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Abstract—We propose a unified approach to automatic foreign
accent recognition. It takes advantage of recent technology
advances in both linguistics and acoustics based modeling tech-
niques in automatic speech recognition (ASR) while overcom-
ing the issue of a lack of a large set of transcribed data
often required in designing state-of-the-art ASR systems. The
key idea lies in defining a common set of fundamental units
“universally” across all spoken accents such that any given
spoken utterance can be transcribed with this set of “accent-
universal” units. In this study, we adopt a set of units describing
manner and place of articulation as speech attributes. These
units exist in most spoken languages and they can be reliably
modeled and extracted to represent foreign accent cues. We
also propose an i-vector representation strategy to model the
feature streams formed by concatenating these units. Testing
on both the Finnish national foreign language certificate (FSD)
corpus and the English NIST 2008 SRE corpus, the experimental
results with the proposed approach demonstrate a significant
system performance improvement with p-value < 0.05 over those
with the conventional spectrum-based techniques. We observed
up to a 15% relative error reduction over the already very
strong i-vector accented recognition system when only manner
information is used. Additional improvement is obtained by
adding place of articulation clues along with context information.
Furthermore, diagnostic information provided by the proposed
approach can be useful to the designers to further enhance the
system performance.

Index Terms—Attribute detectors, i-vector system, Finnish
corpus, English corpus.

I. INTRODUCTION

AUTOMATIC foreign accent recognition is the task of
identifying the mother tongue (L1) of non-native speak-

ers given an utterance spoken in a second language (L2) [1].
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V. Hautamäki is with the School of Computing, University of Eastern
Finland, Joensuu, Finland. E-mail: villeh@cs.uef.fi

S. M. Siniscalchi is with the Department of Computer Engineering, Kore
University of Enna, Enna, Italy, and with the Department of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332.

E-mail: marco.siniscalchi@unikore.it
T. Kinnunen is with the School of Computing, University of Eastern

Finland, Joensuu, Finland. E-mail: tkinnu@cs.uef.fi
C.-H. Lee is with the Department of Electrical and Computer Engineering,

Georgia Institute of Technology, Atlanta, GA, 30332.
E-mail: chl@ece.gatech.edu

The task attracts increasing attention in the speech community
because accent adversely affects the accuracy of conventional
automatic speech recognition (ASR) systems (e.g., [2]). In
fact, most existing ASR systems are tailored to native speech
only, and recognition rates decrease drastically when words
or sentences are uttered with an altered pronunciation (e.g.,
foreign accent) [3]. Foreign accent variation is a nuisance
factor that adversely affects automatic speaker and language
recognition systems as well [4], [5]. Furthermore, foreign
accent recognition is a topic of great interest in the areas
of intelligence and security, including immigration screening
and border control sites [6]. It may help officials detect a
fake passport by verifying whether a traveler’s spoken foreign
accent corresponds to accents spoken in the country he claims
he is from [6]. Finally, connecting customers to agents with
similar foreign accent in targeted advertisement applications
may help create a more user-friendly environment [7].

It is worth noting that foreign accents differ from re-
gional accents (dialects), since the deviation from the standard
pronunciation depends upon the influence that L1 has on
L2 [8]. Firstly, non-native speakers tend to alter some phone
features when producing a word in L2 because they only
partially master its pronunciation. To exemplify, Italians often
do not aspirate the /h/ sound in words such as house, hill,
and hotel. Moreover, non-native speakers can also replace an
unfamiliar phoneme in L2 with the one considered as the
closest in their L1 phoneme inventory. Secondly, there are
several degrees of foreign accent for the same native language
influence according to L1 language proficiency of the non-
native speaker [9], [10]: non-native speaker learning L2 at
an earlier age can better compensate for their foreign accent
factors when speaking in L2 [11].

In this study, we focus on automatic L1 detection from spo-
ken utterances with the help of statistical pattern recognition
techniques. In the following, we give a brief overview and
current state-of-the-art methods before outlining our contri-
butions. It is common practice to adopt automatic language
recognition (LRE) techniques to the foreign accent recognition
task. Indeed, the goal of an LRE system is to automatically
detect the spoken language in an utterance, which we can
parallel with that of detecting L1 in an L2 utterance. Automatic
LRE techniques can be grouped into to main categories: token-
based (a.k.a, phonotactic) and spectral-based ones. In the
token-based approach, discrete units/tokens, such as phones,
are used to describe any spoken language. For example,
parallel phone recognition followed by language modeling
(PPRLM) [12] approach employs a bank of phone recognizers
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Fig. 1: An example showing the detection score differences in the three selected attributes from a Hindi and a Finnish speaker.
Both speakers utter the same sentence ’Finland is a land of interesting contrasts’. Speech segments are time-aligned with
dynamic time warping (DTW). The Finnish speaker shows higher level of activity in fricative in comparison to the Hindi
speaker. However, in the Hindi speech utterance, the level of activity in stop is higher than in the Finnish utterance.

to convert each speech utterance into a string of tokens. In the
spectral-based approach a spoken utterance is represented as a
sequence of short-time spectral feature vectors. These spectral
vectors are assumed to have statistical characteristics that
differ from one language to another [13], [14]. Incorporating
temporal contextual information to the spectral feature stream
has been found useful in the language recognition task via
the so-called shifted-delta-cepstral (SDC) features [15]. The
long-term distribution of language-specific spectral vectors is
modeled, in one form or another, via a language- and speaker-
independent universal background model (UBM) [16]. In the
traditional approaches [16], [17], language-specific models are
obtained via UBM adaptation while the modern approach
utilizes UBMs to extract low-dimensional i-vectors [18]. I-
vectors are convenient for expressing utterances with varying
numbers of observations as a single vector that preserves
most utterance variations. Hence, issues such as session nor-
malization are postponed to back-end modeling of i-vector
distributions.

