
27th Iranian Conference on Electrical Engineering (ICEE2019)

978-1-7281-1508-5/19/$31.00 ©2019 IEEE

Impact of Steganography on JPEG File Size
Mohammad Rezaei

Security Analysis Laboratory
Tehran, Iran

rezaei@salab.ir

Saeed Montazeri Moghadam
Security Analysis Laboratory

Tehran, Iran
montazeri@salab.ir

Abstract—Hiding data in JPEG images is usually performed by
modifying quantized DCT coefficients. This will affect the entropy
coding and consequently the size of the resulting compressed data.
The change in the file size might be used as a feature in
steganalysis. In this paper, we investigate the impact of several
well-known steganography methods on the size of JPEG file. The
experiments show interesting results, where we considered several
embedding payloads and quality factors. OutGuess 0.1, OutGuess
0.2, and complementary embedding methods increase the file size,
while F5, nsF5, and PQ decrease it. The secure steganography
methods J-UNIWARD and SI-UNIWARD almost do not change
the file size.

Keywords—steganalysis, steganography, data hiding, JPEG, file
size

I. INTRODUCTION
Numerous steganography methods have been proposed for

JPEG images mostly because of the popularity of JPEG format
and its wide usage on various platforms [1, 2]. The main goal of
steganography methods is to hide the presence of the secret data,
and on the contrary, steganalysis aims at detection of the
message by visual or statistical analysis [3]. Most of the JPEG
steganography methods embed the secret data in the quantized
Discrete Cosine Transform (DCT) coefficients. This can modify
natural statistical properties both in the DCT domain and spatial
domain of the image. Accordingly, steganalysis methods usually
extract features from DCT coefficients [4-6] or spatial domain
[3, 7]. Among various studies in steganography and
steganalysis, very little attention has been paid to the change in
file size after steganography. Discussion about the file size is
usually presented only in the reversible steganography methods
[8, 9] or the methods which hide data directly in the JPEG file
bitstream [2]. However, all these methods are detectable by
simple steganalysis methods or system attacks, which
investigate the file to detect unusual and extra data in the
bitstream without analyzing the image content [10].

In this paper, we analyze, theoretically and experimentally,
the impact of eight well-known JPEG steganography methods
on the file size. In the experiments, we consider different
embedding rates and image qualities. The results show
interesting properties of steganography methods, which help to
employ, in the future, the file size as a feature in steganalysis
methods.

1 http://www.ijg.org/

The rest of this paper is organized as follows. In Section 2,
we introduce JPEG compression procedure, which is necessary
for theoretical analysis of a steganography method. The selected
steganography methods are reviewed in Section 3. Experimental
results are reported in Section 4, and the conclusions are drawn
in Section 5.

II. JPEG COMPRESSION
JPEG, which is an image compression standard, is so

extensive, but a small part of it called JPEG baseline is widely
used [10, 11]. We consider this baseline and JPEG File
Interchange Format (JFIF) in this paper. JFIF is an image file
format for exchanging JPEG encoded files, which is widely used
in many existing platforms and applications [12]. The first stage
of the compression procedure shown in Fig. 1. is converting
RGB components to YCbCr, where Y component is luminance
and Cb and Cr components are color information [10]. Each
component is broken down into non-overlapping 8×8 pixel
blocks, and pixel values are shifted to have the range [-128,127]
instead of [0, 255]. Then, 2-D DCT converts the data of each
block into 64 DCT coefficients in the frequency domain; one DC
and 63 AC coefficients [11, 13], see the example in Fig. 3. Each
coefficient is quantized using its corresponding value in an 8×8
quantization table [13]. The block coefficients are then reordered
by zigzag scanning to be prepared for entropy coding [13].
Entropy coding produces the compressed bitstream, which is
written to the file following the header information [10].

Conversion from RGB to YCbCr provides the possibility to
consider higher compression for color information than
luminance information since color information loss has less
impact on the image quality. Therefore, YCbCr color space is
more suitable for efficient compression. DCT transform and
quantization provide a useful statistical structure for
compression [14]. The transform separates low and high
frequencies, and then, quantization is performed so that low
frequencies are represented with more accuracy than higher
frequencies because low-frequency variation has much more
impact on the visual content of a block [14]. The quantization is
the most significant cause of compression, where the
compression ratio is specified by the quantization tables for
luminance and chrominance. JPEG standard suggests the tables
shown in Fig. 2. , but allows the applications to define their own
quantization tables. The independent JPEG group (IJG) 1
introduces a procedure to determine the tables for a desired

1869

27th Iranian Conference on Electrical Engineering (ICEE2019)

Fig. 1. JPEG encoding procedure

image quality. They define quality factor (QF) which is an
integer in the range [1, 100], and consider the suggested tables
by the standard (Tb) for QF=50. The tables (Ts) for other qualities
are computed by scaling Tb as follows [15]:

(1)

An example of luminance values of an 8x8 block, level shifting,
DCT values, and quantized DCT values for three quality factors
is shown in 0The secret data is usually embedded in non-zero
quantized DCT coefficients. The higher quantized values
(QF=20), the lower image quality, the smaller file size, and the
less room for steganography.

