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Abstract 

The pairwise nearest neighbor (PNN) method, also known as Ward's method belongs to 
the class of agglomerative clustering methods. The PNN method generates hierarchical 
clustering using a sequence of merge operations until the desired number of clusters is 
obtained. This method selects the cluster pair to be merged so that it increases the given 
objective function value least.  

The main drawback of the PNN method is its slowness because the time complexity of 
the fastest known exact implementation of the PNN method is lower bounded by �(N2), 
where N is the number of data objects. We consider several speed-up methods for the 
PNN method in the first publication. These methods maintain the precision of the 
method. Another method for speeding-up the PNN method is investigated in the second 
publication, where we utilize a k-neighborhood graph for reducing distance calculations 
and operations. A remarkable speed-up is achieved at the cost of slight increase in 
distortion.  

The PNN method can also be adapted for multilevel thresholding, which can be seen as 
a 1-dimensional special case of the clustering problem. In the third publication, we 
show how this can be implemented efficiently using only O(N�logN) time, in 
comparison to a straightforward approach that requires O(N2).   

The merge philosophy is extended, by using the iterative shrinking method, in the fourth 
publication. In the merge phase of the PNN method, the two nearest clusters are always 
joined. Instead of this, we assign data objects to the neighboring clusters that they 
belong to. In this way, we get better clustering results; however, the results come at the 
cost of an increase in the running time. The proposed method is also used as a crossover 
method in a genetic algorithm, which produces the best clustering results in respect of 
the minimization of intra cluster variance. 

The PNN algorithm can also be applied to generating optimal clustering. In the fifth 
publication, we use a branch-and-bound technique for finding the best possible 
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clustering by generating a sequence of merge operations. Instead of using the local 
optimization strategy in the merge phase, we consider every possible merge by 
constructing a search tree, in which each merge performs the branch. We are also able 
to reduce the search space under certain bounding conditions. In addition, we give two 
polynomial time variants that utilize the proposed branch-and-bound technique, which 
only construct the search tree to a limited depth.  

Keywords: agglomerative clustering, codebook generation, clustering algorithms, 
pairwise nearest neighbor method, pattern recognition, unsupervised learning, vector 
quantization, Ward's method. 
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Abbreviations and symbols 
 
 Abbreviations 
 AESA  approximating and eliminating search algorithm 
 arg  argument 

BB  branch-and-bound 
CA  competitive agglomeration 
CL  complete linkage 
ECSE  East Finland graduate school for Computer Science and  

   Engineering 
GA  genetic algorithms 
GAIS  genetic algorithm with the iterative shrinking as crossover 
GLA  generalized Lloyd algorithm 
IS  iterative shrinking 

 ISODATA iterative self-organizing data analysis technique 
KD-tree k-dimensional tree 
kNN graph k-nearest neighbor graph 
LBG  Linde, Buzo, and Gray 
LMQ  Lloyd-Max quantizer 
log  logarithm  
MDL  minimum description length 
MPS  mean-distance-ordered partial search 
MSE  mean square error 
NN  nearest neighbor  
PDS  partial distortion search 
PNN  pairwise nearest neighbor 
RGB  red, green, blue 
RLS  randomized local search 
SAGA  self-adaptive genetic algorithm 
SL  single linkage 
SOM  self-organizing map 
TIE  triangular inequality 
 
Symbols 
c  code vector 
C  codebook: a set of code vectors C={c1, c2, …, cM} 
d  distance function 
g  number of GLA iterations 
k  number of nearest neighbors 
K  dimension of vector 
M  number of clusters / size of codebook 
M0  size of a preliminary codebook 
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N  number of data vectors 
nn  nearest neighbor pointer 
p  mapping to the partition 
P  partition: a set of mappings P={p1, p2, …, pN} 
s  cluster 
S  clustering: a set of clusters S={s1, s2, …, sM} 
x  data vector 
X  a set of data vectors X={x1, x2, …, xN} 

   number of incoming pointers �

�   asymptotic order  
�   lower bound    
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1 Introduction 

Clustering is an important combinatorical optimization problem that must often be 
solved as a part of more complicated tasks in pattern recognition, image analysis and 
other fields of science and engineering [JD88, KR90, E92, GG92]. Clustering is also 
needed for designing a codebook in vector quantization. The clustering problem 
contains two subproblems: determining the number of clusters and finding the location 
of clusters.  

The process of solving a pattern recognition problem (see Figure 1.1) typically involves 
the following steps [JD88, JMF99]: 

(1) Pattern representation (including feature extraction and/or selection). 

(2) Definition of a pattern proximity measure appropriate to the data [A73, 
DS76, MS83, JD88]. 

(3)  Clustering or grouping. 

(4)  Data abstraction (if needed) [DS76]. 

(5)  Assessment of output (if needed) [D87, D93, C95b, K01]. 

 

pattern
proximity

pattern
representation clustering data

abstraction
assesment of

output

data
preparation

clustering
algorithm

clustering
validity

 

Figure 1.1. The steps of cluster analysis for pattern recognition. 

The preprocessing of data objects improves the efficiency and the outcome of the 
clustering algorithm. With appropriate preprocessing, larger data sets can be clustered 
and, in addition, better clustering results can be achieved during the actual clustering. 
Although most of the preprocessing methods are designed to aid in the manipulation of 
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the clusters, unsupervised learning may also focus on description tasks [T99]. The 
preprocessing of data (data preparation) can be considered as a separate task that takes 
place before actual clustering. It is common that a data set includes unnecessary features 
(noise and outliers) and asymmetrically scaled features [MS03]. If a data set is not 
properly preprocessed, it can be assumed that the outcome of clustering is suboptimal. 
Some preprocessing methods are: 

(1) Indexing of the data [B75, FBF77, B80, B90, S91, Y93, NN97, B02, 
BM02] for nearest neighbor search. 

(2) Projecting the data [FBS75, GK92, RK93, LC94, LC95a, BJS97, P1] for 
a nearest neighbor search. 

(3) Using an approximating and eliminating search algorithm (AESA) [V86, 
MOV94, V94, V95, RP00].  

(4) Scaling and weighting of the data [MS03]. 

(5) Selecting the features [GM86, F87, ZRL97, T99, T00, DCSL02].  

(6) Using heuristic clustering to get an initial partition [S80, JD88]. 

(7) Filtering noise and outliers [BCQY97, RRS00, WC04]. 

Figure 1.2. An example of clustering. On the left, a sample data set is shown. On the 
right, a clustering of the data set with 15 clusters and their centroids is shown.      
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Clustering entails partitioning a data set so that similar objects are grouped together 
and dissimilar objects are placed in separate groups; see Figure 1.2 for an example. The 
dots represent two-dimensional data points in Euclidean space. The 5000 data objects 
have been divided into 15 clusters separated by straight lines in the figure. The data 
objects separated by straight lines form a partition of the data. Centroids of the partition 
are represented by large dots.  

Formally, the clustering problem is defined as follows: Given a set of N data vectors 
X={x1, x2, …, xN} in a K-dimensional space, clustering aims at solving the partition 
P={p1, p2, …, pN}, which defines for each data vector the index of the cluster where it is 
assigned to. Cluster sa is defined as the set of data vectors that belong to the same 
partition a: 

 �s x p aa i i� � � .        (1) 

Clustering is then represented as the set of clusters S={s1, s2, ..., sM}. In vector 
quantization, the output of clustering is a codebook C={c1, c2, …, cM}, which is usually 
the set of cluster centroids (code vectors). 

