

UNIVERSITY OF JOENSUU

COMPUTER SCIENCE

DISSERTATIONS 9

OLLI VIRMAJOKI

PAIRWISE NEAREST NEIGHBOR METHOD REVISITED

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of Science of
the University of Joensuu, for public criticism in the Louhela
Auditorium of the Science Park, Länsikatu 15, Joensuu, on
December 11th, 2004, at 12 noon.

UNIVERSITY OF JOENSUU
2004

Supervisor Professor Pasi Fränti

Department of Computer Science

University of Joensuu

Joensuu, Finland

Reviewers Professor Martti Juhola

Department of Computer Sciences

University of Tampere

Tampere, Finland

Professor Olli Nevalainen

Department of Computer Science

University of Turku

Turku, Finland

Opponent Professor Erkki Mäkinen

Department of Computer Sciences

University of Tampere

Tampere, Finland

ISBN 952-458-571-5

ISSN 1238-6944

Computing Reviews (1998) Classification: G.1.6, H.3.3, I.4.2, I.4.6, I.5.1, I.5.3, I.5.4

General Terms: Algorithms

Yliopistopaino

Joensuu 2004

 ii

Pairwise Nearest Neighbor Method Revisited
Olli Virmajoki

Department of Computer Science
University of Joensuu
P.O.Box 111, FIN-80101 Joensuu FINLAND
ovirma@cs.joensuu.fi

University of Joensuu, Computer Science, Dissertations 9
Joensuu, 2004, 164 pages
ISBN 952-458-571-5, ISSN 1238-6944

Abstract

The pairwise nearest neighbor (PNN) method, also known as Ward's method belongs to
the class of agglomerative clustering methods. The PNN method generates hierarchical
clustering using a sequence of merge operations until the desired number of clusters is
obtained. This method selects the cluster pair to be merged so that it increases the given
objective function value least.

The main drawback of the PNN method is its slowness because the time complexity of
the fastest known exact implementation of the PNN method is lower bounded by �(N2),
where N is the number of data objects. We consider several speed-up methods for the
PNN method in the first publication. These methods maintain the precision of the
method. Another method for speeding-up the PNN method is investigated in the second
publication, where we utilize a k-neighborhood graph for reducing distance calculations
and operations. A remarkable speed-up is achieved at the cost of slight increase in
distortion.

The PNN method can also be adapted for multilevel thresholding, which can be seen as
a 1-dimensional special case of the clustering problem. In the third publication, we
show how this can be implemented efficiently using only O(N�logN) time, in
comparison to a straightforward approach that requires O(N2).

The merge philosophy is extended, by using the iterative shrinking method, in the fourth
publication. In the merge phase of the PNN method, the two nearest clusters are always
joined. Instead of this, we assign data objects to the neighboring clusters that they
belong to. In this way, we get better clustering results; however, the results come at the
cost of an increase in the running time. The proposed method is also used as a crossover
method in a genetic algorithm, which produces the best clustering results in respect of
the minimization of intra cluster variance.

The PNN algorithm can also be applied to generating optimal clustering. In the fifth
publication, we use a branch-and-bound technique for finding the best possible

 iii

clustering by generating a sequence of merge operations. Instead of using the local
optimization strategy in the merge phase, we consider every possible merge by
constructing a search tree, in which each merge performs the branch. We are also able
to reduce the search space under certain bounding conditions. In addition, we give two
polynomial time variants that utilize the proposed branch-and-bound technique, which
only construct the search tree to a limited depth.

Keywords: agglomerative clustering, codebook generation, clustering algorithms,
pairwise nearest neighbor method, pattern recognition, unsupervised learning, vector
quantization, Ward's method.

 iv

Acknowledgements
The work presented in this thesis was carried out at the Department of Computer
Science, University of Joensuu, Finland during 2000-2004 while the author also
acted as a fulltime lecturer with the Kajaani Polytechnic.

I would like to express my sincere gratitude to my thesis supervisor, Professor Pasi
Fränti, for his guidance, encouragement and infinite support throughout the research.
I also owe my thanks for the cooperative work done by Dr. Timo Kaukoranta and
Ville Hautamäki. I am thankful to Professor Martti Juhola and Professor Olli
Nevalainen, the reviewers of this thesis, for their helpful comments and
recommendations.

I would like to express my sincere thanks to the Department of Computer Science,
University of Joensuu, for the grants for the conference trips, and to the East Finland
graduate school for Computer Science and Engineering (ECSE) for organizing
excellent summer schools.

I am grateful to all the people of Kajaani Polytechnic, Kajaani, for providing me
support and the opportunity to work in this fruitful environment.

I owe my special thanks to my wife Riitta, to my daughters Noora and Roosa, and to
my son Joonas for their endless support, encouragement, and understanding.

Finally, I would like to express my gratitude to any, anonymous, person who has
made a positive contribution to my life.

Joensuu, November 2004

Olli Virmajoki

 v

Abbreviations and symbols

 Abbreviations
 AESA approximating and eliminating search algorithm
 arg argument

BB branch-and-bound
CA competitive agglomeration
CL complete linkage
ECSE East Finland graduate school for Computer Science and

 Engineering
GA genetic algorithms
GAIS genetic algorithm with the iterative shrinking as crossover
GLA generalized Lloyd algorithm
IS iterative shrinking

 ISODATA iterative self-organizing data analysis technique
KD-tree k-dimensional tree
kNN graph k-nearest neighbor graph
LBG Linde, Buzo, and Gray
LMQ Lloyd-Max quantizer
log logarithm
MDL minimum description length
MPS mean-distance-ordered partial search
MSE mean square error
NN nearest neighbor
PDS partial distortion search
PNN pairwise nearest neighbor
RGB red, green, blue
RLS randomized local search
SAGA self-adaptive genetic algorithm
SL single linkage
SOM self-organizing map
TIE triangular inequality

Symbols
c code vector
C codebook: a set of code vectors C={c1, c2, …, cM}
d distance function
g number of GLA iterations
k number of nearest neighbors
K dimension of vector
M number of clusters / size of codebook
M0 size of a preliminary codebook

 vi

N number of data vectors
nn nearest neighbor pointer
p mapping to the partition
P partition: a set of mappings P={p1, p2, …, pN}
s cluster
S clustering: a set of clusters S={s1, s2, …, sM}
x data vector
X a set of data vectors X={x1, x2, …, xN}

 number of incoming pointers �

� asymptotic order
� lower bound

 vii

List of original publications

P1. O. Virmajoki, P. Fränti and T. Kaukoranta, Practical methods for speeding-up
the pairwise nearest neighbor method, Optical Engineering, 40(11): 2495-2504,
November 2001.

P2. P. Fränti, O. Virmajoki and V. Hautamäki, Effective agglomerative clustering by
k nearest neighbor graph. Submitted. Preliminary version has been published in
[FVH03, VF04].

P3. O. Virmajoki and P. Fränti, Fast PNN based algorithm for multilevel
thresholding, Journal of Electronic Imaging, 12(4): 648-659, October 2003.

P4. P. Fränti and O. Virmajoki, Iterative shrinking method for the clustering
problems. Submitted. Preliminary version has been published in [VFK02, FV03].

P5. P. Fränti and O. Virmajoki, Optimal clustering by merge-based branch-and-
bound. Submitted. Preliminary version has been published in [FVK02, FV02].

 viii

Contents

1 Introduction 1

2 Clustering algorithms 4
2.1 Algorithms
2.2 Unknown number of clusters
2.3 Fast search methods
2.4 Multilevel thresholding

4
6
7
8

3 Agglomerative clustering 10
3.1 PNN method
3.2 Using a distance matrix
3.3 Fast exact PNN
3.4 Lazy PNN
3.5 Inexact variants
3.6 Genetic algorithm
3.7 Summary

10
15
16
19
 20
23

 25

4 Summary of the publications 27

5 Summary of the results 30

6 Conclusions 34

7 References 35

Publications

 ix

1 Introduction

Clustering is an important combinatorical optimization problem that must often be
solved as a part of more complicated tasks in pattern recognition, image analysis and
other fields of science and engineering [JD88, KR90, E92, GG92]. Clustering is also
needed for designing a codebook in vector quantization. The clustering problem
contains two subproblems: determining the number of clusters and finding the location
of clusters.

The process of solving a pattern recognition problem (see Figure 1.1) typically involves
the following steps [JD88, JMF99]:

(1) Pattern representation (including feature extraction and/or selection).

(2) Definition of a pattern proximity measure appropriate to the data [A73,
DS76, MS83, JD88].

(3) Clustering or grouping.

(4) Data abstraction (if needed) [DS76].

(5) Assessment of output (if needed) [D87, D93, C95b, K01].

pattern
proximity

pattern
representation clustering data

abstraction
assesment of

output

data
preparation

clustering
algorithm

clustering
validity

Figure 1.1. The steps of cluster analysis for pattern recognition.

The preprocessing of data objects improves the efficiency and the outcome of the
clustering algorithm. With appropriate preprocessing, larger data sets can be clustered
and, in addition, better clustering results can be achieved during the actual clustering.
Although most of the preprocessing methods are designed to aid in the manipulation of

 1

the clusters, unsupervised learning may also focus on description tasks [T99]. The
preprocessing of data (data preparation) can be considered as a separate task that takes
place before actual clustering. It is common that a data set includes unnecessary features
(noise and outliers) and asymmetrically scaled features [MS03]. If a data set is not
properly preprocessed, it can be assumed that the outcome of clustering is suboptimal.
Some preprocessing methods are:

(1) Indexing of the data [B75, FBF77, B80, B90, S91, Y93, NN97, B02,
BM02] for nearest neighbor search.

(2) Projecting the data [FBS75, GK92, RK93, LC94, LC95a, BJS97, P1] for
a nearest neighbor search.

(3) Using an approximating and eliminating search algorithm (AESA) [V86,
MOV94, V94, V95, RP00].

(4) Scaling and weighting of the data [MS03].

(5) Selecting the features [GM86, F87, ZRL97, T99, T00, DCSL02].

(6) Using heuristic clustering to get an initial partition [S80, JD88].

(7) Filtering noise and outliers [BCQY97, RRS00, WC04].

Figure 1.2. An example of clustering. On the left, a sample data set is shown. On the
right, a clustering of the data set with 15 clusters and their centroids is shown.

 2

Clustering entails partitioning a data set so that similar objects are grouped together
and dissimilar objects are placed in separate groups; see Figure 1.2 for an example. The
dots represent two-dimensional data points in Euclidean space. The 5000 data objects
have been divided into 15 clusters separated by straight lines in the figure. The data
objects separated by straight lines form a partition of the data. Centroids of the partition
are represented by large dots.

Formally, the clustering problem is defined as follows: Given a set of N data vectors
X={x1, x2, …, xN} in a K-dimensional space, clustering aims at solving the partition
P={p1, p2, …, pN}, which defines for each data vector the index of the cluster where it is
assigned to. Cluster sa is defined as the set of data vectors that belong to the same
partition a:

 �s x p aa i i� � � . (1)

Clustering is then represented as the set of clusters S={s1, s2, ..., sM}. In vector
quantization, the output of clustering is a codebook C={c1, c2, …, cM}, which is usually
the set of cluster centroids (code vectors).

The most important choice in clustering is the cost function f for evaluating the
goodness of the clustering. For a given application, the criterion can be based on the
principle of minimum description length (MDL) [R78, S78]. Otherwise, the criterion is
based on certain assumptions of data normalization and spherical clusters. Basically, the
function should correlate with high inter cluster distance and low intra cluster diversity.
In the case of binary data, stochastic complexity has been applied [GKV97].

When data vectors belong to Euclidean space, a commonly used function is the mean
square error (MSE) between the data vector and their cluster centroids. Given a
partition P and the codebook C, the MSE is calculated as:

�
�

��

N

i
pi i

cx
N

PCf
1

21),(, (2)

where pi is the cluster (partition) index of the data vector xi. From here on, the vectors
are assumed to belong to Euclidean space and the mean square error (MSE) is used as
the objective function. The number of clusters is also assumed to be known beforehand,
unless otherwise stated.

 3

2 Clustering algorithms
Clustering is an NP-complete [GJW82] combinatorical optimization problem, for which
optimal solutions can be found by the branch-and-bound technique, but in exponential
time [FN75, KNF75, FG88, W91, WL93, C95a, P97, GYZ98, GRS99, IA99, FV02,
FVK02, MP02, P5]. The total number of different clusterings equals Stirling's number
of the second kind [GKP94]. Suboptimal algorithms must therefore be used in practice.

Existing methods can be roughly divided into heuristic, optimization, graph-theoretical
and hierarchical methods. The heuristic methods are usually fast but rough, and hence,
they are not adequate alone. Instead, they can be used for creating an initial solution for
more sophisticated algorithms. Optimization methods produce a partition that aims at
minimizing an a priori chosen objective function, which is a goodness criterion for a
partition [B99]. Hierarchical clustering methods start with an initial partition. After that,
clusters are split or merged repeatedly. In hierarchical methods, an attempt is made to
perform locally optimal steps, but this does not necessarily lead to the global optimal
solution relative to any criterion function.

2.1 Algorithms

There are many heuristic clustering algorithms proposed in the literature [H75, S80,
JD88]. They belong to the group of partitional methods that produce only one partition.
An explicit objective function is not necessarily used since the object is to allocate the
data vectors to the cluster they seem to fit best at the moment. Usually, each data vector
is considered only once in a greedy manner, and it is allocated to a cluster or it is not
allocated at all. These algorithms tend to produce rather weak solutions. Three simple
heuristic methods are leader [H75, S80], nearest neighbor clustering [JD88] and joiner
[H75, S80].