The difference between quantized DC coefficient of each
block and the DC value of the previous block is Huffman coded.
Quantized AC coefficients are encoded differently, where after
converting to 1-D array by zigzag scanning of the coefficients in
a block, entropy coding starts with zero run length coding and
then Huffman coding [13].

Fig. 2. Suggested quantization tables by JPEG standard.

Fig. 3. An 8x8 pixel block, level shifting, DCT transform, and quantized DCT transform for three quality factors 20, 50, and 80.

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 102 63 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

Luminance quantization table Chrominance quantization table

22 40 -7 4 1 0 0 0

11 -3 -5 -2 2 1 0 0

-2 -2 1 1 1 0 0 0

2 2 -1 -2 0 0 0 0

-3 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

240 211 225 241 189 144 122 116

250 216 226 252 237 157 109 97

247 235 194 220 237 165 128 99

246 247 207 190 160 124 122 75

249 239 230 191 164 136 87 65

246 236 237 199 163 148 88 65

248 228 208 146 150 122 82 62

246 197 134 100 154 121 65 62

112 83 97 113 61 16 -6 -12

122 88 98 124 109 29 -19 -31

119 107 66 92 109 37 0 -29

118 119 79 62 32 -4 -6 -53

121 111 102 63 36 8 -41 -63

118 108 109 71 35 20 -40 -63

120 100 80 18 22 -6 -46 -66

118 69 6 -28 26 -7 -63 -66

350.5 435.0 -73.3 58.3 27.0 -12.4 1.4 12.3

129.1 -40.8 -68.3 -34.1 41.9 30.0 -22.2 -9.7

-34.9 -32.1 10.5 17.7 32.9 -7.6 13.3 6.5

24.1 28.6 -18.5 -51.4 -19.6 26.9 29.0 -11.0

-49.8 -1.7 39.7 -2.5 -7.8 4.8 -3.5 -3.8

-5.1 -1.6 27.2 -15.7 -21.1 9.8 -13.3 0.4

7.9 -20.6 -2.0 13.6 4.2 -5.4 -3.3 -8.6

4.1 -4.9 -0.9 7.2 3.7 -11.0 2.3 4.5

Pixel values Level shifted DCT values

9 16 -3 1 0 0 0 0

4 -1 -2 -1 1 0 0 0

-1 -1 0 0 0 0 0 0

1 1 0 -1 0 0 0 0

-1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

58 109 -18 10 3 -1 0 1

26 -8 -11 -4 4 1 -1 0

-6 -6 2 2 2 0 0 0

4 4 -2 -4 -1 1 1 0

-7 0 3 0 0 0 0 0

-1 0 1 -1 -1 0 0 0

0 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

QF=20 QF=50 QF=80DC AC0

AC63

1870

27th Iranian Conference on Electrical Engineering (ICEE2019)

The zigzag scanning facilitates the entropy coding because
low-frequency coefficients with more nonzero values are
located before high-frequency coefficients. In run-length
coding, the coefficients are coded as (runs, bits)(amplitude). The
value runs is the number of zero coefficients (amplitudes)
between the current and the next nonzero amplitude, and bits is
the number of bits required for representing amplitude [14]. This
way, runs of zeros are coded efficiently as there are many zero
coefficients. When the rest of the coefficients in the array are
zero, an end-of-block code (0,0) is sent, see 0[13].

III. STEGANOGRAPHY METHODS
In this Section, we briefly introduce the selected JPEG

steganography methods that we use in the experiments.