The most important choice in clustering is the cost function f for evaluating the 
goodness of the clustering. For a given application, the criterion can be based on the 
principle of minimum description length (MDL) [R78, S78]. Otherwise, the criterion is 
based on certain assumptions of data normalization and spherical clusters. Basically, the 
function should correlate with high inter cluster distance and low intra cluster diversity. 
In the case of binary data, stochastic complexity has been applied [GKV97]. 

When data vectors belong to Euclidean space, a commonly used function is the mean 
square error (MSE) between the data vector and their cluster centroids. Given a 
partition P and the codebook C, the MSE is calculated as: 

�
�

��

N

i
pi i

cx
N

PCf
1

21),( ,       (2) 

where pi is the cluster (partition) index of the data vector xi. From here on, the vectors 
are assumed to belong to Euclidean space and the mean square error (MSE) is used as 
the objective function. The number of clusters is also assumed to be known beforehand, 
unless otherwise stated. 
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2 Clustering algorithms 
Clustering is an NP-complete [GJW82] combinatorical optimization problem, for which 
optimal solutions can be found by the branch-and-bound technique, but in exponential 
time [FN75, KNF75, FG88, W91, WL93, C95a, P97, GYZ98, GRS99, IA99, FV02, 
FVK02, MP02, P5]. The total number of different clusterings equals Stirling's number 
of the second kind [GKP94]. Suboptimal algorithms must therefore be used in practice.  

Existing methods can be roughly divided into heuristic, optimization, graph-theoretical 
and hierarchical methods. The heuristic methods are usually fast but rough, and hence, 
they are not adequate alone. Instead, they can be used for creating an initial solution for 
more sophisticated algorithms. Optimization methods produce a partition that aims at 
minimizing an a priori chosen objective function, which is a goodness criterion for a 
partition [B99]. Hierarchical clustering methods start with an initial partition. After that, 
clusters are split or merged repeatedly. In hierarchical methods, an attempt is made to 
perform locally optimal steps, but this does not necessarily lead to the global optimal 
solution relative to any criterion function. 

2.1 Algorithms     

There are many heuristic clustering algorithms proposed in the literature [H75, S80, 
JD88]. They belong to the group of partitional methods that produce only one partition. 
An explicit objective function is not necessarily used since the object is to allocate the 
data vectors to the cluster they seem to fit best at the moment. Usually, each data vector 
is considered only once in a greedy manner, and it is allocated to a cluster or it is not 
allocated at all. These algorithms tend to produce rather weak solutions. Three simple 
heuristic methods are leader [H75, S80], nearest neighbor clustering [JD88] and joiner 
[H75, S80].  

Optimization methods [K04a] are usually based on k-means [F65], which is also 
referred to by several other names, such as c-means [M67], generalized Lloyd algorithm 
(GLA) [L57], Linde-Buzo-Gray algorithm (LBG) [LBG80] or iterative self-organizing 
data analysis technique (ISODATA) [BH65]. These are slightly different variations on 
each other but the main concept is nevertheless the same. K-means applies two 
optimization steps iteratively: (i) it calculates an optimal partition for the given 
codebook, and (ii) calculates a new codebook as the cluster centroids. These steps are 
based on two optimality conditions:  
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(1) Nearest neighbor condition: for a given codebook, the optimal clustering of the 

data set is obtained by mapping each data vector to its nearest code vector in the 
codebook (or cluster representative) with respect to the evaluation function. 

(2) Centroid condition: for a given partition, the optimal code vector (cluster 
representative) is the centroid (average vector) of the data vectors within the 
partition. 

Each iteration of the k-means algorithm decreases the distortion; however, the process 
leads only to a local optimum that depends on the initial codebook, with M random data 
vectors, that was used. Several other techniques have also been proposed for generating 
an initial codebook [LBG80, YG88, GG92, NT92, BM93, KKZ94, AR96, PLL99]. 
Thus, k-means can fine-tune a codebook. It can also be integrated in many other of the 
more complicated algorithms discussed later in this thesis.  

There are many variants of the k-means algorithm that include fast implementations 
[HLC91, WG94, CKS95, M95, CL96, KFN96, F97, BJLS98, KFN00, Z01, 
KMNPSW02, LVV03]. The fuzzy variant is known as fuzzy c-means [D73, DL94, 
CCLH97, OZ00, WCS01]. Among many other variants, there are simulated annealing 
[KGV83, ZG89, HPLSH01] and deterministic annealing [RGF90, HB97] variants. 
These methods are based on promising theories but it does not mean that they would 
work well in practice. Among those, simulated annealing is probably the one that works 
best in practice. 

The best clustering results, in term of minimizing the distortion function, have been 
obtained by the genetic algorithm (GA) [H75, G89, MC96], which uses agglomerative 
methods in the crossover. The method was first reported by [FKKN97] using an 
effective but rather slow algorithm. The algorithm was then simplified and made faster 
[F00]. It is noted that the use of random crossover is not sufficient to be superior to the 
other clustering methods.  

An alternative approach has been offered by the randomized local search algorithm 
(RLS) [FK00, FXK03]. In terms of minimizing the distortion function, it is almost as 
good as genetic algorithms but the RLS method is much simpler to implement. It uses a 
simple trial-and-error approach in which new candidate solutions are generated by 
random swapping of the code vectors and then uses k-means for fine-tuning the 
candidate solutions. The RLS algorithm has been successfully applied to the 
classification of bacteria [FGGKKLN00]. 

The graph-theoretical methods can be divided into three categories:  

(1) Methods where the initial partition is the singleton partition and a 
hierarchical sequence of partitions obtained by agglomeration [KHK99, 
HK01, P2].  

(2) Methods that produce a connected graph from which a clustering is 
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obtained by cutting inconsistent edges [Z71, J78, T80a, T80b, U82, 
U83, KN86, KNT87, SC91a, SC91b]. 

(3) Methods that produce an unconnected graph where the connected 
components correspond to the clusters [U82].        

Hierarchical methods [K99] are either divisive or agglomerative. Divisive methods start 
by putting all data vectors in a single cluster. New clusters are created by dividing 
existing ones. This approach involves two main design problems: which cluster to 
divide, and how the division is performed. The division can be made along a selected 
dimension of the vector space as in the median cut algorithm [H82], or along the 
principal axis [WZ91]. The latter approach has been studied and a method has been 
proposed for locally fine-tuning the cluster boundaries after the divisions have been 
made [FKN97]. The divisive methods can be fast, e.g., O(N�logN), but more 
complicated than the agglomerative methods.  

Agglomerative clustering is simple to implement and it provides better clustering results 
than the divisive approach. It can also be combined with k-means as proposed [GPF95], 
or used as the merge phase in the split-and-merge algorithm [KFN98], which results in a 
good time-distortion performance. 

Another clustering method is the self-organizing map (SOM) [K88, K95], which is 
commonly applied to data mining and to the visualization of complex data sets. SOM 
can also be used for clustering [NF88, CTC94]. Unfortunately, for large clustering 
problems SOM is inferior to the majority of other methods [K04a]. Furthermore, the 
clustering results depend strongly on the parameter setup [F99].   

