynn; Stein, Daniel L

(eds.) (1995): "1993 Lectures in Complex Systems": pp. 471-485.

Gadamer, Hans-Georg (1976) Philosophical Hermeneutics (ed. Linge, David E.) . University of California Press: Berkeley, CA,

USA.

Gadamer, Hans-Georg (1982) Truth and Method . Crossroad: New York, NY, USA.

Gal-Ezer, Judith; Harel, David (1998) What (Else) Should CS Educators Know?. Communications of the ACM 41(9): pp. 77-84.

Galler, Bernard A. (1974) Distinction of Computer Science. Communications of the ACM 17(6): pp. 300.

471

Galliers, Robert D.; Land, Frank F. (1987) Choosing Appropriate Information Systems Research Methodologies.

Communications of the ACM 30(11): pp. 901-902.

Gardner, Howard (1993) Frames of Mind (2nd edition). Fontana Press: Glasgow, Great Britain.

Garfinkel, Harold (1967) Studies in Ethnomethodology . Prentice Hall: Englewood Cliffs, NJ, USA.

Gelernter, David (1998) Machine Beauty: Elegance and the Heart of Technology . Basic Books: New York, USA.

Gelernter, David (1998b) The Aesthetics of Computing . Weidenfeld & Nicolson: London, UK.

Gergen, Kenneth J. (1985) The Social Constructivionist Movement in Modern Psychology. American Psychologist 40(3): pp.

266-275.

Gibbs, Norman E.; Tucker, Allen B. (1986) A Model Curriculum for a Liberal Arts Degree in Computer Science.

Communications of the ACM 29(3): pp. 202-210.

Gingras, Yves (1997) The New Dialectics of Nature. Social Studies of Science 27(2): pp. 317-334.

Glaser, George(1974) Education 'Inadequate' for Business DP. In Computerworld VIII(45) (November 6th). By Holmes, Edith:

pp 1-2.

Glasersfeld, Ernst von (1995) Radical Constructivism: a Way of Knowing and Learning . The Falmer Press: London.

Glass, Robert L.; Ramesh, V.; Vessey, Iris (2004) An Analysis of Research in Computing Disciplines. Communications of the

ACM 47(6): pp. 89-94.

Glass, Robert L. (1995) A Structure-Based Critique of Contemporary Computing Research. Journal of Systems and Software

28(1995): pp. 3-7.

Glass, Robert L. (2005) "Silver bullet" Milestones in Software History. Communications of the ACM 48(8): pp. 15-18.

Gneiting, Tilmann; Raftery, Adrian E. (2005) Weather Forecasting with Ensemble Methods. Science 310(5746): pp. 248-249.

Godin, Benoît (1997) The Rhetoric of a Health Technology: The Microprocessor Patient Card. Social Studies of Science 27(6):

pp. 865-902.

Godwin, Mike (1999) From Washington: net to worry. Communications of the ACM 42(12): pp. 15-17.

Goldweber, Michael; Impagliazzo, John; Bogoiavlenski, Iouri A.; Clear, A.G.; Davies, Gordon; Flack, Hans; Myers, J. Paul;

Rasala, Richard (1997) Historical Perspectives on the Computing Curriculum. ACM SIGCUE Outlook 25(4): pp. 94-111.

Gottschalk, Louis (1950) Understanding History: A Primer of Historical Method (2nd ed.). Alfred A. Knopf, Inc.: New York,

USA.

Grandin, Karl; Wormbs, Nina; Widmalm, Sven (eds.) (2004) The Science-Industry Nexus: History, Policy, Implications . Science

History Publications / USA & The Nobel Foundation: Sagamore Beach, MA, USA.

Greenfield, Martin N. (1984) The Impact of FORTRAN Standardization. IEEE Annals of the History of Computing 6(1): pp. 33.

Grier, David Alan (1996) The ENIAC, the Verb "to program" and the Emergence of Digital Computers. IEEE Annals of the

History of Computing 18(1): pp. 51-55.

Grier, David Alan (2002) Twin Pillars of Computing. IEEE Annals of the History of Computing 24(3): pp. 87-88.

Grosch, Herb (1959) Plus & Minus. Datamation 5(6): pp. 51.

Grudin, Jonathan (1990) The Computer Reaches Out: The Historical Continuity of Interface Design. (ACM) Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems: Empowering People. April 1.-5., 1990, Seattle, Washington,

United States: pp. 261-268.

Gruninger, Michael; Lee, Jintae (2002) Special Issue on Ontology Applications and Design: Introduction. Communications of the

ACM 45(2): pp. 39-41.

Guba, Egon G.; Lincoln, Yvonne S. (1994) Competing Paradigms in Qualitative Research (Chapter six in Denzin & Lincoln

(eds.), 1994: pp.105-117) . SAGE Publications: .

472

Guntheroth, Kurt (2006) Only More Original Research Can Save Computer Science (Letter to CACM Forum). Communications

of the ACM 49(2): pp. 11.

Gödel, Kurt (1931) On Formally Undecidable Propositions of Principia Mathematica and Related Systems. In Feferman,

Solomon (ed.) (1986): "Kurt Gödel: Collected Works, Vol. I": pp. 145-195.

Hacking, Ian (1999) The Social Construction of What? . Harvard University Press: Cambridge, Mass..

Hamming, Richard W. (1969) One Man's View of Computer Science (ACM Turing Lecture). Journal of the Association for

Computing Machinery 16(1): pp. 3-12.

Hamming, Richard W. (1997) How to Think About Trends. In Denning, Peter J.; Metcalfe, Robert M. (eds.) (1997): "Beyond

Calculation: The Next Fifty Years of Computing": pp. 65-74.

Hampden-Turner, Charles; Trompenaars, Fons (1997) Response to Geert Hofstede. International Journal of Intercultural

Relations 21(1): pp. 149-159.

Hansen, Wilfred J. (1981) The Structure of "Data Structures". (ACM) ACM '81 Conference. November 9.-11., ACM Press, New

York, NY, USA: pp. 89-95.

Hantrais, Linda; Mangen, Stephen (eds.) (1996) Cross-national Research Methods in the Social Sciences . Pinter: New

York/London.

Haraway, Donna J. (1999 [1985]) Modest_Witness@Second_Millennium. In MacKenzie, Douglas; Wajcman, Judy (eds.) (1999):

"The Social Shaping of Technology": pp. 41-49.

Harel, David (1980) On Folk Theorems. Communications of the ACM 23(7): pp. 379-389.

Harré, Rom (1972) The Philosophies of Science: An Introductory Survey . Oxford University Press: Oxford, UK.

Harris, Don; Duffy, Vincent; Smith, Michael; Stephanidis, Constantine (eds.) (2003) Human-Centred Computing: Cognitive,

Social and Ergonomic Aspects, Vol. 3 . Lawrence Erlbaum Associates: New Jersey, USA.

Hartmanis, Juris (Chairman) (1992) Computing the Future. Communications of the ACM 35(11): pp. 30-40.

Hartmanis, Juris (1994) Turing Award Lecture: On Computational Complexity and the Nature of Computer Science.

Communications of the ACM 37(10): pp. 37-43.

Hartswood, Mark; Procter, Rob; Slack, Roger; Voß, Alex; Büscher, Monika; Rouncefield, Mark; Rouchy, Philippe (2002) Co-

Realization: Towards a Principled Synthesis of Ethnomethodology and Participatory Design. Scandinavian Journal of Information

Systems 14(2): pp. 9-30.

Heilbroner, Robert L. (1967) Do Machines Make History?. Technology and Culture 8(1967): pp. 335-345.

Heilbroner, Robert L. (1994) Technological Determinism Revisited. In Smith and Marx (eds.) (1994): "Does Technology Drive

History? The Dilemma of Technological Determinism": pp. 67-78.

Heim, Michael (1993) The Metaphysics of Virtual Reality . Oxford University Press: New York, USA.

Hennessy, John L.; Patterson, David A. (1996 [1990]) Computer Architecture: A Quantitative Approach (2nd ed.). Morgan

Kaufmann Publishers: San Francisco, USA.

Himanen, Pekka (2001) The Hacker Ethic - and the Spirit of the Information Age . Random House: New York, NY, USA.

Hirschheim, Rudy; Klein, Heinz K. (1989) Four Paradigms of Information Systems Development. Communications of the ACM

32(10): pp. 1199-1216.

