
Data Structures and Algorithms I Thu 23.2.2017
Exercise 5

25. Write an algorithm that finds the least deep (shortest path from root) leaf node of a binary tree.
Hint: traversal by level. What is the time complexity of your algorithm?

26. Write an algorithm that creates and returns a general tree of height k. The
tree has shape of a thick spruce tree. In a thick spruce of height k, there are k
trunk nodes, all of which have five children. The middle child is again a trunk
node having five children. Other nodes have no children. Deepest (depth k−1)
trunk node has middle child that is a base node having no children. Attached
figure presents a thick spruce of height 4. You can name the nodes as you wish.

.

27. Write an algorithm that gets as a parameter a collection (Collection<E>) and which creates and
returns a mapping (function) (Map<E, Integer>) having as keys all different elements of the
collection and as a value the number of each elements found in the collection. Hint: all collections
provide foreach iteration. What is the time complexity of your algorithm?

28. Write an algorithm that gets as parameter two unsorted lists (A and B) and which creates and
returns a new list which has all the elements that occur in both lists at least twice (at least twice in
A and at least twice in B). Each element will, however, be in the result list only once. This differs
from task X1 by having unsorted lists. Using algorithm of task 27 as helper, this can be done easily
in linear time. Keep the elements in the result list in the same order as they were in input list A
(hint: LinkedHashMap).

The following task X2 is obligatory for all students. X-tasks must be done oneself by each student.
Copies/versions of the same answer won’t be accepted. Answers must be sent by Wed 22.2. 21:00 using
the instructions below. You’ll receive an automatic reply by email soon after successful submission. If you
won’t get the email reply, something went wrong. If the reply contains compiler errors, there is something
wrong in the file. Then resend a fixed version. The answer must contain a short self evaluation
where you evaluate the functionality, correctness, time complexity, and possible points of improvement
of your solution. A correct self evaluation (for a full answer) is worth one point. The points of these tasks
form a part of course evaluation.
Send your solution using a www-form, address and credentials of which you got by email. The solution
should be a compilable Java source code file of name userid.java where userid is the first part of
your email address. Also the class name of your solution must be userid . As the submission is Java
source code, the self evaluation must be in comments of the program.
Take a skeleton from course www-page. Do not change the header (name, parameters) of the X-task
method. Please make sure that the program is compilable as such, i.e., have whole answer in the same
class and do not use a package.

X2. Write two algorithms that build a sorted array of an in-ordered binary tree, and vice versa. Using these
algorithms and algorithm like in task 11, we can implement set difference, union, etc. in linear time.
First algorithm gets as parameter an in-ordered binary tree (BTree) and it creates and returns an
array (ArrayList) to which it has stored the elements of the tree in the same order as the elements
are in the input tree.
Second algorithm gets as parameter a sorted array (ArrayList) and creates and returns a balanced
(as low as possible) in-ordered binary tree. Neither of algorithms may change the input.
For full points, both algorithms must have linear time complexity. Building a balanced tree in linear
time is possible by starting from the middle element of the input array and setting it as the root of the
new tree, and creating recursively left and right sub-tree from remaining start and end halves of the ar-
ray. Building can be done also using other methods, but then time complexity and/or tree height may
increase. Take a skeleton from course www-page. Do not change the method names or parameters.