2.2 Unknown number of clusters 

Determination of the number of clusters in data requires that one has both an algorithm 
that searches for the correct clustering of data and has a criterion that is capable of 
recognizing the number of clusters [DB79, I80, FK97, SYK97, BP98, KF02b, KLL04, 
SWJ04, WC04, X04]. The simplest approach is to loop the number of clusters, use an 
existing algorithm for a fixed number of clusters in the loop, and then select the best 
solution using some criterion. This brute force search is guaranteed to work (assuming 
that the criterion is valid) but it is also slow.  

The stepwise clustering algorithm, which reduces the workload required by the brute 
force approach, has been proposed [KF02b]. The idea is to utilize the previous solution 
as a starting point when solving the next clustering problem that has a different number 
of clusters. A stopping criterion is applied to estimate the potential improvement of the 
algorithm and to stop the iteration when the estimated improvement stays below a 
predefined threshold value.  
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There are also methods that solve the number and location of the clusters jointly. The 
competitive agglomeration algorithm (CA) [FK97] decreases the number of clusters 
until there are no clusters smaller than a predefined threshold value. The drawback is 
that the threshold value must experimentally be determined. Another approach is the 
dynamic local search [KF02a] that solves the number and location of the clusters 
jointly. The algorithm uses a set of basic operations, such as cluster addition, removal 
and swapping. 

2.3 Fast search methods 

In the clustering problem, one typically needs to search for the nearest neighbor (NN) 
during the process. The nearest neighbor search problem involves searching for a set of 
K-dimensional vectors C = {ci} that are nearest to a given target vector x with respect to 
a distance function d. A large part of the running time of the search is due to the 
computation of the O(K) distance function. A full search solution involves calculating 
the distance between the data vector, x, and every code vector, ci, in order to find the 
nearest to x; however, the full search solution comes at the cost of O(NK).  

In the search of nearest code vector in Euclidean space, several speed-up methods have 
been introduced that reduce the computation required by distance calculations [FN75, 
S75, BS76, FBF77, WL83, BG85, V89, S90a, S90b, CH91, MNS91, O91, OB91, 
GK92, HBSH92, RP92, RK93, EE94, LC94, CK95, LC95a, LC95b, LC95c, LS95, 
DE96, BJS97, RP97, AMNSW98, GG98, KS98, SC98, BBS99, KFN00, RP00, S00, 
TSL00, WL00, Y00, BBK01, CNBM01, HC01, AP02, BM02, KMNPSW02, M02, 
BN03, HS03a, HS03b, M03, SR03, K04b].  

The triangular inequality elimination (TIE) technique presented by Chen and Hsieh 
[CH91] maintains the distances between all code vectors and then reduces the number 
of distance calculations by a condition derived from the triangle inequality.  

The partial distortion search (PDS) proposed by Bei and Gray [BG85] terminates a 
single distance calculation immediately when the partial distance exceeds the shortest 
distance previously found. Let sa be the cluster for which one seeks the nearest 
neighbor. One uses full search to calculate the distance values da,j between sa and all 
other clusters sj. Let dmin be the distance of the best candidate found so far. The distance 
is calculated cumulatively by summing up the squared differences in each dimension. In 
PDS, one utilizes the fact that the cumulative summation is nondecreasing, since the 
individual terms are nonnegative. The calculation is therefore terminated and the 
candidate is rejected if the partial distance value exceeds the current minimum dmin. 

The mean-distance-ordered partial search (MPS) technique introduced by Ra and Kim 
[RK93] applies two different techniques to speed-up the search of the nearest code 
vector. First, it uses a fast precondition for checking whether the distance calculation to 
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a given candidate cluster can be omitted. Second, it sorts the codebook according to 
the component means of the code vectors and derives limits for the search. 

An interesting approach for clustering is to use graph theoretical methods [GR69, U82, 
JD88, OM95, EPY97, BCQY97, KHK99, HS00, HK01, B04]. For example, by first 
creating a complete undirected graph where the nodes correspond to the data vectors 
and the edges correspond to vector distances according to a given similarity or 
dissimilarity measure. The resulting graph can be trimmed to a minimum spanning tree, 
which can be interpreted as one large cluster. The clustering can then be generated by 
iteratively dividing the cluster by removing the longest edges from the graph. In the 
final graph, clusters can be determined by finding the separate components of the graph 
[GR69]. This algorithm can be seen as a variation of split-based methods with a similar 
criterion to the criterion in single-linkage agglomerative clustering.  

Many agglomerative clustering algorithms construct a sparse graph and then perform 
the clustering on this graph [JD88, KHK99, HK01]. Two main characteristics of these 
approaches are that 

(1) the methods construct undirected graphs, and  

(2) the methods neglect the original data after building the weighted 
graph (meaning that weights of the new edges are determined by the 
weights of current edges).  

Generating and utilizing the graph efficiently is problematic for this approach. For 
example, standard solutions for solving minimum spanning tree takes O(N2) time, which 
would prevent any speed-up. 

A k-nearest neighbor graph (kNN graph) is defined as a weighted, directed graph in 
which every node represents a single cluster and the edges correspond to pointers to 
neighbor clusters. A pointer maintains the index of the neighbor cluster and the 
corresponding distance. Every node has exactly k edges to the k nearest clusters 
according to a given distance function. The distance of clusters is defined by the merge 
cost function of the agglomerative clustering, see Eq. (3) below. Note that this is not the 
only possible definition of the graph: Other definitions have been given in [AM93, 
CBC00].  

2.4 Multilevel thresholding 

Multilevel thresholding, which is needed in the compression of the medical images 
[KOKKNN98], can be seen as a 1-dimensional special case of the clustering problem. 
The time complexity in the 1-dimensional case of clustering is expected to be lower 
than in the general case. For example, the time complexity of the GLA (for vector 
quantization in the multidimensional space) is O(NM) while the time complexity of its 
1-dimensional counter-part, the Lloyd-Max quantizer (LMQ) [LS55, L57], is only O(N).  
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Over the years, many thresholding techniques have been proposed [KR79, O79, P80, 
WH84, KSW85, T85, B86, KI86, SSWC88, A89, PP89, LSP90, B92, CW92, TC92, 
PP93, AST94, CWY94, BM95, YCC95, YC97, CSS98, GLC98, Y99, ST00, LCC01, 
SS01, Y02]. The thresholding methods can be categorized in six groups according to the 
information they explore. These categories are [SS04] 

(1) histogram shape-based methods where the peaks, valleys and curvatures 
of the smoothed histogram are analyzed; 

(2) clustering-based methods where the gray level samples are clustered in 
two parts as background and foreground or, alternately, are modeled as 
two Gaussian distributions; 

(3)  entropy-based methods that use the cross-entropy between the original 
and binarized image; 

(4)  object attribute-based methods that search for a measure of similarity 
between the gray-level and binarized images, such as fuzzy similarity, 
shape, edges, or the number of objects; 

(5)  spatial methods that use the probability mass function models, which 
take into account the correlation between pixels on a global scale; and 

(6)   local methods that do not determine a single value of threshold, but adapt 
the threshold value depending upon the local image characteristics 
instead. 

