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1Abstract—Displaying geo-referenced data in web mapping 

systems has become popular. However, most existing systems 

suffer from three annoying problems: (1) clutter when trying to 

visualize large amount of data; (2) slowness of transferring 

data over internet; (3) lack of support for dynamic queries. To 

solve these problems, we propose a real-time system using 

server-side clustering, transferring only the clustered data, and 

client-side visualization using existing map tools. As far as we 

know, there is no other scientific paper describing such real-

time system that allows dynamic database queries without 

limiting to predefined queries. Experiments show that it can 

handle up to 1 million objects whereas all existing systems are 

either limited to pre-defined queries, or they support only a 

very small number of free parameters in the query whereas the 

proposed system has no such limitations. 

 
Index Terms—data visualization, clustering methods, web 

services, client-server systems, Internet. 

I. INTRODUCTION 

Rapid increase of cell phones and GPS devices has made 

it easy to collect huge amount of location-based or 

geospatial data. By location-based data, we mean photos or 

other data attached with their physical locations. Geo-

visualization is a tool for better understanding, efficient 

search, and well-organized management of data. It has 

received considerable attention due to the rise of online 

maps and advances in graphics and display technology [1]. 

A Web Mapping System (WMS) is a tool for geo-

visualization that standardizes the way of sharing geospatial 

information on the Internet using interactive web maps [2]. 

However, in case of visualizing large amount of data, 

most existing systems suffer from one of the following three 

problems: clutter, slowness, and restriction to pre-defined 

(static) queries. Fig. 1 shows a few examples found from 

web. Most present the data either as a set of points, or as 

small icons on the map. Only one web page shows the data 

(orienteering maps) as polygons. In all cases, the amount of 

data is relatively small and the selection of the data is 

predefined. The ones where data is several thousands 

(Jounin kauppa and Forenom) suffer from cluttering and 

sometimes also from slowness. To overome these issues, 

they allow user to select only a subset by filtering. Two 

pages (Way.fi and Wayne’s coffee) use clustering provided 

by GoogleMaps API (the earth quake icon) but they are also 

limited to predefined data. None of the systems support 

dynamic queries. 

The clutter problem appears when trying to show large 
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number of items on the limited space of a display screen [3]. 

Clutter reduction aims at reducing the overlap for better 

information visualization. In cartographic generalization, 

a minimum distance between adjacent items is defined to 

avoid the overlap [4]. Zooming also helps to avoid 

information overload but at the cost of losing the overall 

view of the data [1],[4]. The data to be shown should 

therefore be reduced, but so that it still represents the entire 

selection. Filtering and sampling are other possible 

approaches for the data reduction. However, they can bias 

the distribution of the data, lose relevant data objects, and at 

the same time, present outliers [5], see Fig. 2. Clustering, on 

the other hand, aims at grouping the data based on 

a similarity (or distance) criterion between the objects. All 

the objects are still available by navigating through the 

groups. 

Clustering consists of two design questions: which 

algorithm to use, and how to represent the clusters on the 

map. A cluster can be represented simply by an icon such as 

circles or point. For better usability, more information about 

the content of the cluster can also be given, such as the 

density or the distribution of the objects within the cluster. 

Several visualization techniques are shown in Fig. 3, in 

which we summarize six properties: 
 

• Technique for data reduction 

• Representation of cluster 

• Showing density 

• Showing distribution 

• Opening (drilling down) a cluster 

• Details-on-demand 
 

Flickr and Panoramio filter data by random sampling. 

Panoramio uses two levels of sub-sampling based on 

popularity and proximity of the photos. All the other 

visualization approaches are based on clustering. 

Panoramio, Mopsi (http://cs.uef.fi/mopsi) and the system of 

Delort [6] use a selected photo to represent a cluster. Tag 

maps [7-8] represent a cluster by selected word whose size 

depends on the size of the cluster. 

The visual aggregate should also include some 

information about the underlying data in the cluster [9]. 

Some systems show the cluster borders explicitly by 

Voronoi [2],[6],[10], convex hulls [11], or cells [12]. This 

helps to see the distribution of the data. However, the extra 

lines and shapes can overwhelm the view. Voronoi can also 

be misleading because it segments the entire area, also parts 

that do not contain any data [2]. Simple icon is still the most 

popular object to represent the clusters because of its 

simplicity. Google MarkerClusterer API uses an icon that  

Real-Time Clustering of Large Geo-Referenced 

Data for Visualizing on Map 

Mohammad REZAEI1, Pasi FRANTI1  
1School of Computing, University of Eastern Finland, 80140, Joensuu, Finland 

rezaei@cs.uef.fi 



Advances in Electrical and Computer Engineering                                                                      Volume xx, Number x, 20xx 

 2 

indicates the density by showing number, color, and size of 

the icon. The data distribution and the covered region of the 

cluster cannot be shown directly by an icon [2],[13], but the 

area can be indirectly concluded from the overall 

distribution. Additional information can also be embedded 

into the icons [14-17]. For example, DICON uses a treemap 

style icon that includes statistical distribution of the data in 

the cluster [17]. Other representations include heat maps 

[5],[13],[18], and Splatterplots [19].  

Opening a cluster [9] means that when the user clicks a 

cluster representative, an automatic zoom happens so that 

the objects in the cluster are displayed on the map view (the 

part of the map shown in a specified box in the interface). 

Most of the systems support this functionality. Details-on-

demand indicates how the user can access the details of any 

object in a cluster without opening the cluster or zooming in 

[20]. In general, providing more information to help 

ordinary users for better understanding the data is not trivial 

[17]. 

