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Abstract
We propose a new blind segmentation approach to acous-
tic event detection (AED) based on i-vectors. Conventional
approaches to AED often required well-segmented data with
non-overlapping boundaries for competing events. Inspired
by block-based automatic image annotation in image retrieval
tasks, we blindly segment audio streams into equal-length
pieces, label the underlying observed acoustic events with mul-
tiple categories and with no event boundary information, extract
i-vector for them, and perform classification using support vec-
tor machine and maximal figure-of-merit based classifiers. Ex-
periments on various sets of audio data show promising results
with an average of 8% absolute gain in F1 over the conventional
hidden Markov model based approach. An enhanced robustness
at different noise levels is also observed. The key to the suc-
cess lies in the enhanced discrimination power offered by the
i-vector representation of the acoustic data.
Index Terms: acoustic event detection, i-vector, blind segmen-
tation, support vector machine, maximal figure-of-merit

1. Introduction
Acoustic event detection (AED) aims at detecting different
types of events like speech, music, dog barking, etc. in a long
and unstructured audio stream. It has become a challenging
part of the multimedia event detection (MED) task conducted
annually by National Institute of Standards and Technology’s
(NIST). The MED evaluation data often consist of uncontrolled,
real-life audio recordings obtained at low signal-to-noise-ratio
(SNR) enviroments with highly-mixed events in a single acous-
tic segment. Research in AED [1] is drawing a growing atten-
tion recently because it can be an important source of seman-
tic descripion in MED-related tasks [2, 3, 4]. Together with
evidence from visual sources, essential information about tar-
get multimedia events can be inferred from observed videos.
The most popular approach to AED is based on multi-class su-
pervised [1, 5, 6] or unsupervised [7] hidden Markov model
(HMM) [8] learning and decoding.

However, in HMM training, some rough boundary infor-
mation is needed. In the NIST MED task, the data are real-
world videos with uncontrolled recording conditions. As a re-
sult, the target acoustic events may overlap with each other and
mixed with various loud noise sources. Fig. 1 is a typical ex-
ample structure of those audio streams. The overlapping parts
will lead to multiple labels causing problems in HMM learn-
ing. Even we ignore the overlapping structure of the events,
the manual labeling effort of the temporal information could be
still quite labor intensive due to the complicated structures and
strong noises. Although correctly labeled data with temporal
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information can give a good performance for HMM based sys-
tems [1, 5, 6, 7] under non-overlapping scenarios, incorrectly la-
beled time stamps may greatly degrade the system performance.
With the increasing number of events, it becomes infeasible to
directly label the acoustic data with good time stamps in our
AED task.

 

Figure 1: structure of an example audio stream

To handle practical situations, we propose to blindly seg-
ment audio clips with equal-length chunks, label each segment
with events observed in it without boundary information. That
is inspired by an approach to automatic image annotation AIA
[9, 10, 11] in which the labeling effort is restricted to just label-
ing the concerned objects without detail locations in an image.
A similar idea is also used in [12], where a spoken utterance
(like an audio segment in this paper) is represented by a feature
vector and then vector base classifier is used to perform spoken
language recognition.

In our system, we train a binary SVM classifier for each
particular event with the feature vectors and labels. Then this
classifier is used to determine whether a segment contains that
particular event. We also adopt the MFoM [13, 14] framework
which can handle multi-class multi-label classification well.

One essential part of our system is feature extraction. In
this paper, we adopt i-vector, inspired by a recently framework
called joint factor analysis [15] widely used in NIST Speaker
Recognition Evaluation [16, 17]. It represents an entire audio
stream with a relatively low dimensional feature vector while
retaining the relevant statistical information. Thus it is consid-
ered as a “bag of statistics” feature type. We extract one i-vector
for each audio segment and use the i-vector as the feature vector
for the segment.

2. I-vector Based Feature Extraction
The i-vector technique [18] is developed based on Joint Fac-
tor Analysis [15] and has the flavor of Probabilistic Principal
Component Analysis (PPCA) [19]. It is widely used in speaker
recognition and verification and is recently reported in the NIST
Speaker Recognition Evaluation (SRE) task [16, 17, 20]. Its
detailed mathematic explanation can be found in [21]. In this
paper, we introduce a different viewpoint to understand it.

Assume the whole audio space can be roughly described
by a Gaussian mixture model (GMM) with C components, a
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Figure 2: Concept of i-vector technique

super-vector of these C mixtures can be formed by concatenat-
ing mean vectors of these Gaussian densities. We called this
C-mixture GMM a universal background model (UBM) for the
audio space. The corresponding super-vector is denoted by m
in the following paragraphs.

