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Abstract— Recent advances in geo-positioning mobile phones 

have made it possible for users to collect a large number of GPS 
trajectories by recording their location information. However, 
these mobile phones with built-in GPS devices usually record far 
more data than needed, which brings about both heavy data 
storage and a computationally expensive burden in the rendering 
process for a web browser. To address this practical problem, we 
present a fast polygonal approximation algorithm in 2-D space for 
the GPS trajectory simplification under the so-called integral 
square synchronous distance error criterion in a linear time 
complexity. The underlying algorithm is designed and 
implemented using a bottom-up multi-resolution method, where 
the input of polygonal approximation in the coarser resolution is 
the polygonal curve achieved in the finer resolution. For each 
resolution (map scale), priority queue structure is exploited in 
graph construction to construct the initialized approximated curve. 
Once the polygonal curve is initialized, two fine-tune algorithms 
are employed in order to achieve the desirable quality level. 
Experimental results validated that the proposed algorithm is fast 
and achieves a better approximation result than the existing 
competitive methods. 

 

 
Index Terms—GIS, Polygonal Approximation, Priority Queue, 

Reduced Search Dynamic Programming, GPS Trajectory 
Simplification. 

I. INTRODUCTION 
ocation-acquisition technologies, such as geo-positioning 
mobile devices, enable users to obtain their locations and 
record travel experiences by a number of time-stamped 

trajectories. In the location-based web services, users can record, 
then upload, visualize and share those trajectories [34].  
Therefore, people are more likely to find the travel routes that 
interest them and acquire reference knowledge facilitating their 
travel from other’s trajectories. However, these GPS devices 
usually record far more data points than necessary and these 
redundant data points will decrease the performance of the data 
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collection. For example, if data is collected at 10 second 
intervals, a calculation in [32] shows that without any 
compression, 100 Mb is required to store just 400 objects for a 
single day. Moreover, these redundant GPS trajectories will 
also cause a longer uploading/ downloading time to the mobile 
service providers. The dense representation will also bring 
about a heavy burden for a web browser when rendering these 
trajectories on client-side. In some cases, web browsers may 
even get out of memory and crashed. From our experiment, it 
takes approximately one second for rendering 1,000 points on 
the map. Therefore, a fast polygonal approximation algorithm is 
needed for the trajectory simplification task, i.e. multiple GPS 
trajectory simplifications are conducted corresponding to 
different map scale beforehand such that the trajectories can be 
efficiently visualized. 

In recent years, polygonal approximation in 2-dimensional 
space has attracted a considerable interest with a great deal of 
applications such as geographic information systems (GIS), 
computer graphics and data compression. Given a polygonal 
curve P = (p1, …, pn), the problem of polygonal approximation 
is to seek a set of ordered points, P' (a subset of P):  

1 2
' ( , , ..., )

mi i iP p p p=  (1.1) 
as an approximation of P, where 1 = i1 <…< im = N.  Polygonal 
approximation can be categorized into two classes of 
sub-problems: 
a) min-ε problem: given N-vertices polygonal curve P and 
integer M, approximate a polygonal curve P' with minimum 
approximation error with at most M vertices.  
b) min-# problem: given N-vertices polygonal curve P and error 
tolerance ε, approximate a polygonal curve P' with minimum 
number of vertices within the error tolerance ε. 

For polygonal approximation, there exist different solutions, 
which vary in reduction efficiency and computational overhead. 
For example, an optimal algorithm provides the best reduction 
efficiency but causes the highest overhead O(N2) - O(N2logN) 
[1-5, 10-13, 15], while solutions based on heuristics lower the 
computational overhead at the cost of reduced reduction rates 
O(NlogN) [7-9]. A compromise between the optimal and 
heuristic solutions is the reduced search dynamic programming 
(RSDP) [17, 18, 23]. The algorithm uses a bounding corridor 
surrounding a reference curve to limit the search space during 
the minimizing process. In different application, different error 
criteria have been defined [1-5]. 

For the GPS trajectory simplification, since both spatial and 
temporal information should be considered, a number of 
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heuristic methods have also been proposed with different error 
measures, such as Trajectory simplification (TS) [31], top-down 
time-ratio (TD-TR) [32], Open Window (OW) [32], 
threshold-guided algorithm [33], STTrace [33], spatial join 
[35], SQUISH [37] and generic remote trajectory simplification 
(GRTS) [38]. Performance evaluations are made for several 
traditional trajectory simplification algorithms in [36]. In these 
algorithms, the performance is measured on the reduction rate 
by the line simplification process. It is noted in [37] that there is 
not one algorithm that always outperforms other approaches in 
all situations. In the GPS trajectory simplification, the reduced 
data points are mostly saved directly with a fixed bit length, 
which is required to support both the rendering process and the 
effective trajectory queues in database. On the other hand, when 
data compression techniques are used, a better compression 
ratio is achieved for the GPS trajectory data [41], which is 
appropriate for data storage. 

In this paper, we present a fast O(N) time polygonal 
approximation algorithm for the GPS trajectory simplification. 
The proposed method applies a joint optimization for both 
min-# approximation using local integral square synchronous 
Euclidean distance (LSSD) criterion and min-ε approximation 
using integral square synchronous Euclidean distance (ISSD) 
criterion. 

The proposed GPS trajectory simplification algorithm is 
implemented in a real-time application for the rendering process 
of the GPS trajectories on the map1

II. RELATED WORK 

.  

In this section, we will review the related work in the GPS 
trajectory simplification in several aspects, such as error 
measures, approximation of the polygonal curves, fine-tune 
solutions by reduced search and multi-resolution polygonal 
approximation. The contributions of the paper are also 
summarized at the end of each sub-section. 

A. Error Measures 
The primary goal of the GPS trajectory simplification 

techniques is to reduce the data size without compromising 
much of its precision. Thus, there is a need to find appropriate 
error measures in algorithms and performance evaluation.  

In polygonal approximation, different error criteria have been 
defined, such as tolerance zone, parallel-strip, uniform 
measure, minimum height and minimum width [1-5]. Later, 
Meratnia [32] indicated that such algorithms were not suitable 
for GPS trajectory since both spatial and temporal information 
should be considered. Therefore, the errors were measured 
through distances between pairs of temporally synchronized 
positions, called synchronous Euclidean distance (SED).  

The definition can be formulated as follows: 
j

iP  = (pi, …, pj) is the sub-curve of P and i jp p  is the line 
segment between pi and pj (an approximated edge in P'). For 
each point pk = (xk, yk) with time tk (i < k < j) on the original GPS 
trajectory, its approximated temporally synchronized position 
pk’=( xk’, yk’) can be calculated as: 

 
1  Two datasets are considered, which are MOPSI dataset 
(http://cs.joensuu.fi/mopsi) and geolife dataset [34] 
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After the approximated position pk’ is determined, 
synchronized Euclidean distance is calculated by: 

' ' 2 ' 2( , ) ( ) ( )k k k k k kSED p p x x y y= − + −  (2.3) 
In synchronized Euclidean distance, the continuous nature of 

moving objects necessitates the inclusion of temporal as well as 
spatial properties.  

Except for the above error measures, other error functions 
were also considered in some literatures. For example, position, 
speed and orientation information were all used in the 
threshold-guided algorithm [33]. In [35], a new distance- 
function called spatial join was proposed, which was bounded 
for spatial-temporal queries. In the area of shape matching, 
Fréchet distance [39] also took the continuity of shapes into 
account with a time complexity O(MN), where M and N are the 
number of points correspondingly [40].  