Table I shows a summary of several studies on foreign
accent recognition. In [1], the accented speech is charac-
terized using acoustic features such as frame power, zero-
crossing rate, LP reflection coefficients, autocorrelation lags,
log-area-ratios, line-spectral pair frequencies and LP cepstrum
coefficients. 3-state hidden Markov models (HMMs) with
a single Gaussian density were trained from these features
and evaluated on spoken American English with 5 foreign
accents reporting 81.5% identification accuracy. The negative
effects of non-native accent in ASR task were studied in
[19]. Whole-word and sub-word HMMs were trained on either
native accent utterances or a pool of native and non-native
accent sentences. The use of phonetic transcriptions for each
specific accent improved speech recognition accuracy. An
accent dependent parallel phoneme recognizer was developed
in [20] to discriminate native Australian English speakers and
two migrant speaker groups with foreign accents, whose L1’s

were either Levantine Arabic or South Vietnamese. The best
average accent identification accuracies of 85.3% and 76.6%
for accent pair and three accent class discrimination tasks were
reported, respectively. A text-independent automatic accent
classification system was deployed in [5] using a corpus
representing five English speaker groups with native American
English, and English spoken with Mandarin Chinese, French,
Thai and Turkish accents. The proposed system was based
on stochastic and parametric trajectory models corresponding
to the sequence of points reflecting movements in the speech
production caused by coarticulation. This system achieved an
accent classification accuracy of 90%.

All the previous studies used either suprasegmental model-
ing, in terms of trajectory model or prosody, or phonotactic
modeling to recognize non-native accents. Recently, spectral
features with i-vector back-end were found to outperform
phonotactic systems in language recognition [18]. Spectral
features were first used by [21] in a L1 recognition task. The
non-native English speakers were recognized using multiple
spectral systems, including i-vectors with different back-ends
[21], [23]. The i-vector system outperformed other methods
most of the time, and spectral techniques based on i-vector
model are thus usually adopted for accent recognition. The
lack of large amount of transcribed accent-specific speech
data to train high-performance acoustic phone models hinders
the deployment of competitive phonotactic foreign accent
recognizers. Nonetheless, it could be argued that phonotactic
methods would provide valuable results that are informative
to humans [24]. Thus, a unified foreign accent recognition
framework that gives the advantages of the subspace mod-
eling techniques without discharging the valuable information
provided by the phonotactic-based methods is highly desirable.

The automatic speech attribute transcription (ASAT) frame-
work [25], [26], [27] represents a natural environment to make
these two above contrasting goals compatible, and is adopted
here as the reference paradigm. The key idea of ASAT is
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TABLE I: Summary of the previous studies on foreign accent recognition and the present study.

Study Spoken language #accents #speakers #utterances Features Model
Hansen and Arslan [1] American English 4 27 N/A Prosodic HMM
Teixeira et al. [19] British English 5 20 20 Phonotactic HMM
Kumpf and King [20] Australian English 3 67 3950 Phonotactic HMM
Angkititraku and Hansen [5] English 5 179 N/A Phoneme sequence Trajectory-model
Bahari et al. [21] English 5 265 359 Spectral GMM supervector
Behravan et al. [22], [10] Finnish 9 450 1973 Spectral i-vector modeling
Present study Finnish (FSD) 8 415 1644 Attributes i-vector modeling
Present study English (NIST) 7 348 1262 Attributes i-vector modeling

to use a compact set of speech attributes, such as fricative,
nasal and voicing to compactly characterize any L2 spoken
sentence independently of the underlying L1 native language.
A bank of data-driven detectors generates attribute posterior
probabilities, which are in turn modeled using an i-vector
back-end, treating the attribute posteriors as acoustic features.
A small set of speech attributes suffices for a complete
characterization of spoken languages, and it can therefore
be useful to discriminate accents [28]. For example, some
sister languages, e.g., Arabic spoken in Syria and Iraq, only
have subtle differences that word-based discrimination usually
does not deliver good results. In contrast, these differences
naturally arise at an attribute level and can help foreign accent
recognition. Robust universal speech attribute detectors can
be designed by sharing data among different languages, as
shown in [29], and that bypasses the lack of sufficient labeled
data for designing ad-hoc tokenizers for a specific L1/L2
pair. Indeed, the experiments reported in this work concern
detecting Finnish and English foreign accented speech, even
though the set of attribute detectors was originally designed
to address phone recognition with minimal target-specific
training data [29]. Although speech attributes are shared across
spoken languages, the statistics of the attributes can differ
considerably from one foreign accent to another, and these
statistics improve discrimination [30]. This can be appreciated
by visually inspecting Figure 1, which shows attribute detec-
tion curves from Finnish and Hindi speakers. Although both
speakers uttered the same sentence, namely “Finnish is a land
of interesting contrasts,” differences between corresponding
attribute detection curves can be observed: (i) the fricative
detection curve tends to be more active (i.e. stays close to 1)
in Finnish speaker than in Hindi, (ii) the stop detection curve
for the Hindi speaker more often remains higher (1 or close to
1) than that for the Finnish speaker, (iii) approximant detection
curve seem instead to show similar level of activity for both
speakers.

In this work, we significantly expand our preliminary find-
ings on automatic accent recognition [31] and re-organize
our work in a systematic and, self-contained form that pro-
vides a convincing case why universal speech attributes are
worthwhile of further studies in accent characterization. The
key experiments, not available in [31], can be summarized as
follows: (i) we have investigated the effect of heteroscedastic
linear discriminant analysis (HLDA) [32] dimensionality re-
duction on the accent recognition performance and compared
and contrasted it with linear discriminant analysis (LDA), (ii)
we have studied training and test duration effects on the overall

system performance, and (iii) we have expanded our initial
investigation on Finnish data by including new experiments
on English foreign accent. Even if the single components
have been individually investigated in previous studies, e.g.,
[30], [33], [18], the overall architecture (combining the com-
ponents) presented in this paper, as well as its application to
foreign accent recognition, are novel. The key novelty of our
framework can be summarized as follows: (i) speech attributes
extracted using machine learning techniques are adopted to
the foreign accent recognition task for the first time, (ii)
a dimensionality reduction approach is used for capturing
temporal context and exploring the effect of languages, (iii)
the i-vector approach is successfully used to model speech
attributes. With respect to point (iii), Diez et al. [34], [35]
proposed a similar solution but to address a spoken language
recognition task, namely they used log-likelihood ratios of
phone posterior probabilities within the i-vector framework.
Although Diez et al.’s work has some similarities with ours,
there are several implementation differences in addition to the
different addressed task: (i) we describe different accents using
a compact set of language independent attributes, which over-
comes high computational issues caused by high-dimension
posterior scores, as mentioned in [34], (ii), we introduce
context information by stacking attribute probability vectors
together, and we then capture context variability directly in the
attribute space, and (iii) we carry out i-vector post-processing
to further improve accents discriminability. Moreover, useful
diagnostic information can be gathered with our approach, as
demonstrated in Section IV-D.