Optimization methods [K04a] are usually based on k-means [F65], which is also
referred to by several other names, such as c-means [M67], generalized Lloyd algorithm
(GLA) [L57], Linde-Buzo-Gray algorithm (LBG) [LBG80] or iterative self-organizing
data analysis technique (ISODATA) [BH65]. These are slightly different variations on
each other but the main concept is nevertheless the same. K-means applies two
optimization steps iteratively: (i) it calculates an optimal partition for the given
codebook, and (ii) calculates a new codebook as the cluster centroids. These steps are
based on two optimality conditions:

 4

(1) Nearest neighbor condition: for a given codebook, the optimal clustering of the

data set is obtained by mapping each data vector to its nearest code vector in the
codebook (or cluster representative) with respect to the evaluation function.

(2) Centroid condition: for a given partition, the optimal code vector (cluster
representative) is the centroid (average vector) of the data vectors within the
partition.

Each iteration of the k-means algorithm decreases the distortion; however, the process
leads only to a local optimum that depends on the initial codebook, with M random data
vectors, that was used. Several other techniques have also been proposed for generating
an initial codebook [LBG80, YG88, GG92, NT92, BM93, KKZ94, AR96, PLL99].
Thus, k-means can fine-tune a codebook. It can also be integrated in many other of the
more complicated algorithms discussed later in this thesis.

There are many variants of the k-means algorithm that include fast implementations
[HLC91, WG94, CKS95, M95, CL96, KFN96, F97, BJLS98, KFN00, Z01,
KMNPSW02, LVV03]. The fuzzy variant is known as fuzzy c-means [D73, DL94,
CCLH97, OZ00, WCS01]. Among many other variants, there are simulated annealing
[KGV83, ZG89, HPLSH01] and deterministic annealing [RGF90, HB97] variants.
These methods are based on promising theories but it does not mean that they would
work well in practice. Among those, simulated annealing is probably the one that works
best in practice.

The best clustering results, in term of minimizing the distortion function, have been
obtained by the genetic algorithm (GA) [H75, G89, MC96], which uses agglomerative
methods in the crossover. The method was first reported by [FKKN97] using an
effective but rather slow algorithm. The algorithm was then simplified and made faster
[F00]. It is noted that the use of random crossover is not sufficient to be superior to the
other clustering methods.

An alternative approach has been offered by the randomized local search algorithm
(RLS) [FK00, FXK03]. In terms of minimizing the distortion function, it is almost as
good as genetic algorithms but the RLS method is much simpler to implement. It uses a
simple trial-and-error approach in which new candidate solutions are generated by
random swapping of the code vectors and then uses k-means for fine-tuning the
candidate solutions. The RLS algorithm has been successfully applied to the
classification of bacteria [FGGKKLN00].

The graph-theoretical methods can be divided into three categories:

(1) Methods where the initial partition is the singleton partition and a
hierarchical sequence of partitions obtained by agglomeration [KHK99,
HK01, P2].

(2) Methods that produce a connected graph from which a clustering is

 5

obtained by cutting inconsistent edges [Z71, J78, T80a, T80b, U82,
U83, KN86, KNT87, SC91a, SC91b].

(3) Methods that produce an unconnected graph where the connected
components correspond to the clusters [U82].

Hierarchical methods [K99] are either divisive or agglomerative. Divisive methods start
by putting all data vectors in a single cluster. New clusters are created by dividing
existing ones. This approach involves two main design problems: which cluster to
divide, and how the division is performed. The division can be made along a selected
dimension of the vector space as in the median cut algorithm [H82], or along the
principal axis [WZ91]. The latter approach has been studied and a method has been
proposed for locally fine-tuning the cluster boundaries after the divisions have been
made [FKN97]. The divisive methods can be fast, e.g., O(N�logN), but more
complicated than the agglomerative methods.

Agglomerative clustering is simple to implement and it provides better clustering results
than the divisive approach. It can also be combined with k-means as proposed [GPF95],
or used as the merge phase in the split-and-merge algorithm [KFN98], which results in a
good time-distortion performance.

Another clustering method is the self-organizing map (SOM) [K88, K95], which is
commonly applied to data mining and to the visualization of complex data sets. SOM
can also be used for clustering [NF88, CTC94]. Unfortunately, for large clustering
problems SOM is inferior to the majority of other methods [K04a]. Furthermore, the
clustering results depend strongly on the parameter setup [F99].

2.2 Unknown number of clusters

Determination of the number of clusters in data requires that one has both an algorithm
that searches for the correct clustering of data and has a criterion that is capable of
recognizing the number of clusters [DB79, I80, FK97, SYK97, BP98, KF02b, KLL04,
SWJ04, WC04, X04]. The simplest approach is to loop the number of clusters, use an
existing algorithm for a fixed number of clusters in the loop, and then select the best
solution using some criterion. This brute force search is guaranteed to work (assuming
that the criterion is valid) but it is also slow.

The stepwise clustering algorithm, which reduces the workload required by the brute
force approach, has been proposed [KF02b]. The idea is to utilize the previous solution
as a starting point when solving the next clustering problem that has a different number
of clusters. A stopping criterion is applied to estimate the potential improvement of the
algorithm and to stop the iteration when the estimated improvement stays below a
predefined threshold value.

 6

There are also methods that solve the number and location of the clusters jointly. The
competitive agglomeration algorithm (CA) [FK97] decreases the number of clusters
until there are no clusters smaller than a predefined threshold value. The drawback is
that the threshold value must experimentally be determined. Another approach is the
dynamic local search [KF02a] that solves the number and location of the clusters
jointly. The algorithm uses a set of basic operations, such as cluster addition, removal
and swapping.

2.3 Fast search methods

In the clustering problem, one typically needs to search for the nearest neighbor (NN)
during the process. The nearest neighbor search problem involves searching for a set of
K-dimensional vectors C = {ci} that are nearest to a given target vector x with respect to
a distance function d. A large part of the running time of the search is due to the
computation of the O(K) distance function. A full search solution involves calculating
the distance between the data vector, x, and every code vector, ci, in order to find the
nearest to x; however, the full search solution comes at the cost of O(NK).

In the search of nearest code vector in Euclidean space, several speed-up methods have
been introduced that reduce the computation required by distance calculations [FN75,
S75, BS76, FBF77, WL83, BG85, V89, S90a, S90b, CH91, MNS91, O91, OB91,
GK92, HBSH92, RP92, RK93, EE94, LC94, CK95, LC95a, LC95b, LC95c, LS95,
DE96, BJS97, RP97, AMNSW98, GG98, KS98, SC98, BBS99, KFN00, RP00, S00,
TSL00, WL00, Y00, BBK01, CNBM01, HC01, AP02, BM02, KMNPSW02, M02,
BN03, HS03a, HS03b, M03, SR03, K04b].

The triangular inequality elimination (TIE) technique presented by Chen and Hsieh
[CH91] maintains the distances between all code vectors and then reduces the number
of distance calculations by a condition derived from the triangle inequality.

The partial distortion search (PDS) proposed by Bei and Gray [BG85] terminates a
single distance calculation immediately when the partial distance exceeds the shortest
distance previously found. Let sa be the cluster for which one seeks the nearest
neighbor. One uses full search to calculate the distance values da,j between sa and all
other clusters sj. Let dmin be the distance of the best candidate found so far. The distance
is calculated cumulatively by summing up the squared differences in each dimension. In
PDS, one utilizes the fact that the cumulative summation is nondecreasing, since the
individual terms are nonnegative. The calculation is therefore terminated and the
candidate is rejected if the partial distance value exceeds the current minimum dmin.

The mean-distance-ordered partial search (MPS) technique introduced by Ra and Kim
[RK93] applies two different techniques to speed-up the search of the nearest code
vector. First, it uses a fast precondition for checking whether the distance calculation to

 7

a given candidate cluster can be omitted. Second, it sorts the codebook according to
the component means of the code vectors and derives limits for the search.

An interesting approach for clustering is to use graph theoretical methods [GR69, U82,
JD88, OM95, EPY97, BCQY97, KHK99, HS00, HK01, B04]. For example, by first
creating a complete undirected graph where the nodes correspond to the data vectors
and the edges correspond to vector distances according to a given similarity or
dissimilarity measure. The resulting graph can be trimmed to a minimum spanning tree,
which can be interpreted as one large cluster. The clustering can then be generated by
iteratively dividing the cluster by removing the longest edges from the graph. In the
final graph, clusters can be determined by finding the separate components of the graph
[GR69]. This algorithm can be seen as a variation of split-based methods with a similar
criterion to the criterion in single-linkage agglomerative clustering.

Many agglomerative clustering algorithms construct a sparse graph and then perform
the clustering on this graph [JD88, KHK99, HK01]. Two main characteristics of these
approaches are that

(1) the methods construct undirected graphs, and

(2) the methods neglect the original data after building the weighted
graph (meaning that weights of the new edges are determined by the
weights of current edges).

Generating and utilizing the graph efficiently is problematic for this approach. For
example, standard solutions for solving minimum spanning tree takes O(N2) time, which
would prevent any speed-up.

A k-nearest neighbor graph (kNN graph) is defined as a weighted, directed graph in
which every node represents a single cluster and the edges correspond to pointers to
neighbor clusters. A pointer maintains the index of the neighbor cluster and the
corresponding distance. Every node has exactly k edges to the k nearest clusters
according to a given distance function. The distance of clusters is defined by the merge
cost function of the agglomerative clustering, see Eq. (3) below. Note that this is not the
only possible definition of the graph: Other definitions have been given in [AM93,
CBC00].

2.4 Multilevel thresholding

Multilevel thresholding, which is needed in the compression of the medical images
[KOKKNN98], can be seen as a 1-dimensional special case of the clustering problem.
The time complexity in the 1-dimensional case of clustering is expected to be lower
than in the general case. For example, the time complexity of the GLA (for vector
quantization in the multidimensional space) is O(NM) while the time complexity of its
1-dimensional counter-part, the Lloyd-Max quantizer (LMQ) [LS55, L57], is only O(N).

 8

Over the years, many thresholding techniques have been proposed [KR79, O79, P80,
WH84, KSW85, T85, B86, KI86, SSWC88, A89, PP89, LSP90, B92, CW92, TC92,
PP93, AST94, CWY94, BM95, YCC95, YC97, CSS98, GLC98, Y99, ST00, LCC01,
SS01, Y02]. The thresholding methods can be categorized in six groups according to the
information they explore. These categories are [SS04]

(1) histogram shape-based methods where the peaks, valleys and curvatures
of the smoothed histogram are analyzed;

(2) clustering-based methods where the gray level samples are clustered in
two parts as background and foreground or, alternately, are modeled as
two Gaussian distributions;

(3) entropy-based methods that use the cross-entropy between the original
and binarized image;

(4) object attribute-based methods that search for a measure of similarity
between the gray-level and binarized images, such as fuzzy similarity,
shape, edges, or the number of objects;

(5) spatial methods that use the probability mass function models, which
take into account the correlation between pixels on a global scale; and

(6) local methods that do not determine a single value of threshold, but adapt
the threshold value depending upon the local image characteristics
instead.

When extended to multilevel thresholding, many of these methods have high
computational complexity since they carry out an exhaustive search, which takes
O(NM-1) time. A faster algorithm based on Otsu's method was proposed by Liao et al.
[LCC01]. However, it still requires O(NM-1) time. Faster O(N�sqrt(M�logN)+N�logN) and
O(N2M) time algorithms have been developed for multilevel thresholding by Aggarwal
et al. [AST94] and by Kundu [K98] respectively.

The best, known method uses dynamic programming [B57] and has the time complexity
O(NM) for globally optimal scalar quantizers [W91, WZ93]. This method is based on
monotonicity properties of optimal scalar quantizers. The same technique can also be
adopted to multilevel thresholding because the problem statement is equal. Thus,
optimal multilevel thresholding can be calculated ultimately in O(NM) time.

 9

3 Agglomerative clustering

Agglomerative clustering [LW67, CO72, BS93] generates clusters by a sequence of
merge operations. Clustering starts by initializing each data vector as its own cluster.
Two clusters are merged at each step and the process is repeated until the desired
number of clusters has been obtained. The single linkage (SL) [SS73] method
determines the cluster pair to be merged based on the two closest vectors. The complete
linkage (CL) [SS73] method determines the cluster pair to be merged based on the two
furthest vectors. Ward's method [W63] selects the cluster pair to be merged so that the
merge increases the given objective function value least. In the vector quantization
context, this is also known as the pairwise nearest neighbor (PNN) method, attributed to
Equitz [E89].

The algorithm is straightforward to implement in its basic form and, in comparison to k-
means, it gives better results (i.e., it has a codebook with a lower MSE value). The PNN
method also has the advantage that the hierarchical approach produces multiple
codebooks of different sizes as a side-product. Thus, the PNN method can be applied to
joint minimization of distortion and entropy of code vector indices [FGP90, GPF91,
GPF95, KS98]. The algorithm can also be used as a part of hybrid method such as a
genetic algorithm [FKKN97, F00, KFN03, FV03], or an iterative split-and-merge
method [KFN98].

3.1 PNN method

The basic structure of the exact PNN method is shown in Figure 3.1. The method starts
by initializing each data vector xi as its own code vector ci (cluster si). In each step of the
algorithm, the size of the codebook is reduced by merging two nearby clusters. The cost
of merging two clusters sa and sb (merge cost), which is also the distance between these
clusters, is defined as the increase in the distortion of the codebook if the clusters are
merged [W63, E89]:

 d
n n

n n
c ca b

a b

a b
a b, �

�

� �

2
, (3)

where na and nb denote the sizes of the corresponding clusters sa and sb. This minimizes
the increase of MSE caused by the merge operation. The cost function is symmetric (da,b
= db,a) and can be calculated in O(K) time, assuming that na, nb, ca, and cb are known.
The costs for merging three clusters are illustrated in Figure 3.2. The cost values are:

 10

da,b = 32,40; db,c = 56,25 and da,c = 90,75. It can be observed that, in this case, it is
better to merge the central cluster (b) with the smaller cluster (a) than with the larger
cluster (c) even though the latter is closer in respect of the Euclidean distance.

