
Advances in Electrical and Computer Engineering Volume xx, Number x, 20xx

 1

1Abstract—Displaying geo-referenced data in web mapping

systems has become popular. However, most existing systems

suffer from three annoying problems: (1) clutter when trying to

visualize large amount of data; (2) slowness of transferring

data over internet; (3) lack of support for dynamic queries. To

solve these problems, we propose a real-time system using

server-side clustering, transferring only the clustered data, and

client-side visualization using existing map tools. As far as we

know, there is no other scientific paper describing such real-

time system that allows dynamic database queries without

limiting to predefined queries. Experiments show that it can

handle up to 1 million objects whereas all existing systems are

either limited to pre-defined queries, or they support only a

very small number of free parameters in the query whereas the

proposed system has no such limitations.

Index Terms—data visualization, clustering methods, web

services, client-server systems, Internet.

I. INTRODUCTION

Rapid increase of cell phones and GPS devices has made

it easy to collect huge amount of location-based or

geospatial data. By location-based data, we mean photos or

other data attached with their physical locations. Geo-

visualization is a tool for better understanding, efficient

search, and well-organized management of data. It has

received considerable attention due to the rise of online

maps and advances in graphics and display technology [1].

A Web Mapping System (WMS) is a tool for geo-

visualization that standardizes the way of sharing geospatial

information on the Internet using interactive web maps [2].

However, in case of visualizing large amount of data,

most existing systems suffer from one of the following three

problems: clutter, slowness, and restriction to pre-defined

(static) queries. Fig. 1 shows a few examples found from

web. Most present the data either as a set of points, or as

small icons on the map. Only one web page shows the data

(orienteering maps) as polygons. In all cases, the amount of

data is relatively small and the selection of the data is

predefined. The ones where data is several thousands

(Jounin kauppa and Forenom) suffer from cluttering and

sometimes also from slowness. To overome these issues,

they allow user to select only a subset by filtering. Two

pages (Way.fi and Wayne’s coffee) use clustering provided

by GoogleMaps API (the earth quake icon) but they are also

limited to predefined data. None of the systems support

dynamic queries.

The clutter problem appears when trying to show large

1This work was supported in part by MOPSI projects 70052/09 and

70010/12.

number of items on the limited space of a display screen [3].

Clutter reduction aims at reducing the overlap for better

information visualization. In cartographic generalization,

a minimum distance between adjacent items is defined to

avoid the overlap [4]. Zooming also helps to avoid

information overload but at the cost of losing the overall

view of the data [1],[4]. The data to be shown should

therefore be reduced, but so that it still represents the entire

selection. Filtering and sampling are other possible

approaches for the data reduction. However, they can bias

the distribution of the data, lose relevant data objects, and at

the same time, present outliers [5], see Fig. 2. Clustering, on

the other hand, aims at grouping the data based on

a similarity (or distance) criterion between the objects. All

the objects are still available by navigating through the

groups.

Clustering consists of two design questions: which

algorithm to use, and how to represent the clusters on the

map. A cluster can be represented simply by an icon such as

circles or point. For better usability, more information about

the content of the cluster can also be given, such as the

density or the distribution of the objects within the cluster.

Several visualization techniques are shown in Fig. 3, in

which we summarize six properties:

• Technique for data reduction

• Representation of cluster

• Showing density

• Showing distribution

• Opening (drilling down) a cluster

• Details-on-demand

Flickr and Panoramio filter data by random sampling.

Panoramio uses two levels of sub-sampling based on

popularity and proximity of the photos. All the other

visualization approaches are based on clustering.

Panoramio, Mopsi (http://cs.uef.fi/mopsi) and the system of

Delort [6] use a selected photo to represent a cluster. Tag

maps [7-8] represent a cluster by selected word whose size

depends on the size of the cluster.

The visual aggregate should also include some

information about the underlying data in the cluster [9].

Some systems show the cluster borders explicitly by

Voronoi [2],[6],[10], convex hulls [11], or cells [12]. This

helps to see the distribution of the data. However, the extra

lines and shapes can overwhelm the view. Voronoi can also

be misleading because it segments the entire area, also parts

that do not contain any data [2]. Simple icon is still the most

popular object to represent the clusters because of its

simplicity. Google MarkerClusterer API uses an icon that

Real-Time Clustering of Large Geo-Referenced

Data for Visualizing on Map

Mohammad REZAEI1, Pasi FRANTI1
1School of Computing, University of Eastern Finland, 80140, Joensuu, Finland

rezaei@cs.uef.fi

Advances in Electrical and Computer Engineering Volume xx, Number x, 20xx

 2

indicates the density by showing number, color, and size of

the icon. The data distribution and the covered region of the

cluster cannot be shown directly by an icon [2],[13], but the

area can be indirectly concluded from the overall

distribution. Additional information can also be embedded

into the icons [14-17]. For example, DICON uses a treemap

style icon that includes statistical distribution of the data in

the cluster [17]. Other representations include heat maps

[5],[13],[18], and Splatterplots [19].

Opening a cluster [9] means that when the user clicks a

cluster representative, an automatic zoom happens so that

the objects in the cluster are displayed on the map view (the

part of the map shown in a specified box in the interface).

Most of the systems support this functionality. Details-on-

demand indicates how the user can access the details of any

object in a cluster without opening the cluster or zooming in

[20]. In general, providing more information to help

ordinary users for better understanding the data is not trivial

[17].

For solving the clustering, a scalable algorithm is required

that is capable of handling large data sets in real-time

[4],[13],[21-22]. Downloading data and generating the

clusters on the client is still possible but it would cause a

high transmission load on the network, and therefore, is not

suitable for low speed internet connections. Especially if the

data contains images as in our case. To minimize data

transfer, clustering should therefore be performed on the

server, and send only the summary information of each

cluster to the client.

Several server-side clustering approaches exist such as

STING [23] and CLIQUE [24] but they pre-compute the

clusters on the server. They apply clustering off-line to the

entire data, and store the results on the server, which limits

their use for static predefined queries only. However, we

want to support also dynamic queries defined by the user in

real-time. The results of such queries cannot usually be

predicted beforehand because they are based on ad hoc

query parameters such as free text keyword and time period,

instead of just the location as in most existing systems [25].

To support dynamic queries, only a few approaches exist

such as imMens and nanocubes, which have been recently

proposed based on the idea of data cubes [5],[26]. A limited

set of attributes (dimensions) of data are stored as

aggregates on the server. The downside of this is the huge

need for memory.