One goal of the i-vector technique is to reduce the dimen-
sion of the changes of the posterior mean statistics in the super-
vector space when compared to the UBM after observing an au-
dio segment. That is, µ -m = V y, whereµ andm are the pos-
terior and original GMM mean super-vectors, respectively; V
is the eigenmatrix and y is the i-vector with less dimension than
µ andm. It is claimed that an audio segment is only highly re-
lated to a subset of the Gaussian densities in the UBM, reflected
by the posterior responsibility of certain mixture for generating
each feature vector in that audio segment [22]. So the changes
of the posterior mean statistics in the super-vector space should
be sparse. The actual posterior super-vector µ is latent due to
the fact that the actual membership of each acoustic feature vec-
tor to the mixtures is unknown, so the i-vector is defined as
the expectation of the vector y in an expectation-maximization
(EM) framework [21, 22, 23].

Note that although µ is not directly observed, the expected
changes µ - m should be still sparse in the super-vector space.
This is one reason that performing dimension reduction can em-
phasize the differences and thus have a potential to increase the
discriminative power in the i-vector representation.

The target i-vector dimension, equal to the “rank” of the
eigenmatrix V , is a design parameter for this framework. Al-
though the concept of i-vector looks quite simple as shown in
Fig. 2, the actual algorithm is more complicated because of the
latent characteristics of the posterior super-vector µ.

To calculate the i-vector, we assume the UBM mean super-
vector and covariance matrix corresponding to the cth mixture
aremc and Σc, respectively, training of the eigenmatrix V can
then be performed in the following manner [21]: given ot as
the feature vector at the tth frame, and γt(c) as the posterior
probability of the mixture component c after observing ot,

1. Randomly initialize V in Eq. (4);
2. For each segment s with Ts frames from a total of N

training segments, compute the Baum-Welch statistics
with Eqs. (1) and (2);

3. Estimate the expected i-vector for each file with Eq. (3);
4. Estimate Vc, the component of V corresponds to cth

mixture of UBM with Eq. (4);
5. Iterate until the stop criteria for V are met.

The effective count for mixture c:

Nc(s) =

Ts∑
t=1

γt(c), (1)

and the expected changes on mixture c:

Fc(s) =

Ts∑
t=1

γt(c)(ot −mc). (2)

〈y(s)〉 =(I +

C∑
c=1

Nc(s)V
∗
c Σ−1

c Vc)
−1·

(

C∑
c=1

V∗
cΣ

−1
c Fc(s)) (3)

Vc =(

N∑
s=1

〈y(s)〉F∗
c(s))·

(

N∑
s=1

Nc(s)〈y(s)y∗(s)〉)−1 (4)

Once the UBM and the eigenmatrix V are ready, we can
compute the i-vectors for each testing segment with Eq. (3). In
this study, we use the ALIZE toolkit [24].

3. Performance Metrics and Classifiers
Next, we describe the classifiers used in this study and the per-
formance metrics used for our evaluation.

3.1. Performance Metrics

To evaluate the results, several performance metrics, such as
precision, recall, and F1, can be used. Given statistics of true
positive (TP), false positive (FP), false negative (FN), and true
negative (TN), for a specific event i, the class recall Ri, preci-
sion Pi and F1i can be computed as in Eqs. (5), (6) and (7),
shown below:

Ri =
TPi

TPi + FNi
(5)

Pi =
TPi

TPi + FPi
(6)

F1i =
2TPi

2TPi + FNi + FPi
(7)

The average performance over all event classes can be sum-
marized by macro- and micro-F1, FM1 and Fµ1 , shown below:

FM1 =
2
∑K
i=1Ri

∑K
i=1 Pi

K(
∑K
i=1Ri +

∑K
i=1 Pi)

(8)

Fµ1 =
2
∑K
i=1 2TPi∑K

i=1 FPi +
∑K
i=1 FNi + 2

∑K
i=1 2TPi

(9)
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3.2. Support Vector Machine

Support vector machine (SVM) [25] is widely adopted in infor-
mation retrieval tasks, such as MED [2, 3, 26]. Its soft margin
version for risk minimization is shown in the following:

min
w,ξ,b
{1

2
‖w‖2 + C

n∑
i=1

ξi}

subject to yi(w · x− b) ≥ 1− ξi, ∀i = 1, ..., N (10)

3.3. MFoM learning

MFoM is designed to optimize a specific performance metric
directly and does well with multi-class multi-label problems
[13, 14, 27]. It has been applied to various classification prob-
lems such as text categorization [13, 14] and automatic image
annotation [27]. The MFoM learning approach uses a differen-
tiable objective function to approximate error counting often re-
quired in performance metrics, such as recall, precision, and F1

defined above. This way, we can optimize certain task-driven
performance metrics in different applications.