PNN(X, M) � C, P
si � {xi} � i�[1,N];
m � N;
REPEAT

(sa, sb) � NearestClusters();
MergeClusters(sa, sb);
m � m-1;
UpdateDataStructures();

UNTIL m=M;

Figure 3.1. Structure of the exact PNN method.

56

a b c

na = 1

nb = 9
nc = 3

da,b=32,40 db,c=56,25
Figure 3.2. Illustration of the distances between the clusters sa, sb and sc, where the

Euclidean distance between the clusters sa and sb is 62
�� ba and similarly between the

clusters sb and sc the distance is 52
�� cb .

The exact variant of the PNN method applies a local optimization strategy: all possible
cluster pairs are considered and the one (sa, sb) increasing the distortion least is chosen:

 . (4)
� � ji

ji
Nji

dba ,,1,
minarg,
�

�

�

 11

 M = 5000 M = 17

 M = 16 M = 15

Figure 3.3. Illustration of the agglomeration of the PNN method for the data set S2. The
final clustering has 15 separate clusters.

The code vector (ca) of the combined cluster (sa) is calculated as the weighted average
of the code vectors (ca and cb) of the merged clusters sa and sb:

 c
n c n c

n na
a a b b

a b
�

�

�

. (5)

 12

c Input
data

b
d

a

e

f

4.0

4.0

2.0

2.5

4 6 8 100 2
0

2

4

6

8

10

10.0
cluster a b c d e f g min NN

a -- 2.0 16.0 2.5 4.0 8.0 16.0 2.0 b

b 2.0 -- 10.0 2.5 10.0 18.0 26.0 2.0 a

c 16.0 10.0 -- 22.5 36.0 40.0 32.0 10.0 b

d 2.5 2.5 22.5 -- 4.5 14.5 30.5 2.5 a

e 4.0 10.0 36.0 4.5 -- 4.0 20.0 4.0 a

f 8.0 18.0 40.0 14.5 4.0 -- 8.0 4.0 e

g 16.0 26.0 32.0 30.5 20.0 8.0 -- 8.0 f

2.0

g
8.0

c After
step 1

ab d

e

f

4.0

4.0

2.7

4 6 8 100 2
0

2

4

6

8

10

2.7

16.7
cluster ab c d e f g min NN

ab -- 16.7 2.7 8.7 16.7 27.3 2.7 d

c 16.7 -- 22.5 36.0 40.0 32.0 16.7 ab

d 2.7 22.5 -- 4.5 14.5 30.5 2.7 ab

e 8.7 36.0 4.5 -- 4.0 20.0 4.0 f

f 16.7 40.0 14.5 4.0 -- 8.0 4.0 e

g 27.3 32.0 30.5 20.0 8.0 -- 8.0 f
g

8.0

c After
step 2

abd

e

f

4.0

4.0

6 8 100 2 4
0

2

4

6

8

10

8.1

23.1

cluster abd c e f g min NN

abd -- 23.1 8.1 19.1 35.1 8.1 e

c 23.1 -- 36.0 40.0 32.0 23.1 abd

e 8.1 36.0 -- 4.0 20.0 4.0 f

f 19.1 40.0 4.0 -- 8.0 4.0 e

g 35.1 32.0 20.0 8.0 -- 8.0 f
g

8.0

 13

c After
step 3

abd

ef

4 6 8 10

19.3

23.1

g

0 2
0

2

4

6

8

10

cluster abd c ef g min NN

abd -- 23.1 19.3 35.1 19.3 ef

c 23.1 -- 49.3 32.0 23.1 abd

ef 19.3 49.3 -- 17.3 17.3 g

g 35.1 32.0 17.3 -- 17.3 ef

17.3

17.3

c After
step 4

abd

efg

0 2 4 6 8
0

2

4

6

8

10

10

30.8

23.1

23.1

cluster abd c efg min NN

abd -- 23.1 30.8 23.1 c

c 23.1 -- 48.7 23.1 abd

efg 30.8 48.7 -- 30.8 abd

Final
clustering

abcd

efg

0 2 4 6 8
0

2

4

6

8

10

10

Figure 3.4. PNN example. At the end of the agglomeration there are two clusters left.

 14

The clusters are then merged and the process is repeated until the codebook reaches
the desired size, M. It should also be noted that, although a single merge operation is
always performed optimally, the whole process does not guarantee an optimal
codebook. An illustration of the agglomeration of the PNN method for a sample data set
is shown in Figure 3.3. On the top left, the initial phase after each data vector has been
assigned to its own cluster (M=5000) is shown. On the top right, the clustering before
the last two merge steps (M=17) is shown. On the bottom left, the clustering before the
last merge step (M=16) is shown. Finally, on the bottom right, the final clustering
(M=15) is shown. The code vectors are presented by large dots.

A detailed example of the exact PNN method is illustrated in Figure 3.4. In the matrix,
all pairwise distances of the clusters are shown. On the right hand side of the matrix, the
nearest neighbor cluster and the associated distance for each cluster are shown. Note
that these data structures are not maintained by the basic PNN algorithm. At the
beginning there are seven clusters: a, b, c, d, e, f, and g. During each step of the
algorithm, two clusters are always merged. Thus after the first step, there are six clusters
left: ab, c, d, e, f, and g. At the end of the agglomeration, there are only two clusters left:
abcd and efg.

A drawback of the PNN method is its relatively high running time in its basic form
[SO97]. There are almost N steps to be performed by the algorithm because, typically,
M<<N. Straightforward implementation [E89] recalculates all pairwise distances of the
clusters at each step of the algorithm for finding the pair of clusters to be merged in the
algorithm. No additional data structures are required, but the algorithm takes O(N3K)
time [SO97] because there are O(N) steps and in each step there are O(N2) cost function
values to be calculated. Therefore, the algorithm is very slow for large data sets.

3.2 Using a distance matrix

To reduce the number of the calculations of the merge cost function of Eq. (3), pairwise
distances can be stored in an N�N matrix; see Figure 3.5. A strictly upper triangular
matrix, which is shown in gray, is only used because the distances between the clusters
are symmetrical. The minimum value is searched for from the distance matrix and the
corresponding cluster pair is merged. New merge cost values are then calculated
between the new cluster and remaining clusters, only. Thus, the number of the
calculations per iteration falls from O(N2) to O(N), but the search for the minimum still
takes O(N2). The time complexity of using the distance matrix is thus O(N2K+N3),
where the first term originates from the calculations of the merge cost values and the
second term originates from the search for the minimum [SO97]. The disadvantage of
this approach is its quadratic memory consumption.

 15

1 2 3 4 5 6 7 ... N
1
2
3
4
5
6
7
...
N

6,7

HEAP

... ...

...

Figure 3.5. Distance matrix. A strictly upper triangular matrix shown in gray is only
used because the distances between the clusters are symmetrical.

Kurita's method [K91] stores all pairwise distances into a matrix but utilizes a heap
structure for searching the minimum distance; see Figure 3.5. The merged clusters can
be found by taking the smallest element from the top of the heap in O(logN) time.
Although the number of the elements in the heap is even O(N2) in the beginning, the
search can be done nevertheless in O(logN) time because O(log(N2)) = O(2logN). Only
O(N) distance updates are needed after each merge step; each of these updates takes
O(K+logN) time. There, the first term (K) originates from the time for the calculation of
the merge cost and the second term is attributed to the heap operation. Kurita's method
thus runs in O(N2K+N2

�log N) time; however, it still requires O(N2) memory, which is
impractical for large data sets.

3.3 Fast exact PNN
A much faster variant of the PNN method can be implemented by maintaining, for each
cluster, a pointer to its nearest neighbor [FKSC00]. The nearest neighbor nna for a
cluster sa is defined as the cluster minimizing the merge cost:

 . (6)
� � ja
aj

Nja dnn ,,1
minarg
�

�

�

The nearest neighbor property is not symmetrical, (i.e., nna=b does not imply nnb=a).
The nearest neighbor of the cluster a is the cluster b, according to Eq. (3), but the
nearest neighbor of the cluster b is the cluster c (see Figure 3.6 where the nearest
neighbor pointers are illustrated). In this way, only a few nearest neighbor searches are
needed in each iteration. The method is denoted as the fast exact PNN. Its
implementation details are given next.

 16

a

b

c

d

e

f

g

Figure 3.6. Nearest neighbor pointers, which reduce the amount of the nearest neighbor

search in each iteration.

For each cluster sj, one maintains the cluster size nj, the corresponding cluster center cj,
and the pointer to its nearest neighbor nnj. The nearest neighbor pointer is assigned with
the cost value dj. The cost values of pointers indicate the amount of increase in the
distortion if the cluster sj is merged to . For each data vector the algorithm maintains
the index of the cluster p

jnns

i, which the data vector belongs to.

In the initialization, each data vector xi is assigned to its own cluster of the size one and
the cluster center ci is initialized to the data vector itself:

 . (7) � Niallforxcnip iiii ,1;1; ���� �

nna�

In order to generate the nearest neighbor table for the cluster centers, one must find the
nearest neighbor nni for every cluster. This is done by considering all other clusters as
tentative neighbors and by selecting the one that minimizes Eq. (3). There are O(N2)
pairs to be considered and thus, the initialization phase takes O(N2K) time in total.

The optimal cluster pair (sa and sb) to be merged is the cluster that has the minimum
dj-distance according to Eq. (3) and its nearest neighbor nnj:

 . (8)
� �

a d b
j N

j�

�

arg min ;
,1

This pair can be found in O(N) time using linear search in the nearest neighbor table.
The merge of the clusters is then performed as follows. First, one updates the partition
indices so that the combined cluster replaces sa, and the cluster sb becomes obsolete:

 17

 . (9) bpthatsuchNiallforap ii ��� ...,,2,1

In order to minimize rounding errors it is advantageous to calculate the new code vector
as the centroid of the cluster. This can now be easily done by the aid of the partition
indices pi:

 c
n

xa
a

i
p ai

� �

�

�
1

. (10)

The above steps can be performed at most in O(NK) time.

The nearest neighbor nna for the merged cluster (now sa) must be resolved by
calculating the merge cost values of Eq. (3) between the new cluster and all other
remaining clusters. This can be done in an O(NK) time.

As mentioned before, the nearest neighbor function is not symmetrical. Therefore, one
must also resolve the nearest neighbor pointer for all clusters whose nearest neighbor
was, before the merge, either a, or b (nni=a, or nni=b). This takes O(NK) time for a
single cluster and (according to practical tests) there are approximately 3-5 clusters on
average to be updated at each step of the algorithm, see [FKSC00]. The overall time
complexity of the update operation is thus O(�NK), where � denotes the number of
clusters whose nearest neighbor pointer must be resolved. To sum up, the time
complexity of the fast exact PNN method is O(�N2K).

The range of � is [0-N] and is closely related to the kissing number problem (also
sometimes called the Newton number, contact number, coordination number, or
ligancy), which asks the maximum number of spheres of radius one that can
simultaneously touch the unit sphere in K-dimensional Euclidean space [MTTV97,
CS98, W04]. The cluster merge cost values of Eq. (3), however, are not Euclidean and
therefore the kissing number only applies in cases when all cluster sizes are equal. This
is the case at least in the initial stage of the PNN method, if all clusters have same initial
frequencies. Usually the initial frequency of the cluster is one, but this is not necessarily
always the case (see the data sets in Section 5).

In the worst case, the same cluster can be the nearest neighbor for all the other clusters,
and thus � =O(N). This situation could appear when there is one small cluster and all the
rest are large. This cannot happen in the exact PNN method; however, it has been
reported to be possible in other situations [F00]. Thus, this is not common in practice
and the connection to the kissing number (even as an open problem in the general case)
indicates that � is a function of the vector dimension K.

In a favorable case, two merged clusters are chosen randomly. Since each cluster has
only one nearest neighbor pointer, a randomly chosen cluster is the nearest neighbor for
one cluster for the average case. The average number of the updated pointers is

 18

therefore two because there are two clusters involved in the merge operation.
However, the merged clusters are not chosen randomly, rather they tend to be located in
areas of high concentrations of clusters. Thus, in practice, � is greater than two.
Ultimately, � can be zero when two clusters far away from other clusters are merged
because then it is possible that the merged new cluster is not the nearest neighbor of any
other cluster.

cluster A b c d e f g min NN

a -- 2.0 16.0 2.5 4.0 8.0 16.0 2.0 b

b 2.0 -- 10.0 2.5 10.0 18.0 26.0 2.0 a

c 16.0 10.0 -- 22.5 36.0 40.0 32.0 10.0 b

d 2.5 2.5 22.5 -- 4.5 14.5 30.5 2.5 a

e 4.0 10.0 36.0 4.5 -- 4.0 20.0 4.0 a

f 8.0 18.0 40.0 14.5 4.0 -- 8.0 4.0 e

g 16.0 26.0 32.0 30.5 20.0 8.0 -- 8.0 f

Figure 3.7. Initial distance matrix of the PNN example shown in Figure 3.4. The cells

shown in gray contain the cluster distance to the nearest neighbor for each cluster.
The initial distance matrix of the PNN example shown in Figure 3.4 is illustrated in
Figure 3.7. The cluster pair a and b will be merged in the first step because their merge
cost is smallest. After the merge, the distance matrix is updated before the search for the
next cluster pair to be merged. In the original PNN variant (full search), the whole
matrix is recalculated during the next iteration since nothing is stored. In the distance
matrix variant, only the values of the rows and the columns for the merged cluster ab
must be calculated and stored in the distance matrix. In the fast exact PNN method, only
the values of the rows and the columns for the clusters ab, c, d and e are recalculated
because the nearest neighbor pointers must be updated for those clusters. In this method,
only the nearest neighbor pointers to the nearest neighbors and the corresponding
distance values are stored in the nearest neighbor table.

