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Abstract

This thesis discusses the sub-problems in discourse sé¢gtoarof texts and presents
a latent features approach to improving sentence topic hmgdeBoth lexical and
semantic features are considered in the modeling. The gdal find small sets of
essential terms needed in relating the sentence to domaiwand knowledge of the
reader.

A hybrid approach using both linguistic resources and ldesttributional measures is
used. WordNet is used as a filter and classifier in the prawogsBirst a highly domain-
specific vocabulary is collected from the text by excludiigexms appearing in the
external resources. The vocabulary is then used in findimgsteo-occurring with the
highly domain-specific terms.

Semantic relatedness detection is attempted based orsttaince features and exter-
nal resource hierarchical relation discovery. The ex¢éhsentence latent features are
used in constructing a topic signature for each sentence.r@levance of a sentence
to the whole document is determined by categorization.

The resulting relevance model can be used for example inawpyg document index-
ing and question answering systems. The presented approdahexperimental part
is meant as a proof of concept and the model can be improveddogssing a large
number of documents from the same domain.

ACM-classes (ACM Computing Classification System, 1998 version): [,71.2.7,
.2.4,1.5.1

Keywords: text summarization, topic signatures, semantic smoothaopic detection,
context analysis, feature extraction, semantic indexiext, mining, natural language
processing



Contents

1

Introduction 1
Topic extraction subtasks 7
2.1 Textsegmentation . . . .. .. .. ... .. ... .. ..., 7
2.2 Topicsignatures . . . . . . . ... 10
2.3 Semanticsmoothing. . . . . .. .. ... ... .. ... .. ... 15
2.4 Chaining the subtasks together . . . . . . ... ... ... ..... 17
Extracting semantic features from text 19
3.1 Natural Language Processing . . . . . . . . . .. .. ... ..... 9 1
3.1.1 Part-Of-SpeechTagging . . ... ............... 20
3.1.2 DependencyParsing . ... .. .. ... ... .. .. ..., 21
3.1.3 Lemmatization . .. .. ... .. ... .. ... 22

3.1.4 Word Sense Disambiguation and topic modeling . . . . .. 23

3.2 Resources for computing domain specificity and semeagiicedness 24
3.2.1 Dictionariesandthesauri . . . .. ... ... .. ....... 24
3.22 WordNet . .. .. . ... 27
3.23 FrameNet . . . . . .. ... 28
3.24 Ontologies . . . .. .. .. . ... 31

Relevance and semantic relatedness measures 33

4.1 Domain vocabularies as relevance measures . . . . ... ....... 33

4.2 Semantic similarity vs. semantic distance . ... .. .. ...... . 34

4.3 Methods for computing semantic relatedness . . . . . .. .. .. 36

Proposed relevance modeling algorithm 42

5.1 Constructing topicsignatures . . . . . . .. .. .. ... ... ... 43

5.2 Computing domain specificity . . . . . .. ... ... ... ..... 44

5.3 Computing semanticrelatedness . . . . .. ... .. ... ..... 46

5.4 Categorizationtorelevantandirrelevant . . .. .. .. ...... .. 48

Case study: Extractive summary generation 51

6.1 Methodsandinputdata . . . ... ... ................ 51

6.2 Resultsanddiscussion . .. .. .. ... ... .. ... . ... .. 53

Conclusions and future work 57



References

Attachment 1: Algorithm input data (testdocl)
Attachment 2: Categorization results (testdocl)
Attachment 3: Generated extractive summaries

Attachment 3: Precision and recall of extractive summarizaion

59

65

68

71

74



1 Introduction

Written natural language does not consist of isolated,|late@ sentences, but instead
from structured and coherent groups of sentences. Thisnswmly referred to adis-
course There are two main types of discourseonologueanddialogue Monologues
are unidirectional and characterized by a writer commuimgdo a reader. This is the
type of discourse where written texts fall into. (Jurafskg Martin, 2009)

The task of discourse segmentation depends on findismpurse markersDiscourse
markers are used in linkindjscourse segmenike sentences or clauses and thus defin-
ing cohesion boundaries in the text. A common approach taniniéxicalcohesioris
detectingconnectiveswhich are fragments of text that are known to signal disseur
structure. These can be cue words or cue phrases like "gpusmext is (PERSON)".

Scientific texts, like any strictly factual texts, are exjgelcto have high cohesion. Indi-
cators of high cohesion are that the way textual units akettogether is consistent
and references between discourse segments are unambiQuiesenceconsistency
in the meaning relation between two units, is another ingrdrfeature. But detecting
meaning relations requires semantic knowledge. Semagdrtde divided t@ontext
knowledgeof the current situation or domain and to broaderld knowledgeof the
un-written human expectations of how things work and whey tre related to. This
is a key difference between human and computer interpoetati a text; humans re-
flect a written sentence to their personal world knowledgktarthe domain-specific
knowledge when reading. For a computer to be able to finde@lirms as well as a
human, it would also need world knowledge to find the undedyelations. And to be
able to select only the important relations for the situatib would need knowledge
of the current use context.

Terminology and key approaches

In the field of information retrieval (IR), the generic copt®f documenstands for

a unit of text indexed and available for retrieval (Jurafskygl Martin, 2009). In prin-
ciple, a document can refer to anything from full text docatsdo smaller units like
paragraphs and sentencescdlectionthen refers to a set of documents. Documents
consist of smaller fragments of text, commonly referreddteams Terms can refer

to a lexical item (word or detectathmed entitybut also to phrases of text. When cat-
egorizing segments, tapic can be used as a signifier of a segment (Manning, 1998).



Documents and collections can be searched by construaticigexecuting ajuery.
Named entity recognition is not included in the experimepéat of this thesis. Key
terms are summarized in Table 1.

Key term Short description
discourse the whole text, the complex concept being discussed
document a sub-segment of the text (can be a clause, a full sentence, a

paragraph, the entire document)

topic signature | a head topic of a document, a set of core terms and their frela-
tions describing the document

discourse marker a detected boundary in the text, marking a change in topic

reference a pointer (usually backward) to another sentence or concept

Table 1: Key terms in discourse segmentation and their slesdriptions.

Splitting text and detecting the content of the segments semm straightforward,
which it is for an educated human being. But from a compugsuisit of view, there
are several unsolved sub-problems. Handling semanticartgplarly problematic,
since the words of individual sentences seldom contairhalinformation needed to
understand the meaning. Scientific texts make the problemlearder, since they have
a highly domain-specific vocabulary and require broad cdng knowledge from the
reader. Common problems are relatedrderence resolutionwhich tends to still
require manually annotated data (Miltsakaki and KukiclQ®0 Reference resolution
means solving which entities are referred by which lingaiskpressions. There are
two main classes of reference resolution tasks. The firkt fasnominal anaphora
resolution handles single pronoun antecedent references like whetteei previous
sentences does the word he/she/it refer to. The secondharlde¢r problem, is called
co-reference resolutionlt aims at finding all the entity referring expressions ie th
given context and grouping them into co-reference chaimsexample of co-reference
resolution would be detecting that “vehicle” and “car” nefe the same entity.

Another problem is resolvingoherence relationsetween the encountered terms. Sen-
tences in text are considered coherent, when the readeogarafsemantic connection
between them (Jurafsky and Martin, 2009). For example,tantkegre first you tell that

a car accident occurred, would be coherent if you continyegivong a cause like the
driver was drunk or the road was icy. A special case of findiolgecence from text is



detectingentity-based coherenc&his means looking at not only direct references be-
tween individual terms but first usimgamed entity recognitioalgorithm in extracting
the entities and then finding references to these. An exanitiés would be detecting
that “Bill Clinton” and “president” refer to the same entity

Hierarchical relations between the terms play a key roleanstructing acontext
knowledganodel from the text. Terms with similar meanings have thrieeainchical
levels: higher in the hierarchyypernyn, lower (hyponym or on the same levesyn-
onym). A key problem in this type of semantic detection is deteing whether the
terms have similar meaning or related meaning. Sometintesngyns can be seen as
parallel concept@and how fine-grained distinguishing should be used is redeleen-
dent. The same word can also have multiple different mear{palysemy, depending
on the usage context. Finding the right meaning is caledd sense disambiguation
(WSD). These are all problematic for a computer, becausi&aumhuman interpreting
a text, a computer does not have contextual knowledgeold knowledget hand.

In text summarization, a closely related field to discouesgnsentation, there are two
key approaches to text processing. In the traditional aggtr@nlylexical featuresare
taken into account. These can all be computed locally, $hahien processing the text
for the first time. Another approach is to take advantagstifctural features This
is closer to the human approach, but requires processinglibée text beforehand,
and is thus computationally more expensive. The use of wartdvledge, reflecting
encountered information to a conceptual model of all thikgswvn by the interpreter,
would in turn require even more preprocessing and modehNiogcomputer-generated,
human world knowledge equivalent conceptual models exishe time of writing
this thesis. Also many sub-problems of constructing suctodeh like co-reference
resolution and semantic role labeling, are still unsohestarch problems.

Three layers of linguistic knowledge

Putnam (1975) distinguishes three layers of linguisticvkedge: 1)domain vocab-
ularies 2) wordnetsand 3)central ontology The three layers are distinguished ac-
cording to hisprinciple of the division of linguistic laborSuch a division is required
to handle and structure the large quantities of domain wdeap and its linguistic
diversity.

The Blackwell Dictionary of Western Philosophy (Bunnin ahguan, 2004) explains



the connections of Putnam’s principlesocial contexanddomain-specific knowledge
According to it, language is used in a community, and a conityus divided into
many subsets. A word in a language may have different mearang extensions,
depending on its different references and the occasionshashwt is used. The expert
speakers may know all facets of the word and be aware of iisusdistinctions,
but this will not be the case for average speakers. Not alheftcan know all the
distinctions or the exact extension. They use the word inataig that is accepted by
the subset of the community to which they belong. By virtugéhas principle, Putnam
tries to indicate that not every term is a description, aiad tite extension of each term
is at least partly determined socially rather than in thechafithe individual speaker.

e Domain vocabulariesWords collected from the text at hand.
e Wordnets:Words and their relations collected from a large corpus xikte

e Central ontology: Mental model of high-level concepts and their relations to
words.

In this thesis the focus is on constructing domain vocaegaand using wordnets as
supporting resource in finding relations between domairdg/or

Five types of lexical cohesion

Halliday and Hasan (1976) laid the foundation fexical chainsby studyinglexical
cohesiorrelations. They suggested relating words of a text back editet word to
which they are cohesively tied. They also specified five typiésxical cohesion, based
on the dependency relationship between the words.

¢ Reiteration with identity of referencé&he nurse fetched a clean needle. It looked
sharp, that needle.
(a needle <—that needle)

¢ Reiteration without identity of referenc&he doctor looked at his stethoscope.
In his opinion, there could be no better stethoscope.
(his stethoscope <— a stethoscope)

¢ Reiteration by means of superordinatéhe nurse picked a fresh needle. She
was comfortable with handling pointy instruments.
(a needle <— pointy instruments)



e Systematic semantic relation (systematically classé#afihe lines on the floor
leading to surgery were colored red. To the morgue, green.
(red lines <— green lines)

¢ Nonsystematic semantic relation (not systematicallysifeble): Jenny was the
most experienced nurse. She was always in charge of newnadicris.
(nurse <— nurses handle vaccinations)

In the first example there is an identifying reference (fethat needle) and in my
opinion this type is the easiest to detect algorithmicdllye ambiguity of the reference
increases with each example and thus also the complexigsolving the reference.
The second reference example is also clear in the way thepd&ats the earlier en-
countered word. It does not identify a specific target thof{rgferer: a stethoscope).
Resolving the reference in the remaining three examplasnesyprior knowledge of

the world. In example three, the hierarchical relation lestw a needle and pointy
instruments needs to be known. In example four, the immediantext needs to be
temporarily constructed (that the second sentence talgtdimes and that green is
an attribute value of line). The last example is the hardesfiring knowledge of

actions and attributes related to the entity being indiyeetferred to (nurses handle
vaccinations).

Lexical chains, a segmentation method that uses lexicaésioh, are discussed in
more detail in section 4.2.

Related fields of computer science

Detecting topics from a sentence, like many other compleklpms in computer sci-
ence, includes a set of subtasks. There are several subdfatdsnputer science like
computational linguistics, natural language processatiern recognition, clustering,
knowledge representation and information extraction tm&éa few. Some under-
standing of linguistics and statistics is also requiredhgluistics provide most of the
terminology used in lexical processing, semantics relégeohs and models mostly
from psychology. Methods from statistics are used in etivacand analysis of text
features.

One of the key fields imatural language processingNLP), which provides, for ex-
ample, part-of-speech taggingPOS) anddependency parsingMost modern NLP
algorithms are based on statistical machine learning. mkens that, rather than hand-



coding a large set of rules, statistical inference is usddaming such rules. This is
achieved by first analyzing a large corpora of examples andtoacting a statistical
model from thistraining set The learned statistical model is then used in predicting
where in the model a new input would best fit. Many of the taskBILP serve as
subtasks that are used to aid in solving larger tasks.

Data mining and information extraction are used in domaguésition from texts. Data
mining is mostly applied to finding relations from externalisces whereas informa-
tion extraction is used for constructing data sources foertext itself. Categorization
and clustering methods are commonly used when groupindreexnents and finding
similarities.

Related work on discovering hierarchical relations

There are many related works on discovering hypernyms fexty most of which
follow the methods of Hearst (1992). Kennedy and Szpako(2é@7), who worked on
thesaurus data, mention that it is time-consuming to coasé# large lexical resource
that would be as trustworthy as WordNet (Fellbaum, 199&yefore much work is still
left to be done manually. Hearst (1992) was the first to cregpernym hierarchies
automatically from a corpus.

Nakamura and Nagao (1988) mined dictionaries for relataiready in the eighties
and included relations other than hypernyms. Jarmasz grak8wicz (2003a, 2003b)
have used Roget’s thesaurus in constructing lexical claidsietecting semantic sim-
ilarity. Later Kennedy and Szpakowicz (2007) worked on aibaguating some of the
hypernym relations in the thesaurus data. bag-of-wordsoagp Agirreet al. (2001)
worked with topic signatures as a tool in enriching WordNetaepts. Their work
was motivated by the lack of topical links among concepts ordMet. WWW and
sense-tagged corpora were used as a source for finding regmnsl

Pantel and Ravichandran (2004) have conducted researeleliniy semantic classes
using IS-A relations. Snowet al. (2005) introduced machine learning approaches
in the identification of hypernyms in text. More advancedtaeyss, such as Espresso
(Pantel and Pennacchiotti, 2006), have been designedntifidalso other semantic
relations from text.