Hitchcock, Christopher (ed.) (2004) Contemporary Debates in Philosophy of Science . Blackwell Publishing: Oxford, UK.

Hodder, Ian (1994) The Interpretation of Documents and Material Culture. In Denzin, Norman K.; Lincoln, Yvonna S. (eds.)

(1994): "Handbook of Qualitative Research": pp. 393-402.

Hofstadter, Richard (1968) History and Sociology: Some Methodological Considerations. In Lipset & Hofstadter (eds.) (1968):

"Sociology and History: Methods": pp. 3-19.

Hofstede, Geert (1997) Cultures and Organizations: Software of the Mind . McGraw-Hill: New York.

473

Holloway, C. Michael (1995) Software Engineering and Epistemology. ACM SIGSOFT Software Engineering Notes 20(2): pp.

20-21.

Holstein, James A.; Gubrium, Jaber F. (1994) Phenomenology, Ethnomethodology, and Interpretive Practice. In Denzin, Norman

K.; Lincoln, Yvonna S. (eds.) (1994): "Handbook of Qualitative Research": pp. 262-272.

Holstein, James A.; Gubrium, Jaber F. (eds.) (2003) Inner Lives and Social Worlds: Readings in Social Psychology . Oxford

University Press: New York, USA.

Honey, Margaret (2004) Technology Has Improved Education. In Egendorf (ed.) (2004): "The Information Revolution: Opposing

Viewpoints": pp. 70-78.

Hopcroft, John E. (1987) Computer Science: The Emergence of a Discipline (Turing Award Lecture). Communications of the

ACM 30(3): pp. 198-202.

Hopper, Grace Murray (1978) Keynote Address ACM SIGPLAN History of Programming Languages Conference, June 1-3,

1978. In Wexelblat, 1981 (ed.): "History of Programming Languages": pp. 7-20.

Horgan, John (1996) The End of Science: Facing the Limits of Knowledge in the Twilight of the Scientific Age . Broadway

Books: New York, USA.

Horowitz, Ellis; Morgan, Howard Lee; Shaw, Alan C. (1972) Computers and Society: a Proposed Course for Computer Scientists.

Communications of the ACM 15(4): pp. 257-261.

Householder, Alston S. (1956) Presidential Address to the ACM . Journal of the ACM 3(1): pp. 1-2.

Householder, Alston S. (1957) Retiring Presidential Address. Journal of the ACM 4(1): pp. 1-4.

Hughes, Pat M.; Cosier, Graham (2001) What Makes a Revolution? Disruptive Technology and Social Change. BT Technology

Journal 19(4): pp. 24-28.

Hughes, Thomas Parke (1983) Networks of Power: Electrification in Western Society, 1880-1930 . The Johns Hopkins University

Press: London.

Hughes, Thomas Parke (1994) Technological Momentum. In Smith and Marx (eds.) (1994): "Does Technology Drive History?

The Dilemma of Technological Determinism": pp. 101-114.

Hume, David (1739) A Treatise of Human Nature (ed. Penguin Books, 1969). Penguin Books: Aylesbury, UK.

Hume, David (1777[1748]) An Enquiry Concerning Human Understanding . Selby-Bigge: London, UK.

Hurley, Patrick J. (2000 [1982]) A Concise Introduction to Logic (7th edition). Wadsworth Publishing: Belmont (California).

Irving, Larry (2004) The Information Revolution Has Created a Digital Divide. In Egendorf (ed.) (2004): "The Information

Revolution: Opposing Viewpoints": pp. 21-30.

Jacobs, Struan (2003) Misunderstanding John Stuart Mill on science: Paul Feyerabend's bad influence. The Social Science Journal

40(2003): pp. 201-212.

Jehn, Lawrence A.; Rine, David C.; Sondak, Norman (1978) Computer Science and Engineering Education: Current Trends,

New Dimensions and Related Professional Programs. ACM SIGCSE Bulletin 10(3): pp. 162-178.

Johansson, Frans (2004) The Medici Effect: Breakthrough Insights at the Intersection of Ideas, Concepts, and Cultures . Harvard

Business School Press: Boston, Mass., USA.

Johnson, Deborah G.; Nissenbaum, Helen (eds.) (1995) Computers, Ethics & Social Values . Prentice-Hall: New Jersey, USA.

Johnson, R. Burke; Onwuegbuzie, Anthony J. (2004) Mixed Methods Research: A Research Paradigm Whose Time Has Come.

Educational Researcher 33(7): pp. 14-26.

Johnson, Robert R. (1998) User-Centered Technology: A Rhetorical Theory for Computer And Other Mundane Artifacts . State

University of New York Press: Albany, NY, USA.

Johnson, Ralph (2005) Share Open Source Sources (Letter to CACM Forum). Communications of the ACM 48(1): pp. 13.

Kamppuri, Minna; Tukiainen, Markku (2004) Culture in Human-Computer Interaction Studies: A survey of ideas and definitions.

(CaTac) Cultural Attitudes Towards Technology and Communication '04. June 27. - July1., Karlstad, Sweden: pp. 43-57.

474

Kamppuri, Minna; Tedre, Matti; Tukiainen, Markku (2006) Towards the Sixth Level in Interface Design: Understanding Culture.

(ACM) Proceedings of the CHI-SA 2006, 5th Conference on Human Computer Interaction in Southern Africa (ed. van Greunen,

Darelle). January 25th-27th 2006, Cape Town, South Africa: pp. 69-74.

Kamppuri, Minna; Tedre, Matti; Tukiainen, Markku (2006b) A Cultural Approach to Interface Design. (Koli Calling 2005)

Proceedings of the 5th Annual Finnish/Baltic Sea Conference on Computer Science Education. Nov. 17th-20th 2005, Koli,

Lieksa, Finland: pp. 149-152.

Kandel, Abraham (1972) Computer Science - A Vicious Circle. Communications of the ACM 15(6): pp. 470-471.

Kant, Immanuel (1966 [1781]) Critique of Pure Reason . Hackett: Indianapolis, USA.

Kavipurapu, Krishna M.; Frailey, Dennis J. (1979) Quantification of Architectures Using Software Science. ACM SIGARCH

Computer Architecture News 7(10): pp. 2-6.

Kay, Alan C. (2000) The computer revolution hasn't happened yet (keynote session). (ACM) Proceedings of the eighth ACM

international conference on Multimedia. March 10-14. 2001, Marina del Rey, California, USA: pp. 1.

Kelly, Kevin T.; Glymour, Clark (2004) Why Probability does not Capture the Logic of Scientific Justification. In Hitchcock,

Christopher (ed.) (2004): "Contemporary Debates in Philosophy of Science": pp. 95-114.

Kelsey, John; Schneier, Bruce; Wagner, David; Hall, Chris (2000) Side Channel Cryptanalysis of Product Ciphers. Journal of

Computer Security 8(2/3): pp. 141-158.

Kernighan, Brian W.; Ritchie, Dennis M. (1988) The C Programming Language (2nd ed.). Prentice Hall: Englewood Cliffs, NJ,

USA.

Kevles, Daniel J. (1987) The Physicists: The History of a Scientific Community in Modern America . Harvard University Press:

Cambridge, Mass., USA.

Khalil, Hatem; Levy, Leon S. (1978) The Academic Image of Computer Science. ACM SIGCSE Bulletin 10(2): pp. 31-33.

Kidder, John Tracy (1981) The Soul of a New Machine . Little, Brown, and co.: New York, NY, USA.

Kincaid, Harold (2004) There are Laws in the Social Sciences. In Hitchcock, Christopher (ed.) (2004): "Contemporary Debates in

Philosophy of Science": pp. 168-185.

Kitchenham, Barbara Ann (1996) Evaluating Software Engineering Methods and Tool (Part 1: The Evaluation Context and

Evaluation Methods). Software Engineering Notes 21(1): pp. 11-15.

Klawe, Maria; Shneiderman, Ben (2005) Crisis and Opportunity in Computer Science. Communications of the ACM 48(11): pp.

27-28.

Kline, Ronald; Pinch, Trevor (1999) The Social Construction of Technology. In MacKenzie, Douglas; Wajcman, Judy (eds.)

(1999): "The Social Shaping of Technology (2nd edition)": pp. 113-115.

Kline, Stephen J. (1985) What is Technology?. Bulletin of Science, Technology & Society 5(3): pp. 215-218.

Kling, Rob (1980) Social Analyses of Computing: Theoretical Perspectives in Recent Empirical Research. ACM Computing

Surveys 12(1): pp. 61-110.