Finally in [22], [10], the authors demonstrated that i-vector
modeling using SDCs outperforms conventional Gaussian
mixture model - universal background model (GMM-UBM)
system in recognizing Finnish non-native accents. The method
proposed in [10] is here taken to build a reference baseline
system to compare with. We evaluate effectiveness of the pro-
posed attribute-based foreign accent recognition system with a
series of experiments on Finnish and English foreign accented
speech corpora. The experimental evidence demonstrates that
the proposed technique compares favorably with conventional
SDC-MFCC with i-vector and GMM-UBM approaches. In
order to enhance accent recognition performance of the pro-
posed technique, several configurations have been proposed
and evaluated. In particular, it was observed that contextual
information helps to decrease recognition error rates.
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Fig. 2: Block diagram of the proposed system. In the attribute
detectors [29], [30], [27], spectral features are fed into left-
context and right-context artificial neural networks. A merger
then combines the outputs generated by those two neural
networks and produce the final attribute posterior probabilities.
Principal component analysis (PCA) is then applied on C
consecutive frames of these posterior probabilities to create
long-term contextual features. We use i-vector approach [33]
with cosine scoring [33] to classify target accents.

II. FOREIGN ACCENT RECOGNITION

Figure 2 shows the block diagram of the proposed system.
The front-end consists of attribute detectors and building long-
term contextual features via principal component analysis
(PCA). The features created in the front-end are then used
to model target foreign accents using a i-vector back-end. In
the following, we describe the individual components in detail.

A. Speech attribute extraction

The set of speech attributes used in this work are acoustic
phonetic features, namely, five manner of articulation classes
(glide, fricative, nasal, stop, and vowel), and voicing together
with nine place of articulation (coronal, dental, glottal,
high, labial, low, mid, retroflex, velar). Attributes could be
extracted from a particular language and shared across many
different languages, so they could also be used to derive a
universal set of speech units. Furthermore, data-sharing across
languages at the acoustic phonetic attribute level is naturally
facilitated by using these attributes, so more reliable language-
independent acoustic parameter estimation can be anticipated
[29]. In [30], it was also shown that these attributes can be
used to compactly characterize any spoken language along the
same lines as in the ASAT paradigm for ASR [27]. Therefore,
we expect that it can also be useful for characterizing speaker
accents.

B. Long-term Attribute Extraction

Each attribute detector outputs the posterior probability for
the target class i, p(H

(i)
target|f), non-target, p(H

(i)
anti|f), and

noise, p(H(i)
noise|f), class given a speech frame f . As proba-

bilities, they sum up to one for each frame. A feature vector
x is obtained by concatenating those posterior probabilities
generated by the set of manner/place detectors into a single
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Fig. 3: Remaining variance after PCA. Comparing stacked
context sizes (C) 5, 8, 12, 20 and 30 frames for manner
attributes. d varies from ∼20 to ∼100, with larger dimen-
sionality assigned to longer context sizes.

vector. The final dimension of the feature vector, x, is 18 in
the manner of articulation case, for example.

Since language and dialect recognizers benefit from the
inclusion of long temporal context [36], [16], it is natural
to study similar ideas for attribute modeling as well. A
simple feature stacking approach is adopted in this paper.
To this end, let x(t) ∈ Rn denote the 18-dimensional (6
manner attributes × 3) or 27-dimensional (9 place attributes
× 3) feature attribute vector at frame t. A sequence of
q = 18C (or q = 27C, for place) dimensional stacked vectors
x̃C(t) = (x(t)>,x(t+1)>, . . . ,x(t+C−1)>)>, t = 1, 2, . . . ,
is formed, where C is the context size, and > stands for
transpose. PCA is used to project each x̃C(t) onto the first
d � q eigenvectors corresponding to the largest eigenvalues
of the sample covariance matrix. We estimate the PCA basis
from the same data as the UBM and the T-matrix, after VAD,
with 50 % overlap across consecutive x̃C(t)’s. We retain 99
% of the cumulative variance. As Figure 3 indicates, d varies
from ∼20 to ∼100, with larger dimensionality assigned to
longer context as one expects.

C. I-vector Modeling

I-vector modeling or total variability modeling, forms a low-
dimensional total variability space that contains spoken con-
tent, speaker and channel variability [33]. Given an utterance,
a GMM supervector, s, is represented as [33],

s = m+ Tw, (1)

where m is the utterance- and channel-independent component
(the universal background model or UBM supervector), T
is a rectangular low rank matrix and w is an independent
random vector of distribution N (0, I). T represents the cap-
tured variabilities in the supervector space. It is estimated
by the expectation maximization (EM) algorithm similar to
estimating the speaker space in joint factor analysis (JFA) [37],
with the exception that every training utterances of a given
model is treated as belonging to different class. The extracted
i-vector is then the mean of the posterior distribution of w.

D. Inter-session Variability Compensation

As the extracted i-vectors contain both within- and between
accents variation, we used dimensionality reduction technique
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to project the i-vectors onto a space to minimize the within-
accent and maximize the between-accent variation. To per-
form dimensionality reduction, we used heteroscedastic linear
discriminant analysis (HLDA) [32], which is considered as
an extension of linear discriminant analysis (LDA). In this
technique, i-vector of dimension n is projected into a p-
dimensional feature space with p < n, using HLDA transfor-
mation matrix denoted by A. The matrix A is estimated by an
efficient row-by-row iteration with EM algorithm as presented
in [38].

Followed by HLDA, within-class covariance normalization
(WCCN) is then used to further compensate for unwanted
intra-class variations in the total variability space [39]. The
WCCN transformation matrix, B, is trained using the HLDA-
projected i-vectors obtained by Cholesky decomposition of
BB> = Λ−1, where a within-class covariance matrix, Λ,
is computed using,

Λ =
1

L

L∑
a=1

1

N

N∑
i=1

(wa
i −wa)(w

a
i −wa)

>, (2)

where wa is the mean i-vector for each target accent a, L is
the number of target accents and N is the number of training
utterances in target accent a. The HLDA-WCCN inter-session
variability compensated i-vector, ŵ, is calculated as,

ŵ = B>A>w. (3)

E. Scoring Against Accent Models

We used cosine scoring to measure similarity of two i-
vectors [33]. The cosine score, t, between the inter-session
variability compensated test i-vector, ŵtest, and target i-vector,
ŵtarget, is computed as the dot product between them,

t =
ŵ>test ŵtarget

‖ŵtest‖ ‖ŵtarget‖
, (4)

where ŵtarget is the average i-vector over all the training
utterances of the target accent, i.e.

ŵtarget =
1

N

N∑
i=1

ŵi, (5)

where ŵi is the inter-session variability compensated i-vector
of training utterance i in the target accent.