3.4 Lazy PNN

The number of distance calculations can be reduced further by delaying the update of
the nearest neighbor pointers. The method is based on the monotony property; see
[KFN99]. Suppose that the current minimal merge cost is d(sa, sb) and the clusters sa
and sb are merged. It is possible that the centroid of the merged cluster (ca+b) becomes
closer to the centroid of the third cluster sc than cc was in respect of the original cluster
centroids (ca and cb); see Figure 3.8. However, the monotony property states that the
merge cost d(sa+b, sc) cannot be smaller than min{d(sa, sc), d(sb, sc)}. So the minimum
cluster distortion d never decreases due to the merge of the optimal cluster pair. This is
formalized in the following lemma [KFN99]:

 19

Lemma 3.1. Consider three clusters sa, sb, sc with centroids ca, cb, cc and the number of
objects in these clusters na, nb, nc. Assume that d(sa, sb)�d(sa, sc)�d(sb, sc) and na, nb,
nc�1. Then it holds that d(sa, sc)�d(sa+b, sc).

cc

cbca ca+b

nb / (na+nb) na / (na+nb)

Figure 3.8. Illustration of the three clusters in 2-dimensional space. Here ca and cb are
the centroids of the two clusters to be merged, ca+b is the centroid of the merged cluster,

and cc is the centroid of any other cluster.

For example, assume that the nearest neighbor for a cluster si was sa before the merge of
the two clusters sa and sb, and sx after the merge. From the monotony property one
knows that di,a � di,a+b. One therefore does not need the exact cluster distance because
the previous cluster distance value serves as a lower bound. In practice, one can assume
that the nearest neighbor after the merge is sa+b so the previous cost function value di,a
(or di,b) can be used as a lower bound. The cluster dissimilarity value is labeled as
outdated. It will be updated only if it becomes a candidate for being the smallest
distance of all. In this way, one can reduce the computation by about 35% while
preserving the exactness of the PNN method [KFN99].

3.5 Inexact variants

Several inexact variants of the PNN method have been considered in the literature.
These variants decrease the running time at the cost of increased distortion. Equitz
proposed an O(NK�logN) time variant, which he referred as the fast PNN [E89]. It uses a
KD-tree [B75, FBF77] for localizing the search for the code vectors (clusters). The
algorithm merges several vector (cluster) pairs at the same time. The KD-tree structure
and the corresponding partition of the 2-dimensional space are illustrated in Figure 3.9.

 20

All vectors are assigned to the buckets of the KD-tree so that the similar vectors are in
the same bucket. The method; however, has not gained as much popularity as the exact
PNN method, probably because of its more complex implementation and suboptimal
results.

g
h
n
o

d
e
f
m

a
i
j
p

b
c
k
l

Node1

Node3Node2

Buckets

j

a b

e

f

g

k

d
h

i
c

l

n

p

o

m

Node1

Node2

Node3

Figure 3.9. KD-tree and the corresponding partition.

Another possibility is to generate a preliminary codebook of size M0 (N > M0 > M) using
the GLA with a random initialization of the data vectors. Any other fast algorithm could
be used as well. The exact PNN method is then applied until the codebook reaches its
final size M [GPF95]. The exact PNN method has now only (M0 - M) steps, and the time
complexity of this method is thus O(NM0) + O(M0

3), where the first term is due to the
GLA and the second term is due to the PNN method.

Thus, one has several different possibilities to combine the GLA and the PNN method:

(1) Random initialization + GLA
(2) PNN
(3) PNN + GLA
(4) GLA + PNN
(5) GLA + PNN + GLA.

In the first case, one uses the GLA by itself with a random initialization, which can be
done very fast by choosing random data vectors as cluster centroids. In the second case,
one uses the PNN method by itself. Since it has quadratic running time, this method is
quite slow with a large data set. In the third case, exact PNN method is used first. After
that, one fine-tunes the codebook with the GLA. In that way, one gets better codebooks
than with the PNN method or the GLA alone.

 21

Table 3.1. Time complexities of the different scenarios of combining the PNN and
GLA.

Time complexity
Combination:

In general Assuming M0 = O(M)
Random + GLA O(gNMK) O(gNMK)

PNN O(�N2K) O(�N2K)
PNN + GLA O(�N2K) + O(gNMK) O(�N2K)
GLA + PNN O(gNM0K) + O(�M0

2K) O(gNMK)
GLA + PNN + GLA O(gNM0K) + O(�M0

2K) + O(gNMK) O(gNMK)

N

M

M0

combined
PNN

GLA

standard
PNN

random
selection

1

M

M0

N

co
de

bo
ok

 s
iz

e

Figure 3.10. Different scenarios of combining the PNN and GLA.

In the fourth case, one first uses the GLA to generate a preliminary codebook of size M0,
and then applies the exact PNN method until the codebook reaches the final size, M. In
this way, one can speed-up the PNN method remarkably yielding to O(gNM0K) +
O(�M0

2K) time complexity. Unfortunately, then the exactness of the PNN method
cannot be preserved. In the fifth case, one first uses the GLA to generate a preliminary
codebook of size M0 and then applies the exact PNN method until the codebook reaches
the final size, M. The codebook is finally fine-tuned with the GLA. Thus, one can speed-
up the PNN method like in the third case. Even though the exactness of the PNN method
is then lost, one can still get with this method a better codebook compared to the fourth
case. The time complexities of the different combination scenarios are summarized in
Table 3.1, where g denotes the number of iterations of the GLA. For illustration of these
variants, see Figure 3.10.

 22

3.6 Genetic algorithm

Genetic algorithms (GA) are based on the model of natural selection that occurs in
nature. The main idea is to maintain a set of solutions (called a population of
individuals) that are iteratively manipulated using genetic operations (crossover and
mutations) and selection. Each initial solution is created by selecting M random data
vectors as the code vectors and by calculating the optimal partition. Crossing the best
solutions of the current population then creates the solutions for the next population.
The number of iterations and the population size are the main parameters of the
algorithm.

Several genetic algorithms have been previously considered for the clustering problem
[DK95, PMJ95, MC96, S96, FKKN97, KM99, F00, TY00, KFN03]. The best, known
genetic algorithms use a crossover method, which is based on the PNN method
[FKKN97, F00, KFN03]. The crossover proposed in [F00] will be described below.

The PNN crossover starts by merging two parent codebooks by taking their union. The
new partition of a data vectors is then constructed based on the existing partitions P1
and P2 [F00]. The partition of the data vector xi is either or . The one with the
smaller distance to x

1
ip 2

ip
i is chosen. In this way, the new partition can be generated using

2�N distance calculations only. The new codebook is then updated in respect to the new
partition. This procedure gives a solution in which the size of the codebook is twice the
size of the final codebook. A final task is to reduce the codebook size from 2�M to M
using the exact PNN method with the following two differences. First, one does not
perform the PNN method for a full data set. Rather, one starts from an initial solution of
2�M clusters at most. The crossover can therefore be performed in O(�M2) time instead
of the original O(�N2) time. Second, the partition data is also updated during the
crossover and, therefore, the partition is not needed to be recalculated after the PNN
method. Figure 3.11 illustrates the PNN crossover. The sketch of the genetic algorithm
with the PNN crossover method is shown in Figure 3.12.

The revised version of [F00] has three vital improvements over [FKKN97]: (i) The
representation of solution is revised so that one does not merge only the codebooks, but
maintain both partition and codebook for each solution. In this way, the partition of a
new solution can efficiently be computed from those of the parent solutions. Access to
the partition also gives a more precise initialization for the PNN method, which results
in higher quality candidate solutions. (ii) Empty partitions are removed before the
application of the PNN method, which is vital for avoiding the worst-case behavior of
the PNN method. (iii) Since the new candidate solutions are already close to a local
minimum, the GLA iterations are extremely fast using the activity detection technique
[KFN99].

 23

 Random 1 Random 2

 Random 1 + Random 2 Final result

Figure 3.11. Illustration of the use of the PNN method as a deterministic crossover
method in the genetic algorithm for the data set S2. Panels on top left and right show
two initial codebooks, which have been generated randomly among the data vectors
(M=15). The panel on bottom left shows the codebook after combining two initial

codebooks (M=30). On the bottom right the final codebook after the 15 merge steps of
the PNN method (M=15) is shown.

According to the experiments in [F00], the genetic algorithm with the PNN crossover
method outperforms all the comparative methods, including the previous variants of the

 24

genetic algorithm. The only other method that has been reported to give better results
is the self-adaptive genetic algorithm (SAGA) [KFN03], which still uses the PNN
crossover as the key component. The use of the PNN method as a deterministic
crossover method also achieves a fast convergence with a rather small population size.
The algorithm is therefore remarkably faster than any of the previously reported genetic
algorithms.

GeneticAlgorithm(X) � (C, P)
FOR i�1 TO Z DO

Ci � RandomCodebook(X);
Pi � OptimalPartition(X, Ci);

SortSolutions(C,P);

REPEAT
{C,P} � CreateNewSolutions({C,P});
SortSolutions(C,P);

UNTIL no improvement;

CreateNewSolutions({C, P}) � {Cnew, Pnew }

Cnew-1, Pnew-1 � C1, P1;
FOR i�2 TO Z DO

(a,b) � SelectNextPair;
Cnew-i, Pnew-I � Cross(Ca, Pa, Cb, Pb);
IterateK-Means(Cnew-i, Pnew-i);

Cross(C1, P1, C2, P2) � (Cnew, Pnew)
Cnew � CombineCentroids(C1, C2);
Pnew � CombinePartitions(P1, P2);
Cnew � UpdateCentroids(Cnew, Pnew);
RemoveEmptyClusters(Cnew, Pnew);
PerformPNN(Cnew, Pnew);

CombineCentroids(C1, C2) � Cnew
Cnew � C1 � C2

CombinePartitions(Cnew, P1, P2) � Pnew
FOR i�1 TO N DO

IF x c x ci p i pi i
� � �1 2

2 2

new 1

 THEN

p pi i�
ELSE

p pi
new

i�
2

END-FOR

UpdateCentroids(C1, C2) � Cnew
FOR j�1 TO |Cnew| DO

c j
new � CalculateCentroid(Pnew, j);

Figure 3.12. Pseudocode of the genetic algorithm with the PNN crossover method.

3.7 Summary

The results of the PNN method are quite good; in general, they are better than the results
of the opposite hierarchical methods performing divisions of greater clusters. The PNN
method does not suffer from bad data sets as k-means does. It can be expected that the
results of the PNN method are quite good, in general. The hierarchical property of the
PNN method also makes it possible to get the clustering results of many different levels
with the same effort. It is the best, known clustering method when used with the genetic
algorithm as a crossover method. The PNN method is simple and it can be easily
applied to many other problems.

On the other hand, the PNN method is slow. The running time of the best PNN
algorithm is lower bounded by �(N2) and there are not any clear, simple and practical

 25

ways to speed-up the algorithm. Since the merge phase is based on the local
optimization strategy and is a greedy heuristic, there is no guarantee of the global
optimum. If the number of the clusters is small, the result can remain quite far away
from the best possible result. Thus, there is a need for improvement, but it is not
obvious how this could be done.

 26

4 Summary of the publications
In the first paper [P1], we study methods for speeding-up the pairwise nearest
neighbor method. We consider two different speed-up methods. The first is the partial
distortion search (PDS) originally proposed by Bei and Gray [BG85] for k-means. It
terminates a single distance calculation immediately when the partial distance exceeds
the shortest distance that has been found so far. Since the idea is independent of the
chosen metrics, it can, therefore, also be directly applied to the PNN method.

The second method is the mean-distance-ordered partial search (MPS) technique
introduced by Ra and Kim [RK93]. This technique uses the component means of the
vectors to derive a precondition for the distance calculations and, in this way, a large
number of the distance calculations can be omitted completely. Although this idea
utilizes properties of the Euclidean space, we will show that the precondition can also
be generalized for the distance calculations in the PNN method.

When combining all the speed-up methods discussed in this paper, one can reduce the
run time to 8-15% of the basic version of the PNN method in the case of four favorable
data sets. We can reduce the run time to about 50% of the basic version in the case of
the less favorable sets (residual vectors). When the dimensions of the vectors are very
large (256 or greater), the run time can be reduced to 2% of the basic version. We also
demonstrate that the improvements are applicable within hybrid methods such as the
GLA-PNN-GLA, and the GA with PNN crossover.

In the second paper [P2], we propose an algorithm for fast agglomerative clustering
using a k nearest neighbor graph. In our approach, every node in the graph represents a
cluster. The edges of the graph represent inter cluster connections between nearby
clusters. The graph has a linear space complexity and it is used as a search structure for
reducing the number of distance calculations. The proposed approach has two specific
problems: how to generate the graph efficiently, and how to utilize it. We propose
solutions for the first problem by considering a KD-tree [B75], [FBF77], divide-and-
conquer [PS85], and projection-based search [RK93]. It appears that the projection-
based heuristic works reasonably well in most cases. The divide-and-conquer approach
is faster in the case of some high dimensional image data sets, and the KD-tree is faster
in the case of 3-dimensional color clustering.

We also study the second problem and found that a relatively small neighborhood size
(k=3...6) is sufficient to produce clustering with similar quality to that of a full search.

 27

At the same time, significantly fewer distance calculations and operations are needed
and, therefore, remarkable speed-up is achieved. The running time is comparable to that
of the k-means with a lower distortion than that with the k-means. The improvement due
to the neighborhood graph is significant.

In the third paper [P3], we introduce a new multilevel thresholding algorithm for
image processing. The algorithm is derived from the pairwise nearest neighbor (PNN)
method. The time complexity of the PNN method is lower bounded by (N�

2) in vector
quantization. It is therefore not self-evident that the PNN method could be useful in
real-time applications. For example, if the implementation is made poorly, the time
complexity is O(N2) as in [CC03]. Our contribution is to show that PNN thresholding
can be implemented in O(N�logN) time.