When extended to multilevel thresholding, many of these methods have high 
computational complexity since they carry out an exhaustive search, which takes   
O(NM-1) time. A faster algorithm based on Otsu's method was proposed by Liao et al. 
[LCC01]. However, it still requires O(NM-1) time. Faster O(N�sqrt(M�logN)+N�logN) and 
O(N2M) time algorithms have been developed for multilevel thresholding by Aggarwal 
et al. [AST94] and by Kundu [K98] respectively.       

The best, known method uses dynamic programming [B57] and has the time complexity 
O(NM) for globally optimal scalar quantizers [W91, WZ93]. This method is based on 
monotonicity properties of optimal scalar quantizers. The same technique can also be 
adopted to multilevel thresholding because the problem statement is equal. Thus, 
optimal multilevel thresholding can be calculated ultimately in O(NM) time.  
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3 Agglomerative clustering  

Agglomerative clustering [LW67, CO72, BS93] generates clusters by a sequence of 
merge operations. Clustering starts by initializing each data vector as its own cluster. 
Two clusters are merged at each step and the process is repeated until the desired 
number of clusters has been obtained. The single linkage (SL) [SS73] method 
determines the cluster pair to be merged based on the two closest vectors. The complete 
linkage (CL) [SS73] method determines the cluster pair to be merged based on the two 
furthest vectors. Ward's method [W63] selects the cluster pair to be merged so that the 
merge increases the given objective function value least. In the vector quantization 
context, this is also known as the pairwise nearest neighbor (PNN) method, attributed to 
Equitz [E89].  

The algorithm is straightforward to implement in its basic form and, in comparison to k-
means, it gives better results (i.e., it has a codebook with a lower MSE value). The PNN 
method also has the advantage that the hierarchical approach produces multiple 
codebooks of different sizes as a side-product. Thus, the PNN method can be applied to 
joint minimization of distortion and entropy of code vector indices [FGP90, GPF91, 
GPF95, KS98]. The algorithm can also be used as a part of hybrid method such as a 
genetic algorithm [FKKN97, F00, KFN03, FV03], or an iterative split-and-merge 
method [KFN98].  

3.1 PNN method 

The basic structure of the exact PNN method is shown in Figure 3.1. The method starts 
by initializing each data vector xi as its own code vector ci (cluster si). In each step of the 
algorithm, the size of the codebook is reduced by merging two nearby clusters. The cost 
of merging two clusters sa and sb (merge cost), which is also the distance between these 
clusters, is defined as the increase in the distortion of the codebook if the clusters are 
merged [W63, E89]: 

 d
n n

n n
c ca b

a b

a b
a b, �

�

� �

2
,       (3) 

where na and nb denote the sizes of the corresponding clusters sa and sb. This minimizes 
the increase of MSE caused by the merge operation. The cost function is symmetric (da,b 
= db,a) and can be calculated in O(K) time, assuming that na, nb, ca, and cb are known. 
The costs for merging three clusters are illustrated in Figure 3.2. The cost values are: 
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da,b = 32,40; db,c = 56,25 and da,c = 90,75. It can be observed that, in this case, it is 
better to merge the central cluster (b) with the smaller cluster (a) than with the larger 
cluster (c) even though the latter is closer in respect of the Euclidean distance. 

 

PNN(X, M) � C, P 
si � {xi} � i�[1,N]; 
m � N; 
REPEAT 

(sa, sb) � NearestClusters(); 
MergeClusters(sa, sb); 
m � m-1; 
UpdateDataStructures(); 

UNTIL m=M; 

Figure 3.1. Structure of the exact PNN method. 

 

56

a b c

na = 1

nb = 9
nc = 3

da,b=32,40 db,c=56,25  
Figure 3.2. Illustration of the distances between the clusters sa, sb and sc, where the 

Euclidean distance between the clusters sa and sb is 62
�� ba and similarly between the 

clusters sb and sc the distance is 52
�� cb . 

The exact variant of the PNN method applies a local optimization strategy: all possible 
cluster pairs are considered and the one (sa, sb) increasing the distortion least is chosen: 

 .        (4) 
� � ji

ji
Nji

dba ,,1,
minarg,
�

�

�
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    M = 5000       M = 17 

    

                 M = 16                     M = 15 

    

Figure 3.3. Illustration of the agglomeration of the PNN method for the data set S2. The 
final clustering has 15 separate clusters.  

 
The code vector (ca) of the combined cluster (sa) is calculated as the weighted average 
of the code vectors (ca and cb) of the merged clusters sa and sb: 

 c
n c n c

n na
a a b b

a b
�

�

�

.        (5) 
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Figure 3.4. PNN example. At the end of the agglomeration there are two clusters left. 
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The clusters are then merged and the process is repeated until the codebook reaches 
the desired size, M. It should also be noted that, although a single merge operation is 
always performed optimally, the whole process does not guarantee an optimal 
codebook. An illustration of the agglomeration of the PNN method for a sample data set 
is shown in Figure 3.3. On the top left, the initial phase after each data vector has been 
assigned to its own cluster (M=5000) is shown. On the top right, the clustering before 
the last two merge steps (M=17) is shown. On the bottom left, the clustering before the 
last merge step (M=16) is shown. Finally, on the bottom right, the final clustering 
(M=15) is shown. The code vectors are presented by large dots. 

A detailed example of the exact PNN method is illustrated in Figure 3.4. In the matrix, 
all pairwise distances of the clusters are shown. On the right hand side of the matrix, the 
nearest neighbor cluster and the associated distance for each cluster are shown. Note 
that these data structures are not maintained by the basic PNN algorithm. At the 
beginning there are seven clusters: a, b, c, d, e, f, and g. During each step of the 
algorithm, two clusters are always merged. Thus after the first step, there are six clusters 
left: ab, c, d, e, f, and g. At the end of the agglomeration, there are only two clusters left: 
abcd and efg. 

A drawback of the PNN method is its relatively high running time in its basic form 
[SO97]. There are almost N steps to be performed by the algorithm because, typically, 
M<<N. Straightforward implementation [E89] recalculates all pairwise distances of the 
clusters at each step of the algorithm for finding the pair of clusters to be merged in the 
algorithm. No additional data structures are required, but the algorithm takes O(N3K) 
time [SO97] because there are O(N) steps and in each step there are O(N2) cost function 
values to be calculated. Therefore, the algorithm is very slow for large data sets. 

3.2 Using a distance matrix 

To reduce the number of the calculations of the merge cost function of Eq. (3), pairwise 
distances can be stored in an N�N matrix; see Figure 3.5. A strictly upper triangular 
matrix, which is shown in gray, is only used because the distances between the clusters 
are symmetrical. The minimum value is searched for from the distance matrix and the 
corresponding cluster pair is merged. New merge cost values are then calculated 
between the new cluster and remaining clusters, only. Thus, the number of the 
calculations per iteration falls from O(N2) to O(N), but the search for the minimum still 
takes O(N2). The time complexity of using the distance matrix is thus O(N2K+N3), 
where the first term originates from the calculations of the merge cost values and the 
second term originates from the search for the minimum [SO97]. The disadvantage of 
this approach is its quadratic memory consumption. 
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Figure 3.5. Distance matrix. A strictly upper triangular matrix shown in gray is only 
used because the distances between the clusters are symmetrical.  