In this paper, we propose a solution that allows dynamic

queries without any such limitations. We formulate the

clutter removal of icons as a clustering problem. We

propose a server-side approach, which clusters the objects

dynamically on the server, and sends only the summary

information of each cluster to the client. The algorithm has

a grid-based structure, which provides high scalability. We

provide client-side and server-side APIs for the method. The

computational time of the clustering is less than one second

for 1,000,000 objects, where the download size is limited to

15 Kbytes in a machine with Intel Xeon E7-4860 v2, 2.60

GHz. To represent the clusters, we support both photos and

variable size user-defined icons. Clusters can be opened by

clicking the cluster representative. When opening a cluster,

the map is zoomed in automatically to cover the area where

all the objects of the selected cluster are located. The new

content is presented on the map, clustered again if the

Figure 1. Typical examples of existing web systems and how they deal with the problem

All data Filtered data Clustered data

Figure 2. Clutter of 1000 geo-referenced data on the map (left), filtered by random selection of 20 objects (middle) and clustering (right)

Advances in Electrical and Computer Engineering Volume xx, Number x, 20xx

 3

Flickr Google maps

(a) Filtering

(b) Circle icon

(c) -

(d) -

(e) -

(f) Yes

(a) Clustering

(b) Circle icon

(c) Color, number

(d) -

(e) Yes

(f) -

Panoramio Voronoi [2]

(a) Filtering

(b) Image icon

(c) -

(d) Yes

(e) -

(f) Yes

(a) Clustering

(b) Voronoi

(c) Color

(d) Yes

(e) Yes

(f) -

Container shape [11] Heat map [13]

(a) Clustering

(b) Area, image

(c) -

(d) Yes

(e) Yes

(f) -

(a) Clustering

(b) Heat map

(c) Color

(d) Yes

(e) Yes

(f) -

Mopsi Cells [12]

(a) Clustering

(b) Image icon

(c) Number

(d) -

(e) Yes

(f) Yes

(a) Clustering

(b) Cell

(c) Color

(d) Yes

(e) Yes

(f) -

DICON [17] Taggram [27]

(a) Clustering

(b) Icon

(c) Color & shape

(d) -

(e) Yes

(f) Yes

(a) Clustering

(b) Word

(c) Color & size

(d) -

(e) Yes

(f) -

Figure 3. Several representations of geo-referenced data on maps, and their properties: (a) Technique for data reduction (b) Representation of cluster (c)
Showing density (d) Showing distribution (e) Opening a cluster (f) Details-on-demand

Advances in Electrical and Computer Engineering Volume xx, Number x, 20xx

 4

amount of data still causes clutter. Starting the view of the

entire world, single photos are usually reached by 2-6 clicks.

The content of a cluster can also be accessible by details-

on-demand principle [20]. Since our system contains merely

photos, we open photo viewer where user can only go

through the photos in the cluster one by one using kind of

slideshow.

The rest of the paper is organized as follows. Clustering

problem is formulated in Section II. In Section III, several

clustering methods are analyzed for the purpose of the

clutter problem, and the detailed procedure of the proposed

grid-based clustering is presented in Section IV. Server-side

approaches including our proposed method are studied in

Section V. Experimental results are reported in Section VI,

and conclusions are drawn in Section VII.

II. CLUSTERING PROBLEM

Clustering for clutter removal differs from normal data

clustering. Instead of finding real clusters, we aim at

grouping data merely for visual clarity and better computer-

human interaction. Any overlap causes difficulty and

confusion when clicking an icon. For example, in Fig. 4,

there are three well-separated clusters A, B, and C. The goal

of normal data clustering would be to identify the three

clusters, see Fig. 4 (middle). Some methods might consider

the single object in cluster C as an outlier and identify only

two clusters. However, a clutter removal method should be

localized so that the sparse areas do not lose the details

[4],[21]. Clustering distant objects together misleads the

user about their real locations. The methods such as CLARA

and CLARANS [28] that apply the clustering on a sample of

data suffer from this problem. They assign non-selected

objects to the clusters according to a criterion, for example

to the nearest centroid. However, an object might be

assigned to a distant cluster. To avoid this problem in clutter

removal, it is therefore better to show more clusters as long

as their representatives do not overlap. In this way, the time

spent to access a photo would be shorter, see Fig. 4 (right).

A. Objective of clustering

Given a data set A R2 with N objects, the problem of

clustering is to group the objects into K clusters. Each object

must be assigned to a cluster, so that there are no outliers

and missing data. The clustering has two objectives:

1. Maximize the number of clusters without overlap

To avoid overlap of clusters i and j with rectangular icons

of sizes (Wi, Hi) and (Wj, Hj), see Fig. 5, one of the

following conditions should be met:

THHyy

TWWxx

jiji

jiji





2/)(

2/)(
 (1)

where (xi, yi) and (xj, yj) are the coordinates of the centroids

ci and cj. Value T=0 guarantees that there is no overlap, but a

bigger value (we use here T=5 pixels) is preferred to have

more space between the clusters. This leads to a more

readable map, which is less covered with cluster

representatives.

2. Minimize sum of squared error (SSE)





N

i

ii acaSSE
1

2
)((2)

where c(ai) is the centroid of the cluster that the object ai is

placed in. Several possible clusterings satisfy the conditions

in (1), from which the clustering that provides minimum

SSE is the optimal. This condition indicates that the overall

distance of the objects of a cluster to the centroid is

minimized, which provides least confusion about the real

location of the objects.

Ci

Cj

|yi-yj|

|xi-xj|

Wi

Hi

Wj

Hj

Figure 5. Overlap of the bounds of two icons

B. Number of clusters

The number of clusters is unknown. However, it has an

upper limit according to the average size of representative

icons (W, H) and the size of map view (W0, H0). Assume

that the map is filled with icons without any overlap. The

maximum number of icons that can be drawn on the map is:



















H

H

W

W
K 00

max (3)

Figure 4. Different goals of normal clustering (middle) and clutter removal (right)

Advances in Electrical and Computer Engineering Volume xx, Number x, 20xx

 5

C. Bounding box

We define the bounding box of a map view as the window

with the top-left and bottom-right coordinates of the view:

[(Latmax, Lonmin), (Latmin, Lonmax)], see Fig. 6. The bounding

box of a set of objects is defined in the same way but the

boundaries are derived from the objects in the set. To

display the set of objects on the map, a suitable map view

should be first determined, which is the part of the entire

map with the highest zoom level that contains the bounding

box of the objects, see Fig. 6. The bounding box of the

resulted map view can be wider than that of the objects

because of the discrete change of zoom level.

(Latmax, Lonmin)

(Latmin, Lonmax)

Bounding box of the map view

Bounding box of the objects

Figure 6. The bounding box of map view and the bounding box of objects.

The map view for the given objects is corresponding to the highest possible

zoom level that contains all the objects. Zooming in more will cause some
of the objects move out of the display

III. CLUSTERING METHODS

In this section, we study clustering approaches including

divisive, density-based, agglomerative [28], and grid-based

methods [29]. We show how some of them can be modified

in order to be applicable to the clutter problem. We consider

K-means (divisive), DBSCAN (density-based), and centroid-

linkage (agglomerative) algorithms as examples of the first

three categories, and analyze their suitability for the

problem. A trivial overlap-based clustering algorithm is also

considered because it is likely to be applied to the problem

by many others due to its simplicity.

