
 1

Abstract— Recent advances in geo-positioning mobile phones

have made it possible for users to collect a large number of GPS
trajectories by recording their location information. However,
these mobile phones with built-in GPS devices usually record far
more data than needed, which brings about both heavy data
storage and a computationally expensive burden in the rendering
process for a web browser. To address this practical problem, we
present a fast polygonal approximation algorithm in 2-D space for
the GPS trajectory simplification under the so-called integral
square synchronous distance error criterion in a linear time
complexity. The underlying algorithm is designed and
implemented using a bottom-up multi-resolution method, where
the input of polygonal approximation in the coarser resolution is
the polygonal curve achieved in the finer resolution. For each
resolution (map scale), priority queue structure is exploited in
graph construction to construct the initialized approximated curve.
Once the polygonal curve is initialized, two fine-tune algorithms
are employed in order to achieve the desirable quality level.
Experimental results validated that the proposed algorithm is fast
and achieves a better approximation result than the existing
competitive methods.

Index Terms—GIS, Polygonal Approximation, Priority Queue,

Reduced Search Dynamic Programming, GPS Trajectory
Simplification.

I. INTRODUCTION
ocation-acquisition technologies, such as geo-positioning
mobile devices, enable users to obtain their locations and
record travel experiences by a number of time-stamped

trajectories. In the location-based web services, users can record,
then upload, visualize and share those trajectories [34].
Therefore, people are more likely to find the travel routes that
interest them and acquire reference knowledge facilitating their
travel from other’s trajectories. However, these GPS devices
usually record far more data points than necessary and these
redundant data points will decrease the performance of the data

Manuscript received on May 11, 2011, revised on Nov 10, 2011 and Jan 2,

2012. The research was supported by Tekniikan edistämissäätiö (TES), Nokia
Scholarship, MOPSI project EU (EAKR), National Natural Science
Foundation of China (Grant No 61072146) and Shanghai Committee of
Science and Technology, China (Grant No 10PJ1404400).

Minjie Chen was with School of Computing, University of Eastern Finland
(e-mail: mchen@cs,joensuu.fi). Mantao Xu was with School of Electrical
Engineering, Shanghai Dianji University (e-mail: xumt@sdju.edu.cn). Pasi
Fränti was with School of Computing, University of Eastern Finland (e-mail:
franti@cs,joensuu.fi)

collection. For example, if data is collected at 10 second
intervals, a calculation in [32] shows that without any
compression, 100 Mb is required to store just 400 objects for a
single day. Moreover, these redundant GPS trajectories will
also cause a longer uploading/ downloading time to the mobile
service providers. The dense representation will also bring
about a heavy burden for a web browser when rendering these
trajectories on client-side. In some cases, web browsers may
even get out of memory and crashed. From our experiment, it
takes approximately one second for rendering 1,000 points on
the map. Therefore, a fast polygonal approximation algorithm is
needed for the trajectory simplification task, i.e. multiple GPS
trajectory simplifications are conducted corresponding to
different map scale beforehand such that the trajectories can be
efficiently visualized.

In recent years, polygonal approximation in 2-dimensional
space has attracted a considerable interest with a great deal of
applications such as geographic information systems (GIS),
computer graphics and data compression. Given a polygonal
curve P = (p1, …, pn), the problem of polygonal approximation
is to seek a set of ordered points, P' (a subset of P):

1 2
' (, , ...,)

mi i iP p p p= (1.1)
as an approximation of P, where 1 = i1 <…< im = N. Polygonal
approximation can be categorized into two classes of
sub-problems:
a) min-ε problem: given N-vertices polygonal curve P and
integer M, approximate a polygonal curve P' with minimum
approximation error with at most M vertices.
b) min-# problem: given N-vertices polygonal curve P and error
tolerance ε, approximate a polygonal curve P' with minimum
number of vertices within the error tolerance ε.

For polygonal approximation, there exist different solutions,
which vary in reduction efficiency and computational overhead.
For example, an optimal algorithm provides the best reduction
efficiency but causes the highest overhead O(N2) - O(N2logN)
[1-5, 10-13, 15], while solutions based on heuristics lower the
computational overhead at the cost of reduced reduction rates
O(NlogN) [7-9]. A compromise between the optimal and
heuristic solutions is the reduced search dynamic programming
(RSDP) [17, 18, 23]. The algorithm uses a bounding corridor
surrounding a reference curve to limit the search space during
the minimizing process. In different application, different error
criteria have been defined [1-5].

For the GPS trajectory simplification, since both spatial and
temporal information should be considered, a number of

A Fast O(N) Multi-resolution Polygonal
Approximation Algorithm for GPS Trajectory

Simplification
Minjie Chen Student Member, IEEE, Mantao Xu and Pasi Fränti Senior Member, IEEE

L

 2

heuristic methods have also been proposed with different error
measures, such as Trajectory simplification (TS) [31], top-down
time-ratio (TD-TR) [32], Open Window (OW) [32],
threshold-guided algorithm [33], STTrace [33], spatial join
[35], SQUISH [37] and generic remote trajectory simplification
(GRTS) [38]. Performance evaluations are made for several
traditional trajectory simplification algorithms in [36]. In these
algorithms, the performance is measured on the reduction rate
by the line simplification process. It is noted in [37] that there is
not one algorithm that always outperforms other approaches in
all situations. In the GPS trajectory simplification, the reduced
data points are mostly saved directly with a fixed bit length,
which is required to support both the rendering process and the
effective trajectory queues in database. On the other hand, when
data compression techniques are used, a better compression
ratio is achieved for the GPS trajectory data [41], which is
appropriate for data storage.

In this paper, we present a fast O(N) time polygonal
approximation algorithm for the GPS trajectory simplification.
The proposed method applies a joint optimization for both
min-# approximation using local integral square synchronous
Euclidean distance (LSSD) criterion and min-ε approximation
using integral square synchronous Euclidean distance (ISSD)
criterion.

The proposed GPS trajectory simplification algorithm is
implemented in a real-time application for the rendering process
of the GPS trajectories on the map1

II. RELATED WORK

.

In this section, we will review the related work in the GPS
trajectory simplification in several aspects, such as error
measures, approximation of the polygonal curves, fine-tune
solutions by reduced search and multi-resolution polygonal
approximation. The contributions of the paper are also
summarized at the end of each sub-section.

A. Error Measures
The primary goal of the GPS trajectory simplification

techniques is to reduce the data size without compromising
much of its precision. Thus, there is a need to find appropriate
error measures in algorithms and performance evaluation.

In polygonal approximation, different error criteria have been
defined, such as tolerance zone, parallel-strip, uniform
measure, minimum height and minimum width [1-5]. Later,
Meratnia [32] indicated that such algorithms were not suitable
for GPS trajectory since both spatial and temporal information
should be considered. Therefore, the errors were measured
through distances between pairs of temporally synchronized
positions, called synchronous Euclidean distance (SED).

The definition can be formulated as follows:
j

iP = (pi, …, pj) is the sub-curve of P and i jp p is the line
segment between pi and pj (an approximated edge in P'). For
each point pk = (xk, yk) with time tk (i < k < j) on the original GPS
trajectory, its approximated temporally synchronized position
pk’=(xk’, yk’) can be calculated as:

1 Two datasets are considered, which are MOPSI dataset
(http://cs.joensuu.fi/mopsi) and geolife dataset [34]

' ()k i
k i j i

j i

t t
x x x x

t t
−

= + ⋅ −
−

 (2.1)

' ()k i
k i j i

j i

t t
y y y y

t t
−

= + ⋅ −
−

(2.2)

After the approximated position pk’ is determined,
synchronized Euclidean distance is calculated by:

' ' 2 ' 2(,) () ()k k k k k kSED p p x x y y= − + − (2.3)
In synchronized Euclidean distance, the continuous nature of

moving objects necessitates the inclusion of temporal as well as
spatial properties.

Except for the above error measures, other error functions
were also considered in some literatures. For example, position,
speed and orientation information were all used in the
threshold-guided algorithm [33]. In [35], a new distance-
function called spatial join was proposed, which was bounded
for spatial-temporal queries. In the area of shape matching,
Fréchet distance [39] also took the continuity of shapes into
account with a time complexity O(MN), where M and N are the
number of points correspondingly [40].

However, in most algorithms, in order to calculate the
approximated error of the line segment i jp p , at least j - i
distance calculations are needed. In [15], the calculation process
was solved in dual space by a priority queue structure, which
achieved the best processing time O(logN) with a preprocessing
time O(NlogN).

In this work, we further study the cost-effective
spatio-temporal error measures, which can be computed in
constant time. Namely, we extend local integral square error
criterion (LISE) and integral square error criterion (ISE) [4-6]
and derive two new error measures for the GPS trajectory
simplification problems, called local integral square
synchronous Euclidean distance (LSSD) and integral square
synchronous Euclidean distance (ISSD). LSSD and ISSD have
the same properties with LISE and ISE, i.e., they can be
computed efficiently in O(1) time after pre-calculating all the
accumulative terms within O(N) time, whereas temporal
information is also considered meanwhile. The further
discussion of the error measures will be made in Section III.

B. Polygonal Approximation: Optimal and Heuristic Methods
Optimal polygonal approximation algorithms are mostly

implemented by incrementally constructing a directed acyclic
graph (DAG), and therefore inevitably suffer a computational
cost limitation of O(N2) at minimum[1-5, 10,11,13,30]. An
advance achieved by Agarwal [12] is to combine an iterative
graph algorithm and a divide-and-conquer approach, which
offers the best time and space complexity of O(N4/3+δ) by using
the L1 metric, where δ > 0 is an arbitrarily small constant. Later,
the graph-based framework has been significantly reorganized
and optimized by using two priority queues dynamically [15].
Albeit this approach was not proven to reduce the time
complexity in theory, it provided remarkable improvement in
the processing time in practice.

