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Abstract: Enormous amounts of GPS trajectories, which record users' spatial 
and temporal information, are collected by geo-positioning mobile phones in 
recent years. The massive volumes of trajectory data bring about heavy burdens 
for both network transmission and data storage. To overcome these difficulties, 
a number of compression algorithms have been proposed by reducing the 
number of points in the trajectory data. But these algorithms lack a rigorous 
investigation on how to encode the reduced trajectories. In this paper, we 
propose an algorithm that optimizes both the trajectory simplification and the 
coding procedure using the quantized data. The underlying algorithm is also 
compared with the existing methods across 640 trajectories from Microsoft 
Geolife dataset using synchronous Euclidean distance (SED) as the error 
metrics. Experimental results show that the proposed method saves 60% of 
compression cost against the current state of the art compression algorithms. 

1. Introduction 

Location-acquisition technologies have generated a great deal of enthusiasms in the 
global mobile market in recent years. For example, the Location Based Services (LBS) 
enables the end-users of GPS mobile phones to obtain their locations, and therefore 
record travel experiences by a number of time-stamped trajectories. However, most of 
LBS applications bring about an enormous volume of data to the end-users as well as 
incur a large amount of redundant storage and a longer uploading/downloading time to 
mobile service providers. For example, if data is collected at 10 second intervals, a 
calculation in [1] shows that without any compression, 100 Mb of storage capacity is 
required to store the GPS trajectories of 400 users for a single day in server side. 

To overcome this difficulty, a number of GPS trajectory compression algorithms have 
been studied in literature. In these algorithms, an approximation technique called line 
simplification has been treated as an active research topic in data reduction of the GPS 
trajectories, amongst which the Douglas-Peucker algorithm [2] is the most popular one. 
The algorithm divides the line segment with biggest deviation at each step until the 
approximated error is smaller than a given error tolerance. 

Later, Meratnia [1] indicated that such algorithms were not suitable for GPS trajectory 
since both spatial and temporal information should be considered. Thus, the so-called 
TD-TR algorithm was developed, where synchronous Euclidean distance was used 
instead of the perpendicular distance in the Douglas-Peucker algorithm. Similarly, 
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Opening Window [1] algorithm was also proposed to solve the line simplification 
problem sequentially in a greedy manner. Another solution [3] was the threshold-guided 
algorithm via estimating the safe area of the next point using the position, speed and 
orientation information. STTrace sampling algorithm was also implemented using a 
bottom-up strategy such that the synchronous Euclidean distance was minimized in each 
step. In [4], a new distance-function called spatial join was proposed, which was bounded 
for spatial-temporal queries. 

Recently, a new simplification algorithm SQUISH [11] has been proposed based on the 
priority queue data structure that preserves the speed information at a much higher 
accuracy. A multi-resolution simplification algorithm MRPA has also been designed with 
linear time complexity in [12]. Semantic meanings of the GPS trajectories are also 
considered during the compression process in urban area in [15] whereas trajectory 
compression algorithm with network constraint has been developed in [14]. Performance 
evaluations are also made for several traditional trajectory simplification algorithms [10]. 
However, there is not one algorithm that always outperforms other compression 
approaches in all situations [11].  

In these algorithms, the performance is measured only on the reduction rate by the line 
simplification process. The reduced data points are saved directly, which is useful to 
support the effective trajectory queues in database. However, they lack of a rigorous 
analytical approach on the encoding procedures of the reduced trajectories. Namely, 
without further compression after line simplification, 12 bytes are needed at minimum for 
encoding each point including latitude, longitude and timestamp information. On the 
other hand, when data compression techniques are used, we can achieve a better 
compression ratio for the spatial trajectory data, which is appropriate for data storage. 

To circumvent the above problem, a quantization technique can be applied to further 
improve the encoding procedure of these reduced GPS trajectories. The quantization 
approach has been analytically investigated in the so-called vector map compression 
problem [5-8]. In these algorithms, differential coordinates of adjacent data points are 
used as the prediction error and the residual vectors are then quantized using a variety of 
quantization strategies, including uniform quantization, product scalar quantization [5] 
and vector quantization with fixed-size codebook [6]. Amongst them, a pioneer solution 
in [7] combines both the advantage of line simplification and quantization via dynamic 
programming and hence the terminology of dynamic quantization (DQ). Likewise, the 
quantized vectors can be further compressed by arithmetic coding based on the 
assumption that the resulting quantized differential coordinates obeys a geometric 
distribution [8].  In all these methods, timestamp information is not considered. 

