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Abstract. Centroid index is the only measure that evaluates cluster level differ-
rences between two clustering results. It outputs an integer value of how many
clusters are differently allocated. In this paper, we apply this index to other clus-
tering models  that do not use centroid as prototype.  We apply it  to centroid
model, Gaussian mixture model, and arbitrary-shape clusters.
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1 Introduction

Clustering aims at partitioning a data set of  n points into  k clusters.  External index
measures how similar a clustering solution is to a given ground truth (if available), or
how similar two clustering solutions are. This kind of measure is needed in clustering
ensemble, measuring stability and evaluating performance of clustering algorithms.

In clustering algorithms, one of the main challenges is to solve the global alloca-
tion of the clusters instead of just tuning the partition borders locally. Despite of this,
most  external cluster validity indexes calculate only point-level differences without
any direct information about how similar the cluster-level structures are.

Rand index (RI) [1] and Adjusted Rand index (ARI) [2] count the number of pairs
of data points that are partitioned consistently in both clustering solutions (A and B);
if a pair of points is allocated in the same cluster in A, they should be allocated into
the same cluster also in B. This provides estimation of point-level similarity but does
not give much information about the similarity at cluster level.

Fig. 1. Principle of set-matching based external validity indexes. The values are the number of
overlap between the clusters. Blue indicate clusters that would be selected for matching. Sam-

ple index values for this example would be NMI=0.42, NVD=0.20, CH=0.20, CI=0.
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More sophisticated methods operate at the cluster level. Mutual information (MI)
[3] and Normalized mutual information (NMI) [4] measure the amount of information
(conditional entropy) that can be obtained from a cluster in A using the clusters in B.
Set-matching based measures include Normalized van Dongen (NVD) [5] and Crite-
rion-H (CH) [6]. They match the clusters between A and B, and measure the amount
of overlap between the clusters, see Fig. 1. However, all of them measure point-level
differences. What is missing is a simple structural cluster-level measure.

Fig. 2 demonstrates the situation with three clustering results: k-means (KM) [7],
random swap (RS) [8] and  agglomerative clustering (AC) [9]. The clustering struc-
ture of RS and AC is roughly the same, and their differences come mostly from the
minor inaccuracies of the centroids in the agglomerative clustering. The result of the
k-means has a more significant, structural difference: one centroid is missing at the
top, and there are too many centroids at the bottom.

Some indexes (ARI, NVD, CH) indicate that RS-vs-AC in Fig. 2 are more similar
(ARI=0.91;  NVD=0.05;  CH=0.05)  than  RS-vs-KM  (ARI=0.88;  NVD=0.07;
CH=0.10), or AC-vs-KM (ARI=0.82; NVD=0.10; CH=0.14) but the numbers do not
tell that their global structure is the same.

RS
AC

RS
KM

AC
KM

RI 0.99 0.99 0.98

ARI 0.91 0.88 0.82

MI 3.64 3.64 3.48

NMI 0.93 0.94 0.90

NVD 0.05 0.07 0.10

CH 0.05 0.10 0.14

CI 0 1 1

Fig. 2. Comparing three clustering results: Random Swap (RS), 
Agglomerative clustering (AC) and K-means (KM) with eight measures.

In a recent work [10], we introduced  a cluster level index called  centroid index
(CI) to cope with this problem by measuring the number of clusters allocated differ-
ently. For each centroid in A, the method finds its nearest centroid in B. Then it calcu-
lates the  indegree-values for each centroid in  B; how many times it was selected as
the nearest. An orphan centroid (indegree=0) indicates that a cluster is differently lo-
cated in the clustering structure. The index value is the count of these orphans so that



CI-value indicates the number of cluster-level differences. Value CI=0 indicates that
the clustering structures are identical, CI=1 that one cluster mismatch, and so on.

The measure is somewhat rough as it ignores the point-level differences. A simple
point-level extension called centroid similarity index (CSI) was therefore also consid-
ered. However, the main idea to measure the cluster level differences is best captured
by the raw CI-value, or relative to the number of clusters: CI/k. In Fig. 2, CI-value
clearly tells that RS and AC have similar clustering structure (CI=0), and that k-means
has one difference (CI=1).

A limitation of CI is that we must have the centroids. It is possible to use other
clustering  models  like  k-medoids [11]  and  k-modes [12]  by  finding  the  nearest
medoid/mode using the distances  in the feature space. However, in more complex
clustering models like Gaussian mixture model (GMM), density-based or arbitrary-
shape clustering, it is not as simple.