 In real-time application, quadratic time complexity maybe
too high and, therefore, most applications utilized a class of
heuristic methods in order to achieve near-linear time

 3

complexity. A set of well known heuristic algorithms are split
and merge approaches [7-9]. The split algorithms divide the
segment causing biggest deviation, whereas the merge
algorithms combine the pair of segments with the least deviation.
The classic Douglas–Peucker split algorithm [7] can be
implemented in O(NlogN) time on average, while its worst-case
time complexity is O(N2). Later Hershberger et al. [8] showed
that it can be implemented in O(Nlog*N) time, where log*
denotes the iterated logarithm function. Respectively, Pikaz et
al. [9] proposed a merging algorithm with O(NlogN) time
complexity. These heuristic methods are of low time complexity
but may lead to an undesirable approximation result. Note that
topological and geometric properties are also considered as an
important constraint in the simplification process in GIS
applications. In [44], simple Detours (SD) heuristic was
proposed, where no new vertices would be introduced after the
approximation process.

In the GPS trajectory simplification, a number of algorithms
have also been well studied and developed and most of them are
heuristic methods. In [32], a trajectory simplification algorithm
is implemented greedily by a so-called Opening window
approach. Synchronous Euclidean distance is also defined and
applied by incorporating the time dimension, instead of the
original perpendicular distance. In [33], the parameters
including coordinates, speed and orientation are all considered
in calculating the safe area of the next point, which is called as
threshold-guided algorithm. Indeed, all these algorithms solve
the min-# problem in a greedy manner, of which the time
complexity is O(N2). STTrace sampling algorithm [33] is also
implemented using a bottom-up strategy where the synchronous
Euclidean distance is minimized in each step. In [38], generic
GRTS protocol combines optimal and heuristic algorithms [1,
32], which allows a trade-off between the computational
complexity and the reduction efficiency. Recently, a new
simplification algorithm SQUISH [37] is proposed based on the
priority queue data structure which preserves speed information
at a much higher accuracy. In [31], trajectory simplification
algorithm is proposed, where different point headcounts are
assigned in terms of the product of the average heading change
and the distance of each segment. After that, min-ε problem is
solved in each segment by using a local weighting process in
O(NlogM) time. However, as the distances of neighborhood
points are used instead of perpendicular distance in the
simplification procedures, the algorithm is not robust when the
sampling frequency is not uniform.

Graph-based methods can achieve better approximation
result than those heuristic ones but at a higher computational
cost. Therefore, in the initialization process of the proposed
solution, graph-based methods are used and further speeded up
by both a novel priority queue structure and a stopping search
criterion, which leads to O(N2/M) time complexity and O(N)
space complexity. Here, N and M are the number of the points
for the input and output GPS trajectories respectively. However,
using a stopping search criterion will cause a trade-off of the
optimality. This will be introduced in Section IV.

C. Fine-tune by Reduced Search
For the GPS trajectory simplification, optimal algorithms

provide the best reduction efficiency but cause the highest

overhead, while solutions based on heuristics lower the
computational overhead at the cost of worse reduction rates. A
compromise between the optimal and heuristic solutions is the
reduced search dynamic programming [17, 18, 23]. The
algorithm uses a bounding corridor surrounding a reference
curve or initialized curve in the state space, followed by a
limited search for the minimum cost path. This idea is presented
and known as Sakoe-Chiba band [42], which has been
extensively used in Dynamic Time Wrapping (DTW)
approaches dealing with the similarity calculation of time-series
[43].

If the initialized curve is evenly distributed in the state space,
the time complexity for RSDP is ideally O(W2N2/M2), where W
is the width of bounding corridor. We will also prove that the
expected time complexity for RSDP is still achievable as
O(W2N2/M2) even if the precondition of even distribution is not
satisfied. In particular, if the number of vertices for the
approximated curve is proportional to that of the input curve,
namely, M = N/c, a linear time complexity can be achievable for
RSDP. This will be later shown to be an important property
when selecting bottom-up approaches for the multi-resolution
case. However, the main difficulty of RSDP is that a large
corridor bound and many iterations are needed in order to
achieve a desirable solution when the approximated curve is
poorly initialized, which causes a high computational cost.

In this paper, we extend the reduced search dynamic
programming and employ two fine-tune algorithms to minimize
both the number of output points M and the approximated error
ε, which leads to a time complexity O(WN2/M) and O(N2/M)
correspondingly. The fine-tune algorithms are speeded up by
lifting the vertex position in the tree structure as well as solve
the equivalent solution problem. This will be discussed in
Section V.

In Section III-V, the UK map with 10911 point (See Fig. 7.1)
will be selected as an example to demonstrate the proposed
algorithm.

D. Multi-resolution Polygonal Approximation
Multi-resolution polygonal approximation can be applied for

scalable representation and compression of vector maps in GIS
system [19, 20]. For solving min-ε problem, two heuristic
approaches split (top-down) and merge (bottom-up) are known
with a time complexity of O(NlogN). Split and merge are
applied locally and can often result in undesirable
approximation results in the later hierarchy process.

Optimal split algorithm (OSA) is proposed in [21], where the
optimal approximation at the higher resolution level is achieved
using the result of lower (previous) resolution level. This
provides resolution hierarchy in sequential order
(1→2→4→….) but at a cost of O(N2) time complexity.

In [22], a bottom-up multi-resolution algorithm for min-ε
problem is proposed with near-linear time complexity. Min-ε
problem is solved using the fine resolution as input for
approximating the corresponding coarser resolution iteratively
(N→N/2→N/4→….). For each scale, simplified reduced search
dynamic programming (RSDP) is also incorporated. As integral
square error criterion is used, the approximation error between
two vertices in any resolution level can be calculated in a

 4

constant time according to the pre-calculating cumulative
summations in the original curve, see Section III.

Although the bottom-up approach [22] is computationally
efficient, this approach can only solve min-ε problem. In
practice, in order to progressively display the GPS trajectory
data, we need to approximate a number of approximated results
with corresponding error tolerance for each resolution, which is
considered as a min-# problem. Moreover, the reduced search
algorithm is a fine-tune method which needs an initial curve
beforehand. If the curve is not well initialized, a number of
iterations are needed to obtain the near-optimal result.

In this work, a bottom-up multi-resolution approach is
proposed with linear time and space complexity, which
implements the algorithms in Section III-V for each
intermediate resolution. This will be discussed in Section VI.

III. ERROR MEASURE: FROM LISE TO LSSD
In order to improve the computational efficiency, two error

measures, which is called as integral square error (ISE) and
local integral square error (LISE) [4- 6], are jointly used for
approximating polygonal curves:

1
1

1
(') ()j

j

M
i

ISE i
j

f P Pδ +
−

=

= ∑ (3.1)

1
1(') max ()j

j

i
LISE j M if P Pδ +

≤ <= (3.2)
where the error δ can be calculated by:

 2() (,)j
i k i j

i k j

P d p p pδ
< <

= ∑

2

2 2

1 ()ij k ij k ij
i k jij ij

a x b y c
a b < <

= ⋅ + ⋅ +
+ ∑

2 2 2 2
2 2 1 2 1((1) () ()j i j i
ij ij ijx x y y

j i c a S S b S S− −= − − ⋅ + ⋅ − + ⋅ −

1 12 () 2 ()j i j i
ij ij xy xy ij ij x xa b S S a c S S− −+ ⋅ ⋅ − + ⋅ ⋅ ⋅ −

(3.3)
1 2 22 ()) / ()j i

ij ij y y ij ijb c S S a b−+ ⋅ ⋅ ⋅ − +

here d is the perpendicular distance from pk to i jp p .
(), (),ij j i ij i ja y y b x x= − = − ij i j i jc y x x y= − and Sx, Sy, Sx2,

Sy2, Sxy are the accumulated sums of the x, y coordinates on the
curve P respectively:

2
2

1 1 1
, , ,

i i i
i i i
x j y j jx

j j j
S x S y S x

= = =

= = =∑ ∑ ∑

(3.4)
2

2

1 1
 , , 1, ...,

i i
i i

j xy j jy
j j

S y S x y i N
= =

= = =∑ ∑

The main advantage of the integral square error criterion is
that the approximation error ()j

iPδ can be obtained efficiently
in O(1) time after pre-calculating all the accumulative terms
within O(N) time (see equation 3.3) [4, 16], An example of
calculating ISE and LISE is illustrated in Fig. 3.1.

Although LISE and ISE criterion are computationally
efficient, time information is not considered. For the
simplification of the GPS trajectories, we extend LISE and ISE

criteria and derive two new error measures, called local integral
square synchronous Euclidean distance (LSSD) and integral
square synchronous Euclidean distance (ISSD), which have the
same properties with LISE and ISE:

1
1

2
1

(') ()j

j

M
i

ISSD SED i
j

f P Pδ +
−

=

= ∑ (3.5)

1
1 2(') max ()j

j

i
LSSD j M SED if P Pδ +

≤ <= (3.6)
Here 2

SED2
'() (,)j

i k k
i k j

P SED p pδ
< <

= ∑

2 2
2 2 2 2 1
1 3 2 4()(1) ()()j i

t t
c c j i c c S S−= + − − + + −

2 2
1 1

1 2 3 42()() ()j i j i
t t x x

c c c c S S S S− −+ + − + − (3.7)

2 2
1 1 1

1 3

1 1
2 4

() 2 () 2 ()

2 () 2 ()

j i j i j i
x x y yy y

j i j i
xt xt yt yt

S S c S S c S S

c S S c S S

− − −

− −

+ − − − − −

− − − −

Here 1 2 3 4, , , i j j i j i i j j i j i

j i j i j i j i

x t x t x x y t y t y y
c c c c

t t t t t t t t
− − − −

= = = =
− − − −

Sx, Sy, St, Sx2, Sy2, St2, Stx and Sty are the accumulated sums of the
x, y and t on the GPS trajectory respectively:

2

2 2

2

1 1 1 1

2 2

1 1 1 1

, , , ,

, , , ,

i i i i
i i i i
x j y j t j jx

j j j j

i i i i
i i i i

j j tx j j ty j jy t
j j j j

S x S y S t S x

S y S t S t x S t y

= = = =

= = = =

= = = =

= = = =

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 (3.8)

Computation of the above approximation errors SED2 ()j
iPδ

also takes O(1) time with an O(N) time accumulated sum
pre-calculation. The proof of the LSSD and ISSD calculation
can be seen in Appendix.

