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Abstract
Single-cell transcriptomics offers a tool to study
the diversity of cell phenotypes through snapshots
of the abundance of mRNA in individual cells.
Often there is additional information available be-
sides the single cell gene expression counts, such
as bulk transcriptome data from the same tissue,
or quantification of surface protein levels from
the same cells. In this study, we propose mod-
els based on the Bayesian generative approach,
where protein quantification available as CITE-
seq counts from the same cells are used to con-
strain the learning process, thus forming a semi-
supervised model. The generative model is based
on the deep variational autoencoder (VAE) neural
network architecture.

1. Introduction
Single-cell RNA sequencing (scRNA-seq) (Tang et al., 2009;
Hwang et al., 2018; Hedlund & Deng, 2018) is a powerful
tool to analyze cell states based on their gene expression
profile with high resolution. RNA sequencing at single-cell
level facilitates uncovering heterogeneous gene expression
patterns in seemingly homogeneous cell populations. How-
ever, the current methods for gene expression profiling at
single cell resolution are prone to experimental errors, in par-
ticular, inefficient capture of mRNAs (Hwang et al., 2018).
This capture inefficiency results into a general underesti-
mation of the counts (dropout effect). This represents a
problem as the current computational approaches for analyz-
ing single-cell data rely on the mRNA counts for clustering
and downstream analysis.

Generally, the solution to the dropout problem has been
posed as an imputation task, where missing counts are filled
with estimated counts. Different methods have been pro-
posed for this task, such as non-negative regression (Li &
Li, 2018) or graph-based methods (van Dijk et al., 2018).
Another option is to model the dropout effect using the
zero-inflated (ZI) model (Lambert, 1992), where a two-
component mixture distribution is constructed, such that
the first component models the dropout effect and the sec-
ond component the observed counts. The effect of overdis-

persion is strongly presented in the scRNA-seq counts, the
negative binomial (NB) distribution is seen as an appropriate
fit to the observed data (King, 1989). Shallow imputation
models that are based on zero-inflated negative binomial
(ZINB) or zero-inflated log-normal models have been ap-
plied to single-cell data (Pierson & Yau, 2015; Risso et al.,
2018). However, these models hypothesize a linear rela-
tion between the latent space and the model parameters,
which is quite a strong assumption (Lopez et al., 2018). To
overcome the limitations of the linear models, deep neural
network architectures have been proposed to resolve missing
data (dropouts) (Eraslan et al., 2019). However, discerning
technical variation from biological signal solely based on
scRNA-seq data is challenging, and assumes that a large
number of similar cells are measured.

Accurate imputation strategies are important for down-
stream analysis, including identification of cell type marker
genes, characterization of functional state (Hart et al., 2015),
or the analysis of transcriptome dynamics along differen-
tiation trajectories (Qiu et al., 2018). An alternative way
to approach this problem is to assume that there is a latent
code that characterizes the cell type (or, more generally, cell
state). Conditioning the ZINB distribution with these latent
codes would allow sampling accurate transcriptome pro-
files. In effect, all relevant information about the cell state is
included in the latent code. Therefore, the downstream anal-
ysis can be based on the model obtained. This approach was
proposed by models such as scVI (Lopez et al., 2018) and
scVAE (Grønbech et al., 2018). In these techniques and the
present paper the goal is to infer the posterior distribution
of the latent code (Kingma & Welling, 2014). However, the
sparseness of scRNA-seq data caused by low mRNA cap-
ture efficiency affects the quality of the estimated latents. In
order to assess the quality of latent space representations of
cell state, manual cell type labeling of the obtained clusters
based on marker gene expression has been used. However,
this suffers from the dropout effect and introduces a bias re-
lated to specific clustering methodology utilized in manual
labeling.