Obtaining scores {ta, a = 1, . . . , L} for a particular test
utterance of accent a, compared against all the L target accent
models, scores are further post-processed as,

t′a = log
exp(ta)

1
L−1

∑
k 6=a exp(tk)

, (6)

where t′a is the detection log-likelihood ratio, for a particular
test utterance of accent a, scored against all the L target
accent models.

III. EXPERIMENTAL SETUP

A. Baseline System

To compare the attribute system recognition performance,
two baseline systems were built. Both systems were trained
using 56 dimensional SDC (49)-MFCC (7) feature vectors and
they use the same UBM of 512 Gaussians. The first system is
based on the conventional GMM-UBM system with adaptation
similar to [16]. It uses 1 iteration to adapt the UBM to each
target model. Adaptation consists of updating only the GMM
mean vectors. The detection scores are then generated using a
fast scoring scheme described in [40] using top 5 Gaussians.
The second system uses i-vectors approach to classify accents.
The i-vectors are of dimensionality 1000 and HLDA projected
i-vectors of dimensionality 180.

B. Corpora

The “stories” part of the OGI Multi-language telephone
speech corpus [41] was used to train the attribute detectors.
This corpus has phonetic transcriptions for six languages:
English, German, Hindi, Japanese, Mandarin, and Spanish.
Data from each language were pooled together to obtain 5.57
hours of training and 0.52 hours of validation data.

A series of foreign accent recognition experiments were
performed on the FSD corpus [42] which was developed to
assess Finnish language proficiency among adults of different
nationalities. We selected the oral responses portion of the
exam, corresponding to 18 foreign accents. Since the number
of utterances is small, 8 accents — Russian, Albanian, Arabic,
English, Estonian, Kurdish, Spanish, and Turkish — with
enough available data were used. The unused accents are,
however, used in training UBM and the T -matrix. Each accent
set is randomly split into a test and a train set. The test set
consists of (approximately) 30% of the utterances, while the
training set consists of the remaining 70% to train foreign
accent recognizers in the FSD task. The raw audio files were
partitioned into 30 sec chunks and re-sampled to 8 kHz.
Statistics of the test and train portions are shown in Table II.

The NIST 2008 SRE corpus was chosen for the experiments
on English foreign accent detection. The corpus has a rich
metadata from the participants, including their age, language
and smoking habits. It contains many L2 speakers whose
native language is not English. Since the number of utterances
in some foreign accents is small, 7 accents — Hindi (HIN),
Thai (THA), Japanese (JPN), Russian (RUS), Vietnamese
(VIE), Korean (KOR) and Chinese Cantonese (YUH) — with
enough available utterances were chosen in this study. These
accents are from the short2, short3 and 10sec portions, of the
NIST 2008 SRE corpus. We used over 5000 utterances to train
the UBM and total variability subspace in the NIST 2008 task.
Table III shows the distribution of train and test portions in the
English utterances. Speakers do not overlap between training
and testing utterances both in the FSD and NIST corpora.

C. Attribute Detector Design

One-hidden-layer feed forward multi-layer perceptrons
(MLPs) were used to implement each attribute detector. The
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TABLE II: Train and test files distributions in each target
accent in the FSD corpus. Duration is reported for only active
speech frames.

Accent #train files (hh:mm) #test files #speakers
Spanish 47 (00:26) 25 15
Albanian 60 (00:32) 29 19
Kurdish 61 (00:37) 32 21
Turkish 66 (00:39) 34 22
English 70 (00:37) 36 23
Estonian 122 (01:07) 62 38
Arabic 128 (01:15) 66 42
Russian 556 (03:15) 211 235

Total 1149 (08:46) 495 415

TABLE III: Train and test file distributions in the NIST
2008 SRE corpus. Duration is reported for only active speech
frames.

Accent #train files (hh:mm) #test files #speakers
Hindi 80 (03:39) 109 53

Russian 74 (03:32) 84 42
Korean 91 (03:05) 99 41

Japanese 53 (02:02) 73 41
Thai 70 (02:53) 93 52

Cantonese 68 (03:14) 92 50
Vietnamese 127 (04:01) 149 69

Total 563 (22:44) 699 348

number of hidden nodes with a sigmoidal activation function
is 500. MLPs were trained to estimate attribute posteriors,
and the training data were separated into ”feature present”,
”feature absent”, and ”other” regions for every phonetic class
used in this work. The classical back-propagation algorithm
with a cross-entropy cost function was adopted to estimate
the MLP parameters. To avoid over-fitting, the reduction in
classification error on the development set was adopted as the
stopping criterion. The attribute detectors employed in this
study were actually just those used in [29].

Data-driven detectors are used to spot speech cues embed-
ded in the speech signal. An attribute detector converts an input
utterance into a time series that describes the level of presence
(or level of activity) of a particular property of an attribute
over time. A bank of 15 detectors (6 manner and 9 place) is
used in this work, each detector being individually designed
to spot of a particular event. Each detector is realized with
three single hidden layer feed-forward ANNs (artificial neural
networks) organized in a hierarchical structure and trained
on sub-band energy trajectories extracted through 15-band
mel-frequency filterbank. For each critical band, a window
of 310ms centered around the frame being processed is
considered and split in two halves: left-context and right-
context [43]. Two independent front-end ANNs (“lower nets”)
are trained on those two halves to generate, left- and right-
context speech attribute posterior probabilities. The outputs of
the two lower nets are then sent to the third ANN that acts as
a merger and gives the attribute-state posterior probability of
the target speech attribute.

D. Evaluation Metrics

System performance is reported in terms of equal error
rate (EER) and average detection cost (Cavg) [44]. Results
are reported per each accent for a cosine scoring classifier.
Cavg is defined as [44],

Cavg =
1

M

M∑
j=1

CDET(Lj), (7)

where CDET(Lj) is the detection cost for subset of test
segments trials for which the target accent is Lj and M is
the number of target languages. The per target accent cost is
then,

CDET(Lj) = CmissPtarPmiss(La)

+ Cfa(1− Ptar)
1

J − 1

∑
k 6=j

Pfa(Lj , Lk). (8)

The miss probability (or false rejection rate) is denoted by
Pmiss, i.e., a test segment of accent Li is rejected as being
in that accent. On the other hand Pfa(Li, Lk) denotes the
probability when a test segment of accent Lk is accepted as
being in accent Li. It is computed for each target/non-target
accent pairs. The costs, Cmiss and Cfa are both set to 1 and
Ptar, the prior probability of a target accent, is set to 0.5
following [44].