A. K-means

K-means is a partitional clustering algorithm in which K

centroids are initially selected in some way, for example

randomly chosen data objects. Two steps of the algorithm

are iteratively performed: assignment and update, for a fixed

number of iterations or until convergence. In the first step,

objects are assigned to their nearest centroid. In the second

step, new centroids are calculated by averaging the objects

in each cluster. Time complexity is O(IKN), where I is the

number of iterations [30]. K-means is not suitable for the

clutter problem as such because the number of clusters is

unknown. Moreover, the representative icons might still

overlap after clustering.

B. Overlap-based clustering

The first cluster is created from the first data object, and

all other objects within a given distance threshold are joined

to this cluster. The process then continues similarly for the

next object that has not yet joined to any cluster. The

algorithm is given below:

overlapBasedClustering(X, N, TH)

k = 1

FOR i=1 TO N

visited[i] = FALSE

label[i] = 0

FOR i = 1 TO N

IF NOT visited[i]

visited[i] = TRUE

createCluster(X, N, TH, label, visited, i, k)

k = k + 1

createCluster(X, N, TH, label, visited, i, k)

label[i] = k

FOR j=1 TO N

IF (NOT visited[j]) AND (distance(i, j) < TH)

label[j] = k

visited[j] = TRUE

The time complexity is O(KN), because the function

createCluster is called K times, where K≤N is the number of

clusters. The main disadvantage is that the clustering result

depends on the order of processing data.

C. DBSCAN

DBSCAN is a density-based clustering algorithm that

aims at finding arbitrary shape clusters. Its basic idea is to

create clusters from points whose neighborhood within a

given radius (eps) contain a minimum number (minPt) of

other points [31]. Using every such a point, the algorithm

grows a cluster by joining other points that are close to the

cluster. Time complexity of the original DBSCAN is O(N2)

but some efforts [32-33] have been made to reduce it close

to O(N). In clutter removal of icons, the minPt must be set to

1 because a single separated object should also be

considered as a cluster, and eps is set to the distance

threshold that guarantees no overlap. The cluster growing is

not needed because we do not aim at finding natural

clusters. Therefore, DBSCAN is not a suitable choice for the

clutter problem.

D. Centroid-linkage

Agglomerative clustering is a bottom-up approach in

which each object is initially considered as its own cluster.

Two closest clusters are then iteratively merged [34].

Several criteria have been proposed for selecting the next

two clusters to be merged such as single-linkage, average-

linkage, complete-linkage, centroid-linkage, and Ward’s

method. Both centroid-linkage and Ward’s method are

applicable to the clutter removal problem because the

overlap of representative icons is checked based on the

distance between cluster centroids. The merging process

continues until the distance between the centroids of the

next two clusters to be merged exceeds a threshold that

guarantees no overlap. The pseudo code of fast

implementation of the centroid-linkage algorithm based on

the solution introduced in [35] is shown in the next page.

Time complexity of the basic agglomerative clustering is

O(N3) but the above solution reduces it to O(αN2), where

α<<N in the above algorithm due to employing a nearest

neighbor table that uses only O(N) memory. The algorithm

can still be too slow for real-time applications. In [34], an

Advances in Electrical and Computer Engineering Volume xx, Number x, 20xx

 6

algorithm based on k-nearest neighbor graph is proposed in

order to improve the speed close to O(NlogN) with a slight

decrease in accuracy. However, graph creation is the

bottleneck of the algorithm, and should be solved.

Otherwise, this step dominates the time complexity.

centroidLinkage(X, N, TH)

Set each object to its own cluster

k = N

iMin = createNNTable(X, N)

[i1, i2, dist] = findClosestClusters(iMin, k)

WHILE dist < TH

mergeAndUpdate(iMin, k, i1, i2)

k = k – 1

[i1, i2, dist] = findClosestClusters(iMin, k)

createNNTable(X, N)  iMin

FOR i = 1 TO N

iMin[i] = i

FOR i = 1 TO N

FOR j = 1 TO N

IF distance(i, j) < distance(i, iMin[i])

iMin[i] = j

findClosestClusters(iMin, k)  [i1, i2, dist]

i1 = 1

FOR i= 1 TO k

IF distance(i, iMin[i])<distance(i1, iMin[i1])

i1 = i

i2 = iMin[i1]

dist = distance(i1, i2)

mergeAndUpdate(iMin, k, i1, i2)

Merge cluster i2 in cluster i1

Update centroid of cluster i1

FOR i = 1 TO k

IF iMin[i] = i2

iMin[i] = i1

FOR j = 1 TO k

IF distance(i, j) < distance(i, iMin[i])

iMin[i] = j

Replace cluster i2 with the last cluster

distance(i, j)  dist

dist = Euclidean distance between X(i) and X(j)

IF i = j

dist = MAX

E. Grid-based clustering

Grid-based clustering consists of three main steps: grid-

construction, initial clustering, and merge. The space

containing the objects is first segmented by dividing each

dimension into a predefined number of bins [29]. This

provides rectangular grid cells, see Fig. 7. In the second

step, initial clusters are formed by assigning each object to a

cell simply by indexing without any need for distance

calculation [36]. Each cell corresponds to one cluster.

Centroids and other summary information such as the

number of objects and density are then calculated for the

clusters. The rest of the process is performed only on the

non-empty cells that contain some objects.

 In the third step, final clusters are formed by merging the

neighboring cells according to some closeness criterion such

as density or connectedness, see Fig. 7. Finding a suitable

criterion for merging is not trivial because different criteria

can lead to different clustering results [29]. Pseudo code of

this overall algorithm is given below:

gridBasedClustering(X, N, cellSize)

// Step 1: Grid construction

region = bounding box of data X

Set grid for the region

Set indices of the cells

// Step 2: Initial clustering

K=0

FOR i=1 to N

Find the cell index (m, n) for the object X[i]

IF the cell[m, n] is empty

K=K+1

Create new cluster K

j = cluster index of the cell (m, n)

Update information of cluster j

// Step 3: Merge

FOR k=1 to K

Check neighbors of cluster k and merge if

needed

Figure 7. Some of neighboring cells should be merged to form natural
clusters

The grid construction step contains the setting of the

required parameters, which takes only O(1) time. The time

complexity of the assignment step is O(N) because every

object is processed. The third step is performed on the K

initial clusters: the cells that contain objects. Since K<<N

(especially in 2-D), the overall time complexity is O(N).

This makes the grid-based clustering a suitable choice for

the real-time clutter removal problem. Memory complexity

is O(N) and no distance calculation is required between the

objects.