In the following sections, ISE and LISE criteria will be used
for the approximation of the polygonal curves, while LSSD and
ISSD criteria will be used for the GPS trajectory simplification.

IV. MIN-# INITIALIZATION FOR GPS TRAJECTORY
SIMPLIFICATION

For the min-# problem, Imai and Iri’s graph-based approach
[1] comprises two essential steps: constructing DAG and
shortest path search by breadth-first traversal (BFT). In order to
construct a DAG, N(N - 1)/2 approximation errors are
calculated for every pairs of vertices, and thus the time
complexity for initializing the solution for min-# problem is
O(N2) if LISE or LSSD criterion is applied.

In this work, we revisit two computationally efficient
improvements for min-# problem. The first improvement is to
reduce the computational cost of DAG construction by
maintaining two priority queue structures [15, 29]. The reason
is that there is no need to construct the graph G explicitly and
only edges visited by the BFT are included. For simplicity, we
define a term number of links L(pi) to denote the minimum
number of line segments to connect the starting vertex p1 to pi
under given error tolerance ε:

() min(()) 1, . . () , 1i
i k kL p L p s t P k iδ ε= + < ≤ < (4.1)

where the initial condition is set as L(p1) = 0. Suppose all the
vertices with k links are firstly identified by shortest path search,
which is maintained by a priority queue VL(k) in descending

 5

LISE and ISE LSSD and ISSD

p6

p5

p4

p3

p2

p1

d3

d2
d1

p6

p5

p4

p3

p2

p1

d3’
d2’d1’

p2’

p3’
p5’

Fig. 3.1. An example of calculating ISE, LISE, LSSD and ISSD. Given P = (p1, p2, p3, p4, p5, p6), and the approximated curve P'= (p1, p4, p6), where p2’, p3’ and
p5’are the approximated temporally synchronized position. ISE is estimated as d1

2+d2
2+d3

2 and LISE is estimated as d1
2+d2

2 (left). Meanwhile, ISSD is estimated
as d1

’2+d2
’2+d3

’2 and LSSD is estimated as d1
’2+d2

’2(right).
order. The next search will be performed on the remaining
unvisited vertices set Su by testing if they have an edge
connecting with vertices in VL(k) (i.e. approximation error lower
than given tolerance ε), which is called as edge tests here. These
connected vertices will be removed from unvisited vertices set
Su and enqueued in the priority queue VL(k+1). Suppose two
vertices pa, pb ∈ VL(k) with a > b, if ∃ pc∈Su and ()δ ε<c

bP , then
pc will be removed from Su such that the edge test between pa
and pc can be avoided. Moreover, edge tests are also avoided for
the vertices with the same number of links. After all the
unvisited points have been tested between VL(k) and Su, in next
step, the vertices in VL(k+1) will be used as the starting points for
edge tests. The shortest path search will be terminated when the
last vertex pn

 is connected to p1. Albeit the priority-queue based
search is not able to mitigate the worst case time complexity, it
turns out that a number of edge tests are greatly saved.

The second improvement is to apply a stopping criterion in
the shortest path search, which is efficient in the case of low
error tolerance. For example, a good stopping criterion has been
proposed for tolerance zone criterion [11] by maintaining the
intersection of two cones. An alternative solution has also been
proposed in [15, 28] by verification in dual space. Both of the
implementations hold the optimality for solving the min-#
problem. To pursue the best computational cost savings as
possible for LISE/LSSD criteria, a simple stopping criterion is
applied in edge tests by utilizing a preset high threshold, e.g.
two times of given tolerance [17]. Edge tests for the subsequent
vertices in the unvisited vertices set will be omitted once the
approximation error becomes larger than a given high threshold.
Applying a stopping criterion leads to a significant
improvement to a time complexity of O(N2/M) but the
optimality is not guaranteed. To overcome this difficulty, we
extend our effort in improving the robustness of the stop search
criterion. Instead of using a fixed high threshold, we adopt the
error tolerance of the next coarser resolution as a high threshold
in the multi-resolution implementation, of which the robustness
has been validated by experiments; see Section VI for more
discussion.

We combine both the advantage of the priority queue
structure and the stopping criterion to achieve the most
computationally efficient implementation in the initialization of
min-# problem. Accordingly, the output is a tree structure; see
Fig. 5.2(left). The pseudo code is given in Fig. 4.2. Both the
theoretical proof and the experiments are given for the
complexity analysis of the proposed initialization algorithm.

Theorem 1. The proposed initialization algorithm for solving
the min-# problem under LISE/LSSD criterion leads to an
expected time complexity of O(N2/M) and a space complexity of
O(N) respectively.
Proof. See Appendix.

N/128 N/64 N/32 N/16 N/8 N/4 N/2 N
10

2

10
3

10
4

M

N
um

be
r o

f e
dg

e
te

st
s

PRQ

StopSearch
Proposed

0 2000 4000 6000 8000 1000

0

1

2

3

4

5
x 10

4

N

N
um

be
r o

f e
dg

e
te

st
s

PRQ

StopSearch

Proposed

Fig. 4.1. Number of edges tests for solving min-# problem under different error
tolerance (left) and with different number of input vertices (right) for UK map
(Curve II). In the left figure, the resulting number of output vertices M is shown
in x axis instead of the given error tolerance.

ALGORITHM I, MIN-# INITIALIZATION

1. INPUT
2. P={p1, p2,…pN}: original polygonal curve
3. th: LISE/LSSD error tolerance
4. hth: high threshold of error tolerance
5. OUTPUT
6. T : Tree structure
7.
8. V1 ← {1}
9. V2 ← Ø
10. Su ← {2,…,N}
11. REPEAT
12. REPEAT
13. maintainPRQ()
14. UNTIL V1 = Ø
15. V1 ← V2
16. V2 ← Ø
17. UNTIL pN ∈V1
18.
19. Procedure maintainPRQ()
20. ind1 ← dequeue(V1)
21. FOR ind2 = Su (1) TO Su (end)
22. dist ← 2

1()ind
indPδ

23. IF dist ≤ th
24. Su ← { Su \ ind2 }
25. V2 ← enqueue(ind2)
26. Update T by ind1.child ← ind2, ind2.father ←

ind1
27. ELSE IF (dist> hth)
28. break
29. ENDIF
30. ENDFOR
31. RETURN V1, V2, Su, TT

Fig. 4.2. Pseudo code of min-# initialization

 6

Number of links

0
1
2
3
4
5
6

p14 p15

p15p14

p13

p13

p11 p12

p8p8

p10

p11

p1

p12

p10

p6
p5 p4

p1

p9p7

p6

p3
p2

p5 p4 p9
p7

p6

p3p2

…

…

Fig. 5.2. An example of reducing the number of output vertices with a width of bounding corridor W = 2: the target vertices with 1 links (left) and target vertices
with 2 links after tree structure updated given 9 11

3 3() , ()P Pδ ε δ ε< < (right). Left figure is a typical example after the initialization step for Algorithm I.
In the graph-based initialization algorithm, the main

bottleneck is the cost of edge tests (calculating the edge
approximation errors, line 22 of Algorithm I) during graph
construction. In order to evaluate the computational
improvement achieved by the proposed algorithm, the number
of edge tests is calculated and treated as an indicator of the
computational efficiency in Fig. 4.1. Here “PRQ” represents the
previous graph-based polygonal approximation algorithm using
priority queues structure [15, 29], “StopSearch” is the stopping
criterion using a predefined high threshold [17]. It can be
observed that the proposed algorithm is able to combine the
computational advantages of both two algorithms.

V. FINE-TUNE THE INITIAL APPROXIMATED RESULT
As a stopping criterion is incorporated in Algorithm I (line 27)

to reduce the computational cost in the initial approximation
process, the optimality is not guaranteed. Thus, two fine-tune
algorithms are introduced in this section in order to improve the
approximation performance. Both the number of vertices and
the ISE/ISSD are minimized.

A. Minimizing Number of Vertices
To the benefit of best computational efficiency, the

initialization in Algorithm I for min-# problem is a compromise
of the optimality for minimizing the number of vertices. In order
to mitigate the limited optimality, we need to minimize the
number of vertices based on the initialized curve so that a better
result can be achieved. The reduced search algorithm (RSDP)
can be utilized for minimizing the number of vertices but it leads
to O(W2N2/M) time complexity. To speed up the procedure, we
exploit a new fine-tune method at a time complexity of
O(WN2/M) instead, which is achieved by lifting the vertex
position in the output tree structure after the initialization step in
Algorithm I. The pseudo code is given in Fig. 5.1.

A graphical illustration is demonstrated in Fig. 5.2 of lifting
vertex position: starting from vertex p1 with 0 links, at each
iteration (line 11-30 in Algorithm II), edge tests are performed
to verify if the approximation error is less than the given
tolerance between the currently processed vertices with k links
and those target vertices with {k + 2, … , k + W + 1} links. An
example is given in Fig. 5.2 (left) when the width of the
bounding corridor is W = 2. Suppose p2 and p3 are the vertices
with 1 link, all the vertices with 3 links (p7 and p9) and 4 links (p8,
p10, p11, p12) are chosen as the target vertices for edge tests. If the
connected edge exists, the tree structure is updated by lifting the
target vertices (line 22-24). The process of updating the tree
structure can be done recursively, see Fig. 5.2 (right).