2 Topic extraction subtasks

Discourse segmentatios about splitting a text into smaller segments. Topic deiac
for each sentence is a key subtask in discourse segmentdtientask is started by
splitting the source text into segments (for which we wantetect the topics). For
example, splitting a scientific paper (a discourse itself,broader one that we are
after) to a set of sentences (collection of documents). Epresenting the topics,
we need to construct at least otopic signaturefor each sentence. Topic signatures
contain selected sentence components, their attributeetations. The signatures can
be improved bysemantic smoothindpy finding related terms from external resources
and including them in the signature. This binds the sigretinithe underlying broader
context of the text.

2.1 Text segmentation

Manning (1998) describatiscourse structuras a set of coherent units extracted from
a text, often represented as a discourse structure treeeXpleeted segmentation result
is that coherent units of discourse can be detected andnéatill describe a single
event and can thus form a sub-tree of the entire discourse tre

Text segmentatiofalso referred to adiscourse segmentatipis the task of dividing
a text document into cohesive segments by topic (Hollingdw@®008). There are
two main approaches to discourse segmentaliilo@ar segmentatioandhierarchical
segmentatiofManning, 1998). Figure 1 summarizes the key differencésdren lin-
ear and hierarchical approaches. In linear segmentatmmdaries are set between
sequential segments of text and the detected segmentstdigther subdivided. In
hierarchical segmentation, in turn, each detected segoa@nbe further divided into
sub-segments and linked to other related segments. Siddetits always contain
sections and sections contain subsections and the tdkistiether divided into para-
graphs. This visual structuring can act as a coarse-grailimmburse segmentation
(Kawtrakul and Yingsaeree, 2005), where headings and mgshghanges are used as
discourse markerdn this thesis, the focus is on mapping sentences to therlynug
semantic discourse structure. Stark (1988) observeddhhivorld text(as opposed to
sequences of computer-generated sentences) is ofterveldadinto paragraphs more
to achieve a visual layout that aids reading than to indiaatieange in the topic under



discussion.

Text segmentation is needed as a subtask in many compuathliifeguistics tasks, for
example in text summarization and IR. Text segmentatiorftencthe first step in
extractive text summarizatigiBarzilay and Elhadad, 1997), in which a summary is
constructed by choosing sentences from the text itselfR|rBalton et al. (1993) have
found that comparing a query against sections and thenzgtagyields more relevant
search results than comparing only against entire docuenéfgers find it also more
helpful if the relevant paragraph(s) are displayed in tiseilts of their query (Hearst,
1997).

LINEAR

"Boundaries are set between sequential segments of text.” H

"Headings and paragraph changes can be used as coarse-grained discourse
markers.”

"Text is often subdivided into paragraphs ﬂ more to achieve a visual layout that
aids reading H than to indicate a change in the topic under discussion.” H

HIERARCHICAL
change in topic

segment () boundary

sequential / Q/ %
segr?

discourse marker  visual layout

O
heading paragraph

Figure 1: Linear and hierarchical segmentation. Lineanmsagation uses only se-

quential boundary markers where hierarchical segmemtatitempts to construct a

concept tree. A tree structure is useful in calculating tezfatedness values between
components of different sentences.

Linear approach

A simplification of the linear approach is to say it is justitaka knife and cutting
the text to pieces. Grosz and Sidner (1986) criticize thigragch, because within
theoretical work on discourse structure, it is standarduaned that discourse has a



hierarchical tree structure. An attempt to induce suchanafrical structure from text
is presented in (Morris and Hirst, 1991).

In empirical work on text segmentation, which attempts ttomatically label dis-
course structure, the assumption of hierarchical natuseldrgely been abandoned,
and discourse structuring is seen as merely a task of liegansntation. Hearst (1994)
notes that the hierarchical view of discourse is standardsiggests that a linear seg-
mentation is sufficient for some domains of interest. Exaspf these include finding
segments for use in WSD and limiting search and returningexoim IR systems.

Hierarchical approach

The hierarchical approach is much harder than the linearoaph, since it requires
identifying non-sequential relations. This is difficultcatime-consuming even for
human annotators (Passonneau and Litman, 1993). Passoameéd.itman mention
also that non-linear segmentation is impractical for naivigjects in discourses longer
than 200 words. Although some tasks in text segmentatioleagerformed with the
simpler linear approach, others like co-reference regwludepend completely on the
recognition of hierarchical discourse structure (Mannit@pP8).

The two basic techniques that have been used for segmerdatioue phrase$Grosz
and Sidner, 1986; Passonneau and Litman, 1993)lexidal cohesionMorris and
Hirst, 1991; Hearst, 1994True cue phrase&uch as "for example" or "basically") are
valuable in processing both spoken and written discourssnnihg (1998) states that
cue phrases are not much use in segmenting naive texts lik@rgpadvertisements,
but still certain elements such as suburbs and prices cauigsed as generalized cue
phrases.

Lexical chains in text segmentation

Morris and Hirst (1991) were the first ones to use lexical mhdor discourse seg-
mentation. This approach has since become a standard appliof lexical chains.
Lexical chains consist of semantically related words, efehn corresponds to a theme
or topic (or a set thereof) in the text (Morris and Hirst, 1RFHigure 2 explains the use
of lexical chain overlap in merging chains.

The chains have beginning points and ending points, whialk thachain boundaries
of that chain. Lexical chains provide at least the followthgee useful cues. These



boundary segment text paragraph discourse marker visual layout change in topic
O ') O O O O O

heading  discourse marker paragraph

O O O

Figure 2: Lexical chain overlap. New chains start from the terms, which alone can-
not be connected to existing chains. By merging new chaiegisiing chains, longer
chains can be produced and thus a more coarse-grained ¢égpnesatation achieved.

cues can help in detecting positions at which there aresshitbpic, representingpic
boundaries

e Chain beginning pointsA significant number of chains beginning at a point in
text probably indicates the emergence of some new topic(s).

e Chain ending pointsA significant number of chains ending at a point in text
probably means that certain topics are not discussed raticéd the text.

e Low number of chain pointsPoints where the number of chains beginning or
ending is not significant probably represent a continuaiiotine discussion of
some topic(s).

2.2 Topic signatures

Topic signaturesre sets of related words, with associated weights, orgdraround
head topics Head topics are much like headings in text, a few keywordsrilgng
the contained text. Once a text has been split into segmeats) segment should
contain only words that are related. Based on the contairmedsaand their relations
the segment can be named. In linear segmentation, wordsdeguential sentences
form sets of related words, whereas in hierarchical segatientthe sets are sub-trees
of the whole discourse tree.

Topic signatures are a useful tool in automated text sunza@wn. They can be used
to identify the presence of@mplex concepta concept that consists of sevardhted
component fixed relationshipgLin and Hovy, 2000).Rest aur ant - vi si t, for
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example, involves at least the concemiu, eat , pay, and possiblyai t er . Only
when sufficiently many of the concepts co-occur, one carr e complex concept;
eating or paying alone are not sufficient. The presented pkadwoes not yet consider
the interrelationships among the component concepts,hwkian important context
distinguishing factor in topic signature inference. Lirdafovy (2000) point out that
many texts describe all the components of a complex concitpowt ever explicitly
mentioning theunderlying complex concepa topic itself. Because of this, systems
that have to identify topics require a method of inferringngdex concepts from their
component words in the text.

Defining topic boundaries

A naive approach to defining topic boundaries in text is eting them only from the

structure of text. However, a single sentence or paragrapglyrcontains the entire
discussion on one topic. For example, in this section, we laitten several para-
graphs about topic signatures and will return to their pcattletection aspects in the
later sections. A broader perspective is needed in defimipigs and their boundaries.

The two common approaches to detecting topic boundariethardynamidracking
approachand the staticontext approach Hearst (1994) describes the tracking ap-
proach as a relatively large set of active themes that chsingaltaneously. Kozima
(1993), in turn, suggests visualizing the context appr@ach scene in a movie which
describes the same objects in the same situation. Whicloagipto choose depends
on what the desired segments are. Figure 3 gives an examible tvhcking approach
and Figure 4 of the context approach. Beeferreaual. (1997) state that much of
the existing literature on text segmentation is somewhgtigan defining the desired
segments. They adopt the empirical definition that a segimandary is the article
boundaries between news reports in newswire corpora. meeting scientific papers,
this would mean that the entire paper defines the topic. Qairigdo find much more
fine-grained subtopics from within a paper.

Using lexical cohesion works well in news reports domaircaduse successive stories
are almost always about completely different topics. Tlistasts with the actual
formatting of a newspaper, where stories on the same topiciarmally grouped.
With scientific papers, each individual paper should alsdisgnguishably different,
having its own contribution, from the other papers in the s@omain. And there is a
similarity in grouping as well; a list of conference papesds to contain papers from

11



Theme: division Theme: change

text set boundary segment heading change discourse marker
1) O— O 0O 2) O— O 0
text subdivide paragraph paragraph change discourse marker
3) O——O— 0 2 0—0—20
4) achieve visual layout
e
- - - / O
division
\O—»O

5) indicate change in topic

Figure 3: Tracking approach to detecting topic boundari€be idea is to iterate
through sentences and try to map sentence terms to an daivet When this cannot
be done, mark theme changes.

1) 2) 3) 4) 5)
boundary heading text division division
segment paragraph subdivide achieve indicate
text change paragraph | | visual layout | | topic change

discourse marker

Figure 4: Context approach to detecting topic boundarié idlea is to construct an
independent context frame for each sentence and thereitbaframes to detect topic
changes.

the same special interest group. There is, in fact, a teryd#rtbis type of grouping in
most text collections, which leads us to the problem of glesatal cohesion between
independent texts appearing together. Beeferman (199@y gin example of days
when big news stories covering the entire front page may fetdd to one topic, but
will contain multiple articles. Such circumstances caugsagexical cohesion between
the individual articles on the page, but the articles emigkadifferent aspects of the
same event and thus represent different “movie scenes”ifknz1993). Similarly,
within real estate ads, every ad talks about bedrooms, gardmcations and prices.
There is great lexical cohesion throughout the entire estdte section, but we still

12



wish to segment it into smaller, unique descriptions of gaciperty.
Naming a topic

Why is naming a topic, giving it a signature, important intteggmentation? Consider
unnamed topics, which do not have an easily referable, caabjgor searchable sig-
nature. How would we construct a model from them without thiétg to refer back to
already detected concepts? There are three main apprdaahesing a text topic: 1)
using one of the contained terms 2) detecting the nearesncorhigher level concept
and 3) constructing a name from the component concepts.

e Contained term:Selecting the highest ranked or most frequent containea ter
as the signature name. Requires weighting the terms.

¢ Nearest hypernynfSelecting the nearest hypernym of the highest ranked or most
frequent contained term. Requires an external source adrnyms like a the-
saurus or wordnet.

e Constructed namefFinding several key terms and finding a way to combine
them. Possible combining strategies include finding an @kawnse, a template
use case, where the terms occur together. Another appreamnstructing a
grammatically acceptable signature name based on the g@fasfseech of the
terms, or when POS is not available, their order of appearanthe source text.

One of the key characteristics of a signature name is thandasiname should be
derivable from the terms and relations belonging to theatigne. The reason for con-
structing signature names is to be able to compare them ¢ signatures and to give
a common name for the contained group of concepts. An exaaimenamed un-
derlying concept is given in Figure 5. When constructingnaigre names only from
terms in the source text, there is a riskookrspecificationthe signature becoming too
bound to the appearance context. This reduces compayabilignatures describing
the same concept, but which have been constructed fromesitaiims of another text.
The opposite of overspecificationuaderspecificatiopa situation when an occurrence
of terms results in a too generalized signature name.

Topic signatures in text segmentation

The central idea of systems based on lexical cohesion (Mamd Hirst, 1991) is that

13



1) "Inthe shadows, the temperature can drop to minus degrees Celcius
and the liquid will freeze.”
2) "When exposed to direct sunlight, it will vaporize.”

NAMED UNDERLYING HIGH-LEVEL CONCEPT

water
forms: actions:
solid, freeze,
liquid, flow,
gas vaporize

Figure 5: A named underlying high level concept, the compbrencepts and the
source text.

if the text continues to use similar words, then it is prolyadiill talking about the
same topic. It is important to note the difference betwedadmgsimilar wordsand
searchingelated words This type of simple looking for repeated words is insufintje
because describing the underlying concepts to a readedalfamiliar with the gen-
eral topic does not require mentioning any of the higherllesacepts of the current
discourse. Most systems, such as (Morris and Hirst, 19%B) tlhesauri or semantic
nets to enable evaluating cohesion at a semantic levekrrétln at a lexical level.
For hierarchical topic modeling, hierarchical synonymsmafrds can be found with
the help of WordNet (Fellbaum, 1998).

General lexical cohesion will pick out a large unit on a dertapic, whereas in many
cases one wants to separate out smaller units within thit tdpe heuristic of group-
ing segments that are lexically or semantically similargpased to the most common
heuristic for segmentation in information extraction (#¥tems. A common approach
in IE systems is to extract individual slots and fillers, asveh in Table 2, and then to
merge information into frames (Manning, 1998). This is lobse using the high level
heuristic that one merges information unless it is conttady. For example, having
extracted a place followed by a date, then one combines tlsemvacomponents of
information about one event. On the other hand, if one haa&bed two places in turn,
then they probably describe different events. This hdaristolves seeingemanti-
cally cohesive wordas an indicator of a different event rather than a contionabif
the same topic.
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In many cases simply linking two words or sentences as kkiataot enough. There
is a need to specify the type of relation and possibly defimbecaual restrictions to it.
Specifying the relation type can be done as an attributeeofdtation, but binding the
relation to a context, to multiple other concepts and thedatrons, requires a different
approach. Unlike most other text segmentation work, Besderet al. (1997) have
modeled bothattractionandrepulsionbetween words as relation attributes, and their
model can therefore generalize over both these intuitioktgraction and repulsion
attributes can be thought of as collections of categorizetivaeighted factors con-
tributing to positive or negative correlation. This apprieanables postponing total
relation weight calculation and makes it possible to softlr the factors according
to their importance to the context at hand.