For solving the clustering, a scalable algorithm is required 

that is capable of handling large data sets in real-time 

[4],[13],[21-22]. Downloading data and generating the 

clusters on the client is still possible but it would cause a 

high transmission load on the network, and therefore, is not 

suitable for low speed internet connections. Especially if the 

data contains images as in our case. To minimize data 

transfer, clustering should therefore be performed on the 

server, and send only the summary information of each 

cluster to the client. 

Several server-side clustering approaches exist such as 

STING [23] and CLIQUE [24] but they pre-compute the 

clusters on the server. They apply clustering off-line to the 

entire data, and store the results on the server, which limits 

their use for static predefined queries only. However, we 

want to support also dynamic queries defined by the user in 

real-time. The results of such queries cannot usually be 

predicted beforehand because they are based on ad hoc 

query parameters such as free text keyword and time period, 

instead of just the location as in most existing systems [25]. 

To support dynamic queries, only a few approaches exist 

such as imMens and nanocubes, which have been recently 

proposed based on the idea of data cubes [5],[26]. A limited 

set of attributes (dimensions) of data are stored as 

aggregates on the server. The downside of this is the huge 

need for memory. 

In this paper, we propose a solution that allows dynamic 

queries without any such limitations. We formulate the 

clutter removal of icons as a clustering problem. We 

propose a server-side approach, which clusters the objects 

dynamically on the server, and sends only the summary 

information of each cluster to the client. The algorithm has 

a grid-based structure, which provides high scalability. We 

provide client-side and server-side APIs for the method. The 

computational time of the clustering is less than one second 

for 1,000,000 objects, where the download size is limited to 

15 Kbytes in a machine with Intel Xeon E7-4860 v2, 2.60 

GHz. To represent the clusters, we support both photos and 

variable size user-defined icons. Clusters can be opened by 

clicking the cluster representative. When opening a cluster, 

the map is zoomed in automatically to cover the area where 

all the objects of the selected cluster are located. The new 

content is presented on the map, clustered again if the  

 
Figure 1. Typical examples of existing web systems and how they deal with the problem 

 

All data Filtered data Clustered data 

   
Figure 2.  Clutter of 1000 geo-referenced data on the map (left), filtered by random selection of 20 objects (middle) and clustering (right) 
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Flickr  Google maps  

 

(a) Filtering 

(b) Circle icon 

(c) - 

(d) - 

(e) - 

(f) Yes 

 

(a) Clustering 

(b) Circle icon 

(c) Color, number 

(d) - 

(e) Yes 

(f) - 

Panoramio  Voronoi [2]  

 

(a) Filtering 

(b) Image icon 

(c) - 

(d) Yes 

(e) - 

(f) Yes 

 

(a) Clustering 

(b) Voronoi 

(c) Color 

(d) Yes 

(e) Yes 

(f) - 

Container shape [11]  Heat map [13]  

 

(a) Clustering 

(b) Area, image  

(c) - 

(d) Yes 

(e) Yes 

(f) - 

 

(a) Clustering 

(b) Heat map 

(c) Color 

(d) Yes 

(e) Yes 

(f) - 

Mopsi   Cells [12]  

 

(a) Clustering 

(b) Image icon 

(c) Number 

(d) - 

(e) Yes 

(f) Yes 

 

(a) Clustering 

(b) Cell 

(c) Color 

(d) Yes 

(e) Yes 

(f) - 

DICON [17]  Taggram [27]  

 

(a) Clustering 

(b) Icon 

(c) Color & shape 

(d) - 

(e) Yes 

(f) Yes 

 

(a) Clustering 

(b) Word 

(c) Color & size 

(d) - 

(e) Yes 

(f) - 

Figure 3. Several representations of geo-referenced data on maps, and their properties: (a) Technique for data reduction (b) Representation of cluster (c) 
Showing density (d) Showing distribution (e) Opening a cluster (f) Details-on-demand 
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amount of data still causes clutter. Starting the view of the 

entire world, single photos are usually reached by 2-6 clicks. 

The content of a cluster can also be accessible by details-

on-demand principle [20]. Since our system contains merely 

photos, we open photo viewer where user can only go 

through the photos in the cluster one by one using kind of 

slideshow. 

The rest of the paper is organized as follows. Clustering 

problem is formulated in Section II. In Section III, several 

clustering methods are analyzed for the purpose of the 

clutter problem, and the detailed procedure of the proposed 

grid-based clustering is presented in Section IV. Server-side 

approaches including our proposed method are studied in 

Section V. Experimental results are reported in Section VI, 

and conclusions are drawn in Section VII. 

II. CLUSTERING PROBLEM 

Clustering for clutter removal differs from normal data 

clustering. Instead of finding real clusters, we aim at 

grouping data merely for visual clarity and better computer-

human interaction. Any overlap causes difficulty and 

confusion when clicking an icon. For example, in Fig. 4, 

there are three well-separated clusters A, B, and C. The goal 

of normal data clustering would be to identify the three 

clusters, see Fig. 4 (middle). Some methods might consider 

the single object in cluster C as an outlier and identify only 

two clusters. However, a clutter removal method should be 

localized so that the sparse areas do not lose the details 

[4],[21]. Clustering distant objects together misleads the 

user about their real locations. The methods such as CLARA 

and CLARANS [28] that apply the clustering on a sample of 

data suffer from this problem. They assign non-selected 

objects to the clusters according to a criterion, for example 

to the nearest centroid. However, an object might be 

assigned to a distant cluster. To avoid this problem in clutter 

removal, it is therefore better to show more clusters as long 

as their representatives do not overlap. In this way, the time 

spent to access a photo would be shorter, see Fig. 4 (right). 