The proposed fine-tune algorithm provides the following
advantages over the original reduced search approach for min-#
problem. Firstly, calculation of the approximated errors
between any pair of vertices with adjacent number of links is
unnecessary and can be omitted. Secondly, once the tree
structure is updated by the lifting operations, edge tests for those
lifted vertices are also avoided.

ALGORITHM II, MINIMIZING THE NUMBER OF OUTPUT VERTICES
1. INPUT
2. P={p1,p2,…pN}: original polygonal curve
3. T: tree structure
4. W: width of bounding corridor
5. th: LISE/LSSD error tolerance
6. OUTPUT
7. T: updated tree structure
8.
9. PRQ1 ← {1}
10. REPEAT
11. PRQ2 ← child nodes of all vertices in PRQ1
12. Vtar{k} ← Ø, k ∈ {0, 1, 2, …, W}
13. Vtar {0} ← PRQ2
14. FOR k = 1 TO W
15. Vtar {k} ← child nodes of all vertices in Vtar {k-1}
16. ENDFOR
17. FOR k = W TO 1
18. FOR ind1 = PRQ1(1) TO PRQ1(end)
19. FOR ind2 = Vtar {k}(1) TO Vtar {k}(end)
20. dist← 2

1()ind
indPδ

21. IF dist ≤ th
22. Vtar {k} ← { Vtar {k} \ind2 }
23. PRQ2 ← enqueue(ind2)
24. Update T by ind1.child ← ind2, ind2.father ← ind1
25. ENDIF
26. ENDFOR
27. ENDFOR
28. ENDFOR
29. PRQ1 ← PRQ2
30. PRQ2 ← Ø
31. UNTIL pN ∈ PRQ1

Fig. 5.1. Pseudo code of minimizing the number of vertices

Theorem 2. The proposed algorithm for the output vertex
reduction under LISE/LSSD criterion has an expected time
complexity of O(WN2/M) and a space complexity of O(N)
respectively. The original reduced search dynamic
programming method has an expected time complexity of
O(W2N2/M).
Proof. See Appendix.

Intuitively, the fine-tune algorithm can also be done
iteratively. However, since the graph-based method has already
achieved an ideal initial approximation, according to our
experiments, optimal results can be derived in most cases by
setting W = 2 with one iteration. The main bottleneck here is
also the number of edge tests (line 20 in Algorithm II). In Fig.

 7

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10

11
x 104

M

N
um

be
r o

f e
dg

e
te

st
s

Proposed W=4
RSDP W=4

0 2000 4000 6000 8000 10000

0

0.5

1

1.5

2

2.5

3
x 105

N

N
um

be
r o

f e
dg

e
te

st
s

Proposed W=4
RSDP W=4

2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

2.5

3

3.5

4
x 106

W

N
um

be
r o

f e
dg

e
te

st
s

Proposed
RSDP

Fig. 5.3. Number of edge tests in minimizing the number of output vertices. Different error tolerance (left), different number of input vertices (middle) and different
width of bounding corridor W (right) are tested on UK map (Curve II). In left figure, the resulting number of output vertices M is shown in x axis instead of the given
error tolerance. In left and right figure, the input polygonal curve is the UK map with N =10911.

103 104 105 106 107

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of edge test

E
ffi

ci
en

cy

RSDP W=2
RSDP W=4
RSDP W=8
Proposed W=2
Proposed W=4
Proposed W=8

Fig. 5.4. Performance comparisons of the proposed fine-tune algorithm and
RSDP when the original curve is selected as the initial curve directly. UK map
(Curve II) is tested with ε = 0.01.
5.3, the actual time cost is evaluated by calculating the number
of edge tests against the three parameters: width of bounding
corridor W, number of output vertices M, and number of input
vertices N. To further demonstrate the efficiency of the
proposed fine-tune algorithm, we also evaluated the
performance when the initialization step is skipped and the
original polygonal curve is selected as input directly. We can
observe that the optimal result is achieved with less than five
iterations by the proposed fine-tune algorithm and the number
of edge tests is much less than the reduced search dynamic
programming, which is shown in Fig. 5.4.

B. Minimizing global integral square error
After the number of vertices is reduced by LISE/LSSD

criterion, a so-called equivalent solution problem may still exist.
In other words, given an error tolerance ε, a number of solutions
for min-# approximation can be achieved with the same number
of output vertices M but they lead to distinct approximation
performance, see Fig. 5.6. Hence, an additional post-processing
step based on ISE/ISSD criterion is needed in order to find the
best approximation result among these equivalent solutions,
which can also be considered as a min-ε problem. The pseudo
code can be seen in Fig. 5.8.

After executing Algorithm II which effectively updates the
tree structure, additional post-processing is performed to
identify the best possible curve P' with the minimum ISE/ISSD:

/ /' arg min ('), . . (')ISE ISSD LISE LSSDP f P s t f P ε= < (5.1)

This can be solved by dynamic programming in terms of the
following recursive expression:

() min(() ()),1

() arg min (() ()),1

. . () , () () 1

j
j i i

j
j i i i

j
i j i

D p D p P i j

A p D p P i j

s t P L p L p

δ

δ

δ ε

= + ≤ <

= + ≤ <

< = +

 (5.2)

where A(pj) is the parent vertex of pj and D(pj) is the
accumulated ISE/ISSD.
Theorem 3. Minimization of global integral square error under
the constraint of local integral square error has an expected time
complexity of O(N2/M) and a space complexity of O(N).
Proof. See Appendix.

From Theorem 3, the minima can be found in O(N2/M) time
and no iterations are needed. The above minimization offers a
significant improvement (theoretically W2 time faster) over the
original RSDP that has a time complexity of O(W2N2/M). In Fig.
5.7, the histograms of the approximated LISE are plotted before
and after the fine-tune step. As the ISE is the sum of LISE for all
the approximated segments, we can observe that ISE is
significantly reduced while LISE has not increased after the
fine-tune process.

ALGORITHM III, FIND BEST SOLUTION USING INTEGRAL SQUARE ERROR
CRITERION

1. INPUT
2. P={p1,p2,…pN} ← original polygonal curve
3. T ← tree structure
4. th ← LISE/LSSD error tolerance
5. OUTPUT
6. P’ ← approximated curve
7.
8. E ← {0, ∞, ∞, ….., ∞}, N x 1 vector storing the approximated error
9. A ← {0, 0, 0, ….., 0}, N x 1 vector for backtracking
10. H ← {0, 0, 0, ….., 0}, M x1 vector
11. V1 ← {1}
12. M ← 1
13. REPEAT
14. V2 ← child nodes of all the vertices in V1
15. FOR ind1 = V1(1) TO V1(end)
16. FOR ind2 = V2(1) TO V2(end)
17. dist ← 2

1()ind
indPδ

18. IF (E(ind1) + dist < E(ind2)) && (dist ≤ th)
19. A(ind2) ← ind1
20. E(ind2) ← E(ind1) + dist
21. ENDIF
22. ENDFOR
23. ENDFOR
24. V1 ← V2
25. M ← M + 1
26. UNTIL E(N)!= ∞
27. //Backtracking
28. H(M) ← N
29. FOR m = M TO 2 DO
30. H(m-1) ← A(H(m))
31. ENDFOR
32. P’ ← P(H)

Fig. 5.8. Pseudo code of minimizing integral square error

 8

0 100 200 300 400 500 600
-350

-300

-250

-200

-150

-100

-50

0

50

initial approximation
orginal

 0 100 200 300 400 500 600
-350

-300

-250

-200

-150

-100

-50

0

50

after minimize M
before minimize M

 0 100 200 300 400 500 600
-350

-300

-250

-200

-150

-100

-50

0

50

after minimize ISE
before minimize ISE

Fig. 5.5. An example of the proposed polygonal approximation. Curve I [25] is used with ε = 1500 and the optimal solution is Mopt = 86. Initial approximated curve
is obtained with M'' = 91 (left). Approximated curve (M = 86) is obtained after reducing number of output vertices with fISE(P') = 1.04∙105 (middle). The final
solution is obtained by minimizing ISE with fISE(P') = 4.88∙104 (right).

0 0.002 0.004 0.006 0.008 0.01

0

20

40

60

80

100

LISE

fre
qu

en
cy

f
ISE

 = 2.70

0 0.002 0.004 0.006 0.008 0.01

0

10

20

30

40

50

LISE

fre
qu

en
cy

f
ISE

 = 1.61

Fig. 5.6. An example of equivalent solutions in min-# approximation, where
both approximated curves meet the error tolerance ε =2 and have same output
M =4.

Fig.5.7. LISE distribution of all the approximated edges with ε = 0.01 for Curve
II. A best approximation result with fISE(P') = 1.61 (right) is found from all the
equivalent solutions, which is much lower than result after Algorithm II with
fISE(P') = 2.70 (left). Both approximation results have M = 364.

TABLE I. SUMMARY OF THE PROPOSED POLYGONAL APPROXIMATION
ALGORITHM. * REPRESENTS THE INITIAL CURVE IS EQUALLY PARTITIONED

STEP
TIME COMPLEXITY

IMPROVEMENTS AND
CONTRIBUTIONS

RSDP PROPOSED

I O(N2/M) O(N2/M) Combine priority queue
and stopping criterion to
reduce the computation
cost. Proof is given.

II O(W2N2/M)* O(WN2/M) Time complexity is
reduced. Proof is given.