Kurita's method [K91] stores all pairwise distances into a matrix but utilizes a heap 
structure for searching the minimum distance; see Figure 3.5. The merged clusters can 
be found by taking the smallest element from the top of the heap in O(logN) time. 
Although the number of the elements in the heap is even O(N2) in the beginning, the 
search can be done nevertheless in O(logN) time because O(log(N2)) = O(2logN). Only 
O(N) distance updates are needed after each merge step; each of these updates takes 
O(K+logN) time. There, the first term (K) originates from the time for the calculation of 
the merge cost and the second term is attributed to the heap operation. Kurita's method 
thus runs in O(N2K+N2

�log N) time; however, it still requires O(N2) memory, which is 
impractical for large data sets.     

3.3 Fast exact PNN  
A much faster variant of the PNN method can be implemented by maintaining, for each 
cluster, a pointer to its nearest neighbor [FKSC00]. The nearest neighbor nna for a 
cluster sa is defined as the cluster minimizing the merge cost: 

 .        (6) 
� � ja
aj

Nja dnn ,,1
minarg
�

�

�

The nearest neighbor property is not symmetrical, (i.e., nna=b does not imply nnb=a). 
The nearest neighbor of the cluster a is the cluster b, according to Eq. (3), but the 
nearest neighbor of the cluster b is the cluster c (see Figure 3.6 where the nearest 
neighbor pointers are illustrated). In this way, only a few nearest neighbor searches are 
needed in each iteration. The method is denoted as the fast exact PNN. Its 
implementation details are given next. 
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Figure 3.6. Nearest neighbor pointers, which reduce the amount of the nearest neighbor 

search in each iteration. 

For each cluster sj, one maintains the cluster size nj, the corresponding cluster center cj, 
and the pointer to its nearest neighbor nnj. The nearest neighbor pointer is assigned with 
the cost value dj. The cost values of pointers indicate the amount of increase in the 
distortion if the cluster sj is merged to . For each data vector the algorithm maintains 
the index of the cluster p

jnns

i, which the data vector belongs to. 

In the initialization, each data vector xi is assigned to its own cluster of the size one and 
the cluster center ci is initialized to the data vector itself: 

 .     (7) � Niallforxcnip iiii ,1;1; ���� �

nna�

In order to generate the nearest neighbor table for the cluster centers, one must find the 
nearest neighbor nni for every cluster. This is done by considering all other clusters as 
tentative neighbors and by selecting the one that minimizes Eq. (3). There are O(N2) 
pairs to be considered and thus, the initialization phase takes O(N2K) time in total. 

The optimal cluster pair (sa and sb) to be merged is the cluster that has the minimum 
dj-distance according to Eq. (3) and its nearest neighbor nnj:  

 .       (8) 
� �

a d b
j N

j�

�

arg min ;
,1

This pair can be found in O(N) time using linear search in the nearest neighbor table. 
The merge of the clusters is then performed as follows. First, one updates the partition 
indices so that the combined cluster replaces sa, and the cluster sb becomes obsolete: 
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In order to minimize rounding errors it is advantageous to calculate the new code vector 
as the centroid of the cluster. This can now be easily done by the aid of the partition 
indices pi: 

 c
n

xa
a

i
p ai

� �

�

�
1

.        (10) 

The above steps can be performed at most in O(NK) time. 

The nearest neighbor nna for the merged cluster (now sa) must be resolved by 
calculating the merge cost values of Eq. (3) between the new cluster and all other 
remaining clusters. This can be done in an O(NK) time. 

As mentioned before, the nearest neighbor function is not symmetrical. Therefore, one 
must also resolve the nearest neighbor pointer for all clusters whose nearest neighbor 
was, before the merge, either a, or b (nni=a, or nni=b). This takes O(NK) time for a 
single cluster and (according to practical tests) there are approximately 3-5 clusters on 
average to be updated at each step of the algorithm, see [FKSC00]. The overall time 
complexity of the update operation is thus O(�NK), where � denotes the number of 
clusters whose nearest neighbor pointer must be resolved. To sum up, the time 
complexity of the fast exact PNN method is O(�N2K). 

The range of � is [0-N] and is closely related to the kissing number problem (also 
sometimes called the Newton number, contact number, coordination number, or 
ligancy), which asks the maximum number of spheres of radius one that can 
simultaneously touch the unit sphere in K-dimensional Euclidean space [MTTV97, 
CS98, W04]. The cluster merge cost values of Eq. (3), however, are not Euclidean and 
therefore the kissing number only applies in cases when all cluster sizes are equal. This 
is the case at least in the initial stage of the PNN method, if all clusters have same initial 
frequencies. Usually the initial frequency of the cluster is one, but this is not necessarily 
always the case (see the data sets in Section 5).  

In the worst case, the same cluster can be the nearest neighbor for all the other clusters, 
and thus � =O(N). This situation could appear when there is one small cluster and all the 
rest are large. This cannot happen in the exact PNN method; however, it has been 
reported to be possible in other situations [F00]. Thus, this is not common in practice 
and the connection to the kissing number (even as an open problem in the general case) 
indicates that � is a function of the vector dimension K.  

In a favorable case, two merged clusters are chosen randomly. Since each cluster has 
only one nearest neighbor pointer, a randomly chosen cluster is the nearest neighbor for 
one cluster for the average case. The average number of the updated pointers is 
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therefore two because there are two clusters involved in the merge operation. 
However, the merged clusters are not chosen randomly, rather they tend to be located in 
areas of high concentrations of clusters. Thus, in practice, � is greater than two. 
Ultimately, � can be zero when two clusters far away from other clusters are merged 
because then it is possible that the merged new cluster is not the nearest neighbor of any 
other cluster. 

 
cluster A b c d e f g min NN 

a -- 2.0 16.0 2.5 4.0 8.0 16.0 2.0 b 

b 2.0 -- 10.0 2.5 10.0 18.0 26.0 2.0 a 

c 16.0 10.0 -- 22.5 36.0 40.0 32.0 10.0 b 

d 2.5 2.5 22.5 -- 4.5 14.5 30.5 2.5 a 

e 4.0 10.0 36.0 4.5 -- 4.0 20.0 4.0 a 

f 8.0 18.0 40.0 14.5 4.0 -- 8.0 4.0 e 

g 16.0 26.0 32.0 30.5 20.0 8.0 -- 8.0 f 

 

 

 

 

 
Figure 3.7.  Initial distance matrix of the PNN example shown in Figure 3.4. The cells 

shown in gray contain the cluster distance to the nearest neighbor for each cluster.  
The initial distance matrix of the PNN example shown in Figure 3.4 is illustrated in 
Figure 3.7. The cluster pair a and b will be merged in the first step because their merge 
cost is smallest. After the merge, the distance matrix is updated before the search for the 
next cluster pair to be merged. In the original PNN variant (full search), the whole 
matrix is recalculated during the next iteration since nothing is stored. In the distance 
matrix variant, only the values of the rows and the columns for the merged cluster ab 
must be calculated and stored in the distance matrix. In the fast exact PNN method, only 
the values of the rows and the columns for the clusters ab, c, d and e are recalculated 
because the nearest neighbor pointers must be updated for those clusters. In this method, 
only the nearest neighbor pointers to the nearest neighbors and the corresponding 
distance values are stored in the nearest neighbor table. 

