
Class NP , NP -complete, and NP -hard
problems

W. Hämäläinen

November 6, 2006

1 Class NP

Class NP contains all computational problems such that the corre-
sponding decision problem can be solved in a polynomial time by a
nondeterministic Turing machine.

I.e. NP is a time complexity class which contains a set of problems. We
should just define what are

• corresponding decision problems,

• a non-deterministic Turing machine, and

• the time requirement of a Turing machine.

1.1 Computational problems and corresponding deci-
sion problems

Any problem which in principle can be modelled to be solved by a computer,
is called a computational problem. Examples of computational problems are:

• Calculate the answer of an arithmetic expression e.

• Sort customers’ names into alphabetic order.

• Given a map of cities and roads, search the shortest route which goes
through all cities exactly once and returns to the starting point, if such
exists.

1

Non-computational problems cannot be solved by a computer or by any
mechanical means. They are often related philosophy, ethics, or emotions.
For example,

• What is the meaning of life?

• Is it right to eat meat on Fridays?

• Phantom and Batman are fighting. Who wins?

In computer science, we consider only computational problems.
For any computational problem, we can inevent at least one related de-

cision problem. The decision problem can have only answers ”yes” or
”no”. For example, the following decision problems correspond the previous
computational problems:

• Given an arithmetic expression e and some number x, is x the solution
of e?

• Given a list of customers’ names, are they in an alphabetic order?

• Given a map of cities and roads, does it contain a route which goes
through all cities exactly once and is at most 50 km?

Such decision problems can be used to estimate the difficulty of the orig-
inal problem. If the corresponding decision problem requires exponential
time, the original problem cannot be solved any faster, and it is also (at
least) exponential. The goal is to invent such a decision problem which mea-
sures the difficulty of the original problem as well as possible (i.e. has the
same difficulty).

1.2 Non-deterministic Turing machines

A Turing machine is an abstract model of computation. According to Church-
Turing thesis, any problem which can be solved by a computer can be solved
by a Turing machine. (Note that this is only a thesis, and nobody has been
able to prove it universally true, but it is widely believed to be true.) This
means that we can use Turing machines to find out whether a problem is
solvable or not. If we can solve it by a Turing machine which halts by all
inputs, then the problem is solvable, and otherwise unsolvable. In addition,
Turing machines can be used to estimate how difficult a problem is or what
is its time or space complexity. For example, if a problem requires a Turing
machine which runs in exponential time, we cannot invent a Java program

2

which would solve the problem in a polynomial time. The benefit of Turing
machines is that they hide all implementation details and it is easier to make
proofs and analyze the complexity of problems.

Turing machines are divided into two main types: deterministic and non-
deterministic. A deterministic machine is like a state machine which reads
the input character by character and enters to the next state according to the
current state and the read character. In the same time, it writes a character
to the tape and moves its reading-writing head to the right or left. This
means that the functionality of the machine is fully determined by the
current state and the currently read character. The computation path
is always one sequence of states with any input (from the beginning state to
the final state).

A non-deterministic Turing machine works otherwise like a determinis-
tic machine, but it can have states where there are several alternative succes-
sor states, given the same input character. This means that the computation
is not a direct path, but contains branches (it is like a tree with several
paths from the same beginning state to final states). The macine always
selects the ”correct” alternative among possible successor states. I.e. if there
is at least one possible path which leads to the accepting final state, the ma-
chine accepts the input (answers ”yes”), and otherwise it rejects it (answers
”no”). You can imagine that the non-deterministic machine has power to
”guess” the correct path or that it simulates all possible (direct) computa-
tion paths simultaneuosly and selects the best one. (If we want to implement
a non-deterministic Turing machine as a computer program, we really have
to simulate all possible computations with that input and test if any of them
leads to the accepting final state.)