A. Objective of clustering 

Given a data set A R2 with N objects, the problem of 

clustering is to group the objects into K clusters. Each object 

must be assigned to a cluster, so that there are no outliers 

and missing data. The clustering has two objectives: 

1. Maximize the number of clusters without overlap 

To avoid overlap of clusters i and j with rectangular icons 

of sizes (Wi, Hi) and (Wj, Hj), see Fig. 5, one of the 

following conditions should be met: 

THHyy

TWWxx

jiji

jiji





2/)(

2/)(
                 (1) 

where (xi, yi) and (xj, yj) are the coordinates of the centroids 

ci and cj. Value T=0 guarantees that there is no overlap, but a 

bigger value (we use here T=5 pixels) is preferred to have 

more space between the clusters. This leads to a more 

readable map, which is less covered with cluster 

representatives. 

2. Minimize sum of squared error (SSE) 





N

i

ii acaSSE
1

2
)(                  (2) 

where c(ai) is the centroid of the cluster that the object ai is 

placed in. Several possible clusterings satisfy the conditions 

in (1), from which the clustering that provides minimum 

SSE is the optimal. This condition indicates that the overall 

distance of the objects of a cluster to the centroid is 

minimized, which provides least confusion about the real 

location of the objects. 

Ci

Cj

|yi-yj|

|xi-xj|

Wi

Hi

Wj

Hj

 
Figure 5.   Overlap of the bounds of two icons 

 

B. Number of clusters 

The number of clusters is unknown. However, it has an 

upper limit according to the average size of representative 

icons (W, H) and the size of map view (W0, H0). Assume 

that the map is filled with icons without any overlap. The 

maximum number of icons that can be drawn on the map is: 



















H

H

W

W
K 00

max                  (3) 

       
Figure 4.   Different goals of normal clustering (middle) and clutter removal (right) 
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C. Bounding box 

We define the bounding box of a map view as the window 

with the top-left and bottom-right coordinates of the view: 

[(Latmax, Lonmin), (Latmin, Lonmax)], see Fig. 6. The bounding 

box of a set of objects is defined in the same way but the 

boundaries are derived from the objects in the set. To 

display the set of objects on the map, a suitable map view 

should be first determined, which is the part of the entire 

map with the highest zoom level that contains the bounding 

box of the objects, see Fig. 6. The bounding box of the 

resulted map view can be wider than that of the objects 

because of the discrete change of zoom level. 

(Latmax, Lonmin)

(Latmin, Lonmax)

Bounding box of the map view

Bounding box of the objects

 
Figure 6.   The bounding box of map view and the bounding box of objects. 

The map view for the given objects is corresponding to the highest possible 

zoom level that contains all the objects. Zooming in more will cause some 
of the objects move out of the display 

 

III. CLUSTERING METHODS 

In this section, we study clustering approaches including 

divisive, density-based, agglomerative [28], and grid-based 

methods [29]. We show how some of them can be modified 

in order to be applicable to the clutter problem. We consider 

K-means (divisive), DBSCAN (density-based), and centroid-

linkage (agglomerative) algorithms as examples of the first 

three categories, and analyze their suitability for the 

problem. A trivial overlap-based clustering algorithm is also 

considered because it is likely to be applied to the problem 

by many others due to its simplicity. 

A. K-means 

K-means is a partitional clustering algorithm in which K 

centroids are initially selected in some way, for example 

randomly chosen data objects. Two steps of the algorithm 

are iteratively performed: assignment and update, for a fixed 

number of iterations or until convergence. In the first step, 

objects are assigned to their nearest centroid. In the second 

step, new centroids are calculated by averaging the objects 

in each cluster. Time complexity is O(IKN), where I is the 

number of iterations [30]. K-means is not suitable for the 

clutter problem as such because the number of clusters is 

unknown. Moreover, the representative icons might still 

overlap after clustering. 

B. Overlap-based clustering 

The first cluster is created from the first data object, and 

all other objects within a given distance threshold are joined 

to this cluster. The process then continues similarly for the 

next object that has not yet joined to any cluster. The 

algorithm is given below: 

 
overlapBasedClustering(X, N, TH) 

k = 1 

FOR  i=1 TO N 

visited[i] = FALSE 

label[i] = 0 

FOR  i = 1 TO N 

IF NOT visited[i] 

visited[i] = TRUE 

createCluster(X, N, TH, label, visited, i, k) 

k = k + 1 

 

createCluster(X, N, TH, label, visited, i, k) 

label[i] = k 

FOR  j=1 TO N 

IF (NOT visited[j]) AND (distance(i, j) < TH)  

label[j] = k 

visited[j] = TRUE 

 

The time complexity is O(KN), because the function 

createCluster is called K times, where K≤N is the number of 

clusters. The main disadvantage is that the clustering result 

depends on the order of processing data. 

C. DBSCAN 

DBSCAN is a density-based clustering algorithm that 

aims at finding arbitrary shape clusters. Its basic idea is to 

create clusters from points whose neighborhood within a 

given radius (eps) contain a minimum number (minPt) of 

other points [31]. Using every such a point, the algorithm 

grows a cluster by joining other points that are close to the 

cluster. Time complexity of the original DBSCAN is O(N2) 

but some efforts [32-33] have been made to reduce it close 

to O(N). In clutter removal of icons, the minPt must be set to 

1 because a single separated object should also be 

considered as a cluster, and eps is set to the distance 

threshold that guarantees no overlap. The cluster growing is 

not needed because we do not aim at finding natural 

clusters. Therefore, DBSCAN is not a suitable choice for the 

clutter problem. 

D. Centroid-linkage 

Agglomerative clustering is a bottom-up approach in 

which each object is initially considered as its own cluster. 

Two closest clusters are then iteratively merged [34]. 

Several criteria have been proposed for selecting the next 

two clusters to be merged such as single-linkage, average-

linkage, complete-linkage, centroid-linkage, and Ward’s 

method. Both centroid-linkage and Ward’s method are 

applicable to the clutter removal problem because the 

overlap of representative icons is checked based on the 

distance between cluster centroids. The merging process 

continues until the distance between the centroids of the 

next two clusters to be merged exceeds a threshold that 

guarantees no overlap. The pseudo code of fast 

implementation of the centroid-linkage algorithm based on 

the solution introduced in [35] is shown in the next page. 