In this paper, we show how to apply centroid index by using partitions instead of
the centroids. For every cluster in A, we first find its most similar cluster in B by cal-
culating the amount of overlap by Jaccard coefficient, which is the number of shared
points divided by the total number of distinctive data points in the two clusters:
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where Ai and Bj are the matching (most similar) clusters.
However, we do not sum up the overlaps but we further analyze the nearest neigh-

bor mapping. The cluster-to-cluster similarity is now determined at point level, but the
overall value is still measured at the cluster level. The measure is calculated as the
number of orphan clusters (indegree=0) as in the original definition of centroid index.
Thus, the method now generalizes from the centroid-model to other clustering models
independent on how the cluster is represented: centroid, medoid, mode, or even no
prototype used at all.

For example, in Fig. 1, the topmost clusters are mapped to each other, and the bot-
tom-most clusters to each other. This results in mapping where all indegree=1 for both
clusters, and CI-value becomes 0. Therefore, these two solutions have the same clus-
tering structure and they differ only at the point level.

2 External cluster validity

Existing cluster validity indexes can be divided into three categories:  pair-counting,
information theoretic and set-matching based measures:

Pair-counting measures

• RI = Rand index [1]
• ARI = Adjusted Rand index [2]

Information theoretic measures

• MI = Mutual information [3]
• NMI = Normalized Mutual information [4]

Set-matching based measures

• NVD = Normalized van Dongen [5]
• CH = Criterion H [6]



• CI = Centroid Index [10]  
• CSI = Centroid Similarity Index [10]

We next briefly recall the idea of set-matching based methods [13]. The clusters
are first either  paired (NVD) or  matched (CH and CI).  In pairing, best pair of the
clusters in A and B are found by minimizing the sum of the similarities of the paired
clusters. Hungarian [13], or greedy algorithm [6][14] has been used to solve it.

In matching, nearest neighbour is searched. This does not always result in biject-
ive mapping where exactly two clusters are paired, but several clusters in  A can be
mapped to the same cluster in B (or vice versa), see Fig. 3. The mapping is not sym-
metric, and is usually done in both ways: AB and BA.

Fig. 3. Matching of clusters using pointwise similarities.

The similarities of the matched/paired clusters are then calculated by summing up
the total overlap. In [13], the values are first normalized by the maximum cluster size.
In NVD, CH and CSI, the normalization is performed after the summation by dividing
the total number of shared points by the total number of points:
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where  NN(Ai)  is the cluster in  B that  Ai is matched/paired with. Centroid index (CI)
finds the nearest centroid without any use of the partitions:
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where c[Ai] and c[Bj] are the centroids of A and B. The other difference is that CI does
not use the point-level measure (2). Instread, it calculates the number of mappings
(indegree) made for each cluster Bj, and then sums up the number of clusters in B that
has not been mapped at all (indegree=0). These are called orphans:
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where Oprhan(B) has value 1 if no cluster in A is mapped to it:
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In order to have symmetric index, we perform mappings in both ways: AB and
BA. The CI-value is then defined as the maximum of these two: 

      ABCIBACIBACI  11 ,max, (6)

To sum up, the index is easy to calculate, and the result has clear interpretation:
how many clusters are differently allocated. An example is shown in Fig. 4.

Fig. 4. Example of Centroid index (CI). Only mapping REDPURPLE is shown. 
Some purple circles are under the red and not visible. 

3 Centroid Index using different clustering models

The main limitation of the centroid index is that it requires centroids, which may not
exist in other clustering models such as k-medoids [11], k-modes [12], Gaussian mix-
ture model (GMM), density-based and arbitrary-shape clustering. To apply the index
to other models, we consider the following alternative approaches:

 Prototype similarity
 Partition similarity
 Model similarity

3.1 Prototype vs. Partition similarity

K-medoids  and  k-modes  clustering  operate  also  in  a feature  space  (usually
Euclidean),  so  generalization  to  them is  trivial  using  the  prototype  similarity  ap-
proach. We just find the nearest prototype in the other solution using the distance in
the feature space. It  does not matter whether  the prototype is centroid,  medoid or
mode.

The  second  approach  uses  the  partitions  of  the  two  clustering  solutions.  The
matching of each cluster is done by finding the most similar cluster in the other solu-



tion using (1). This applies to any partition-based clustering and it can be calculated
from the contingency table in O(Nk2) time [2]. Contingency table tells how many
shared points two clusters Ai and Bj have. See Table 1 for an example.

Table 1. Contingency table for the clusterings presented in Fig. 3. For instance, clusters A1

shares 5 points with cluster B1, 1 point with cluster B2, and 2 points with cluster B3.