However, in most algorithms, in order to calculate the 
approximated error of the line segment i jp p , at least j - i 
distance calculations are needed. In [15], the calculation process 
was solved in dual space by a priority queue structure, which 
achieved the best processing time O(logN) with a preprocessing 
time O(NlogN). 

In this work, we further study the cost-effective 
spatio-temporal error measures, which can be computed in 
constant time. Namely, we extend local integral square error 
criterion (LISE) and integral square error criterion (ISE) [4-6] 
and derive two new error measures for the GPS trajectory 
simplification problems, called local integral square 
synchronous Euclidean distance (LSSD) and integral square 
synchronous Euclidean distance (ISSD). LSSD and ISSD have 
the same properties with LISE and ISE, i.e., they can be 
computed efficiently in O(1) time after pre-calculating all the 
accumulative terms within O(N) time, whereas temporal 
information is also considered meanwhile. The further 
discussion of the error measures will be made in Section III. 

B. Polygonal Approximation: Optimal and Heuristic Methods 
Optimal polygonal approximation algorithms are mostly 

implemented by incrementally constructing a directed acyclic 
graph (DAG), and therefore inevitably suffer a computational 
cost limitation of O(N2) at minimum[1-5, 10,11,13,30]. An 
advance achieved by Agarwal [12] is to combine an iterative 
graph algorithm and a divide-and-conquer approach, which 
offers the best time and space complexity of O(N4/3+δ) by using 
the L1 metric, where δ > 0 is an arbitrarily small constant. Later, 
the graph-based framework has been significantly reorganized 
and optimized by using two priority queues dynamically [15]. 
Albeit this approach was not proven to reduce the time 
complexity in theory, it provided remarkable improvement in 
the processing time in practice. 

 In real-time application, quadratic time complexity maybe 
too high and, therefore, most applications utilized a class of 
heuristic methods in order to achieve near-linear time 
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complexity. A set of well known heuristic algorithms are split 
and merge approaches [7-9]. The split algorithms divide the 
segment causing biggest deviation, whereas the merge 
algorithms combine the pair of segments with the least deviation. 
The classic Douglas–Peucker split algorithm [7] can be 
implemented in O(NlogN) time on average, while its worst-case 
time complexity is O(N2). Later Hershberger et al. [8] showed 
that it can be implemented in O(Nlog*N) time, where log* 
denotes the iterated logarithm function. Respectively, Pikaz et 
al. [9] proposed a merging algorithm with O(NlogN) time 
complexity. These heuristic methods are of low time complexity 
but may lead to an undesirable approximation result. Note that 
topological and geometric properties are also considered as an 
important constraint in the simplification process in GIS 
applications. In [44], simple Detours (SD) heuristic was 
proposed, where no new vertices would be introduced after the 
approximation process. 

In the GPS trajectory simplification, a number of algorithms 
have also been well studied and developed and most of them are 
heuristic methods. In [32], a trajectory simplification algorithm 
is implemented greedily by a so-called Opening window 
approach. Synchronous Euclidean distance is also defined and 
applied by incorporating the time dimension, instead of the 
original perpendicular distance. In [33], the parameters 
including coordinates, speed and orientation are all considered 
in calculating the safe area of the next point, which is called as 
threshold-guided algorithm. Indeed, all these algorithms solve 
the min-# problem in a greedy manner, of which the time 
complexity is O(N2). STTrace sampling algorithm [33] is also 
implemented using a bottom-up strategy where the synchronous 
Euclidean distance is minimized in each step.  In [38], generic 
GRTS protocol  combines optimal and heuristic algorithms [1, 
32], which allows a trade-off between the computational 
complexity and the reduction efficiency. Recently, a new 
simplification algorithm SQUISH [37] is proposed based on the 
priority queue data structure which preserves speed information 
at a much higher accuracy. In [31], trajectory simplification 
algorithm is proposed, where different point headcounts are 
assigned in terms of the product of the average heading change 
and the distance of each segment. After that, min-ε problem is 
solved in each segment by using a local weighting process in 
O(NlogM) time. However, as the distances of neighborhood 
points are used instead of perpendicular distance in the 
simplification procedures, the algorithm is not robust when the 
sampling frequency is not uniform.  

Graph-based methods can achieve better approximation 
result than those heuristic ones but at a higher computational 
cost. Therefore, in the initialization process of the proposed 
solution, graph-based methods are used and further speeded up 
by both a novel priority queue structure and a stopping search 
criterion, which leads to O(N2/M) time complexity and O(N) 
space complexity. Here, N and M are the number of the points 
for the input and output GPS trajectories respectively. However, 
using a stopping search criterion will cause a trade-off of the 
optimality. This will be introduced in Section IV. 

C. Fine-tune by Reduced Search 
For the GPS trajectory simplification, optimal algorithms 

provide the best reduction efficiency but cause the highest 

overhead, while solutions based on heuristics lower the 
computational overhead at the cost of worse reduction rates. A 
compromise between the optimal and heuristic solutions is the 
reduced search dynamic programming [17, 18, 23]. The 
algorithm uses a bounding corridor surrounding a reference 
curve or initialized curve in the state space, followed by a 
limited search for the minimum cost path.  This idea is presented 
and known as Sakoe-Chiba band [42], which has been 
extensively used in Dynamic Time Wrapping (DTW) 
approaches dealing with the similarity calculation of time-series 
[43]. 

If the initialized curve is evenly distributed in the state space, 
the time complexity for RSDP is ideally O(W2N2/M2), where W 
is the width of bounding corridor. We will also prove that the 
expected time complexity for RSDP is still achievable as 
O(W2N2/M2) even if the precondition of even distribution is not 
satisfied. In particular, if the number of vertices for the 
approximated curve is proportional to that of the input curve, 
namely, M = N/c, a linear time complexity can be achievable for 
RSDP. This will be later shown to be an important property 
when selecting bottom-up approaches for the multi-resolution 
case. However, the main difficulty of RSDP is that a large 
corridor bound and many iterations are needed in order to 
achieve a desirable solution when the approximated curve is 
poorly initialized, which causes a high computational cost.  

In this paper, we extend the reduced search dynamic 
programming and employ two fine-tune algorithms to minimize 
both the number of output points M and the approximated error 
ε, which leads to a time complexity O(WN2/M) and O(N2/M) 
correspondingly.  The fine-tune algorithms are speeded up by 
lifting the vertex position in the tree structure as well as solve 
the equivalent solution problem. This will be discussed in 
Section V. 

In Section III-V, the UK map with 10911 point (See Fig. 7.1) 
will be selected as an example to demonstrate the proposed 
algorithm. 

D. Multi-resolution Polygonal Approximation 
Multi-resolution polygonal approximation can be applied for 

scalable representation and compression of vector maps in GIS 
system [19, 20]. For solving min-ε problem, two heuristic 
approaches split (top-down) and merge (bottom-up) are known 
with a time complexity of O(NlogN). Split and merge are 
applied locally and can often result in undesirable 
approximation results in the later hierarchy process. 

Optimal split algorithm (OSA) is proposed in [21], where the 
optimal approximation at the higher resolution level is achieved 
using the result of lower (previous) resolution level. This 
provides resolution hierarchy in sequential order 
(1→2→4→….) but at a cost of O(N2) time complexity. 

In [22], a bottom-up multi-resolution algorithm for min-ε 
problem is proposed with near-linear time complexity. Min-ε 
problem is solved using the fine resolution as input for 
approximating the corresponding coarser resolution iteratively 
(N→N/2→N/4→….). For each scale, simplified reduced search 
dynamic programming (RSDP) is also incorporated. As integral 
square error criterion is used, the approximation error between 
two vertices in any resolution level can be calculated in a 



 4 

constant time according to the pre-calculating cumulative 
summations in the original curve, see Section III. 