Time complexity of the basic agglomerative clustering is 

O(N3) but the above solution reduces it to O(αN2), where 

α<<N in the above algorithm due to employing a nearest 

neighbor table that uses only O(N) memory. The algorithm 

can still be too slow for real-time applications. In [34], an 
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algorithm based on k-nearest neighbor graph is proposed in 

order to improve the speed close to O(NlogN) with a slight 

decrease in accuracy. However, graph creation is the 

bottleneck of the algorithm, and should be solved. 

Otherwise, this step dominates the time complexity. 
 
centroidLinkage(X, N, TH) 

Set each object to its own cluster 

k = N 

iMin = createNNTable(X, N) 

[i1, i2, dist] = findClosestClusters(iMin, k) 

WHILE dist < TH 

mergeAndUpdate(iMin, k, i1, i2) 

k = k – 1 

[i1, i2, dist] = findClosestClusters(iMin, k) 

createNNTable(X, N)  iMin 

FOR i = 1 TO N 

iMin[i] = i 

FOR i = 1 TO N 

FOR j = 1 TO N 

IF  distance(i, j) < distance(i, iMin[i]) 

iMin[i] = j 

findClosestClusters(iMin, k)  [i1, i2, dist] 

i1 = 1 

FOR i= 1 TO k  

IF distance(i, iMin[i])<distance(i1, iMin[i1]) 

i1 = i 

i2 = iMin[i1] 

dist = distance(i1, i2) 

mergeAndUpdate(iMin, k, i1, i2) 

Merge cluster i2 in cluster i1 

Update centroid of cluster i1  

FOR i = 1 TO k  

IF iMin[i] = i2 

iMin[i] = i1 

FOR j = 1 TO k 

IF  distance(i, j) < distance(i, iMin[i]) 

iMin[i] = j 

Replace cluster i2 with the last cluster 

 

distance(i, j)  dist 

dist = Euclidean distance between X(i) and X(j) 

IF i = j 

dist = MAX 

E. Grid-based clustering 

Grid-based clustering consists of three main steps: grid-

construction, initial clustering, and merge. The space 

containing the objects is first segmented by dividing each 

dimension into a predefined number of bins [29]. This 

provides rectangular grid cells, see Fig. 7. In the second 

step, initial clusters are formed by assigning each object to a 

cell simply by indexing without any need for distance 

calculation [36]. Each cell corresponds to one cluster. 

Centroids and other summary information such as the 

number of objects and density are then calculated for the 

clusters. The rest of the process is performed only on the 

non-empty cells that contain some objects. 

 In the third step, final clusters are formed by merging the 

neighboring cells according to some closeness criterion such 

as density or connectedness, see Fig. 7. Finding a suitable 

criterion for merging is not trivial because different criteria 

can lead to different clustering results [29]. Pseudo code of 

this overall algorithm is given below: 
 

 
gridBasedClustering(X, N, cellSize) 

// Step 1: Grid construction 

region = bounding box of data X 

Set grid for the region 

Set indices of the cells 

// Step 2: Initial clustering 

K=0 

FOR i=1 to N 

Find the cell index (m, n) for the object X[i] 

IF the cell[m, n] is empty 

K=K+1 

Create new cluster K 

j = cluster index of the cell (m, n)  

Update information of cluster j 

// Step 3: Merge 

FOR k=1 to K 

Check neighbors of cluster k and merge if 

needed 

 

 
Figure 7.   Some of neighboring cells should be merged to form natural 
clusters 

 

The grid construction step contains the setting of the 

required parameters, which takes only O(1) time. The time 

complexity of the assignment step is O(N) because every 

object is processed. The third step is performed on the K 

initial clusters: the cells that contain objects. Since K<<N 

(especially in 2-D), the overall time complexity is O(N). 

This makes the grid-based clustering a suitable choice for 

the real-time clutter removal problem. Memory complexity 

is O(N) and no distance calculation is required between the 

objects. 

A few challenges have been reported for grid-based 

clustering methods such as finding clusters with variable 

densities, determining the size of grid cells, limitation of 

rectangular cells to fit the shape of clusters, and 

dimensionality problem [24],[29],[36]. However, most of 

the challenges are related to finding natural clusters or high 

dimensional data. Finding a suitable size for grid cell is not 

trivial because a small size leads to more cells, and therefore 

more computations, while a coarse cell size results in lower 

accuracy due to merging far away objects. However, in  

TABLE I. COMPARISON OF CLUSTERING ALGORITHMS FOR CLUTTER REMOVAL OF ICONS 

Clustering algorithm Item Memory complexity 
Supporting large 

data 

Supporting parallel 

processing 

K-means O(IKN) O(N) No No 

Overlap-based O(KN) O(N) Yes No 

DBSCAN O(NlogN) O(N) No No 

Centroid-linkage O(N2) O(N2) No No 

Grid-based O(N) O(N) Yes Yes 
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clutter removal of icons, the cell size is concluded directly 

from the size of the icons (for example maximum size). The 

only remaining issue is that two close objects might be 

clustered separately if located at the border of two cells. 

This misleads the user about the real locations of these 

objects.  

Grid-based clustering is simple to implement, and its time 

and memory complexities are better than those for other 

methods, see Table I. Moreover, parallel processing in order 

to increase the speed for large data can be perfectly applied 

to grid-based clustering. We present next the technical 

details of grid-based clustering for the clutter problem. 

IV. GRID-BASED CLUSTERING FOR CLUTTER REMOVAL 

This section presents the detailed procedure of grid-based 

clustering in order for clutter removal of icons on the map.  