IV. RESULTS

A. Accent Recognition Performance on the FSD corpus

Table IV reports foreign accent recognition results for
several systems on the FSD corpus. The results in the first two
rows indicate that i-vector modeling outperforms the GMM-
UBM technique when the same input features are used, which
is in line with findings in [10], [45]. The results in the last two
rows, in turn, indicate that the i-vector approach can be further
enhanced by replacing spectral vectors with attribute features.
In particular, the best performance is obtained using manner
attribute features within the i-vector technique, yielding a Cavg

of 5.80, which represents relative improvements of 45% and
15% over the GMM-UBM and the conventional i-vector ap-
proach with SDC+MFCC features, respectively. The FSD task
is quite small, which might make the improvements obtained
with the attribute system not statistically different from those
delivered by the spectral-based system. We therefore decided
to run a proper statistical significance test using a dependent
Z-test according to [46]. We applied the statistical test for
comparing per target accents EERs between attribute systems
and SDC-MFCC i-vector system. In Table V, we indicated in
boldface cases where the proposed attribute-based foreign ac-
cent recognition techniques outperform the spectral-based one.
To exemplify, Z-test results in the second column of Table V
demonstrates that the manner system significantly outperforms
the SDC-MFCC i-vector system on 7 out of 8 accents. For
the sake of completeness, we have also compared manner and
place of articulation systems, and we have reported the Z-test
results in the third column of Table V.

To verify that we are not recognizing the channel vari-
ability, we followed the procedure highlighted in [47], where
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TABLE IV: Baseline and attribute systems results in terms of
EERavg and Cavg in the FSD corpus. In parentheses, the final
dimensionality of the feature vectors sent to the back-end. In
manner system, for 7 out of 8 accents, the difference between
EERs is significant at a confidence level of 95% if Z ≥ 1.960.

Feature (dimensionality) Classifier EERavg(%) Cavg × 100
SDC+MFCC (56) GMM-UBM 19.03 10.56
SDC+MFCC (56) i-vector 12.60 6.85

Place (27) i-vector 10.37 6.00
Manner (18) i-vector 9.21 5.80

TABLE V: In the first two columns, the Z-test results per
target accent EERs at the EER threshold between the proposed
attribute- and spectral-based system performance on the FSD
corpus are reported. The difference between EERs is signifi-
cant at a confidence level of 95% if Z≥ 1.960. Boldface values
refer to cases in which our solution significantly outperforms
the SDC-MFCC system. The third column shows the same Z-
test results between manner- and place-based systems, where
manner is significantly better than place if the score is in
boldface.

Accents Place/SDC-MFCC Manner/SDC-MFCC Manner/Place
Albanian 1.1041 1.6503 2.2866
Arabic 5.9139 5.6975 1.0587
English 1.9973 4.3714 3.0224
Estonian 0.4907 2.2240 1.2108
Kurdish 5.1326 3.1453 2.2361
Russian 2.3955 5.2633 3.1523
Spanish 5.4506 2.2105 2.3521
Turkish 4.9694 1.9604 3.6600

the authors performed language recognition experiments on
speech and non-speech frames separately. The goal of the
authors was to demonstrate that if the system performance
on the non-speech frames is comparable with that attained
using speech frames, then the system is actually modeling
the channel and not language variability. Therefore, we have
first split data into speech and non-speech frames. Then we
have computed the EERavg on the non-speech frames, which
was equal to 40.51% and 40.18% in manner and place cases,
respectively. The EERavg on the speech frames was instead
equal to 8.48% and 14.20% in the manner and place systems,
respectively. These results suggest that our technique is not
modeling channel effects.

Next we explore different architectural configurations to
assess their effect on the recognition accuracy.

1) Effect of i-vector dimensionality on the FSD corpus:
In Table IV, we showed that attribute system outperforms the
baseline spectral system in foreign accent recognition. Here,
we turn our attention to the choice of i-vector dimensionality
used to train and evaluate different models. Figure 4 shows
recognition error rates on the FSD corpus as a function of
i-vector size. Results indicate that better system performance
can be attained by increasing the i-vector dimensionality up
to 1000, which is inline with the findings reported in [22].
However, further increasing the i-vector dimensionality to
1200, or 1400 degraded the recognition accuracy. For example,
Cavg increased to 6.10 and 6.60 from the initial 5.80 for the
manner-based foreign accent recognition system with i-vector
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Fig. 4: Recognition error rates as a function of i-vector
dimensionality on the FSD corpus.
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Fig. 5: Recognition error rates as a function of HLDA dimen-
sion on the FSD corpus. I-vectors are of dimensionality 1000.
For lower HLDA dimensions, i.e., 7, 20 and 60, the systems
attain lower recognition accuracies.

dimensionality of 1200 and 1400, respectively.
We also investigated the effect of HLDA dimensionality

reduction algorithm on recognition error rates using 6 different
HLDA output dimensionalities on the FSD corpus. Figure
5 shows that the optimal HLDA dimension is around 180,
yielding Cavg of 5.8 and 6 in the manner and place sys-
tems, respectively. For lower HLDA dimensions, i.e., 7, 20
and 60, the systems attain lower recognition accuracies as
shown. Comparing HLDA results in Figure 5 with LDA, the
recognition error rates increase to EERavg of 21.65% and
21.87% in manner and place systems, respectively. The output
dimensionality of LDA is then restricted to maximum of seven.

2) Effect of training set size and testing utterance length on
the FSD corpus: To demonstrate the recognition error rates
as a function of training set size in this study, we split the
Finnish training i-vectors into portions of 20%, 40%, 60%,
80% and 100% of the whole training i-vectors within each
model in such a way that each individual portion contains the
data from previous portion. Fixing the amount of test data,
we experimented with each training data portion to report
the recognition error rates as a function of training data size.
Results in Figure 6 shows that the proposed attribute-based
foreign accent recognition system outperforms the spectral-
based system in all the cases (i.e., independently of the amount
of training data). Further to see the effect of test data length
on recognition error rates, we extracted new i-vectors from
the 20%, 40%, 60%, 80% and 100% of active speech frames
and used them in evaluation. Results in Figure 7, which refers
to the FSD corpus, indicate that the proposed attribute-based
accent recognition system compares favorably to the SDC-
MFCC system in all the cases.