2.3 Semantic smoothing

A common method otlusteringtext documents is Bag-of-words approachwhere
each document is represented as a list of words or phrasesdasector A weakness
of the bag-of-words approach is losing the occurrence asflerords. Too common
words, like articles (“a”,“the”) and conjunctions (“antidy”), are often filtered out
with stop word lists The key words of a domain can then be calculated by collgctin
word vectors from different documents. A matrix of docunseand terms with term
occurrence counts as values can be constructed in ordetetct decuments with sim-
ilar sets of terms. This is known as the vector space modetek Improvement to the
model is latent semantic indexing (Deerwesteal., 1988).

A document is often full of domain-independent general wplike “approach” and

Role dots Role slot content examples

subject: verb: obi “Semantic smoothing improves topic signatures.” (seneanti
ject: smoothing)-(improves)-(topic signatures)

resource: metadata‘(Zhou et al., 2007)” (this document)-(refersTo)-(othecd
field: metadata cont ument)

tent:

Table 2: Syntactic role slots and filler examples. Triplesaar example of simple slots,
which can express source, relation and target.
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“result”, and short of domain-specific core words. Zhamngl. (2006) explain that this
makes document clustering challenging, because the ladistifict terms results in
more similartraining setshan with documents containing specific terms. Fortunately
general words are not a big problem with scientific textsgesithey include a lot of
highly domain-specific terms. The greater problem with amsttiic text, from a topic
modeling point of view, is that a writer expects some (oftignigicant) domain-specific
knowledge from the reader. This means that many common ptsicethe domain are
not explained or even mentioned in the text.

Since a text does not contain all the terms needed to miryrdaficribe the underlying
broader context, finding terms and relations from exteresburces is required to fill
the gap. This can be done by enriching each training set ¢teothected from a doc-
ument) by adding related terms collected from externaluness like WordNet to that
training set. Also attributes for the related terms can beuwtated, for term weighting
purposes, like a semantic relatedness value to the docuarerg. Document cluster-
ing experiments by, for example, Zhaetal. (2006) show that model-based clustering
approach wittrsemantic smoothinignproves cluster quality.

Semantic smoothing, incorporating synonym and sensemébon into the training
sets, is an effective way to improve retrieval performarngeo( et al., 2007). Zhou
et al. (2007) mention that earlier semantic smoothing models sscthe transla-
tion model have shown good experimental resultstrahslation modelmeans map-
ping terms to either synonymous or similar terms. Transtathodels are, unfortu-
nately, unable to incorporate contextual information. kb al. (2007) proposed a
context-sensitive semantic smoothing method that deceagpa document into a set
of weighted context-sensitive topic signatures. This tgpsignatures can then be
used in IR tasks, for example in mapping the signatures in&ygterms supplied by
the user.

In the experimental part of this thesis, semantic smootlsrgplied to sentence topic
signatures. A simple topic signature can consist of a setavfisvfrom one sentence.
When an external resource is available, this set can beheriwith detected related
words from that resource. A weight can be calculated for itpeagure, with the help

of a collecteddomain vocabularyfor example to approximate how much contribution
the sentence contains. Zhetial. (2007) used pre-defined context centroids and ex-
pectation maximization (EM) algorithm in clustering th@itsignatures to contexts.
When incorporating context information with calculatettintites to the signature, a
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more complex data structure than just a word listis needeé.dpproach to improving
the signature is structuring it to hold verbs, nouns, adjestand adverbs in separate
subsets or a matrix of terms and their attributes. Havingrgiaspeech information
available for each term eases semantic distance calawdatigh thesaurus resources,
like WordNet.

Semantic smoothing is an important step in improving sigreatjuality. Modeling
semantic cohesidinom only the written words of a scientific text is, intuitiyeseldom
possible. Having context and world knowledge (similar aglted terms) available
when detecting context has been shown to improve modeltyBlbyd-Graber et al.,
2007). Table 3 gives examples of four common semantic bgntjipes.

Binding type | Examples

state "frozen cooler water" and "running engine" refer to the iint
state of a car

action "driving on a highway" and "stopping to refuel” refer to dite
actions related to a car

event "overtaking a truck" and "getting a speeding ticket" retesitua-
tional events related to driving a car

temporal "l bought it ten years ago" is a temporal expression and "a(two
hour drive in rush hour" refers to a temporal event

Table 3: Modeling semantic cohesiveness with bindings tdecd. The idea is to add
attribute slots (like state, action, event and temporath®topic signature template.
While processing each sentence, try to find context termd tbdislots.

2.4 Chaining the subtasks together

The goal of the experimental part of this thesis is to find e$ak domain-specific
content from a scientific text. The method to achieve thissigia of pre-processing
the text with NLP tools, calculating domain specificity aetsntic relatedness values
for sentences and finally constructing an extractive summithe text. Additionally,
the intermediate steps of the algorithm produce data whictidcbe used in labeling
and indexing the whole document.

The following list contains algorithm phases related toidaggnature construction.
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The whole algorithm is described in more detail in Section 5.

e Split text to sentencegonstruct the segments for which topic signatures will be
generated.

e Pre-process with NLP tool€xtract words from sentences, use POS and lemma-
tization to improve comparability of words.

e Enrich common wordsfetch direct hypernyms for each sentence word from
WordNet and add them to sentence word vector.
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3 Extracting semantic features from text

3.1 Natural Language Processing

Sentence topic modeling depends heavily on the most comasks in NLP. NLP
provides methods to, for example, splitting the text to seo¢s and words (sentence
segmentation), POS, dependency parsing and lemmatizakitamy of the tasks in
NLP serve as subtasks that are used to aid in solving largks.tdn the following,
we discuss the steps in NLP in their pre-requisite ordernteggation is needed before
tagging can be performed, tagging individual words is nddxdore parsing the whole
sentence or lemmatizing a word to the correct root form bexsopossible.

Sentence segmentation

Sentence segmentatiogfers to dividing a text into its component sentences. In En
glish and some other languages, using punctuatior? (! ) is a reasonable approx-
imation. However, even in English this is not trivial due e tuse of the full stop
character () for abbreviations, which may or may not terminate a sergeAt exam-
ple of non-terminating dot is “... as he arrived. Dr. Jonesigpi@ated ...”, where “Dr.”

is not its own sentence. A precompiled abbreviations maphedm prevent incorrect
assignment of sentence boundaries.

Splitting a text into sentences is the simplest form of sergdopic modeling. This is
done by assigning a unique, unnamed topic to each sentenéertithately, this does
not result in a connected sentence topics model, becaug®itgs all relational infor-
mation, like references between sentences and same teeshinudifferent sentences.
However, splitting a text into sentences, is a good staimigt for categorizationor
clustering of which categorization is used in the case study. Extngotvords of all
sentences takes us one step closer to useful topic modelirsgmple distributional
context approach is to use the words in nearby sentenceschsrsgonstructing a
context vectofor the sentence.

An example of sentence word vectorsvith sentences, word vectors and
enriched word vectors.

S1: Purpose of use is detected with cue words |ike wth.
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S2: Detecting cue words helps in finding causality rel ations.

Word vectors
S1. [ purpose, use, be, detect, cue, word ]
S2: [ detect, cue, word, help, find, relation ]

Enri ched word vectors

S1: [ purpose, use, be, detect, cue, word,
goal, find, discover, clue, evidence ]

S2: [ detect, cue, word, help, find, relation,
observe, find, discover, clue, evidence ]

Sentence word vectors can be enriched with related wordstdet from external re-
sources like WordNet. A common approach is to add close mypes (more general
concepts) to sentence word vector. After enriching the weictor, parts of the sen-
tence content, for example “detect cue word”, can be expdegsth paraphrases like

“find evidence”, “discover evidence”.

At least some of the following NLP methods are needed foragxing the hidden
features of the words and sentences. Depending on the tyjpéoafnation that the
methods process, this is callexkical topic modelingpr semantic topic modeling

3.1.1 Part-Of-Speech Tagging

In corpus linguistics, part-of-speech tagging, also kn@asgrammatical taggingor
word-category disambiguatigiis the process of marking up the words in a text (cor-
pus) as corresponding to a particular part of speech. Thisme based on both its
definition, as well as its context, i.e. relationship withameént and related words in a
phrase, sentence, or paragraph. A simplified form of thisfisraonly taught to school-
age children, in the identification of words as nouns, veaidfectives, adverbs, etc. In
computational linguistics, POS tagging is done using atlgors which associate dis-
crete terms, as well as hidden parts of speech, in accorddtita set of descriptive
tags (Manning and Shutze, 1999).

An example POS result where tags starting with “V” mean verb and tags
starting with “N” mean noun. (from Stanford POS Tagger)

20



Pur pose of use is detected with cue words |ike wth.

Pur pose/ NNP of /I N use/ NN i s/ VBZ detected/ VBN with/IN
cue/ NN words/NNS |ike/INwth/IN./.

POS tagging can be used as such in helping sentence topidingpdgince the same
words can have multiple senses, knowing the part of speeahwaird can be used in
limiting the possible senses to only those appearing wildétected POS. Borrowing
an approach frordistributional word sense disambiguaticansentence context vector
can be generated from the nearby words and their POS tagh@aRDIS-limited set of
known word senses. POS also enables constructing muloplexts for the sentence,
one containing only actions (verb), another for subjechjeats and related entities
(nouns) and one even for descriptive words appearing ndadpgctives).

3.1.2 Dependency Parsing

A natural languagparseris a program that works out the grammatical structure of sen-
tences, for instance, which groups of words go togethemfasases") and which words
are the subject or object of a verBrobabilistic parsersuse knowledge of language
gained from hand-parsed sentences, with the goal of prodube most likely analy-
sis of new sentences. These statistical parsers still ntake sistakes, but commonly
work rather well. State-of-the-art Stanford parser hasau@acy of over 90 percent
(Klein and Manning, 2003). Their development was one of tiggést breakthroughs

in NLP in the 1990s.

The Stanford lexicalized probabilistic parser, used in ®cientific Writing Assistant

project (SWAN, http://cs.uef.fi/swan/) and the relatedezxpental part of this thesis,
implements a factored product model, with separate prdibabicontext-free gram-

mar (PCFG) phrase structure and lexical dependency expértse preferences are
combined by efficient exact inference, usingAthalgorithm (Hart et al., 1968). The

software can also be used simply as an unlexicalized stbcltasitext-free grammar

parser. Either of these yields a good performance stalgt@rsing system: "We've

parsed at a rate of about 1,000,000 sentences a day by ulistglthe work over 6 dual

core processor machines." (Klein and Manning, 2003).

An example parse resultwith noun phrases “purpose of use” and “cue
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words” detected. (from Stanford Parser)

Pur pose of use is detected with cue words |ike wth.

( ROOT
(S
(NP
(NP (NNP Pur pose))
(PP (IN of)
(NP (NN use))))
(VP (VBZ is)
(VP (VBN det ect ed)
(PP (I'N with)
(NP (NN cue) (NNS words)))
(PP (INIike)
(PP (INwth)))))
(. .)))

Parsing provides useful information for topic modeling.p&sially the grammatical
roles of words appearing around a verb are helpful. For el@mpnstructing subject-
verb-object sequences (triples) for each sentence. Baatsn provides groupings to
noun phrases and verb phrases. This reveals the deepensitidetures of sentences
and enables for example entity recognition.

3.1.3 Lemmatization

A lemmain morphology is the canonical form oflaxeme Lexeme, in this context,

refers to the set of all the forms that have the same meanmbleanma refers to the

particular form that is chosen by convention to represemtékeme. In lexicography,

this unit is usually also the citation form or headword by evhit is indexed, in other

words the word under which a set of related dictionary estaigpear. Lemmas have
special significance in highly inflected languages, whereekample the use of post-
positions varies the word forms. The process of determitiieglemma for a given

word is called lemmatization.
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An example of lemmatization. The difference between stemming and
lemmatization is that stemming is strict string matchingalihcuts pre-
defined word endings whereas lemmatization aims at findieditttionary
form of a word. (from MorphAdorner English Lemmatizer)

Wor d: relation
Lenmmma; rel ati on
Porter stem rel at

Lancaster stem rel

From the topic modeling point of view, lemmatization enatstoring the words in their

shorter root form. This makes comparisons between diffarestances of the same
word easier to implement. Without lemmatizatieudlit distancebetween instances of
the same word would have to be calculated. The edit distasiveslen two strings of

characters is the number of operations required to tramséore of them into the other.
Having the same word written differently results in the worstances always having
an edit distance greater than zero. For detecting sentepisstwe want same words
occurring in different sentences to be detected as actyrasepossible. For entire
document indexing, on the other hand, this would be of |lessgortance.

3.1.4 Word Sense Disambiguation and topic modeling

Many words have multiple meanings. The process of idemiifyhe sense of a word
in a particular context is known as word sense disambignatWéSD is an important
task in NLP, and is a key component in, for instance, macharestation and IR.

An example of word sensedor one word. The example contains four
senses of the word “detection”. (from WordNet)

* S: (n) detection, sensing
(the perception that something has occurred ...)
"early detection can often lead to a cure”

* S. (n) detection, catching, espial, spying, spotting
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(the act of detecting sonething; catching sight ...)

* S: (n) signal detection, detection
(the detection that a signal is being received)

* S. (n) detection, detecting, detective work, sleuthing
(a police investigation to determ ne the perpetrator)
"detection is hard on the feet"

Recently researchers have experimented with topic mo@alisef al., 2007) for sense
disambiguation and inductioffopic modelsre generative probabilistic models of text
corpora in which each document is modeled as a mixture oa&an() topics, which
are in turn represented by a distribution over words. Apgiea using topic models
for WSD either embed topic features in a supervised modealéCal., 2007) or rely
heavily on the structure of hierarchical lexicons such asdNet (Boyd-Graber et al.,
2007).

One of the main goals of this thesis is to apply topic modei@atpniques from WSD to
discourse segmentation, specifically to sentence topicimad There are also many
other advanced NLP techniques, likamed entity recognitioNER) andsemantic
role labeling(SRL), which might also be applied to discourse segmentatigut at-
tempting to develop algorithms also for these entire sulddief NLP is out of the
scope of this one thesis.

3.2 Resources for computing domain specificity and semantie-
latedness

There are four types of lexical resources for compusiamantic distanceA common

approach is to compute semantic distance from the lexipbgras’ judgments that are

implicit in dictionaries, thesauri, semantic nets and Wets (Fellbaum, 1998) or
FrameNet (Fillmore et. al, 2010).

3.2.1 Dictionaries and thesauri

A thesaurus helps to find a word that is wanted and a dictiodafines it. One of
the commonly used dictionaries is thengman Dictionary of Contemporary English
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which is available also online (http://www.ldoceonlinent/). It consists of headwords
and has it's own defining vocabulary. In general, dictioesare described as closed
paraphrasingsystems of natural language, which means restatement af artéd’s
semantic content using other words. A paraphrase typiexipfains or clarifies the
text that is being paraphrased.