Although the bottom-up approach [22] is computationally 
efficient, this approach can only solve min-ε problem. In 
practice, in order to progressively display the GPS trajectory 
data, we need to approximate a number of approximated results 
with corresponding error tolerance for each resolution, which is 
considered as a min-# problem. Moreover, the reduced search 
algorithm is a fine-tune method which needs an initial curve 
beforehand. If the curve is not well initialized, a number of 
iterations are needed to obtain the near-optimal result. 

In this work, a bottom-up multi-resolution approach is 
proposed with linear time and space complexity, which 
implements the algorithms in Section III-V for each 
intermediate resolution. This will be discussed in Section VI. 

III. ERROR MEASURE:  FROM LISE TO LSSD 
In order to improve the computational efficiency, two error 

measures, which is called as integral square error (ISE) and 
local integral square error (LISE) [4- 6], are jointly used for 
approximating polygonal curves:  

1
1
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where the error δ can be calculated by: 
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here d is the perpendicular distance from pk to i jp p . 
( ),   ( ),ij j i ij i ja y y b x x= − = − ij i j i jc y x x y= −  and Sx, Sy, Sx2, 

Sy2, Sxy are the accumulated sums of the x, y coordinates on the 
curve P respectively: 
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The main advantage of the integral square error criterion is 
that the approximation error ( )j

iPδ  can be obtained efficiently 
in O(1) time after pre-calculating all the accumulative terms 
within O(N) time (see equation 3.3) [4, 16], An example of 
calculating ISE and LISE is illustrated in Fig. 3.1.  

Although LISE and ISE criterion are computationally 
efficient, time information is not considered. For the 
simplification of the GPS trajectories, we extend LISE and ISE 

criteria and derive two new error measures, called local integral 
square synchronous Euclidean distance (LSSD) and integral 
square synchronous Euclidean distance (ISSD), which have the 
same properties with LISE and ISE: 
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Sx, Sy, St, Sx2, Sy2, St2, Stx and Sty are the accumulated sums of the 
x, y and t on the GPS trajectory respectively: 
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Computation of the above approximation errors SED2 ( )j
iPδ  

also takes O(1) time with an O(N) time accumulated sum 
pre-calculation. The proof of the LSSD and ISSD calculation 
can be seen in Appendix. 

In the following sections, ISE and LISE criteria will be used 
for the approximation of the polygonal curves, while LSSD and 
ISSD criteria will be used for the GPS trajectory simplification. 

IV. MIN-# INITIALIZATION FOR GPS TRAJECTORY 
SIMPLIFICATION 

For the min-# problem, Imai and Iri’s graph-based approach 
[1] comprises two essential steps: constructing DAG and 
shortest path search by breadth-first traversal (BFT). In order to 
construct a DAG, N(N - 1)/2 approximation errors are 
calculated for every pairs of vertices, and thus the time 
complexity for initializing the solution for min-# problem is 
O(N2) if LISE or LSSD criterion is applied.  

In this work, we revisit two computationally efficient 
improvements for min-# problem. The first improvement is to 
reduce the computational cost of DAG construction by 
maintaining two priority queue structures [15, 29]. The reason 
is that there is no need to construct the graph G explicitly and 
only edges visited by the BFT are included. For simplicity, we 
define a term number of links L(pi) to denote the minimum 
number of line segments to connect the starting vertex p1 to pi 
under given error tolerance ε: 

( ) min( ( )) 1,  . . ( ) ,  1i
i k kL p L p s t P k iδ ε= + < ≤ <  (4.1) 

where the initial condition is set as L(p1) = 0. Suppose all the 
vertices with k links are firstly identified by shortest path search, 
which is maintained by a priority queue VL(k) in descending  
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Fig. 3.1.  An example of calculating ISE, LISE, LSSD and ISSD. Given P = (p1, p2, p3, p4, p5, p6), and the approximated curve P'= (p1, p4, p6), where p2’, p3’ and 
p5’are the approximated temporally synchronized position. ISE is estimated as d1

2+d2
2+d3

2 and LISE is estimated as d1
2+d2

2 (left). Meanwhile, ISSD is estimated 
as d1

’2+d2
’2+d3

’2 and LSSD is estimated as d1
’2+d2

’2(right). 
order. The next search will be performed on the remaining 
unvisited vertices set Su by testing if they have an edge 
connecting with vertices in VL(k) (i.e. approximation error lower 
than given tolerance ε), which is called as edge tests here. These 
connected vertices will be removed from unvisited vertices set 
Su and enqueued in the priority queue VL(k+1). Suppose two 
vertices pa, pb ∈ VL(k) with a > b, if ∃ pc∈Su and ( )δ ε<c

bP , then 
pc will be removed from Su such that the edge test between pa 
and pc can be avoided. Moreover, edge tests are also avoided for 
the vertices with the same number of links. After all the 
unvisited points have been tested between VL(k) and Su, in next 
step, the vertices in VL(k+1) will be used as the starting points for 
edge tests. The shortest path search will be terminated when the 
last vertex pn

 is connected to p1. Albeit the priority-queue based 
search is not able to mitigate the worst case time complexity, it 
turns out that a number of edge tests are greatly saved. 

The second improvement is to apply a stopping criterion in 
the shortest path search, which is efficient in the case of low 
error tolerance. For example, a good stopping criterion has been 
proposed for tolerance zone criterion [11] by maintaining the 
intersection of two cones. An alternative solution has also been 
proposed in [15, 28] by verification in dual space. Both of the 
implementations hold the optimality for solving the min-# 
problem. To pursue the best computational cost savings as 
possible for LISE/LSSD criteria, a simple stopping criterion is 
applied in edge tests by utilizing a preset high threshold, e.g. 
two times of given tolerance [17]. Edge tests for the subsequent 
vertices in the unvisited vertices set will be omitted once the 
approximation error becomes larger than a given high threshold. 
Applying a stopping criterion leads to a significant 
improvement to a time complexity of O(N2/M) but the 
optimality is not guaranteed. To overcome this difficulty, we 
extend our effort in improving the robustness of the stop search 
criterion. Instead of using a fixed high threshold, we adopt the 
error tolerance of the next coarser resolution as a high threshold 
in the multi-resolution implementation, of which the robustness 
has been validated by experiments; see Section VI for more 
discussion. 

We combine both the advantage of the priority queue 
structure and the stopping criterion to achieve the most 
computationally efficient implementation in the initialization of 
min-# problem. Accordingly, the output is a tree structure; see 
Fig. 5.2(left). The pseudo code is given in Fig. 4.2. Both the 
theoretical proof and the experiments are given for the 
complexity analysis of the proposed initialization algorithm.  

Theorem 1. The proposed initialization algorithm for solving 
the min-# problem under LISE/LSSD criterion leads to an 
expected time complexity of O(N2/M) and a space complexity of 
O(N) respectively. 
Proof. See Appendix. 
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Fig. 4.1. Number of edges tests for solving min-# problem under different error 
tolerance (left) and with different number of input vertices (right) for UK map 
(Curve II). In the left figure, the resulting number of output vertices M is shown 
in x axis instead of the given error tolerance.  