Before transcriptome profiling, analysis of surface protein
markers has been the mainstream method to decipher cel-
lular identity at single cell resolution. For example, the
cellular composition of blood samples has been extensively
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characterized based on antibodies that recognize specific cell
surface marker proteins. Recently, (Stoeckius et al., 2017)
introduced the CITE-seq method that can combine scRNA-
seq with such protein marker characterization from the same
cells, thus providing complementary data on cell identity.
Despite being limited to a small subset of expressed genes,
the protein marker count data has the benefit that dropouts
are rare compared to mRNA marker gene data. We believed
this data could prove useful in assessing the quality of the
latent representation. Moreover, it could be incorporated
into model training to improve the single-cell model from
scRNA-seq (Kingma et al., 2014). For the SISUA1 model
presented, we add the protein counts as an additional su-
pervision signal (biological augmentation) with the goal of
obtaining higher-quality imputed counts and latent codes.
It is noteworthy, that our semi-supervised model uses light
supervision in order to assist unsupervised inference instead
of the reverse that is usually attempted.

2. Single-cell Variational auto-encoding
The task of unsupervised learning is to discover from the
observed data (Bishop, 2006) hidden structure, such as clus-
ter assignments or low-dimensional representations of the
true data manifold. In the case of scRNA-seq data, we as-
sume that the true data manifold is of much lower-dimension
than the embedded dimensionality of the data. Embedded-
dimensionality De in this case is the number of selected
genes in a single scRNA-seq vector xi of a cell i. A single
batch of cells has a total of N cells and each xj,i is a non-
negative integer, where j is the gene index. We denote by
Dl the dimensionality of the estimated data manifold. The
representation of one cell in the estimated data manifold is
typically denoted as a latent representation. We will use this
terminology in the following text. It is clear, however, that
the ultimate goal is to obtain the true data manifold and then
conduct inference of the relevant biology from it.

2.1. Latent-variables and deep generative models

Principal component analysis (PCA) is a classical technique
which yields a low-dimensional representation of a high-
dimensional dataset. The PCA model can be viewed as a
latent representation that minimizes the reconstruction error
to generate the embedded space. The reconstruction error is
defined as mean squared error (MSE) between the original
sample and the generated sample. PCA has been general-
ized using the Bayesian formalism in probabilistic principal
component analysis (PPCA) (Tipping & Bishop, 1999). In
this model, the latent representation is assumed to repre-
sent a random variable with prior distribution usually set to
z ∼ N (0, I). Due to its linear-Gaussian structure, closed-
form posterior inference is available, and given the latent

1Code and reproducibility: https://github.com/trungnt13/sisua

vector z the generation (reconstruction) is also Gaussian

p(x|z) = N (Wz + µ, σ2I), (1)

where W, µ and σ2 are parameters of the model. Esti-
mation of model parameters is performed in the maximum
likelihood fashion after latent variables are integrated out,
either by closed-form equation or alternatively using the
expectation maximization (EM) algorithm.

Non-linear models like PPCA are typically not integrable
in closed-form, so they require alternative solutions for pa-
rameter estimation. In the neural network literature, the au-
toencoder (Rumelhart et al., 1986) structure was developed
for this task. Autoencoders are deep neural network models
that aim to learn the low-dimensional representation, based
on a structure consisting of an encoder network, which per-
forms the inference, a bottleneck layer, which constrains
the dimensionality, and a decoder network, which performs
the generation. The input is fed into the encoder network
that converts it into a low-dimensional representation in the
bottleneck layer, and the decoder network expands (recon-
structs) it back into the original signal space. The aim is to
reconstruct the input signal with minimal loss, which is typ-
ically measured by the mean squared error (MSE) function.
This learning target correspond to good reconstruction of
the input single-cell RNA-seq profile.

The limitations of deep autoencoders are highlighted in
(Higgins et al., 2016). The encoded vectors may not be
continuous or allow easy interpolation, this couples with
the uncertainty in scRNA data could lead to highly variated
latent space. As a result, the decoder will simply generate
an irrelevant output under the slightest perturbation in input
or latent space. (Lopez et al., 2018; Grønbech et al., 2018)
suggest a better latent representation could be learned using
variational method. We only observe x but we would like
to infer the characteristics of z, hence, we compute the
posterior

p(z|x) =
p(x|z) · p(z)

p(x)
. (2)

The denominator is the marginal likelihood which is in-
tractable considering its involvement in all data points.
Therefore, we approximate p(z|x) by another distribution
q(z|x) (Kingma & Welling, 2014), and minimize the “dis-
tance” between the two distributions could give us a good
approximation

argmin
θ

KL
(
qθ(z|x)||p(z|x)

)
, (3)

where θ is the parameterization. We achieve the above mini-
mization by maximizing the following (Kingma & Welling,
2014)

Eqθ(z|x)
[

log pθ (x|z)
]
−KL

(
qθ (z|x) ||p (z)

)
. (4)
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We choose the prior distribution p(z) = N (z; 0, I), and
use deep neural network parameterized by θ to learn the
conditional distribution pθ(x|z).