Kling, Rob (ed.) (1996 [1991]) Computerization and Controversy: Value Conflicts and Social Choices (2nd ed.). Academic Press:

San Diego, CA, USA.

Knuth, Donald E. (1964) Backus Normal Form vs. Backus Naur Form. Communications of the ACM 7(12): pp. 735-736.

Knuth, Donald E. (1967) The Remaining Trouble Spots in ALGOL 60. Communications of the ACM 10(10): pp. 611-618.

Knuth, Donald E. (1968) The Art of Computer Programming Vol. 1 : Fundamental Algorithms (1st edition). Addison-Wesley:

Reading, Mass..

Knuth, Donald E. (1972) Ancient Babylonian Algorithms. Communications of the ACM 15(7): pp. 671-677.

Knuth, Donald E. (1972b) George Forsythe and the Development of Computer Science. Communications of the ACM 15(8): pp.

721-727.

Knuth, Donald E. (1974) Computer Science and its Relation to Mathematics. American Mathematical Monthly 81(Apr.1974):

pp. 323-343.

475

Knuth, Donald E. (1974b) Structured Programming with go to Statements. ACM Computing Surveys 6(4): pp. 261-301.

Knuth, Donald E. (1974c) Computer Programming as an Art. Communications of the ACM 17(12): pp. 667-673.

Knuth, Donald E. (1985) Algorithmic Thinking and Mathematical Thinking. American Mathematical Montly 92(March): pp.

170-181.

Knuth, Donald E. (1991) Theory and Practice. Theoretical Computer Science 90(1991): pp. 1-15.

Knuth, Donald E. (1992) Computer Programming and Computer Science. In Morris (ed.) (1992): "Academic Press Dictionary of

Science and Technology": pp. 490.

Knuth, Donald E. (1997 [1968]) The Art of Computer Programming Vol. 1 : Fundamental Algorithms (3rd edition). Addison-

Wesley: Reading, Mass., USA.

Knuth, Donald E. (1998) The Art of Computer Programming Vol. 2 : Seminumerical Algorithms (3rd edition). Addison-Wesley:

Reading, Mass..

Knuth, Donald E. (1998b) The Art of Computer Programming Vol. 3 : Sorting and Searching (2nd ed.). Addison-Wesley:

Reading, Mass., USA.

Knuth, Donald E. (2001) Things a Computer Scientist Rarely Talks About . CSLI Publications: Stanford, California.

Koen, Billy Vaughn (1987) Definition of the Engineering Method . American Society for Engineering Education: Washington,

D.C., USA.

Koen, Billy Vaughn (2003) Discussion of the Method: Conducting the Engineer's Approach to Problem Solving . Oxford

University Press: Oxford, UK.

Koepsell, David R. (2000) The Ontology of Cyberspace . Open Court: Chicago, USA.

Krampen, Martin; Seitz, Peter (eds.) (1967) Design and Planning II - Computers in Design and Communication . Hastings House:

New York, NY, USA.

Kugel, Peter (1988) Computer Science Departments in Trouble (Letters: ACM Forum). Communication of the ACM 31(3): pp.

243.

Kugel, Peter (2005) It's Time to Think Outside the Computational Box. Communications of the ACM (11): pp. 32-37.

Kuhn, Thomas (1970) Reflections on My Critics. In Lakatos and Musgrave (eds.): "Criticism and the Growth of Knowledge": pp.

231-278.

Kuhn, Thomas (1996 [1962]) The Structure of Scientific Revolutions (3rd edition). The University of Chicago Press: Chicago,

USA.

Lai, Vincent S.; Mahapatra, Radha K. (1997) Exploring the Research in Information Technology Implementation. Information &

Management 32(1997): pp. 187-201.

Lakatos, Imre; Musgrave, Alan (eds.) (1970) Criticism and the Growth of Knowledge . Cambridge University Press: London,

UK.

Lakatos, Imre (1970) Falsification and the Methodology of Scientific Research Programmes. In Lakatos, Imre; Musgrave; Alan

(eds.) (1970): "Criticism and the Growth of Knowledge": pp. 91-196.

Lakatos, Imre (1976) Proofs and Refutations: The Logic of Mathematical Discovery (eds. Worrall, John; Zahar, Elie). Cambridge

University Press: Cambridge, UK.

Land, Frank (2000) The First Business Computer: A Case Study in User-Driven Innovation. IEEE Annals of the History of

Computing 22(3): pp. 16-26.

Lash, Scott; Urry, John (1994) Economies of Signs and Space . Sage: London, UK.

Lee, Ed (1989) Some Suggestions on a Computer Science Undergraduate Curriculum. (IEEE) Proceedings of the COMPCON

Spring '89: 34th IEEE Computer Society International Conference: Intellectual Leverage. Feb.27-Mar.3, San Francisco, CA,

USA: pp. 366.

Lee, John A. N. (1996) "Those Who Forget the Lessons of History Are Doomed To Repeat It", or, Why I Study the History of

Computing. IEEE Annals of the History of Computing 18(2): pp. 54-62.

476

Lee, John A.N. (1996b) History in the Computer Science Curriculum. ACM SIGCSE Bulletin 28(2): pp. 15-20.

Leeser, Miriam (2004) Digital Logic. In Tucker, Allen B. (ed.) (2004): "Computer Science Handbook": pp. 16-1ff..

Lemon, M.C. (2003) Philosophy of History . Routledge: London / New York.

Leone, Bruno; Stalcup, Brenda; Barbour, Scott; Winters, Paul A.; Williams, Mary E. (eds.) (1998) The Information Revolution:

Opposing Viewpoints . Greenhaven Press: San Diego, California, USA.

Lerman, Steven R. (1993) Problem Solving and Computation for Scientists and Engineers . Prentice-Hall: New Jersey, USA.

Lethbridge, Timothy C. (2000) What Knowledge is Important to a Software Professional?. Computer 33(5): pp. 44-50.

Lévi-Strauss, Claude (1966 [1962]) The Savage Mind (2nd edition). University of Chicago Press: Chicago, USA.

Levinson, Paul (1998) Society Is Not Suffering from Information Overload. In Leone et al. (1998): "The Information Revolution:

Opposing Viewpoints": pp. 32-39.

Lewis, Harry R.; Papadimitriou, Christos H. (1998) Elements of the Theory of Computation . Prentice-Hall: New Jersey, USA.

Lewis-Beck, Michael S.; Bryman, Alan; Liao, Tim Futing (eds.) (2004) The SAGE Encyclopedia of Social Science Research

Methods . Sage Publications: Thousand Oaks, CA, USA.

Lévy, Pierre (1997) Collective Intelligence: Mankind's Emerging World in Cyberspace . Perseus Books: Cambridge, Mass., USA.

Lindsey, Charles H. (1996) A history of ALGOL 68. In Bergin, Thomas J.; Gibson, Richard G., Jr. (eds.) (1996): "History of

programming languages II": pp. 27-96.

Lipset, Seymour Martin; Hofstadter, Richard (1968) Sociology and History: Methods . Basic Books: New York / London.

Liu, Jiming (2004) Forum (Response to Denning). Communications of the ACM 47(2): pp. 12.

Loui, Michael C. (1995) Computer Science is a New Engineering Discipline. ACM Computing Surveys 27(1): pp. 31-32.

Loui, R.P. (1998) B.C. Smith's, On The Origin of Objects (Book Review). Artificial Intelligence 106(1998): pp. 353-358.

Lynch, Michael (1996) Ethnomethodology. In Kuper, Adam & Kuper, Jessica (eds.) (1996): "The Social Science Encyclopedia":

pp. 265-266.

Lynch, Michael (2004) Ethnomethodology. In Lewis-Beck et al. (eds.) (2004): "The SAGE Encyclopedia of Social Science

Research Methods, Vol.1": pp. 332-333.

MacKenzie, Donald; Wajcman, Judy (eds.) (1999) The Social Shaping of Technology (2nd edition). Open University Press:

England.

MacKenzie, Donald (1993) Negotiating Arithmetic, Constructing Proof: The Sociology of Mathematics and Information

Technology. Social Studies of Science 23(1): pp. 37-65.

MacKenzie, Donald (1999) Theories of Technology and the Abolition of Nuclear Weapons. In MacKenzie, Douglas; Wajcman,

Judy (eds.) (1999): "The Social Shaping of Technology (2nd edition)": pp. 419-442.