 
ALGORITHM I, MIN-# INITIALIZATION 

1.  INPUT   
2.  P={p1, p2,…pN}:  original polygonal curve 
3.  th: LISE/LSSD error tolerance 
4.  hth: high threshold of error tolerance 
5.  OUTPUT 
6.  T : Tree structure  
7.  
8.  V1  ← {1}   
9.  V2  ← Ø 
10.  Su   ← {2,…,N} 
11.  REPEAT 
12.      REPEAT 
13.          maintainPRQ() 
14.      UNTIL V1 = Ø 
15.      V1   ← V2    
16.      V2  ← Ø 
17.   UNTIL pN ∈V1 
18.  
19.  Procedure maintainPRQ() 
20.  ind1 ← dequeue(V1) 
21.  FOR ind2 = Su (1) TO Su (end) 
22.      dist ← 2

1( )ind
indPδ  

23.      IF dist ≤ th 
24.          Su ← { Su \ ind2 } 
25.          V2 ← enqueue(ind2) 
26.          Update T by ind1.child ← ind2, ind2.father ← 

ind1 
27.      ELSE IF (dist> hth)  
28.           break  
29.      ENDIF 
30.  ENDFOR 
31.  RETURN V1, V2, Su, TT 

 

Fig. 4.2. Pseudo code of min-# initialization 
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Fig. 5.2. An example of reducing the number of output vertices with a width of bounding corridor W = 2: the target vertices with 1 links (left) and target vertices 
with 2 links after tree structure updated given 9 11

3 3( ) ,  ( )P Pδ ε δ ε< <  (right). Left figure is a typical example after the initialization step for Algorithm I. 
In the graph-based initialization algorithm, the main 

bottleneck is the cost of edge tests (calculating the edge 
approximation errors, line 22 of Algorithm I) during graph 
construction. In order to evaluate the computational 
improvement achieved by the proposed algorithm, the number 
of edge tests is calculated and treated as an indicator of the 
computational efficiency in Fig. 4.1. Here “PRQ” represents the 
previous graph-based polygonal approximation algorithm using 
priority queues structure [15, 29], “StopSearch” is the stopping 
criterion using a predefined high threshold [17]. It can be 
observed that the proposed algorithm is able to combine the 
computational advantages of both two algorithms.  

V. FINE-TUNE THE INITIAL APPROXIMATED RESULT 
As a stopping criterion is incorporated in Algorithm I (line 27) 

to reduce the computational cost in the initial approximation 
process, the optimality is not guaranteed. Thus, two fine-tune 
algorithms are introduced in this section in order to improve the 
approximation performance. Both the number of vertices and 
the ISE/ISSD are minimized. 

A. Minimizing Number of Vertices 
To the benefit of best computational efficiency, the 

initialization in Algorithm I for min-# problem is a compromise 
of the optimality for minimizing the number of vertices. In order 
to mitigate the limited optimality, we need to minimize the 
number of vertices based on the initialized curve so that a better 
result can be achieved. The reduced search algorithm (RSDP) 
can be utilized for minimizing the number of vertices but it leads 
to O(W2N2/M) time complexity. To speed up the procedure, we 
exploit a new fine-tune method at a time complexity of 
O(WN2/M) instead, which is achieved by lifting the vertex 
position in the output tree structure after the initialization step in 
Algorithm I. The pseudo code is given in Fig. 5.1. 

A graphical illustration is demonstrated in Fig. 5.2 of lifting 
vertex position: starting from vertex p1 with 0 links, at each 
iteration (line 11-30 in Algorithm II), edge tests are performed 
to verify if the approximation error is less than the given 
tolerance between the currently processed vertices with k links 
and those target vertices with {k + 2, … , k + W + 1} links. An 
example is given in Fig. 5.2 (left) when the width of the 
bounding corridor is W = 2. Suppose p2 and p3 are the vertices 
with 1 link, all the vertices with 3 links (p7 and p9) and 4 links (p8, 
p10, p11, p12) are chosen as the target vertices for edge tests. If the 
connected edge exists, the tree structure is updated by lifting the  
target vertices (line 22-24). The process of updating the tree 
structure can be done recursively, see Fig. 5.2 (right). 

The proposed fine-tune algorithm provides the following 
advantages over the original reduced search approach for min-# 
problem. Firstly, calculation of the approximated errors 
between any pair of vertices with adjacent number of links is 
unnecessary and can be omitted. Secondly, once the tree 
structure is updated by the lifting operations, edge tests for those 
lifted vertices are also avoided.  

ALGORITHM II, MINIMIZING THE NUMBER OF OUTPUT VERTICES 
1.  INPUT   
2.  P={p1,p2,…pN}:  original polygonal curve  
3.  T: tree structure  
4.  W: width of bounding corridor 
5.  th: LISE/LSSD  error tolerance 
6.  OUTPUT 
7.  T: updated tree structure  
8.  
9.  PRQ1 ← {1} 
10.  REPEAT 
11.      PRQ2    ←  child nodes of all vertices in PRQ1 
12.      Vtar{k}  ←  Ø,  k ∈ {0, 1, 2, …, W} 
13.      Vtar {0} ←  PRQ2 
14.      FOR k = 1 TO W 
15.          Vtar {k} ←  child nodes of all vertices in Vtar {k-1} 
16.      ENDFOR 
17.      FOR k = W TO 1 
18.          FOR ind1 = PRQ1(1) TO PRQ1(end)  
19.              FOR ind2 = Vtar {k}(1) TO Vtar {k}(end) 
20.                  dist← 2

1( )ind
indPδ  

21.                  IF dist ≤ th 
22.                      Vtar {k} ← { Vtar {k} \ind2 } 
23.                      PRQ2  ← enqueue(ind2) 
24.                      Update T  by ind1.child ← ind2, ind2.father ← ind1 
25.                  ENDIF 
26.               ENDFOR 
27.           ENDFOR 
28.      ENDFOR 
29.      PRQ1 ← PRQ2 
30.      PRQ2 ← Ø 
31.  UNTIL pN ∈ PRQ1 

Fig. 5.1. Pseudo code of minimizing the number of vertices 

Theorem 2. The proposed algorithm for the output vertex 
reduction under LISE/LSSD criterion has an expected time 
complexity of O(WN2/M) and a space complexity of O(N) 
respectively. The original reduced search dynamic 
programming method has an expected time complexity of 
O(W2N2/M). 
Proof. See Appendix. 

Intuitively, the fine-tune algorithm can also be done 
iteratively. However, since the graph-based method has already 
achieved an ideal initial approximation, according to our 
experiments, optimal results can be derived in most cases by 
setting W = 2 with one iteration. The main bottleneck here is 
also the number of edge tests (line 20 in Algorithm II). In Fig. 
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Fig. 5.3. Number of edge tests in minimizing the number of output vertices. Different error tolerance (left), different number of input vertices (middle) and different 
width of bounding corridor W (right) are tested on UK map (Curve II). In left figure, the resulting number of output vertices M is shown in x axis instead of the given 
error tolerance. In left and right figure, the input polygonal curve is the UK map with N =10911. 
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Fig. 5.4. Performance comparisons of the proposed fine-tune algorithm and 
RSDP when the original curve is selected as the initial curve directly. UK map 
(Curve II) is tested with ε = 0.01. 
5.3, the actual time cost is evaluated by calculating the number 
of edge tests against the three parameters: width of bounding 
corridor W, number of output vertices M, and number of input 
vertices N. To further demonstrate the efficiency of the 
proposed fine-tune algorithm, we also evaluated the 
performance when the initialization step is skipped and the 
original polygonal curve is selected as input directly. We can 
observe that the optimal result is achieved with less than five 
iterations by the proposed fine-tune algorithm and the number 
of edge tests is much less than the reduced search dynamic 
programming, which is shown in Fig. 5.4. 