Dictionaries

One of the dictionary-based approaches to computing sémdiatance includes the
so-called Kozima and Furugorispreading activation algorithnfKozima and Furu-
gori, 1993). The idea, in brief, is to create a node for evegdword and link this
node to the nodes corresponding to all the headwords infitsitien. When a word is
encountered, it triggers processing of that words’ dicigrrelations as well. Kozima
and Ito have later improved this algorithm by introducingative scaling (Kozima
and Ito, 1997). The difference of these two approaches ie#d tontext-free (static)
and context-sensitive (dynamic) distances differentlgharacteristic of such straight-
forward dictionary approaches is to ignore the context adi$ on direct mappings
between words. When context is considered, the perceigtdrtie changes with the
observed context. Associations constructed from theatiaty usually have a direc-
tion in the mapping (engine is part of a car and bus is a typesbicle). It is difficult
for a computer to detect hierarchical relation from a teldiztionary definition unless
it is explicitly given (Kozima and Furugori, 1993).

Thesauri

In athesauruswords are grouped by meaning and semantic distance. Irtiardicy
the entries are independent, whereas in a thesaurus aésb#long to at least one
category and thus have relations to other entries. The ifld@esauri was invented
by Peter Mark Roget and a first english thesaurus was pullish&852. Thesauri
were originally intended as a memory-aid for writers in ledpwith finding the most
appropriate word. The structure Roget's Thesaurufom 1911 is to classify all
words into approximately 1000 categories. In a thesauragrd may appear in more
than one category due to words having multiple senses anfd¢héhat there can be
different perspectives on a single sense. Each thesaurgocgis in turn divided into
smaller groups of closely related words. Adjacent categoare often an indication
of antonymous content. Table 4 contains category relati@mgles from Roget's
thesaurus.
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A thesaurus simply groups some related words, but does rotfghe relationships.
Thus, some of the words marked as related may not be conligxtmasemantically
close. Thesaurus-based approach by Morris and Hirst (189b) define unnamed
relationships based on structure of thesaurus, for exampame-category-as and
in-adjacent-category-to. Words are considered to be clibshey are in the same
category or in categories that are related through indesiesnbr cross-references.
Figure 6 is a content example Roget’s thesaurus with alahibical categories for
word posteriority.

Related terms | Relation description

wife-married | both in same category

car-drive category of car has cross-reference to category of drive

brutal-terrified| both are in categories with the same cross-reference toré |thi
category

Table 4. Examples of thesaurus relations. (from Roget'sahruis)

I. WORDS EXPRESSING ABSTRACT RELATIONS

VI. TIME
2. RELATIVE TIME; Time with reference to succession
Posteriority.

[Antonyms: priority.]

[Nouns] posteriority; succession, sequence; following [more]; subsequence, supervention;
futurity [morel; successor: sequel [morel; remainder, reversion.

[Verbs] follow [more] after, come after, go after; succeed, supervene; ensue, occur; step
into the shoes of.

[Adjectives] subsequent, posterior, following, after, later, succeeding, postliminious,

postnate; postdiluvial, postdiluvian; puisne; posthumous: future [morel; afterdinner,
postprandial.

[Adverbs] subsequently, after, afterwards, since, later; at a subsequent, at a later period,
at a later date; next, in the sequel, close upon, thereafter, thereupon, upon which,
eftsoons; from that time, from that moment: after a while, after a time; in process of time.

Figure 6: A content example for word “posteriority” in Rogahesaurus.

The experimental part of this thesis contains code for uBioget's Thesaurus as one
of the lexical resources in finding hierarchical relatioe$ween terms. Roget's The-
saurus has been implemented in Java as an Electronic Lékicalledge Base (Jar-

masz and Szpakowicz, 2001). An 8-level hierarchy for grogpivords and phrases
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in the thesaurus induces a measure of semantic distancedetwords and phrases
(Jarmasz and Szpakowicz, 2003a). A distance is calculat#uedength of the short-

est path through the hierarchy between two given terms. Aes@ilects the level at

which both words and phrases appear. Table 5 lists the fixstdrdies of the Jarmasz
and Szpakowicz semantic distance calculation.

Semantic | Term comparison condition | Example of category level

distance | based on Roget’s categories

0 the same Semicolon Group | succession, sequence;

2 the same Paragraph (types of U.S. coins) penny, cent

4 the same Part of Speech Nouns

6 the same Head Posteriority

8 the same Head Group Time with reference to succession

10 the same Sub-Section 2. RELATIVE TIME

12 the same Section VI. TIME

14 the same Class . WORDS EXPRESSING AB;-
STRACT RELATIONS

16 different Classes or not foundpenny, posteriority

Table 5: The Jarmasz and Szpakowicz semantic distancesvahaeRoget’s thesaurus
categories. The Semicolon Group contains the most closédyed terms, while the
Class is the broadest category.

3.2.2 WordNet

The originalWordNets a large lexical database of English. It was developeduhae
direction of George A. Miller in Princeton University. Thewklopment started already
in the late 1980’s and versions of WordNet have since beeeldegd for many other
languages by many research groups (Miller, 1990; Fellb2988).

In WordNet nouns, verbs, adjectives and adverbs are groimpedo-calledsynsets
sets of cognitive synonyms, each expressing a distinctegncSynsets are the key
building blocks of WordNet and they are interlinked by botimceptual-semantic and
lexical relations. A word appears in one synset for eachsdfehsesEach synset has
also agloss(definition) and possibly some example use cases of theicedtavords.
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The linking results in a navigable network of meaningfulated words and concepts.
WordNet'’s structure makes it a useful tool for computatldinguistics and NLP.

An example of WordNet structure:

dog, donestic dog, Canis famliaris
=> cani ne, canid
=> carnivore

=> placental, placental mammal, eutheri an,

=> manmal

=> vertebrate, craniate

=> chordate
=> ani mal , ani mate bei ng, beast,

=> ...

In WordNet each synset is connected by the so-called IS-&iosl to itshypernyms
(more general concepts) amgponymgmore detailed concepts), see Table 6. The
IS-A relationship forms a set of trees in WordNet, in otherdga set of hierarchies
or taxonomies. The maximum depth of a synset is limited toridraultiple inheri-
tance (same word belonging the multiple hierarchies) enadt. WordNet can be used
simply as a synonym hierarchy tree, but taking advantagbeptovided additional
relationships makes it a network. Examples of such relatameantonymy(oppo-
site meaning)meronymy(is part of) andholonymy(has as part). A later developed
project called EuroWordNet has many additional semantatiosis and refinement
of meronymy. The original idea behind EuroWordNet is to maganings between
different (european) languages.

The experimental part of this thesis uses WordNet as oneeolettical resources in
finding hierarchical relations between terms.

3.2.3 FrameNet

FrameNetis an on-going project based @emantic framescurrently in its third re-
lease. A semantic frame can be thought of as a concept withpd. dt is used to de-
scribe an object, state or event. The FrameNet lexical databontains around 10,000
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Relation type Examples

Synonymy or near-synonymy mistake-error, command-order, enemy-foe
(appear in same line in synset)

Subsumption hypernymy/hyponymyapple-fruit, fruit-banana (appear in same
synset hierarchy)

Meronymy and holonymy engine-car, player-team, tree-forest, brick-
house (PART-OF, HAS-A)
Antonymy tall-short, big-small (COMPLEMENT-OF)

Table 6: Examples of WordNet relations.

lexical units (a pairing of a word with a meaning; polysemausds are represented
by several lexical units), 800 semantic frames and overQDexample sentences
(Fillmore et. al, 2010). FrameNet is a project similar to AMet. It consists of a lexi-
con which is based on human annotation of over 100,000 seggevith their semantic
properties. The unit in focus is the semantic frame, a typstae or event together
with the properties associated with it.

Note that FrameNet is not amntology a complete conceptual model of the world,
instead it is an attempt to create semantic frames. Suctef@ontain a limited set of
other concepts related to the concept at hand. Semantie$rarake it possible to make
general statements about the semantic-syntactic behalvignoups of lexical units
rather than one at a time. FrameNet contains more than 1a0@# and the developers
have defined, with computer-aided annotation, a rich siracof relations between
them (Table 7). The relation mappings partially form an nthece hierarchy. The
upper frames in that hierarchy resemble some of the upp@&siaexisting ontologies.
The goal of FrameNet, however, is to fully represent thedistic facts, rather than to
exhaustively categorize the entities and events in thedvérlameNet developers have
created a set of semantic types which are applied to framasefelements, and lexical
units.

A lexical unit(LU) is used in pairing a word with a meaning. Words can havdipia

senses i.e. meanings in different contexts. Each sensecdjsgmous word belongs to
a different semantic frame, a script-like conceptual stmgcthat describes a particular
type of situation, object, or event along with its particitmand props. For example,
in the Apply_heat frame (Table 8), the Cofstkme elemenfFE) has the semantic type
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A Cookapplies heat téood where theTemperature_settingf the heat andura-
tion of application may be specified. KAeating_instrumenigenerally indicated by
a locative phrase, may also be expressed. Some cooking dsetihmlve the use
of a Medium(e.g. milk or water) by which heat is transferred to fmd A less
semantically prominerffood or Cookis markedCo_ participant

Table 7: Description data from a FrameNet frame Apply_heat.

"Sentient”, the Container, the semantic type "Contained' he Heating_instrument,

"Physical_entity". Some of the categories are rather hroaikthe idea is that they can

help a semantic parser pick out the right pieces of a senterlabel with these FEs.

Core frame element | Semantic type
Container Container
Cook Sentient
Food

Heating_instrument

Physical_entity

Temperature_settin

g Temperature

Table 8: Core frame elements of frame Apply_heat.

In addition to the core frame element®n-core frame elemenksve been defined for
the frame Apply_heat. In the example, in Table 9, the FEs Madind Co_ participant

are non-core FEs. All others are semantically essentiad, parts related to applying

heat.
Cook | Apply heat | Food Medium | Heating_instrument | Co_participant
Sally | fried an egg | in butter
Sally | fried an egg in a teflon pan
Ellen | fried the eggs with chopped garlic

Table 9: Examples of frame elements related to Apply_heat.

The FrameNet frames and thus the Frame Elements and Lexidsl &ssociated with

them, are intended to be situated in semantic space by méé&masne-to-frame rela-

tions and semantic types. The relations used in FrameNetdednheritance, Sub-
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frame, Causative_of , Inchoative_of , and Using. Table Xks@nts an example of
frame to frame relations from the Apply_heat frame.

Relation type | Relations of frame Apply_heat

Inherits from: | Activity, Intentionally_affect

Is Used by: Cooking_creation

Is Causative of] Absorb_heat

Table 10: Frame-frame Relations for frame Apply_heat.

From the sentence topic modeling point of view, WordNet jdes lexical hierarchi-
cal relations and FrameNet provides semantic hierarchéations. The FrameNet
relation types in table 11 include for example causative tentporal relations. The
relations in FrameNet exist between frames (collectionglated concepts), whereas
the WordNet relations exist between synsets (near synongmvords).

Relation Sub Super
Inheritance Child Parent
Perspective on Perspectivized | Neutral
Subframe Component Complex
Precedes Later Earlier
Inchoative of | Inchoative State

Causative of | Causative Inchoative/State
Using Child Parent

See also Referring Entry| Main Entry

Table 11: Types of Frame-frame relations, from (Fillmorea¢t2010).

3.2.4 Ontologies

There are many existing ontologies and knowledge basesvdiic at modeling the
general concepts of the world around us. These are callegr wpypologies or world
ontologies. A more domain or context oriented approachdaue of frames in map-
ping object properties and contextual co-occurrence. tbrmextual approach was
discussed in more detail in Section 3.2.3. The existenceazdcoverage public re-
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sources, like Wikipedia and Wiktionary, has encouragedaehers to attempt semi-
automatically constructing such ontologies.

One of the problems with ontologies is that an ontologicaiteis a surrogatefor the
thing itself in the real world. A surrogate is a descriptioften just a name perhaps
enriched with a few properties, instead of the “real entity'the real world or the
conceptual model of the real entity in your head. This is duthé fact that defining
the “real entity” is difficult.

The word “bicycle” is a surrogate for a transportation deeic But what
does the surrogate describe? My bicycle, an instance otlacyhe con-
cept of bicycle, ...

How accurate can a surrogate become, if we add propertigsliotheory it is possible
to add all meaningful properties to a surrogate, but in iraatsing as high fidelity as
possible in the description is problematic.

My “bicycle” is green and has received good maintenance. ligaw did |
perform the maintenance? Should | mention that | opened amdclated
all moving parts? Which moving parts, all bolts and screws?to

Comprehensively describing a concept with all its propgsttrelations and contextual
connections is next to impossible. This is because a gedesaliption of a concept is
always an approximation and a compromise. An approximalienause no common
description exists which would fit all situations where aysle needs to be mentioned.
A compromise, because you cannot or need not tell everytiiiated every time you

talk about a bicycle. Thus you can describe a bicycle basgdwrpersonal conceptual
model, but the reader will interpret your message with hia canceptual model.

The experimental part of this thesis does not extend to @diifintelligence, which
would mean attempting to interpret all ontological relatio Instead the focus, in use
of external resources, is on finding simple hierarchicaltrehs and other words from
the same context.
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4 Relevance and semantic relatedness measures

Relevances defined as how connected or applicable something is toengnatter.
Philosophically, a thing is relevant if it serves as a mears given purpose, in other
words, a sentence is relevant to a domain when it's contesarites or discusses the
underlying whole text context. Sentence relevance can diedted, for example, by
collecting a domain vocabulary and matching sentence worttee vocabulary.

In the experimental part of this thesis, relevance meagusinsed in finding key sen-
tences of a text. In a text, many sentences contain similalated content and thus a
semantic relatedness measure is used in ranking the seateitb related content.

4.1 Domain vocabularies as relevance measures

A domain vocabularys the set of words within a language that are specific to agive
domain, for example, the terminology used in computer sgemn human language
learning, a vocabulary usually grows and evolves with tiamg serves as a useful and
fundamental tool for communication and acquiring knowkdécquiring an exten-
sive domain vocabulary is one of the difficulties in using aatulary as a relevance
measure.

