Lecture Notes in

The Philosophy of Computer Science

Matti Tedre

Department of Computer Science and Statistics, University of Joensuu, Finland

This .pdf file was created February 26, 2007.
Available at cs.joensuu.fi/~mmeri/teaching/2007/philcs/


http://cs.joensuu.fi/~mmeri/teaching/2007/philcs/

Matti Tedre Lecture notes in the philosophy of computer science Spring 2007 (page 71)

3.2 Is Computer Science an Engineering Discipline?

It can be argued that the origins of computer science lie equally strongly in engineering as they lie
in mathematics or natural sciences. Many pioneers of modern computing, such as John Atanasoff
and John Presper Eckert, were electrical engineers. One of the early computing pioneers, Vannevar
Bush, explicitly exclaimed, “I'm no scientist, I'm an engineer” (Kevles, 1987:293). In the early
days of modern computing it was indeed vague whether computing was a theoretical subject like
mathematics or a practical, design-oriented subject like engineering. Still today many computer sci —
ence departments are together with the schools of electrical engineering in which they were born
(e.g., MIT and University of California at Berkeley). But there has been quite some resistance to —
wards linking computer science with engineering: especially around the 1960s and 1970s there was
a strong movement to distance computer science from engineering and to liken it with mathematics

or natural sciences.

3.2.1 The Field of Engineering

The argument that computer science is an engineering discipline relies on the view that the goal of
computer science is to design and construct useful things (cf. Wegner, 1976; Loui, 1995). The
themes of engineering are indeed clearly visible in the construction of computer systems. However,
the term engineering in computing disciplines is a broad and ambiguous term: it can be considered
to encompass things such as requirements engineering, software development, interface design, and
computer engineering; things such as robotics, operating systems, and signal processing; and things

such as software / hardware testing, maintenance, and project management.

Sometimes the difference between computer science and computer engineering is drawn following
the “physical vs. nonphysical” lines (cf. Arden, 1980:7). In other words, computer engineers work
with physical things (like hardware or machinery), whereas computer scientists work with abstract
things (like algorithms and programs). But that distinction is vague and difficult. Firstly, programs
have the dual nature (physical-abstract) that was discussed earlier (see Section 3.1.2 of these lecture
notes). And secondly, establishing a strict line between hardware and software is also difficult (see

page 76 of these lecture notes).

There is a diversity of descriptions of the engineering profession and the engineering philosophy,
but most of those share some similar features. For instance, they commonly share the view that un -
like mathematicians, engineers, who design working computer systems, have to cater to material re —
sources, human constraints, and laws of nature. Engineers design complex, cost-effective systems
with minimal resource consumption. Unlike natural scientists who deal with naturally occurring
phenomena, engineers deal with artifacts, which are created by people. What seems to be common
to all the different engineering branches is that they all aim at producing things. Carl Mitcham,

who is a prominent philosopher of technology ', wrote:

16 For those who are interested in the philosophy of technology there are a number of good anthologies available. See,
e.g., Scharff & Dusek, 2003; Kaplan, 2004. For those who are fluent in Finnish, Timo Airaksinen's texts offer great
insight into the philosophy of technology. See, e.g., Airaksinen, 2003.


http://doi.acm.org/10.1145/214037.214049
http://portal.acm.org/citation.cfm?id=807694
http://www.cs.berkeley.edu/
http://www.eecs.mit.edu/

Matti Tedre Lecture notes in the philosophy of computer science Spring 2007 (page 72)

Engineering as a profession is identified with the systematic knowledge of how to

design useful artifacts or processes, a discipline that (as the standard engineering edu —
cational curriculum illustrates) includes some pure science and mathematics, the “ap —
plied” or “engineering sciences” (e.g., strength of materials, thermodynamics, elec -
tronics), and is directed toward some social need or desire. But while engineering in -
volves a relationship to these other elements, artifact design is what constitutes the es —
sence of engineering, because it is design that establishes and orders the unique engin —

eering framework that integrates other elements.

(Mitcham, 1994:146-147)

Similar to Mitcham, who associated engineering with artifact design, Peter Wegner wrote that the

aim of engineering differs from mathematics and science:

Research in engineering is directed towards the efficient accomplishment of specific
tasks and towards the development of tools that will enable classes of tasks to be ac -
complishment more efficiently.