MacKinnon, Bryan (1988) The Computer Science Decline: What's Wrong (ACM Forum: Letters). Communications of the ACM

31(6): pp. 634-635.

MacLennan, Bruce (1999) Principles of Programming Languages: Design, Evaluation, and Implementation . Oxford University

Press: New York, NY, USA.

MacLennan, B.J. (2003) Transcending Turing Computability. Minds and Machines 13(2003): pp. 3-22.

Madani, Kurosh; de Tremiolles, Ghislain; Tannhof, Pascal (2001) ZISC-036 Neuro-processor Based Image Processing. In Mira,

José; Prieto, Alberto (eds.): "IWANN '01: Proceedings of the 6th International Work-Conference on Artificial and Natural Neural

Networks": pp. 200-207.

Mahmood, Mo Adam (2002) Advanced Topics in End User Computing . Idea Group: Hershey, PA, USA.

Marcus, Mitchell; Akera, Atsushi (1996) Exploring the Architecture of an Early Machine: The Historical Relevance of the

ENIAC Machine Architecture. IEEE Annals of the History of Computing 18(1): pp. 17-24.

477

Marcus, Aaron; Gould, Emilie West (2000) Crosscurrents: Cultural Dimensions and Global Web User-Interface Design. ACM

Interactions 7(4): pp. 32-46.

Marcuse, Herbert (1964) One-Dimensional Man . Beacon Press: Boston, USA.

Martin, C. Dianne (1993) The Myth of the Awesome Thinking Machine. Communications of the ACM 36(4): pp. 120-133.

Masterman, Margaret (1970) The Nature of a Paradigm. In : "Criticism and the Growth of Knowledge (Lakatos and Musgrave,

1970)": pp. 59-.

Matloff, Norman (2004) Globalization and the American IT Worker. Communications of the ACM 47(11): pp. 27-29.

Mauchly, John W. (1942) The Use of High Speed Vacuum Tube Devices for Calculating. In Randell, Brian (1975): "The Origins

of Digital Computers: Texts and Monographs in Computer Science": pp. 329-332.

Mauchly, John W. (1979) Amending the ENIAC Story. Datamation 1979(October): pp. 217-220.

McConnell, Steven C. (1993) Code Complete . Microsoft Press: Redmond, Washington, USA.

McGuffee, James W. (2000) Defining Computer Science. ACM SIGCSE Bulletin 32(2): pp. 74-76.

McKee, George (1995) Computer Science or Simply 'Computics'?. Computer (IEEE JNL) 28(12): pp. 136.

McLuhan, Marshall (1975 [1964]) Understanding Media: the Extensions of Man (fifth impression). Routledge: London, UK.

McSweeney, Brendan (2002) Hofstede's Model of National Cultural Differences and Their Consequences: A Triumph of Faith - a

Failure of Analysis. Human Relations 55(1): pp. 89-118.

Merrill, M. David (2000) Write Your Dissertation First and Other Essays on a Graduate Education. Available at

http://cito.byuh.edu/merrill/text/papers/GraduateEducation.pdf (accessed February 24th, 2006).

Michalewicz, Zbigniew; Fogel, David B. (2002 [2000]) How to Solve It: Modern Heuristics (corrected 3rd printing). Springer-

Verlag: Berlin, Germany.

Miller, George A. (1956) The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing

Information. The Psychological Review 63(1956): pp. 81-97.

Mills, C. Wright (2000 [1959]) The Sociological Imagination (Fortieth Anniversary Edition). Oxford University Press: New

York, USA.

Mingers, John (2001) Combining IS Research Methods: Towards a Pluralist Methodology. Information Systems Research 12(3):

pp. 240-259.

Mingers, John (2003) The Paucity of Multimethod Research: A Review of the Information Systems Literature. Information

Systems Journal 13(3): pp. 233-249.

Minsky, Marvin (1967) Why Programming is a Good Medium for Expressing Poorly Understood and Sloppily-Formulated Ideas.

In Krampen, Martin; Seitz, Peter (eds.) (1967): "Design and Planning II - Computers in Design and Communication": pp. 120-

125.

Minsky, Marvin (1970) ACM Turing Lecture: Form and Content in Computer Science. Journal of the Association for Computing

Machinery 17(2): pp. 197-215.

Minsky, Marvin L. (1979) Computer Science and the Representation of Knowledge. In Dertouzos, Michael L.; Moses, Joel: "The

Computer Age: A Twenty-Year View": pp. 392-421.

Mitcham, Carl (1994) Thinking Through Technology: The Path Between Engineering and Philosophy . The University of

Chicago Press: Chicago, USA.

Moor, James H. (1978) Three Myths of Computer Science. The British Journal for the Philosophy of Science 29(1978): pp. 213-

222.

Morris, Christopher (ed.) (1992) Academic Press Dictionary of Science and Technology . Academic Press: San Diego, CA, USA.

Morrison, Joline; George, Joey F. (1995) Exploring the Software Engineering Component in MIS Research. Communications of

the ACM 38(7): pp. 80-91.

478

Muller, Michael J.; Wildman, Daniel M.; White, Ellen A. (1993) Taxonomy of PD Practices: A Brief Practitioner's Guide.

Communications of the ACM 36(4): pp. 26-28.

Mumford, Lewis (1962 [1934]) Technics and Civilization . Harcourt, Brace & World: New York.

Myers, Glenford J. (1978) Advances in Computer Architecture . John Wiley & Sons: New York, NY, USA.

National Research Council (chaired by Hughes, Thomas) (1999) Funding a Revolution: Government Support for Computing

Research . National Academies Press: Washington, D.C., USA.

Naur, Peter & Randell, Brian (eds.) (1969) Software Engineering: Report on a Conference Sponsored by the Nato Science

Committee; Garmisch, Germany, 7th to 11th October 1968 . NATO Scientific Affairs Division: Brussels, Belgium.

Naur, Peter (ed.); Backus, J. W.; Bauer, F. L.; Green, J.; Katz, C.; McCarthy, J.; Perlis, A. J.; Rutishauser, H.; Samelson, K.;

Vauquois, B.; Wegstein, J. H.; Wijngaarden, A. van; Woodger, M. (1960) Report on the algorithmic language ALGOL 60.

Communications of the ACM 3(5): pp. 299 - 314.

Naur, Peter (1966) The Science of Datalogy (in Letters to the Editor). Communications of the ACM 9(7): pp. 485.

Naur, Peter (1969) Programming by Action Clusters. BIT 9(3): pp. 250-258.

Naur, Peter (1972) An Experiment on Program Development. BIT 12(3): pp. 347-365.

Naur, Peter (1981) The European Side of the Last Phase of the Development of ALGOL 60. In : "Wexelblat: History of

Programming Languages": pp. 92-139.

Naur, Peter (1992) Computing: A Human Activity . ACM Press: New York, NY, USA.

Needham, Joseph (1959) Science and Civilisation in China Vol.3 "Mathematics and the Sciences of the Heavens and the Earth" .

Cambridge University Press: Cambridge, Great Britain.

Negroponte, Nicholas (1995) Being Digital . Hodder & Stoughton: London, UK.

Neumann, John von (1945) First Draft of a report on the EDVAC. In Randell, Brian (1975): "The Origins of Digital Computers:

Texts and Monographs in Computer Science": pp. 355-364.

Newell, Allen; Perlis, Alan J.; Simon, Herbert A. (1967) Computer Science. Science 157(3795): pp. 1373-1374.

Nickerson, Eileen (ed.) (1993) The Dissertation Handbook: A Guide to Successful Dissertations . Kendall Hunt Publishing:

Dubuque, USA.

Noble, David F. (1999) Social Choice in Machine Design: The Case of Automatically Controlled Machine Tools. In MacKenzie,

Douglas; Wajcman, Judy (eds.) (1999): "The Social Shaping of Technology (2nd ed.)": pp. 161-176.

Norman, Donald A. (1997) Why It's Good That Computer Don't Work Like the Brain. In Denning, Peter J.; Metcalfe, Robert M.

(eds.) (1997): "Beyond Calculation: The Next Fifty Years of Computing": pp. 105-116.

Norman, Donald A. (2005) Human-Centered Design Considered Harmful. Interactions 12(4): pp. 14-19.

NSR Computer Science and Telecommunications Board (1999) Funding a Revolution: Government Support for Computing

Research . National Academy Press: Washington D.C., USA.