A few challenges have been reported for grid-based

clustering methods such as finding clusters with variable

densities, determining the size of grid cells, limitation of

rectangular cells to fit the shape of clusters, and

dimensionality problem [24],[29],[36]. However, most of

the challenges are related to finding natural clusters or high

dimensional data. Finding a suitable size for grid cell is not

trivial because a small size leads to more cells, and therefore

more computations, while a coarse cell size results in lower

accuracy due to merging far away objects. However, in

TABLE I. COMPARISON OF CLUSTERING ALGORITHMS FOR CLUTTER REMOVAL OF ICONS

Clustering algorithm Item Memory complexity
Supporting large

data

Supporting parallel

processing

K-means O(IKN) O(N) No No

Overlap-based O(KN) O(N) Yes No

DBSCAN O(NlogN) O(N) No No

Centroid-linkage O(N2) O(N2) No No

Grid-based O(N) O(N) Yes Yes

Advances in Electrical and Computer Engineering Volume xx, Number x, 20xx

 7

clutter removal of icons, the cell size is concluded directly

from the size of the icons (for example maximum size). The

only remaining issue is that two close objects might be

clustered separately if located at the border of two cells.

This misleads the user about the real locations of these

objects.

Grid-based clustering is simple to implement, and its time

and memory complexities are better than those for other

methods, see Table I. Moreover, parallel processing in order

to increase the speed for large data can be perfectly applied

to grid-based clustering. We present next the technical

details of grid-based clustering for the clutter problem.

IV. GRID-BASED CLUSTERING FOR CLUTTER REMOVAL

This section presents the detailed procedure of grid-based

clustering in order for clutter removal of icons on the map.

A. Coordinates system

The location of a data object is represented by latitude

and longitude, which are measured in degrees, minutes, and

seconds of the globe sphere, or for computational purposes,

simply in decimal degree. In Mercator projection, the areas

far from the equator are exaggerated and it is not possible to

find a fixed height for the grid cells, and a single distance

threshold for avoiding overlap of icons, which have certain

width and height in pixels. Therefore, we construct the grid

in Cartesian coordinate system in pixel rather than degree,

and convert the latitude and longitude of the objects to pixel

for a certain zoom level as follows:


















 

)sin(1

)sin(1

2
128

10128 6

lat

lat
Ln

Rm
y

lonRmx

 (4)

where m=6.3952×10-6 is a scaling factor, R=6.371×106 is

the earth radius, and lon and lat are in the range (-π, π) and

(-π/2, π/2) respectively. The value (x, y) represents the

coordinates of a point within a picture of size 256x256,

which corresponds to the lowest zoom level (zero) in

Google maps. For a higher zoom level z (up to 21), the

coordinates are derived from x and y as follows:

zz yyxx 2',2'  (5)

B. Grid construction

For a given map view, the grid is usually built starting

from top-left corner, see Fig. 8 (left). However, this

approach has a drawback. When the user pans the map,

some new objects enter and some objects move out from the

map view, and therefore, a new clustering is applied.

Consider two clusters with 3 and 7 objects, respectively, in

Fig. 9 (left); then, after horizontal panning to the right by the

amount corresponding to 40% of the cell size, the objects

will divide into two other clusters with 6 and 4 objects,

respectively. This artifact happens because the new grid

does not match with the old one, and objects might be

assigned to different cells in the new grid. To avoid this

problem, we set a fixed grid starting from the beginning of

the whole world but consider only the cells which are

completely or partly in the current map view, see Fig. 8

(right). This makes the grid invariant of panning.

Figure 9. Horizontal panning to the right causes different clusters when
the grid is set according to the top-left of map view

The number of rows and columns in the map view are

calculated as:








 








 


c

column

c

row
W

xx
n

H

yy
n minmaxminmax (6)

where (Wc, Hc) is the size of a grid cell, and the points (xmin,

ymin) and (xmax, ymax) are calculated according to the points p1

and p2 of the bounding box of the map view. A cell is then

identified according to its row and column indices, which

are in the range of [1, nrow] and [1, ncolumn], respectively, see

Fig. 8.

Figure 8. Starting grid from the beginning of the map view (left), and fixed grid starting from the beginning of the whole world but considering only

the cells covering the map view

Advances in Electrical and Computer Engineering Volume xx, Number x, 20xx

 8

C. Initial clusters in cells

In this phase, the objects are assigned to the cells. We go

through the objects one by one and calculate its

corresponding cell. Row and column of the corresponding

cell of an object at the location (x, y) is calculated as:








 








 


cc W

xx
column

H

yy
row minmin (7)

The cells that contain some objects become the initial

clusters. The centroid of a cluster is calculated by averaging

the locations of all the objects in the cluster. The initial

clusters result in a fixed SSE for a certain input data. The

cluster information that is used in the rest of the process

includes the number of objects n, centroid (x, y) and cluster

representative. We calculate the size of the icon for each

cluster i from the size of the cluster ni using the following

logarithmic function:

 
 )(log

)(log

10min

10min

ii

ii

nHH

nWW








 (8)

where [.] is the rounding function, Wmin and Hmin are the

minimum width and minimum height of the icons and α is

the increase rate for the width and height. There is a trade

off in the choice of α. Large increase rate can lead to very

big icons whereas small increase rate makes the difference

of cluster sizes unnoticeable. In this work, we fix α=8.

D. Merging overlapping clusters

The representative icons of the clusters in neighboring

cells may overlap when the distance between the centroids

of the clusters is small, see Fig. 10. The overlap can be

eliminated either by spatial distortion of representative icons

or by merge. Spatial distortion is performed by moving the

centroid location of a cluster away from the overlapping

cluster [13],[21]. If the icon moves far, an arrow can be used

to point from the icon to the original location. In case of

many overlapping icons, the problem of finding good places

for the icons becomes complicated. We therefore use the

merge approach. After merging two clusters, their new

centroid might place in anywhere within the two cells, or

even move into a third cell, see Fig. 10. However, we keep

the index of the first cluster for simplicity. This has no side

effect to the clustering results, and it is needed for the

server-side clustering; where the indices of initial cells are

required for accessing the objects in a cluster.

We process as follows. First, we go through all clusters

one by one to determine overlapping clusters according to

(1). For every overlapping clusters i and j, we calculate their

merge cost as the increase in the total SSE:

2

ji

ji

ji
cc

nn

nn
SSE 


 (9)

We select the clusters to be merged that result in

minimum increase in the SSE, which is similar to the idea of

Ward’s criterion in agglomerative clustering [37]. The size

of the representative icon of the new cluster is updated using

(8). After the merge, the new cluster is checked for possible

overlap to other clusters and the process then continues until

no overlap remains. This merging approach does not

guarantee the global optimal but it merely removes all

overlaps by locally minimizing SSE in each step.

V. REAL-TIME CLUSTERING ON SERVER-SIDE

Our goal is to apply clustering on server-side in order to

limit the download size. Moreover, we want to support

dynamic queries to the data without limiting to a small

predefined set of queries. In this section, we first compare

server-side and client-side approaches, and study existing

server-side solutions and their limitations. We then propose

a server-side approach based on grid-based clustering. We

first need to define two types of queries that the user

requests to see the desired results on the map: spatial and

non-spatial.