III O(W2N2/M)* O(N2/M) Time complexity is
reduced. Proof is given.

C. Summary of the Near-optimal Approximation Algorithm
Polygonal approximation algorithm for the joint optimization

of both min-# approximation using LISE/LSSD criterion and
min-ε approximation using ISE/ISSD criterion has been
introduced as a three step procedure: initialization of min-#
problem, minimizing the number of output vertices, and
minimizing integral square error. Proof has been given that the
proposed algorithm has expected time complexity of O(N2/M)
and space complexity of O(N), and experiment results have
demonstrated that the practice is consistent with the theoretical
analysis. An example of the proposed algorithm is shown in Fig.
5.5. The improvement of the time complexity is also
summarized in Table I.

VI. LINEAR TIME MULTI-RESOLUTION POLYGONAL
APPROXIMATION METHOD

In order to further improve the computational efficiency, in
this section, a bottom-up multi-resolution polygonal
approximation approach is proposed by implementing

Algorithm I and Algorithm III in Section III-V in each map
scale, which achieves a linear time and space complexity. Given
error tolerance ε, a joint optimization for both min-#
approximation using LISE/LSSD criterion and min-ε
approximation using ISE/ISSD criterion is solved. The
underlying algorithm consists of three sequential procedures:
I. Error tolerance initialization. Initialize logcN error tolerances

{e1
*, e2

*, e3
*,…}(e1

*< e2
*< e3

*…).
II. Initial curve approximation. A number of polygonal curves

{P1
*, P2

*,…, Pk
*} are approximated based on bottom-up

multi-resolution approach with corresponding error tolerance
{e1

*, e2
*, e3

*,…}. Algorithm I and Algorithm III are used for
approximating the curve of each resolution.

III. Final approximation. A polygonal approximation is
conducted under the given error tolerance ε by selecting the
most suitable input curve among those approximated curves
{P1

*, P2
*,…, Pk

*}.
In step I, the error tolerances e1

*, e2
*, e3

*… (e1
*< e2

*< e3
*…)

are estimated according to the LISE/LSSD error criterion:
1*

1 /

1 ()
/ 1

1 (1) 1
/ 1

j

j
k

i
k ik

j N c

j k

e P
N c
Ni j

N c

δ +

≤ <

=
−

−
= ⋅ − +

−

∑
 (6.1)

here c > 1 is a parameter to control the number of intermediate
scale. For example, if c = 2, in each scale, the number of points
will be around N→N/2→N/4→….,. The above estimation can
be viewed as the average LISE/LSSD error for all approximated
segments when the curve is equally partitioned. The
approximated curve under the error tolerance ek

* has the
property Mk ≈ N/ck, where Mk is the number of output vertices in
the kth resolution. Note that there are less intermediate scales
when a larger c is selected, thus achieves a better reduction rate

 9

…
PA

…

…

PAPA

Get LISE
error e1*

P

Get LISE
error e2*

Get LISE
error ek*

P1* P2*

PA

Pk*
PA

Get LISE
error e3*

P3*

…

Given
ε

P’

Fig.6.1. Workflow of the proposed bottom-up multi-resolution method. Error tolerance of coarser resolution is selected as high threshold for polygonal
approximation, which is labeled by dashed line in the figure. In this example, if e2* < ε < e3* , then the approximation of P3

* and P4
*,… can be skipped.

at the cost of a higher computational cost. When c→∞, there are
no intermediate scales and it’s exactly the approximation
algorithm we described with O(N2/M) time complexity
(Algorithm I – Algorithm III).

In step II, a bottom-up multi-resolution algorithm is applied
to estimate the approximated curves P1

*, P2
*, P3

*, … under the
corresponding error tolerances e1

*, e2
*, e3

*, …. Here, ek+1
* is

used as the high threshold in the approximation procedure of
resolution k. The approximated result achieved in the previous
finer resolution is used as the input of polygonal approximation
in the next coarser resolution (Nk+1

 = Mk), where Algorithm I
and Algorithm III are applied in each approximation. Since the
optimality of these initial approximation results is not
significantly compromised, the step of minimizing the number
of vertices described in Algorithm II can be omitted.

In step III, given error tolerance ε, a polygonal approximation
is conducted to obtain the final approximation result by
selecting the most suitable input Pk

* among those approximated
curves in step II such that:

*arg max ()k kk e ε= < (6.2)

The workflow of the proposed algorithm is presented in Fig.
6.1. As the time complexity of the approximation process is
O(Nk

2/Mk) on each resolution, we have the following theorem:
Theorem 4. Both the time complexity and the space complexity
of the proposed bottom-up multi-resolution algorithm are O(N).
Proof. See appendix
Corollary 4.1. Given 0<ε1<ε2<…<εR

 as R number of error
tolerances, its corresponding approximated curves can be also
constructed in linear time.
Proof. As the approximated curve for error tolerance εi can be
used as the input for approximating the curve with error
tolerance εi+1, the total time complexity is O(N + M1 + M2 + …)
= O(N).

VII. EXPERIMENTS
In order to evaluate the performance of the proposed

multi-resolution polygonal approximation algorithm (MRPA),
two polygonal curves are used as a test case. Curve I is an
artificial curve used in [25] with 5004 vertices, curve II is the
UK map contour with 10911 vertices. For the GPS trajectory
simplification algorithm, two datasets are used, which are the
MOPSI dataset and Geolife dataset [31]. The graphical
presentations are shown in Fig. 7.1.

A. Performance for Artificial Polygonal Curve and Vector
Map

For min-# problem, the performance of polygonal
approximation is evaluated by its efficiency [26, 27], which is
defined as:

optM
efficiency

M
= (7.1)

Here Mopt is the result of the optimal solution.
In Table II, efficiency and computational cost are evaluated

under different error tolerance. It can be observed that the
proposed approach has a lower time cost and its performance is
better than that of the two fast heuristic methods: split [7] and
merge [9].

In Table III, we compare the performance when parameter c
varies. For larger c, better performance is achieved at higher
time cost. We can observe that least time cost is achieved when
c = 2, which is in accordance with the theoretical analysis.

In Fig. 7.2, time cost is also analyzed in comparison with the
split and merge algorithms when the size of input curve N
increases. Both the low and high error tolerance cases are tested
in the experiment. We can observe that the time cost of the
proposed algorithm linearly increases in both cases and it
achieves better result than the two comparative heuristic
algorithms when the number of input vertices increases.

As the proposed approximation algorithm is a joint
optimization for both min-# approximation using LISE criterion
and min-ε approximation using ISE criterion, in Fig.7.3, a
comparison is made on the integral square error and the
efficiency of the approximated curve by using different error
tolerances. We can observe that the proposed algorithm has
achieved both higher efficiency (less number of output vertices)
and equal or less integral square error comparing with the
competitive algorithms.

B. Performance Evaluation for GPS Trajectory Simplification
The performance of the proposed GPS trajectory

simplification algorithm is tested on two datasets, which are
MOPSI dataset with 344 trajectories 744,610 points and
Geolife dataset with 640 trajectories 4,526,030 points. The root
mean square error (RMSE), average error (MAE), median error
(MEDE) and maximum error (MAXE) are all calculated in
order to evaluate the efficiency of the proposed algorithm under
synchronous Euclidean distance. In Table V, we also compare
these error measures for the GPS trajectories with walking and
no-walking segments. We can observe that although the same
LSSD error tolerance is used, walking trajectories can have less
distortion with more details information comparing with no-

 10

CURVE I [25], N =5004 CURVE II(UK MAP): N = 10911 MOPSI DATASET:
344 TRAJECTORIES, N= 744,610

GEOLIFE DATASET[31]:
640 TRAJECTORIES, N= 4,526,030

Fig.7.1. Testing data in the experiments

TABLE.II
COMPARISON OF THE EFFICIENCY AND PROCESSING TIME (C=2).

CURVE I Mopt EFFICIENCY TIME COST (MS)
SPLIT[7] MERGE[9] PROPOSED SPLIT[7] MERGE[9] MRPA OPTIMAL[1]

ε1 = 1
ε2 = 100
ε3 = 104

824 0.68 0.81 0.85 7 3 6 847
193 0.66 0.74 0.78 6 4 6 791
49 0.68 0.71 0.77 4 4 7 794

CURVE II Mopt EFFICIENCY TIME COST (MS)
SPLIT[7] MERGE[9] PROPOSED SPLIT[7] MERGE[9] MRPA OPTIMAL[1]

ε1 = 10-4
ε2 = 10-2

ε3 = 1

1986
364
72

0.71 0.83 0.86 18 11 15 3699
0.66 0.72 0.75 14 12 17 3678
0.66 0.70 0.75 11 13 17 3592

TABLE.III

EFFICIENCY AND PROCESSING TIME FOR CURVE I AND II WHEN DIFFERENT C IS SELECTED
CURVE I Mopt EFFICIENCY TIME COST (MS)

c = 1.5 c = 2 c = 4 c = 1.5 c = 2 c = 4
ε1 = 1
ε2 = 100
ε3 = 104

824
193
49

0.82 0.85 0.87 7 6 9
0.74 0.78 0.81 8 6 11
0.72 0.77 0.79 8 7 11

CURVE II Mopt EFFICIENCY TIME COST (MS)
c = 1.5 c = 2 c = 4 c = 1.5 c = 2 c = 4

ε1 = 10-4
ε2 = 10-2
ε3 = 1

1986
364
72

0.84 0.86 0.91 18 15 20
0.75 0.75 0.77 21 17 21
0.76 0.75 0.80 22 17 22

TABLE.IV

PERFORMANCE OF GPS TRAJECTORY SIMPLIFICATION BY SYNCHRONOUS EUCLIDEAN DISTANCE
RESOLUTION 1:
fLSSD = 50

MOPSI DATASET(744,610 POINTS)
AVERAGE N/M = 8.02

GEOLIFE DATASET(4,526,030 POINTS)
AVERAGE N/M = 10.1

METHOD RMSE MAE MEDE MAXE RMSE MAE MEDE MAXE
D-P 4.51 2.38 1.32 39.0 10.7 4.13 1.12 134.1
TD-TR 1.82 1.41 1.23 4.61 1.89 1.47 1.28 4.91
OW 1.89 1.45 1.23 5.33 1.99 1.53 1.30 5.85
STTrace 4.37 2.67 1.60 21.1 4.93 3.16 2.07 26.0
TS 24.0 11.9 3.64 132.8 42.3 16.6 3.58 363.3
MRPA 1.61 1.23 1.05 5.88 1.46 1.06 0.83 6.51
RESOLUTION 2:
fLSSD = 2000