A. Coordinates system 

The location of a data object is represented by latitude 

and longitude, which are measured in degrees, minutes, and 

seconds of the globe sphere, or for computational purposes, 

simply in decimal degree. In Mercator projection, the areas 

far from the equator are exaggerated and it is not possible to 

find a fixed height for the grid cells, and a single distance 

threshold for avoiding overlap of icons, which have certain 

width and height in pixels. Therefore, we construct the grid 

in Cartesian coordinate system in pixel rather than degree, 

and convert the latitude and longitude of the objects to pixel 

for a certain zoom level as follows: 


















 

)sin(1

)sin(1

2
128

10128 6

lat

lat
Ln

Rm
y

lonRmx

  (4) 

where m=6.3952×10-6 is a scaling factor, R=6.371×106 is 

the earth radius, and lon and lat are in the range (-π, π) and 

(-π/2, π/2) respectively. The value (x, y) represents the 

coordinates of a point within a picture of size 256x256, 

which corresponds to the lowest zoom level (zero) in 

Google maps. For a higher zoom level z (up to 21), the 

coordinates are derived from x and y as follows: 

zz yyxx 2',2'                       (5) 

B. Grid construction 

For a given map view, the grid is usually built starting 

from top-left corner, see Fig. 8 (left). However, this 

approach has a drawback. When the user pans the map, 

some new objects enter and some objects move out from the 

map view, and therefore, a new clustering is applied. 

Consider two clusters with 3 and 7 objects, respectively, in 

Fig. 9 (left); then, after horizontal panning to the right by the 

amount corresponding to 40% of the cell size, the objects 

will divide into two other clusters with 6 and 4 objects, 

respectively. This artifact happens because the new grid 

does not match with the old one, and objects might be 

assigned to different cells in the new grid. To avoid this 

problem, we set a fixed grid starting from the beginning of 

the whole world but consider only the cells which are 

completely or partly in the current map view, see Fig. 8 

(right). This makes the grid invariant of panning. 
 

   
Figure 9.    Horizontal panning to the right causes different clusters when 
the grid is set according to the top-left of map view 

 

The number of rows and columns in the map view are 

calculated as: 








 








 


c

column

c

row
W

xx
n

H

yy
n minmaxminmax  (6) 

where (Wc, Hc) is the size of a grid cell, and the points (xmin, 

ymin) and (xmax, ymax) are calculated according to the points p1 

and p2 of the bounding box of the map view. A cell is then 

identified according to its row and column indices, which 

are in the range of [1, nrow] and [1, ncolumn], respectively, see 

Fig. 8. 

 

 
Figure 8.    Starting grid from the beginning of the map view (left), and fixed grid starting from the beginning of the whole world but considering only 

the cells covering the map view 
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C. Initial clusters in cells 

In this phase, the objects are assigned to the cells. We go 

through the objects one by one and calculate its 

corresponding cell. Row and column of the corresponding 

cell of an object at the location (x, y) is calculated as: 








 








 


cc W

xx
column

H

yy
row minmin  (7) 

The cells that contain some objects become the initial 

clusters. The centroid of a cluster is calculated by averaging 

the locations of all the objects in the cluster. The initial 

clusters result in a fixed SSE for a certain input data. The 

cluster information that is used in the rest of the process 

includes the number of objects n, centroid (x, y) and cluster 

representative. We calculate the size of the icon for each 

cluster i from the size of the cluster ni using the following 

logarithmic function: 

 
 )(log

)(log

10min

10min

ii

ii

nHH

nWW








                     (8) 

where [.] is the rounding function, Wmin and Hmin are the 

minimum width and minimum height of the icons and α is 

the increase rate for the width and height. There is a trade 

off in the choice of α. Large increase rate can lead to very 

big icons whereas small increase rate makes the difference 

of cluster sizes unnoticeable. In this work, we fix α=8. 

D. Merging overlapping clusters 

The representative icons of the clusters in neighboring 

cells may overlap when the distance between the centroids 

of the clusters is small, see Fig. 10. The overlap can be 

eliminated either by spatial distortion of representative icons 

or by merge. Spatial distortion is performed by moving the 

centroid location of a cluster away from the overlapping 

cluster [13],[21]. If the icon moves far, an arrow can be used 

to point from the icon to the original location. In case of 

many overlapping icons, the problem of finding good places 

for the icons becomes complicated. We therefore use the 

merge approach. After merging two clusters, their new 

centroid might place in anywhere within the two cells, or 

even move into a third cell, see Fig. 10. However, we keep 

the index of the first cluster for simplicity. This has no side 

effect to the clustering results, and it is needed for the 

server-side clustering; where the indices of initial cells are 

required for accessing the objects in a cluster. 

We process as follows. First, we go through all clusters 

one by one to determine overlapping clusters according to 

(1). For every overlapping clusters i and j, we calculate their 

merge cost as the increase in the total SSE: 

2

ji

ji

ji
cc

nn

nn
SSE 


                        (9) 

We select the clusters to be merged that result in 

minimum increase in the SSE, which is similar to the idea of 

Ward’s criterion in agglomerative clustering [37]. The size 

of the representative icon of the new cluster is updated using 

(8). After the merge, the new cluster is checked for possible 

overlap to other clusters and the process then continues until 

no overlap remains. This merging approach does not 

guarantee the global optimal but it merely removes all 

overlaps by locally minimizing SSE in each step. 

V. REAL-TIME CLUSTERING ON SERVER-SIDE 

Our goal is to apply clustering on server-side in order to 

limit the download size. Moreover, we want to support 

dynamic queries to the data without limiting to a small 

predefined set of queries. In this section, we first compare 

server-side and client-side approaches, and study existing 

server-side solutions and their limitations. We then propose 

a server-side approach based on grid-based clustering. We 

first need to define two types of queries that the user 

requests to see the desired results on the map: spatial and 

non-spatial. 