1.3 Time requirement of a Turing machine

The time complexity of a problem is estimated by Turing machines which
solve the problem. If we know a solution (a Turing machine) to the problem
and it has complexity x, we know that the problem has at most complexity
x. It is possible that in the future somebody invents a faster solution, and
thus x is only an upperbound for the complexity. Let’s take an example:

Let’s suppose that we have a Turing machine M which solves the Travel-
ling Salesman’s problem. We give the machine an input, i.e. a graph which
describes the cities and roads, and ask if it contains a route of length ≤ 20
km which goes through all cities exactly once and returns to the starting
place. The size of the input is measured by the number of cities n and the
number of roads between them (edges of the graph), e. We know that a

3

graph of n nodes can contain at most n(n−1)
2

edges1, and thus the input size

is at most n(n−1)
2

. Now we can express the time requirement of the Turing
machine as a number of steps it takes to solve the problem. I.e. how many
steps the machine takes, before it can answer ”yes, the map contains such
a route” or ”no, it doesn’t”. The time requirement should be expressed as
a function of n, e.g. f(n), so that for any input the machine takes at most
f(n) steps. This is the time complexity of the solution algorithm. In
addition, it tells that the problem has at most complexity f(n) (so it can be
less complex, if we just invent a better solution).

Note that usually the complexity of a solution algorithm is expressed by
O-notation which tells only the order of function f(n). I.e. we give a simpler
function g(n) which has the same ”growing rate” as f(n). For example, if
f(n) = 77n5+16n3−12n2+3, we say that the worst case complexity is O(n5),
because it is the most important term in f(n) and dominates its growth when
n increases. The constant factor 77 is dropped from the simpler expression.
Or, if f(n) = a2n2−5n+7 + 3n2, we say that the complexity is O(2n2

). The
simpler function g(n) doesn’t have to hold for small values of n, but it is
enough that the real comlexity f(n) is at most ag(n) when n is high enough,
given some constant factor a. I.e. we can use complexity O(g(n)) instead of
f(n), if f(n) ≤ ag(n), when n ≥ n0 for some n0 and some constant a.

1.4 Complexity classes P , E and NP

If a problem can be solved by a deterministic Turing machine in poly-
nomial time, the problem belongs to the complexity class P . All problems
in this class have a solution whose time requirement is a polynom on the
input size n. I.e. f(n) is of form akn

k +ak−1n
k−1 + ...+a2n

2 +a1n+a0 where
ak, ..., a0 are contant factors (possibly 0). The order of polynom is the largest
exponent k such that ak 6= 0 (if ak = 0, then the polynom is ak−1n

k−1+...+a0

and the order is k − 1, unless ak−1 = 0. If ak−1 = 0, too, then the polynom
is ak−2n

k−2 + ... + a0 etc.).
If the problem can be solved by a deterministic Turing machine

in exponential time, then it belongs to class E. The time complexity
can be for example f(n) = 2n or f(n) = nn. It doesn’t matter, if f(n)
contains also polynomial part, because the exponential part (where n is in
the exponent) dominates the complexity. So, for example f(n) = 2n/3+10x10

has complexity O(2n/3) = O(2n), and is an exponential function. Note that
if a problem belongs to class P , then it also belongs to class E, because P ⊂

1The first city can have roads to n − 1 other cities, the second one to n − 2 cities in
addition to city 1, the third city to n− 3 cities, etc.

4

E, but usually we give only the smallest (fastest) class where the problem
belongs. Note also that E is not the most complex class of problems, but for
example problems with complexity O(n!) (n! = n(n− 1)(n− 2)...1) are more
difficult.

An interesting class of problems is class NP which contains all problems
which can be solved by a non-deterministic Turing machine in poly-
nomial time. Class NP is between classes P and E: E ⊆ NP ⊆ E. This
means that all problems in class NP belong to class E, too, and they can
be solved by a deterministic Turing machine (or a computer program) in an
exponential time. It is also possible that some of them can be solved faster,
in polynomial time, and they actually belong to class P . However, it is not
known, if all of them could be solved in polynomial time by some clever al-
gorithms. So, the important open question is whether P = NP or P (NP .
(A million dollars is yours, if you solve this!)