Unlike in vector quantization, the one-dimensionality of the histogram of the image can
be utilized so that the neighbor classes can be determined by using a simple linked list
structure. This allows constant time updates of the data structures. At the same time, we
use a heap structure for the search of the minimum cost class pair. The proposed method
works in real time for any number of thresholds. Experiments also show that the
proposed method, when combined with the Lloyd-Max quantizer, provides MSE values
that are much closer to that of optimal thresholding than using LMQ alone. The
difference is small when a low number of thresholds are needed (M = 2 or 3), but the
difference is significant when the number of thresholds is higher (from M = 10 to M =
20).

In the fourth paper [P4], we propose a more general approach for agglomerative
clustering called iterative shrinking (IS) that generates the clustering by a sequence of
cluster removal operations. In the IS method, clusters are removed one at a time by
reassigning the vectors in the removed cluster to the remaining nearby clusters. The
PNN method can be considered a special case of the IS method since it removes one
cluster and forces the vectors to move to the same neighbor-cluster. In the IS method,
the vectors can be reassigned more freely. Apart from the difference in the removal
operation, we follow the local optimization strategy of the PNN method and always
remove the cluster that increases the cost function value least.

Experimental results show that the proposed method achieves better results than the
comparative methods at the cost of slower speed. The time complexity of the method
varies from O(N2) to O(N2

�log 2N) depending on the variant. The proposed method was
also applied as a crossover method in the genetic algorithm (GAIS). Experiments
indicate that the proposed combination outperforms other clustering algorithms in terms
of minimizing distortion. The iterative shrinking method also extends to the case where
the number of the clusters must be determined simply by changing the optimization
function. This does not add to the complexity since the solutions for variable number of
clusters can be found during a single run of the proposed algorithm.

 28

In the fifth paper [P5], we present an optimal clustering algorithm that was motivated
by the PNN method. Optimal clustering can be found by considering all possible merge
sequences and finding the one that minimizes the optimization function. The idea can be
implemented as a branch-and-bound (BB) technique that uses a search tree for finding
the optimal clustering. We present also two suboptimal, but polynomial, time variants
from the branch-and-bound technique.

The time complexity of the optimal algorithm is still exponential despite the non-
redundant search tree and the designed bounding criterion. The practical usability of the
algorithm is therefore limited to small, special cases only. The two polynomial time
algorithms from the branch-and-bound technique offer a good compromise between the
optimal algorithm and the PNN method. They can operate with larger data sets than the
optimal branch-and-bound technique.

The contributions of the papers can be briefly summarized as follows. All the ideas
have been developed through the teamwork of all authors. The author of this thesis is
responsible for all the new implementations in this work, has run most of the
experiments in this thesis and has made significant contributions to the writing of the
papers. The order of the authors is determined by the estimated overall contribution to
the writing of the papers.

 29

5 Summary of results
Next, the results of the proposed methods used in this thesis are summarized. For the
comparisons, the following methods are selected:

(1) The fast exact PNN method [FKSC00].

(2) The PNN with the speed-up methods [P1].

(3) The graph-based PNN method [P2].

(4) The iterative shrinking method [P4].

(5) The k-means algorithm [KFN00].

(6) The genetic algorithm with iterative shrinking as crossover (GAIS) [P4].

Spatial vectors: Spatial residual vectors: Color vectors:

Bridge (256�256)

K=16, N=4096
Miss America (360�288)

K=16, N=6480
House (256�256)

K=3, N=34112*

Figure 5.1. Image data sets used in this thesis. *Duplicate training vectors are combined
and frequency information is stored. Note that when duplicate vectors are merged, all
distance and merge cost calculations must be multiplied by the frequency of the data

vectors representing multiple instances of the original data set.

 30

Data set Bridge Data set Miss America Data set House

Figure 5.2. Two-dimensional plots of the image data sets used in the experiments.

The experiments were performed for three data sets generated from different images;
see Figures 5.1 and 5.2. The gray-scale image Bridge was divided into non-overlapping
4�4 pixel blocks. The data set House consists of color values of the RGB image. The
third data set, Miss America, has been obtained by subtracting two subsequent image
frames of the original video image sequence, and then constructing 4�4 spatial pixel
blocks from the residuals. Only the first two frames have been used. In the two-
dimensional plots, only the data of the first two dimensions of the image data sets are
shown and the scale of each axis is from 0 to the maximum value of that dimension. The
algorithms are coded in DJGPP C Version 2.01 and are run on a 450 MHz Pentium III
personal computer that uses Microsoft Windows 98 Operating system.

Memory consumption of the methods is linear, except for the GA that stores S
codebooks and mappings, and thus the GA consumes O(NK + S(MK+N)) space. Figure
5.3 illustrates the MSE values for the different methods as a function of running time.
The summary of the MSE values and the running times as a function of codebook size is
summarized in Table 5.1. Comparisons that are more detailed are included in the
individual papers.

 31

160

165

170

175

180

1 10 100 1000 10000 100000

Running time (in seconds)

M
SE

Bridge

GAIS(short) GAIS(long)IS

PNN

Standard k-means

PNN+PDS+MPS+LazyGraph-PNN

Graph-PNN+K-means

K-means+PDS+MPS+Activity

5.5

6.0

6.5

7.0

7.5

8.0

1 10 100 1000 10000 100000 1000000

Running time (in seconds)

M
SE

GAIS(long)

House

GAIS(short)

Standard k-means

PNN
ISPNN+PDS+MPS+Lazy

Graph-PNN+K-means

Graph-PNN

K-means+PDS+MPS+Activity

5.0

5.2

5.4

5.6

5.8

6.0

1 10 100 1000 10000 100000 1000000

Running time (in seconds)

M
SE

Miss America
Standard k-means

GAIS(long)GAIS(short)

IS
PNN

PNN+PDS+MPS+LazyGraph-PNN

Graph-PNN+K-means

K-means+PDS+MPS+Activity

Figure 5.3. MSE values for the different methods as a function of running time.

 32

Table 5.1. MSE values and running times for the different methods as a function of

codebook size.

Bridge MSE Running time (in seconds)
M 32 64 128 256 512 1024 32 64 128 256 512 1024

PNN 326.24 264.91 214.88 168.92 121.68 72.61 96 96 96 96 95 92
P1 326.24 264.91 214.88 168.92 121.68 72.61 11 10 10 10 10 9
P2 325.04 267.48 217.22 171.11 123.90 74.92 3 3 4 3 3 3
P4 318.07 258.36 209.42 163.38 117.41 70.52 469 465 459 444 413 362

House MSE Running time (in seconds)

M 32 64 128 256 512 1024 32 64 128 256 512 1024
PNN 24.13 15.18 9.83 6.27 3.91 2.38 1734 1737 1736 1742 1736 1743
P1 24.04 15.27 9.85 6.26 3.92 2.39 230 231 230 226 227 229
P2 27.85 16.20 10.09 6.37 4.00 2.43 20 20 20 20 20 20
P4 23.65 14.83 9.56 6.09 3.79 2.29 10508 10449 10555 10569 10409 10113

Miss America MSE Running time (in seconds)

M 32 64 128 256 512 1024 32 64 128 256 512 1024
PNN 9.04 7.81 6.60 5.36 4.11 2.85 268 266 268 270 269 264
P1 9.04 7.81 6.60 5.37 4.11 2.84 117 117 117 117 117 116
P2 9.04 7.83 6.64 5.44 4.19 2.90 48 47 47 47 47 47
P4 8.92 7.69 6.43 5.19 3.95 2.72 1580 1577 1553 1466 1390 1220

 33

6 Conclusions

The main contributions of this thesis can be summarized as follows:

We have developed several speed-up improvements for the PNN method based on
projection-based search, partial distortion search, and the use of a k nearest neighbor
graph. The last idea could also be applied to other clustering algorithms that require
a large number of distance calculations.

An efficient O(N�logN) time implementation of the PNN method has been given for the
1-dimensional special case.

A generalization of the merge phase was proposed by introducing similar decremental
clustering algorithms based on a slightly improved cluster removal operation. The
results are systematically better than that of the PNN method although the differences
are often small. However, in certain cases, the difference between the proposed iterative
shrinking approach and the PNN method was decisive: the proposed method found the
correct number of clusters (15), whereas the PNN method found only 14 clusters.

The merge approach of the PNN method was also used for generating optimal
clustering, although the result is mainly theoretical. The idea, however, can have
practical implications as was shown by introducing two polynomial time variants,
motivated by the proposed optimal branch-and-bound algorithm.

 34

7 References

[A73] M.R. Anderberg, Cluster Analysis for Applications, Academic Press,
Inc., New York, NY.

[A89] A.S. Abutaleb, Automatic thresholding of gray-level pictures using two-
dimensional entropy, Computer Vision, Graphics, and Image Processing,
47(1): 22-32, July 1989.

[AM93] S. Arya and D.M. Mount, Algorithm for fast vector quantization,
Proceedings of Data Compression Conference, Snowbird, Utah, 381-
390, 1993.

[AMNSW98] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman and A.Y. Wu, An
optimal algorithm for approximate nearest neighbor searching in fixed
dimensions, Journal of the ACM, 45(6): 891-923, November 1998.

[AP02] P.K. Agarwal and C.M. Procopiuc, Exact and approximation algorithms
for clustering, Algorithmica, 33(2): 201-226, 2002.

[AR96] M.B. Al-Daoud and S.A. Roberts, New methods for the initialisation of
clusters, Pattern Recognition Letters, 17(5): 451-455, May 1996.

[AST94] A. Aggarwal, B. Schiever and T. Tokuyama, Finding a minimum-weight
k-link path in graphs with concave Monge-property and applications,
Discrete & Computational Geometry, 12: 263-280, 1994.

[B57] R. Bellman, Dynamic programming, Princeton University Press, New
Jersey, 1957.

[B75] J.L. Bentley, Multidimensional binary search trees used for associative
searching, Communications of the ACM, 18(9): 509-517, September
1975.

[B80] J.L. Bentley, Multidimensional divide-and-conquer, Communications of
the ACM, 23(4): 214-229, April 1980.

[B86] J. Bernsen, Dynamic thresholding of grey-level images, Proceedings of
International Conference on Pattern Recognition (ICPR’86), Paris,
France, 1251-1255, 1986.

 35

[B90] J.L. Bentley, K-d trees for semidynamic point sets, Proceedings of the

6th Annual ACM Symposium on Computational Geometry, Berkley, CA,
USA, 187-197, June 1990.

[B92] A.D. Brink, Thresholding of digital images using two-dimensional
entropies, Pattern Recognition, 25(8): 803-808, August 1992.

[B99] J. Boberg, Cluster Analysis: A Mathematical Approach with Applications
to Protein Structures, Ph.D. Thesis, TUCS Dissertations 20, University
of Turku, Turku, Finland, October 1999.

[B02] P. Berkhin, Survey of clustering data mining techniques, Research paper,
Accrue Software, 2002. [Online]. Available: http://www.accrue.com/
products/ rp_cluster_review.ps, 11.10.2002.

[B04] S. Bandyopadhyay, An automatic shape independent clustering
technique, Pattern Recognition, 37(1): 33-45, January 2004.

[BBK01] C. Böhm, S. Berchtold and D.A. Kleim, Searching in high-dimensional
spaces - index structures for improving the performance of multimedia
databases, ACM Computing Surveys, 33(3): 322-373, September 2001.

[BBS99] S.J. Baek, M.J. Bae and K.-M. Sung, A fast vector quantization encoding
algorithm using multiple projection axes, Signal Processing, 75(1): 89-
92, January 1999.

[BCQY97] M.R. Brito, E.L. Chávez, A.J. Quiroz and J.E. Yukich, Connectivity of
the mutual k-nearest-neighbor graph in clustering and outlier detection,
Statistics & Probability Letters, 35(1): 33-42, August 1997.

[BG85] C.-D. Bei and R.M. Gray, An improvement of the minimum distortion
encoding algorithm for vector quantization, IEEE Transactions on
Communications, 33(10): 1132-1133, October 1985.

[BH65] G.H. Ball and D.J. Hall, ISODATA, a novel method of data analysis and
classification, Technical report AD-699616, Stanford Research Institute,
Stanford, CA, USA, 1965.

[BJLS98] S.J. Baek, B.K. Jeon, D. Lee and K.-M. Sung, Fast clustering algorithm
for vector quantization, Electronics Letters, 34(2): 151-152, January
1998.

[BJS97] S.J. Baek, B.K. Jeon and K.-M. Sung, A fast encoding algorithm for
vector quantization, IEEE Signal Processing Letters, 4(12): 325-327,
December 1997.

 36

http://www.accrue.com/

[BM93] G.P. Babu and M.N. Murty, A near-optimal initial seed value selection

in k-means algorithm using a genetic algorithm, Pattern Recognition
Letters, 14(10): 763-769, October 1993.

[BM95] G.P. Babu and M.N. Murty, Optimal thresholding using multi-state
stochastic connectionist approach, Pattern Recognition Letters, 16(1):
11-18, January 1995.

[BM02] S. Bandyopadhyay and U. Maulik, Efficient prototype reordering in
nearest neighbor classification, Pattern Recognition, 35(12): 2791-2799,
December 2002.

[BN03] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality
reduction and data representation, Neural Computation, 15(6): 1373-
1396, June 2003.

[BP98] J.C. Bezdek and N.R. Pal, Some new indexes of cluster validity, IEEE
Transactions on Systems, Man and Cybernetics-Part B: Cybernetics,
28(3): 301-315, June 1998.

[BS76] J.L. Bentley and M.I. Shamos, Divide-and-conquer in multidimensional
space, Proceedings of the 8th Annual ACM Symposium on the Theory of
Computing, 220-230, Hershey, PA, USA, May 1976.