Olazaran, Mikel (1996) A Sociological Study of the Official History of the Perceptrons Controversy. Social Studies of Science

26(3): pp. 611-659.

Palvia, Prashant; Mao, En; Salam, A.F.; Soliman, Khalid (2003) Management Information Systems Research: What's There in a

Methodology?. Communications of the AIS 11(16): pp. 1-33 (Article 16).

Pan, Jin; Cranefield, Stephen; Carter, Daniel (2003) A Lightweight Ontology Repository. (ACM) Proceedings of the second

international joint conference on Autonomous agents and multiagent systems. July 14-18, 2003, Melbourne, Australia: pp. 632-

638.

Perlis, Alan J. (1981) The American Side of the Development of ALGOL. In : "Wexelblat, 1981: History of Programming

Languages": pp. 75-91.

Petersson, Tom (2005) Facit and the BESK Boys: Sweden's Computer Industry (1956-1962). IEEE Annals of the History of

Computing 27(4): pp. 23-30.

479

Piccinini, Gualtiero (2003) Alan Turing and the Mathematical Objection. Minds and Machines 13(2003): pp. 23-48.

Pickering, Andrew (1993) The Mangle of Practice: Agency and Emergence in the Sociology of Science. American Journal of

Sociology 99(3): pp. 559-589.

Pickering, Andrew (1995) The Mangle of Practice: Time, Agency, and Science . The University of Chicago Press: Chicago, USA.

Pinch, Trevor J.; Bijker, Wiebe E. (1987) The Social Construction of Facts and Artifacts: Or How the Sociology of Science and

the Sociology of Technology Might Benefit Each Other. In Bijker, Wiebe E.; Hughes, Thomas P.; Pinch, Trevor J. (eds.) (1987):

"The Social Construction of Technological Systems": pp. 17-50,349-372.

Pinker, Steven (2002) The Blank Slate: The Modern Denial of Human Nature . Penguin Books: New York.

Pitts, Gerald N.; Bateman, Barry (1974) A Software Oriented Computer Science Program. ACM SIGCSE Bulletin 6(1): pp. 33-

36.

Planck, Max (1949) Scientific Autobiography and Other Papers . Philosophical Library: New York, USA.

Polachek, Harry (1997) Before the ENIAC. IEEE Annals of the History of Computing 19(2): pp. 25-30.

Polanyi, Michael (1964 [1958]) Personal Knowledge: Towards a Post-Critical Philosophy (Torchbook edition). Harper

Torchbooks / The Academic Library: New York, USA.

Pólya, George (1957 [1945]) How to Solve It (2nd. edition). Penguin Books Ltd.: London, England.

Poon, Andy K.Y. (2006) Only More Original Research Can Save Computer Science (Letter to CACM Forum). Communications

of the ACM 49(2): pp. 11.

Popper, Karl (1959 [1935]) The Logic of Scientific Discovery . Routledge: London, Great Britain.

Popper, Karl (1970) Normal Science and its Dangers. In Lakatos, Imre; Musgrave, Alan (eds.): "Criticism and the Growth of

Knowledge": pp. 51-58.

Postley, John A. (1960) Letters to the Editor. Communications of the ACM 3(1): pp. A6.

Pour, Gilda; Griss, Martin L.; Lutz, Michael (2000) The Push to Make Software Engineering Respectable. Computer 33(5): pp.

35-43.

Pratt, Vernon (1987) Thinking Machines: The Evolution of Artificial Intelligence . Basil Blackwell Ltd.: Frome, Great Britain..

Preston, John (1997) Feyerabend's Retreat from Realism. Philosophy of Science 64(proceedings): pp. S421-S431.

Puchta, Susann (1996) On the Role of Mathematics and Mathematical Knowledge in the Invention of Vannevar Bush's Early

Analog Computers. IEEE Annals in the History of Computing 18(4): pp. 49-59.

Pugh, Emerson W.; Aspray, William (1996) Creating the Computer Industry. IEEE Annals of the History of Computing 18(2):

pp. 7-17.

Quine, Willard Van Orman (1960) Word and Object . The MIT Press: Mass., USA.

Quine, Willard Van Orman (1980 [1953]) From a Logical Point of View (2nd, revised edition). Harvard University Press:

Cambridge, Massachusetts.

Raatikainen, Kimmo (1992) Meidän on kysyttävä, mitä saa automatisoida. Tietojenkäsittelytiede 3(November 1992): pp. 51-57.

Rajlich, Václav; Wilde, Norman; Buckellew, Michelle; Page, Henry (2001) Software Cultures and Evolution. IEEE Computer

34(9): pp. 24-28.

Ralston, Anthony; Shaw, Mary (1980) Curriculum '78 - Is Computer Science Really that Unmathematical?. Communications of

the ACM 23(2): pp. 67-70.

Ralston, Anthony (1981) Computer Science, Mathematics, and the Undergraduate Curricula in Both. American Mathematical

Monthly 81(Aug.-Sept.): pp. 472-485.

Ramesh, V.; Glass, Robert L.; Vessey, Iris (2004) Research in Computer Science: An Empirical Study. The Journal of Systems

and Software 70(2004): pp. 165-176.

480

Randell, Brian () Software Engineering in 1968. (IEEE) Proceedings of the 4th international conference on Software engineering.

September 17th-19th, Munich, Germany: pp. 1-10.

Rapaport, William J. (2005) Philosophy of Computer Science: An Introductory Course. Teaching Philosophy 28(4): pp. 319-341.

Rawls, John (1971) A Theory of Justice . Harvard University Press: Cambridge, Mass., USA.

Reisch, George A. (1991) Did Kuhn Kill Logical Empiricism?. Philosophy of Science 58(1991): pp. 264-277.

Rescher, Nicholas (1998) Complexity: A Philosophical Overview . Transaction Publishers: New Brunswick, New Jersey, USA.

Rheingold, Howard (2003) Smart Mobs: The Next Social Revolution . Perseus Books: New York, NY, USA.

Rice, John R.; Rosen, Saul (2004) Computer Sciences at Purdue University - 1962 to 2000. IEEE Annals of the History of

Computing 26(2): pp. 48-61.

Rice, John R. (1993) Letter to the CACM Forum. Communications of the ACM 36(2): pp. 19.

Rogers, Everett M. (2003) Diffusion of Innovations (5th edition). Free Press: New York, NY.

Rojas, Raúl (1997) Konrad Zuse's Legacy: The Architecture of the Z1 and Z3. IEEE Annals of the History of Computing 19(2):

pp. 5-16.

Rosen, Saul (1969) Electronic Computers: a Historical Survey. ACM Computing Surveys 1(1): pp. 7-36.

Rosen, Saul (1972) Programming Systems and Languages 1965-1975. Communications of the ACM 15(7): pp. 591-600.

Rosenberg, Alex (2000) Philosophy of Science: A Contemporary Introduction (2nd ed.). Routledge: New York, NY, USA.

Rosenblatt, Bruce (1984) The Successors to FORTRAN: Why Does FORTRAN Survive?. Annals of the History of Computing

6(1): pp. 39-40.

Ross, Philip E. (2004) 5 Commandments (Technology Laws and Rules of Thumbs). IEEE Spectrum 40(12): pp. 30-35.

Rubin, Frank (1987) "GOTO Considered Harmful" Considered Harmful. Communications of the ACM 30(3): pp. 195-196.

Sadeh, Eligar (2002) Space Politics and Policy: An Evolutionary Perspective . Kluwer Academic Publishers: The Netherlands.

Sage, Andrew P. (1992) Systems Engineering . John Wiley & Sons, Inc.: New York, NY, USA.

Sammet, Jean E. (1969) Programming Languages: History and Fundamentals . Prentice-Hall, Inc.: Englewood Cliffs, New Jersey.

Sammet, Jean E. (1991) Some Approaches to, and Illustrations of, Programming Language History. Annals of the History of

Computing 13(1): pp. 33-50.

Samoladas, Joannis; Stamelos, Joannis; Angelis, Lefteris; Oikonomou, Apostolos (2004) Open Source Software Development

Should Strive for Even Greater Code Maintainability. Communications of the ACM 47(10): pp. 83-87.

Sánchez, J. Alfredo; Leggett, John J.; Schnase, John L. (1994) HyperActive: Extending an Open Hypermedia Architecture to

Support Agency. ACM Transactions on Computer-Human Interaction 1(4): pp. 357-382.