 
Figure 10. Overlap of two representative icons in neighboring cells (left) 

and merging clusters (right) 

 

Spatial query: The user selects the map view and requests 

to see all data in this area. No other parameters are needed to 

specify which objects. The entire data can be clustered 

offline on the server if only this type of query is requested. 

The corresponding clusters in the region are then extracted 

from the pre-computed clustering. Zooming, panning, and 

opening a cluster are examples of how spatial query is 

initiated by the user. In the cases of zooming and panning, 

the map view is set directly using the map API tool. For 

opening a cluster, a new map view is calculated and set 

according to the bounding box of the objects in the cluster.  

Non-spatial query: Instead of showing all the objects, the 

user selects a subset to be displayed based on other 

properties. For example, the user might want to see the 

pictures by a given person within a given time period, or the 

objects containing a given keyword. We refer to this as non-

spatial query in contrast to spatial query. Pre-computing the 

clusters is possible but only for a predefined set of queries 

such as accessing all the data in the year 2015. However, in 

general, these types of queries are dynamic, and clustering 

must be performed real-time. This is because the set of data 

is dynamically retrieved based on the input parameters given 

by the user; the objects that match the query cannot be 

predicted in general. 

A. Server-side vs. client-side 

The main advantage of server-side clustering approach is 

that it limits download size by sending only the summary 

information of clusters to the client. In client-side clustering, 

all the data are sent to the client, which provides two 

advantages. First, processing data on client relieves the 

server from overwhelming clustering requests. Second, no 

additional request to the server is needed for interactions 

such as zooming in the map or opening a cluster. However, 

obtaining the entire results from the server can cause high 

traffic load on the network. Suppose that 100,000 data 

objects are transferred to the client and 12 bytes are required 

for id, latitude, and longitude per object. The transmission 

load would sum up to 1.2 Mbytes, which is considerable 



Advances in Electrical and Computer Engineering                                                                      Volume xx, Number x, 20xx 

       9 

amount for a low speed internet. 

In server-side approach, the transmission load is limited 

by sending only the information of clusters. Since the 

number of clusters is limited according to the sizes of 

display and icon, there is an upper limit for the transmission 

load, which is independent on the number of objects. 

Several server-side clustering APIs have been developed in 

recent years [25],[38]. 

B. Existing methods 

The existing methods that deal with visualization of large 

data on maps can be classified into two groups: 

1. Hierarchical clustering on the server by pre-computing 

the clusters 

 2. Using data cubes 
 

The first group [2],[13],[23],[25],[39] clusters entire data 

on the server by employing a hierarchical structure such as 

KD-tree or R-tree. Querying for a region is then performed 

in O(logN) time by finding the target clusters in the suitable 

level of the hierarchy. The hierarchical structure can also 

provide scalable visual representations [2],[9]. However, 

clustering of entire data does not support non-spatial 

queries. Elmqvist and Fekete [9] provide an overview on 

hierarchical aggregation of data to support visualization 

requirements such as panning, zooming, and opening a 

cluster. 

To address non-spatial queries for large data sets and to 

support quick exploration, several researchers use data 

cubes [5],[26]. Data cubes are structures that build 

aggregations across every possible set of dimensions of data 

[26]. imMens [5] decomposes multi-dimensional data cubes 

into binned data tiles of reduced dimensionality and 

performs accelerated query processing and rendering on the 

GPU. For real-time interaction, the binned data tiles are pre-

computed. imMens visualizes the aggregates on the map as 

geographic heatmaps which are 2-D binned plots. However, 

data cubes do not allow queries to individual record like 

traditional databases and they need considerable amount of 

memory. For example, in [26], after using the nanocubes for 

reducing memory, 45 Gbytes is needed for 210 million 

points (214 Mbytes for 1 million points). Moreover, this can 

be applied only to a limited (up to 5) number of data 

dimensions. As the number of dimensions increase, the 

required memory becomes quickly impractical. We note that 

data cubes can be used jointly with grid-based clustering if 

so wanted. These two approaches do not exclude each other. 

C. Proposed approach 

Fig. 11 shows the flow of our server-side clustering 

approach both for non-spatial and spatial queries. The sizes 

of the grid cell and the map container box in the interface 

are sent to the server as parameters. In a non-spatial query, 

the map view that contains all the resulting data objects is 

obtained. In contrast, in a spatial query, the map view is 

specified by the user and sent to the server. The objects 

inside the map view resulted from the query are selected. 

The rest of the process is the same for both types of queries, 

where the objects and map view are inputs to the initial 

clustering. In a spatial query, we first apply the 

corresponding non-spatial query to retrieve the results from 

database. However, this is not needed if a faster approach is 

used to store the results of the last non-spatial query on the 

server so that the corresponding results for the given region 

specified by a spatial query are extracted. The following 

information of each cluster is collected: 

1. Centroid of cluster: (x,y)  

2. Number of objects: (n) 

3. Bounding box: (xmin,ymin)  and (xmax,ymax) 

4. Cluster representative 
 

The information of each cluster representative is also sent 

to the client. For example, for photo collection, the filename 

of the representative photo is sufficient for displaying image 

thumbnail, see Mopsi cluster representation in Fig. 3. 
 

 
Figure 11.    The proposed server-side clustering approach 

 

D. Interactions using bounding box 

The bounding box of a cluster is needed for opening, and 

accessing the objects inside the cluster. To open a cluster, 

the map view is set using the bounding box of the cluster 

and a new spatial query is applied to retrieve the objects in 

the map view. To access the information of the mth object in 

the cluster, a query is applied to retrieve the identifiers (id) 

of the objects in the bounding box. We always sort the 

results in the same order so that the mth id in the list of 

results would correspond to the mth object. The object’s id 

can then be used to retrieve its information. The same 

approach can be used to obtain the information of k 

consequent objects of a cluster. This scenario applies only 

when the bounding box does not overlap with other clusters. 