Extensive domain vocabularies can be collected by findirygvkeds from large text
corpora. This would result in a reliable vocabulary, butlexting one is a time-
consuming task. In the experimental part of this thesis, eer@oconomical approach
of collecting domain vocabulary from a text is studied. Rattihan finding the most
common keywords from corpuses of given domain, we adopt pp@site approach.
That is, we detect domain keywords by thkeick of presencén a 150 000 common
word lexical resource, in this case WordNet (Fellbaum, }9B8rthermore, words co-
occurring in the same sentence with domain words are giviénhearelevance value
of a domain vocabulary word, all others are treated as comaaods.

The pros of using a domain vocabulary as a relevance meastitglé that it works
well with scientific texts which contain a lot of special tenmlogy. The cons include
that the approach does not work for general descriptives temtl has a heavy depen-
dence on the used lexical resource content. The same protiégrandence on training
data, is present also when directly collecting keywordsfeoseemingly large corpora,
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Domain Domain
vaocabulary vocabulary

Common words
words co-occurrence

words

Figure 7. Domain vocabulary words are those not found in commord resources
like WordNet. Words co-occurring in same sentence with aalar@ocabulary word

are marked as domain vocabulary co-occurrence words. Dowaaiabulary words

are given a relevance value (1), co-occurring words halféhevance value (0,5) and
common words are treated as irrelevant (0). Each occurreir@e&lomain vocabulary
word or co-occurring common word adds to the total relevari@esentence.

which still does not contain all central terms of a domain.

A domain-specifiontologywould be better than a domain vocabulary. Unfortunately,
such ontologies have not been assembled for most domairasttucting one auto-
matically is a non-trivial task. A domain ontology modelgp@sific domain, or part of
the world and represents the particular meanings of terrtieegsapply to that domain.
An ontology would include a gloss for each word and would sa&jgathe multiple
senses of one word and have hierarchical relations betweandrds.

4.2 Semantic similarity vs. semantic distance

Semantic similarityneans detecting synonymous words, whessasantic distances
used for constructing a numerical distance between wordkffefent meaning. One
approach to both problems is to first look for known relateddsdrom an external
source (or just words appearing nearby in text) and constigicelation chains or
graphs between found words. This is much like constructiagtions of a mind map
of the general topic.
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In cohesive and coherent texts, which is expected of sfietdxts, sentences are likely
to refer back to previously introduced concepts. In textdtam to readers already
familiar with the general topic, references are also madeltied concepts that have
not been introduced in the written text. All these referenicem lexical chainsn the
text (Hirst and Budanitsky, 2001).

Formal relations

There are two major categories of lexical semantic relatibormal relationdike I1S-A
and HAS-A have been collected to lexical resources (Worddvetxample).Typical-
ity relations in turn, are bindings to the usage context of words, mosnotiinding
other sentence words to the action (verb). Typicality is agteneric feature across
all texts, but rather domain and situation specific. Examspleformal relations are
similar meanings in synonymy, hierarchical relations likgernymy and hyponymy
and opposite meanings in antonomy.

chair 1S-A seat |S-Afurniture ISA ... IS Athing

house HAS- A porch
house HAS- A | of t

Figure 8: An example of IS-A and HAS-A formal relations. ISrélations form a
hierarchical chain of higher and higher level conceptsichathing), whereas HAS-
A relation is pair of higher level concept (house) and a loleeel, contained concept

(porch).
Typicality relations

Examples of typicality relations are co-occurrences ohaggubject) and patient (ob-
ject) in an action or event (verb). Detecting causality isnyadone by detecting cue

words like "because" and then collecting the agent, actr@hgatient from the sen-

tence to a typical causal relation. Purpose of use can alseteeted with cue words
such as "with". Simply counting word co-occurrences alsivjales information about

typical relatedness. Examples of typical co-occurrencesaow and ice, bread and
butter and such.

Lexical chains and semantic distance
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Det ecting/V cue words helps in finding/V
causality rel ations.

Fi ndi ng/ V purpose of use is quite simlar, it
can be detected/V with cue words like "with".

Figure 9: An example of typicality relations, specificallyetterm “cue words” co-
occurring with verbs “find” and “detect”.

Lexical chains are lists of related words in a text (Hallidend Hasan, 1976). Words
are added to an existing lexical chain only if it is relatedny of the words in the chain
by a cohesive relation. Two main approaches to approximgatinesion are term re-
iteration and semantic distance calculation. An examplkeinh reiteration approach
is given in Figure 10. The example sentences used in the éabl&1="Boundaries
are set between sequential segments of text", S2="Textes slibdivided into para-
graphs", S3="more to achieve visual layout that aids regicind S4="than to indicate
a change in the topic under discussion".

Each word in a lexical chain is related to its predecessothg®eby a) identity of refer-
ence or by b) being somehow semantically close or semalytreddited (Hoey, 1991).
For the first categoryreference resolutionis the subtask and forms its own research
field in NLP. The second category, semantic relatednessbisad term. It includes
for example the NLP subtasks of SRL and WSD.

4.3 Methods for computing semantic relatedness

Semantic relatedness is typically computed using one ditbenain classes of meth-
ods.Resource-based measure$y on an external linguistic resource in calculating se-
mantic distance, where asstributional similarity measuredepend on co-occurrence
data. Co-occurrence data can be collected from the docuatdrand, but a higher
quality resource; one with more terms and relations, canobstoucted from a large
text corpora.

Resource-based measures
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Sentence | Chain from sentence Active Chains after

S1 boundary-segment-text boundary-segment-text

S2 text-paragraph boundary-segment-text-paragraph

S3 layout boundary-segment-text-paragraph, layput
S4 change-topic-discussiqnlayout, change-topic-discussion

Figure 10: Simple lexical chain construction with term eegition (nouns). Chains
are constructed by checking if already encountered woraspear in the following
sentences. When no words of a chain are found (in a given wireddpfor example,
three sentences), the chain is closed. New chains aredstahienever a word is not
found in the still active chains.

Morris and Hirst (1991) used thesaural relations in corsing lexical chains and Jar-
masz and Szpakowicz (2003a, 2003b) have used Roget’s thesauetecting seman-
tic similarity. (Refer to Section 3.2.1 for details of thasa approaches.) In text sum-
marization, Barzilay and Elhadad (1997) used relationséen WordNet (Fellbaum,
1998) synonym-sets to estimate semantic distance. Latei®aand Elhadad (1999)
have shown that a sentence or paragraph with many lexicaihanning through is
likely to be a good choice to include in a summary.

Resource-based methods, using a dictionary or thesaurasdmple, are an improve-
ment over term reiteration and they capture much larger atnaftsemantic informa-

tion. However, their dependence on a specific resource ldgratic. The methods
are often unable to operate across parts of speech (POShsideo other than class
relations. Lemmatization (see Section 3.1.3) can ease aosons between words of
different POS. Use of dictionaries or ontologies, whichteammore descriptive infor-

mation, can help in finding other than class relations.

Measures of distributional similarity

Measures of distributional similarity rely on word co-oo@nce information to cal-
culate semantic distance. Unlike resource-based meadtesse measures are not
affected by the limitations of a specific linguistic resarc~or example, WordNet
contains 150 000 common words but very few words specific iensiic domains.
The downside of distributional measures is that they ofteninto word sense am-
biguity problems, because they consider only the surfacedmf words and not the
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word senses (meanings). Also, their correlation with hujndgments is observed to
be fairly low (Weeds, 2003).

Hybrid methods combining resource-based and distributioml measures

The shortcomings of both resource-based measures antulisinal measures, when
used alone, rises the need for a method that incorporateadventages of both.
Mohammad and Hirst (2006) proposed measures for combinistglaitional co-
occurrence information with semantic information from adhurus. These measures
were shown to outperform traditional distributional measuon the tasks of correct-
ing real-word spelling errors and ranking word pairs in ordésemantic distance
(Mohammad and Hirst, 2006).

The framework of Mohammad and Hirst, which they dubbedliagibutional mea-
sures of concept distandPMCDs), combines distributional word co-occurrence in-
formation with the semantic information from a thesauru®©MCD is configured by
choosing an appropriateindow siz€they used 5 words before and after), the measure
of distributional similarity, and the statistic used to reee the strength of associa-
tion. DMCDs were evaluated by ranking word pairs in ordeheit semantic distance
with human norms. DMCDs outperformed all distributionalaseres on the task, but
stayed second to the Jiang and Conrath (1997) WordNet-lvasasure.

Computing semantic relatedness

How to computesemantic closene8sA human reader instinctively has an intuition
about the semantic distance between two words. A compuiever, does not have
a world model against which to reflect it's observations.

Construction of lexical chains depends on semantic clasgrmit how can we deter-
mine the semantic distance between two words and whethedigtance is small?
Converting a human intuition about semantic distance tonapeational algorithm is

still an open research problem. Some attempts on strugttiig problem have been
made in the past. Rubenstein and Goodenough (1965) andvdter and Charles

(1991) constructed an experiment where they asked peoplddge semantic distance
between given pairs of words on a scale from 0 to 4. Exampdas fhe test categoriza-
tions are a) highly synonymous: gem-jewel, b) semantiagaligted: crane-implement
and c) semantically unrelated: noon-string. The answers test subjects were con-
sistent (90 percent correlation) and the researchers woedlthat there are different
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types (Table 12) of semantic relations between the words.

Word pair Relatedness
car,automobile 3.92
gem,jewel 3.84
crane,implement 1.68
journey,car 1.16
rooster,voyage 0.08
noon,string 0.08

Figure 11: A sample of the results from Miller-Charles setitadistance judgment
experiment. The relatedness values are on a scale from (hbalsgh value indicates
close relatedness. Human test subjects considered “caif'aatomobile” to be closely
related and “noon” and “string” to have next to nothing in coon.

Human intuition about semantic distance

Word meaning and semantic distance between words can bexappted with the
help of dictionaries and other lexical resources. Howeadryorld knowledge is not
available for a computer, although ontologies are beingttanted for the purpose.
Context frames are a simpler approach to modeling propeatiel occurrences in a
similar context. The psychology category is challengingdmpute, though its use is
very typical and effortless in human everyday thinking. Arrage european can asso-
ciate Italy with red sports cars or with pasta, even thoughehms do not have similar
definitions or properties. A key problem is modeling the wadr a way that guides
traversing the semantic relatedness and context modele T&blists the categories
and intuitions behind them.

Category I ntuition
Word meaning | definitions are related or similar in some way (vehicle, bus

World knowledge| two things have similar properties or often occur togethen g
a similar context (car, driving)
Psychology we often think of the two things together (apple, banana)

Table 12: Human intuition about semantic distance.
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Guidance for traversing the model could be implemented idahwhich consists of
context-bound, weighted relations so that only the mostréss relations of a concept
can be retrieved. The idea is the same as in calculatingnr#tion content (IC), the
occurrence frequency, for words. In this case the frequavayld be calculated for
word pair relations or n-gram relations.

WordNet::Similarity library for computing semantic relat edness

WordNet::Similarity(Pedersen et. al, 2004) is a Perl module that implements a va-
riety of semantic similarity and relatedness measuresdbasenformation found in

the lexical database WordNet. In particular, it supporesrtireasures of Resnik, Lin,
Jiang-Conrath, Leacock-Chodorow, Hirst-St.Onge, Wurieal Banerjee-Pedersen,
and Patwardhan-Pedersen. In the experimental part of hlesis, a Java imple-
mentation of the same measures is used (from David Hope,elsily of Sussex,
http://www.cogs.susx.ac.uk/users/drh21/).

There are three main approaches to semantic relatednessininga The measures in
WordNet::Similarity can be categorized to path, inforraatcontent and gloss overlap
measures. Currently the Perl version also contains a llesii@an construction algo-

rithm.

For semantic relatedness measuring in the experimentalopahis thesis, Jiang-
Conrath measure was selected. This measure has produckdstheesults in many
comparisons (Jurafsky and Martin, 2009) and it has been showutperform a com-
bination of distributional and resource-based measurehévhmad and Hirst, 2006).
The algorithm uses WordNet relations and pre-calculatiatmation contenfIC) val-
ues in selecting theeast common subsum@rCS). See Figure 13 for a visualization
of IC and LCS.

Information content (IC) is the word occurrence frequentg text corpora. Func;
tion IC(x) is used in expressing the information content.of x

Least Common Subsumer (LCS) is the most informative subgtimeemost fre-

guently occurring word) in the path between the two words.

Figure 12: Definitions of information content and least coonnsubsumer.

The creators of WordNet::Similarity have pre-computedbinfation content files
from the British National Corpus, the Penn Treebank, thewBroCorpus,
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the complete works of Shakespeare and SemCor. A Perl s@imvailable
from the WordNet::Similarity website, with which the IC flewere created
(http://search.cpan.org/ tpederse/WordNet-Similautiis/rawtextFreq.pl).

object(2.79)

artifact(4.70)

structure(8.30) \dﬁ.@raﬁﬂn

building(9.23) door )
/ \ design
house apartment
studio

Figure 13: Example of information content in WordNet. Wheaitalating the related-
ness between “house” and “decoration”, the least commosuwsueér will be the word

“building”, because it is on the path between the words argdtha highest informa-
tion content value of IC=9.23. We only included the inforroatcontent values on the
path and in the shared higher level concept in the figure,derdio point out which IC

values are checked when determining the LCS of two words.

The relatedness value returned by the Jiang-Conrath neeasurequal to
1/jen_distance, where jen_distance is equal to:

IC (synsetl) + IC(synset2) — 2 x IC(lcs)

In the equation synsetl is the WordNet synonym set identfidne first term (house)
and synset2 is the WordNet synonym set identifier of the sbtenm (decoration).
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5 Proposed relevance modeling algorithm

We propose an algorithm for finding essential, domain-gjgecontent from scien-
tific texts. The motivation in constructing such an alganitis in the readers’ need
of quickly finding the core content, at best the contributioha scientific text. A
similar need exists in many other fields, for example, in ratlanguage generation
and document indexing. In the experimental part of thisithélse proposed algorithm
is applied to extractive text summarization. The algoritimst pre-processes the text
with NLP tools. This includes splitting the text to sentesidagging each word with a
part-of-speech and lemmatizing each word to it’s dictigriarm. Secondly, a domain
vocabulary is collected and relevance values calculatealfesentences based their
relation to the collected vocabulary. In the third stepat@iiness values between all
sentence pairs are calculated with a similarity measuteudes WordNet.

After all features have been extracted, the relevance desees is determined by
categorization. From the categorization results an ette@summary of the relevant
text content is constructed. The following list summaritesalgorithm steps.