Random LSB replacement or OutGuess 0.1 [16] replaces the
LSB of a quantized AC DCT coefficient, whose value is not 0
or 1, with a bit of the message. To embed a message with m bits,
m coefficients are selected randomly using a pseudo-random
number generator. OutGuess 0.2 [17] tries to preserve first-order
statistics (image histogram) in order to be undetectable by chi-
square attack or its generalized version. It first embeds the
message bits into the DCT coefficients similar to OutGuess 0.1.
LSB flipping causes the number of the occurrences of two
consequent coefficients such as 2 and 3 (called pair of values or
POV) in the histogram become close to each other. OutGuess
0.2 modifies some of the unused coefficients in the embedding
process to correct the effect of POV. The correction can be made
only if enough unused coefficients are available, which leads to
a limitation for the embedding capacity.

F5 [18] takes two different actions comparing to OutGuess
0.1 to increase the security: embedding approach and matrix
embedding. Instead of replacing the LSB with the message bit,
it decrements the absolute value of the DCT coefficient. For
example, embedding the message bit 1 in the coefficients 4 and
-4 changes the coefficients to 3 and -3, respectively. This
prevents the effect of POV, and therefore, the stego image is not
detectable by chi-square attack. Matrix embedding reduces the
number of changes to the coefficients. The coefficients 1 and -1
are converted to 0 when embedding the bit 0, and 1, respectively.
Since zero coefficients are ignored during the message
extraction, the same bit is embedded in the next coefficient.
Because of this shrinkage of ones (-1 and 1), the number of
coefficients with the value zero increases. To eliminate the
shrinkage problem of F5, nsF5 (no-shrinkage F5) [19] uses wet
paper codes instead of matrix embedding. Using wet paper
codes, the zeros that are produced by embedding the bit 0 in 1
and -1 can be used for extracting the message, and we do not
need to repeat embedding 0 in 1 and -1 coefficients.

In complementary embedding (CE) method [20], the DCT
coefficients are divided into two parts in order to apply different

embedding operations to each part. The message bits are
similarly split into two parts. The idea is that one embedding
algorithm compensates changes to the image statistics that have
been made by the other algorithm. The first algorithm
decrements while the second one increments the coefficients by
one.

Perturbed quantization (PQ) [21] method uses the values of
unquantized DCT coefficients as side information, which is not
available to the decoder, in order to decrease the image
distortion. The coefficients whose their fractional part is in the
range [0.5- , 0.5+] are used for embedding message bits. This
selection of coefficients provides the opportunity to use wet
paper codes in which the embedding channel is not shared with
the decoder. Using wet paper codes, the number of changes
required for embedding a message is reduced.

J-UNIWARD and SI-UNIWARD [4] are two adaptive
steganography methods which are designed to minimize an
embedding distortion function called universal wavelet relative
distortion (UNIWARD). The distortion function provides
different costs for the coefficients to be selected for embedding
the message bits. The complex regions of the image are selected
with higher probability than soft regions. Having the cost for
each coefficient, syndrome-trellis codes (STCs) are used to
solve the problem so that the total distortion is minimized. SI-
UNIWARD utilizes the side information in the encoder side,
where the unquantized DCT coefficients are available when
converting a raw image to JPEG. J-UNIWARD and SI-
UNIWARD employ all DCT coefficients including DCs and
zeros.

IV. EXPERIMENTS
We experimentally evaluate the impact of 8 well-known

JPEG steganography methods on the file size.

We made a database of 100 images which are randomly
selected from BOSSbase 1.01 database. The input raw images
are given to the JPEG encoder in order to produce JPEG cover
images. We use MATLAB programs for generating stego
images. All the selected steganography methods get JPEG cover
images as the input except SI-UNIWARD and PQ whose input
is raw images as they need unquantized DCT coefficients as side
information. We produced stego images with eight payloads:
1%, 2%, 5%, 10%, 20%, 30%, 40%, and 50%, and four quality
factors: 50, 65, 80, and 95. In total, 24852 stego images were
generated. OutGuess 0.2 has a limitation to produce high
payloads such as 40% and 50%, and this limitation becomes
more as the quality factor increases. That is why the number of
stego images is less than expected.

 Fig. 4. Zigzag scanning, and run-length coding of the example 8x8 quantized DCT block in Fig. 3 when QF=50

(22, 40, 11, -2, -3, -7, 4, -5, -2, 2, -3, 2, 1, -2, 1, 0, 2, 1, -1, 0, 0, 0, 0, 1, -2, 1, 1, 0, 0, …, 0)
37 zeros

(5)(22)(0, 6)(40), (0, 4)(11), (0,3)(-2),(0,3)(-3),(0,3)(-7), (0,3)(4), (0,3)(-5),(0,3)(-2),(0,3)
(2),(0,3)(-3), (0,3)(2), (0,1)(1),(0,3)(-2),(1,1)(1), (0,3)(2),(0,1)(1), (4,2)(-1), (0,1)(1),
(0,3)(-2), (0,1)(1), (0,1)1, (0,0)

1871

27th Iranian Conference on Electrical Engineering (ICEE2019)

Fig. 5. Impact of the selected steganography methods on JPEG file size in different quality factors as the payload increases

We obtain the size of the compressed bitstream (the file
excluding the header part) for a cover and its stego image file,
and report the change ratio, which is the difference in their size
divided by the size of the cover image.