4. Experiments and Results
To verify the performance of i-vector based classifiers, we con-
ducted 2 different sets of experiments, the first was on the la-
beled NIST data, and the second was on some artificially-mixed
data aiming at simulating the actual scenarios of the future NIST
data and demonstrating the essentials of our proposed blind seg-
mentation and i-vector based framework.

4.1. Common settings for the two experiments

In both experiments, one single UBM was trained with data out-
side the training and testing sets used for the two experiments.
A single GMM with 128 mixtures serves as the UBM. The di-
mension of the i-vector, equal to the “rank” of eigenmatrix V ,
was chosen to be 64 in this study because it was determined em-
pirically that a larger i-vector dimension would not give much
improvement to the classification performance but it greatly in-
creased the computation effort.

In actual scenarios, each acoustic segment may contain
multiple labels. For example, both speech and animal sounds
may exist in one segment. So we trained a binary SVM classi-
fier for each particular event respectively and we used the clas-
sifier to determine whether a segment contains that particular
event or not. By combining binary classification results from
each classifier we can get the multi-class results. MFoM is orig-
inally designed for binary and multi-class classification. We
used it here to compare with the SVM-based classifiers. The
libsvm toolbox [28] was used for all SVM-related experiments.

HTK [29] was used to build the baseline HMM system us-
ing the whole observed segments to train the event HMMs, with
5 states and 15 mixtures per state. Other similar parameter set-
tings gave comparable performance results.

4.2. Experiments on the NIST MED data

We randomly chose a collection of MED video clips from the
NIST’s TRECVID 2010, 2011, and 2012 MED event kits [26],
extracted and segmented the audio streams into 5-second seg-
ments for labeling the observed acoustic events. 39 dimension
mel-frequency cepstral coefficient (MFCC) [30] vectors were
computed with a window size of 25 ms and a 10 ms shift.
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Figure 3: F1 results (Gaussian SVM) for MED data

There were 6 acoustic events in our categorization framework,
as shown in Table 1. We labeled only a total of 1,021 segments.

4.2.1. Experimental setup and results on NIST MED data

We did 5-fold cross-validation for SVM-based classification.
For every fold, we used the training segments to compute the
eigenmatrix V and then extracted the i-vectors for all the train-
ing and testing segments. Table 1 lists the comparison results
of the HMM baseline and the proposed i-vector based sys-
tems (SVM(L) and SVM(G) denote Linear and Gaussian kernel
SVM, repectively).

It was observed that the i-vector systems consistently out-
perform HMM on the F1 metric with about an average of 8%
absolute gain and were better than HMM for almost all metrics.
We also applied linear MFoM [13] to the i-vectors maximizing
the macro-F1 and compared the performance with linear SVM.
It is interesting to note that MFoM learning gave considerable
improvements over SVM in cases where the positive samples
are relatively few, e.g., with 11% for machine sound, and even
more seriously at only 4% for animal sound as shown in the
rightmost column of Table 1. The macro-F1 over the 6 cate-
gories was 0.46 for SVM and was increased to 0.53 for MFoM.

4.2.2. Potential problems with NIST MED data

To fully explore the proposed framework of blind segmenta-
tion and i-vector based AED systems, we found our MED data
set suffered from the following 3 shortcomings, namely: (1)
there are too few positive samples for some events like “ma-
chine sound” and “animal sound”. For example, there are only
less than 4% positive samples in the total training data. The
number of positive data is not enough to train meaningful mod-
els for these events; (2) some audio concept labels like “human
made sound” and “animal sound” are too general. For example,
dog bark and bird sound are both labeled as “animal sound”,
but we know that they are quite different in their acoustic char-
acteristics. The relatively low performance of these two events
shows that more careful categorization of the event concepts is
needed; and (3) there may be wrongly labeled segments because
categorizing a long segment into one single audio concept can
be misleading as shown in Fig. 1.
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Table 1: Averaged 5-fold Cross Validation results using HMM, and i-vector based binary SVM and linear MFoM
PPPPPPPevent