1. Splittext to sentence€onstruct the segments for which topic signatures will be
generated.

2. Pre-process with NLP tool€xtract words from sentences, use POS and lemma-
tization to improve comparability of words.

3. Collect domain vocabulary:Construct domain vocabulary from words not
present in WordNet, which contains only common words.

4. Calculate domain specificityUse the collected domain vocabulary and co-
occurring common words to evaluate sentence relevance twhble text.

5. Calculate semantic relatedneddseWordNet::Similaritylibrary to calculate se-
mantic relatedness values between sentences. This is mlanedr to find sen-
tences that are (semantically) most connected to othes phtihe text.

6. Categorize sentencedNormalize the three calculated values. Categorize sen-
tences to relevant and irrelevant using sentence data rathsthve calculated
domainVocabulary, coOccurrence and semanticDistancesal

42



5.1 Constructing topic signatures

There are three steps in constructing topic signaturextfgeting features, 2) filtering

the features and 3) enriching the features. The steps tedicat we can extract useful
features, like individual words, from the text. But sometfeas are too common to
be used in categorizing a sentence which contains them. €atltler hand, the source
text seldom contains all words needed to express the umdigdgmantic content, the
meaning and broader context of the text.

Extracting features

In the extraction step, text is split to segments; to semgnghrases and words. This
may seem like an obvious and simple step, but it is non-trfelaa computer, which
does not have eyes, brains or world knowledge. Current-sefatge-art text segmen-
tation tools have statistical models for estimating thetesare boundaries. (Refer to
Section 2.1 for discussion on text segmentation.)

Natural languages have a structure and making the struataitable to an algorithm
requires the use of NLP tools. Finding the part-of-speeckamh word, for exam-
ple whether the word is a noun or verb, is explained in moraibigt Section 3.1.1.

Lemmatization means finding the dictionary form of a wordisTik done to improve
comparability of words and is applicable mostly to wordsobgiing to the same part-
of-speech. Lemmatization and the difference to stemmirlg gtrict string matching

Is discussed in Section 3.1.3.

Filtering features

All extractable features of a sentence are not essentiadnnexcting the sentence to
a broader context. One definition e§sentialis the ability to make distinctions be-
tween candidate concepts. This means that more domaiifisex rarely occurring
concepts make a sentence more unique.

The problem for an algorithm is finding essential contentrmodeling only that. The
approach taken in this thesis includes collecting a domasabulary, calculating word
occurrence frequency and leaving out too common words wétop word list. Stop
word lists and other semantic smoothing methods are disdussSection 2.3.

Some of the typically used, and proven to be distinctive @i Hovy, 2000), fea-

43



tures in text summarization are position, cue phrases, wbodmativeness, sentence
length and cohesion. In news feed texts, first sentencesrafj@ohs are often in-

cluded in summaries. Also sentences containing highly domsgecific words indicate

extract-worthiness, whereas too short sentences selddudaenough information to

be included in a summary. Content selection and cues arassisd in more detail in

Section 2.2.

Enriching features

One of the key limitations of local features, those extraletdrom a text without ex-
ternal resources, is that all the terms needed in undeiistpadd relating the sentence
to a broader context are not included in the text. But everextternal resources have
their limitations. Even the broad coverage, human-coostdiresources like WordNet
(Fellbaum, 1998) do not include all terms and relations. rEtfeese state-of-the-art
resources often have little or no binding to the occurrermedexts of words.

The limitation of using external resources in enrichingteeoe features is that each
measure is only as good as the resource it depends on. Modt\é@bmeasures, in-
cluded in WordNet::Similarity library, use only nouns ar&A relations, algorithm
parameters are set with very sparse human data and roletekt¢onsemantic distance
judgments is not accounted for. To tackle these limitatidaarst (1994) suggests use
of statistical word co-occurrence data.

The enriching approach used in this thesis is to use only idmete context, the closest
related hypernyms of sentence words. Direct hypernymssintesice subject, verb and
object lemmas are queried from WordNet. This approach doeldasily extended by
including multiple levels of hypernyms and hyponyms. Thepstof enriching topic
signatures were explained in detail in Section 2.3.

5.2 Computing domain specificity

Domain specificity of a sentence is approximated by calmgdatvo values, the domain
vocabulary word occurrence count and the occurrence cduwbrls co-occurring
with domain vocabulary words in other sentences. For exangie sentence men-
tions “flying a spaceship” and another sentence mentionmtfly In the first sentence
“spaceship” is domain-specific and it causes “flying” to eated as a co-occurrence
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word.

The following pseudo code summarizes the algorithm stégsattual code produced
in the experimental part of this thesis is written in Java sralvailable as part of our
Scientific Writing Assistant project (SWAN, http://cs.Ud@wan/) source code.

/'l collect domain vocabul ary
for each sentence in docunent
for each word in sentence
if (WordNet does not contain word)
addToDonai nVocabul ary(wor d) ;

/'l collect domain vocabul ary word co-occurring conmon words
for each sentence in docunent
for each domai nVocabul aryWrd i n domai nVocabul ary
i f (sentence contai ns domai nVocabul ar yWr d)
for each coomonWird in sentence
addToCoCccurrenceVocabul ary( commonWr d) ;

/'l cal cul ate domain specificity values of sentence
for each sentence in docunent

i nt domai nSpecificity = O;

i nt domai nWr dCoCccurrence = 0;

for each word i n sentence

{
i f (domai nVocabul ary cont ai ns word)
domai nSpeci ficity++;
i f (domai nVocabul aryCoGccurrenceWr ds cont ai ns word)
domai nWor dCoCccur r ence++;
}

Collecting domain specificity values is done as part of @bl sentence categoriza-
tion input data. Refer to Table 13 for examples of normalirgulit data to sentence
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categorization. The following graphs show calculated dowvazcabulary and coOc-
currence values.

Domain vocabulary word count

Damain specificity (vocabulary)

1234658 7 89 1011121314151617 19 12 20 21 2223 24 25 26 27 28 20 30 31 32 33 34 35 36 37 33 30 40 41 4242 44 45 49 47 49 4050 51 52 53 54 55 56 57 58 50 60 61 62 63 64 65 66 67 68 61 70
Sentence

W Sentence

Figure 14: Domain specificity of sentences from first testutieent according to do-
mainVocabulary parameter. The 70 sentences of first testndewt are shown on the
x-axis and the domainVocabulary value (normalized to @rijhe y-axis. The same
representation is used also in the following coOccurremze semanticDistance pa-
rameter bar charts.

Domain vocabulary co-occurrence

Domain specificity (co-occurrence)

123 458 7 8 810111213 14 1516 17 18 19 20 21 2223 24 25 26 27 26 20 30 31 32 33 34 3538 37 38 30 40 41 42 43 44 45 48 47 48 4050 51 52 53 54 55 56 57 53 50 60 B1 62 63 84 65 66 67 68 60 70
Sentence

W Sentence

Figure 15: Domain specificity of sentences from first tesutioeent according to coOc-
currence parameter.

5.3 Computing semantic relatedness

Semantic relatedness of a sentence, to all other sentam¢ke same document, is
approximated by calculating one average relatedness.vahis is achieved by first
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computing relatedness between sentence words, then ectsr a temporary sen-
tence pair relatedness matrix and finally calculating ayen@latedness value from
each matrix row. Both row and column averages are calculatedder to reduce the
effect of varying sentence length.

/'l cal culate sentence termmatrix row averages
for each row
rowAver ages[i] = rowlernsAvgSum / rowCount;

/'l cal culate sentence termmatrix colum averages
for each col umm

col Averages[i] = col TermsAvgSum / col Count;

r owAver agesSum = sun{r owAver ages) ;

col Aver agesSum = suni col Aver ages) ;

(rowAver agesSum/ rowCount * col Count)
(col AveragesSum / col Count * rowCount);

avgRel at edness

+

The following pseudo code summarizes the algorithm stégsattual code produced
in the experimental part of this thesis is written in Java snalvailable as part of our
Scientific Writing Assistant project (SWAN, http://cs.uééwan/) source code. Jiang
and Conrath semantic relatedness measure is discusseddrdetail in Section 4.3.

int[][] semanticDi stanceVal ues;
int[] avgSemanti cRel at ednessVal ues;

/'l cal cul ate semantic rel at edness between all sentence pairs
for each sentence in docunent
f or each ot her Sentence i n docunent

{

int semanti cD stance = O;

semant i cDi st anceVal ues[ sent ence] [ ot her Sent ence] =
cal cul at eJi angConr at hRel at edness(sent ence, ot her Sent ence);
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/'l cal cul ate average rel at edness val ues
for each sentence in docunent
avgSemant i cRel at ednessVal ues[ sent ence] =
cal cul at eAvgRel at edness(semant i cDi st anceVal ues|[ sent ence]);

Collecting semantic relatedness values is done as partlletting sentence catego-
rization input data. The following graph shows calculatedrage semanticDistance
values. Average is calculated from relatedness to all at@etences of the same docu-
ment.

Sentence Relatedness (rowColAvg Jiang-Conrath)

Relatedness

Figure 16: Sentence semantic relatedness of first test daduaccording to seman-
ticDistance parameter.

5.4 Categorization to relevant and irrelevant

Common approaches to providing sentence content for cazegjon include: 1) as
such without pre-processing, 2) as stemmed word vectonsaani3gramsof sequential
word occurrences. We instead experiment by first pre-psitgshe sentences with
Stanford NLP tools, then constructing a topic signaturédé latent sentence features
for each sentence.

The sentence latent features are first calculated in a peepsing phase and data
rows with these values are then categorized. The domaitubergy value is a sum of
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domain vocabulary words in the sentence, coOccurrence usnao$ common words
occurring together with any of the domain vocabulary wordlee semanticDistance
value represents the semantic connectedness of this sernteather sentences of the
text. A simple arithmetic average value for each of thesebates, encountered in
a test document, is calculated. For domainVocabulary af@ccorrence an above
average value, and for semanticDistance a below average,\raticates relevance. A
sentence is categorized as relevant if more than one d#ribdicates relevance.

Sentence domainVocabulary | coOccurrence | semanticDistance
S1 0 0.315789 0.114542

S2 0 0.315789 0.224857

S3 0.25 0.421053 0.29816

S4 0.25 0.578947 0.424506

S5 1 0.736842 0.460848

Table 13: Example of input data to sentence categorizalibis data can be stored in
the topic signature of a sentence and thus no external I=s®ar matrices are needed
in the categorization phase.

Histograms of input data distribution divided into 10 biRggure 17 shows domain\o-
cabulary parameter values distribution, Figure 18 coQetize parameter and Figure
19 semanticDistance parameter.

Histogram (domain vocabulary)

5o  oos ow  om  om os om  om  om  om o oss o o om o o oss o oss o0 ipt
value.

Figure 17: Histogram of domainVocabulary parameter frost fest document.

The histograms show that most sentences have a low attralle. Considering

domainVocabulary and coOccurrence attributes, his mée®hly few sentences are
domain specific. The large number of sentences with shadries to others makes
categorization harder using only semanticDistance at&ildn the case study, all three
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Histogram (co-occurrence)

Figure 18: Histogram of coOccurrence parameter from fisgtdecument.

Histogram (relatedness)

Figure 19: Histogram of semanticDistance parameter frashtist document.

attributes are considered when categorizing each sentence
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6 Case study: Extractive summary generation

In this chapter we implement and evaluate the method of &@eé&tiin the context of
extractive text summarization. Text summarization meamnsgressing the source text
into a shorter version while preserving its information taom and overall meaning.

6.1 Methods and input data

The following four published scientific documents were uagthput data for the sum-
marization algorithm. The title, abstract, introductiordaconclusions sections of the
documents were first collected to plain text files (testDde%tDoc2, testDoc3 and
testDoc4). According to scientific writing expert Jean-llLeBrun (www.scientific-
writing.com), these are the key sections of a scientific papleen it comes to provid-
ing an overview of the whole paper to the reader.

e testDocl V. Hautamaki, T. Kinnunen and P. Franti, “Text-Indeperndg&peaker
Recognition Using Graph Matching”, Pattern Recognitiottéses, 29(9): 1427—
1432, 2008

e testDoc2 R. Saeidi, J. Pohjalainen, T. Kinnunen, P. Alku, “Templyrdleighted
Linear Prediction Features for Speaker Verification in AiddiNoise”, Odyssey
2010: The Speaker and Language Recognition Workshop, Bioech Repub-
lic, pp. 40-46, June 2010.

e testDoc3 J. Sandberg, M. Hansson-Sandsten, T. Kinnunen, R. S&eiBlan-
drin, P. Borgnat, “Multitaper Estimation of Frequency-\Wed Cepstra with Ap-
plication to Speaker Verification”, IEEE Signal Procesdirdters, 17(4): 343—
346, April 2010.

e testDoc4 T. Kinnunen and H. Li, “An Overview of Text-Independent Gger
Recognition: from Features to Supervectors”, Speech Camuation 52(1):
12-40, January 2010

The following list summarizes the steps of applying the g algorithm to extrac-
tive text summarization:
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1. Collect relevant sentence€ollect relevant sentences with the proposed algo-
rithm.

2. Construct extractive summaryConstruct an extractive summary of the source

text from the collected relevant sentences. Summary amigin steps include
1) selecting number of sentences to include in summary,|l2¥tieg sentences
from categorization results, in our case study, maximum lemof ten sen-
tences, 3) ordering selected sentences. Simple approamioléang is to use
order of occurrence in the source text. When the suggesta@xtovords im-
provement is available, ordering can be done by groupingeseas to latent
topics with context word matching.

3. Compare summary to abstracC.ompare the constructed summary to the human
written abstract of the same scientific text by calculatergtoverlap.

Evaluation of text summarization systems

Text summarization systems and natural language genemtgtems are evaluated by
their solutions to three key problems: 1) content sele¢cpimformation ordering and
3) sentence realization (Jurafsky and Martin, 2009).

In this case study, content selection is done by calculdlireg latent values for each
sentence and then categorizing the sentences, as desariBedtion 5. First a set of
relevant sentences is calculated, which aims at reducengumber of summary candi-
date sentences. Then information content of sentence (6uontained words ICs) is

used in selecting ten sentences to include in the extrastimenary. The information

content values used are the semcor values from WordnettaBiy

Information ordering is kept unchanged; it is the same asitter of appearance in the
source text. A future improvement would be to use the seerteemantic relatedness
values in grouping the extracted sentences in order to imepfstory continuity” in
the summary. For sentence realization, extractive sunzatawn is used, where the
summary sentences are picked from the source text.