3) Effect of Temporal Context – FSD corpus: In Section
II-B, it was argued that temporal information may be beneficial



JOURNAL OF IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XXX, NO. XXX, MONTH YEAR 8

20 40 60 80 100
9

11

13

15

17
E

E
R

a
v
g
 (

%
)

Train set size (%)

 

 

SDC-MFCC
Place
Manner

20 40 60 80 100
5

7

9

11

C
a
v
g
 *

 1
0
0

Train set size (%)

 

 

SDC-MFCC
Place
Manner

Fig. 6: Recognition error rates as a function of training set
size on the FSD corpus. Increasing training set size within
each target accent models degrades recognition error rates.
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Fig. 7: Recognition error rates as a function of testing utterance
length on the FSD corpus. Different portions of active speech
segments were used to extract evaluation i-vectors.

to accent recognition. Figure 4 indicates that Cavg attains
minima at context sizes 10 and 20 frames, for the place
and manner features, respectively. Optimum for the PCA-
combined features occurs at 10 frames. Increasing the context
size beyond 20 frames negatively affects recognition accuracy
for all the evaluated configurations. In fact, we tested context
window spanning up to 40 adjacent frames, but that caused
numerical problems during UBM training, leading to singular
covariance matrices. Hence, context size in the range of 10
to 20 frames appears a suitable trade-off between capturing
contextual information while retaining feature dimensionality
manageable for our classifier back-end.

Table VI shows results for several configurations of the
proposed technique and optimal context window sizes selected
according to Figure 8. Systems using context dependent in-
formation are indicated by adding the letters CD in front of
their name. The last two rows show the result for context-
independent attribute systems for reference purposes. Table
VI demonstrates that context information is beneficial for for-
eign accent recognition. The best performance is obtained by
concatenating C=20 adjacent manner feature frames followed
by PCA to reduce the final vector dimensionality to d=48. A
14% relative improvement, in terms of Cavg, over the context-
independent manner system (last row) is obtained by adding
context information.

4) Effect of Feature Concatenation on the FSD corpus: We
now turn our attention to the effects of feature concatenation
on the accent recognition performance. The first row of
Table VII shows that Cavg of 5.70 is obtained by appending
the place features with the SDC+MFCC features, which yields
a relative improvement of 5% over the place system (third
last row). A 12% relative improvement over the manner
system (second last row) is obtained by concatenating the
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Fig. 8: Cavg as a function of the context window size on
the FSD corpus. Context dependent (CD) manner and place
features attain the minimum Cavg at context sizes 10 and 20
frames, respectively. In pre-PCA, PCA is applied to combined
manner and place vectors.

TABLE VI: Recognition results for several attribute systems
and different context window sizes. C represents the length of
context window, and d the vector dimension after PCA. PCA
can be applied either before (pre-PCA) or after (post-PCA)
concatenating manner and place vectors.

System (context, dimension) EERavg(%) Cavg × 100

CD Place (C=10, d=31) 8.87 5.55
CD post-PCA (C=10, d=70) 8.20 5.43
CD pre-PCA (C=10, d=60) 7.97 5.31
CD Manner (C=20, d=48) 7.38 5.02

Place (27) 10.37 6.00
Manner (18) 9.21 5.80

SDC+MFCC features and the manner features, yielding Cavg

of 5.13 (the second row). If context-dependent information is
used before forming the manner-based vector to be concate-
nated with the SDC+MFCC features, a further improvement is
obtained, as the third row of Table VII indicates. Specifically,
Cavg of 4.74 is obtained by using a context of 20 frames
followed by PCA reduction down to 48 dimensions (C=20,
d=48). The result represents 19% relative improvement over
the use of CD manner-only score with the same context
window and final dimensionality (last row).

For the sake of completeness, Table VII shows also results
obtained by concatenating manner and place attributes, which
is referred to as Manner+Place system. This system obtains
Cavg of 5.51, which represents 5% and 8% relative improve-
ments over the basic manner and place systems, respectively.
In contrast, no improvement is obtained by concatenating
context-dependent manner and place systems (see the row
labeled CD Manner (C=20, d=48) + CD Place (C=10, d=31))
over context-dependent manner system (last row).

5) Detection Performance versus Target Language – FSD
corpus: Table VIII shows language-wise results on the FSD
task. The so-called leave-one-speaker-out (LOSO) technique,
already used in [10], was adopted to generate these results
and to compensate for lack of sufficient data in training and
evaluation. For every target accent, each speaker’s utterances
are left out one at a time while the remaining utterances are
used in training the corresponding accent recognizer. The held-
out utterances are then used as the evaluation utterances.

The CD manner-based accent recognition system was se-
lected for this experiment, since it outperformed the place-
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TABLE VII: Results on the FSD corpus after feature concate-
nation (+). In parentheses, the final dimension of the feature
vectors sent to the back-end.

System (feature dimensionality) Performance

(SDC+MFCC) Vector + Attribute Vector EERavg(%)Cavg × 100
(SDC+MFCC) + Place (83) 9.14 5.70

(SDC+MFCC) + Manner (74) 7.78 5.13
(SDC+MFCC) + CD Manner (C=20, d=48) (104) 6.18 4.74

Feature Concatenation (+) within Attributes EERavg(%)Cavg × 100
Manner + Place (45) 8.34 5.51

CD Manner (C=20, d=48) + CD Place (C=10, d=31) (79) 8.00 5.34

Basic Accent Recognition System EERavg(%)Cavg × 100
SDC+MFCC (56) 12.60 6.85

Place (27) 10.37 6.00
Manner (18) 9.21 5.80

CD Manner (C=20, d=48) (48) 7.38 5.02

TABLE VIII: Per language results in terms of EER % and
CDET ×100 on the FSD corpus. Results are reported for the
CD Manner (C=20, d=48).

Accents EER %CDET ×100
English 15.11 7.00
Estonian 14.54 6.33
Russian 13.08 6.30
Kurdish 13.00 6.11
Arabic 12.55 6.10

Albanian 11.43 6.07
Spanish 10.74 5.75
Turkish 8.36 5.52

Total (average) 12.35 6.14

based one. Furthermore, since we have already observed that
the performance improvement obtained by combining manner-
and placed-based information is not compelling, it is preferable
to use a less complex system.

Table VIII indicates that Turkish is the easiest accent to
detect. In contrast, English and Estonian are the hardest
accents to detect. Furthermore, languages with different sub-
family from Finnish, are among the easiest to deal with.
Nonetheless, the last row of Table VIII shows an EERavg and
a Cavg higher than the corresponding values reported in Table
VI. This might be explained recalling that the unused accents
employed to train UBM, T-matrix and the HLDA in LOSO
induces a mismatch between model training data and the
hyper-parameter training data which degrades the recognition
accuracy [10].