3.4 Lazy PNN 

The number of distance calculations can be reduced further by delaying the update of 
the nearest neighbor pointers. The method is based on the monotony property; see 
[KFN99]. Suppose that the current minimal merge cost is d(sa, sb) and the clusters sa 
and sb are merged. It is possible that the centroid of the merged cluster (ca+b) becomes 
closer to the centroid of the third cluster sc than cc was in respect of the original cluster 
centroids (ca and cb); see Figure 3.8. However, the monotony property states that the 
merge cost d(sa+b, sc) cannot be smaller than min{d(sa, sc), d(sb, sc)}. So the minimum 
cluster distortion d never decreases due to the merge of the optimal cluster pair. This is 
formalized in the following lemma [KFN99]: 
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Lemma 3.1. Consider three clusters sa, sb, sc with centroids ca, cb, cc and the number of 
objects in these clusters na, nb, nc. Assume that d(sa, sb)�d(sa, sc)�d(sb, sc) and na, nb, 
nc�1. Then it holds that d(sa, sc)�d(sa+b, sc).  

cc

cbca ca+b

nb / (na+nb) na / (na+nb)  

Figure 3.8. Illustration of the three clusters in 2-dimensional space. Here ca and cb are 
the centroids of the two clusters to be merged, ca+b is the centroid of the merged cluster, 

and cc is the centroid of any other cluster.  

For example, assume that the nearest neighbor for a cluster si was sa before the merge of 
the two clusters sa and sb, and sx after the merge. From the monotony property one 
knows that di,a � di,a+b. One therefore does not need the exact cluster distance because 
the previous cluster distance value serves as a lower bound. In practice, one can assume 
that the nearest neighbor after the merge is sa+b so the previous cost function value di,a 
(or di,b) can be used as a lower bound. The cluster dissimilarity value is labeled as 
outdated. It will be updated only if it becomes a candidate for being the smallest 
distance of all. In this way, one can reduce the computation by about 35% while 
preserving the exactness of the PNN method [KFN99]. 

3.5  Inexact variants 

Several inexact variants of the PNN method have been considered in the literature. 
These variants decrease the running time at the cost of increased distortion. Equitz 
proposed an O(NK�logN) time variant, which he referred as the fast PNN [E89]. It uses a 
KD-tree [B75, FBF77] for localizing the search for the code vectors (clusters). The 
algorithm merges several vector (cluster) pairs at the same time. The KD-tree structure 
and the corresponding partition of the 2-dimensional space are illustrated in Figure 3.9. 
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All vectors are assigned to the buckets of the KD-tree so that the similar vectors are in 
the same bucket. The method; however, has not gained as much popularity as the exact 
PNN method, probably because of its more complex implementation and suboptimal 
results.  
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Figure 3.9. KD-tree and the corresponding partition.  

Another possibility is to generate a preliminary codebook of size M0 (N > M0 > M) using 
the GLA with a random initialization of the data vectors. Any other fast algorithm could 
be used as well. The exact PNN method is then applied until the codebook reaches its 
final size M [GPF95]. The exact PNN method has now only (M0 - M) steps, and the time 
complexity of this method is thus O(NM0) + O(M0

3), where the first term is due to the 
GLA and the second term is due to the PNN method.  

Thus, one has several different possibilities to combine the GLA and the PNN method: 

(1)   Random initialization + GLA 
(2)   PNN 
(3)   PNN + GLA 
(4)   GLA + PNN 
(5)   GLA + PNN + GLA. 

In the first case, one uses the GLA by itself with a random initialization, which can be 
done very fast by choosing random data vectors as cluster centroids. In the second case, 
one uses the PNN method by itself. Since it has quadratic running time, this method is 
quite slow with a large data set. In the third case, exact PNN method is used first. After 
that, one fine-tunes the codebook with the GLA. In that way, one gets better codebooks 
than with the PNN method or the GLA alone. 
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Table 3.1. Time complexities of the different scenarios of combining the PNN and 
GLA. 

Time complexity 
Combination: 

In general Assuming M0 = O(M) 
Random + GLA O(gNMK) O(gNMK) 

PNN O(�N2K) O(�N2K) 
PNN + GLA O(�N2K) + O(gNMK) O(�N2K) 
GLA + PNN O(gNM0K) + O(�M0

2K) O(gNMK) 
GLA + PNN + GLA O(gNM0K) + O(�M0

2K) + O(gNMK) O(gNMK) 
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Figure 3.10. Different scenarios of combining the PNN and GLA.  

In the fourth case, one first uses the GLA to generate a preliminary codebook of size M0, 
and then applies the exact PNN method until the codebook reaches the final size, M. In 
this way, one can speed-up the PNN method remarkably yielding to O(gNM0K) + 
O(�M0

2K) time complexity. Unfortunately, then the exactness of the PNN method 
cannot be preserved. In the fifth case, one first uses the GLA to generate a preliminary 
codebook of size M0 and then applies the exact PNN method until the codebook reaches 
the final size, M. The codebook is finally fine-tuned with the GLA. Thus, one can speed-
up the PNN method like in the third case. Even though the exactness of the PNN method 
is then lost, one can still get with this method a better codebook compared to the fourth 
case. The time complexities of the different combination scenarios are summarized in 
Table 3.1, where g denotes the number of iterations of the GLA. For illustration of these 
variants, see Figure 3.10. 
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3.6 Genetic algorithm 

Genetic algorithms (GA) are based on the model of natural selection that occurs in 
nature. The main idea is to maintain a set of solutions (called a population of 
individuals) that are iteratively manipulated using genetic operations (crossover and 
mutations) and selection. Each initial solution is created by selecting M random data 
vectors as the code vectors and by calculating the optimal partition. Crossing the best 
solutions of the current population then creates the solutions for the next population. 
The number of iterations and the population size are the main parameters of the 
algorithm.  

Several genetic algorithms have been previously considered for the clustering problem 
[DK95, PMJ95, MC96, S96, FKKN97, KM99, F00, TY00, KFN03]. The best, known 
genetic algorithms use a crossover method, which is based on the PNN method 
[FKKN97, F00, KFN03]. The crossover proposed in [F00] will be described below.  

The PNN crossover starts by merging two parent codebooks by taking their union. The 
new partition of a data vectors is then constructed based on the existing partitions P1 
and P2 [F00]. The partition of the data vector xi is either  or . The one with the 
smaller distance to x

1
ip 2

ip
i is chosen. In this way, the new partition can be generated using 

2�N distance calculations only. The new codebook is then updated in respect to the new 
partition. This procedure gives a solution in which the size of the codebook is twice the 
size of the final codebook. A final task is to reduce the codebook size from 2�M to M 
using the exact PNN method with the following two differences. First, one does not 
perform the PNN method for a full data set. Rather, one starts from an initial solution of 
2�M clusters at most. The crossover can therefore be performed in O(�M2) time instead 
of the original O(�N2) time. Second, the partition data is also updated during the 
crossover and, therefore, the partition is not needed to be recalculated after the PNN 
method. Figure 3.11 illustrates the PNN crossover. The sketch of the genetic algorithm 
with the PNN crossover method is shown in Figure 3.12. 