Saukko, Paula (2005) Methodologies for Cultural Studies: an Integrative Approach. In Denzin, Norman K.; Lincoln, Yvonna S.

(eds.) (2005): "The SAGE Handbook of Qualitative Research (3rd ed.)": pp. 343-356.

Saviani, D. (1985) Do senso comum a consciencia filosofica. Translation in Borba, 1990 . Cortez Editora: São Paulo, Brasil.

Savitch, Walter (2004) Problem Solving with C++: The Object of Programming (5th ed.). Addison-Wesley: Reading, Mass.,

USA.

Scharff, Robert C.; Dusek, Val (eds.) (2003) Philosophy of Technology: The Technological Condition . Blackwell Publishing:

Oxford, UK.

Scheutz, Matthias (ed.) (2002) Computationalism: New Directions . The MIT Press: Massachusetts, USA.

Scheutz, Matthias (2003) Computation, Philosophical Issues about. In Nadel, Lynn (ed.): "Encyclopedia of Cognitive Science":

pp. 604-610.

Schieber, Philip (1987) The Wit and Wisdom of Grace Hopper. The OCLC Newsletter 1987 March/April(167): pp. n/a.

481

Schreiber, Fabio A. (2005) The Cultural Roots of Computer Science (Letter to CACM Forum). Communications of the ACM

48(11): pp. 11-12.

Schwandt, Thomas A. (1994) Constructivist, Interpretivist Approaches to Human Inquiry. In Denzin, Norman K.; Lincoln,

Yvonna S. (eds.): "Handbook of Qualitative Research (1994)": pp. 118-135.

Seale, Clive (ed.) (2004) Researching Society & Culture (2nd edition). Sage: London, UK.

Searle, John R. (1964) How to Derive "Ought" From "Is". Philosophical Review 73(1): pp. 43-58.

Searle, John R. (1980) Minds, Brains, And Programs. The Behavioral And Brain Sciences 1980(3): pp. 417-457.

Searle, John R. (1983) Intentionality: an Essay in the Philosophy of Mind . Cambridge University Press: Cambridge.

Searle, John R. (1996) The Construction of Social Reality . Penguin Press: England.

Searle, John R. (2001) Refutation of Relativism. Available at http://ist-socrates.berkeley.edu/~jsearle/articles.html (accessed 22nd

Nov. 2005).

Shannon, Claude E. (1948) A Mathematical Theory of Communication. The Bell System Technical Journal 27(July, October):

pp. 379-423, 623-656.

Shannon, Claude E. (1950) The Lattice Theory of Information. Institute of Radio Engineers, Transactions on Information Theory

(Report of Proceedings, Symposium on Information Theory, London, Sept., 1950) 1(February, 1953): pp. 105-107.

Shapiro, Stewart (2000) Thinking About Mathematics: The Philosophy of Mathematics . Oxford University Press: Oxford, UK.

Shemer, Itzhak (1987) Systems Analysis: a Systemic Analysis of a Conceptual Model. Communications of the ACM 30(6): pp.

506-512.

Shirts, Michael; Pande, Vijay S. (2000) Screen Savers of the World Unite. Science 290(5498): pp. 1903-1904.

Shneiderman, Ben (2002) Leonardo's Laptop: Human Needs And the New Computing Technologies . The MIT Press:

Cambridge, Mass., USA.

Shrader-Frechette, Kristin (1992 [2003]) Technology and Ethics. In Scharff & Dusek (eds.) (2003): "Philosophy of Technology:

The Technological Condition": pp. 187-190.

Siefkes, Dirk (1997) Computer Science as Cultural Development. In Freksa, Christian; Jantzen, Matthias; Valk, Rüdiger (eds.)

(1997): "Foundations of Computer Science: Potential-Theory-Cognition": pp. 37-48.

Siegelmann, Hava T. (2003) Neural and Super-Turing Computing. Minds and Machines 13(2003): pp. 103-114.

Silberschatz, Abraham; Galvin, Peter Baer; Gagne, Greg (2002) Operating System Concepts (6th ed.). John Wiley & Sons: New

York, NY, USA.

Sills, David L. (ed.) (1968) International Encyclopedia of the Social Sciences . The MacMillan Company & The Free Press: USA.

Simon, Herbert A. (1981 [1969]) The Sciences of the Artificial (2nd ed.). The MIT Press: Cambridge, Mass., USA.

Sloane, Neil J.A.; Wyner, Aarod D. (eds.) (1993) Claude Elwood Shannon: Collected Papers . IEEE Press: New York, NY, USA.

Smelser, Neil J. & Baltes, Paul B. (eds.) (2001) International Encyclopedia of the Social & Behavioral Sciences . Elsevier:

Oxford, UK.

Smelser, Neil (1988) Handbook of Sociology . Sage: Newbury Park, CA, USA.

Smith, Merritt Roe; Marx, Leo (eds.) (1994) Does Technology Drive History? The Dilemma of Technological Determinism .

The MIT Press: Cambridge, Mass., USA.

Smith, Merritt Roe (1994) Technological Determinism in American Culture. In Smith, Merritt Roe and Marx, Leo (eds.): "Does

Technology Drive History? The Dilemma of Technological Determinism": pp. 1-36.

Smith, Michael L. (1994b) Recourse of Empire: Landscapes of Progress in Technological America. In Smith, Merritt Roe and

Marx, Leo (eds.) (1994): "Does Technology Drive History? The Dilemma of Technological Determinism": pp. 37-52.

Smith, Brian Cantwell (1996 [1985]) Limits of Correctness in Computers. In Kling, Rob (ed.) (1996): "Computerization and

Controversy": pp. 810-825.

482

Smith, Brian Cantwell (1998 [1996]) On the Origin of Objects (MIT Paperback ed.). The MIT Press: Cambridge, Mass., USA.

Smith, Peter B. (2002) Culture's Consequences: Something Old and Something New. Human Relations 55(1): pp. 119-135.

Smith, Brian Cantwell (2002b) God, Approximately. In Richardson, W. Mark; Russell, Robert John; Clayton, Philip; Wegter-

McNelly, Kirk: "Science and the Spiritual Quest": pp. 207-228.

Smith, Brian Cantwell (2002c) Reply to Dennett. In Clapin, Hugh: "Philosophy of Mental Representation": pp. 237-265.

Snelting, Gregor (1998) Paul Feyerabend and software technology. International Journal on Software Tools for Technology

Transfer (STTT) 2(1): pp. 1-5.

Snow, Charles Percy (1964 [1959]) The Two Cultures and A Second Look . Cambridge University Press: Cambridge, UK.

Snow, Charles Percy (1966) Government, Science, and Public Policy. Science 151(3711): pp. 650-653.

Solla Price, Derek J. de (1959) An Ancient Greek Computer. Scientific American June(1959): pp. 60-67.

Somberg, Benjamin L. (1987) A Comparison of Rule-Based and Positionally Constant Arrangements of Computer Menu Items.

ACM SIGCHI Bulletin 17(SI): pp. 255-260.

Sommerville, Ian (1982) Software Engineering . Addison-Wesley: Bedford Square, London, UK.

Spier, Michael J. (1974) A Critical Look at the State of Our Science. ACM SIGOPS Operating Systems Review 8(2): pp. 9-15.

Spindler, Michael (1998) The Information Revolution Can Benefit Society. In Leone et al. (1998): "The Information Revolution:

Opposing Viewpoints": pp. 17-20.

Sprankle, Maureen (1998 [1989]) Problem Solving and Programming Concepts (4th edition). Prentice-Hall: New Jersey, USA.

Stake, Robert E. (1994) Case Studies. In Denzin, Norman K.; Lincoln, Yvonna S. (eds.) (1994): "Handbook of Qualitative

Research": pp. 236-247.

Staley, Kent W. (1999) Logic, Liberty, and Anarchy: Mill and Feyerabend on Scientific Method. The Social Science Journal

36(4): pp. 603-614.

Stallman, Richard (2005) Free Is Not Open Software (Letter to CACM Forum). Communications of the ACM 48(7): pp. 12-13.

Stanford Encyclopedia of Philosophy (2005). Available at http://plato.stanford.edu/

Stewart, N.F. (1995) Science and Computer Science. ACM Computing Surveys (CSUR) 27(1): pp. 39-41.

Stevenson, Johan W.; Tanenbaum, Andrew S. (1979) Efficient Encoding of Machine Instructions. ACM SIGARCH Computer

Architecture News 7(8): pp. 10-17.