In this paper, we consider the problem of lossy compression for GPS trajectories with 
latitude, longitude and timestamp information, under a given error tolerance, i.e., 
synchronous Euclidean distance. In contrast to the existing algorithms, we achieve two 
significant improvements described below. Firstly, speed and direction changes are 
incorporated in the encoding process instead of using the differential coordinates in the 
previous methods. Secondly, line simplification and quantization are combined in the 
encoding procedures in order to seek the approximated trajectory for compression. 

The rest of the paper is organized as follows. The proposed GPS trajectory compression 
(GTC) algorithm is introduced in Section II, experimental results are reported in Section 
III, and finally, conclusions and discussions are drawn in Section IV.  



2. Proposed GPS Trajectory Compression Algorithm 
2.1. Synchronized Euclidean Distance 

In this paper, synchronized Euclidean distance [1] is used as the error metrics for 
evaluating the distortion of the approximated (compressed) GPS trajectories. Here, the 
error is measured through distances between pairs of temporally synchronized positions, 
one on the original and one on the approximated trajectories, which can be formulated as 
follows: 

Suppose P = {p1, p2, …, pn} = {(x1, y1, t1),…,(xn, yn, tn)} and P’ = {pi1’, pi2’, …, pim’} = 
{(xi1’, yi1’, ti1’), … , (xim’, yim’, tim’)} are the original and the corresponding approximated 
GPS trajectories with i1 < i2 < … < im, i1 = 1, im = n and m ≤ n. For each point pj = (xj,  yj,  
tj) on the original trajectory, its approximated synchronized position can be calculated as: 
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After pi’ is determined, synchronized Euclidean distance is calculated by: 
' ' 2 ' 2( , ) ( ) ( )i i i i i iSED p p x x y y= − + −  (3) 

In order to evaluate the distortion of the whole trajectory, maximum synchronized 
Euclidean distance is used, which is defined as: 

'
1( , ') max ( ( , ))i n i iSED P P SED p p≤ ≤=  (4) 

In synchronized Euclidean distance, the continuous nature of moving objects 
necessitates the inclusion of temporal as well as spatial properties of moving objects. 

2.2. Approximate GPS trajectory with given error bound 

We consider both the line simplification and the quantization in the approximation 
process. In vector map compression, differential coordinates are used in the encoding 
process. However, for GPS trajectories, because of the inconsistency of the differential 
coordinates after the approximation process, the coding efficiency may be reduced if 
differential coordinates are used directly.  Meanwhile, speed and direction will be more 
consistent even if a simplification (approximation) step is applied with different reduction 
rate in different segments.  

An approximation example is demonstrated in Fig. 1, suppose we want to approximate 
a sub-trajectory 1k

k

i
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p  is the approximated position in 
previous step. If time interval Δt(k) is known, the speed of the line segment is: 
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Given maximum SED tolerance ε, we assume the quantization error of point 
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at maximum, thus the quantized level for speed can be set as: 



  
Fig. 1: An example of the quantization process for the GPS trajectory 

( ) 2 / ( )spdl k t kγ ε= ⋅ ⋅ ∆  (6) 

Here γ is a parameter as the ratio of the quantized error and the total SED on the target 
point, which is set as γ = 0.5 by our experiment. Thus, the quantized speed for 
approximated segment can be calculated as: 

*( ) [ ( ) / ( )] ( )spd spdspd k spd k l k l k= ⋅  (7) 

Meanwhile, we can get the direction change Δθ(k) with a value between –π and π, 
where negative value represents the direction change in clockwise. 

Given the quantized speed spd*(k), the quantization level for the direction change can 
be estimated by: 
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Thus, the quantized direction change is: 
*
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Based on the quantized speed and direction change spd*(k) and Δθ*(k), the quantized 
position 
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A greedy solution is used for the trajectory approximation in this paper.  Start from the 
first point, the farthest point is found with an approximated SED less than the given error 
tolerance 1

1
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k k k

i
i i iSED P p p ε+

+
≤  for every line segment
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+

. The pseudocode can be 
seen in Fig. 2. 