MOPSI DATASET
AVERAGE N/M = 25.1

GEOLIFE DATASET
AVERAGE N/M = 29.5

METHOD RMSE MAE MEDE MAXE RMSE MAE MEDE MAXE
D-P 13.8 8.39 5.08 81.1 52.3 22.2 6.73 416.6
TD-TR 6.85 5.55 4.82 17.7 7.48 6.04 5.24 19.40
OW 7.40 5.86 4.89 21.1 8.59 6.80 5.73 25.59
STTrace 33.9 19.9 8.67 132.1 39.3 24.4 14.6 169.2
TS 82.7 48.7 20.9 316.2 200.4 98.6 29.0 1090.0
MRPA 5.96 4.76 4.07 23.9 5.60 4.19 3.27 29.0
RESOLUTION 3:
 fLSSD = 105

MOPSI DATASET
AVERAGE N/M = 79.4

GEOLIFE DATASET
AVERAGE N/M = 109.6

METHOD RMSE MAE MEDE MAXE RMSE MAE MEDE MAXE
D-P 42.0 29.0 19.9 173.3 154.8 80.4 32.6 867.1
TD-TR 26.7 21.6 18.3 70.5 28.9 23.2 19.4 84.8
OW 29.5 23.4 19.2 82.1 33.8 26.7 22.1 103.8
STTrace 198.9 131.6 72.4 559.4 251.2 160.9 96.5 871.4
TS 270.1 181.3 106.8 763.5 691.0 399.6 179.7 2733.5
MRPA 22.9 18.5 15.8 79.2 21.4 15.7 11.7 115.6

 11

1 2 4 8 16 32 64 128 256
10

-2

10
-1

10
0

10
1

10
2

N (x104)

tim
e

co
st

 (s
)

Proposed
Split
Merge

1 2 4 8 16 32 64 128 256

10
-2

10
-1

10
0

10
1

10
2

N (x104)

tim
e

co
st

 (s
)

Proposed
Split
Merge

0.65 0.7 0.75 0.8 0.85 0.9

10
-2

10
-1

10
0

10
1

10
2

10
3

Efficiency

IS
E

Proposed
Split
Merge

Fig. 7.2. Processing time cost is plotted for different number of input vertices for curve II. Low error
tolerance (left) and high error tolerance (right) are both tested.

Fig. 7.3. Efficiency and integral square error for different
error tolerance ε = 10-4, 10-2, 1 and 100.

ORIGINAL ROUTE WITH 575 POINTS APPROXIMATED RESULT WITH 13 VERTICES
FOR RESOLUTION 2

APPROXIMATED RESULT WITH 6 VERTICES
FOR RESOLUTION 3

VISUALIZED APPROXIMATED RESULT WITH 44

VERTICES FOR RESOLUTION 1 VISUALIZED RESULT VISUALIZED RESULT

Fig. 7.4. Example of the GPS trajectory simplification by the proposed algorithm.

walking segments.
The proposed polygonal approximation algorithm is also

compared with other GPS trajectory simplification algorithms
with the same number of approximated points. Theses
competitive algorithms are Douglas–Peucker algorithm (D-P)
[7], TD-TR [32], Open Window (OW) [32], STTrace [33] and TS
[31]. The results are shown in Table IV, where synchronous
Euclidean distance is considered as the error measure. We can
observe that the proposed algorithm yields the minimum
distortion than other solutions. The time cost of the trajectory
simplification is also summarized in Table VI. It follows from
our experiment that the time cost of the proposed algorithm is
higher than the Trajectory Simplification (TS) algorithm [31].
This is because the constant factor in the proposed algorithm is
larger than other solutions, which comes from the LISE/LSSD
calculation and the graph structure maintenance. For example,
based on our experiment, in Fig. 7.2, when N >10000, the
proposed solution will have less time cost than split or merge
algorithm. Note that the proposed solution also achieves a better
approximation performance than those fast solutions.

An application of the proposed approximation algorithm for
the GPS trajectory simplification is demonstrated in Fig. 7.4
over a sample route with 575 vertices, where the GPS trajectory
is visualized in different map scale with 44, 13, 6 vertices
correspondingly. As suitable error tolerance is selected for each

TABLE.V
PERFORMANCE OF PROPOSED GPS TRAJECTORY SIMPLIFICATION ALGORITHM
FOR DIFFERENT TRANSPORTATION MODE UNDER SYNCHRONOUS EUCLIDEAN

DISTANCE (M) (MOPSI DATASET)
RESOLUTION 1: fLSSD = 50,
 RMSE MAE MEDE MAXE N/M

WALKING 1.54 1.20 1.06 5.79 9.38
NO-WALKING 1.71 1.19 0.88 6.29 4.92
RESOLUTION 2: fLSSD = 2000
 RMSE MAE MEDE MAXE N/M

WALKING 5.25 4.26 3.68 21.1 32.6
NO-WALKING 8.23 6.27 5.07 33.2 12.9
RESOLUTION 3: fLSSD = 105
 RMSE MAE MEDE MAXE N/M

WALKING 17.9 14.6 12.5 60.8 119.7
NO-WALKING 34.3 27.4 23.5 128.1 35.9

TABLE.VI
TIME COST OF THE TRAJECTORY SIMPLIFICATION

 TIME COST (S)
 MOPSI GEOLIFE
D-P[7] 1.83 12.9
TD-TR[32] 1.95 13.1
OW[32] 25.4 320.8
STTrace[33] 1160.1 20589
TS[31] 0.85 6.8
Proposed 1.48 10.2

resolution, the visualization of the GPS trajectory is not
compromised by the reduced data whereas the rendering time is

 12

greatly reduced. The code and the testing dataset can be seen on
http://cs.joensuu.fi/~mchen/GPSTrajSimp.htm.

VIII. CONCLUSION
We have proposed a fast O(N) time polygonal approximation

algorithm for the GPS trajectory simplification by a joint
optimization on both local integral square synchronous
Euclidean distance (LSSD) and integral square synchronous
Euclidean distance (ISSD) criterion, which is effective and
computationally efficient. The proposed method is designed by
the bottom-up multi-resolution approach. In each resolution, a
near-optimal polygonal approximation algorithm is exploited,
which has a time complexity of O(N2/M). Both the theoretical
analysis and the experimental tests have demonstrated that the
proposed method had made a significant progress in solving the
GPS trajectory simplification problem in a real-time application.
Moreover, the proposed polygonal approximation algorithm
and fine-tune strategy in Algorithm II and Algorithm III can also
be extended and exploited to other error criteria.

There are several potential extensions of our present work.
For example, in our future work, topology properties, road
network information and the similarity of the multiple GPS
trajectories can also be considered in the approximation
process.

APPENDIX
Proof of the local integral square synchronous Euclidean distance
(LSSD) in Eq. (3.7).

For the sake of computational efficiency of the synchronous
Euclidean distance, we extend the local integral square error (LISE)
criterion and derive a new error measure, called local integral square
synchronous Euclidean distance (LSSD), where

2
LSSD

'() (,)j
i k k

i k j
P SED p pδ

< <

= ∑

pk’ is the approximated position at time tk if sub-curve j
iP is

approximated by edge i jp p , see the definition in (2.3). Thus:

2

2

LSSD () ()

()

j kj k i
i i j k

i k j j i j i

j k k i
i j k

i k j j i j i

t t t tP x x x
t t t t

t t t ty y y
t t t t

δ
< <

< <

− −
= ⋅ + ⋅ −

− −

− −
+ ⋅ + ⋅ −

− −

∑

∑

2 2() ()i j j i j i i j j i j i
k k k k

i k j i k jj i j i j i j i

x t x t x x y t y t y y
t x t y

t t t t t t t t< < < <

− − − −
= + ⋅ − + + ⋅ −

− − − −∑ ∑
2 2 2 2
1 2 1 2 1

2 2 2 2
2 3 4 3 4

3 4

(1) 2 2

2 (1) 2

2 2

k k k k
i k j i k j i k j i k j

k k k k k
i k j i k j i k j i k j

k k k
i k j i k j

c j i c t x c c t c x

c t x c j i c t y c c t

c y c t y

< < < < < < < <

< < < < < < < <

< < < <

= − − + + + −

− + − − + + +

− −

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

2 2

2 2 2 2

2 2 2 2 1 1
1 3 2 4 1 2 3 4

1 1 1 1
1 3

1 1
2 4

()(1) ()() 2()()

() () 2 () 2 ()

2 () 2 ()

j i j i
t tt t

j i j i j i j i
x x y yx x y y

j i j i
xt xt yt yt

c c j i c c S S c c c c S S

S S S S c S S c S S

c S S c S S

− −

− − − −

− −

= + − − + + − + + −

+ − + − − − − −

− − − −

Where

1 2 3 4, , , i j j i j i i j j i j i

j i j i j i j i

x t x t x x y t y t y y
c c c c

t t t t t t t t
− − − −

= = = =
− − − −

Sx, Sy, St, Sx2, Sy2, St2, Stx and Sty are the accumulated sums of the x, y
and t on the GPS trajectory respectively.