The revised version of [F00] has three vital improvements over [FKKN97]: (i) The 
representation of solution is revised so that one does not merge only the codebooks, but 
maintain both partition and codebook for each solution. In this way, the partition of a 
new solution can efficiently be computed from those of the parent solutions. Access to 
the partition also gives a more precise initialization for the PNN method, which results 
in higher quality candidate solutions. (ii) Empty partitions are removed before the 
application of the PNN method, which is vital for avoiding the worst-case behavior of 
the PNN method. (iii) Since the new candidate solutions are already close to a local 
minimum, the GLA iterations are extremely fast using the activity detection technique 
[KFN99]. 
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                       Random 1                Random 2 

    

               Random 1 + Random 2             Final result 

       

Figure 3.11. Illustration of the use of the PNN method as a deterministic crossover 
method in the genetic algorithm for the data set S2. Panels on top left and right show 
two initial codebooks, which have been generated randomly among the data vectors 
(M=15). The panel on bottom left shows the codebook after combining two initial 

codebooks (M=30). On the bottom right the final codebook after the 15 merge steps of 
the PNN method (M=15) is shown. 

According to the experiments in [F00], the genetic algorithm with the PNN crossover 
method outperforms all the comparative methods, including the previous variants of the 
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genetic algorithm. The only other method that has been reported to give better results 
is the self-adaptive genetic algorithm (SAGA) [KFN03], which still uses the PNN 
crossover as the key component. The use of the PNN method as a deterministic 
crossover method also achieves a fast convergence with a rather small population size. 
The algorithm is therefore remarkably faster than any of the previously reported genetic 
algorithms. 

 

GeneticAlgorithm(X) � (C, P) 
FOR i�1 TO Z DO 

Ci � RandomCodebook(X); 
Pi � OptimalPartition(X, Ci); 

SortSolutions(C,P); 

REPEAT 
{C,P} � CreateNewSolutions( {C,P} ); 
SortSolutions(C,P); 

UNTIL no improvement; 

CreateNewSolutions({C, P}) � {Cnew, Pnew } 

Cnew-1, Pnew-1 � C1, P1; 
FOR i�2 TO Z DO 

(a,b) � SelectNextPair; 
Cnew-i, Pnew-I �  Cross(Ca, Pa, Cb, Pb); 
IterateK-Means(Cnew-i, Pnew-i); 

Cross(C1, P1, C2, P2) � (Cnew, Pnew) 
Cnew � CombineCentroids(C1, C2); 
Pnew � CombinePartitions(P1, P2); 
Cnew � UpdateCentroids(Cnew, Pnew); 
RemoveEmptyClusters(Cnew, Pnew); 
PerformPNN(Cnew, Pnew); 

CombineCentroids(C1, C2) � Cnew 
Cnew � C1 � C2 

CombinePartitions(Cnew, P1, P2) � Pnew 
FOR i�1 TO N DO 

IF x c x ci p i pi i
� � �1 2

2 2

new 1

 THEN  

p pi i�  
ELSE 

p pi
new

i�
2  

END-FOR 

UpdateCentroids(C1, C2) � Cnew 
FOR j�1 TO |Cnew| DO 

c j
new  � CalculateCentroid(Pnew, j ); 

 

Figure 3.12. Pseudocode of the genetic algorithm with the PNN crossover method. 

 

3.7 Summary 

The results of the PNN method are quite good; in general, they are better than the results 
of the opposite hierarchical methods performing divisions of greater clusters. The PNN 
method does not suffer from bad data sets as k-means does. It can be expected that the 
results of the PNN method are quite good, in general. The hierarchical property of the 
PNN method also makes it possible to get the clustering results of many different levels 
with the same effort. It is the best, known clustering method when used with the genetic 
algorithm as a crossover method. The PNN method is simple and it can be easily 
applied to many other problems.  

On the other hand, the PNN method is slow. The running time of the best PNN 
algorithm is lower bounded by �(N2) and there are not any clear, simple and practical 
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ways to speed-up the algorithm. Since the merge phase is based on the local 
optimization strategy and is a greedy heuristic, there is no guarantee of the global 
optimum. If the number of the clusters is small, the result can remain quite far away 
from the best possible result. Thus, there is a need for improvement, but it is not 
obvious how this could be done.  
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4 Summary of the publications 
In the first paper [P1], we study methods for speeding-up the pairwise nearest 
neighbor method. We consider two different speed-up methods. The first is the partial 
distortion search (PDS) originally proposed by Bei and Gray [BG85] for k-means. It 
terminates a single distance calculation immediately when the partial distance exceeds 
the shortest distance that has been found so far. Since the idea is independent of the 
chosen metrics, it can, therefore, also be directly applied to the PNN method.  

The second method is the mean-distance-ordered partial search (MPS) technique 
introduced by Ra and Kim [RK93]. This technique uses the component means of the 
vectors to derive a precondition for the distance calculations and, in this way, a large 
number of the distance calculations can be omitted completely. Although this idea 
utilizes properties of the Euclidean space, we will show that the precondition can also 
be generalized for the distance calculations in the PNN method.  

When combining all the speed-up methods discussed in this paper, one can reduce the 
run time to 8-15% of the basic version of the PNN method in the case of four favorable 
data sets. We can reduce the run time to about 50% of the basic version in the case of 
the less favorable sets (residual vectors). When the dimensions of the vectors are very 
large (256 or greater), the run time can be reduced to 2% of the basic version. We also 
demonstrate that the improvements are applicable within hybrid methods such as the 
GLA-PNN-GLA, and the GA with PNN crossover. 

In the second paper [P2], we propose an algorithm for fast agglomerative clustering 
using a k nearest neighbor graph. In our approach, every node in the graph represents a 
cluster. The edges of the graph represent inter cluster connections between nearby 
clusters. The graph has a linear space complexity and it is used as a search structure for 
reducing the number of distance calculations. The proposed approach has two specific 
problems: how to generate the graph efficiently, and how to utilize it. We propose 
solutions for the first problem by considering a KD-tree [B75], [FBF77], divide-and-
conquer [PS85], and projection-based search [RK93]. It appears that the projection-
based heuristic works reasonably well in most cases. The divide-and-conquer approach 
is faster in the case of some high dimensional image data sets, and the KD-tree is faster 
in the case of 3-dimensional color clustering. 

We also study the second problem and found that a relatively small neighborhood size 
(k=3...6) is sufficient to produce clustering with similar quality to that of a full search. 
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At the same time, significantly fewer distance calculations and operations are needed 
and, therefore, remarkable speed-up is achieved. The running time is comparable to that 
of the k-means with a lower distortion than that with the k-means. The improvement due 
to the neighborhood graph is significant.  

In the third paper [P3], we introduce a new multilevel thresholding algorithm for 
image processing. The algorithm is derived from the pairwise nearest neighbor (PNN) 
method. The time complexity of the PNN method is lower bounded by (N�

2) in vector 
quantization. It is therefore not self-evident that the PNN method could be useful in 
real-time applications. For example, if the implementation is made poorly, the time 
complexity is O(N2) as in [CC03]. Our contribution is to show that PNN thresholding 
can be implemented in O(N�logN) time.  

Unlike in vector quantization, the one-dimensionality of the histogram of the image can 
be utilized so that the neighbor classes can be determined by using a simple linked list 
structure. This allows constant time updates of the data structures. At the same time, we 
use a heap structure for the search of the minimum cost class pair. The proposed method 
works in real time for any number of thresholds. Experiments also show that the 
proposed method, when combined with the Lloyd-Max quantizer, provides MSE values 
that are much closer to that of optimal thresholding than using LMQ alone. The 
difference is small when a low number of thresholds are needed (M = 2 or 3), but the 
difference is significant when the number of thresholds is higher (from M = 10 to M = 
20). 