2 NP -complete problems

NP -complete problems are special problems in class NP . I.e. they are a
subset of class NP . An problem p is NP -complete, if

1. p ∈ NP (you can solve it in polynomial time by a non-deterministic
Turing machine) and

2. All other problems in class NP can be reduced to problem p in poly-
nomial time.

This means that the NP -compelete problems are the most difficult prob-
lems in class NP . If we could solve just one of them in a polynomial time,
we could solve all problems in class NP in a polynomial time (and win 1 000
000 dollars).

If you want to show a new problem to be NP -complete, you have to do
two things:

1. Invent a non-deterministic Turing machine which solves the problem in
polynomial time.

2. Reduce one known NP -complete problem to the new problem in a
polynomial time.

The first part is usually easy. You just construct a machine which contains
two parts. The first part guesses an answer non-deterministically (e.g. a list

5

of cities c1, c2, ..., cn for TSP) and the second part checks that the answer is
correct (e.g. the list of cities contains all cities exactly once and the length
of route c1 −−c2 − c3 − ...− cn − c1 is less than required).

The idea of the second part is the following:

1. You want to show that all poblems in class NP can be reduced to
problem p.

2. You select a known NP -complete problem q. This means that all
problems pi ∈ NP can be reduced to q in polynomial time poli (and
you don’t have to show it anymore!).

3. You give a method to reduce q to p in polynomial time pol

4. Because all pi ∈ NP can be reduced to q and q can be reduced to p, all
pi ∈ NP can be reduced to p in time poli +pol which is also a polynom
(a polynom + polynom is still a polynom).

Notice that if your reduction from p to q would take exponential time,
then you could just say that you can reduce all problems in NP to p in
exponential time (an exponential function + a polynom = an exponential
function). That’s why the reduction should also take a polynomial time.

Inventing the reductions is often a matter of art, and it is best to study
some exaples from text books. Usually it is enough to describe the idea of
the reduction method and show that it takes polynomial time. The reduction
from q to p should be such that

1. It transforms all inputs of problem q to inputs of problem p, and

2. If the solution to p is ”yes”, the solution to q is ”yes”, and if the solution
to p is ”no”, the solution to q is ”no”.

For example, we can reduce Independet set (IS) problem to Clique prob-
lem as follows:

If graph G contains an independent set of size k (i.e. there are at least
k vertices which are not connected to each other), then the complement
graph G contains a clique of size k (there are at least k vertices which are
all connected to each other). Complement graph G means a graph which
contains an edge between two nodes, if G didn’t, and it doesn’t contain an
edge between two nodes, if G did. Thus, the reduction is a method, which
trasfroms G to its complement graph G.

This reduction can be done in a polynomial time, because we just have
to change 0s and 1s in the matrix describing graph G. The matrix contains

6

n× n cells, but if the graph is undirected, it is enough to use only n(n−1)
2

of
them (If v1 is connected to v2, then v2 is also connected to v1. Edges from
the vertex to itself, e.g. from v1 to v1, are not marked.) So the reduction
takes time O(n2) and is polynomial.

3 NP -hard problems

NP -hard problems are partly similar but more difficult problems than NP -
complete problems. They don’t themselves belong to class NP (or if they do,
nobody has invented it, yet), but all problems in class NP can be reduced
to them. Very often, the NP -hard problems really require exponential time
or even worse.

Notice that NP -complete problems are a subset of NP -hard problems,
and that’s why NP -complete problems are sometimes called NP -hard. It
can also happen that some problem which is nowadays known to be only
NP -hard, will be proved to be NP -complete in the future – it is enough that
somebody just invents a nondeterministic Turing machine, which solves the
problem in polynomial time.

To summarize the relationships:

NP -complete (NP -hard
NP -complete ⊆ NP
P ⊆ NP ⊆ E

7