Precision and recall of the extractive summary are evallateomparing it to original
human written abstract. In general, a higleall means we have not missed much but
we may have a lot of useless results. Hayacisionmeans that the returned result was
relevant, but that we might not have found all the relevasrha.
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precision = truepositives/(truepositives + falsepositives)

recall = truepositives/(truepositives + falsenegatives)

An example of true positives are the human written summamadound in the ex-
tractive summary. False positives are the terms includdaterextractive summary,
but not found in the human written summary. False negativeamthe terms that
were missed; those not found in the extractive summary, bigiwexist in the human
written summary.

6.2 Results and discussion

We have constructed and evaluated summaries of four peblistientific papers from
the domain of speaker recognition (voice biometrics). Thal @f the experimental
part of this thesis is to act as a proof of concept. Our hymasheas that high domain
specificity, co-occurrence with highly domain specific @ritand frequent use of same
(and semantically related) words indicate sentence exivathiness. Thus content of
such sentences should be included in the summary.

Document | Precision (best) | Recall (best) | Precision (worst) | Recall (worst)
testDocl.txt| 0.438 0.814 0.290 0.581
testDoc2.txt| 0.340 0.621 0.247 0.379
testDoc3.txt| 0.427 0.889 0.369 0.472
testDoc4.txt| 0.196 0.452 0.250 0.238

Table 14: Best and worst recall results: precision and refadxtractive summary
generation for all test documents.

In general, a highecall means we have not missed much but we may have a lot of
useless results. Highbrecisionmeans that the returned result was relevant, but that
we might not have found all the relevant items. Our gold séatida human written
summary, may or may not contain all relevant informationted tvhole document.
Because of this, we chose to accept low precision and highlr&this means that we
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focused on finding as much as possible of the relevant coatehtelying on the fixed
limit of ten sentences in the extractive summary to prevemirty too much irrelevant
information to sift through. Table 15 shows results fronfatént combinations of
attributes.

Feature Precision | Recall
DV 0.295 0.535
CO 0.419 0.605
SE 0.291 0.581
DV,CO 0.316 0.581
DV,SE 0.471 0.767
CO,SE 0.438 0.814
DV,CO,SE 0.397 0.581

Table 15: Results from experimenting with different conatians of attributes. The
results show precision and recall of extractive summaryeggion for testdocl (At-
tachment 1). Features and feature groups in short formatamainVocabulary (DV),
coOccurrence (CO) and semanticDistance (SE).

For comparison, we present results from Wong et.al (2008Jivie 16. The table
shows classification performance based on different feajuoups under the PSVM
classifier. They worked with ROUGE datasets which contaid2@beled sentences
and also used advanced methods like semi-supervised nedelaiming. Their work
focused on getting high precision results. Wong et. al (2@@®cluded that their
most useful feature groups were surface and relevanceher atords, the external
characteristics of a sentence in the document and theaeilips of a sentence with
other sentences in a cluster. Our results support theimigndhat a combination of
sentence characteristics and relatedness to other sestpruduces best results. In
our work the combinations of domain vocabulary and semastatedness and also
co-occurrence and and semantic relatedness producedshebelts.

Co-occurrence relevance measure improves summary quality

An obvious conclusion is that detecting domain vocabulargns is essential for find-
ing the domain-specific sentences. In addition to this, idensig domain vocabulary
co-occurrence data broadens the set of potentially extvadhy sentences and thus
acts as smoothing of the initial highly domain-specific $etemtences. Manual testing
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Feature Precision | Recall
Sur 0.488 0.146
Con 0.407 0.167
Rel 0.488 0.146
Event 0.344 0.146
Sur+Con 0.575 0.160
Sur+Rel 0.488 0.146
Con+Rel 0.588 0.139
Sur+Event 0.600 0.125
Con+Event 0.384 0.194
Rel+Event 0.543 0.132
Sur+Con+Event 0.595 0.153
Sur+Rel+Event 0.553 0.146
Con+Rel+Event 0.581 0.125
Sur+Con+Rel 0.595 0.174
Sur+Con+Rel+Event 0.579 0.153

Table 16: Results from other research. The table showssmwesi and recalls of dif-
ferent feature groups under the PSVM classifier. The featused were surface (Sur),
content (Con), relation (Rel) and event (Event) features.

with Weka machine learning framework from University of W&o (Hall et. al, 2009)
showed that when the categorization input parameters argdered alone, domain-
Vocabulary parameter splits the input set of sentenceshigug to half (relevant /
irrelevant), whereas coOccurrence and semanticDistaddeetter. They both tended
to indicate that only one quarter of all sentences in the ohasu are relevant.

Better results would naturally be achievable, both for dionsaecificity and related-
ness measures, with a large domain-specific text corpota.oBdocuments from the
same domain could be collected, for example, from onlindiglir databases. A
similar approach has already been used, in WordNet:: Sittyilgbrary, in collecting
terms and calculating information content values for theomf copyright protected
dictionaries and thesauri.

Problems with hierarchical modeling
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One of the hardest problems in computationally modelingmmegaand structure of
texts is the lack of world knowledge and the lack of simple nset® represent world
knowledge. There are, for example, no template situatimalels of events occurring
in the world. FrameNet is a promising approach in resolving problem, but at 2011
it still contains only a small set of template situations ananeant as training data
for further machine learning. Other ontologies are setsetd#ted terms, with little

connection to the occurrence context of the contained terms

Another problem is the lack of broader immediate contextMedge, an understand-
ing of the domain of discourse. The enriching approach sstggen this paper does
add context terminology, but not context template situetioAnd enriching with an
external resource depends on the comprehensiveness oésbatce; WordNet or any
other resource only contain a limited set of common words.
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7 Conclusions and future work

In this thesis we have discussed the sub-problems in dise@@gmentation of texts:
various NLP tasks of the source text, computing relevaneeegality and relatedness
of sentences and how to categorize the sentences to getaachigiand how to con-

struct a summary of the whole text. We have presented a biecat and contextual

approach to sentence topic modeling, where topic sigmnatuese first generated for
each sentence and the sentences were then categorizecirtafohd essential con-

tent. External resources, WordNet and information contiaté of words, were used
in enriching and categorizing the topic signatures.

The proof of concept type experimental part of this thestxeaded in constructing
extractive summaries from published scientific papers. &periences with filtering

the sentences in the experimental part show that colleatthgmain vocabulary helps
in finding the most domain-specific sentences from a text.e®etg co-occurrence
with domain vocabulary terms broadens this set of extramtiw sentences from the
highly domain-specific ones. Sentence concept generaétgulated from sentence
term information content values, is both useful in targgtime generated summary for
the general public or the expert reader as well as in deténgnsentence relevance to
the domain.

Comparing extractive summary to human written abstraciltes in approximately
50 percent term overlap. The bias of found terms was on the momain specific
ones. An extractive summary could be made more readablatiéisee simplification
was used, for example, by leaving out attribution clausekiaitial adverbials. As
such, the results are potentially useful to people workiritp \document indexing,
information extraction or message understanding.

The problem of extracting meaning and context from text iso@d topic, it is consid-
ered as one of the key problems on the path towards artifitielligence (Al). This
leaves room for many improvements. For example, topic sigeaelation detection
could be improved with WSD, named entity recognition (NERJ atatistical weight-
ing of features.

Improvements to the algorithm

Many NLP methods were studied while writing this thesis, boly a few of them
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made it to the experimental part, mostly because of the Inessdof the topic. Some
improvements to the proposed algorithm include enrichengence content with hy-
pernyms, collecting related terms for word pairs and caling) how general terms
the writer has used. The improvements should be executed @f-processing the
sentences, when dictionary forms of sentence words aribleibut no calculations
have yet been made.

e Enrich with more general wordg$zetch direct hypernyms for each sentence word
from WordNet and add them to sentence word vector. The gdal iimprove
sentence relatedness matching.

e Collect context wordstse the information content data precalculated for Word-

Net words to find most common words related to the sentendewbrThe goal

is to improve sentence relatedness detection and conteetagy detection.
Improvement steps include 1) collect information conteslugs for sentence
term pair least common subsumers from statistical occoeretata (WordNet
information content files), 2) collect immediate hypernyaissentence terms
based on highest IC value, 3) add collected words to topitasige as immedi-
ate context words.

e Calculate content generalityJse the information content data precalculated for
WordNet words to calculate the generality of sentence ciinféhe goal is to en-
able targeting the extracted sentences to expert or nosémers. Improvement
steps include 1) collect information content values of seo¢ terms (Word-
Net information content files) 2) pick k highest informaticontent values from
different sources and calculating average from those &gcaiize sentences to
general (0-0,5) and specific (0,5-1) classes
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Attachment 1: Algorithm input data

Text-independent speaker recognition using graph maigchin

Technical mismatches between the training and matchinditons adversely affect
the performance of a speaker recognition system. In thispa@ present a matching
scheme which is invariant to feature rotation, translatod uniform scaling. The
proposed approach uses a neighborhood graph to repregegtotbal shape of the
feature distribution. The reference and test graphs ageedi by graph matching and
the match score is computed using conventional templatehmmgt. Experiments on
the NIST-1999 SRE corpus indicate that the method is corbpata conventional

Gaussian mixture model (GMM) and vector quantization (\l@¥ed approaches.

One of the biggest challenges in automatic speaker reg¢ogistobtaining invariance
across varying operating conditions, while retaining maxn speaker variability. Dif-
ferent handset type, transmission line/coding, and backyt noise are typical factors,
which lead to signal mismatch across training and recammitiFor a speaker recog-
nition system to be useful in practice it needs to be optichagainst the mismatch
problem. Various approaches have been proposed for tgckim invariance prob-
lem, including robust feature extraction (Mammone et &96@), feature normalization
(Pelecanos and Sridharan, 2001), model transformationr|Ket al., 2007; Teunen et
al., 2002; Vogt and Sridharan, 2008), and match score narat@n (Auckenthaler et
al., 2000; Reynolds et al., 2000). State-of-the-art tagiependent speaker recognizers
use mean subtraction at the utterance level, often reféorad cepstral mean subtrac-
tion (CMS) in the context of cepstral features. The assumnpiti mean subtraction
is that all the feature vectors have been translated by anawk channel-dependent
vector. By subtracting the mean from both the training astrg vectors, the match-
ing is less affected by this bias. For clean data (no chanisghatch), CMS degrades
accuracy. A general affine channel/environment model (MakEsang, 2004; Mam-
mone et al., 1996) includes rotation and scaling of the featectors in addition to
the additive bias. The three transformations - rotatioalisg, and translation - can be
collectively expressed as an affine feature distortion r‘noplg AX p b. The matrix
A and vector b are channel-dependent transformation paeasp@hereas x and y are
the clean and the noisy (observed) vectors, respectivalyméage- and video-based
biometrics, invariance against rotation, translation scaling is often desirable. For
instance, a face recognizer would produce the same mateh, sedependent of face
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tilting (rotation), location with respect to the backgrau(translation) and distance
from the camera (scale). A natural idea to achieve invaeéasto construct a graph
from certain feature points from the images and then to uaphgmatching (Bunke
and Shearer, 1998) methodology. In the matching phase,tbelgraph structures -
and not the original feature points - are compared. For el@nfjurge and Burger
(2000) use Voronoi diagram graphs to model ear shape. Thehgmef the reference
ear and the unknown ear were matched using error-corregtaggh matching. Itis an
open question whether similar ideas could be adopted tdkepeacognition. In our
view, formulation of a transformation invariant matchirtheme for speech features
poses several challenges. First, images are two-dimeads@md the semantic mean-
ing of the constructed graph can be visually verified. Howgs@mmonly used speech
spectrum features are high-dimensional (10-40 dimen}iansl it is difficult to give
an intuitive meaning to the graph calculated from the ex¢id¢eatures. Second, in
text-independent speaker recognition, the feature Higians of the training vectors
and the test utterance are likely to vary because of text atigmin addition to the
technical mismatches mentioned above. It is also uncleativeln the matching should
use the whole distributions, or should a good match be inelicdthe sub-graphs from
the reference vectors and the test utterance match well.midtization of this paper
is to experiment with a few simple ideas. To our knowledgegraph-based matching
has previously been proposed for text-independent speagegnition. The overview
of the proposed scheme is illustrated in Fig. 1. We first elubbth the training and
the testing vectors into a small number of clusters, repiteseby a set of centroid
vectors. Neighborhood graphs are then constructed for &t Finally, structural
similarity of the reference and the test graphs is evalulayechlculating the degree of
isomorphism between the graphs. We also propose a matataimgfvork which is a
hybrid between graph-based structural matching and wbeteed template matching.
Graph matching is used as a pairing tool between the referand the test centroids.
The paired vectors from each set are then used for findingateneters of the affine
transformation model. Finally, the match score is compatethe distortion between
the compensated centroids. Feature and speaker moddbtraations, including the
affine transformation, have been studied by different amstfidenny et al., 2007; Mak
and Tsang, 2004; Mammone et al., 1996; Siohan and Lee, 198jT;avid Sridharan,
2008). These methods usually require either parallelitrgidata recorded simultane-
ously through various handsets, or a large number of trginiterances collected from
multiple recording sessions from a number of speakers. eltlatasets are then used
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for estimating the transformation parameters. The methatiwe propose, in turn,
aligns the test vectors to the claimed speaker’s model gwanification. Therefore,
the proposed method does not require any external datamntyaf a channel/session
variability model. The rest of the paper is organized afed. In Section 2, we give
details of the structural graph matching framework. Sec8adescribes the hybrid
structural and template matching algorithm. Experimes&lp and the results are
described in Section 4. Finally, conclusions are drawn itiSe 5.

In this study, we have introduced graph-based matchingoagprto text-independent
speaker recognition. The approach was motivated by thetliatta neighborhood
graph encodes structural information about the featureespander the affine distor-
tion model - including rotation, translation, and uniforoabng - ideally the neighbor-
hood graph should not change. The performance of the prdposthod was com-
parable to the GMM- and VQ-based approaches. A fusion exysti demonstrated
that GMM- and graph-based methods might contain mutualigpgementary infor-

mation. The approach has potential to complement or reglacently used statistical
and templatebased methods. The method, however, has Igenatécal problems to

be solved before it can be utilized in real-life speaker gatiion systems. First, ex-
act graph matching is computationally expensive, and bgamlgorithm needs to be
used which weakens the performance. Second, the size ofsbeiation graph grows
fast for large models, which implies increased running tifitee largest graph that we
could test in reasonable time was 128. A possible futuretisoicould be based on a
heuristic algorithm, which solves the graph matching peabtlirectly, without reduc-

ing it first to the maximum clique search from the associatjaaph. To further speed
up scoring in the identification task, some form of decisi@etin which the feature
points represent tree nodes, could be used. In the currpmbagh, the feature points
from the reference and test sets were found by clusteringhapietitly assumed to cor-

respond to phonetic classes. In general, the joint effdateannel and text (phonetic)
mismatch are not well understood. Recently, excellentlt®fave been obtained by
using phone-class constrained GMMs which reduces text atmby phone recog-
nition (Castaldo et al., 2007). The graph-based methodddoelused by restricting
matching onto the same phone classes between training sindtterances. Differ-

ent graph structures are also possible. In this study, wsidered unweighted kNN
graph where a node is either connected or not to another Aoglessible future direc-

tion would be using real-valued weights (such as Euclidestaices between points)
and re-defining the matching framework for such graphs. é€irtikelihood-based
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(or frame-based) approaches also assume independenedi@ities, largely ignoring

utterance-level structural information. Graph matchiagld be potentially used as an
alternative matching tool for the existing GMM-based syste These are points for
future research.