B1 B2 B3 ∑
A1 5 1 2 8
A2 1 4 0 5
A3 0 1 3 4
∑ 6 6 5 17

This partition similarity approach applies also to centroid-based clustering but it
may be slower to calculate.  Finding the most similar prototype  takes only O(dk2),
where  d is the number of dimensions. This is expected to be faster than the O(N)
+O(k2) of the partition similarity; unless if the dimensionality or the number of clus-
ters is very high. For S1-S4 data (http://cs.uef.fi/sipu/datasets) the estimated numbers
are 450 distance calculations for the prototype similarity, and 4352 counter additions
for the partition similarity. However, observed values in Table 2 show that the calcula-
tion of the squared distance takes so much longer that the speed benefit is practically
lost. Thus, the partition-based variant is virtually as fast already when d=2.

It is also possible that the two approaches provide different mappings. Even then,
the resulting CI-value is expected to be mostly the same. Table 2 also reports the num-
ber of times the two approaches give different CI-value. 

The third approach is to derive the similarity of clusters directly from the probabil-
ity density function of the model. Next we study this for Gaussian mixture model.

Table 2. Processing times for CI using prototype and partition similarity. The third row shows
how many times they provided different CI-values. Data sets S1-S4 are from [15].

S1 S2 S3 S4 Birch2
Proto-

type
15 ms 15 ms 15 ms 15 ms 120 ms

Partition 14 ms 14 ms 14 ms 14 ms 250 ms

Different 5.8 % 7.1 % 5.2 % 7.9 % 30 %

3.2 Model similarity

Gaussian mixture model (GMM) represents every cluster by its centroid and covari-
ance matrix. This increases the size of the model from O(1) to O(d2) per cluster. How-
ever, there is often not enough data to estimate the covariances reliably. A simplified
variant therefore considers the diagonal of the covariance matrix, thus, reducing the
model size to O(d). We also use this simplified variant here.

Expectation  maximization  (EM)  [16]  algorithm  optimizes  GMM analogous  to
k-means. It iterates Expectation and Maximization steps in turn to optimize loglikeli-
hood. It also suffers the same problem as k-means: stucks into a local optimum. Better
variants include split-and-merge [17], genetic algorithm [18] and random swap [19].

For comparing two clusters (mixtures), we can use any of the three approaches.
Prototype similarity approach ignores the covariance and just finds the nearest cen-

http://cs.uef.fi/sipu/datasets


troid in the other solution. Partition similarity performs hard partition by assigning
each point into the cluster with maximum likelihood, after which the partition similar-
ity can be calculated using the contingency table.

For the model similarity, we use here  Bhattacharyya coefficient. It measures the
similarity between two probability distributions p and q, and is calculated as follows:

  jiBC qpS (7)

For two multivariate normal distributions, it can be written as:
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where c[Ai] and c[Bj] are the means (centroids), Σ1 and Σ2 are the covariance matrices
of the two clusters Ai and Bj. and Σ is the average of Σ1 and Σ2. The first term in (8)
represents the Mahalonobis distance, which is a special case of Bhattacharyya when
the covariance matrixes of the two distributions are the same as is the case in GMM. 

Fig. 5 shows an example of two GMM models by SMEM [17] and RSEM [19] al-
gorithms. We compare the results by calculating the various indexes from the result -
ing partitions. The result of CI was calculated by all the three approaches; all resulted
into the same mapping, and gave exactly the same value CI=2.

Fig. 5. Centroid index for Gaussian mixture model. Only mapping SMEMRSEM is shown.

3.3 Arbitrary partitions

Arbitrary-shape clustering differs from the model-based clustering in that there is
no model or prototype for the clusters. This kind of clustering problem is often solved
based on connectivity. For example, single link algorithm [20] results in a minimum
spanning forest where each cluster is represented by the minimum spanning tree of
the points in the cluster.

To compare such clustering results by CI, we use the partition similarity because it
is independent on the chosen clustering model. All what is required is that we can ac-
cess the partitions. However, in on-line clustering where huge amount of data is pro-
cessed, the original  data points might not be stored but deleted immediately when
their contribution to the model is calculated. In this case, the partition-based similarity
cannot be applied but in most offline applications, we do have access to partitions.



Examples of data with arbitrary-shape clusters is shown in Fig. 6 when clustered
by k-means (left) and single link (right). K-means misses the two smaller clusters, and
divides the bigger ones in the middle and on the top. Single link makes three mistakes
in total, by merging three real clusters and by creating three false clusters of size one.

4 Experiments

Here we provide numerical comparison of the centroid index (CI) against the selected
existing indexes. We use the following data sets:

 S1-S4 [15]: 5000 points in 15 clusters.
 Unbalanced [13]: 6500 points in 8 clusters
 Birch2 [23]: 100,000 points in 100 clusters
 Aggregate [24]: 788 points in 7 clusters
 Compound [25]: 399 points in 6 clusters

We apply the following algorithms: K-means (KM), K-means++ (KM++) [26],
Random Swap (RS) [8], Genetic Algorithm (GA) [27] for the data with spherical clus-
ters;  Single Link (SL)  [21],  DBSCAN [21],  Split-and-Merge  (SAM) [22] for  data
with arbitrary-shape clusters. K-means is applied for both.