0shows the impact of steganography on the file size for four
quality factors. For each payload and each method, the change
ratio of 100 images is averaged. The size is affected most by
OutGuess 0.1 and F5 methods while J-UNIWARD and SI-
UNIWARD result in minimum changes in the file size.

OutGuess 0.1 linearly increases the file size as the payload
increases. The change ratio is larger for lower quality factors. To
explain the cause of the increase, we give an example on the pair
of values 2 and 3, which are converted to 3 and 2 by embedding
the message bits 1 and 0, respectively. Since there are always
more 2s than 3s among the coefficients, and the coefficients are
selected randomly, more 2s are used for embedding, and
therefore, after embedding the message bits, the number of 2s
and 3s decreases and increases, respectively. Since Huffman
coding uses more bits for encoding a larger number, the length
of compressed data increases.

As shown in 0, the change ratio for OutGuess 0.2 and CE are
almost the same and less than OutGuess 0.1. It is because of the
histogram correction made by OutGuess 0.2 and CE. After the
correction, the number of values in a pair such as 2 and 3
becomes close to one of the cover image, and therefore,
Huffman should be able to compress the stego image as well as
cover image. However, the correction is usually not perfect, and
there is still an increase in the file size.

F5 linearly reduces the file size as the payload increases, and it
has the most impact on the file size comparing to the other
steganography methods. Producing many zero coefficients by
F5 leads to a decrease in the file size because Huffman coding
of JPEG encodes the zeros efficiently. Because of eliminating
the shrinkage phenomenon of F5, the decrease in the file size by
nsF5 is significantly less than the decrease by F5. The decrease
made by nsF5 is because the number of zeros for the stego image
is still higher than the number for the cover image. The reason
is that both 1 and -1, which exist in the DCT coefficients more
than other non-zero coefficients, are converted to 0 when
embedding 0 and 1, respectively. Therefore, nsF5 is expected to
reduce the file size, but not as much as F5.

PQ is another steganography method that reduces the file
size, see Fig. 5. It increases the number of zero coefficients, and
that is why the file size decreases. In the embedding process, the
coefficients with the value one are converted to zero when
embedding the message bit 0. Since there is always a significant
number of ones among the DCT coefficients, there would be a
significant increase in the number of zeros and consequently a
decrease in the file size. Wet paper codes provide the possibility
to use also the coefficients 1 for embedding. We remind that
OutGuess 0.1 does not use the coefficients 1. Suppose that a one
is converted to zero when embedding the message bit 0. Then,
the decoder cannot distinguish between this zero coefficient and
other zeros which were not used in embedding.

1872

27th Iranian Conference on Electrical Engineering (ICEE2019)

Fig. 6. Variance of change in file size for 100 images

J-UNIWARD and SI-UNIWARD, which are two of the most
secure steganography methods so far, have a very little impact
on the file size, and almost preserve the file size of the cover
image file. We think of two reasons for this. First, they hide the
message mostly in complex regions. This means changing the
large DCT coefficients, which have a small effect on Huffman
coding. Second, STC makes it possible to embed a message with
minimum change in the coefficients. J-UNIWARD and SI-
UNIWARD similarly as PQ use the coefficients 1 for
embedding message bits, but unlike PQ the number of zeros
does not increase significantly. The reason is that J-UNIWARD
and SI-UNIWARD employ distortion functions in which the
costs for converting ones to zeros are high, and it causes less
ones are selected for embedding.

0shows the variance of the change ratio among the 100
images of our database. An interesting result about J-
UNIWARD (same for SI-UNIWARD) is that the increase in the
file size for all images, even in the payload 0.5, is very small.
Therefore, the change in file size cannot be used as a feature for
steganalysis of J-UNIWARD and SI-UNIWARD while we
expect that the file size can be used as a steganalysis feature for
other methods especially F5 and OutGuess 0.1.