B. Minimizing global integral square error 
After the number of vertices is reduced by LISE/LSSD 

criterion, a so-called equivalent solution problem may still exist. 
In other words, given an error tolerance ε, a number of solutions 
for min-# approximation can be achieved with the same number 
of output vertices M but they lead to distinct approximation 
performance, see Fig. 5.6. Hence, an additional post-processing 
step based on ISE/ISSD criterion is needed in order to find the 
best approximation result among these equivalent solutions, 
which can also be considered as a min-ε problem. The pseudo 
code can be seen in Fig. 5.8. 

After executing Algorithm II which effectively updates the 
tree structure, additional post-processing is performed to 
identify the best possible curve P' with the minimum ISE/ISSD: 

/ /' arg min ( '), . . ( ')ISE ISSD LISE LSSDP f P s t f P ε= <  (5.1) 

This can be solved by dynamic programming in terms of the 
following recursive expression: 

( ) min( ( ) ( )),1

( ) arg min ( ( ) ( )),1

. . ( ) , ( ) ( ) 1

j
j i i

j
j i i i

j
i j i

D p D p P i j

A p D p P i j

s t P L p L p

δ

δ

δ ε

= + ≤ <

= + ≤ <

< = +

 (5.2) 

 
where A(pj) is the parent vertex of pj and D(pj) is the 
accumulated ISE/ISSD. 
Theorem 3. Minimization of global integral square error under 
the constraint of local integral square error has an expected time 
complexity of O(N2/M) and a space complexity of O(N). 
Proof. See Appendix. 

From Theorem 3, the minima can be found in O(N2/M) time 
and no iterations are needed. The above minimization offers a 
significant improvement (theoretically W2 time faster) over the 
original RSDP that has a time complexity of O(W2N2/M). In Fig. 
5.7, the histograms of the approximated LISE are plotted before 
and after the fine-tune step. As the ISE is the sum of LISE for all 
the approximated segments, we can observe that ISE is 
significantly reduced while LISE has not increased after the 
fine-tune process.  

ALGORITHM III, FIND BEST SOLUTION USING INTEGRAL SQUARE ERROR 
CRITERION 

1.  INPUT 
2.  P={p1,p2,…pN}  ← original polygonal curve  
3.  T  ← tree structure  
4.  th   ← LISE/LSSD error tolerance 
5.  OUTPUT 
6.  P’  ← approximated curve 
7.  
8.  E ← {0, ∞, ∞, ….., ∞}, N x 1 vector storing the approximated error 
9.  A  ← {0, 0, 0, ….., 0}, N x 1 vector for backtracking 
10.  H  ← {0, 0, 0, ….., 0}, M x1 vector  
11.  V1  ← {1} 
12.  M  ← 1 
13.  REPEAT 
14.      V2 ← child nodes of all the vertices in V1 
15.      FOR ind1 = V1(1) TO V1(end)  
16.          FOR ind2 = V2(1) TO V2(end)  
17.              dist ← 2

1( )ind
indPδ  

18.              IF (E(ind1) + dist < E(ind2)) && (dist ≤ th) 
19.                  A(ind2) ← ind1 
20.                  E(ind2) ← E(ind1) + dist 
21.              ENDIF 
22.          ENDFOR 
23.      ENDFOR 
24.      V1  ← V2 
25.      M  ← M + 1 
26.  UNTIL E(N)!= ∞ 
27.  //Backtracking  
28.  H(M)  ← N 
29.  FOR m = M TO 2 DO 
30.      H(m-1) ← A(H(m)) 
31.  ENDFOR 
32.  P’ ← P(H) 

Fig. 5.8. Pseudo code of minimizing integral square error 
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Fig. 5.5. An example of the proposed polygonal approximation. Curve I [25] is used with ε = 1500 and the optimal solution is Mopt = 86. Initial approximated curve 
is obtained with M'' = 91 (left). Approximated curve (M = 86) is obtained after reducing number of output vertices with fISE(P') = 1.04∙105 (middle). The final 
solution is obtained by minimizing ISE with fISE(P') = 4.88∙104 (right). 
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Fig. 5.6. An example of equivalent solutions in min-# approximation, where 
both approximated curves meet the error tolerance ε =2 and have same output 
M =4. 
 

Fig.5.7. LISE distribution of all the approximated edges with ε = 0.01 for Curve 
II. A best approximation result with fISE(P') = 1.61 (right) is found from all the 
equivalent solutions, which is much lower than  result after Algorithm II with 
fISE(P') = 2.70 (left). Both approximation results have M = 364. 

TABLE I. SUMMARY OF THE PROPOSED POLYGONAL APPROXIMATION 
ALGORITHM. * REPRESENTS THE INITIAL CURVE IS EQUALLY PARTITIONED 

STEP 
TIME COMPLEXITY 

IMPROVEMENTS AND 
CONTRIBUTIONS 

RSDP PROPOSED 

I O(N2/M) O(N2/M) Combine priority queue 
and stopping criterion to 
reduce the computation 
cost. Proof is given. 

II O(W2N2/M)* O(WN2/M) Time complexity is 
reduced. Proof is given. 

III O(W2N2/M)* O(N2/M) Time complexity is 
reduced. Proof is given. 

C. Summary of the Near-optimal Approximation Algorithm  
Polygonal approximation algorithm for the joint optimization 

of both min-# approximation using LISE/LSSD criterion and 
min-ε approximation using ISE/ISSD criterion has been 
introduced as a three step procedure: initialization of min-# 
problem, minimizing the number of output vertices, and 
minimizing integral square error. Proof has been given that the 
proposed algorithm has expected time complexity of O(N2/M) 
and space complexity of O(N), and experiment results have 
demonstrated that the practice is consistent with the theoretical 
analysis. An example of the proposed algorithm is shown in Fig. 
5.5. The improvement of the time complexity is also 
summarized in Table I. 

VI. LINEAR TIME MULTI-RESOLUTION POLYGONAL 
APPROXIMATION METHOD 

In order to further improve the computational efficiency, in 
this section, a bottom-up multi-resolution polygonal 
approximation approach is proposed by implementing 

Algorithm I and Algorithm III in Section III-V in each map 
scale, which achieves a linear time and space complexity. Given 
error tolerance ε, a joint optimization for both min-# 
approximation using LISE/LSSD criterion and min-ε 
approximation using ISE/ISSD criterion is solved. The 
underlying algorithm consists of three sequential procedures: 
I. Error tolerance initialization. Initialize logcN error tolerances 

{e1
*, e2

*, e3
*,…}(e1

*< e2
*< e3

*…). 
II. Initial curve approximation. A number of polygonal curves 

{P1
*, P2

*,…, Pk
*} are approximated based on bottom-up 

multi-resolution approach with corresponding error tolerance 
{e1

*, e2
*, e3

*,…}. Algorithm I and Algorithm III are used for 
approximating the curve of each resolution. 

III. Final approximation. A polygonal approximation is 
conducted under the given error tolerance ε by selecting the 
most suitable input curve among those approximated curves 
{P1

*, P2
*,…, Pk

*}. 
In step I, the error tolerances e1

*, e2
*, e3

*… (e1
*< e2

*< e3
*…) 

are estimated according to the LISE/LSSD error criterion: 
1*

1 /

1 ( )
/ 1

1 ( 1) 1
/ 1

j

j
k

i
k ik

j N c

j k

e P
N c
Ni j

N c

δ +

≤ <

=
−

−
= ⋅ − +

−

∑
 (6.1) 

here c > 1 is a parameter to control the number of intermediate 
scale. For example, if c = 2, in each scale, the number of points 
will be around N→N/2→N/4→….,. The above estimation can 
be viewed as the average LISE/LSSD error for all approximated 
segments when the curve is equally partitioned. The 
approximated curve under the error tolerance ek

* has the 
property Mk ≈ N/ck, where Mk is the number of output vertices in 
the kth resolution. Note that there are less intermediate scales 
when a larger c is selected, thus achieves a better reduction rate
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Fig.6.1. Workflow of the proposed bottom-up multi-resolution method. Error tolerance of coarser resolution is selected as high threshold for polygonal 
approximation, which is labeled by dashed line in the figure. In this example, if e2* < ε < e3* , then the approximation of P3

* and P4
*,… can be skipped. 

 
at the cost of a higher computational cost. When c→∞, there are 
no intermediate scales and it’s exactly the approximation 
algorithm we described with O(N2/M) time complexity 
(Algorithm I – Algorithm III).  