Computation of the above approximation error LSSD ()j
iPδ takes

O(1) time with an O(N) time accumulated sum pre-calculation.

Proof of Theorem 3:
Suppose that under error tolerance ε, a curve P with N vertices can

be approximated by a curve P’ with M vertices. The number of vertices
with k links is nk, k = 0,1,.., M - 1. In total, 2N space is needed to record
the accumulated errors and the backtracking vector, thus it has a space
complexity O(N).

As every node is only visited once in tree traversal step with O(N) in
total, the main bottleneck is the cost on edge tests, which can be
calculated as follows:

1 1

1 0 1
1 0

 . . , 1, 1, 1, 0,..., 1
M M

i i i M i
i i

f n n s t n N n n n i M
− −

− −
= =

= ⋅ = = = ≥ = −∑ ∑

Suppose that M vertices are firstly selected with the number of links
from 0 to M - 1 respectively. For the remaining N-M vertices, if the
number of links of every vertices is distributed randomly under a
multi-nominal distribution, then we have:

1 2 2
1 1 1(, ...,) ~ (;(, ,...,))

2 2 2Mu u u Mult U
M M M− − − −

where ui = ni - 1, i =1, 2, …, M – 2 and the corresponding statistical
properties of ui (i =1, 2,…,M – 2) can be formulated as follows:

()
2i

N ME u
M

−
=

−
1 1var() () (1)

2 2iu N M
M M

= − ⋅ ⋅ −
− −

1 1cov(,) () () () ()
2 2i j i j i ju u E u u E u E u N M

M M
= − = − − ⋅ ⋅

− −

() cov(,) () ()i j i j i jE u u u u E u E u= +
2 2

2 2
2

2 (/)
(2)

N M N M NM O N M
M

− + + + −
= =

−

2 2() () var()i i iE u E u u= +
2

2 2
2

() () (3) (/)
(2)

N M N M M O N M
M

− + − ⋅ −
= =

−

Thus, the expected time complexity:
1 2 1 2() (3) ()mE f n n M E n n−= + + −

1 2 1 21 () 1 () (3) ((1)(1))ME u E u M E u u−= + + + + − + +

1 1 22 2 (3)(1 2 () ())
2

N M M E u E u u
M

−
= + ⋅ + − + ⋅ +

−

2
2

2

5 42 2 (3) (/)
2 (2)

N M N N MM O N M
M M

− − + +
= + ⋅ + − ⋅ =

− −

To sum up, the expected time complexity is O(N2/M) and space
complexity O(N)

Proof of Theorem 1:
As the output of the min-# initialization is a tree structure, 2N space

is needed in order to record all the parent and child nodes on the tree
and its space complexity is O(N).

The time complexity of min-# initialization mainly consists of two
parts: number of edge tests and maintenance cost of two priority
queues. The cost of edge tests can be calculated in a similar manner as
in Theorem 3:

2 1

0
0 0 0

(2 () / (1)), . . , 1, 1, 0,..., 1
M i M

i j i i
i j i

f n n i s t n N n n i M
− −

= = =

= ⋅ ⋅ + = = ≥ = −∑ ∑ ∑

1 2 1
1 1 1(, ...,) ~ (;(, ,...,))

1 1 1Mu u u Mult U
M M M− − − −

http://cs.joensuu.fi/~mchen/GPSTrajSimp.htm�

 13

where ui = ni - 1, i =1, 2, …, M – 1
21() 2(1) [() ()]

1 1i j j
iE f M E n E n n

i i
= − ⋅ +

+ +

From Theorem 3, we have:
2 2 2 2 2() (/), () (/)i j iE n n O N M E n O N M= =

Thus 2() (/)E f O N M=

As () 1 () 1 , 1,..., 2
2i i

N ME n E u i M
M

−
= + = + = −

−

The cost of maintaining the priority queues is:
1 1

2
0 1

() (log ()) 1 (ln()) / ln2
M M

i i i i
i i

E g E n n E n n
− −

= =

= ⋅ = + ⋅∑ ∑

Suppose a linear function is constructed as follows:
1 ln(()) (())
()i i i i

i

y E n n E n
E n

= + ⋅ −

The constructing function has the property ln(ni) ≤ yi, and thus
1

1

1 1() 1 ((ln(()) (())), 1,..., 2
ln 2 ()

M

i i i i
i i

E g E n E n n E n i M
E n

−

=

≤ + ⋅ + ⋅ − = −∑

2
2
2

(log(/)) ()

1 1 1 (1)1 (1 ln) (1) ())
ln 2 1 ln 2 1

O N N M O N

N MN E n
M N

− −
≤ + − + ⋅ − +

− −

() (log(/))E g O N N M=
Thus the min-# initialization has an expected time complexity of
O(N2/M) and a space complexity of O(N).
Proof of Theorem 2:

First, we give the proof of the time complexity for simplified
reduced search dynamic programming method. Suppose the initial
approximated curve

1 2
' (, ,...,)

Mi i iP p p p= , where i1, i2,…, iM are the
indexes on the curve. s.t. :

1 , 1,..., 1k k kn i i k M+= − = −
The number of edges tests of reduced search dynamic programming

is:
1 / 2 1 / 2

1 / 2 / 2 1
((1) (1))

M i W i W

j j
i j i W j i W

f n n
− + − +

= = − = − +

= + ⋅ +∑ ∑ ∑ ,

1

1
. . 1, 1, 1,..., 1

M

i i
i

s t n N n i M
−

=

= − ≥ = −∑

Let us define: ui = ni – 1, i = 1, 2, …, M - 1 and assume that the curve P’
is randomly initialized as in Theorem 3 such that ui has the property:

1 2 1
1 1 1(, ...,) ~ (;(, ,...,))

1 1 1Mu u u Mult U
M M M− − − −

The expected time complexity is therefore estimated as:
/ 2 1 / 2

/ 2 / 2 1
() (1) ((1) (1))

i W i W

j j
j i W j i W

E f M n n
+ − +

= − = − +

= − ⋅ + ⋅ +∑ ∑

/ 2 1 / 2 / 2 1 / 2

/ 2 / 2 1 / 2 / 2 1
(1) (1)

i W i W i W i W

j j j j
j i W j i W j i W j i W

M n n n n
+ − + + − +

= − = − + = − = − +

= − ⋅ + + + ⋅∑ ∑ ∑ ∑

2 2(1) ((1 2 () (1) () (1) ())j j i jM W E n W E n W W E n n= − ⋅ + ⋅ ⋅ + − ⋅ + − + ⋅

According to Theorem 3, we have
2 2 2 2 2() (/), () (/) and (()) (/)= = =j i j jE n O N M E n n O N M E E n O N M

Thus, 2 2 2() (/)E f O W N M=
On the other hand, the proposed reduced search method is achieved

by lifting the vertex position in the output tree structure in the
initialization. The memory cost of maintaining a tree structure is O(N).
Likewise, the cost of number of edges tests is calculated as:

3 1

0 2
())

M i W

i j
i j i

f n n
− + +

= = +

= ⋅∑ ∑

2() (2) () (/)i jE f M W E n n O WN M= − ⋅ =

As 2() (/)i jE n n O N M= , we have 2() (/)E f O WN M=
Thus, it has an expected time complexity of O(WN2/M) and a space

complexity of O(N)
Proof of Theorem 4:

From Theorem 1-3, space complexity of the near-optimal polygonal
approximation algorithm is O(N). An additional cost is the
pre-calculated sums, which also takes O(N) space. As we do not need
to record all the information of the intermediate scales, the total space
complexity is O(N).

The time complexity of the proposed bottom-up multi-resolution
algorithm mainly consists of three parts: error tolerance initialization
(step I), initial curve approximation (step II) and the final
approximation (step III). As the approximation error between two
vertices can be calculated in constant time, the time cost of step I can
be calculated as follows:

log
log

1

1 1(1 ()) (1) 1 ()1 1 11 1

c
c

N
N

k
k

N N
N Nc c c N O N
c c

c c
=

− − −
= = = =

−− −
∑

In step II, the time complexity of the proposed polygonal
approximation method is O(Nk

2/Mk). As the number of input and
output vertices obeys the equation Mk=Nk/c for each resolution, the
time complexity can be estimated by:

log 1 log2 2log

1 1
0 0

1(1)(/) () (1) ()1/ 11

c c c
N Nk N

k k
k i

cN c N ccN N O N
N c c c

c

−

+ −
= =

−
= = ⋅ = − ⋅ =

−−
∑ ∑

 Since the proposed polygonal approximation algorithm (Algorithm
I-III) has time complexity of O(Nk

2/Mk), the computational cost of step
III can be written as O(cNk), where the value of the parameter is always
c > 1.

To sum up, the proposed multi-resolution polygonal approximation
has a time complexity of O(N)

ACKNOWLEDGMENTS

The authors would like to thank the reviewers and the editor
for their valuable comments and suggestions, which have been
very useful in improving the technical content and the
presentation of the paper. We would also thank Prof. Juha Alho
and Dr. Ville Hautamäki for the useful discussion during this
work.

REFERENCES
[1] H. Imai, M. Iri, "Polygonal Approximations of a Curve-Formulations and

Algorithms", Computational Morphology, 71-86, Amsterdam, 1988.
[2] G. T. Toussaint, "On the complexity of approximating polygonal curves

in the plane", IASTED, Switzerland, 59-62, 1985.
[3] A. Melkman, J. O’Rourke, "On polygonal chain approximation",

Computational Morphology, 87-95, Amsterdam, 1988.
[4] J. C. Perez, E. Vidal, "Optimum polygonal approximation of digitized

curves", Pattern Recognition Letter, vol. 15, 743–750, 1994.
[5] Chung K.-L., Yan W.-M., Chen W.-Y., "Efficient algorithms for 3-D

polygonal approximation based on LISE criterion", Pattern Recognition
vol. 35, 2539-2548, 2002.