It is interesting to study the results of Table VIII a bit deeper
to understand which language pairs are easier to confuse. Here
we treat the problem as foreign accent identification task.
Table IX shows the confusion matrix. The diagonal entries
demonstrate that correct recognition is highly likely. Taking
Turkish as the language with highest recognition accuracy, out
of 30 misclassified Turkish test segments, 10 are classified as
Arabic. That seems to be a reasonable result, since Turkey
is bordered by two Arabic countries, namely Syria and Iraq.
In addition, Turkish shares common linguistic features with
Arabic. With respect to Albanian as one of the languages in the
middle: 11 out of 26 misclassified test segment are assigned
to the Russian class. That might be explained considering

TABLE IX: Confusion matrix on the Finnish accent recog-
nition task. Results are reported for the CD manner (C=20,
d=48).

 

 

Predicted label 
TUR SPA ALB ARA KUR RUS EST ENG 

T
ru

e 
la

b
el

 

TUR 70 3 1 10 5 5 2 4 
SPA 1 51 3 8 2 2 3 2 
ALB 1 3 62 3 1 11 5 2 
ARA 12 9 7 128 10 9 8 8 
KUR 9 3 3 6 60 5 3 4 
RUS 43 30 51 20 16 379 25 26 
EST 6 8 8 12 6 13 120 13 
ENG 7 10 3 6 3 7 6 63 

 

Turkish: 100:70%: 

Spanish: 72: 70% 

Albanian: 89:69.66 

Arabic: 194:64% 

Kurdish: 93:64.52% 

Russian: 767: 0.6424 

Estonian: 184:64% 

English: 106:60% 

TABLE X: English results in terms of EERavg(%) and Cavg

on the NIST 2008 corpus. In parentheses, the final dimension-
ality of the feature vectors sent to the back-end.

Feature (dimensionality) Classifier EERavg(%)Cavg × 100
SDC+MFCC (56) GMM-UBM 16.94 9.00
SDC+MFCC (56) i-vector 13.82 7.87

Place (27) i-vector 12.00 7.27
Manner (18) i-vector 11.09 6.70

CD Manner (C=20, d=48) i-vector 10.18 6.30

that Russian has a considerable influence on the Albanian
vocabulary. Russian is one of the most difficult languages to
detect, and 43 samples are wrongly recognized as Turkish.
The latter outcome can be explained recalling that Russian has
some words with Turkish roots; moreover, the two languages
have some similarities in terms of pronunciation.

B. Results on the NIST 2008 corpus

Up to this point, we have focused on the FSD corpus to
optimize parameters. These parameters are: the UBM and i-
vector size, the HLDA dimensionality, and the context window
size. The first three parameters, i.e. UBM size 512, i-vector
dimensionality 1000 and HLDA dimensionality 180 were opti-
mized in [10] while the context window was set to C = 20 for
manner attributes based on our analysis in the present study.
We now use the optimized values to carry out experiments on
English data.

Table X compares results of the proposed and baseline
systems on the NIST 2008 SRE corpus. As above, manner-
and place-based systems outperform the SDC+MFCC-based
i-vector system, yielding 15% and 8% relative improvements
in Cavg, respectively. These relative improvements are lower
compared to the corresponding results for Finnish, which is
understandable considering that the parameters were optimized
on the FSD data. The best recognition results are obtained
using a context window of C=20 adjacent frames and dimen-
sionality reduction to d=48 features via PCA. Similar to FSD
task, different architectural alternatives are now investigated
to further boost system performance.

1) Effect of Feature Concatenation on the NIST 2008 cor-
pus: Feature concatenation results on the NIST 2008 task are
shown in Table XI. Similar to findings on FSD, accuracy is
enhanced by combining SDC+MFCC and attribute features.
The largest relative improvement is obtained by combining
SDC+MFCC and CD manner features (third row in Table
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TABLE XI: Results on the NIST 2008 corpus after feature
concatenation (+). In parentheses, the final dimensionality of
the feature vectors sent to the back-end.

System (feature dimensionality) Performance

(SDC+MFCC) Vector + Attribute Vector EERavg(%)Cavg × 100
(SDC+MFCC)+Place (83) 11.20 6.82

(SDC+MFCC)+Manner (74) 10.01 6.24
(SDC+MFCC)+CD Manner (C=20, d=48) (104) 8.56 5.73

Feature Concatenation (+) within Attributes EERavg(%)Cavg × 100
Manner+Place 10.50 6.40

Basic Accent Recognition system EERavg(%)Cavg × 100
SDC+MFCC (56) 13.82 7.87

Place (27) 12.00 7.27
Manner (18) 11.09 6.70

CD Manner (C=20, d=48) 10.18 6.30

TABLE XII: Per-language results in terms of EER % and
CDET ×100 for the i-vector system in the NIST 2008 corpus.
Results are reported for CD manner (C=20, d=48)

Accents EER %CDET ×100
Cantonese 16.48 8.46

Hindi 14.97 7.91
Vietnamese 14.04 7.30

Russian 12.09 7.57
Korean 11.54 6.96

Japanese 10.84 6.62
Thai 10.59 6.35

Total (average) 12.93 7.31

XI), yielding Cavg of 5.73. As for FSD, improvement is also
obtained by concatenating manner and place features, with
final Cavg of 6.40, which represents 7% relative improvement
over the basic configurations in the second and third last rows.
Nonetheless, higher accuracy is obtained by the CD manner
system, shown in the last row.

2) Detection Performance versus Target Language – NIST
2008 corpus: Table XII shows per-accent detection accuracy
on the NIST 2008 task. Similar to the FSD experiments, the
LOSO technique is applied to make better use of the limited
training and testing data. Cantonese attains the lowest recogni-
tion accuracy with CDET of 8.46; and the easiest accent is Thai
with CDET of 6.35. The confusion matrix is shown in Table
XIII. It is obvious that East Asian languages, such as Korean,
Japanese, Vietnamese and Thai are frequently confused with
Cantonese. For example, Thai is the easiest accent to detect,
yet 15 out of the 37 misclassified test segments were classified
as Cantonese. Thai and Cantonese are both from the same
Sino-Tibetan language family; therefore, these languages share
similar sound elements. Furthermore, the same set of numbers
from one to ten is used for both languages.

Russian and Hindi are both from the Indo-European lan-
guage group. Hence these languages have many words and
phrases in common. These similarities might explain why 12
out of 36 misclassified Russian segments were classified as
Hindi. Similarly, 14 out of 48 misclassified Hindi segments
were assigned to the Russian language.