In step II, a bottom-up multi-resolution algorithm is applied 
to estimate the approximated curves P1

*, P2
*, P3

*, … under the 
corresponding error tolerances e1

*, e2
*, e3

*, …. Here, ek+1
* is 

used as the high threshold in the approximation procedure of 
resolution k. The approximated result achieved in the previous 
finer resolution is used as the input of polygonal approximation 
in the next coarser resolution (Nk+1

 = Mk), where Algorithm I 
and Algorithm III are applied in each approximation. Since the 
optimality of these initial approximation results is not 
significantly compromised, the step of minimizing the number 
of vertices described in Algorithm II can be omitted.  

In step III, given error tolerance ε, a polygonal approximation 
is conducted to obtain the final approximation result by 
selecting the most suitable input Pk

* among those approximated 
curves in step II such that: 

*arg max ( )k kk e ε= <  (6.2) 

The workflow of the proposed algorithm is presented in Fig. 
6.1. As the time complexity of the approximation process is 
O(Nk

2/Mk) on each resolution, we have the following theorem: 
Theorem 4. Both the time complexity and the space complexity 
of the proposed bottom-up multi-resolution algorithm are O(N). 
Proof. See appendix 
Corollary 4.1. Given 0<ε1<ε2<…<εR

  as R number of error 
tolerances, its corresponding approximated curves can be also 
constructed in linear time. 
Proof. As the approximated curve for error tolerance εi can be 
used as the input for approximating the curve with error 
tolerance εi+1, the total time complexity is O(N + M1 + M2 + …) 
= O(N).   

VII. EXPERIMENTS 
In order to evaluate the performance of the proposed 

multi-resolution polygonal approximation algorithm (MRPA), 
two polygonal curves are used as a test case. Curve I is an 
artificial curve used in [25] with 5004 vertices, curve II is the 
UK map contour with 10911 vertices. For the GPS trajectory 
simplification algorithm, two datasets are used, which are the 
MOPSI dataset and Geolife dataset [31]. The graphical 
presentations are shown in Fig. 7.1.  

A. Performance for Artificial Polygonal Curve and Vector 
Map 

For min-# problem, the performance of polygonal 
approximation is evaluated by its efficiency [26, 27], which is 
defined as: 

optM
efficiency

M
=  (7.1) 

Here Mopt is the result of the optimal solution.  
In Table II, efficiency and computational cost are evaluated 

under different error tolerance. It can be observed that the 
proposed approach has a lower time cost and its performance is 
better than that of the two fast heuristic methods: split [7] and 
merge [9]. 

In Table III, we compare the performance when parameter c 
varies. For larger c, better performance is achieved at higher 
time cost. We can observe that least time cost is achieved when 
c = 2, which is in accordance with the theoretical analysis. 

In Fig. 7.2, time cost is also analyzed in comparison with the 
split and merge algorithms when the size of input curve N 
increases. Both the low and high error tolerance cases are tested 
in the experiment. We can observe that the time cost of the 
proposed algorithm linearly increases in both cases and it 
achieves better result than the two comparative heuristic 
algorithms when the number of input vertices increases. 

As the proposed approximation algorithm is a joint 
optimization for both min-# approximation using LISE criterion 
and min-ε approximation using ISE criterion, in Fig.7.3, a 
comparison is made on the integral square error and the 
efficiency of the approximated curve by using different error 
tolerances. We can observe that the proposed algorithm has 
achieved both higher efficiency (less number of output vertices) 
and equal or less integral square error comparing with the 
competitive algorithms. 

B. Performance Evaluation for GPS Trajectory Simplification 
The performance of the proposed GPS trajectory 

simplification algorithm is tested on two datasets, which are 
MOPSI dataset with 344 trajectories 744,610 points and 
Geolife dataset with 640 trajectories 4,526,030 points. The root 
mean square error (RMSE), average error (MAE), median error 
(MEDE) and maximum error (MAXE) are all calculated in 
order to evaluate the efficiency of the proposed algorithm under 
synchronous Euclidean distance. In Table V, we also compare 
these error measures for the GPS trajectories with walking and 
no-walking segments. We can observe that although the same 
LSSD error tolerance is used, walking trajectories can have less 
distortion with more details information comparing with no- 
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CURVE I [25], N =5004 CURVE II(UK MAP): N = 10911 MOPSI DATASET:  
344 TRAJECTORIES, N= 744,610 

GEOLIFE DATASET[31]:  
640 TRAJECTORIES, N= 4,526,030 

    
Fig.7.1. Testing data in the experiments 

TABLE.II 
COMPARISON OF THE EFFICIENCY AND PROCESSING TIME (C=2). 

CURVE I Mopt EFFICIENCY TIME COST (MS) 
SPLIT[7] MERGE[9] PROPOSED SPLIT[7] MERGE[9] MRPA OPTIMAL[1] 

ε1 = 1 
ε2 = 100 
ε3 = 104 

824 0.68 0.81 0.85 7 3 6 847 
193 0.66 0.74 0.78 6 4 6 791 
49 0.68 0.71 0.77 4 4 7 794 

CURVE II Mopt EFFICIENCY TIME COST (MS) 
SPLIT[7] MERGE[9] PROPOSED SPLIT[7] MERGE[9] MRPA OPTIMAL[1] 

ε1 = 10-4 
ε2 = 10-2 

ε3 = 1 

1986 
364 
72 

0.71 0.83 0.86 18 11 15 3699 
0.66 0.72 0.75 14 12 17 3678 
0.66 0.70 0.75 11 13 17 3592 

 
TABLE.III 

EFFICIENCY AND PROCESSING TIME FOR CURVE I AND II WHEN DIFFERENT C IS SELECTED 
CURVE I Mopt EFFICIENCY TIME COST (MS) 

c  = 1.5 c = 2 c = 4 c = 1.5 c = 2 c = 4 
ε1 = 1 
ε2 = 100 
ε3 = 104 

824 
193 
49 

0.82 0.85 0.87 7 6 9 
0.74 0.78 0.81 8 6 11 
0.72 0.77 0.79 8 7 11 

CURVE II Mopt EFFICIENCY TIME COST (MS) 
c = 1.5 c = 2 c = 4 c = 1.5 c = 2 c = 4 

ε1 = 10-4 
ε2 = 10-2 
ε3 = 1 

1986 
364 
72 

0.84 0.86 0.91 18 15 20 
0.75 0.75 0.77 21 17 21 
0.76 0.75 0.80 22 17 22 

 
TABLE.IV  

PERFORMANCE OF GPS TRAJECTORY SIMPLIFICATION BY SYNCHRONOUS EUCLIDEAN DISTANCE 
RESOLUTION 1:  
fLSSD = 50 

MOPSI DATASET(744,610 POINTS) 
AVERAGE N/M = 8.02 

GEOLIFE DATASET(4,526,030 POINTS) 
AVERAGE N/M = 10.1 

METHOD RMSE MAE MEDE MAXE RMSE MAE MEDE MAXE 
D-P 4.51 2.38 1.32 39.0 10.7 4.13 1.12 134.1 
TD-TR 1.82 1.41 1.23 4.61 1.89 1.47 1.28 4.91 
OW 1.89 1.45 1.23 5.33 1.99 1.53 1.30 5.85 
STTrace 4.37 2.67 1.60 21.1 4.93 3.16 2.07 26.0 
TS 24.0 11.9 3.64 132.8 42.3 16.6 3.58 363.3 
MRPA 1.61 1.23 1.05 5.88 1.46 1.06 0.83 6.51 
RESOLUTION 2:  
fLSSD = 2000 