However, overlap might happen when merging clusters. 

Next, we demonstrate the problem and explain our solution 

to solve it. 

Consider the three clusters in Fig. 12. Clusters 1 and 2 

should be merged because of the overlap of their 

representatives. To open the merged cluster when the user 

clicks on its representative, a spatial query is applied to the 

bounding box of the objects in the cluster. However, a 

problem appears that the bounding box of the merged cluster 

contains some objects from the cluster 3. We solve this by 

applying spatial queries for the initial cells of the merged 

cluster. We therefore send initial clusters in cells without 

any merge to the client. Merge step is performed on client, 

and the initial clusters and the order of merging are stored. 

To retrieve the information of an object x in a cluster, its 

corresponding initial cluster C and the index of x in C are 

determined. The id of x is then obtained by applying a 

spatial query for the bounding box of C, and the information  
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of x is retrieved by applying another query using the id. 

E. Scalability 

In this section, we discuss the time and memory 

scalabilities of the proposed server-side approach. In 

general, grid-based clustering allows high scalability 

regarding both memory and time, and our method is no 

exception. The initial clustering is the most time consuming 

step with time complexity of O(N), see Section III.  

Initial clustering can be performed independently for 

every cell. We can query for the data inside a cell and 

calculate the information of the cluster. The data in each cell 

can be queried part by part if there is too much data in it. 

Two clusters resulted from two parts of data can iteratively 

be merged to provide the overall cluster for the cell. The 

information of the merged cluster is calculated from the 

information of two clusters. The number of objects is the 

sum of the number of objects of the two clusters, and the 

bounding box is the union of the two bounding boxes. The 

representative is taken from the first cluster, and the centroid 

is calculated as: 

)/()(

)/()(

212211

212211

nnynyny

nnxnxnx




                     (10) 

where (x1,y1) and (x2,y2) are the centroids, and n1 and n2 are 

the number of objects of the two clusters. Therefore, there is 

no limitation regarding memory. However, in our current 

implementation, we load the whole data from the database at 

once, which limits the memory scalability with the current 

hardware to about 100 Mbytes. 

The processing time on our server is 0.25 second for one 

Mbytes data. Assuming that 1 second is acceptable for a 

real-time interaction, the processing time limits the 

scalability of the current implementation to 4 Mbytes data. 

This excludes the time for loading data from database. There 

are many techniques to improve the interactions with the 

database but it is out of the focus of this paper. 

Time scalability can be further improved according to the 

above-mentioned properties of the grid-based clustering by 

applying parallel or multi-thread processing, which require 

more investments on hardware. The subsets of the cells or 

even every cell can be processed in parallel. 

VI. EXPERIMENTS 

To evaluate the performance of the proposed server-side 

clustering and compare it with client-side clustering, we 

have provided a web page (http://cs.uef.fi/mopsi/ 

markerClustering) that uses photos from Mopsi 

(http://cs.uef.fi/mopsi). We have implemented the server-

side approach in C programming language. We have also 

implemented a client-side API in Javascript to compare with 

our server-side approach. Firefox 34.0.5 has been used as 

the web browser. The server and client specifications are as 

follow: 
 

Client: 

1. Windows 7, 64-bit 

2. CPU: Inter(R) Core(TM) i3-2100, 3.10 GHz 

3. Memory: 8 GB RAM 

Server: 

1. RedHat Enterprise Linux 7 

2. Intel(R) Xeon(R) CPU E7-4860 v2 @ 2.60 GHz  

3. Memory: 1000 GB RAM 
 

To have 1,000,000 photos, we duplicated 20,000 of 

Mopsi photos, 50 times each, by randomly distributing their 

locations all over the world. For each photo, we have its id, 

location, title, and filename. We created 4 subsets (as txt 

files) containing 1000 (1K), 10,000 (10K), 100,000 (100K), 

and 1,000,000 (1M) photos. In the following experiments, 

we report the time taken for the clustering process only, 

excluding the time for reading the files. In practice, the 

photo data is retrieved from database and different 

techniques could be used to speed up the queries. However, 

they are out of the focus of this study. Note that for every 

task such as opening a cluster or accessing the information 

of the objects in a cluster, the files should also be read. We 

set the cell size equal to 60x50, and the distance threshold to 

T=5 pixels. 

A. Comparison of clustering algorithms 

In this experiment, we compare the proposed grid-based 

clustering algorithm to overlap-based and centroid-linkage 

algorithms. The processing time of clustering is reported in 

Table II for several sizes of input data. Grid-based and 

overlap-based clustering provide reasonable time for real-

time interaction, whereas centroid-linkage needs 15.5 

seconds for clustering of only 10 Kbytes data, and it 

becomes impractical for 100 Kbytes and more. Overlap-

based clustering is slightly slower than grid-based clustering 

as expected because their time complexities are O(KN) and 

O(N), respectively. Grid-based clustering is preferred 

because it is suitable for parallel processing, and it provides 

details on demand and opening cluster functionalities using 

the bounding box of a cluster. Google MarkerClusterer v3, 

which is a client-side clustering API, uses a method similar 

to overlap-based clustering, but for variable size icons, that 

makes it more time consuming. Table III reports the time for 

the clustering process and adding representative icons to the 

Three initial clusters 
Overlap of 

representative icons 
After merging 1 and 2 

Two separate 
bounding boxes 

    
Figure 12.    Bounding box of the merged clusters 1 and 2 overlaps cluster 3 and therefore two separated bounding boxes are used 

 

http://cs.uef.fi/mopsi/%20markerClustering
http://cs.uef.fi/mopsi/%20markerClustering
http://cs.uef.fi/mopsi
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map in the proposed client-side solution and Google 

MarkerClusterer. As the size of data increases, the proposed 

API outperforms MarkerClusterer, where for 1,000,000 

items, it is almost 100 times faster. 