(Wegner, 1976)

It might be warranted to argue that researcher's interests are a necessary condition of activity A be —
ing science or engineering (that is, to argue that an activity cannot be considered to be engineering
unless the researcher's aim or goal is to produce useful things). But certainly the researcher's in -
terests (goals or aims) are not a sufficient condition of A being science or engineering. In most ac -
counts of engineering, not all activities that aim at building things are considered to be engineering.
And in most accounts of science not all activities that aim at explaining the world are considered to
be science. Most accounts of science and engineering impose many necessary conditions, such as
how the work is done (methodology) or what the outcomes of the work are (e.g., theories or

products).

Many modern philosophers and sociologists have argued that the old idea that “technology is ap —
plied science” is no longer true (if it ever was). Many argue that the inverse direction might be even
stronger: most of the progress in modern science could be attributed to technological development
(see Hacking, 1983" for an argument against an undue emphasis on theories). In the idealist atti —
tude towards technology, technology is considered to be applied science, whereas in the materialist

attitude towards technology, science is considered to be theoretical technology (Mitcham, 1994:76).

For example, astronomy took giant leaps after the invention of the telescope. The theoretical pro -
gress in particle physics is inextricably linked with the development of instruments such as different
kinds of particle detectors and particle accelerators (cf. Mitcham, 1994:204; Pickering, 1995).
Some authors, such as Donna Haraway, have even begun to use the term technoscience instead of
science and technology because they believe that the two have become inseparable (Haraway, 1999;
MacKenzie & Wajcman, 1999; the idea can be seen already in the Marxist term scientific-technolo —

gical revolution; see Mitcham, 1994:84).

17 Reprinted in Kaplan, 2004:435-447


http://portal.acm.org/citation.cfm?id=807694
http://books.google.com/books?vid=ISBN0226531988
http://books.google.com/books?vid=ISBN0226531988
http://books.google.com/books?vid=ISBN0226531988
http://books.google.com/books?vid=ISBN0226531988

Matti Tedre Lecture notes in the philosophy of computer science Spring 2007 (page 73)

Mitcham noted that technology can be seen as a new cognitive method for science, whereas science
can be seen to offer new principles for technology (Mitcham, 1994:86). But although science and
engineering share some similarities—for instance, they both have to conform to the laws of nature,
they both are cumulative, and they both share the scaling problem '*—they still utilize and produce
different kinds of knowledge and employ different methodologies. According to Mitcham, whereas
scientific knowledge consists of a set of observations, laws, and theories; technological knowledge
consists of actions, rules, and theories (Mitcham, 1994:193-194,197).

Mitcham divided technological knowledge into four kinds of knowledge: (1) sensorimotoric skills
of making (“know-how”), (2) technical maxims (“rules of thumb” or “recipes”, which offer heurist -
ic strategies for successfully completing tasks), (3) descriptive laws (that is, “If A then B”-kind of
rules, based on experience—yet those rules do not go into explaining why A and B seem to be con -
nected in some way), and (4) technological theories (applications of scientific theories to practice;

e.g., the theory of flight is an application of fluid dynamics).

Also the meaning and status of knowledge differ between science and engineering. Scientific
knowledge is about description, explanation, prediction, and understanding of natural (or artificial)
phenomena, and scientists are concerned of whether their knowledge is true. Technological, engin -
eering knowledge is about heuristic prescriptions (best practices) of how things should be done, and
engineers are concerned of whether their knowledge works (cf. Mitcham, 1994:197). Engineers
have to often work relying on information that scientists would not consider adequate for scientific

purposes (cf. Vincenti, 1990).

Denning et al. wrote that engineers share the methodological notion that progress is achieved
primarily by posing problems and systematically following the design process to construct systems
that solve them (Denning et al., 1989). The engineering method, as seen by Denning et al., is a
cycle that consists of defining requirements, defining specifications, designing and implementing,
and testing. In their work, engineers often follow the method of parameter variation—that is, they
repeatedly measure the performance of a device or process, while they systematically adjust the
parameters of the device or its conditions of operation (Vincenti, 1990:139). This method surely

seems like an all-time favorite of quite a few computer scientists.