TABLE XIII: Confusion matrix of the English results corre-
sponding to Table XII. Results are reported for CD manner
(C=20, d=48)

 

 

Predicted label 
THA JPN KOR RUS VIE HIN CAN 

T
ru

e 
la
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el

 

THA 126 3 4 3 4 8 15 
JPN 3 98 4 2 7 2 10 
KOR 3 5 145 6 7 5 17 
RUS 4 3 3 120 4 12 10 
VIE 10 16 6 6 200 4 33 
HIN 4 4 6 14 5 128 15 
CAN 15 10 11 6 14 6 96 

C. Effect of Individual Attribute on Detection Performance

We now investigate the relative importance of each in-
dividual manner attribute and the voiced attribute on both
FSD and NIST 2008. We selected manner-based system as it
outperformed place-based system both in both FSD and NIST
2008 (Tables IV and X). A 15-dimensional feature vector is
formed by leaving out one of these attributes one at a time.
The full i-vector system is then trained from scratch using the
feature vectors without the excluded attribute. By comparing
the change in EERavg and Cavg of such system relative to
the system utilizing all the 15 features allows us to quantify
the relative importance of that attribute. When no context
information is used, EERavg and Cavg are 9.21% and 5.80,
respectively.

Figure 9a reveals that excluding vowel, stop, voiced, or
fricative attributes increases both Cavg and EERavg, indicating
the importance of these attributes. In contrast, nasal and glide
are not individually beneficial, since both Cavg and EERavg

show a negative relative change. Finnish has a very large
vowel space (with 8 vowels) including vowel lengthening.
Non-native Finnish speakers may thus have troubles when
trying to produce vowels in a proper way, and that shows the
L1 influence. This may explain why vowels are individually
useful in foreign accent recognition for Finnish.

Figure 9b shows that all speech attributes are individually
useful in detecting L2 in an English spoken sentence. We recall
that EERavg and Cavg are 11.09% and 6.70, respectively,
when no context information is used. Hence, leaving out any
of these attributes from the final feature vector, increases
the error rates. Fricative and vowel are individually most
important, while, voiced and stop attributes are less important.
It is known that pronouncing English fricatives is difficult
for some L2 speakers [48], [49]. For example, some Russian
speakers pronounce dental fricatives /D/ and /T/ as /t/ and
/d/, respectively [50]. With respect to the vowel class, some
East Asian speakers find it difficult to pronounce English
vowels, thus producing L1 influence. For example, English
contains more vowel sounds than Chinese languages [51]. This
may cause Chinese learners of English to have difficulties
with pronunciation. Koreans may also have also difficulty
pronouncing the sound /O/ which does not exist in Korean
language and is frequently substituted with the sound /o/ in
Korean [52].
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Fig. 9: Exclusion experiment: relative change in the error rates
as one attribute is left out. Positive relative change indicates
increment in the error rates.

D. Diagnostic Information of Attribute Features

Besides improving the accuracy of state-of-the-art automatic
foreign accent recognizer, the proposed technique provides
a great deal of diagnostic information to pinpoint why it
works well in one instance and then fail badly in another. To
exemplify, Figure 10 shows analysis of two different spoken
words uttered by native Russian and Cantonese speakers in the
NIST 2008 SRE corpus on which the proposed attribute-based
technique was successful, but the spectral-based SDC+MFCC
technique failed. Figure 10a shows the spectrogram along
with fricative and the approximant detection curves for the
word “will” uttered by a native Russian speaker. Although /w/
belongs to the approximant class, the corresponding detection
curve is completely flat. In contrast, a high level of activity is
seen in the fricative detector. This can be explained noting that
Russian does not have the consonant /w/, and Russian speakers
typically substitute it with /v/ [53], which is a fricative
consonant. Figure 10b, in turn, signifies that consonant sounds,
except nasals and semivowels, are all voiceless in Cantonese
[54]. Although /c/ (pronounced as a /k/) and /tu/ (pronounced
as a /tS/) are voiced consonants in English, voicing activity is
less pronounced in the time frame spanning the /c/ and /tu/
consonants, which is a specific feature of Cantonese speakers
[54].

Incidentally, such information could also be useful in
computer-assisted language learning system to detect mispro-
nunciations and give some proper feedback to the user.

V. CONCLUSION

In this paper, an automatic foreign language recognition
system based on universal acoustic characterization has been
presented.

Taking inspiration from [30], the key idea is to describe
any spoken language with a common set of fundamental units
that can be defined “universally” across all spoken languages.
Phonetic features, such as manner and place of articulation, are
chosen to form this unit inventory and used to build a set of
language-universal attribute models with data-driven modeling
techniques.

The proposed approach aims to unify within a single
framework phonotactic and spectral based approach to au-
tomatic foreign accent recognition. The leading idea is to
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(a) Native Russian speaker substitutes approximant
/w/ with fricative /v/.
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(b) Consonants in Cantonese are all voiceless.

Fig. 10: The informative nature of the proposed accent recog-
nition system for two spoken utterances from native Russian
and Cantonese speakers. For these utterances, attribute-based
technique has been successful but the spectral-based technique
has failed.

take the advantages of the subspace modeling techniques
without discharging the valuable information provided by the
phonotactic-based methods. To this end, a spoken utterance is
processed through a set of speech attribute detectors in order
to generate attribute-based feature streams representing foreign
accent cues. These feature streams are then modeled within the
state-of-the-art i-vector framework.

Experimental evidence on two different foreign accent
recognition tasks, namely Finnish (FSD corpus) and English
(NIST 2008 corpus), has demonstrated the effectiveness of the
proposed solution, which compares favourably with state-of-
the-art spectra-based approaches. The proposed system based
on manner of articulation has achieved a relative improvement
of 45% and 15% over the conventional GMM-UBM and the i-
vector approach with SDC+MFCC vectors, respectively, on the
FSD corpus. The place-based system has also outperformed
the SDC+MFCC-based i-vector system with a 8% Cavg rela-
tive improvement. The difficulty at robust modeling of place
of articulation causes that smaller relative improvement. It
was also noticed that context information improves system
performance.

We plan to investigate how to improve the base detector
accuracy of place of articulation. In addition, we will investi-
gate phonotactic [55] and deep learning language recognition
systems [56] in the foreign accent recognition task. Especially,
we are interested to find out whether in terms of classifier
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fusion complementary information exist in those systems and
our proposed method.
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