[BS93] J. Boberg and T. Salakoski, General formulation and evaluation of
agglomerative clustering methods with metric and non-metric distances,
Pattern Recognition, 26(9), 1395-1406, September 1993.

[C95a] C.-H. Cheng, A branch and bound clustering algorithm, IEEE
Transactions on Systems, Man, and Cybernetics, 25(5): 895-898, May
1995.

[C95b] Y. Cheng, Mean shift, mode seeking, and clustering, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 17(8): 790-799, August
1995.

[CBC00] A.D. Constantinou, D.R. Bull and C.N. Canagarajah, A new class of VQ
codebook design algorithms using adjacency maps, SPIE Electronics
Imaging 2000, San Jose, 3974: 625-634, 2000.

[CC03] K.-L. Chung and W.-Y. Chen, Fast adaptive PNN-based thresholding
algorithms, Pattern Recognition, 36(12): 2793-2804, December 2003.

[CCLH97] C.-W. Chao, C.-C. Chiu, P.-C. Lu and C.-H. Hsieh, Codebook design for
vector quantization of images based on fuzzy c-means clustering
algorithm, Optical Engineering, 36(2): 580-587, February 1997.

 37

[CH91] S.-H. Chen and W.M. Hsieh, Fast algorithm for VQ codebook design,

Communications, Speech and Vision, IEE Proceedings I, 138(5): 357-
362, October 1991.

[CK95] P.B. Callahan and S.R. Kosaraju, A decomposition of multidimensional
point sets with application to k-nearest-neighbors and n-body potential
fields, Journal of the Association for Computing Machinery, 42(1): 67-
90, January 1995.

[CKS95] C.-Q. Chen, S.-N. Koh and P. Sivaprakasapillai, VQ codebook design
algorithm based on partial GLA, Electronics Letters, 31(21): 1803-1805,
October 1995.

[CL96] S.-M. Cheng and K.-T. Lo, Fast clustering process for vector
quantization codebook design, Electronics Letters, 32(4): 311-312,
February 1996.

[CNBM01] E. Chávez, G. Navarro, R. Baeza-Yates and J.L. Marroquín, Searching in
metric spaces, ACM Computing Surveys, 33(3): 273-321, September
2001.

[CO72] K.M. Cunningham and J.C. Ogilvie, Evaluation of hierarchical grouping
techniques: a preliminary study, The Computer Journal, 15(3): 209-213,
August 1972.

[CS98] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups
(3rd edition), Springler Verlag, New York, 1998.

[CSS98] M. Cheriet, J.N. Said and C.Y. Suen, A recursive thresholding technique
for image segmentation, IEEE Transactions on Image Processing, 7(6):
918-921, June 1998.

[CTC94] T.-D. Chiueh, T.-T. Tang and L.-G. Chen, Vector quantization using
tree-structured self-organizing feature maps, IEEE Journal on Selected
Areas in Communications, 12(9): 1594-1599, December 1994.

[CW92] R. Conzales and R. Woods, Digital image processing, Addison-Welsey
Inc., 443-457, 1992.

[CWY94] W.-T. Chen, C.-H. Wen and C.-W. Yang, A fast two-dimensional
entropic thresholding algorithm, Pattern Recognition, 27(7): 885-893,
July 1994.

[D73] J.C. Dunn, A fuzzy relative of the ISODATA process and its use in
detecting compact, well-separated clusters, Journal of Cybernetics, 3(3):
32-57, March 1973.

 38

[D87] R.C. Dubes, How many clusters are best?--an experiment, Pattern

Recognition, 20(6): 645-663, 1987.

[D93] R.C. Dubes, Cluster analysis and related issues, in: Handbook of Pattern
Recognition & Computer Vision, C.H. Chen, L.F. Pau and P.S.P. Wang
(eds.), World Scientific Publishing Co., Inc., River Edge, NJ, 3-32, 1993.

[DB79] D.L. Davies and D.W. Bouldin, A cluster separation measure, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1(2): 224-
227, 1979.

[DCSL02] M. Dash, K. Choi, P. Scheuermann and H. Liu, Feature selection for
clustering – a filter solution, Proceedings of IEEE International
Conference on Data Mining (ICDM'02), 115-122, 2002.

[DE96] M.T. Dickerson and D. Eppstein, Algorithms for proximity problems in
higher dimensions, Computational Geometry, 5(5): 277-291, January
1996.

[DK95] V. Delport and M. Koschorreck, Genetic algorithm for codebook design
in vector quantisation, Electronics Letters, 31(2): 84-85, January 1995.

[DL94] V. Delport and D. Liesch, Fuzzy-c-mean algorithm for codebook design
in vector quantisation, Electronics Letters, 30(13): 1025-1026, June
1994.

[DS76] E. Diday and J.C. Simon, Clustering analysis, in: Digital Pattern
Recognition, K.S. Fu (ed), Springer-Verlag, Secaucus, NJ, 47-94, 1976.

[E89] W.H. Equitz, A new vector quantization clustering algorithm, IEEE
Transactions on Acoustics, Speech, and Signal Processing, 37(10): 1568-
1575, October 1989.

[E92] B.S. Everitt, Cluster Analysis (3rd edition), Edward Arnold / Halsted
Press, London, 1992.

[EE94] D. Eppstein and J. Erickson, Iterated nearest neighbors and finding
minimal polytopes, Discrete & Computational Geometry, 11: 321-350,
1994.

[EPY97] D. Eppstein, M.S. Paterson and F.F. Yao, On nearest-neighbor graphs,
Discrete & Computational Geometry, 17(3): 263-282, April 1997.

[F65] E.W. Forgy, Cluster analysis of multivariate data: efficiency vs.
interpretability of classification, Biometrics, 21(3): 768-769, 1965.

[F87] D.H. Fisher, Knowledge acquisition via incremental conceptual
clustering, Machine Learning, 2(2): 139-172, September 1987.

 39

[F97] B. Fritzke, The LBG-U method for vector quantization – an

improvement over LBG inspired from from neural networks, Neural
Processing Letters, 5(1), January 1997.

[F99] P. Fränti, On the usefulness of self-organizing maps for the clustering
problem in vector quantization, Proceedings of the 11th Scandinavian
Conference on Image Analysis (SCIA'99), Kangerlussuaq, Greenland, 1:
415-422, 1999.

[F00] P. Fränti, Genetic algorithm with deterministic crossover for vector
quantization, Pattern Recognition Letters, 21(1): 61-68, January 2000.

[FBF77] J.H. Friedman, J.L. Bentley and R.A. Finkel, An algorithm for finding
best matches in logarithmic expected time, ACM Transactions on
Mathematical Software, 3(3): 209-226, September 1977.

[FBS75] J.H. Friedman, F. Baskett, L.J. Shustek, An algorithm for finding nearest
neighbors, IEEE Transactions on Computers, C-24(10): 1000-1006,
October 1975.

[FG88] T. Feder and D.H. Greene, Optimal algorithms for approximate
clustering, Proceedings of the 20th annual ACM symposium on Theory of
computing, Chicago, Illinois, 434-444, May 1988.

[FGGKKLN00] P. Fränti, H.G. Gyllenberg, M. Gyllenberg, J. Kivijärvi, T. Koski,
T. Lund and O. Nevalainen, Minimizing stochastic complexity using
local search and GLA with applications to classification of bacteria,
Biosystems, 57(1): 37-48, June 2000.

[FGP90] W.A. Finamore, D.P. de Garrido and W.A. Pearlman, Clustering
algorithm for entropy-constrained vector quantizer design, SPIE
Proceedings of Visual Communications and Image Processing, 1360:
837-846, September 1990.

[FK97] H. Frigui and R. Krishnapuram, Clustering by competitive
agglomeration, Pattern Recognition, 30(7): 1109-1119, July 1997.

[FK00] P. Fränti and J. Kivijärvi, Randomized local search algorithm for the
clustering problem, Pattern Analysis and Applications, 3(4): 358-369,
December 2000.

[FKKN97] P. Fränti, J. Kivijärvi, T. Kaukoranta and O. Nevalainen, Genetic
algorithms for large scale clustering problem, The Computer Journal,
40(9): 547-554, 1997.

[FKN97] P. Fränti, T. Kaukoranta and O. Nevalainen, On the splitting method for
VQ codebook generation, Optical Engineering, 36(11): 3043-3051,
November 1997.

 40

[FKSC00] P. Fränti, T. Kaukoranta, D.-F. Shen and K.-S. Chang, Fast and

memory efficient implementation of the exact PNN, IEEE Transactions
on Image Processing, 9(5): 773-777, May 2000.

[FN75] K. Fukunaga and P.M. Narendra, A branch and bound algorithm for
computing k-nearest neighbors, IEEE Transactions on Computers, 24(7):
750-753, July 1975.

[FV02] P. Fränti and O. Virmajoki, Polynomial-time clustering algorithms
derived from branch-and-bound technique, Advanced Consepts for
Intelligent Vision Systems (ACIVS'2002), Ghent, Belgium, 118-123,
September 2002.

[FV03] P. Fränti and O. Virmajoki, Genetic algorithm using iterative shrinking
for solving clustering problems, Proceedings of Wessex Data Mining
Conference 2003, Rio de Janeiro, Brazil, 193-204, December 2003.

[FVH03] P. Fränti, O. Virmajoki and V. Hautamäki, Fast PNN-based clustering
using k-nearest neighbor graph, IEEE International Conference on Data
Mining (ICDM'03), Melbourne, Florida, USA, 525-528, November 2003.

[FVK02] P. Fränti, O. Virmajoki and T. Kaukoranta, Branch-and-bound tecnique
for solving optimal clustering, Proceedings of the 16th International
Conference on Pattern Recognition (ICPR'02), Quebec, Canada, 2: 232-
235, August 2002.

[FXK03] P. Fränti, M. Xu and I. Kärkkäinen, Classification of binary vectors by
using deltaSC distance to minimize stochastic complexity, Pattern
Recognition Letters, 24(1-3): 65-73, January 2003.

[G89] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, 1989.

[GG92] A. Gersho and R.M. Gray, Vector Quantization and Signal Compression,
Kluwer Academic Publishers, Dordrecht, 1992.

[GG98] V. Grande and O. Günther, Multidimensional access methods, ACM
Computer Surveys, 20(2): 170-231, June 1998.

[GJW82] M.R. Garey, D.S. Johnson and H.S. Witsenhausen, The complexity of the
generalized Lloyd-Max problem, IEEE Transactions on Information
Theory, 28(2): 255-256, March 1982.

[GK92] L. Guan and M. Kamel, Equal-average hyperplane partitioning method
for vector quantization of image data, Pattern Recognition Letters,
13(10): 693-699, October 1992.

 41

[GKP94] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics – a

Foundation for Computer Science (2nd edition), Addison-Wesley, 257-
267, 1994.

[GKV97] M. Gyllenberg, T. Koski and M. Verlaan, Classification of binary vectors
by stochastic complexity, Journal of Multivariate Analysis, 63(1): 47-72,
October 1997.

[GLC98] J. Gong, L. Li and W. Chen, Fast recursive algorithms for two-
dimensional thresholding, Pattern Recognition, 31(3): 295-300, March
1998.

[GM86] V.D. Gesù and M.C. Maccarone, Features selection and 'possibility
theory', Pattern Recognition, 19(1): 63-72, 1986.

[GPF91] D.P. de Garrido, W.A. Pearlman and W.A. Finamore, Vector
quantization of image pyramids with the ECPNN algorithm, SPIE
Proceedings of Visual Communications and Image Processing, Boston,
MA, USA, 1605: 221-232, November 1991.

[GPF95] D.P. de Garrido, W.A. Pearlman and W.A. Finamore, A clustering
algorithm for entropy-constrained vector quantizer design with
applications in coding image pyramids, IEEE Transactions on Circuits
and Systems for Video Technology, 5(2): 83-95, April 1995.

[GR69] J.C. Gover and G.J.S. Ross, Minimum spanning trees and single linkage
cluster analysis, Applied Statistics, 18(1): 54-64, 1969.

[GRS99] L. Gao, A.L. Rosenberg and R.K. Sitaraman, Optimal clustering of tree-
sweep computations for high-latency parallel environments, IEEE
Transactions on Parallel and Distributed Systems, 10(8): 813-824,
August 1999.

[GYZ98] D. Greene, F. Yao and T. Zhang, A linear algorithm for optimal context
clustering with application to bi-level image coding, Proceedings of
IEEE International Conference on Image Processing, 1: 508-511,
October 1998.

[H75] J.A. Hartigan, Clustering Algorithms, John Wiley & Sons, New York,
USA, 1975.

[H82] P.S. Heckbert, Color image quantization for frame buffer display, ACM
Computer Graphics, 16(3): 297-307, July 1982.

[HB97] T. Hofmann, and J.M. Buchmann, Pairwise data clustering by
deterministic annealing, IEEE Transaction on Pattern Analysis and
Machine Intelligence, 19(1): 1-14, January 1997.

 42

[HBSH92] C.-M. Huang, Q. Bi, G.S. Stiles and R.W. Harris, Fast full search

equivalent encoding algorithms for image compression using vector
quantization, IEEE Transactions on Image Processing, 1(3): 413-416,
July 1992.

[HC01] K.-F. Hwang and C.-C. Chang, Improved nearest codeword search
scheme using a tighter kick-out condition, Optical Engineering, 40(9):
1749-1751, September 2001.

[HK01] D. Harel and Y. Koren, Clustering spatial data using random walks
(extended abstract), Proceedings of the 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD'01), San
Francisco, California, USA, 281-286, August 2001.

[HLC91] C.-H. Hsieh, P.-C. Lu and J.-C. Chang, Fast codebook generation
algorithm for vector quantization of images, Pattern Recognition Letters,
12(10): 605-609, October 1991.