Peter Wegner divided the engineering part of computer science into two parts; practical engineer —
ing and research-based engineering (Wegner, 1976). He wrote that the problem-solving paradigm
of practicing engineers involves systematical selections between design decisions, selections which
progressively narrow down alternative options for accomplishing the task, and finally lead to a
unique realization of the task. According to Wegner, research engineers may use mathematics and
physics when they develop the tools for practicing engineers, yet research engineers are much more
concerned with the practical implications of their work than empirical scientists and mathematicians

are.

Philosopher of computing Timothy R. Colburn sketched another flavor of the engineering approach
in computer science in form of solution engineering (Colburn, 2000:167). In some branches of

computer science the usual scenario includes rigorous requirements, and the task of the computer

18 Scaling problem refers to the phenomenon that how things work in small scale or in small quantities might be differ -
ent from how things work in large scale or in very large quantities (see Vincenti, 1990:134,139).


http://books.google.com/books?vid=ISBN0226531988
http://books.google.com/books?vid=ISBN0226531988
http://doi.acm.org/10.1145/63238.63239
http://books.google.com/books?vid=ISBN0226531988
http://portal.acm.org/citation.cfm?id=807694

Matti Tedre Lecture notes in the philosophy of computer science Spring 2007 (page 74)

scientist is to engineer an algorithmic solution. Colburn portrayed an analogy between the scientific

method and the problem-solving approach in computer science (Table 1).

The scientific method Problem-solving in computer science

1. Formulate a hypothesis for explaining a phenomenon 1. Formulate an algorithm for solving a problem

2. Test the hypothesis by conducting an experiment 2. Test the algorithm by writing and running a program
3. Confirm or disconfirm the hypothesis by evaluating the |3. Accept or reject the algorithm by evaluating the results
results of the experiment of running the program

Table 2: Analogy Between the Scientific Method and Problem-Solving in Computer Science (near-
verbatim from Colburn, 2000:168)

In Colburn's analogy above, what is being tested in “the scientific method” is not the experiment,
but the hypothesis. The experiment is a tool for testing the hypothesis. Similar, what is being
tested in problem-solving in computer science is not the program, but the algorithm. The program
is written in order to test the algorithm. In this analogy, writing a program is analogous to con —
structing a test situation. (Interestingly, also Khalil and Levy made a similar analogy, yet in a dif -
ferent context: they wrote, “programming is to computer science what the laboratory is to the phys -
ical sciences”; Khalil & Levy, 1978). Although Colburn noted that his analogy does not hold very
far, that analogy displays another view of problem-solving, which is indeed a characteristic of com -

puting disciplines.
3.2.2 Proponents of the Engineering Argument

Frederick P. Brooks Jr. is one of the outspoken proponents of an engineering view of computer sci —
ence. In his ACM Allen Newell Award lecture, titled Computer Scientist as a Toolsmith Il (Brooks,
1996), Brooks argued that although scientists and engineers both may spend most of their time
building and refining their apparatus, the distinction between a scientist and an engineer is that the
scientist builds in order to study, and the engineer studies in order to build. In Brooks' opinion,
computer scientists are engineers: computer scientists study in order to build. He wrote that com —
puter science is very different from natural sciences—computer science is a synthetic, engineering
discipline. According to Brooks, science is concerned with the discovery of facts and laws (take the
terms fact and law with some qualifications here), whereas engineering is concerned with making
things, be they computers, algorithms, or software systems. Brooks argued that computer science is

exactly about making things and not about discovering things.