Stevenson, D.E. (Steve) (1993) Science, Computational Science and Computer Science: At a Crossroads. (ACM) Proceedings of

the 1993 ACM conference on Computer science. February 16-18, Indianapolis, Indiana, USA: pp. 7-14. Republished in

Communications of the ACM 37(12), December 1994: pp.85-96.

Stibitz, George (1946) Introduction to the Course on Electronic Digital Computers. In Campbell-Kelly; Williams, Michael R.

(eds.) (1985): "The Moore School Lectures": pp. 5-16.

Strauss, Claudia; Quinn, Naomi (1997) A Cognitive Theory of Cultural Meaning . Cambridge University Press: Cambridge, UK.

Stroustrup, Bjarne (1997) The C++ Programming Language (3rd ed.) . Addison-Wesley: Reading, Mass..

Strum, Shirley; Latour, Bruno (1999) Redefining the Social Link: From Baboons to Humans. In MacKenzie, Douglas; Wajcman,

Judy (eds.) (1999): "The Social Shaping of Technology (2nd edition)": pp. 116-125.

Subramanyam, Krishna (1981) Scientific and Technical Information Resources . Marcel Dekker: New York, NY, USA.

Succi, Giancarlo; Valerio, Andrea; Vernazza, Tullio; Succi, Gianpiero (1998) Compatibility, Standards, and Software Production.

StandardView 6(4): pp. 140-146.

Suchman, Lucy A. (1987) Plans and Situated Actions: The Problem of Human-Machine Communication . Cambridge University

Press: Cambridge, UK.

Sutinen, Erkki; Tarhio, Jorma (2001) Teaching to Identify Problems in a Creative Way. (IEEE Computer Society) Proceedings of

the FIE '01, Frontiers in Education. October 10-13, : pp. T1D8-13.

483

Swartzlander, Earl E., Jr. (2004) High-Speed Computer Arithmetic. In Tucker, Allen B. (ed.) (2004): "Computer Science

Handbook": pp. 22-1ff..

Tedlock, Barbara (2005) The Observation of Participation and the Emergence of Public Ethnography. In Denzin, Norman K.;

Lincoln, Yvonna S. (eds.) (2005): "The SAGE Handbook of Qualitative Research (3rd ed.)": pp. 467-481.

Tedre, Matti; Sutinen, Erkki; Kähkönen, Esko; Kommers, Piet (2003) Is Universal Usability Universal Only to Us?. (ACM)

Proceedings of the CUU 2003. November 10.-11., Vancouver BC, Canada: pp. 1-2 (web publication).Available at

http://www.sigchi.org/cuu2003/program.htm (Nov.28.2004), Also available at www.ethnocomputing.org

Tedre, Matti; Sutinen, Erkki; Kähkönen, Esko; Kommers, Piet (2006) Ethnocomputing: ICT in Social and Cultural Context.

Communications of the ACM 49(1): pp. 126-130.

Tedre, Matti (2002) Ethnocomputing: A Multicultural View on Computer Science . University of Joensuu Press: Joensuu,

Finland.

Tedre, Matti (2004) Problem, Knowledge, and Understanding in Ethnocomputing. (University of Joensuu, Department of

Computer Science) Proceedings of the Second International Conference on Educational Technology in Cultural Context

(International Proceedings Series 4). September 1-2, 2003, Joensuu, Finland: pp. 85-92.

Thacker, Eugene (2004) Biomedia . University of Minnesota Press: Minneapolis, USA.

Thomas, Gary (1997) What's the Use of Theory?. Harvard Educational Review 67(1): pp. 75-104.

Thompson, Ken (1984) Reflections on Trusting Trust. Communications of the ACM 27(8): pp. 761-763.

Tichy, Walter F.; Lukowicz, Paul; Prechelt, Lutz; Heinz, Ernst A. (1995) Experimental Evaluation in Computer Science: A

Quantitative Study. Journal of Systems and Software 28(1995): pp. 9-18.

Tichy, Walter E. (1998) Should Computer Scientists Experiment More?. IEEE Computer 31(5): pp. 32-40.

Trochim, William M. (2000) The Research Methods Knowledge Base (2nd ed.). Atomic Dog Publishing: Cincinnati, OH, USA.

Trogemann, Georg; Nitussov, Alexander Y.; Ernst, Wolfgang (eds.) (2001) Computing in Russia: the History of Computer

Devices and Information Technology Revealed . Vieweg: Braunschweig, Germany.

Trompenaars, Fons; Hampden-Turner, Charles (1997 [1993]) Riding the Waves of Culture: Understanding Cultural Diversity in

Business (2nd ed.). Nicholas Brealey Publishing: London, UK.

Tuchman, Gaye (1994) Historical Social Science: Methodologies, Methods, and Meanings. In Denzin, Norman K.; Lincoln,

Yvonna S. (eds.) (1994) : "Handbook of Qualitative Research": pp. 306-323.

Tuchman, Gaye (2004) Historical Methods. In Lewis-Beck et al. (eds.) (2004): "The SAGE Encyclopedia of Social Science

Research Methods": pp. 462-464.

Tucker, Allen B. (Editor and Co-chair); Barnes, Bruce H. (Co-chair); Aiken, Robert M.; Barker, Keith; Bruce, Kim B.; Cain, J.

Thomas; Conry, Susan E.; Engel, Gerald L.; Epstein, Richard G.; Lidtke, Doris K.; Mulder, Michael C.; Rogers, Jean B.;

Spafford, Eugene H.; Turner, A. Joe (1991) A Summary of the ACM/IEEE-CS Joint Curriculum Task Force Report: Computing

Curricula 1991. Communications of the ACM 34(6): pp. 68-84.

Tucker, Allen B. (ed.) (2004) Computer Science Handbook (2nd ed.). Chapman & Hall/CRC: Florida, USA.

Turing, Alan M. (1936) On Computable Numbers, With an Application to the Entscheidungsproblem. Proceedings of the London

Mathematical Society, Series 2 42(1936): pp. 230-265.

Turing, Alan M. (1939) Systems of Logic Based on Ordinals. Proceedings of the London Mathematical Society, Series 2

45(1939): pp. 161-228.

Turing, Alan M. (1950) Computing Machinery and Intelligence. Mind 59(236): pp. 433-460.

Ubiquity (2002) In memoriam: Edsgar Dijkstra (1930-2002). ACM Ubiquity 3(26): pp. 2.

Urry, John (2004) The Complexities of the Global. (University of Lancaster) On-line publications of the Department of

Sociology. July 2nd, 2004, Lancaster, UK: pp. http://www.comp.lancs.ac.uk/sociology/papers/urry-complexities-global.pdf (Feb

5, 2006).

Walsham, Geoff (1995) The Emergence of Interpretivism in IS Research. Information Systems Research 6(4): pp. 376-394.

484

Wang, Xin; Chan, Christine W.; Hamilton, Howard J. (2002) Design of Knowledge-Based Systems With the Ontology-Domain-

System Approach. (ACM) Proceedings of the 14th international conference on Software engineering and knowledge engineering.

July 15-19, 2002, Ischia, Italy: pp. 233-236.

Watson, Burton (trans.) (1964) Chuang Tzu: Basic Writings . Columbia University Press: New York, NY, USA.

Wegner, Peter; Goldin, Dina (2006) Interactive Computing Is Already Outside the Box (Letter to CACM Forum).

Communications of the ACM 49(3): pp. 11.

Wegner, Peter; Goldin, Dina (2003) Computation Beyond Turing Machines. Communications of the ACM 46(4): pp. 100.

Wegner, Peter (1976) Research Paradigms in Computer Science. (IEEE) Proceedings of the 2nd international conference on

Software engineering. October 13-15, San Francisco, California, USA: pp. 322-330.

Wegner, Peter (1976b) Programming Languages - The First 25 Years. IEEE Transactions on Computers C-25(12): pp. 1207-

1225.

Wegner, Peter (1993) Letter to the CACM Forum. Communications of the ACM 36(2): pp. 17-19.

Weiser, Mark; Brown, John Seely (1997) The Coming Age of Calm Technology. In Denning, Peter J.; Metcalfe, Robert M. (eds.)

(1997): "Beyond Calculation: The Next Fifty Years of Computing": pp. 75-85.

Weiser, Mark (1993) Ubiquitous Computing. IEEE Computer 26(10): pp. 71-72.