Attachment 2: Categorization results

For testdocl, categorization marked 25 out of 70 senterxcedevant. Class attribute
value 1 indicates relevant, O irrelevant.

@el ati on sent enceRel evance

@ttribute domai nVocabul ary nuneric
@ttribute coCccurrence nuneric
@ttribute semanti cD stance nuneric
@ttribute class nuneric

@lat a

0,0.2,0.017991,0

0, 0. 25,0.114542,0
0,0.3,0.224857, 1

0. 333333, 0. 4, 0. 29816, 1
0. 333333, 0. 55, 0. 424506, 1
1, 0. 65,0.460848, 1

0. 333333,0.5,0.353678, 1
0,0.2,0.531935,0
0,0.2,0.267282,0

0. 333333, 0.7,0.990051, 1
0. 666667, 0.45,0. 197794, 1
0, 0. 35, 0. 268622, 1

0, 0. 15, 0. 251559, 0
0.333333,0.25,0,1
0,0.2,0.223981,0
0.333333,1,1,1
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0, 0. 25, 0.080932,0

0. 666667, 0. 7,0.557194, 1
0, 0. 25,0.674107,0

0, 0.15,0.33177,0

0. 333333, 0. 35, 0. 231713, 1
0, 0. 25,0. 275169, 0

0, 0.15,0.176916, 0
0,0.2,0.246404, 0
0,0.1,0.209805, 0
0,0.2,0.608794, 0
0,0.4,0.722254,0

0, 0.45,0.572813,0

0, 0.05,0.148771,0

0. 333333, 0. 4, 0. 135059, 1
0. 333333, 0. 25, 0. 06923, 1
0, 0. 05, 0. 255013, 0
0,0.05,0.172999, 0

0, 0. 15, 0. 285479, 0
0,0.2,0,0

0, 0.35,0.220939, 1

0, 0. 25, 0. 302077, 0

0. 333333, 0. 3,0.107892, 1
0, 0. 3,0.333832,0
0,0.15,0.475334,0

0, 0. 15, 0. 096861, 0

0, 0. 2,0.386309,0

0. 333333, 0. 4, 0. 185886, 1
0, 0, 0. 05557, 0

0, 0. 05, 0. 209805, 0

0, 0, 0. 000567, 0
0,0,0.131038,0
0,0,0.172844,0

0, 0.35,0.130213,1

0, 0. 25,0.457704,0

0, 0. 35, 0. 246868, 1
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1,0.35,0.070622, 1

0. 333333, 0. 4, 0. 066034, 1
0. 333333, 0. 25, 0. 095984, 1
0, 0.25,0. 291561, 0

0, 0. 25, 0. 198155, 0

0, 0.05,0.474612,0

0. 333333, 0. 15, 0. 089592, 1
0,0.2,0.570751,0

0, 0. 15, 0. 809887, 0

0, 0. 15, 0. 600804, 0
0,0.1,0.124543,0
0,0.2,0.342698, 0

0, 0.35,0.360792,0

0, 0.05,0.074179,0

0. 666667, 0. 3, 0. 144028, 1
0, 0.15,0.427909, 0
0,0.2,0.159183,0

0. 333333, 0. 4, 0. 149853, 1
0, 0, 0. 241868, 0
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Attachment 3: Constructed extractive summaries

testDocl.txt extractive summary

In this paper , we present a matching scheme which is invaigafeature rotation ,
translation and uniform scaling . The reference and tegifgrare aligned by graph
matching and the match score is computed using conventtengllate matching .
One of the biggest challenges in automatic speaker reg¢ogistobtaining invariance
across varying operating conditions , while retaining nraxin speaker variability .
Various approaches have been proposed for tackling theiamee problem , includ-
ing robust feature extraction , feature normalization , eddcnsformation , and match
score normalization . For clean data no channel mismatch $ @byrades accuracy
. The three transformations rotation , scaling , and traiesiaan be collectively ex-
pressed as an affine feature distortion model : y Ax b. TheirmAtand vector b are
channel dependent transformation parameters , wheread x are the clean ’ and
the noisy ' observed vectors , respectively . Graph matchlinged as a pairing tool
between the reference and the test centroids . Finally , #temscore is computed as
the distortion between the compensated centroids . In thays we have introduced
graph based matching approach to text independent spesdagnition . Under the
affine distortion model including rotation , translatiomgdauniform scaling ideally the
neighborhood graph should not change .

testDoc2.txt extractive summary

Temporally Weighted Linear Prediction Features for TaukliAdditive Noise in
Speaker Verification . In the popular mel frequency cepsioafficient MFCC front
end , the conventional Fourierbased spectrum estimatisualistituted with weighted
linear predictive methods , which have earlier shown suaesoiserobust speech
recognition . Two temporally weighted variants of lineaegictive modeling are in-
troduced to speaker verification and they are compared to,RFfich is normally
used in computing MFCCs , and to conventional linear premtict The new features
hold a promise for noiserobust speaker verification . Thadsted spectrum analy-
sis method for speaker verification is the discrete Fourgersform , implemented as
the fast Fourier transform FFT . Research in speaker retogrover the past two
decades has largely concentrated on tackling the channabitdy problem , that is
, how to normalize the adverse effects due to differing trgjrand test handsets or
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channels e.g. GSM versus landline speech . Another apptodnhbrease robustness
is to carry out feature normalization such as cepstral meanvariance normaliza-
tion CMVN , RASTA filtering or feature warping . All these insgations , however
, use vector quantization VQ classifiers and some of the feaxtraction methods
utilized are computationally intensive , because they lwegolving for the roots of
LP polynomials . Differently from these previous studiebistwork a compares two
straightforward noise robust modifications of LP and b z¢idi them in a more modern
speaker verification system based on adapted Gaussianresxind MFCC feature
extraction . The robust linear predictive methods used p@csum estimation Fig .
1 are weighted linear prediction WLP and stabilized WLP SWihich is a variant
of WLP that guarantees the stability of the resulting akpfdter .

testDoc3.txt extractive summary

Multitaper Estimation of Frequency Warped Cepstra With Wgation to Speaker Ver-
ification . Usually the mel frequency cepstral coefficients estimated either from
a periodogram or from a windowed periodogram . HE cepstrum inioduced by

Bogert , Healy and Tukey in the early 1960s . In these apjdicat, a psycho acous-
tically motivated frequency warping transformation is alpapplied to the spectrum
before the logarithm and the inverse Fourier transform hsagin the popular mel
frequency cepstral coefficients MFCCs . The periodograresifrom large bias and
large variance , altogether causing large estimation ®imothe cepstral coefficients .
The windowed periodogram has low bias in general , but itsiifers from high vari-

ance . The multitaper spectrum estimator is known to havevemmance , but has not
gained much attention in MFCC estimation . Finally , we destate the effective-
ness of multitaper MFCC estimation over the conventionahhiéng window based
MFCC extraction , in a speaker verification context . The ltesas the same for the
phoneme | , indicating the robustness of the multitapenegtr for speech like pro-
cesses . We also demonstrated that the peak matched MFGEmpedlightly better

than the Hamming windowMFCCin the NIST 2006 SRE .

testDoc4.txt extractive summary

In addition to these physical differences , each speakehtsasr her characteristic
manner of speaking , including the use of a particular acadmythm , intonation style
, pronounciation pattern , choice of vocabulary and so on .important application
of speaker recognition technology is forensics . Spealamizdition , also known as
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" who spoke when ', attempts to extract speaking turns of tfferdnt participants
from a spoken document , and is an extension of the ’ clas'sggmaker recognition
techniques applied to recordings with multiple speakers fotensics and speaker
diarization , the speakers can be considered non coopeestithey do not specifically
wish to be recognized . Textindependent recognition is tbehmmore challenging of
the two tasks . In general , any variation between two reagsiof the same speaker is
known as session variability . In addition , we give emphssite recent techniques
that have presented a paradigm shift from the traditionetiorebased speaker models
to so called supervector models . Section 6 is then devotdtetourrent supervector
classifiers and their session compensation . In Section 7iseeisk the evaluation
of speaker recognition performance and give pointers twsoé packages as well .
We have presented an overview of the classical and new methiodutomatic text
independent speaker recognition .
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Attachment 4: Precision and recall of extractive summa-
rization

testdocl

humanSummaryWords : (43) [GMM, NIST-1999, SRE, TechnicdQ, affect,
align, approach, base, be, condition, corpus, distribygxperiment, feature, graph,
indicate, match, matching, method, mismatch, mixture, ehatkighborhood, paper,
performance, present, quantization, recognition, ref@erepresent, rotation, scaling,
scheme, score, shape, speaker, system, test, trainingjatian, use, vector]
extractedSummaryWords: (63) [Ax, CMS, accuracy, alignprapch, b, b., base,
be, centroid, challenge, change, channel, compensateputemcondition, datum,
degrade, distortion, express, extraction, feature, gtagre, include, introduce, invari-
ance, match, matching, matrix, mismatch, model, neighdmmthnoisy, normalization,
obtain, operating, pairing, paper, parameter, presenohl@m, propose, recognition,
reference, retain, rotation, scaling, scheme, score kepestudy, tackle, test, text,
tool, transformation, translation, use, variability, warector, y]

misses : 18 out of 43 human summary words not found in exi@stimmary
falsePositives : 38 out of 63 extractive summary words nohébin human summary

precision : 25/63 = 0.3968254 = 39.68254%
recall : 25/43 = 0.5813953 = 58.139534%

testdoc?

humanSummaryWords : (58) [%, FFT, MFCC, MFCCs, NIST, SNRES&ccuracy,
author, baseline, be, coefficient, compare, compute, denscorpus, corruption,
datum, db, eer, effect, enhancement, estimation, expetjmictory, feature,
front-end, give, have, hold, improve, include, indicat#yoduce, investigate, level,
mel-frequency, method, modeling, noise, performancediptien, preprocessing,
promise, propose, recognition, representation, showakgse spectrum, speech,
substitute, subtraction, success, system, use, varigification]
extractedSummaryWords: (99) [Additive, CMVN, FFT, FeatyrFig, Fourier, GSM,
LP, Linear, MFCC, MFCCs, Noise, Prediction, RASTA, Resbai8WLP, Speaker,
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Tackling, Temporally, VQ, Verification, WLP, Weighted, gdaanalysis, approach, b,
base, be, carry, channel, classifier, coefficient, comgarapute, concentrate, decade,
differ, e.qg., effect, end, estimation, extraction, featdiilter, frequency, guarantee,
handset, have, hold, implement, increase, introducestigagion, involve, landline,
mean, mel, method, mixture, modeling, modification, naieemalization, normalize,
ofWLP, polynomial, prediction, problem, promise, quaatian, recognition, result,
robustness, root, show, solve, speaker, spectrum, spstdility, stabilize, study,
substitute, success, system, tackle, test, trainingsfioam, use, utilize, variability,
variance, variant, vector, verification, warping, work]

misses : 29 out of 58 human summary words not found in exi@stimmary
falsePositives : 70 out of 99 extractive summary words nohébin human summary

precision : 29/99 = 0.2929293 = 29.292929%
recall : 29/58 = 0.5 =50.0%

testdoc3

humanSummaryWords : (36) [??, Carlo, Hamming, Monte, Ni&Jproximation,
be, bias, coefficient, compare, computation, context, destnate, error, estimate,
estimator, formula, have, include, match, mean, mel-feegy, peak, perform,
periodogram, process, propose, show, speaker, squate, tiak, use, variance,
verification, window]

extractedSummaryWords: (65) [1960, Application, BogeZepstra, Estimation,
Fourier, Frequency, Hamming, Healy, MFCC, Multitaper, NISRE, Speaker, Tukey,
Verification, Warped, , application, apply, attention, déyalse, bias, cause, cepstrum,
coefficient, context, demonstrate, effectiveness, eestimate, estimation, estimator,
extraction, frequency, gain, hamming, have, indicatepthice, know, |, logarithm,
match, mel, mfcc, peak, perform, periodogram, phonemesgssy result, robustness,
speaker, spectrum, speech, suffer, transform, transtmmavariance, verification,
warp, window, windowMFCCin]

misses : 16 out of 36 human summary words not found in exi@stimmary
falsePositives : 45 out of 65 extractive summary words nobhébin human summary
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precision : 20/65 = 0.30769232 = 30.769232%
recall : 20/36 = 0.5555556 = 55.555557%

testdoc4

humanSummaryWords : (42) [Speaker, address, area, begroprmonclude, decade,
development, direction, discuss, discussion, elabortghasis, evaluation, explo-
ration, extraction, feature, fundamental, give, have hoet methodology, modeling,
open, overview, paper, progress, provide, recognitiopresent, robustness, session,
speaker, start, study, supervector, system, techniqubnaéogy, trend, variability,
vector]

extractedSummaryWords: (66) [Speaker, Textindependattent, addition, ap-
plication, apply, attempt, base, be, call, choice, classitompensation, consider,
cooperative, devote, diarization, difference, discuss, dbcument, emphasis, eval-
uation, extension, extract, forensic, give, have, includenation, know, manner,
method, model, overview, package, paradigm, particippatiern, performance,
pointer, present, pronounciation, recognition, recoghiecording, rhythm, section,
session, shift, software, speak, speaker, speaking, stypervector, task, technique,
technology, text, turn, use, variability, variation, v@gtwish]

misses : 25 out of 42 human summary words not found in exi@stimmary
falsePositives : 49 out of 66 extractive summary words nohébin human summary

precision : 17/66 = 0.25757575 = 25.757576%
recall : 17/42 = 0.4047619 = 40.476192%
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