Figure 10. Overlap of two representative icons in neighboring cells (left)

and merging clusters (right)

Spatial query: The user selects the map view and requests

to see all data in this area. No other parameters are needed to

specify which objects. The entire data can be clustered

offline on the server if only this type of query is requested.

The corresponding clusters in the region are then extracted

from the pre-computed clustering. Zooming, panning, and

opening a cluster are examples of how spatial query is

initiated by the user. In the cases of zooming and panning,

the map view is set directly using the map API tool. For

opening a cluster, a new map view is calculated and set

according to the bounding box of the objects in the cluster.

Non-spatial query: Instead of showing all the objects, the

user selects a subset to be displayed based on other

properties. For example, the user might want to see the

pictures by a given person within a given time period, or the

objects containing a given keyword. We refer to this as non-

spatial query in contrast to spatial query. Pre-computing the

clusters is possible but only for a predefined set of queries

such as accessing all the data in the year 2015. However, in

general, these types of queries are dynamic, and clustering

must be performed real-time. This is because the set of data

is dynamically retrieved based on the input parameters given

by the user; the objects that match the query cannot be

predicted in general.

A. Server-side vs. client-side

The main advantage of server-side clustering approach is

that it limits download size by sending only the summary

information of clusters to the client. In client-side clustering,

all the data are sent to the client, which provides two

advantages. First, processing data on client relieves the

server from overwhelming clustering requests. Second, no

additional request to the server is needed for interactions

such as zooming in the map or opening a cluster. However,

obtaining the entire results from the server can cause high

traffic load on the network. Suppose that 100,000 data

objects are transferred to the client and 12 bytes are required

for id, latitude, and longitude per object. The transmission

load would sum up to 1.2 Mbytes, which is considerable

Advances in Electrical and Computer Engineering Volume xx, Number x, 20xx

 9

amount for a low speed internet.

In server-side approach, the transmission load is limited

by sending only the information of clusters. Since the

number of clusters is limited according to the sizes of

display and icon, there is an upper limit for the transmission

load, which is independent on the number of objects.

Several server-side clustering APIs have been developed in

recent years [25],[38].

B. Existing methods

The existing methods that deal with visualization of large

data on maps can be classified into two groups:

1. Hierarchical clustering on the server by pre-computing

the clusters

 2. Using data cubes

The first group [2],[13],[23],[25],[39] clusters entire data

on the server by employing a hierarchical structure such as

KD-tree or R-tree. Querying for a region is then performed

in O(logN) time by finding the target clusters in the suitable

level of the hierarchy. The hierarchical structure can also

provide scalable visual representations [2],[9]. However,

clustering of entire data does not support non-spatial

queries. Elmqvist and Fekete [9] provide an overview on

hierarchical aggregation of data to support visualization

requirements such as panning, zooming, and opening a

cluster.

To address non-spatial queries for large data sets and to

support quick exploration, several researchers use data

cubes [5],[26]. Data cubes are structures that build

aggregations across every possible set of dimensions of data

[26]. imMens [5] decomposes multi-dimensional data cubes

into binned data tiles of reduced dimensionality and

performs accelerated query processing and rendering on the

GPU. For real-time interaction, the binned data tiles are pre-

computed. imMens visualizes the aggregates on the map as

geographic heatmaps which are 2-D binned plots. However,

data cubes do not allow queries to individual record like

traditional databases and they need considerable amount of

memory. For example, in [26], after using the nanocubes for

reducing memory, 45 Gbytes is needed for 210 million

points (214 Mbytes for 1 million points). Moreover, this can

be applied only to a limited (up to 5) number of data

dimensions. As the number of dimensions increase, the

required memory becomes quickly impractical. We note that

data cubes can be used jointly with grid-based clustering if

so wanted. These two approaches do not exclude each other.

C. Proposed approach

Fig. 11 shows the flow of our server-side clustering

approach both for non-spatial and spatial queries. The sizes

of the grid cell and the map container box in the interface

are sent to the server as parameters. In a non-spatial query,

the map view that contains all the resulting data objects is

obtained. In contrast, in a spatial query, the map view is

specified by the user and sent to the server. The objects

inside the map view resulted from the query are selected.

The rest of the process is the same for both types of queries,

where the objects and map view are inputs to the initial

clustering. In a spatial query, we first apply the

corresponding non-spatial query to retrieve the results from

database. However, this is not needed if a faster approach is

used to store the results of the last non-spatial query on the

server so that the corresponding results for the given region

specified by a spatial query are extracted. The following

information of each cluster is collected:

1. Centroid of cluster: (x,y)

2. Number of objects: (n)

3. Bounding box: (xmin,ymin) and (xmax,ymax)

4. Cluster representative

The information of each cluster representative is also sent

to the client. For example, for photo collection, the filename

of the representative photo is sufficient for displaying image

thumbnail, see Mopsi cluster representation in Fig. 3.

Figure 11. The proposed server-side clustering approach

D. Interactions using bounding box

The bounding box of a cluster is needed for opening, and

accessing the objects inside the cluster. To open a cluster,

the map view is set using the bounding box of the cluster

and a new spatial query is applied to retrieve the objects in

the map view. To access the information of the mth object in

the cluster, a query is applied to retrieve the identifiers (id)

of the objects in the bounding box. We always sort the

results in the same order so that the mth id in the list of

results would correspond to the mth object. The object’s id

can then be used to retrieve its information. The same

approach can be used to obtain the information of k

consequent objects of a cluster. This scenario applies only

when the bounding box does not overlap with other clusters.

However, overlap might happen when merging clusters.

Next, we demonstrate the problem and explain our solution

to solve it.

Consider the three clusters in Fig. 12. Clusters 1 and 2

should be merged because of the overlap of their

representatives. To open the merged cluster when the user

clicks on its representative, a spatial query is applied to the

bounding box of the objects in the cluster. However, a

problem appears that the bounding box of the merged cluster

contains some objects from the cluster 3. We solve this by

applying spatial queries for the initial cells of the merged

cluster. We therefore send initial clusters in cells without

any merge to the client. Merge step is performed on client,

and the initial clusters and the order of merging are stored.

To retrieve the information of an object x in a cluster, its

corresponding initial cluster C and the index of x in C are

determined. The id of x is then obtained by applying a

spatial query for the bounding box of C, and the information

Advances in Electrical and Computer Engineering Volume xx, Number x, 20xx

 10

of x is retrieved by applying another query using the id.

E. Scalability

In this section, we discuss the time and memory

scalabilities of the proposed server-side approach. In

general, grid-based clustering allows high scalability

regarding both memory and time, and our method is no

exception. The initial clustering is the most time consuming

step with time complexity of O(N), see Section III.

Initial clustering can be performed independently for

every cell. We can query for the data inside a cell and

calculate the information of the cluster. The data in each cell

can be queried part by part if there is too much data in it.