Same clustering results with the corresponding validity index values are given in
Tables 3. Unbalanced is rather easy to cluster by good algorithm but k-means fails be-
cause random initialization tends to select all centroids from the bigger clusters to the
left, and only one centroid will move to cover the five small clusters, see Fig.  7. Thus,
leaving four other clusters empty, which results in CI=4. Most other indexes react to
this but their exact values tell very little about how severe the error is, whereas the CI-
value tells that half (4/8) of the clusters are wrongly allocated. 

The results for the data with arbitrary-shaped clusters are similar. DBSCAN and
SAM work well for the Aggregate providing perfect clustering structure (CI=0) al-
though DBSCAN leaves out few points as outliers. Compound is more challenging
and all the methods make 2 or 3 errors in the clustering structure, usually merging the
leftmost clusters and creating too many on the right.

Finally, we study how the indexes react when randomness is added increasingly to
artificially created partitions (for details see [13]). Fig. 8 shows that the centroid index
does not react at all for these point-level changes as long as most points keeps in the
original cluster. The values of the set-based measures (NVD, CH, Purity) decrease lin-
early, which shows that they are most appropriate to measure point-level changes.

5 Conclusions

Centroid Index (CI) is the only validity index that provides cluster level measure. It
tells exactly how many clusters are differently allocated, which is more useful infor-
mation than counting point-level differences. In this paper, we applied it to other clus-
tering models such as Gaussian mixture and data with arbitrary-shaped clusters. Its
main advantage is that the significance of the index value can be trivially concluded:
value CI>0 indicate that there is a significant difference in the clustering structure.



    
Fig. 6. K-means result for Aggregate (left) and Single Link result for Compound (right) when
compared to the ground truth (GT). Mapping of the max value is shown (KMGT; GTSL).

Fig. 7. Datasets unbalance (above) and Birch2 (below) clustered by k-means.

Fig. 8. Effect of increasing randomness in partitions to the clustering result.



Table 3. Sample clustering results with validity values. CI=0 indicates correct structure.

RI ARI MI NMI NVD CH CSI CI
Birch2

KM 1.00 0.81 6.26 0.96 0.12 0.24 0.88 18
KM++ 1.00 0.95 6.54 0.99 0.03 0.06 0.97 4
RS 1.00 1.00 6.64 1.00 0.00 0.00 1.00 0
GA 1.00 1.00 6.64 1.00 0.00 0.00 1.00 0

S1
KM 0.98 0.82 3.57 0.93 0.09 0.17 0.83 2
KM++ 1.00 1.00 3.90 0.98 0.00 0.00 1.00 0
RS 1.00 1.00 3.90 0.98 0.00 0.00 1.00 0
GA 1.00 1.00 3.90 0.98 0.00 0.00 1.00 0

S2
KM 0.97 0.80 3.46 0.90 0.11 0.18 0.82 2
KM++ 1.00 0.99 3.87 0.99 0.00 0.00 1.00 0
RS 1.00 0.99 3.87 0.99 0.00 0.00 1.00 0
GA 1.00 0.99 3.87 0.99 0.00 0.00 1.00 0

Unbalanced
KM 0.92 0.79 1.85 0.81 0.14 0.29 0.86 4
KM++ 1.00 1.00 2.03 1.00 0.00 0.00 1.00 0
RS 1.00 1.00 2.03 1.00 0.00 0.00 1.00 0
GA 1.00 1.00 2.03 1.00 0.00 0.00 1.00 0

SL 1.00 0.99 1.91 0.97 0.02 0.05 0.98 3
DBSCAN 1.00 1.00 2.02 0.99 0.00 0.00 1.00 0
SAM 0.93 0.81 1.85 0.82 0.12 0.25 0.88 4

Aggregate
KM 0.91 0.71 2.16 0.84 0.14 0.24 0.86 2

SL 0.93 0.80 1.96 0.88 0.09 0.18 0.91 2
DBSCAN 0.99 0.98 2.41 0.98 0.01 0.01 0.99 0
SAM 1.00 1.00 2.45 1.00 0.00 0.00 1.00 0

Compound
KM 0.84 0.54 1.71 0.72 0.25 0.34 0.75 2

SL 0.89 0.74 1.54 0.80 0.13 0.26 0.87 3
DBSCAN 0.95 0.88 1.90 0.87 0.10 0.12 0.90 2
SAM 0.83 0.53 1.78 0.76 0.19 0.34 0.81 2
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