In the fourth paper [P4], we propose a more general approach for agglomerative 
clustering called iterative shrinking (IS) that generates the clustering by a sequence of 
cluster removal operations. In the IS method, clusters are removed one at a time by 
reassigning the vectors in the removed cluster to the remaining nearby clusters. The 
PNN method can be considered a special case of the IS method since it removes one 
cluster and forces the vectors to move to the same neighbor-cluster. In the IS method, 
the vectors can be reassigned more freely. Apart from the difference in the removal 
operation, we follow the local optimization strategy of the PNN method and always 
remove the cluster that increases the cost function value least.  

Experimental results show that the proposed method achieves better results than the 
comparative methods at the cost of slower speed. The time complexity of the method 
varies from O(N2) to O(N2

�log 2N) depending on the variant. The proposed method was 
also applied as a crossover method in the genetic algorithm (GAIS). Experiments 
indicate that the proposed combination outperforms other clustering algorithms in terms 
of minimizing distortion. The iterative shrinking method also extends to the case where 
the number of the clusters must be determined simply by changing the optimization 
function. This does not add to the complexity since the solutions for variable number of 
clusters can be found during a single run of the proposed algorithm. 
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In the fifth paper [P5], we present an optimal clustering algorithm that was motivated 
by the PNN method. Optimal clustering can be found by considering all possible merge 
sequences and finding the one that minimizes the optimization function. The idea can be 
implemented as a branch-and-bound (BB) technique that uses a search tree for finding 
the optimal clustering. We present also two suboptimal, but polynomial, time variants 
from the branch-and-bound technique.  

The time complexity of the optimal algorithm is still exponential despite the non-
redundant search tree and the designed bounding criterion. The practical usability of the 
algorithm is therefore limited to small, special cases only. The two polynomial time 
algorithms from the branch-and-bound technique offer a good compromise between the 
optimal algorithm and the PNN method. They can operate with larger data sets than the 
optimal branch-and-bound technique. 

The contributions of the papers can be briefly summarized as follows. All the ideas 
have been developed through the teamwork of all authors. The author of this thesis is 
responsible for all the new implementations in this work, has run most of the 
experiments in this thesis and has made significant contributions to the writing of the 
papers. The order of the authors is determined by the estimated overall contribution to 
the writing of the papers. 
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5 Summary of results 
Next, the results of the proposed methods used in this thesis are summarized. For the 
comparisons, the following methods are selected: 

(1) The fast exact PNN method [FKSC00]. 

(2) The PNN with the speed-up methods [P1]. 

(3) The graph-based PNN method [P2]. 

(4) The iterative shrinking method [P4]. 

(5) The k-means algorithm [KFN00].  

(6) The genetic algorithm with iterative shrinking as crossover (GAIS) [P4]. 

 
Spatial vectors: Spatial residual vectors: Color vectors: 

   
Bridge  (256�256) 

K=16, N=4096 
Miss America  (360�288) 

K=16, N=6480 
House  (256�256) 

K=3, N=34112* 

Figure 5.1. Image data sets used in this thesis. *Duplicate training vectors are combined 
and frequency information is stored. Note that when duplicate vectors are merged, all 
distance and merge cost calculations must be multiplied by the frequency of the data 

vectors representing multiple instances of the original data set. 
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Data set Bridge Data set Miss America Data set House 

Figure 5.2. Two-dimensional plots of the image data sets used in the experiments.  

The experiments were performed for three data sets generated from different images; 
see Figures 5.1 and 5.2. The gray-scale image Bridge was divided into non-overlapping 
4�4 pixel blocks. The data set House consists of color values of the RGB image. The 
third data set, Miss America, has been obtained by subtracting two subsequent image 
frames of the original video image sequence, and then constructing 4�4 spatial pixel 
blocks from the residuals. Only the first two frames have been used. In the two-
dimensional plots, only the data of the first two dimensions of the image data sets are 
shown and the scale of each axis is from 0 to the maximum value of that dimension. The 
algorithms are coded in DJGPP C Version 2.01 and are run on a 450 MHz Pentium III 
personal computer that uses Microsoft Windows 98 Operating system. 

Memory consumption of the methods is linear, except for the GA that stores S 
codebooks and mappings, and thus the GA consumes O(NK + S(MK+N)) space. Figure 
5.3 illustrates the MSE values for the different methods as a function of running time. 
The summary of the MSE values and the running times as a function of codebook size is 
summarized in Table 5.1. Comparisons that are more detailed are included in the 
individual papers. 
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Figure 5.3. MSE values for the different methods as a function of running time.
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Table 5.1. MSE values and running times for the different methods as a function of 

codebook size. 

Bridge MSE Running time (in seconds) 
M 32 64 128 256 512 1024 32 64 128 256 512 1024 

PNN 326.24 264.91 214.88 168.92 121.68 72.61 96 96 96 96 95 92 
P1 326.24 264.91 214.88 168.92 121.68 72.61 11 10 10 10 10 9 
P2 325.04 267.48 217.22 171.11 123.90 74.92 3 3 4 3 3 3 
P4 318.07 258.36 209.42 163.38 117.41 70.52 469 465 459 444 413 362 

 
House MSE Running time (in seconds) 

M 32 64 128 256 512 1024 32 64 128 256 512 1024 
PNN 24.13 15.18 9.83 6.27 3.91 2.38 1734 1737 1736 1742 1736 1743 
P1 24.04 15.27 9.85 6.26 3.92 2.39 230 231 230 226 227 229 
P2 27.85 16.20 10.09 6.37 4.00 2.43 20 20 20 20 20 20 
P4 23.65 14.83 9.56 6.09 3.79 2.29 10508 10449 10555 10569 10409 10113 

 
Miss America MSE Running time (in seconds) 

M 32 64 128 256 512 1024 32 64 128 256 512 1024 
PNN 9.04 7.81 6.60 5.36 4.11 2.85 268 266 268 270 269 264 
P1 9.04 7.81 6.60 5.37 4.11 2.84 117 117 117 117 117 116 
P2 9.04 7.83 6.64 5.44 4.19 2.90 48 47 47 47 47 47 
P4 8.92 7.69 6.43 5.19 3.95 2.72 1580 1577 1553 1466 1390 1220 
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6 Conclusions 
 

The main contributions of this thesis can be summarized as follows: 
 
We have developed several speed-up improvements for the PNN method based on 
projection-based search, partial distortion search, and the use of a k nearest neighbor 
graph. The last idea could also be applied to other clustering algorithms that require 
a large number of distance calculations. 

 
An efficient O(N�logN) time implementation of the PNN method has been given for the 
1-dimensional special case.  
 
A generalization of the merge phase was proposed by introducing similar decremental 
clustering algorithms based on a slightly improved cluster removal operation. The 
results are systematically better than that of the PNN method although the differences 
are often small. However, in certain cases, the difference between the proposed iterative 
shrinking approach and the PNN method was decisive: the proposed method found the 
correct number of clusters (15), whereas the PNN method found only 14 clusters.  
 
The merge approach of the PNN method was also used for generating optimal 
clustering, although the result is mainly theoretical. The idea, however, can have 
practical implications as was shown by introducing two polynomial time variants, 
motivated by the proposed optimal branch-and-bound algorithm.   
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