[HPLSH01] H.-C. Huang, J.-S. Pan, Z.-M. Lu, S.-H. Sun and H.-M. Hang, Vector
quantization based on genetic simulated annealing, Signal Processing,
81: 1513-1523, 2001.

[HS00] E. Hartuv and R. Shamir, A clustering algorithm based on graph
connectivity, Information Processing Letters, 76(4-6): 175-181,
December 2000.

[HS03a] G.R. Hjaltason and H. Samet, Index-driven similarity search in metric
spaces, ACM Transactions on Database Systems, 28(4): 517-580,
December 2003.

[HS03b] G.R. Hjaltason and H. Samet, Properties of embedding methods for
similarity searching in metric spaces, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(5): 530-549, May 2003.

[I80] P.K. Ito, Robustness of ANOVA and MANOVA test procedures, in: P.R.
Krishnaiah (ed), Handbook of Statistics 1: Analysis of Variance, North-
Holland Publishing Company, 199-236, 1980.

[IA99] L.S. Iyer and J.E. Aronson, A parallel branch-and-bound method for
clustering analysis, Annals of Operations Research, 90: 65-86, 1999.

[J78] R.A. Jarvis, Shared near neighbor maximal spanning trees for cluster
analysis, Proceedings of the 4th International Conference on Pattern
Recognition (ICPR'78), Kyoto, Japan, 308-131, 1978.

[JD88] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data, Prentice-
Hall, Englewoods Cliffs, NJ, 1988.

 43

[JMF99] A.K. Jain, M.N. Murty and P.J. Flynn, Data clustering: A review, ACM

Computing Surveys, 31(3): 264-323, September 1999.

[K88] T. Kohonen, Self-Organization and Associative Memory, Springer-
Verlag, New York, 1988.

[K91] T. Kurita, An efficient agglomerative clustering algorithm using a heap,
Pattern Recognition, 24(3): 205-209, March 1991.

[K95] T. Kohonen, Self-Organizing Maps, Springer-Verlag, Berlin, Germany,
1995.

[K98] S. Kundu, A solution to histogram-equalization and other related
problems by shortest path methods, Pattern Recognition, 31(3): 231-234,
March 1998.

[K99] T. Kaukoranta, Iterative and Hierarchical Methods for Codebook
Generation in Vector Quantization, Ph.D. Thesis, TUCS Dissertations
22, University of Turku, Turku, Finland, December 1999.

[K01] E. Kandogan, Visualizing multi-dimensional clusters, trends, and outliers
using star coordinates, Proceedings of the 7th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD'01), San Francisco, CA, USA, 107-116, August 2001.

[K04a] J. Kivijärvi, Optimization Methods for Clustering, Ph.D. Thesis, TUCS
Dissertations 48, University of Turku, Turku, Finland, February 2004.

[K04b] P. Kopylov, Processing and Compression of Raster Map Images, Ph.D.
Thesis, Computer Science Dissertations 8, University of Joensuu,
Joensuu, Finland, October 2004.

[KF02a] I. Kärkkäinen and P. Fränti, Dynamic local search for clustering with
unknown number of clusters, Proceedings of the 16th International
Conference on Pattern Recognition (ICPR'02), Quebec, Canada, 2: 240-
243, August 2002.

[KF02b] I. Kärkkäinen and P. Fränti, Stepwise algorithm for finding unknown
number of clusters, Advanced Concepts for Intelligent Vision Systems
(ACIVS'2002), Gent, Belgium, 136-143, September 2002.

[KFN96] T. Kaukoranta, P. Fränti and O. Nevalainen, Reallocation of GLA
codevectors for evading local minima, Electronics Letters, 32(17): 1563-
1564, August 1996.

[KFN98] T. Kaukoranta, P. Fränti and O. Nevalainen, Iterative split-and-merge
algorithm for VQ codebook generation, Optical Engineering, 37(10):
2726-2732, October 1998.

 44

[KFN99] T. Kaukoranta, P. Fränti and O. Nevalainen, Vector quantization by

lazy pairwise nearest neighbor method, Optical Engineering, 38(11),
1862-1868, November 1999.

[KFN00] T. Kaukoranta, P. Fränti and O. Nevalainen, A fast exact GLA based on
code vector activity detection, IEEE Transactions on Image Processing,
9(8): 1337-1342, August 2000.

[KFN03] J. Kivijärvi, P. Fränti and O. Nevalainen, Self-adaptive genetic algorithm
for clustering, Journal of Heuristics, 9(2): 113-129, March 2003.

[KGV83] S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, Optimization by
simulated annealing, Science, 220 (4598): 671-680, May 1983.

[KHK99] G. Karypis, E.-H. Han and V. Kumar, Chameleon: a hierarchical
clustering algorithm using dynamic modeling, IEEE Computer, 32(8):
66-75, August 1999.

[KI86] J. Kittler and J. Illingworth, Minimum error thresholding, Pattern
Recognition, 19(1): 41-47, 1986.

[KKZ94] I. Katsavounidis, C.-C.J. Kuo and Z. Zhang, A new initialization
technique for generalized Lloyd iteration, IEEE Signal Processing
Letters, 1(10): 144-146, October 1994.

[KLL04] D.-W. Kim, K.H. Lee and D. Lee, On cluster vality index for estimation
of the optimal number of fuzzy clusters, Pattern Recognition, 37(10):
2009-2025, October 2004.

[KM99] K. Krisna and M.N. Murty, Genetic k-means algorithm, IEEE
Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics,
29(3): 433-439, June 1999.

[KMNPSW02] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R.
Silverman and A.Y. Wu, An efficient k-means clustering algorithm:
analysis and implementation, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(7): 881-892, July 2002.

[KN86] J. Katajainen and O. Nevalainen, Computing relative neighbourhood
graphs in the plane, Pattern Recognition, 19(3): 221-228, 1986.

[KNF75] W.L.G. Koontz, P.M. Narendra and K. Fukunaga, A branch and bound
clustering algorithm, IEEE Transactions on Computers, 24(9): 908-915,
September 1975.

[KNT87] J. Katajainen, O. Nevalainen and J. Teuhola, A linear expected-time
algorithm for computing planar relative neighbourhood graphs,
Information Processing Letters, 25(2): 77-86, May 1987.

 45

[KOKKNN98] J. Kivijärvi, T. Ojala, T. Kaukoranta, A. Kuba, L. Nyúl and O.

Nevalainen, A comparison of lossless compresion methods for medical
images, Computerized Medical Imaging and Graphics, 22(4): 323-339,
October 1998.

[KR79] R.L. Kirby and A. Rosenfeld, A note on the use of (gray level, local
average gray level) space as an aid in thresholding selection, IEEE
Transactions on Systems, Man and Cybernetics, 9(12): 860-864, 1979.

[KR90] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis, John Wiley Sons, New York, 1990.

[KS98] F. Kossentini and M.J.T. Smith, A fast PNN design algorithm for
entropy-constrained residual vector quantization, IEEE Transactions on
Image Processing, 7(7): 1045-1050, July 1998.

[KSW85] J.N. Kapur, P.K. Sahoo and A.K.C. Wong, A new method for gray-level
picture thresholding using the entropy of the histogram, Computer
Vision, Graphics, and Image Processing, 29(3): 273-285, March 1985.

[L57] S.P. Lloyd, Least squares quantization in PCM, Memorandum, Bell
Laboratories, Murray Hill, USA, 1957; published in IEEE Transactions
on Information Theory, 28(2): 129-137, March 1982.

[LBG80] Y. Linde, A. Buzo and R.M. Gray, An algorithm for vector quantizer
design, IEEE Transactions on Communications, 28(1): 84-95, January
1980.

[LC94] C.-H. Lee and L.-H. Chen, Fast closest codeword search algorithm for
vector quantization, IEE Proceedings – Vision, Image and Signal
Processing, 141(39): 143-148, June 1994.

[LC95a] C.-H. Lee and L.-H. Chen, A fast search algorithm for vector
quantization using means and variances of codewords, SPIE Proceedings
of Visual Communications and Image Processing '95, Taipei, Taiwan,
2501: 619-628, May 1995.

[LC95b] C.-H. Lee and L.-H. Chen, A fast search algorithm for vector
quantization using mean pyramids of codewords, IEEE Transactions on
Communications, 43(2/3/4): 1697-1702, February/March/April 1995.

[LC95c] C.-H. Lee and L.-H. Chen, High-speed closest codeword search
algorithms for vector quantization, Signal Processing, 43(3): 323-331,
May 1995.

[LCC01] P.-S. Liao, T.-S. Chen and P.-C. Chung, A fast algorithm for multilevel
thresholding, Journal of Information Science and Engineering, 17: 713-
727, 2001.

 46

[LS55] J. Lukaszewicz and H. Steinhaus, On measuring by comparison,

Zastosowania Matematyene, 2: 225-232, 1955.

[LS95] W. Li and E. Salari, A fast vector quantization encoding method for
image compression, IEEE Transactions on Circuits and Systems for
Video Technology, 5(2): 119-123, April 1995.

[LSP90] S.U. Lee, S.Y. Shung and R.H. Park, A comparative performance study
of several global thresholding techniques for segmentation, Computer
Vision, Graphics, and Image Processing, 52(2): 171-190, November
1990.

[LVV03] A. Likas, N. Vlassis and J.J. Verbeek, The global k-means clustering
algorithm, Pattern Recognition, 36(2): 451-461, February 2003.

[LW67] G.N. Lance and W.T. Williams, A general theory of classificatory sorting
strategies 1. Hierarchical systems, The Computer Journal, 9(4): 373-380,
February 1967.

[M67] J.B. McQueen, Some methods of classification and analysis of
multivariate observations, Proceedings of the 5th Berkeley Symposium on
Mathematical Statistics and Probability, Berkeley, USA, 1: 281-297,
1967.

[M95] H.A. Monaver, Image vector quantisation using a modified LBG
algorithm with approximated centroids, Electronics Letters, 31(3): 174-
175, February 1995.

[M02] J. Mielikäinen, A novel full-search vector quantization algorithm based
on law of cosines, IEEE Signal Processing Letters, 9(6): 175-176, June
2002.

[M03] J. Mielikäinen, Lossless Compression of Hyperspectral Images, Ph.D.
Thesis, Acta Universitatis Lappeenrantaensis 167, Lappeenranta
University of Technology, Lappeenranta, Finland, December 2003.

[MC96] C.A. Murthy and N. Chowdhury, In search of optimal clusters using
genetic algorithms, Pattern Recognition Letters, 17(8): 825-832,
July1996.

[MNS91] N. Moayeri, D.L. Neuhoff and W.E. Stark, Fine-coarce vector
quantization, IEEE Transaction on Signal Processing, 39(7): 1503-1515,
July 1991.

[MOV94] M.L. Mico, J. Oncina and E. Vidal, A new version of the nearest-
neighbor approximating and eliminating search algorithm (AESA) with
linear preprocessing time and memory requirements, Pattern Recognition
Letters, 15(1): 9-17, January 1994.

 47

[MP02] R.R. Mettu and C.G. Plaxton, Optimal time bounds for approximate

clustering, Proceedings of the 18th Conference on Uncertainty in
Artificial Intelligence, Alberta, Canada, 344-351, August 2002.

[MS83] R.E. Michalski and R.E. Stepp, Automated construction of
classifications: conceptual clustering versus numerical taxonomy, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 5(4): 396-
410, September 1983.

[MS03] D.S. Modha and W.S. Spangler, Feature weighting in k-means clustering,
Machine Learning, 52(3): 217-237, September 2003.

[MTTV97] G.L. Miller, S.-H. Teng, W. Thurston and S.A. Vavaris, Separators for
sphere-packings and nearest neighbor graphs, Journal of the ACM, 44(1):
1-29, January 1997.

[NF88] N.M. Nasrabadi and Y. Feng, Vector quantization of image based upon
the Kohonen self-organizing feature maps, Proceedings of IEEE
International Conference on Neural Networks (ICNN'88), San Diego,
CA, USA, 1: 101-108, July 1988.

[NN97] S.A. Nene and S.K. Nayar, A simple algorithm for nearest neighbor
search in high dimensions, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(9): 989-1003, September 1997.

[NT92] A. Nyeck and A. Tosser-Roussey, Maximum entropy initialisation
technique for image coding vector quantiser design, Electronics Letters,
28(3): 273-274, January 1992.

[O79] N. Otsu, A thresholding selection method from gray-level histograms,
IEEE Transactions on Systems, Man and Cybernetics, 9(1): 62-66,
January 1979.

[O91] M.T. Orchard, A fast nearest-neighbor search algorithm, Proceedings of
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP'91), 4: 2297-2300, April 1991.

[OB91] M.T. Orchard and C.A. Bouman, Color quantization of images, IEEE
Transactions on Signal Processing, 39(12): 2677-2690, December 1991.

[OM95] G.C. Osbourn and R.F. Martinez, Empirically defined regions of
influence for cluster analyses, Pattern Recognition, 28(11): 1793-1806,
November 1995.

[OZ00] S.H. Ong and X. Zhao, On post-clustering evaluation and modification,
Pattern Recognition Letters, 21(5): 365-373, May 2000.

 48

[P80] T. Pun, A new method for gray-level picture thresholding using the

entropy of the histogram, Signal Processing, 2(3): 223-237, July 1980.

[P97] G. Palubeckis, A branch-and-bound approach using polyhedral results for
a clustering problem, INFORMS Journal of Computing, 9(1): 30-42,
Winter 1997.

[PLL99] J.M Peña, J.A. Lozano and P. Larrañaga, An empirical comparision of
four initialization methods for the k-means algorithm, Pattern
Recognition Letters, 20(10): 1027-1040, October 1999.

[PMJ95] J.S. Pan, F.R. McInnes and M.A. Jack, VQ codebook design using
genetic algorithms, Electronic Letters, 31(17): 1418-1419, August 1995.