2.2. Parameterization for the negative binomial
distribution

The single-cell gene expression is characterized by raw
count data with overdispersion (Grønbech et al., 2018;
Lopez et al., 2018; Eraslan et al., 2019). A well-known
practice in the field of statistics has been using the nega-
tive binomial (NB) distribution for modeling this kind of
events (King, 1989). Furthermore, this strategy has been
successfully adapted to the field of deep single-cell mRNA
modeling (Grønbech et al., 2018; Lopez et al., 2018; Eraslan
et al., 2019).

A conventional approach to parameterizing the NB distribu-
tion for an autoencoder uses the mean µ ∈ R+ and φ ∈ R+

dispersion parameters directly to represent gene expression
count data (Lopez et al., 2018; Eraslan et al., 2019).

NB(X |µ, φ) =

(
X + φ− 1

X

)(
µ

µ+ φ

)X (
φ

µ+ φ

)φ
.

(5)
The mean and variance of a random variable X ∼
NB(X | µ, φ) are

E[X] = µ = f
(µ)
θ (X) and (6)

Var[X] = µ+
µ2

φ = f
(φ)
θ (X)

, (7)

where fθ is a deep neural network with parameters θ, and
the network uses variational techniques and stochastic opti-
mization to estimate µ and φ.

An alternative parameterization is followed by (Gelman
et al., 2004), and also implemented in (Grønbech et al.,
2018). This approach utilizes two parameters r - total count
and ρ - success rate, which results

E[X] = r
ρ

1− ρ
and (8)

Var[X] = r
ρ

(1− ρ)2
, (9)

where both ρ and r also estimated using fθ. The main
difference between Eq. 7 and Eq. 9 is the control of fθ over
E[X] and Var[X]:

• Eq. 7 relies solely on the parameter µ to estimate
the mean E[X]. This could turn out to be a high-
variance, biased estimate under corrupted data (com-
mon to single-cell data sets). In order to compensate
for this technical issue, (Lopez et al., 2018) explicitly
models cell size, while (Eraslan et al., 2019) assumes

it is an observed variable provided as an input feature
to the network.

• In Eq. 9, fθ has more impact since both ρ and r con-
tribute to the mean and variance of X . Since r is count
values, ρ (probability values) could act as learnable
scale parameters to adjust the mean of the denoised
cell distribution. As a result, this approach implicitly
takes into account the cell size during the parameteri-
zation.

In this study, we evaluate both approaches, however, we
only use Eq. 9 for our semi-supervised extension.

3. Biological augmentation using
semi-supervised training (SISUA)
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Figure 1. Our variational autoencoder with the semi-supervised
extension

The overall design of a multi-output variational autoencoder
(MOVAE ) is illustrated in Fig. 1. Our semi-supervised mod-
ule is implemented by a linear projection from the decoder
output into label space, which is then used to parameterize
the distribution of label variable Y . The distribution of Y
could be negative binomial for count data (i.e. NB(Y | r, ρ))
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or Bernoulli(Y | ρ) for probability data. As a result, a com-
prehensive set of biological information could be directly
drawn from the model at once, following this process:

z ∼ N (0, I)
d = fθ(z)

x ∼ NB(f (x)r (d), f (x)ρ (d))

π ∼ Bernoulli(f (π)(d))

x̃ =

{
x if π = 0

0 otherwise

y ∼ NB(f (y)r (d), f (y)ρ (d)),

where f (x)r , f (x)ρ and f (y)r , f (y)ρ is linear projection function
projecting the decoder vector into corresponding dimension
for x (denoised single-cell gene expression) and y (label data
such as surface protein expression). π is the zero-inflated
rate modeled by Bernoulli variables.

3.1. Semi-supervised learning for single-cell data

In variational inference, it is possible to have more than
one learning target and thereby models that learn a shared
latent representation. For example, one target could be the
reconstruction and another the expressed protein state which
could be a probability value, binary value or non-negative
discrete measurement. In this manner, learning both tasks to-
gether helps to build a more robust representation compared
to either task alone. This type of learning is called multi-task
learning (Caruana, 1997). Multi-task learning can be used
in a semi-supervised setting as well, where protein labels
are supplied for a subset of the input profiles, which are then
modeled jointly to reconstruct mRNA and assign protein
marker state, while the rest of the data are modeled only
to reconstruct. In the present work, we explore approaches
that range from completely unsupervised (no protein labels),
semi-supervised (partially labeled) to multi-task (complete
label data on protein state) cases.

We further propose three design principles for semi-
supervised architectures that improve single-cell gene ex-
pression modeling:

• The use of labeled data should only be implicit, i.e.
no labeled data should be given as input during the
evaluation process. The expense of labeling will typi-
cally preclude exhaustively labeled data. As a result,
an algorithm, which implicitly encapsulates meaning-
ful patterns from multi-modal data into its latent space
during the training phase, would be more robust and
practical.

• Enforcing the end-to-end training design (Trong et al.,

2016; 2018) to avoid the complication of intractable
stacked errors, poor scalability to massive data sets,
and challenging for practical deployment.

• Unlike conventional semi-supervised learning where
an unsupervised objective is created in order to improve
the supervised task (Kingma et al., 2014; Rasmus et al.,
2015), semi-supervised learning for single-cell data
aims for the opposite. Since multiple losses have been
known to compete with each other and hinder the ma-
jor objective of the system (Goodfellow et al., 2014),
Eq. 10 is suggested when incorporating multiple losses
into semi-supervised systems.

E = −
(
Lx(x, fθ(x))

+ γ · Ly(y, fθ(y))

−KL(qθ(z | x)||pθ(z))
) (10)

where γ is a hyper-parameter representing the importance
of the supervised tasks. Different γ are tested and fine-
tuned in Sec. 7. Lx and Ly are likelihood functions for
the corresponding distributions of the unsupervised and
supervised variables. We use ADAM (Kingma & Ba, 2014),
a variation of stochastic gradient descent, to minimize E.

Fig. 2 illustrates the probabilistic graphical model of SISUA
which satisfies the above design principles, the implemen-
tation of which is Fig. 1. The inference process (Fig. 2(a))
parallels the biological relation between mRNA and protein
synthesis. The generative process (Fig. 2(b)) enables the
sampling of both gene expression and protein marker levels
from a biologically-motivated latent space. The implemen-
tation of Ly(y, fθ(y)) is a major difference between SISUA
and MOVAE . SISUA leverages probabilistic embedding to
regulate the amount of information backpropagated from
the supervised objectives, which will be discussed in the
next section.

Z

X Y

Z

X Y

Q P(a) (b)

Figure 2. The design of the semi-supervised systems and their
probabilistic graphical models. Q is the inference model and P is
the generative model.

3.2. Probabilistic embedding for biological data

Inspired by recent advances in the field of biometric veri-
fication systems (Reynolds, 2009), we propose a general-
ized approach for incorporating multi-modal biological data
into the unsupervised algorithm. A Universal Background
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Model (UBM) is a Gaussian Mixture Model (GMM) used to
represent general, cell-independent feature characteristics.
In our case, the UBM is used to capture different modes of
protein activation based on the surface protein levels. Then
the model can be used to compare against a cell-specific
protein level when making the decision in the presence or
absence of a particular protein.

Two considerations motivate the application of the UBM in
biological data:

• The data often come from sources (e.g. different mea-
surements) with different characteristic scales and tech-
nical variability. These issues pose a different sort of
challenge for modeling and possibly hinder the main
goal of our algorithm.

• The distribution of the data is often skewed and im-
balanced. For example, Fig. 3(c) indicates abnormally
high abundance of ‘CD45RA’. This could trigger the
false perception that “everything is CD45RA” during
the optimization of the deep neural network since the
dominant classes will backpropagate most of the up-
dates (Hensman & Masko, 2015; Dalyac et al., 2014).

For each protein, a two-component GMM is trained,

p(x) =

2∑
k=1

πkN (x|µk,Σk) (11)

where x is a single dimension protein level. x could be
the raw value in Fig. 3(a) or the log-normalized value
in Fig. 3(b). Our experiments have shown that a log-
normalized value encapsulate more informative structure
of the underlying protein distribution and is less likely to
be affected by technical errors and outliers. µk and Σk are
the mean and covariance vectors of the Gaussians, πk is
the mixture weight. Those parameters are the maximum
likelihood estimates (Reynolds, 2009) that best match the
protein distribution.

The UBM utilizes a set of GMM associated with each pro-
tein. These GMMs are used to generate the response of
the protein to each individual cell, “probabilizing” protein
expression. They can be thresholded as in Fig. 3 to yield
binary variables indicating the presence or absence of pro-
tein in each cell. The final distribution of those process
is illustrated in Fig. 3(c), which shows that the binarized
and probabilized values are more balanced than the original
distribution.

4. Experimental setups
We discuss the selection of data sets and the configurations
of the baselines and SISUA in this section. The experiments
were run on two data sets.

Raw data 
from 
protein 
markers 
level 
(CD14 in 
this case)

2-components 
Gaussian Mixture Model (GMM)

CD14

CD14

The data is 
log-
normalized

Analysis of 
the 
uncertainty 
level within 
each protein 
marker

Binarizing 
the protein 
level using
GMM 
response

The new 
distribution 
of the 
protein 
markers

(a)

(b)

(c)

Figure 3. The process of probabilistic protein embedding using
data for protein CD14 as an example. The comparison between
the distribution of protein markers before and after the process is
shown in the bottom figure.

The first data set, PBMC, consists of 12039 human pe-
ripheral blood mononuclear cells, generated using the 10X
Genomics platform. This data set includes cell type labels
assigned by manual examination of clusters (Zheng et al.,
2016).

The second data set, peripheral blood CITE-seq data, was
downloaded from 10x Genomics2. Protein marker levels
were available for a total of 14 specific antibodies and three
control (IgG) antibodies. Here, we utilized the entire dataset
or its subset (LY) with markers (CD3, CD4, CD8, CD56,
CD16, CD19, CD25, CD45RA, CD45RO, PD1, TIGIT and
CD127) that allow distinguishing different lymphoid cell
populations (4697 cells, 2000 most variable genes). In
addition to raw counts for mRNA, CLR-normalized ADT
counts were used for model evaluation and training.

In order to evaluate the generalizability of each algorithm,
we split each data set into disjoint training and testing sub-
sets, containing 90% and 10% of the data, respectively. For
imputation benchmarking, we measure the robustness of the
algorithm by corrupting the original training data, then using
the learned algorithm to provide denoised gene expression.
Binomial data corruption was applied as in (Lopez et al.,

2pbmc 10k protein v3 filtered feature bc matrix.tar.gz
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Figure 4. Correlation between CD8A gene mRNA and protein levels in PBMC Ly lymphoid cells. The average Pearson correlation for all
marker gene/protein pairs is shown in the panel on the right. Semi-supervised models are highlighted by red dashed boxes.

2018). 25% of the matrix entries are randomly selected and
replaced with a Bin(n, 0, 2) random variable, where n is the
original count of the given entry.

Three unsupervised baselines were selected for comparison
to SISUA :

• Deep count autoencoder (DCA ) is a denoising autoen-
coder that takes the count distribution, overdispersion
and sparsity of single cell data into account (Eraslan
et al., 2019).

• Single-cell variational inference (scVI ) is a framework
using deep probabilistic inference to model observed
expression values, accounting for the technical vari-
ability of the measurements (Lopez et al., 2018).

• scVAE (Grønbech et al., 2018) also utilizes deep gen-
erative modeling. This approach was arguably the
least sophisticated because the cell size (or library
size) is implicitly modeled via parameterization of NB
Sec. 2.2.

These three studies represent the state-of-the-art in model-
ing of single-cell RNA sequencing. We configured each
framework similarly to SISUA as in Fig. 1. Additionally,
the same optimization algorithm and training parameters
(number of the epoch, batch size, learning rate) were used
in all models.

5. Semi-supervised learning enhances
biological properties

In this section, we propose experiments to reflect how well
the models capture different biological properties of the cell
types analyzed. In the following experiments, we focused
on three major functions of an auto-encoding model:

• The output space, the denoised gene expression pro-
file, is evaluated using i) per-cell marker protein levels
(PBMC CITE-seq), or ii) per-cell assigned labels from
the manual examination of data (PBMC RNA-seq) as
ground truth for cell types present.

• The latent space, as a low-dimensional representation
of the data, is evaluated for biological tasks including
inspection, annotation, and recognition of different cell
types.

• The semi-supervised space, expressing the protein
marker levels (or cell type labels), is a unique feature
of SISUA . We evaluate the soundness of this space by
evaluating its connection to the output and latent space
and utilizing the ground truth labels.

5.1. Correlation of marker mRNA gene expression and
surface protein levels

Because assaying marker protein levels is less prone (for
technical reasons) to the dropout issues that plague mRNA
levels for the corresponding genes, cell surface marker pro-
tein expression can be used as “ground truth” for evaluat-
ing known cell states and cell types. Thus, the denoised
corresponding mRNA levels for the same markers can be
evaluated in an unbiased manner (Stoeckius et al., 2017;
Eraslan et al., 2019) (Fig. 4).

As exemplified by the T-cell marker CD8, non-zero counts
are observed when protein levels are high. This correlation
is poorly modeled by DCA and scVI that impute counts
also to cells with low surface protein levels, while scVAE
preserves the correlation. Semi-supervised learning con-
sistently improved the correlation across all marker gene
and protein levels. In all cases, SISUA was able to restore
missing gene expression that is biologically plausible.

5.2. Separation of cell types in latent space

A trained encoder from each algorithm projects gene expres-
sion into low-dimensional latent vectors. To visualize these,
the vectors were transformed into 2-D representation by the
t-SNE algorithm. A biologically informative latent space
should have a clear separation between different cell types.
To evaluate this, the points on the t-SNE maps are colored
by their ‘ground truth’ labels (manual labels in Fig. 5 and
protein marker state in Fig. 6).

Based on pre-assigned labels (Fig. 5) all methods capture
a biologically meaningful latent space to a certain extent.
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Clusters of different cell types are clearly separated. How-
ever, many outliers are present in the DCA , scVI and sc-
VAE results and scVI shows extra confusion among cells
by grouping many clusters close together. It is notable that
most of the outliers were classified as ‘Other’ cells. In
this label-supervision scenario, SISUA yields cleaner cluster
structures with fewer outliers, and better minimizes intra-
class and maximizes inter-class variance. Moreover, there is
a subtle group of ‘NK cells’ placed adjacent to the ‘CD8 T
cells’ (SISUA figure panel). This rightly calls into question
the mutually-exclusive labeling of cells because there, in
fact, exist ‘NK cells’ which are also ‘T cells’. Immunolo-
gists recognize an entity called NKT-cells as a separate cell
type. Among the models, only the latent space representa-
tion of SISUA clearly indicates the prominent characteristics
of the ‘T cells’ within this small group of ‘NK cells’. No-
tably, this similarity is learned without extra information
about the ‘T cells’.

DCA scVI

scVAE SISUA

Figure 5. t-SNE visualization of the latent space for PBMC 10x
dataset, binary cell type labels are used for coloring.
Fig. 6 delivers further insight into the capability of SISUA
for representing biologically meaningful sub-structure. In
PBMC Ly , each cell is characterized by multiple protein
levels, which include markers for similar cell types (such
as CD4 or CD8 positive T cells) that often get tangled up
in the latent representation of mRNA data. Compared to
all unsupervised representations, SISUA achieves strong
separation between ‘CD8‘ protein and ‘CD4’ protein in its
latent space. This division is biologically plausible and the
algorithm is able to learn this pattern independently without
explicit cell type labels.

The design of the SISUA model only allows an indirect
influence of protein markers on the latent space via the su-
pervised objective. It is also possible that this could induce

DCA scVI scVAE SISUA

CD4 CD8aOthers

Figure 6. t-SNE visualization of the latent space for PBMC Ly
dataset, the activation levels of protein CD8a (dark red tones) and
CD4 (dark blue tones) are shown as heatmap.

‘adversarial’ behavior of the learning algorithm (Goodfel-
low et al., 2014), hence, defeat the main goal of improving
the latent representation by coordinating various biological
sources. We did not observe this examining the latent space.
Additionally, we evaluate the learned latent spaces quanti-
tatively using two different approaches. As a first method,
we feed the learned latent to a secondary classifier that is
trained to classify protein markers or cell labels. The results
shown in Fig. 7. We notice that in terms of the classification
accuracy (F1-score), SISUA is clearly the best model for
the training and test portions. The testing performance of
the semi-supervised models is degraded when compared to
the training portion, but still models clearly win over the
fully unsupervised variants.

Noting that we assess usefulness of the learned unsupervised
latent code, we turn to classical unsupervised metrics. As a
second method, we pool the external validity indices used
to asses clustering quality, namely: ARI - adjusted rand
index, ASW - silhouette score, NMI - normalized mutual
information and UCA - unsupervised clustering accuracy. .
These results are also shown in Fig. 7. The results indicate
that the information encapsulated in semi-supervised latent
space is higher than the other models.

5.3. Predictive protein distribution

Fig. 8 illustrates how the SISUA model has learned to pre-
dict protein marker levels. Dealing with continuous levels
of markers requires powerful representation learning. The
upper panel shows that the model has been able to learn the
underlying structure that defines the surface protein levels
cells to a high degree, visible as a high correlation of the pre-
dicted level and the ‘ground truth’ protein expression. How-
ever, there are many unexpected peaks that mismatching
with the ‘ground truth’. The figure panels below attempt to
explain this phenomenon. During the process of exploiting
the correlation between gene expression and surface protein
levels, the model learns to calibrate many faulty points in
the given protein labels itself. When the latent space and the
denoised space are colored by the ‘ground truth’ protein and
the predicted protein level, the latter indicates more relevant
structure, where many outliers for ‘CD4’ protein levels are
cleaned and grouped into neat clusters (highlighted by green
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Figure 7. Latent spaces are evaluated by two benchmarks: the aver-
age of F1 scores from a streamline protein/cell types classifiers; the
pooled clustering metric calculated by averaging 4 measurements:
ARI, ASW, NMI, UCA. The results are reported for PBMC Ly and
PBMC 10x datasets. The train results are shown in blue dots, the
test results in orange dot. Semi-supervised models are highlighted
by red dashed boxes.

Table 1. Marginal log likelihood for a held-out subset of each
dataset, number of cells and genes also given for measuring the
scale of each experiment.

Dataset PBMC Ly PBMC 10x

scVAE -644.02 -1494.75
MOVAE -643.83 -
SISUA -642.70 -1494.51

circles). It is notable that these are observed in both latent
and denoised spaces, hence, SISUA has been able to capture
relevant biological connections at multiple levels.

6. Generalizability
6.1. Goodness of fit on held-out data

The marginal log-likelihoods on the held-out data are pre-
sented in Table 1. We are able to compare fairly only SISUA
, scVAE and MOVAE -models. In all cases, SISUA obtained
the best fit. In the PBMC 10x dataset, with manually labeled
cell types, the difference to completely unsupervised model
was marginal but in the PBMC Ly subset, where independent
protein data was used, a larger improvement was obtained.

6.2. Structural integrity of denoised space

To evaluate whether the denoised gene expression spaces
still maintain the same essential variability model as the orig-
inal data, we performed an imputation experiment shown
in Fig. 9. The positions of the data points were projected
into the total-variability space by PCA (trained on original
data). To confirm that relevant biological information was
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Figure 8. Comparing the original protein level and predicted pro-
tein response on PBMC Ly data set

preserved during the denoising processing, we inspected
two properties: First, by coloring the cell types (first row)
we could confirm whether similar cells still form clusters
that reside in the same position in the total-variability space.
Second, the cell size (colored in second row) was compared
to that in the original data. We observed that DCA is altering
both the cell types and cell size (blue circle), yet keeps a
high amount of variability. scVI has very low variability, but
performs good on cell type clustering and preserving cell
sizes. scVAE provides better variability but slightly worse
cell size. SISUA improves the variability compared to scVAE
, and also improved the cell type model (red circles). Addi-
tionally, SISUA slightly increased the cell size compared to
scVAE although this was not explicitly modeled.