Two clusters resulted from two parts of data can iteratively

be merged to provide the overall cluster for the cell. The

information of the merged cluster is calculated from the

information of two clusters. The number of objects is the

sum of the number of objects of the two clusters, and the

bounding box is the union of the two bounding boxes. The

representative is taken from the first cluster, and the centroid

is calculated as:

)/()(

)/()(

212211

212211

nnynyny

nnxnxnx




 (10)

where (x1,y1) and (x2,y2) are the centroids, and n1 and n2 are

the number of objects of the two clusters. Therefore, there is

no limitation regarding memory. However, in our current

implementation, we load the whole data from the database at

once, which limits the memory scalability with the current

hardware to about 100 Mbytes.

The processing time on our server is 0.25 second for one

Mbytes data. Assuming that 1 second is acceptable for a

real-time interaction, the processing time limits the

scalability of the current implementation to 4 Mbytes data.

This excludes the time for loading data from database. There

are many techniques to improve the interactions with the

database but it is out of the focus of this paper.

Time scalability can be further improved according to the

above-mentioned properties of the grid-based clustering by

applying parallel or multi-thread processing, which require

more investments on hardware. The subsets of the cells or

even every cell can be processed in parallel.

VI. EXPERIMENTS

To evaluate the performance of the proposed server-side

clustering and compare it with client-side clustering, we

have provided a web page (http://cs.uef.fi/mopsi/

markerClustering) that uses photos from Mopsi

(http://cs.uef.fi/mopsi). We have implemented the server-

side approach in C programming language. We have also

implemented a client-side API in Javascript to compare with

our server-side approach. Firefox 34.0.5 has been used as

the web browser. The server and client specifications are as

follow:

Client:

1. Windows 7, 64-bit

2. CPU: Inter(R) Core(TM) i3-2100, 3.10 GHz

3. Memory: 8 GB RAM

Server:

1. RedHat Enterprise Linux 7

2. Intel(R) Xeon(R) CPU E7-4860 v2 @ 2.60 GHz

3. Memory: 1000 GB RAM

To have 1,000,000 photos, we duplicated 20,000 of

Mopsi photos, 50 times each, by randomly distributing their

locations all over the world. For each photo, we have its id,

location, title, and filename. We created 4 subsets (as txt

files) containing 1000 (1K), 10,000 (10K), 100,000 (100K),

and 1,000,000 (1M) photos. In the following experiments,

we report the time taken for the clustering process only,

excluding the time for reading the files. In practice, the

photo data is retrieved from database and different

techniques could be used to speed up the queries. However,

they are out of the focus of this study. Note that for every

task such as opening a cluster or accessing the information

of the objects in a cluster, the files should also be read. We

set the cell size equal to 60x50, and the distance threshold to

T=5 pixels.

A. Comparison of clustering algorithms

In this experiment, we compare the proposed grid-based

clustering algorithm to overlap-based and centroid-linkage

algorithms. The processing time of clustering is reported in

Table II for several sizes of input data. Grid-based and

overlap-based clustering provide reasonable time for real-

time interaction, whereas centroid-linkage needs 15.5

seconds for clustering of only 10 Kbytes data, and it

becomes impractical for 100 Kbytes and more. Overlap-

based clustering is slightly slower than grid-based clustering

as expected because their time complexities are O(KN) and

O(N), respectively. Grid-based clustering is preferred

because it is suitable for parallel processing, and it provides

details on demand and opening cluster functionalities using

the bounding box of a cluster. Google MarkerClusterer v3,

which is a client-side clustering API, uses a method similar

to overlap-based clustering, but for variable size icons, that

makes it more time consuming. Table III reports the time for

the clustering process and adding representative icons to the

Three initial clusters
Overlap of

representative icons
After merging 1 and 2

Two separate
bounding boxes

Figure 12. Bounding box of the merged clusters 1 and 2 overlaps cluster 3 and therefore two separated bounding boxes are used

http://cs.uef.fi/mopsi/%20markerClustering
http://cs.uef.fi/mopsi/%20markerClustering
http://cs.uef.fi/mopsi

Advances in Electrical and Computer Engineering Volume xx, Number x, 20xx

 11

map in the proposed client-side solution and Google

MarkerClusterer. As the size of data increases, the proposed

API outperforms MarkerClusterer, where for 1,000,000

items, it is almost 100 times faster.

We evaluate the clustering result by calculating sum-of-

squared errors (SSE), i.e. the total (squared) distance

between the data points and their corresponding cluster

centroid, see Equation (2). We then normalize the values

and report mean squared error (MSE):

MSE = SSE / N (11)

where N is the number of data objects. The value measures

the average variance of the clusters. The smaller the number,

the more compact and therefore better, is the clustering. The

results are reported in Table IV for the subset of size

N=1000.

The parameters for all the algorithms are set so that no

cluster overlap appears. Each algorithm provides different

number of clusters (K). For example, centroid-linkage

results in K=54, overlap-based in K=47, and grid-based in

K=45 clusters. Usually, the more clusters we have, the lower

is the MSE-value. For fair comparison, we therefore tuned

the parameters of the algorithms so that they all would result

in exactly K=45 clusters. From the results we make the

following observations.

Overlap-based and grid-based algorithms provided almost

the same MSE-values (713 vs. 716), while centroid-linkage

gave the best result (605). Considering all aspects such as

quality, running time, memory requirement, and suitability

for parallel processing, we conclude that grid-based

clustering is the best overall choice for the problem.

TABLE II. PROCESSING TIME (SECONDS) OF THREE CLUSTERING ALGORITHM

IN CLIENT-SIDE APPROACH

Data size 1K 10K 100K 1M

Centroid-linkage 0.09 15.5 - -

Overlap-based 0.01 0.02 0.10 0.93

Proposed
Grid-based

<0.01 <0.01 0.01 0.08

TABLE III. THE OVERALL PROCESSING TIME (SECONDS) IN THE PROPOSED

CLIENT-SIDE API AND GOOGLE MARKERCLUSTERER API

Data size 1K 10K 100K 1M

Proposed
grid-based

0.23 0.34 0.64 2.4

Google maps API 0.30 1.7 20 229

B. Server-side vs. client-side

Running time of the client-side and server-side

approaches has linear dependency on the size of data. The

initial clustering and the merge step are very fast in both

approaches. In the client-side approach, the time taken for

downloading data is the bottleneck even with a high speed

internet (400 Kbytes/sec). In the server-side approach, the

download time is independent on the size of data. The

overall time grows at a significantly slower rate in the

server-side approach than in the client-side approach, see

Table V. This makes it possible to use the server-side

approach in real-time applications even with a large data of

size 1,000,000 items. In the client-side approach, the

clustering is run by the internet browser, which uses

interpreted language such as Javascript. In the server-side

approach, however, faster programming languages such as C

and Java can be used.