Juris Hartmanis argued that generally speaking, computer science is concentrating more on the how

than the what (Hartmanis, 1993). He wrote that natural sciences concentrate more on questions of

what, and that computer science, with its bias on how, reveals its engineering concerns and consid —
erations. Hartmanis wrote that whereas the advancements of natural sciences are often documented

by dramatic experiments, in computer science the advancements are often documented by dramatic

demonstrations. In some branches of computer science the scientists' slogan “publish or perish” in —
deed might have turned into the engineers' slogan “demo or die”. Hartmanis argued that computer

science is the “engineering of mathematics”. Even more interesting is Hartmanis' argument that

whereas the physical sciences are focused on what exists, computer science is focused on what can

exist (Hartmanis, 1981 in Traub, 1981).


http://doi.acm.org/10.1145/358669.358677
http://doi.acm.org/10.1145/382186.382579
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/3-540-57529-4_39
http://doi.acm.org/10.1145/227234.227243
http://doi.acm.org/10.1145/227234.227243

Matti Tedre Lecture notes in the philosophy of computer science Spring 2007 (page 75)

The field of systems engineering began developing around and after the second world war when
new technical systems grew so complex that their design and management could not have been
done by single individuals anymore. In computer science, a more specific term software engineer —
ing was first introduced in 1968 at a conference held to discuss the software crisis (Naur, 1969).
Although the status of software engineering as a part of computer science and as an intellectually
respectable endeavor altogether was disputed in its beginning at the 1970s and 1980s, nowadays
software engineering is largely considered to be a legitimate part of academic computer science.
Software engineering definitely emphasizes the engineering side of computer science—production
of things, the operationality and usability of those things, maintenance of things, time frames,

budgets, project management, and so forth.

A side note: It was mentioned earlier that one of the main activities of engineering is to compare
solutions and select alternatives. In engineering, those comparisons are often made in terms of
costs and efficiency. Interestingly, a lot of theoretical computer science, which one might consider
to be one of the least engineering oriented branches of computer science, is focused on the cost and
efficiency of algorithms (the costs are expressed in resources such as time and storage) (cf. Arden,
1980:7). A hasty reader might note that emphasizing optimization of resources is an engineering
concern, and that the cost/efficiency concerns reveal an engineering strand of theoretical computer
science. But quite some theoretical computer scientists might object and argue that the goal of the —
oretical computer science is not to produce useful, cost-effective things, but to understand proper —
ties of algorithms—properties such as cost and efficiency. (This takes the discussion back to the
question of whether researcher's interests can actually define if something is engineering or sci —

ence.)

Whereas the proponent of a mathematical view of computer science could argue that computer sci —
ence as we know it today would not exist without the work of Church, Godel, or Turing; the pro —
ponent of an engineering view of computer science could argue that without engineers computer
science would have no consequences outside the academia, that without engineers computer science
would still be a compartment of mathematics, or that without engineers computer science would be
just idle speculation. Indeed, many of the turning points in the history of computing come from

technological breakthroughs, not only theoretical breakthroughs.

For instance, John Mauchly, who was one of the designers of ENIAC, noted that it was not the idea
or theory of ENIAC but the construction of ENIAC that convinced many institutions and people—
scientists, military officials, and industrialists alike—to commit to the rapid development of elec —
tronic computing (Mauchly, 1979). Similar, the development of high-level programming lan -
guages, such as FORTRAN, was not a theory-driven move, but it was a response to practical and eco —
nomic issues (Campbell-Kelly & Aspray, 2004:168; Backus, 1981:26-27). What is more, those
technological breakthroughs were made despite the opposition of the academic establishment. It
can be argued that many of the most visible developments of computer science have been techno —

logy-driven instead of theory-driven.

3.2.3 Opposition to the Engineering Argument

Generally the opposition to the engineering approach to computer science is not so much that engin —

eering were considered to be unimportant. Usually the opposition is against the inclusion of engin —


http://en.wikipedia.org/wiki/Eniac
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/BF01946816

Matti Tedre Lecture notes in the philosophy of computer science Spring 2007 (page 76)

eering-like activities and aims under the umbrella of academic computer science. But although
computer science and computer engineering could be considered to be separate disciplines, the di —
viding lines are vague. There are plenty of examples of computing topics that are difficult to be
classified as either computer science or computer engineering; topics such as software engineering,
computer architecture, parallel computing, embedded systems, and many programming-intensive
topics. In addition, the vagueness of the software/hardware distinction makes it hard to draw the
line between science and engineering by distinguishing between non-physical and physical subjects

in computer science.