MOPSI DATASET 
AVERAGE N/M = 25.1 

GEOLIFE DATASET 
AVERAGE N/M = 29.5 

METHOD RMSE MAE MEDE MAXE RMSE MAE MEDE MAXE 
D-P 13.8 8.39 5.08 81.1 52.3 22.2 6.73 416.6 
TD-TR 6.85 5.55 4.82 17.7 7.48 6.04 5.24 19.40 
OW 7.40 5.86 4.89 21.1 8.59 6.80 5.73 25.59 
STTrace 33.9 19.9 8.67 132.1 39.3 24.4 14.6 169.2 
TS 82.7 48.7 20.9 316.2 200.4 98.6 29.0 1090.0 
MRPA 5.96 4.76 4.07 23.9 5.60 4.19 3.27 29.0 
RESOLUTION 3: 
 fLSSD = 105 

MOPSI DATASET 
AVERAGE N/M = 79.4 

GEOLIFE DATASET 
AVERAGE N/M = 109.6 

METHOD RMSE MAE MEDE MAXE RMSE MAE MEDE MAXE 
D-P 42.0 29.0 19.9 173.3 154.8 80.4 32.6 867.1 
TD-TR 26.7 21.6 18.3 70.5 28.9 23.2 19.4 84.8 
OW 29.5 23.4 19.2 82.1 33.8 26.7 22.1 103.8 
STTrace 198.9 131.6 72.4 559.4 251.2 160.9 96.5 871.4 
TS 270.1 181.3 106.8 763.5 691.0 399.6 179.7 2733.5 
MRPA 22.9 18.5 15.8 79.2 21.4 15.7 11.7 115.6 
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Fig. 7.2. Processing time cost is plotted for different number of input vertices for curve II. Low error 
tolerance (left) and high error tolerance (right) are both tested. 

Fig. 7.3. Efficiency and integral square error for different 
error tolerance ε = 10-4, 10-2, 1 and 100. 

ORIGINAL ROUTE WITH 575 POINTS APPROXIMATED RESULT WITH 13 VERTICES  
FOR RESOLUTION 2 

APPROXIMATED RESULT WITH 6 VERTICES  
FOR RESOLUTION 3 

   
VISUALIZED APPROXIMATED RESULT WITH 44 

VERTICES FOR RESOLUTION 1 VISUALIZED RESULT VISUALIZED RESULT 

   
Fig. 7.4. Example of the GPS trajectory simplification by the proposed algorithm. 

walking segments.   
The proposed polygonal approximation algorithm is also 

compared with other GPS trajectory simplification algorithms 
with the same number of approximated points. Theses 
competitive algorithms are Douglas–Peucker algorithm (D-P) 
[7], TD-TR [32], Open Window (OW) [32], STTrace [33] and TS 
[31]. The results are shown in Table IV, where synchronous 
Euclidean distance is considered as the error measure. We can 
observe that the proposed algorithm yields the minimum 
distortion than other solutions. The time cost of the trajectory 
simplification is also summarized in Table VI. It follows from 
our experiment that the time cost of the proposed algorithm is 
higher than the Trajectory Simplification (TS) algorithm [31]. 
This is because the constant factor in the proposed algorithm is 
larger than other solutions, which comes from the LISE/LSSD 
calculation and the graph structure maintenance.  For example, 
based on our experiment, in Fig. 7.2, when N >10000, the 
proposed solution will have less time cost than split or merge 
algorithm. Note that the proposed solution also achieves a better 
approximation performance than those fast solutions.  

An application of the proposed approximation algorithm for 
the GPS trajectory simplification is demonstrated in Fig. 7.4 
over a sample route with 575 vertices, where the GPS trajectory 
is visualized in different map scale with 44, 13, 6 vertices 
correspondingly. As suitable error tolerance is selected for each 

TABLE.V  
PERFORMANCE OF PROPOSED GPS TRAJECTORY SIMPLIFICATION ALGORITHM 
FOR DIFFERENT TRANSPORTATION MODE UNDER SYNCHRONOUS EUCLIDEAN 

DISTANCE (M) (MOPSI DATASET) 
RESOLUTION 1: fLSSD = 50, 
 RMSE MAE MEDE MAXE N/M 

WALKING 1.54 1.20 1.06 5.79 9.38 
NO-WALKING 1.71 1.19 0.88 6.29 4.92 
RESOLUTION 2: fLSSD = 2000 
 RMSE MAE MEDE MAXE N/M 

WALKING 5.25 4.26 3.68 21.1 32.6 
NO-WALKING 8.23 6.27 5.07 33.2 12.9 
RESOLUTION 3: fLSSD = 105 
 RMSE MAE MEDE MAXE N/M 

WALKING 17.9 14.6 12.5 60.8 119.7 
NO-WALKING 34.3 27.4 23.5 128.1 35.9 

TABLE.VI  
TIME COST OF THE TRAJECTORY SIMPLIFICATION 

 TIME COST (S) 
 MOPSI GEOLIFE 
D-P[7] 1.83 12.9 
TD-TR[32] 1.95 13.1 
OW[32] 25.4 320.8 
STTrace[33] 1160.1 20589 
TS[31] 0.85 6.8 
Proposed  1.48 10.2 

resolution, the visualization of the GPS trajectory is not 
compromised by the reduced data whereas the rendering time is 
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greatly reduced. The code and the testing dataset can be seen on 
http://cs.joensuu.fi/~mchen/GPSTrajSimp.htm. 

VIII. CONCLUSION 
We have proposed a fast O(N) time polygonal approximation 

algorithm for the GPS trajectory simplification by a joint 
optimization on both local integral square synchronous 
Euclidean distance (LSSD) and integral square synchronous 
Euclidean distance (ISSD) criterion, which is effective and 
computationally efficient. The proposed method is designed by 
the bottom-up multi-resolution approach. In each resolution, a 
near-optimal polygonal approximation algorithm is exploited, 
which has a time complexity of O(N2/M). Both the theoretical 
analysis and the experimental tests have demonstrated that the 
proposed method had made a significant progress in solving the 
GPS trajectory simplification problem in a real-time application. 
Moreover, the proposed polygonal approximation algorithm 
and fine-tune strategy in Algorithm II and Algorithm III can also 
be extended and exploited to other error criteria. 

There are several potential extensions of our present work. 
For example, in our future work, topology properties, road 
network information and the similarity of the multiple GPS 
trajectories can also be considered in the approximation 
process. 

APPENDIX 
Proof of the local integral square synchronous Euclidean distance 
(LSSD) in Eq. (3.7). 

For the sake of computational efficiency of the synchronous 
Euclidean distance, we extend the local integral square error (LISE) 
criterion and derive a new error measure, called local integral square 
synchronous Euclidean distance (LSSD), where 

2
LSSD

'( ) ( , )j
i k k

i k j
P SED p pδ

< <

= ∑  

pk’ is the approximated position at time tk if sub-curve j
iP  is 

approximated by edge i jp p , see the definition in (2.3). Thus: 

2

2
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j kj k i
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1 2 3 4,  ,  ,   i j j i j i i j j i j i

j i j i j i j i

x t x t x x y t y t y y
c c c c

t t t t t t t t
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Sx, Sy, St, Sx2, Sy2, St2, Stx and Sty are the accumulated sums of the x, y 
and t on the GPS trajectory respectively. 