7. Efficiency and scalability of
semi-supervised training

7.1. Quantitative efficiency

In order to evaluate, whether the amount of labeled data
available at the training phase affects the model quality, we
measured the goodness in three different ways (Fig. 10);
model fit in terms of the marginal log-likelihood, average
F1 of protein/cell-type classifier in the latent space and
average correlation between marker gene and the protein.
We noticed in the PBMC Ly subset that adding only 1% of
labels degraded the performance in all cases, while addition
of 10% gave a clear boost in all three metrics. As expected,
addition of labeled examples systematically improved the
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Figure 9. A PCA model trained using original gene expression data of the PBMC 10x data set was used to project the denoised gene
expression from different models into its space. The top row is colored by cell type, the bottom row by denoised cell size (red color
indicates large, white color mid-range and blue small cell size).

model in the PBMC Ly case. In the case of PBMC 10x , the
situation is not as clear, since the average F1 improved until
80% of the training examples are labeled. However, the
marginal log-likelihood does not show systematic behavior.
One reason for this non-systematic behavior could be errors
in PBMC 10x cell-type labels.

7.2. Qualitative efficiency
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x-axis: Different weight for the supervised objective during training

Figure 11. Performance of SISUA when γ (i.e. the weight of semi-
supervised objective) is variated.

By adjusting the weight γ of semi-supervised objective, we
could inspect the qualitative contribution of semi-supervised
task to the overall performance. Fig. 11 emphasizes the
important role of fine-tuning the γ parameter to balance
the benefit of supervised learning and not over-powering
the modeling of single-cell gene expression. We notice in
all cases that γ of more than 20 gives clear improvement
over the unsupervised case. However, when γ is increased
more, the model starts to favour more the proteins than gene
expression in the reconstruction.

7.3. Scalability

x-axis: Data set size (number of cells)

Figure 12. Running time for the training phase (left figure) and
evaluation phase (right figure) for the unsupervised model and
semi-supervised model (SISUA ). The algorithms were ran on an
eight-core Intel Xeon CPU E5-1630, and one NVIDIA GeForce
GTX 1080.

Finally, the training algorithm running time as a function of
number of cells is shown in the Fig. 12. We observed that the
semi-supervised extension added a very minor increment to
the running time when compared to the unsupervised variant.
It is at most 8% longer compared to the unsupervised for
100000 cells.

It also is notable that the SISUA model introduces no extra
running time during the evaluation phase, since no extra
data is needed. Instead, we get the extra benefit of obtaining
protein level predictions, better modeling of gene expression,
and better representation of cell profiles in the latent space.
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10%: the supervised labels 
are only available to 10% of 
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are unchanged after each 
training epoch.

Figure 10. The performance on two data sets (PBMC Ly and PBMC
10x ) is shown for different amount of labels utilized in training.
The X-axis represents 7 systems with incresing amount of labeled
data available for the semi-supervised objective (Note: no marker
gene/protein pair is available for PBMC 10x ).

8. Conclusion
In classical machine learning, where the goal is to obtain
accurate predictors, the semi-supervised approaches were
motivated by the lack of labeled data. Unlabeled data is easy
to obtain, but obtaining accurate labels is typically time con-
suming and expensive. In that respect, the unlabeled data
is used to obtain higher accuracy predictive model. In the
field of single-cell RNA-seq, we design a new model, SISUA
, and turn this idea ‘upside down’, our task is to perform
unsupervised analysis on the single-cell gene expression
profiles and we are interested to see whether slight supervi-
sion can assist in producing biologically meaningful latent
representations. Our results corroborate the merits of the
semi-supervised extension. In addition to better interpreted
latent representations, the method also enhances the im-
putation of RNA sequenced counts to more biologically
meaningful places.

SISUA provides extra utility for labeling or predicting the
cell types or surface protein levels of unseen data, this infor-
mation has been proven to be valuable for cell diagnostic and
analysis. Our research proposes general guidelines to imple-
ment an efficient and practical biological semi-supervised
system. These policies are the basis to develop more ad-
vanced designs and leverage the variety of external biologi-

cal data that can benefit single-cell modeling.
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