% recall precision F1 #Positive
#TotalHMM SVM(G) SVM(L) MFoM HMM SVM(G) SVM(L) MFoM HMM SVM(G) SVM(L) MFoM

speech 76.37 79.32 83.54 82.49 80.47 84.62 87.85 87.08 78.32 84.08 83.37 84.72 46.43
human voice 64.00 64.39 71.59 66.29 47.32 54.00 62.73 57.95 54.39 61.56 63.55 61.85 25.86

human made sound 64.40 66.18 65.83 60.43 46.88 51.54 56.61 59.57 54.06 57.82 61.02 60.00 27.24
machine sound 58.77 60.52 65.79 64.91 36.10 27.17 43.12 32.74 44.30 38.46 50.36 43.53 11.17

music 81.85 77.99 77.51 72.73 46.98 57.65 69.96 69.22 59.56 66.12 7375 71.19 20.47
animal sound 42.50 60.52 47.37 39.47 16.48 13.14 18.85 23.44 23.46 20.57 28.75 29.41 3.72

4.3. Experiments on artificially-mixed data

To alleviate some of the difficulties mentioned above, we de-
signed a second set of experiments using artificially-mixed au-
dio segments to balance the binary split with about 20% positive
and 80% negative data for all event categories and to choose
more meaningful event categories with reliable tagging infor-
mation to experiment on. Moreover, we can add known noise
to audio data to simulate low SNR conditions.

We therefore collected audio clips from 6 categories (ap-
plause, bird, dog, music, saw, speech) of acoustic events from
FindSounds.com [31]. The choice of the 6 categories was based
on the availability of data and the fact that they possess differ-
ent acoustic characteristics and should not be grouped into one
single category. The assembled audio clips were divided into 1-
second segments, called signal segments, and randomly mixed
with 5-second noise segments from the Aurora2 noise database
[32]. Each 5-sec mixed segment can contain up to 2 signal seg-
ments in our experimental setting. We labeled each mixed seg-
ment with the event category using the original signal labels.
If one noise segment is not mixed with any signal segment, we
labeled it as “noise”. We controlled the percentage of the posi-
tive samples to be around 20% for each event category. 3 SNR
levels, 0 dB, 5 dB and 10 dB, were used and 1,374 segments
in 5-sec lengths were obtained for each SNR level. The choice
of these levels were made by actually listening to some NIST
videos.

4.3.1. Experimental setup and results

We divided the 1,374 segments evenly into training and testing
sets. The other experimental settings were the same as those
in the NIST MED data experiments described earlier. Fig. 3
displays the F1 results for each category using HMMs and i-
vector based Gaussian kernel SVMs at the three SNR levels.

First, we examine the results closely at the 10dB SNR level
for the two leftmost vertical bars in Fig. 3 for each of the 6
categories. Note that the second bar (i-vector based result) for
each event is consistently better than that for the first bar (HMM
based result). It shows that the i-vector based system achieved
a better F1 at a relatively low SNR level.

Experiments on the 5dB and 0dB SNR data also showed
good robustness and performance for the i-vector based sys-
tems. They again outperformed the HMM based systems for
every event. Let us focus our attention on the category “bird” in
the upper middle panel of Fig. 3. When SNR drops from 5dB
(the two middle bars) to 0dB (the two rightmost bars), in the
HMM experiment, F1 for the bird category degraded greatly
from 67.84% to 47.89%. On the other hand, in the i-vector ex-
periment, F1 dropped not as significantly.

When comparing FM1 and Fµ1 in Fig. 4 using linear SVM
and linear MFoM, it can also be seen that the results of lin-
ear MFoM learning were slightly better than those for linear
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Figure 4: Micro and macro F1 results for mixed data

SVM, and both SVM and MFoM based classifiers outperformed
HMM based classifiers considerably in both macro-average and
micro-average F1 when the ratio of positive to negative training
examples is not as severe as shown in Table 1.

5. Summary and Discussion
We have demonstrated the good performance of the proposed
blind segmentation and i-vector based approach to audio event
detection. By blind segmentation, the difficult issues of manual
event labeling and overlapping events are somewhat alleviated.
The i-vector based systems with SVM and MFoM based clas-
sifiers show much better performance with an average of 8%
absolute gain in F1 than a conventional HMM based system.
An enhanced robustness over HMM based systems across low
SNR conditions is also observed. For future work, more event
categories would be incorporated. Utilizing the AED results
from the audio segments in a particular video clip to help de-
scribing the semantics of the whole clip would also be studied.
We will also investigate Gaussian MFoM learning and compare
it with Gaussian SVM.
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