We evaluate the clustering result by calculating sum-of-

squared errors (SSE), i.e. the total (squared) distance 

between the data points and their corresponding cluster 

centroid, see Equation (2). We then normalize the values 

and report mean squared error (MSE): 

MSE = SSE / N                    (11) 

where N is the number of data objects. The value measures 

the average variance of the clusters. The smaller the number, 

the more compact and therefore better, is the clustering. The 

results are reported in Table IV for the subset of size 

N=1000. 

The parameters for all the algorithms are set so that no 

cluster overlap appears. Each algorithm provides different 

number of clusters (K). For example, centroid-linkage 

results in K=54, overlap-based in K=47, and grid-based in 

K=45 clusters. Usually, the more clusters we have, the lower 

is the MSE-value. For fair comparison, we therefore tuned 

the parameters of the algorithms so that they all would result 

in exactly K=45 clusters. From the results we make the 

following observations. 

Overlap-based and grid-based algorithms provided almost 

the same MSE-values (713 vs. 716), while centroid-linkage 

gave the best result (605). Considering all aspects such as 

quality, running time, memory requirement, and suitability 

for parallel processing, we conclude that grid-based 

clustering is the best overall choice for the problem. 
 

TABLE II. PROCESSING TIME (SECONDS) OF THREE CLUSTERING ALGORITHM 

IN CLIENT-SIDE APPROACH 

Data size 1K 10K 100K 1M 

Centroid-linkage 0.09 15.5 - - 

Overlap-based 0.01 0.02 0.10 0.93 

Proposed 
Grid-based 

<0.01 <0.01 0.01 0.08 

 

TABLE III. THE OVERALL PROCESSING TIME (SECONDS) IN THE PROPOSED 

CLIENT-SIDE API AND GOOGLE MARKERCLUSTERER API 

Data size 1K 10K 100K 1M 

Proposed 
grid-based 

0.23 0.34 0.64 2.4 

Google maps API 0.30 1.7 20 229 

B. Server-side vs. client-side 

Running time of the client-side and server-side 

approaches has linear dependency on the size of data. The 

initial clustering and the merge step are very fast in both 

approaches. In the client-side approach, the time taken for 

downloading data is the bottleneck even with a high speed 

internet (400 Kbytes/sec). In the server-side approach, the 

download time is independent on the size of data. The 

overall time grows at a significantly slower rate in the 

server-side approach than in the client-side approach, see 

Table V. This makes it possible to use the server-side 

approach in real-time applications even with a large data of 

size 1,000,000 items. In the client-side approach, the 

clustering is run by the internet browser, which uses 

interpreted language such as Javascript. In the server-side 

approach, however, faster programming languages such as C 

and Java can be used. 

In the client-side approach, the download size is 

proportional to the size of data set, see Table VI. In case of 

1,000,000 data objects, the time needed to download data is 

around 26 seconds even using a high speed internet, which 

means that the client-side approach is not suitable for real-

time applications of this magnitude. 

The download size in the server-side approach is 

independent on the size of data, and it depends only on the 

number of the initial clusters in grid cells, which are 

produced by the grid-based clustering algorithm. This 

property makes the real-time interaction possible for the 

users with different internet speeds. 
 

TABLE IV. CLUSTERING QUALITY (MSE) WITH THE SUBSET OF SIZE N=1000 

Clustering 

algorithm 

Same parameters 
Same number  

of clusters 

MSE # Clusters MSE # Clusters 

Centroid-linkage 500 54 605 45 

Overlap-based 643 47 713 45 

Proposed 

Grid-based 
716 45 716 45 

 

TABLE V. PROCESSING TIME (SECONDS) OF CLUSTERING IN CLIENT-SIDE 

AND SERVER-SIDE APPROACHES 

Data size 1K 10K 100K 1M 

Client-side 

Initial  

clustering 
0.000 0.003 0.012 0.077 

Merge 0.004 0.006 0.007 0.010 

Downloading data 0.019 0.062 1.6 26 

Displaying 
representatives 

0.21 0.32 0.62 2.2 

Total 0.233 0.391 2.239 28.287 

Server-side 

Initial  
clustering 

0.000 0.001 0.060 0.059 

Merge 0.004 0.006 0.007 0.010 

Downloading data 0.002 0.002 0.002 0.002 

Displaying 
representatives 

0.19 0.33 0.60 2.15 

Total 0.196 0.339 0.669 2.221 

 

TABLE VI. DOWNLOAD SIZE (KILOBYTES) IN CLIENT-SIDE AND SERVER-SIDE 

APPROACHES 

Data size 1K 10K 100K 1M 

Client-side 74 780 7,700 77,000 

Server-side 13.4 14.7 14.8 14.8 

VII. CONCLUSION 

We have proposed a novel web mapping system based on 

clustering. It allows users to make dynamic queries and 

access the result in real-time. The system is unique, as we 
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are unaware of any other similar server-side systems that 

allow presenting query results up to 1M objects. Most 

existing systems are limited to static predefined queries, or 

they only have client-side solution. For example, 

GoogleMaps can handle data real-time only up to few 

thousands only because of bandwidth limitation of the data 

transfer.  

The proposed system consists of a server-side clustering 

algorithm, and client-side functionalities to allow real-time 

access to zoom in the clusters. The system is suitable for 

real-time applications even in low bandwidth environment. 

It is also highly scalable as it easily extends to parallel 

processing. The results can be verified using our freely 

available API, which includes both server-side and client-

side implementations.  
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