SOFTWARE AND HARDWARE

Those parts of the computer system that you can touch are often considered to be
hardware, and respectively, software is often considered to be the “non-physical”
parts of a computer system. This line is, however, vague. Firstly, programs (when
stored as electrical charges in memory, or as blips on a magnetic disc) are physical
phenomena. More importantly, most hardware can be implemented as software
and most software can be implemented as hardware. For instance, codecs are

sometimes implemented as hardware, sometimes as software.

A hardware-software distinction is a pragmatic distinction, and it is a subjective
distinction (Moor, 1978). For the user of a microwave oven, the whole thing is
hardware. But for the engineer of a microwave oven there is often software and
hardware. For the systems programmer, circuitry is hardware, but a circuit design
er can see microprograms as software. A graphics programmer may not even
known which parts of his or her program are going to be hardware-accelerated and

which run on software.

There have certainly been also opponents of the engineering view in general. Edsger Dijkstra was
one of the most free-spoken opponents of the engineering view of computer science. Dijkstra op -
posed the inclusion of software engineering under the umbrella of academic computer science and
he opposed also the methods of software engineering. He wrote that software engineering, “The
Doomed Discipline”, had accepted as its charter, “how to program if you cannot” (Dijkstra, 1989).
Dijkstra wrote that computing scientists should not bother to make programs, but they should focus
on designing classes of computations that display desired behaviors (Dijkstra, 1972).

Dijkstra not only opposed software engineering, but he opposed the connection of computing sci
ence with any kind of specific technological solutions. In 1987 he wrote that the “incoherent bunch
of disciplines” that began computer science, hardly appealed to the “intellectually-discerning
palate” of mathematicians. Computing science, in Dijkstra's opinion, is about what is common to
the use of any computer in any application, and computing scientists should not be concerned with
any technological details or any societal aspects of their discipline (Dijkstra, 1987). In his argument
against the technological bent of computer science, Edsger Dijkstra argued that computer science is
an entirely wrong term: “Primarily in the U.S., the topic became prematurely known as 'computer

science'—which actually is like referring to surgery as 'knife science'”” (Dijkstra, 1987).


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD09xx/EWD924.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD09xx/EWD924.html
http://doi.acm.org/10.1145/355604.361591
http://doi.acm.org/10.1145/76380.76381
http://en.wikipedia.org/wiki/Hardware_acceleration
http://en.wikipedia.org/wiki/Microinstruction
http://links.jstor.org/sici?sici=0007-0882(197809)29:3<213:TMOCS>2.0.CO;2-6

Matti Tedre Lecture notes in the philosophy of computer science Spring 2007 (page 77)

The opponents of the engineering view of computer science also argue that if computer science is a
science, and if scientists adhere to the scientific method but engineers do not, then engineering is
not a proper part of computer science. The opponents argue that it is difficult to see the theoretical
foundations of, for instance, software engineering, and that the engineering parts of computer sci —

ence are based on rules of thumb. That is, they argue that there is nothing scientific in engineering.

Especially the accusations of a lack of rigor in software engineering have arisen debates of the aca -
demic image of software engineering. For instance, C. Michael Holloway accused software engin —
eers of basing their work on a combination of anecdotal evidence and human authority (Holloway,
1995). In their study of 600 published articles on software engineering, Marvin Zelkowitz and
Dolores Wallace found that about one third of articles failed to experimentally validate their results
(Zelkowitz & Wallace, 1997; Zelkowitz & Wallace, 1998; see also Tichy, 1998).

The usual argument against the engineering view of computer science is not that much about the un -
importance of engineering. It is widely accepted that producing useful and working computational
tools is a well-justified aim that is societally and intellectually important. Instead, the opponents
ask whether engineering can contribute anything to the common knowledge about computing and
whether engineering should be considered to be a part of the academic discipline of computing.

Not all important activities need to be nominated as academic disciplines.


http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=14870&arnumber=675631
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=14870&arnumber=675630
http://dx.doi.org/10.1016/S0950-5849(97)00025-6
http://doi.acm.org/10.1145/224155.565638
http://doi.acm.org/10.1145/224155.565638

	3.2 Is Computer Science an Engineering Discipline?
	3.2.1 The Field of Engineering
	3.2.2 Proponents of the Engineering Argument
	3.2.3 Opposition to the Engineering Argument