 Note that when the input of GPS trajectory is latitude and longitude in WGS84 format, 
Mercator projection is needed as a preprocessing step so that the distance can be 
calculated directly. 
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ALGORITHM I, APPROXIMATION OF GPS TRAJECTORY 
INPUT   
P = {p1, p2 ,…, pn}:  original trajectory 
ε: SED error tolerance  
OUTPUT 
P’ = {pi1’, pi2’, …, pim’} 
 
i  ← 1 
j  ← 2 
pi1’ ← p1 
m  ← 2 
FOR i = 1 TO i = n - 1 DO 

IF j > n          
           pim’ ← pn’ 
         BREAK 
    END 
     d ← ( , ' ')j

i i jSED P p p  
     IF d ≤ ε           
           j  ← j + 1 

ELSE 
          pim’ ← pj-1’ 

m  ← m + 1  
i  ← j - 1 
j  ← i + 1 

     END 
END 

Fig. 2: Pseudocode of proposed GPS trajectory approximation process 

2.3. Encoding Process on the Approximated Trajectory 

In the encoding process, we need to encode both the differential coordinates and time 
difference (Δx, Δy and Δt). Suppose '

ki
p  and 

1
'
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+
 are two neighbor points in the 

approximated trajectory P’. Firstly, the time difference is encoded by the following 
probability: 

1

1

/( ( ) )
1

where ( ( ) / ) / ( ), max( ( )) / , 1,2,..., 1.

k k

max

t max
i i

t
rtsp

tsp max min
s

p rtspp t k t t

p t k min s rtsp t q tsp q m

δ
δ+

=

+
∆ = − =

+

= ∆ = ∆ = −∑t tr r
 (11) 

tspmin is minimum sampling time internal on the GPS trajectory (1s in most cases) and δt 
is a bias factor (δt = 0.01), vector rt is initialized as a zero vector with size rtspmax × 1. 

After Δt(k) has been encoded, vector rt  is updated by: 
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where μt is a forgetting factor[13] which gives higher influence on the recently encoded 
time intervals with μt = 0.995 in this paper. The reason that we use a forgetting factor is 
that the possible multi-model in the GPS trajectory. A higher reduction rate can possibly 
be achieved for the segments with slower moving speed (e.g., by walking) comparing 



with fast moving segments (e.g., by car). Thus, it will be helpful to improve the coding 
performance if a forgetting factor is used. 

The speed value is then predicted by spdpred(k) and σspdpred
2(k), which is: 
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nc1 and nc2 are normalized values for the weighting factors, while wt , d  and σGPS
 are 

parameters with wt = 20, d = 4 and σGPS = 5. The second and third term of σspdpred
2(k) are 

the variance of the quantization procedure and the GPS error correspondingly. 
The probability is then estimated by assuming the speed has a Gaussian distribution:  
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where p has a Gaussian distribution with mean spdpred(k) and variance σspdpred
2(k), bias 

factor δspd  is set as 0.01. 
For the direction changes, the encoding process has a similar form with the encoding 

process for time difference, which is: 
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where the size of vector rΔθ is (1+2lvΔθ) × 1 and 0nlv θ∆  is set as 180 from our experiment. 
After Δθ(k) has been encoded, vector rΔθ  is updated by: 
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where forgetting factor μΔθ is set as 0.995 here. 
The probabilities of the time difference, speed and direction change are encoded by 

arithmetic coding. The pseudocode can be seen in Fig. 3. 



Note that in the compressed file, a 192 bits fixed-length head file is used to save the 
parameters of the trajectory. These values includes start position of x (30 bit), y (30 bit), 
time(32 bit), tspmin (8 bit), rtspmax (16 bit), m (24 bit), spdmax (32 bit) and scaling factor of 
Mercator projection (20 bit). 
 

ALGORITHM II, ENCODING PROCESS OF THE APPROXIMATED TRAJECTORY 
INPUT   
P = {p1, p2 ,…, pn}: original trajectory 
ε: SED error tolerance  
OUTPUT 
Encoding file 
 
P’  ← Calculate the approximated trajectory by Figure 2. 
Calculate parameters rtspmax, tspmin, spdmax 
Write head file 
FOR k= 1 TO k = m - 1 DO 

Encode Δt(k) by (11) 
Update rt by (12) 
Predict spdpred(k) and σspdpred

2(k) by (13) 
Encode spd*(k) by (14) 
Encode Δθ*(k) by (15) 
Update rθ by (16) 

END 
Fig. 3: Pseudocode of the encoding process of the proposed GPS trajectory compression 
algorithm 

2.4.  Complexity Analysis 

In this section, we give the complexity analysis for each step of the proposed algorithm, 
which is listed the Table I. Note that τ1, τ2 and τ3 are constant values, which are not 
related to the size of the trajectory data.  