In the client-side approach, the download size is

proportional to the size of data set, see Table VI. In case of

1,000,000 data objects, the time needed to download data is

around 26 seconds even using a high speed internet, which

means that the client-side approach is not suitable for real-

time applications of this magnitude.

The download size in the server-side approach is

independent on the size of data, and it depends only on the

number of the initial clusters in grid cells, which are

produced by the grid-based clustering algorithm. This

property makes the real-time interaction possible for the

users with different internet speeds.

TABLE IV. CLUSTERING QUALITY (MSE) WITH THE SUBSET OF SIZE N=1000

Clustering

algorithm

Same parameters
Same number

of clusters

MSE # Clusters MSE # Clusters

Centroid-linkage 500 54 605 45

Overlap-based 643 47 713 45

Proposed

Grid-based
716 45 716 45

TABLE V. PROCESSING TIME (SECONDS) OF CLUSTERING IN CLIENT-SIDE

AND SERVER-SIDE APPROACHES

Data size 1K 10K 100K 1M

Client-side

Initial

clustering
0.000 0.003 0.012 0.077

Merge 0.004 0.006 0.007 0.010

Downloading data 0.019 0.062 1.6 26

Displaying
representatives

0.21 0.32 0.62 2.2

Total 0.233 0.391 2.239 28.287

Server-side

Initial
clustering

0.000 0.001 0.060 0.059

Merge 0.004 0.006 0.007 0.010

Downloading data 0.002 0.002 0.002 0.002

Displaying
representatives

0.19 0.33 0.60 2.15

Total 0.196 0.339 0.669 2.221

TABLE VI. DOWNLOAD SIZE (KILOBYTES) IN CLIENT-SIDE AND SERVER-SIDE

APPROACHES

Data size 1K 10K 100K 1M

Client-side 74 780 7,700 77,000

Server-side 13.4 14.7 14.8 14.8

VII. CONCLUSION

We have proposed a novel web mapping system based on

clustering. It allows users to make dynamic queries and

access the result in real-time. The system is unique, as we

Advances in Electrical and Computer Engineering Volume xx, Number x, 20xx

 12

are unaware of any other similar server-side systems that

allow presenting query results up to 1M objects. Most

existing systems are limited to static predefined queries, or

they only have client-side solution. For example,

GoogleMaps can handle data real-time only up to few

thousands only because of bandwidth limitation of the data

transfer.

The proposed system consists of a server-side clustering

algorithm, and client-side functionalities to allow real-time

access to zoom in the clusters. The system is suitable for

real-time applications even in low bandwidth environment.

It is also highly scalable as it easily extends to parallel

processing. The results can be verified using our freely

available API, which includes both server-side and client-

side implementations.

REFERENCES

[1] M. Nöllenburg, "Geographic visualization," in Human-centered
visualization environments, pp. 257-294, 2007. doi:10.1007/978-3-

540-71949-6

[2] J. Delort, "Hierarchical cluster visualization in web mapping
systems," 19th Int. Conf. World Wide Web, pp. 1241-1244, 2010.

doi:10.1145/1772690.1772892

[3] J. K. Rayson, "Aggregate towers: Scale sensitive visualization and
decluttering of geospatial data," IEEE Symposium on Information

Visualization (Info Vis' 99), pp. 92-99, 1999.

doi:10.1109/INFVIS.1999.801863
[4] J. Korpi, P. Ahonen-Rainio, "Clutter reduction methods for point

symbols in map mashups," The Cartographic Journal, vol. 50, no. 3,

pp. 257-265, 2013. doi:10.1179/1743277413Y.0000000065
[5] Z. Liu, B. Iiang, J. Heer, "imMens: Real-time visual querying of big

data," Computer Graphics Forum, vol. 32, no. 3pt4, pp. 421-430,

2013. doi:10.1111/cgf.12129
[6] J.-Y. Delort, "Vizualizing large spatial datasets in interactive maps,"

Advanced Geographic Information Systems, Applications, and

Services (GEOPROCESSING), pp. 33-38, 2010.

doi:10.1109/GEOProcessing.2010.13

[7] A. Jaffe, M. Naaman, T. Tassa, M. Davis, "Generating summaries and

visualization for large collections of geo-referenced photographs," 8th
ACM Int. Workshop on Multimedia Information Retrieval, pp. 89-98,

2006. doi:10.1145/1178677.1178692

[8] S. Ahern, M. Naaman, R. Nair, J. H. Yang, "World explorer:
visualizing aggregate data from unstructured text in geo-referenced

collections," 7th ACM/IEEE-CS Conf. Digital Libraries, pp. 1-10,

2007. doi:10.1145/1255175.1255177
[9] N. Elmqvist, J.-D. Fekete, "Hierarchical aggregation for information

visualization: Overview, techniques, and design guidelines," IEEE

Trans. on Visualization and Computer Graphics, vol. 16, no. 3, pp.
439-454, 2010. doi:10.1109/TVCG.2009.84

[10] I. Peca, H. Zhi, K. Vrotsou, N. Andrienko, G. Andrienko, "Kd-

photomap: Exploring photographs in space and time," IEEE Conf.
Visual Analytics Science and Technology (VAST), pp. 291-292,

2011. doi:10.1109/VAST.2011.6102479

[11] M. Cristani, A. Perina, U. Castellani, V. Murino, "Content
visualization and management of geo-located image databases,"

CHI'08 Extended Abstracts on Human Factors in Computing Systems,

pp. 2823-2828, 2008. doi:10.1145/1358628.1358768
[12] F. Girardin, F. Calabrese, F. Dal Fiore, C. Ratti, J. Blat, "Digital

footprinting: Uncovering tourists with user-generated content," IEEE

Pervasive Computing, vol. 7, no. 4, 2008.
doi:10.1109/MPRV.2008.71

[13] C. Lu, C. Chen, P. Cheng, "Clustering and visualizing geographic

data using geo-tree," IEEE/WIC/ACM Int. Conf. Web Intelligence
and Intelligent Agent Technology-Volume 01, pp. 479-482, 2011.

doi:10.1109/WI-IAT.2011.171

[14] D. A. Keim, H. Kriegel, "VisDB: Database exploration using
multidimensional visualization," IEEE Computer Graphics and

Applications, vol. 14, no. 5, pp. 40-49, 1994. doi:10.1109/38.310723
[15] F. H. Post, F. J. Post, T. Van Walsum, D. Silver, "Iconic techniques

for feature visualization," 6th IEEE Conf. Visualization'95, p. 288,

1995. doi:10.1109/VISUAL.1995.485141
[16] E. Keogh, L. Wei, X. Xi, S. Lonardi, J. Shieh, S. Sirowy, "Intelligent

icons: Integrating lite-weight data mining and visualization into GUI

operating systems," 6th Int. Conf. Data Mining, pp. 912-916, 2006.