V. CONCLUSIONS
We have conducted an experimental study on the impact of

selected steganography methods on JPEG file size. Overall, our
experiments show that different steganography methods have
different impacts on the file size. F5, nsF5, and PQ reduce the
file size while OutGuess 0.1, OutGuess 0.2, complementary
embedding increase the file size. J-UNIWARD and SI-
UNIWARD preserve the file size of the cover image. In the
future, we plan to study how the change in the file size can be
used as a feature for detecting steganography content.

REFERENCES
[1] K. Wang, Z.-M. Lu, and Y.-J. Hu, "A high capacity lossless data hiding

scheme for JPEG images," Journal of systems and software, vol. 86, no.
7, pp. 1965-1975, 2013.

[2] F. T. Wedaj, S. Kim, H. J. Kim, and F. Huang, "Improved reversible data
hiding in JPEG images based on new coefficient selection strategy,"
EURASIP Journal on Image and Video Processing, vol. 2017, no. 1, p.
63, 2017.

[3] J. Fridrich, Steganography in digital media: principles, algorithms, and
applications. Cambridge University Press, 2009.

[4] V. Holub, J. Fridrich, and T. Denemark, "Universal distortion function for
steganography in an arbitrary domain," EURASIP Journal on Information
Security, vol. 2014, no. 1, p. 1, 2014.

[5] J. Kodovský and J. Fridrich, "Steganalysis of JPEG images using rich
models," in IS&T/SPIE Electronic Imaging,pp. 83030A-83030A-13:
International Society for Optics and Photonics, 2012.

[6] V. Holub and J. Fridrich, "Low-complexity features for JPEG steganalysis
using undecimated DCT," IEEE Transactions on Information Forensics
and Security, vol. 10, no. 2, pp. 219-228, 2015.

[7] J. Fridrich and J. Kodovsky, "Rich models for steganalysis of digital
images," IEEE Transactions on Information Forensics and Security, vol.
7, no. 3, pp. 868-882, 2012.

[8] F. Huang, X. Qu, H. J. Kim, and J. Huang, "Reversible data hiding in
JPEG images," IEEE Transactions on Circuits and Systems for Video
Technology, vol. 26, no. 9, pp. 1610-1621, 2016.

[9] B. G. Mobasseri, R. J. Berger, M. P. Marcinak, and Y. J. NaikRaikar,
"Data embedding in JPEG bitstream by code mapping," IEEE
Transactions on Image Processing, vol. 19, no. 4, pp. 958-966, 2010.

[10] M. Rezaei and M. B. Salahshoor, "Content-independent steganography
and steganalysis of JPEG images," in 2018 15th International Joint
Conference on Computer Science and Software Engineering (JCSSE),
2018, pp. 1-6.

[11] G. K. Wallace, "The JPEG still picture compression standard,"
Communications of the ACM, vol. 34, no. 4, pp. 30-44, 1991.

[12] E. Hamilton, "JPEG File Interchange Format Version 1.02," 1992.
[13] T. Recommendation, "CCITT T. 81," 1993.
[14] G. Hudson, A. Léger, B. Niss, and I. Sebestyen, "JPEG at 25: Still Going

Strong," IEEE MultiMedia, vol. 24, no. 2, pp. 96-103, 2017.
[15] J. D. Kornblum, "Using JPEG quantization tables to identify imagery

processed by software," digital investigation, vol. 5, pp. S21-S25, 2008.
[16] N. Provos and P. Honeyman, "Hide and seek: An introduction to

steganography," IEEE security & privacy, vol. 99, no. 3, pp. 32-44, 2003.
[17] N. Provos, "Defending Against Statistical Steganalysis," in Usenix

security symposium vol. 10, pp. 323-336, 2001
[18] A. Westfeld, "F5—A Steganographic Algorithm," in Information Hiding:

4th International Workshop, IH 2001, Pittsburgh, PA, USA, April 25-27,
2001. Proceedings,vol. 2137, p. 289, 2001.

[19] J. Fridrich, T. Pevný, and J. Kodovský, "Statistically undetectable jpeg
steganography: dead ends challenges, and opportunities," in Proceedings
of the 9th workshop on Multimedia & security, 2007, pp. 3-14: ACM.

[20] C.-L. Liu and S.-R. Liao, "High-performance JPEG steganography using
complementary embedding strategy," Pattern Recognition, vol. 41, no. 9,
pp. 2945-2955, 2008.

[21] J. Fridrich, M. Goljan, and D. Soukal, "Perturbed quantization
steganography with wet paper codes," in Proceedings of the 2004
workshop on Multimedia and security, 2004, pp. 4-15: ACM.

0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5
F5 Rnd LSBR J-UNIWARD

-0.1

-0.05

0

1873