 
TABLE I: Summary of the Expected Time Complexity of the Proposed GPS Trajectory 

Compression Algorithm 
STEP   TIME COMPLEXITY 

I. Approximated Trajectory   O(n2/m) 

II. Encoding Process  

Time Difference O(m∙τ1), τ1 =rtspmax 

Speed max
2 2( ),  spdO m tτ τ

ε
⋅ = ∆  

Direction Change O(m∙τ3), τ3 = nlvΔθ 
III.  Decoding Process   Same as the encoding process 

3. Experiments 

In order to evaluate the performance of the proposed compression method, we use 
Microsoft Geolife dataset [8] for testing purpose. It includes 640 trajectories with 
4,526,030 points, which has a sampling rate between 1s to 5s with different transportation 



mode such as walking, bus, car, airplane or a multimodal. The code is written in Matlab 
and all the experiments have been performed on Intel Pentium-4 3.0 GHz CPU running 
Windows XP with 2G RAM. 

The compression performances (KB/hour) are evaluated for different error tolerance: 
1m, 3m, 10m, 30m and 100m maximum synchronous Euclidean distance (SED). The 
proposed GPS trajectory compression algorithm (GTC) is compared with the state-of-art 
method TD-TR [1]2. LZMA (7-zip) is used to further compress the reduced trajectory of 
TD-TR algorithm 3

 Time costs of the encoding and decoding process are calculated and shown in Fig. 5 
(left).  The decoding cost reduces when maximum tolerance increases, because more 
points are reduced already in the approximation step. For the encoding process, since a 
O(n2/m) time complexity is needed for the approximation step, the time cost will slightly 
increase with the high tolerance case.  

. We also evaluate the performance of vector map compression 
algorithm (VMC) [8] for compressing the position information, while the time 
information is encoded in the same way as in GTC. We can observe in Fig. 4 (left) that 
the coding cost of the proposed algorithm is only about 35%-40% compared with TD-TR, 
and it is consistent on different tolerance level. Note that for an uncompressed GPS 
trajectory with 1s sampling frequency, if twelve bytes were allocated for each point, the 
total storage cost would be 42.2 KB/hour. Thus, the proposed method achieves a 
compression ratio more than 100:1 for a 10m max SED. We also evaluate the reduction 
rate for different approximation algorithms in Fig. 4 (right). Experiments show that 
although we design a different reduction and approximation algorithm for the encoding 
purposes, the reduction rate is still similar. 

We evaluate the bit-rate for each component on the reduced trajectory: time difference, 
speed and direction change. They are compared with the coding cost using differential 
coordinates [8], which is given in Fig. 5 (right). We observe that the bit-rate of time 
difference increases when maximum SED increases. This is because the time difference 
varies more when the trajectory has a higher reduction rate. However, the bit-rate of 
speed and direction change will not increase even if a higher tolerance is used. This is 
because we select a higher quantized level when the given tolerance increases. We also 
notice that a lower bit-rate is needed when speeds and direction changes are considered 
instead of the differential coordinates, especially for lower error tolerance.  

For the given max SED, its corresponding mean or median SED are also evaluated, 
which is around 50% of the maximum SED for all the tolerance levels in our experiment. 

Note that GPS trajectories are never perfectly accurate, due to sensor noise and other 
factors. Many filtering algorithms are proposed which are summarized in [16]. From our 
experiment, if a filtering algorithm is performed beforehand, the bit-rate can be reduced 
around 30%, 20%, 15% for 1m, 3m, 10m maximum SED correspondingly. Meanwhile, if 
higher tolerance is set, bit-rate will not be changed even if a filtering operation is used.  

                                                 
2 Various GPS compression algorithms reported in [10] are all based on the line simplification. There are 
only around 10%-20% differences on the reduction rate in all these methods. Thus, here TD-TR is selected 
as a typical example in our experiments to evaluate these types of solutions.  
3 We use a similar evaluation method with a commercial software on: http://www.droyd.org/gps-trajectory-
compression. 
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Further information such as proof of the time complexity, details of the experiment 
result and the matlab code can be seen on http://cs.joensuu.fi/~mchen/GPSTrajComp.htm. 

  
Fig. 4: Comparison of the compression performance (left) and the percentage of 
remaining points after approximation process. 

  
Fig. 5: Time cost of the encoding and decoding process (left), bit-rate of each reduced 
point for time, differential coordinates (VMC), speed and direction (GTC). (right) 

4. Conclusion 

In this paper, we have addressed the problem of spatial-temporal data compression, 
particularly the compression of GPS trajectories with sets of (x, y, t) records. In the 
proposed algorithm, both data reduction and quantization are considered in the 
approximation process. Experimental tests demonstrate that the proposed method makes 
a significant improvement comparing with the state-of-the-art TD-TR algorithm. 

There are several immediate extensions of our present work. Firstly, we plan to extend 
the compression for online application. Also, improvement of approximation and 
encoding process by dynamic programming will also be considered. Finally, applying a 
hierarchy of compression stages is an interesting idea for further investigation. 
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