[6] B. K. Ray, K. S. Ray, "A non-parametric sequential method for polygonal
approximation of digital curves", Pattern Recognition Letter, vol. 15,
161–167, 1994.

[7] D. H. Douglas, T. K. Peucker, "Algorithm for the reduction of the number
of points required to represent a line or its caricature", The Canadian
Cartographer, 10 (2), 112-122, 1973.

[8] J. Hershberger, J. Snoeyink, "Cartographic line simplification and

 14

polygon CSG formulae in O(n log* n) time", 5th International Workshop
on Algorithms and Data Structures, 93–103, 1997

[9] A. Pikaz, I. Dinstein, "An algorithm for polygonal approximation based
on iterative point elimination", Pattern Recognition Letters, 16(6):
557-563, 1995.

[10] W. S. Chan, F. Chin, "On approximation of polygonal curves with
minimum number of line segments or minimum error", Lecture Notes in
Computer Science, vol.650, 378-387, 1992.

[11] D. Chen, O. Daescu, "Space-Efficient Algorithms for Approximating
Polygonal Curves in Two Dimensional Space", Computing and
Combinatorics, vol.1449, 45-55, 1998.

[12] P. K. Agarwal, K.R. Varadarajan, "Efficient algorithms for
approximating polygonal chains", Discrete Comput. Geom. 23, 273–291,
2000.

[13] M. Salotti, "Optimal polygonal approximation of digitized curves using
the sum of square deviations criterion", Pattern Recognition, 35(2),
435-443, 2002.

[14] D. Eu, G.T. Toussaint, "On approximation polygonal curves in two and
three dimensions", Graphical Models, and Image Processing, 56(3),
231-246, 1994.

[15] O. Daescu, N. Mi, "Polygonal chain approximation: A query based
approach", Computational Geometry, 30(1), 41–58, 2005.

[16] K. L. Chung, P. H. Liao, J. M. Chang, "Novel efficient two-pass
algorithm for closed polygonal approximation based on LISE and
curvature constraint criteria", Journal of Visual Communication and
Image Representation 19(4), 219-230, May 2008.

[17] A. Kolesnikov, P. Fränti, "A fast near-optimal min-# polygonal
approximation of digitized curves", ACIT'2002, 418-422, 2002.

[18] A. Kolesnikov, P. Fränti, "Reduced-search dynamic programming for
approximation of polygonal curves", Pattern Recognition Letters, 24 (14),
2243-2254, October 2003.

[19] B. P. Buttenfield, "Transmitting vector geospatial data across the
Internet", Proc. GIScience, LNCS, vol. 2478, 51-64, 2002.

[20] C. Le Buhan Jordan, T. Ebrahimi, M. Kunt, "Progressive content-based
shape compression for retrieval of binary images", Computer Vision and
Image Understanding, 71(2), 198-212, 1998.

[21] A. Kolesnikov, P. Fränti, X. Wu, "Multiresolution Polygonal
Approximation of Digital Curves", 17th International Conference on
Pattern Recognition (ICPR'04), vol.2, 855-858, 2004.

[22] P. F. Marteau, G. Ménier, "Speeding up simplification of polygonal
curves using nested approximations", Pattern Analysis and Application,
12(4), 367-375, 2008.

[23] A. Kolesnikov, "Fast Algorithm for ISE-bounded Polygonal
Approximation“, IEEE International Conference on Image Processing,
1013-1015, 2008.

[24] G. Papakonstantinou, P. Tsanakas, G. Manis, "Parallel approaches to
piecewise linear approximation", Signal Processing, vol. 37, 415-423,
1994.

[25] M. Salotti, "An efficient algorithm for the optimal polygonal
approximation of digitized curves", Pattern Recognition Letters, vol. 22,
215-221, 2001.

[26] P. L. Rosin, "Techniques for assessing polygonal approximations of
curves", IEEE Trans. Pattern Analysis and Machine Intelligence, 14(6),
659-666, 1997.

[27] P. L. Rosin, "Assessing the behavior of polygonal approximation
algorithms", Pattern Recognition, 36(2), 505-518, 2003.

[28] O. Daescu, N. Mi, C. S. Shin, A. Wolff, "Farthest-point queries with
geometric and combinatorial constraints", Computational Geometry, 33
(3), 174–185, 2006.

[29] O. Daescu, "New results on path approximation", Algorithmica 38(2),
131–143, 2004.

[30] A. Gribov, E. Bodansky, "A new method of polyline approximation",
Proc. of International Conference on Structural, Syntactic and Pattern
Recognition, LNCS, vol. 3138, 504-511, 2004.

[31] Y. Chen, K. Jiang, Y. Zheng, C. Li, N. Yu, "Trajectory Simplification

Method for Location-Based Social Networking Services", ACM GIS
workshop on Location-based social networking services, 33-40, 2009.

[32] N. Meratnia, R. A. de By, "Spatiotemporal Compression Techniques for
Moving Point Objects", Proceedings of the Extending Database
Technology, 765-782, 2004.

[33] M. Potamias, K. Patroumpas, T. Sellis, "Sampling Trajectory Streams
with Spatiotemporal Criteria", Proceedings of the Scientific and
Statistical Database Management (SSDBM), 275-284, 2006.

[34] Z. Yu, X. Zhou, "Computing with Spatial Trajectories", Springer, 2011.
[35] H. Cao, O. Wolfson, G. Trajcevski, "Spatio-temporal data reduction with

deterministic error bounds", VLDB Journal, 15(3), 211-228, 2006.
[36] J. Muckell, J. H. Hwang, C. T. Lawson, S. S. Ravi, "Algorithms for

compressing GPS trajectory data: an empirical evaluation", SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, 402-405, 2010.

[37] J. Muckell, J. H. Hwang, V. Patil, C. T. Lawson, F. Ping , S. S. Ravi,
"SQUISH: an online approach for GPS trajectory compression",
International Conference on Computing for Geospatial Research &
Applications, 1-8, 2011.

[38] R. Lange, T. Farrel, F. Dürr, K. Rothermel, "Remote real-time trajectory
simplification", IEEE International Conference on Pervasive Computing
and Communications, 1-10, 2009.

[39] H. Alt, L. J. Guibas, "Handbook of Computational Geometry", pp.
121-153, 1999.

[40] H. Alt, C. Knauer, C. Wenk, "Matching polygonal curves with respect to
the Fréchet distance", STACS, LNCS , 63-74, 2001.

[41] M. Chen, M. Xu and P. Fränti, "Compression of GPS Trajectories", Data
Compression Conference, 62-71, Snowbird, USA, 2012.
(http://cs.joensuu.fi/ ~mchen/GPSTrajComp.htm)

[42] H. Sakoe, S. Chiba, "Dynamic Programming Algorithm Optimization for
Spoken Word Recognition", IEEE Trans. on Acoustics, Speech and
Signal Processing, 26(1), 43-39, 1978.

[43] H. Ding, G. Trajcevski, P. Scheuermann. X. Wang, E. J. Keogh,
"Querying and mining of time series data: experimental comparison of
representations and distance measures", Proceedings of the VLDB, 1(2),
1542-1552, 2008.

[44] R. Estkowski, J. Mitchell, "Simplifying a polygonal subdivision while
keeping it simple", Symposium on Computational Geometry, 40-49,
2001.

Minjie Chen received his B.Sc. and M.Sc degrees in biomedical engineering
from Shanghai Jiaotong University, Shanghai, China, in 2003 and 2007. Since
2008, he is a PhD student in Computer Science at the University of Eastern
Finland. His research interests include image denoising and compression,
spatial-temporal data compression and medial image analysis.
Mantao Xu received the B.Sc. degree in mathematics from Nankai University,
Tianjin, China, in 1991, the M.Sc. degree in applied mathematics from Harbin
Institute of Technology, Harbin, China, in 1997, and the Ph.D. degree in
computer science from the University of Joensuu, Joensuu, Finland, in 2005
repsectively. He served as a Research Lab Manager with Kodak Health Group
and Carestream Health Inc, Global R&D Center, Shanghai, China, from 2005
to 2010. He is now a Research Professor at School of Electric Engineering,
Shanghai Dianji University, Shanghai, China. His research interests include
medical image analysis, multimedia technology and pattern recognition.
Pasi Fränti received his MSc and PhD degrees from the University of Turku,
1991 and 1994 in Science. Since 2000, he has been a professor of Computer
Science at the University of Eastern Finland. He has published 56 journals and
128 peer review conference papers, including 10 IEEE transaction papers. His
research interests include clustering algorithms, vector quantization, lossless
image compression, voice biometrics and location-based systems. He has
supervised 14 PhDs and is currently the head of the East Finland doctoral
program in Computer Science & Engineering (ECSE). He serves as an
associate editor for Pattern Recognition Letters.

	I. INTRODUCTION
	II. related work
	A. Error Measures
	B. Polygonal Approximation: Optimal and Heuristic Methods
	C. Fine-tune by Reduced Search
	D. Multi-resolution Polygonal Approximation

	III. error measure: From LISE to LSSD
	IV. min-# initialization for GPS trajectory simplification
	V. fine-tune the initial approximated result
	A. Minimizing Number of Vertices
	B. Minimizing global integral square error
	C. Summary of the Near-optimal Approximation Algorithm

	VI. Linear time multi-resolution polygonal approximation method
	VII. Experiments
	A. Performance for Artificial Polygonal Curve and Vector Map
	B. Performance Evaluation for GPS Trajectory Simplification

	VIII. Conclusion