Weiss, E.A. & Corley, Henry P.T. (1958) What's In a Name? (Response to a Letter to Editor). Communications of the ACM

1(4): pp. 6.

Weiss, Eric A. (1993) Letter to the CACM Forum. Communications of the ACM 36(2): pp. 20.

Wellman, Barry; Hiltz, Starr Roxanne (2004) Sociological Bob: How Rob Kling Brought Computing and Sociology Together.

The Information Society 20(2004): pp. 91-95.

Wernick, Paul; Hall, Tracy (2004) Can Thomas Kuhn's Paradigms Help Us Understand Software Engineering?. European Journal

of Information Systems 13(3): pp. 235-243.

Vessey, Iris; Ramesh, V; Glass, Robert L. (2002) Research in Information Systems: An Empirical Study of Diversity in the

Discipline and Its Journals. Journal of Management Information Systems 19(2): pp. 129-174.

West, Dave (1997) Hermeneutic Computer Science. Communications of the ACM 40(4): pp. 115-116.

Wexelblat, Richard L. (ed.) (1981) History of Programming Languages (ACM monograph series) . Academic Press: London, UK.

Wilde, Norman; Buckellew, Michelle; Page, Henry; Rajlich, Václav (2001) A Case Study of Feature Location in Unstructured

Legacy Fortran Code. (IEEE) Proceedings of the Fifth European Conference on Software Maintenance and Reengineering. 14th-

16th March, Lisbon, Portugal: pp. 68-76.

Viller, Stephen; Sommerville, Ian (1999) Coherence: An Approach to Representing Ethnographic Analyses in Systems Design.

Human-Computer Interaction 14(1999): pp. 9-41.

Williams, Samuel B. (1954) The Association for Computing Machinery. Journal of the ACM 1(1): pp. 1-3.

Williams, Michael R. (1985) A History of Computing Technology . Prentice-Hall: New Jersey, USA.

Williams, Rosalind (1994) The Political and Feminist Dimensions of Technological Determinism. In Smith, Merrit Roe; Marx,

Leo (eds.) (1994): "Does Technology Drive History? The Dilemma of Technological Determinism": pp. 217-235.

Winegrad, Dilys (1996) Celebrating The Birth Of Modern Computing: The Fiftieth Anniversary of a Discovery At The Moore

School of Engineering of the University of Pennsylvania. IEEE Annals of the History of Computing 18(1): pp. 5-9.

Winner, Langdon (1993) Social Constructionism: Opening the Black Box and Finding it Empty. Science as Culture 3,3(16): pp.

427-452.

Winner, Langdon (1999) Do Artifacts Have Politics?. In MacKenzie, Donald; Wajcman, Judy (eds.) (1999): "The Social Shaping

of Technology": pp. 28-40.

Wirth; Niklaus (1971) Program Development by Stepwise Refinement. Communications of the ACM 14(4): pp. 221-227.

Wishner, Raymond P. (1968) Letters to the Editor: Comment on Curriculum '68. Communications of the ACM 11(10): pp. 658.

485

Wittgenstein, Ludwig (1986 [1922]) Tractatus Logico-Philosophicus (translated from German; with an introduction by Bertrand

Russell). Routledge & Kegan Paul: London, Great Britain.

Wolfram, Stephen (2002) A New Kind of Science . Wolfram Media: Champaign, IL.

Wood, Helen M. (1995) Computer Society Celebrates 50 Years. IEEE Annals of the History of Computing 17(4): pp. 6.

Woolgar, Steve (ed.) (2002) Virtual Society? Technology, Cyberbole, Reality . Oxford University Press: Oxford, UK.

Worsley, B.H. (1950) The E.D.S.A.C. Demonstration. In Randell, Brian (1975): "The Origins of Digital Computers: Texts and

Monographs in Computer Science": pp. 395-401.

Young, Kimberley, S. (1998) Caught in the Net . John Wiley & Sons: New York, NY, USA.

Zadeh, Lotfi A. (1968) Computer Science as a Discipline. The Journal of Engineering Education 58(8): pp. 913-916.

Zaphyr, P.A. (1959) Letters to the Editor. Communications of the ACM 2(1): pp. 4.

Zaslavsky, Claudia (1980) Count on Your Fingers African Style . Harper & Row: New York, USA.

Zelkowitz, Marvin V.; Wallace, Dolores (1997) Experimental Validation in Software Engineering. Information and Software

Technology 39(1997): pp. 735-743.

Zemanek, Heinz (1979) Al-Khorezmi His Background, His Personality His Work and His Influence. (Proceedings of the

Symposium on "Algorithms in Modern Mathematics and Computer Science") Lecture Notes in Computer Science vol 122/1981.

September 16th–22nd, Urgench, Uzbek SSSR: pp. 1-81.

Zhang, Cuihua; Howland, John E. (2005) Brief and Yet Bountiful: The History of Computing, Why Do Students Need It?.

Journal of Computing Sciences in Colleges 20(4): pp. 308-314.

Zúñiga, Gloria (2001) Ontology: Its Transformation from Philosophy to Information Systems. (ACM) Proceedings of the

international conference on Formal Ontology in Information Systems - Volume 2001. October 17 - 19, 2001, Ogunquit, Maine,

USA: pp. 187-197.

486

Dissertations in Computer Science

Rask, Raimo. Automating Estimation of Software Size during the Requirements

Specification Phase—Application of Albrecth’s Function Point Analysis Within

Structured Methods. Joensuun yliopiston luonnontieteellisiä julkaisuja, 28 – Uni-

versity of Joensuu. Publications in Sciences, 28. 128 pp. Joensuu, 1992.

Ahonen, Jarmo. Modeling Physical Domains for Knowledge Based Systems. Joen-

suun yliopiston luonnontieteellisiä julkaisuja, 33 – University of Joensuu. Publica-

tions in Sciences, 33. 127 pp. Joensuu, 1995.

Kopponen, Marja. CAI in CS. University of Joensuu, Computer Science, Disserta-

tions 1. 97 pp. Joensuu, 1997.

Forsell, Martti. Implementation of Instruction-Level and Thread-Level Parallelism

in Computers. University of Joensuu, Computer Science, Dissertations 2. 121 pp.

Joensuu, 1997.

Juvaste, Simo. Modeling Parallel Shared Memory Computations. University of

Joensuu, Computer Science, Dissertations 3. 190 pp. Joensuu, 1998.

Ageenko, Eugene. Context-based Compression of Binary Images. University of

Joensuu, Computer Science, Dissertations 4. 111 pp. Joensuu, 2000.

Tukiainen, Markku. Developing a New Model of Spreadsheet Calculations: A

Goals and Plans Approach. University of Joensuu, Computer Science, Dissertations

5. 151 pp. Joensuu, 2001.

Eriksson-Bique, Stephen. An Algebraic Theory of Multidimensional Arrays. Uni-

versity of Joensuu, Computer Science, Dissertations 6. 278 pp. Joensuu, 2002.

Kolesnikov, Alexander. Efficient Algorithms for Vectorization and Polygonal Ap-

proximation. University of Joensuu, Computer Science, Dissertations 7. 204 pp.

Joensuu, 2003.

Kopylov, Pavel. Processing and Compression of Raster Map Images. University of

Joensuu, Computer Science, Dissertations 8. 132 pp. Joensuu, 2004.

Virmajoki, Olli. Pairwise Nearest Neighbor Method Revisited. University of Joen-

suu, Computer Science, Dissertations 9. 164 pp. Joensuu, 2004.

Suhonen, Jarkko. A Formative Development Method for Digital Learning Environ-

ments in Sparse Learning Communities, University of Joensuu, Computer Science,

Dissertations 10. 154 pp. Joensuu, 2005.

Xu, Mantao. K-means Based Clustering and Context Quantization, University of

Joensuu, Computer Science, Dissertations 11. 162pp. Joensuu, 2005.

Kinnunen, Tomi. Optimizing Spectral Feature Based Text-Independent Speaker

Recognition. University of Joensuu, Computer Science, Dissertations 12. 156pp.

Joensuu, 2005.

Kärkkäinen, Ismo. Methods for Fast and Reliable Clustering. University of Joen-

suu, Computer Science, Dissertations 13. 108pp. Joensuu, 2006.

Tedre, Matti. The Development of Computer Science: A Sociocultural Perspective.

University of Joensuu, Computer Science, Dissertations 14. 502pp. Joensuu, 2006.