Computation of the above approximation error LSSD ( )j
iPδ  takes 

O(1) time with an O(N) time accumulated sum pre-calculation.  

Proof of Theorem 3: 
Suppose that under error tolerance ε, a curve P with N vertices can 

be approximated by a curve P’ with M vertices. The number of vertices 
with k links is nk, k = 0,1,.., M - 1. In total, 2N space is needed to record 
the accumulated errors and the backtracking vector, thus it has a space 
complexity O(N). 

As every node is only visited once in tree traversal step with O(N) in 
total, the main bottleneck is the cost on edge tests, which can be 
calculated as follows: 

1 1

1 0 1
1 0

    . . , 1, 1, 1, 0,..., 1
M M

i i i M i
i i

f n n s t n N n n n i M
− −

− −
= =

= ⋅ = = = ≥ = −∑ ∑  

Suppose that M vertices are firstly selected with the number of links 
from 0 to M - 1 respectively. For the remaining N-M vertices, if the 
number of links of every vertices is distributed randomly under a 
multi-nominal distribution, then we have: 

1 2 2
1 1 1( , ..., ) ~ ( ;( , ,..., ))

2 2 2Mu u u Mult U
M M M− − − −  

where ui = ni - 1, i =1, 2, …, M – 2 and the corresponding statistical 
properties of ui (i =1, 2,…,M – 2) can be formulated as follows: 
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=
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2 2iu N M
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Thus, the expected time complexity:  
1 2 1 2( ) ( 3) ( )mE f n n M E n n−= + + −  

1 2 1 21 ( ) 1 ( ) ( 3) ((1 )(1 ))ME u E u M E u u−= + + + + − + +  
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To sum up, the expected time complexity is O(N2/M) and space 
complexity O(N)   

Proof of Theorem 1: 
As the output of the min-# initialization is a tree structure, 2N space 

is needed in order to record all the parent and child nodes on the tree 
and its space complexity is O(N). 

The time complexity of min-# initialization mainly consists of two 
parts: number of edge tests and maintenance cost of two priority 
queues. The cost of edge tests can be calculated in a similar manner as 
in Theorem 3: 

2 1

0
0 0 0

(2 ( ) / ( 1)),  . . , 1, 1, 0,..., 1
M i M

i j i i
i j i

f n n i s t n N n n i M
− −
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1 2 1
1 1 1( , ..., ) ~ ( ;( , ,..., ))

1 1 1Mu u u Mult U
M M M− − − −  

http://cs.joensuu.fi/~mchen/GPSTrajSimp.htm�
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where ui = ni - 1, i =1, 2, …, M – 1 
21( ) 2( 1) [ ( ) ( )]

1 1i j j
iE f M E n E n n

i i
= − ⋅ +

+ +
 

From Theorem 3, we have: 
2 2 2 2 2( ) ( / ), ( ) ( / )i j iE n n O N M E n O N M= =  

Thus 2( ) ( / )E f O N M=  
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M

−
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−
  

The cost of maintaining the priority queues is: 
1 1

2
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M M
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i i
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− −

= =
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Suppose a linear function is constructed as follows: 
1   ln( ( ))  ( ( )) 
( )i i i i

i

y E n n E n
E n
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The constructing function has the property ln(ni) ≤ yi, and thus  
1

1

1 1( ) 1 ( (ln( ( ))  ( ( ))), 1,..., 2
ln 2 ( )

M
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i i

E g E n E n n E n i M
E n

−

=

≤ + ⋅ + ⋅ − = −∑
 

2
2
2

( log( / )) ( )

1 1 1 ( 1)1 ( 1 ln ) ( 1) ( ))
ln 2 1 ln 2 1

O N N M O N

N MN E n
M N

− −
≤ + − + ⋅ − +

− − 
 

( ) ( log( / ))E g O N N M=  
Thus the min-# initialization has an expected time complexity of 
O(N2/M) and a space complexity of O(N).   
Proof of Theorem 2: 

First, we give the proof of the time complexity for simplified 
reduced search dynamic programming method. Suppose the initial 
approximated curve

1 2
' ( , ,..., )

Mi i iP p p p= , where i1, i2,…, iM are the 
indexes on the curve. s.t. : 

1 , 1,..., 1k k kn i i k M+= − = −  
The number of edges tests of reduced search dynamic programming 

is: 
1 / 2 1 / 2

1 / 2 / 2 1
((1 ) (1 ))

M i W i W

j j
i j i W j i W

f n n
− + − +

= = − = − +
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i i
i

s t n N n i M
−

=

= − ≥ = −∑  

Let us define: ui = ni – 1, i = 1, 2, …, M - 1 and assume that the curve P’ 
is randomly initialized as in Theorem 3 such that ui  has the property: 

1 2 1
1 1 1( , ..., ) ~ ( ;( , ,..., ))

1 1 1Mu u u Mult U
M M M− − − −

 

The expected time complexity is therefore estimated as:  
/ 2 1 / 2
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According to Theorem 3, we have 
2 2 2 2 2( ) ( / ), ( ) ( / ) and ( ( )) ( / )= = =j i j jE n O N M E n n O N M E E n O N M

Thus, 2 2 2( ) ( / )E f O W N M=   
On the other hand, the proposed reduced search method is achieved 

by lifting the vertex position in the output tree structure in the 
initialization. The memory cost of maintaining a tree structure is O(N). 
Likewise, the cost of number of edges tests is calculated as: 

3 1

0 2
( ))

M i W

i j
i j i

f n n
− + +

= = +

= ⋅∑ ∑  
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As 2( ) ( / )i jE n n O N M= , we have 2( ) ( / )E f O WN M=  
Thus, it has an expected time complexity of O(WN2/M) and a space 

complexity of O(N)   
Proof of Theorem 4: 

From Theorem 1-3, space complexity of the near-optimal polygonal 
approximation algorithm is O(N). An additional cost is the 
pre-calculated sums, which also takes O(N) space. As we do not need 
to record all the information of the intermediate scales, the total space 
complexity is O(N). 

The time complexity of the proposed bottom-up multi-resolution 
algorithm mainly consists of three parts: error tolerance initialization 
(step I), initial curve approximation (step II) and the final 
approximation (step III). As the approximation error between two 
vertices can be calculated in constant time, the time cost of step I can 
be calculated as follows: 

log
log

1

1 1(1 ( ) ) (1 ) 1 ( )1 1 11 1

c
c

N
N

k
k

N N
N Nc c c N O N
c c

c c
=

− − −
= = = =

−− −
∑  

In step II, the time complexity of the proposed polygonal 
approximation method is O(Nk

2/Mk). As the number of input and 
output vertices obeys the equation Mk=Nk/c for each resolution, the 
time complexity can be estimated by: 

log 1 log2 2log

1 1
0 0

1(1 )( / ) ( ) ( 1) ( )1/ 11

c c c
N Nk N

k k
k i

cN c N ccN N O N
N c c c

c

−
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−
= = ⋅ = − ⋅ =

−−
∑ ∑

   Since the proposed polygonal approximation algorithm (Algorithm 
I-III) has time complexity of O(Nk

2/Mk), the computational cost of step 
III can be written as O(cNk), where the value of the parameter is always 
c > 1. 

To sum up, the proposed multi-resolution polygonal approximation 
has a time complexity of O(N)   
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