doi:10.1109/ICDM.2006.90

[17] N. Cao, D. Gotz, J. Sun, H. Qu, "Dicon: Interactive visual analysis of

multidimensional clusters," IEEE Trans. on Visualization and

Computer Graphics, vol. 17, no. 12, pp. 2581-2590, 2011.

doi:10.1109/TVCG.2011.188
[18] D. Fisher, "Hotmap: Looking at geographic attention," IEEE Trans.

on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1184-

1191, 2007. doi:10.1109/TVCG.2007.70561
[19] A. Mayorga, M. Gleicher, "Splatterplots: Overcoming overdraw in

scatter plots," IEEE Trans. on Visualization and Computer Graphics,

vol. 19, no. 9, pp. 1526-1538, 2013. doi:10.1109/TVCG.2013.65
[20] B. Shneiderman, "The eyes have it: A task by data type taxonomy for

information visualizations," IEEE Symposium on Visual Languages,

pp. 336-343, 1996. doi:10.1109/VL.1996.545307
[21] G. Ellis, A. Dix, "A taxonomy of clutter reduction for information

visualisation," IEEE Trans. on Visualization and Computer Graphics,

vol. 13, no. 6, pp. 1216-1223, 2007. doi:10.1109/TVCG.2007.70535
[22] J.-D. Fekete, C. Plaisant, "Interactive information visualization of a

million items," IEEE Symposium on Information Visualization,

INFOVIS, pp. 117-124, 2002. doi:10.1109/INFVIS.2002.1173156
[23] W. Wang, J. Yang, R. Muntz, "STING: A statistical information grid

approach to spatial data mining," VLDB, vol. 97, pp. 186-195, 1997.

doi: doi:10.1.1.106.7154
[24] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, "Automatic

subspace clustering of high dimensional data for data mining

applications," ACM SIGMOD Int. Conf. Management of Data, vol.
27, no. 2, pp. 94-105, 1998. doi:10.1145/276304.276314

[25] J. Dabernig, "Geocluster: server-side clustering for mapping in Drupal

based on Geohash," M.Sc. Thesis, Faculty of Informatics, TU Wien
University, Austria, 2013.

[26] L. Lins, J. T. Klosowski, C. Scheidegger, "Nanocubes for real-time

exploration of spatiotemporal datasets," IEEE Trans. on Visualization
and Computer Graphics, vol. 19, no. 12, pp. 2456-2465, 2013.

doi:10.1109/TVCG.2013.179

[27] D. Nguyen, H. Schumann, "Taggram: Exploring geo-data on maps
through a tag cloud-based visualization," 14th Int. Conf. Information

Visualisation (IV), pp. 322-328, 2010. doi:10.1109/IV.2010.52

[28] R. T. Ng, J. Han, "CLARANS: A method for clustering objects for
spatial data mining," IEEE Trans. on Knowledge and Data

Engineering, vol. 14, no. 5, pp. 1003-1016, 2002.
doi:10.1109/TKDE.2002.1033770

[29] D. R. Edla, P. K. Jana, "A grid clustering algorithm using cluster

boundaries," World Congress on Information and Communication
Technologies (WICT), pp. 254-259, 2012.

doi:10.1109/WICT.2012.6409084

[30] S. Na, L. Xumin, G. Yong, "Research on k-means clustering
algorithm: An improved k-means clustering algorithm," Intelligent

Information Technology and Security Informatics (IITSI), pp. 63-67,

2010. doi:10.1109/IITSI.2010.74
[31] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, "A density-based algorithm

for discovering clusters in large spatial databases with noise," KDD,

vol. 96, no. 34, pp. 226-231, 1996. doi: 10.1.1.121.9220
[32] B. Liu, "A fast density-based clustering algorithm for large

databases," Int. Conf. Machine Learning and Cybernetics, pp. 996-

1000, 2006. doi:10.1109/ICMLC.2006.258531
[33] L. Zhao, J. Yang, J. Fan, "A fast method of coarse density clustering

for large data sets," 2nd Int. Conf. Biomedical Engineering and

Informatics, BMEI'09, pp. 1-5, 2009.
doi:10.1109/BMEI.2009.5305132

[34] P. Franti, O. Virmajoki, V. Hautamaki, "Fast agglomerative clustering

using a k-nearest neighbor graph," IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 28, no. 11, pp. 1875-1881, 2006.

doi:10.1109/TPAMI.2006.227

[35] P. Franti, T. Kaukoranta, D. Shen, K. Chang, "Fast and memory
efficient implementation of the exact PNN," IEEE Trans. on Image

Processing, vol. 9, no. 5, pp. 773-777, 2000. doi:10.1109/83.841516

[36] M. Steinbach, L. Ertöz, V. Kumar, "The challenges of clustering high
dimensional data," New Directions in Statistical Physics: Springer,

pp. 273-309, 2004. doi:10.1007/978-3-662-08968-2_16

[37] J. H. Ward Jr, "Hierarchical grouping to optimize an objective
function," J. American Statistical Association, vol. 58, no. 301, pp.

236-244, 1963. doi:10.1080/01621459.1963.10500845

[38] W. Meert, "Clustering maps," M.Sc. Thesis, Faculty of Engineering,
University of Leuven, Belgium, 2006.

[39] T. Zhang, R. Ramakrishnan, M. Livny, "BIRCH: an efficient data

clustering method for very large databases," ACM Sigmod Record,
vol. 25, no. 2, pp. 103-114, 1996. doi:10.1145/235968.233324

https://doi.org/10.1145/1772690.1772892
https://doi.org/10.1109/INFVIS.1999.801863
https://doi.org/10.1109/GEOProcessing.2010.13
https://doi.org/10.1145/1178677.1178692
https://doi.org/10.1145/1255175.1255177
https://doi.org/10.1109/TVCG.2009.84
https://doi.org/10.1109/VAST.2011.6102479
https://doi.org/10.1145/1358628.1358768
https://doi.org/10.1109/MPRV.2008.71
https://doi.org/10.1109/WI-IAT.2011.171
https://doi.org/10.1109/38.310723
https://doi.org/10.1109/VISUAL.1995.485141
https://doi.org/10.1109/ICDM.2006.90
https://doi.org/10.1109/TVCG.2011.188
https://doi.org/10.1109/TVCG.2007.70561
https://doi.org/10.1109/TVCG.2013.65
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/TVCG.2007.70535
https://doi.org/10.1109/INFVIS.2002.1173156
https://doi.org/10.1145/276304.276314
https://doi.org/10.1109/TVCG.2013.179
http://doi.org/10.1109/IV.2010.52
https://doi.org/10.1109/TKDE.2002.1033770
https://doi.org/10.1109/WICT.2012.6409084
https://doi.org/10.1109/IITSI.2010.74
https://doi.org/10.1109/ICMLC.2006.258531
https://doi.org/10.1109/BMEI.2009.5305132
https://doi.org/10.1109/TPAMI.2006.227
https://doi.org/10.1109/83.841516
https://doi.org/10.1145/235968.233324