[PP89] N.R. Pal and S.K. Pal, Entropic thresholding, Signal Processing, 16(2):
97-108, February 1989.

[PP93] N.R. Pal and S.K. Pal, A review on image segmentation techniques,
Pattern Recognition, 26(9): 1277-1294, September 1993.

[PS85] F.P. Preparata and M.I. Shamos, Computational Geometry: An
Introduction, Springer-Verlag, 1985.

[R78] J. Rissanen, Modeling by shortest data description, Automatica, 14: 465-
471, 1978.

[RGF90] K. Rose, E. Gurewitz and G.C. Fox, A deterministic annealing approach
to clustering, Pattern Recognition Letters, 11(9): 589-594, September
1990.

[RK93] S.-W. Ra and J.-K. Kim, A fast mean-distance-ordered partial codebook
search algorithm for image vector quantization, IEEE Transactions on
Circuits and Systems-II: Analog and Digital Signal Processing, 40(9):
576-579, September 1993.

[RP92] V. Ramasubramanian and K.K. Paliwal, Fast k-dimensional tree
algorithms for nearest neighbor search with application to vector
quantization encoding, IEEE Transactions on Signal Processing, 40(3):
518-531, March 1992.

[RP97] V. Ramasubramanian and K.K. Paliwal, Fast vector quantization
encoding based on k-d tree backtracking search algorithm, Digital Signal
Processing, 7(3): 163-187, July 1997.

[RP00] V. Ramasubramanian and K.K. Paliwal, Fast nearest-neighbor search
algorithms based on approximation-elimination search, Pattern
Recognition, 33(9): 1497-1510, September 2000.

 49

[RRS00] S. Ramaswamy, R. Rastogi and K. Shim, Efficient algorithms for

mining outliers from large data sets, ACM SIGMOD Record, 29(2): 427-
438, June 2000.

[S75] M.I. Shamos, Geometric complexity, Proceedings of the 7th Annual ACM
Symposium on the Theory of Computing, Albuquerque, New Mexico,
USA, 224-233, 1975.

[S78] G. Schwarz, Estimating the dimension of a model, The Annals of
Statistics, 6: 461-464, 1978.

[S80] H. Späth, Cluster Analysis Algorithms for Data Reduction and
Classification of Objects, Ellis Horwood Limited, West Sussex, UK,
1980.

[S90a] H. Samet, Applications of Spatial Data Structures: Computer Graphics,
Image Processing, and GIS, Addidon-Wesley, Readings, MA, 1990.

[S90b] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-
Wesley, Readings, MA, 1990.

[S91] R. Sproull, Refinements to nearest-neighbor searching in k-dimensional
trees, Algorithmica, 6(4): 579-589, 1991.

[S96] P. Scheunders, A genetic Lloyd-Max quantization algorithm, Pattern
Recognition Letters, 17(5): 547-556, May 1996.

[S00] M. Smid, Closest-Point Problems in Computational Geometry, In
Handbook on Computational Geometry (editors J.-R. Sack and J.
Urrutia), Elsevier Science, Amsterdam, North Holland, 2000.

[SC91a] T.-H. Su and R.-C. Chang, Computing the constrained relative
neighborhood graphs and constrained gabriel graphs in Euclidean plane,
Pattern Recognition, 24(3): 221-230, 1991.

[SC91b] T.-H. Su and R.-C. Chang, Computing the k-relative neighborhood
graphs in Euclidean plane, Pattern Recognition, 24(3): 231-239, 1991.

[SC98] D.-F. Shen and K.-S. Chang, Fast PNN algorithm for design of VQ initial
codebook, Proceedings of SPIE Visual Communications and Image
Processing ’98, San Jose, California, USA, 3309: 842-850, January 1998.

[SO97] J. Shanbehzadeh and P.O. Ogunbona, On the computational complexity
of the LGB and PNN algorithms, IEEE Transactions on Image
Processing, 6(4): 614-616, April 1997.

 50

[SR03] L.K. Saul and S.T. Roweis, Think globally, fit locally: unsupervised

learning of low dimensional manifolds, Journal of Machine Learning
Research, 4: 119-155, June 2003.

[SS73] P.H.A. Sneath and R.R. Sokal, Numerical Taxonomy, W.H. Freeman &
Co, San Francisco, 1973.

[SS01] L.G. Shapiro and G.C. Stockman, Computer Vision, Prentice Hall, New
Jersey, 83-91, 2001.

[SS04] M. Sezgin and B. Sankur, Survey over image thresholding techniques
and quatitative performance evaluation, Journal of Electronic Imaging,
13(1): 146-165, January 2004.

[SSWC88] P.K. Sahoo, S. Soltani, A.K.C. Wang and Y.C. Chen, A survey of
thresholding techniques, Computer Vision, Graphics, and Image
Processing, 41(2): 233-260, February 1988.

[ST00] M. Sezgin and R. Taşaltín, A new dichotomization technique to
multilevel thresholding devoted to inspection applications, Pattern
Recognition Letters, 21(2): 151-161, February 2000.

[SWJ04] H. Sun, S. Wang and Q. Jiang, FCM-based model selection algorithms
for determining the number of clusters, Pattern Recognition, 37(10):
2027-2037, October 2004.

[SYK97] M. Sarkar, B. Yegnanarayana and D. Khemani, A clustering algorithm
using an evolutionary programming-based approach, Pattern Recognition
Letters, 18(10): 975-986, October 1997.

[T80a] G.T. Toussaint, Pattern recognition and geometrical complexity,
Proceedings of the 5th International Conference on Pattern Recognition
(ICPR'80), Miami Beach, Florida, USA, 1324-1347, December 1980.

[T80b] G.T. Toussaint, The relative neighbourhood graph of a finite planar set,
Pattern Recognition, 12(4): 261-268, 1980.

[T85] W.H. Tsai, Moment-preserving thresholding: a new approach, Computer
Vision, Graphics, and Image Processing, 29(3): 377-393, March 1985.

[T99] L. Talavera, Feature selection as a preprocessing step for hierarchical
clustering, Proceedings of the 16th International Conference on Machine
Learning (ICML'99), Bled, Slovenia, 389-397, June 1999.

[T00] L. Talavera, Dependency-based feature selection for clustering symbolic
data, Intelligent Data Analysis, 4(1): 19-28, 2000.

 51

[TC92] D.-M. Tsai and Y.-H. Chen, A fast histogram-clustering approach for

multi-level thresholding, Pattern Recognition Letters, 13(4): 245-252,
April 1992.

[TSL00] J.B. Tenenbaum, V. de Silva and J.C. Langford, A global geometric
framework for nonlinear dimensionality reduction, Science, 290(5500):
2319-2323, December 2000.

[TY00] L.Y. Tseng and S.B. Yang, A genetic clustering algorithm for data with
non-spherical-shape clusters, Pattern Recognition, 33(7): 1251-1259,
July 2000.

[U82] R.B. Urquhart, Graph theoretical clustering besed on limited
neighbourhood sets, Pattern Recognition, 15(3): 173-187, 1982.

[U83] R.B. Urquhart, Some properties of the planar Euclidean relative
neighbourhood graph, Pattern Recognition Letters, 1(5-6): 317-322, July
1983.

[V86] E. Vidal, An algorithm for finding nearest neighbors in (approximately)
constant average time, Pattern Recognition Letters, 4(3): 145-157, July
1986.

[V89] P.M. Vaidya, An O(n log n) algorithm for the all-nearest-neighbors
problem, Discrete & Computational Geometry, 4: 101-115, 1989.

[V94] E. Vidal, New formulation and improvements of the nearest-neighbor
approximating and eliminating search algorithm (AESA), Pattern
Recognition Letters, 15(1): 1-7, January 1994.

[V95] J.M. Vilar, Reducing the overhead of the AESA metric-space nearest
neighbor searching algorithm, Information Processing Letters, 56(5):
265-271, December 1995.

[VF04] O. Virmajoki and P. Fränti, Divide-and-conquer algorithm for creating
neighborhood graph for clustering, IAPR International Conference on
Pattern Recognition (ICPR'04), Cambridge, United Kingdom, 1: 264-
267, August 2004.

[VFK02] O. Virmajoki, P. Fränti and T. Kaukoranta, Iterative shrinking for
generating clustering, IEEE International Conference on Image
Processing (ICIP'02), Rochester, New York, USA, 2: 685-688,
September 2002.

[W63] J.H. Ward, Hierarchical grouping to optimize an objective function,
Journal of American Statistical Association, 58(301): 236-244, March
1963.

 52

[W91] X. Wu, Optimal quantization by matrix searching, Journal of

Algorithms, 12(4): 663-673, December 1991.

[W04] E.W. Weisstein, Kissing number, From MathWorld—A Wolfram Web
Resource, 2004. [Online]. Available: http://mathworld.wolfram.com/
KissingNumber.html, 3.11.2004.

[WC04] S. Wu and T.W.S. Chow, Clustering of the self-organizing map using a
clustering validity index based on inter-cluster and intra-cluster density,
Pattern Recognition, 37(2): 175-188, February 2004.

[WCS01] C.-C. Wong, C.-C. Chen and M.-C. Su, A novel algorithm for data
clustering, Pattern Recognition, 34(2): 425-442, February 2001.

[WG94] X. Wu and L. Guan, Acceleration of the LBG algorithm, IEEE
Transactions on Communications, 42(2/3/4): 1518-1523, February/
March/April 1994.

[WH84] S. Wang and R.M. Haralick, Automatic multithresholding selection,
Computer Vision, Graphics, and Image Processing, 25(1): 46-67, 1984.

[WL83] M.A. Wong and T. Lane, A kth nearest neighbor clustering procedure,
Journal of Royal Statistical Society, 45(3): 362-368, 1983.

[WL93] Z. Wu and R. Leahy, An optimal graph theoretic approach to data
clustering: theory and its application to image segmentation, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(11):
1101-1113, November 1993.

[WL00] K.-S. Wu and J.-C. Lin, Fast VQ encoding by an efficient kick-out
condition, IEEE Transactions on Circuit and Systems for Video
Technology, 10(1): 59-62, February 2000.

[WZ91] X. Wu and K. Zhang, A better tree-structured vector quantizer,
Proceedings of IEEE Data Compression Conference (DCC'91),
Snowbird, USA, 392-401, April 1991.

[WZ93] X. Wu and K. Zhang, Quantizer monotonicities and globally optimal
scalar quantizer design, IEEE Transactions on Information Theory,
39(3): 1049-1053, May 1993.

[X04] M. Xu, Delta-MSE dissimilarity in GLA based vector quantization,
Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP'04), Montreal, Canada, 5: 813-816, May
2004.

[Y93] P.N. Yianilos, Data structures and algorithms for nearest neighbor search
in general metric spaces, Proceedings of the 4th Annual ACM-SIAM

 53

http://mathworld.wolfram.com/

Symposium on Discrete Algorithms (SODA'93), Austin, Texas, USA,
311-321, January 1993.

[Y99] P.-Y. Yin, A fast scheme for optimal thresholding using genetic
algorithms, Signal Processing, 72(2): 85-95, 1999.

[Y00] P.N. Yianilos, Locally lifting the curse of dimensionality for nearest
neighbor search (extended abstract), Proceedings of the 11th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA'00), San
Francisco, California, USA, 361-370, January 2000.

[Y02] P.-Y. Yin, Maximum entropy-based optimal threshold selection using
deterministic reinforcement learning with controlled randomization,
Signal Processing, 82(7): 993-1006, July 2002.

[YC97] P.-Y. Yin and L.-H. Chen, A fast iterative scheme for multilevel
thresholding methods, Signal Processing, 60(3): 305-313, 1997.

[YCC95] J.-C. Yen, F.-J. Chang and S. Chang, A new criterion for automatic
multilevel thresholding, IEEE Transactions on Image Processing, 4(3):
370-378, March 1995.

[YG88] G. Yuan and M. Goldberg, A sequential initialization technique for
vector quantizer design, Pattern Recognition Letters, 7(3): 157-161,
March 1988.

[Z71] C.T. Zahn, Graph-theoretical methods for detecting and describing
gestalt clusters, IEEE Transactions on Computers, C-20(1): 68-86,
January 1971.

[Z01] B. Zhang, Generalized k-harmonic means – dynamic weighting of data in
unsupervised learning, Proceedings of the 1st SIAM International
Conference on Data Mining, Chicago, IL, USA, April 2001.

[ZG89] K. Zeger and A. Gersho, Stochastic relaxation algorithm for improved
vector quantiser design, Electronics Letters, 25(14): 896-898, July 1989.

[ZRL97] T. Zhang, R. Ramakrishnan and M. Livny, BIRCH: a new data clustering
algorithm and its applications, Data Mining and Knowledge Discovery,
1(2): 141-182, June 1997.

 54

	PAIRWISE NEAREST NEIGHBOR METHOD REVISITED
	ACADEMIC DISSERTATION
	UNIVERSITY OF JOENSUU
	Department of Computer Science

	Reviewers Professor Martti Juhola
	
	
	Department of Computer Sciences

	University of Tampere
	Tampere, Finland
	
	
	Professor Olli Nevalainen
	Department of Computer Science
	University of Turku
	Turku, Finland
	OpponentProfessor Erkki Mäkinen
	Department of Computer Sciences
	University of Tampere
	Tampere, Finland

	Olli Virmajoki
	
	Department of Computer Science
	Abstract

	Acknowledgements
	
	
	
	
	
	
	
	Olli Virmajoki

	List of original publications
	Contents
	1Introduction 1
	2Clustering algorithms 4
	3Agglomerative clustering 10
	4Summary of the publications 27
	6Conclusions 34
	7References 35
	Publications

	Virmajoki_Thesis_Main2.pdf
	The main contributions of this thesis can be summarized as follows:

