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ABSTRACT

Cluster analysis plays an important role in many areas of science,

and clustering algorithms and cluster validation are two essential

elements. Before clustering, the number of clusters is an essential

parameter for the clustering algorithm, while after clustering, the

validity of the clustering is performed.

Internal indexes such as the Bayesian information criterion (BIC)

and sum-of-squares have difficulties in finding a knee point of the in-

dexes, so detection methods through BIC in partition-based cluster-

ing are proposed in the present study. A new sum-of-squares based

index is also proposed, where the minimal value is considered the

optimal number of clusters. External indexes, on the other hand,

need a reference clustering or ground-truth information of data and

therefore cannot be used in cluster validity. Consequently, we ex-

tend the external index into an internal index in order to determine

the number of clusters by introducing a re-sampling method.

Iterative algorithms, such as the K-means and EM algorithms,

suffer from an initialisation problem, so a random swap strategy is

employed to overcome this issue. In the present thesis, we extend

this approach to the optimisation of the EM algorithm for learning

Gaussian mixture model from multivariate data. The EM variant

is known as the random swap EM (RSEM) algorithm. It provided in

our practical tests better results than split-and-merge (SMEM) and

is more efficient than repeated EM (REM).

We propose a cluster-level validity criterion called a centroid ra-

tio. It has low time complexity and is applicable for detecting un-

stable or incorrectly located centroids. Employing the centroid ratio

in swap-based clustering, we further suggest a pairwise random swap

clustering algorithm, for which no stopping criterion is required.

AMS Classification: 62H30, 68Q25, 68W40

Universal Decimal Classification: 004.93, 519.237.8

Library of Congress Subject Headings: Data mining; Machine learning;

Image processing; Parameter estimation; Cluster analysis; Algorithms
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1 Introduction

Nowadays, the world is full of data – most of which is stored digi-

tally in electronic media, thus providing huge potential for the de-

velopment of automatic data analysis, classification and retrieval

techniques [2].

Cluster analysis is one of the most widely used techniques for

exploratory data analysis, with applications ranging from image

processing [3, 4], speech processing [5], information retrieval [6, 7]

and Web applications [8, 9]. As a basic tool, clustering has been

developed and modified for different application fields, providing

many clustering algorithms [2, 10–16]. In most cases, the number

of clusters is an unknown parameter because clustering is unsuper-

vised and the user has very little knowledge about the data. Thus,

the evaluation of different clustering algorithms, and the problem

of determining the number of clusters, are important research prob-

lems in cluster analysis.

Clustering is defined as the problem of partitioning data points

into groups (clusters), such that the points in the same group are

similar, while points in different groups are dissimilar [10]. This ba-

sic rule guides the design of clustering algorithms and evaluation

of clusterings. Most of the currently existing parametric cluster-

ing methods partition data into a predefined number of clusters,

with a cluster representative corresponding to each cluster, so that

a well-defined cost function involving the data and its representa-

tives is minimised [17]. As such, there are three aspects involved in

clustering: data, the cost function and the evaluation function.

The cost function in clustering algorithms is used to decide

whether the clustering result is suitable for certain kinds of data

structures. The Mean squared error (MSE)-based cost function, for ex-

ample, in K-means, assumes the clusters are spherical, while model-

based clustering, utilising an EM algorithm for example, assumes

that the data points originate from a Gaussian mixture model (GMM).

Dissertations in Forestry and Natural Sciences No 77 1
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The covariance parameter in Gaussian models defines the size and

direction of the model, which is more general than the model em-

ployed in MSE-based methods. A summary of clustering algo-

rithms for different data types, shapes of clusters and other proper-

ties is given in [18].

There are many different ways to express and formulate the

clustering problem, as each clustering algorithm may provide a

different grouping for a data set depending on the cost function

used. The categorisation of clustering methods is neither straight-

forward nor canonical [19], but one option is to classify the methods

as hierarchical methods, partitional methods, density-based meth-

ods, graph-based methods, grid-based methods and methods for

high-dimensional space data. Based on the relationship of each

data point to the clusters, the algorithms can also be categorised

into hard (crisp) and soft (fuzzy) clustering algorithms. In hard clus-

tering, each object belongs to one cluster crisply, while each object

belongs to each cluster in soft clustering but only to a certain de-

gree.

Hierarchical methods include agglomerative and divisive algo-

rithms. Hierarchical clustering based on linkage metrics results

in clusters of proper (convex) shapes, but to avoid problems with

non-uniform sized or shaped clusters, clustering using represen-

tatives (CURE) [20] employs a novel hierarchical clustering algo-

rithm that adopts a middle ground between the centroid-based

and all point extremes. A hierarchical clustering algorithm known

as CHAMELEON [21] measures similarities between two clusters

based on a dynamic model. In the clustering process, two clusters

are merged only if the inter-connectivity and closeness between the

two clusters are highly relative to the internal interconnectivity of

the clusters and the closeness of items therein. The algorithm is

applicable to all types of data as long as a similarity matrix can be

constructed for the data points. A divisive algorithm, known as

principal direction divisive partitioning (PDDP) [22], bisects data

in Euclidean space by employing a hyperplane that passes through

the data centroid orthogonally to eigenvector with the largest sin-
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gular value. While PDDP concentrates on how to split a cluster, the

problem of which cluster to split is also an important consideration.

In partition-based methods, K-means clustering is popular be-

cause it is easy to implement and efficient with O(MN) time com-

plexity, where M is the number of clusters and N the size of the

data set. Its major downfall is that it is sensitive to the initialisa-

tion and may converge to local minima. Another problem is the

settings of the number of clusters in K-means clustering. To solve

these issues, the K-means algorithm has been well studied by many

researchers [23–37]. The swap-based clustering algorithm [25, 38, 39] is

a local search heuristic used to find optimal centroids, which can

be used to improve the solution of the K-means clustering. The

random swap algorithm (RS), originally called randomised local search

(RLS) [25], is based on randomisation. Here, a randomly selected

centroid is swapped to another randomly selected location in the

data space.

The expectation maximisation (EM) [40, 41] algorithm is com-

monly used for the parameter estimation of GMMs. If all covari-

ances are diagonal and equal in each model, K-means is tightly

associated with the EM algorithm [42] because EM shares the ini-

tialisation problem in common with K-means clustering. Improve-

ments to the EM algorithm have nevertheless been proposed in

[15, 41, 43–60]. When only part of the data fits in the memory at

one time, on-line EM algorithms can be used in [61, 62].

In density-based clustering, clusters are defined as areas of higher

density than in the remainder of the data set. The most popular

density-based clustering method is DBSCAN [63, 64]. OPTICS [65]

can be seen as a generalisation of DBSCAN across multiple ranges,

effectively replacing the ǫ parameter in DBSCAN with a maximum

search radius. These two algorithms are less sensitive to outliers

and can discover clusters of irregular shapes; however, density-

based clusterings are not very successful for data sets with large

differences in densities.

A number of other clustering algorithms have been developed,

such as spectral clustering [10, 66], grid-based clustering [67–70],

Dissertations in Forestry and Natural Sciences No 77 3
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ensemble clustering [71–77] and subspace clustering [12].

Cluster validity provides a way of validating the quality of clus-

tering algorithms and the means of discovering the natural struc-

ture of data sets. Furthermore, its measures are used to compare

the results of different clustering algorithms, as well as two cluster-

ing results with different numbers of clusters. Cluster validity can

therefore be used for determining the correct number of clusters in

a data set. In fact, the clustering procedure and cluster validity have

a chicken-and-egg relationship whereby knowing how to define a

good clustering criterion requires an understanding of the data, but

clustering is one of the principal tools used to help understand the

data [72] in the first place.

Many different cluster validity indexes have been proposed and

studied [18, 36, 78–84]. In general, they are classified into internal

indexes and external indexes, the former of which are usually based

on information intrinsic to the data, while the latter are based on

prior knowledge about the data. The problem of determining the

number of clusters is solved by finding a knee point among the

validity index values of different numbers of clusters in a range,

M = [Mmin, Mmax]. The knee point is the number of clusters with

sharp change of the index values. Validity indexes with minimum

or maximum value are preferred. However, it is possible that the va-

lidity index has several local minimum or maximum points. Thus,

knee point detection methods for determining the number of clus-

ters are needed, especially for those indexes with non-obvious knee

point.

The focus of this thesis is the study of clustering algorithms and

cluster validity indexes. In order to solve the problem of determin-

ing the number of clusters, validation measures are studied. Meth-

ods for knee point detection on the Bayesian information criterion

are proposed [P1, P2] because the original method is too subjective.

WB-index, a sum-of-squares based cluster validity index, is intro-

duced and compared systematically to other sum-of-squares based

indexes in [P3]. The index takes the minimum value as the optimal

number of clusters. While studying external indexes, an extension
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of the external index to the internal index by utilising a resampling

method is introduced in order to determine the number of clusters

[P4]. There is little research on cluster validity at the cluster level,

so we introduce in [P5] a novel validity measure called the centroid

ratio, which has O(M2) time complexity. Consequently, pairwise

random swap clustering employing the centroid ratio is introduced.

Furthermore, and motivated by the improvements produced by the

swap strategy in K-means, we give an improved version of the EM

algorithm by employing a random swap strategy in [P6, P7]. The

new algorithm (RSEM) provides better and faster optimisation of

the cluster models. Finally, a study of RSEM in image segmenta-

tion is reported in [P7].

The rest of the thesis is organised as follows. Basic concepts of

clustering and cluster validity are summarised in Chapter 2. Clus-

ter validity is discussed in Chapter 3, and the clustering algorithms

in Chapter 4. The application of clustering in image segmentation

is presented in Chapter 5, while in in Chapter 6, a summary of the

contributions of the publications is included. A summary of the

main results is given in Chapter 7. Finally, conclusions are drawn

and future directions are suggested in Chapter 8. The original re-

search papers are attached at the end of the thesis.
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2 Concepts

Given a data set X ⊂ R
D, with N points xi ∈ X in a D-dimensional

space, the problem is to group the data set into M clusters at min-

imum cost, yet with maximum likelihood. Examples of synthetic

data sets (S1–S4) [85] with different degree of cluster overlapping

can be seen in Fig. 2.1. The two-dimensional data sets consist of

5000 data points and 15 Gaussian clusters.

S1 S2

S3 S4

Figure 2.1: A visualisation of data sets S1–S4 [85, 86].

The clusters can be considered as Gaussian models, and the

data set as a mixture of Gaussian models (see Fig. 2.2). Among

many possibilities, such as Binomial distribution, Poisson distribution

and Gaussian distribution for the distribution of the mixture compo-

nents, the Gaussian is the most popular and practical for mixture

models [40]. A Gaussian model (or component) is defined by pa-

rameters Θ = (µ, Σ), where µ represents the mean value and Σ the

covariance matrix.

N (X|Θ) =
1

(2π)D/2|Σ|−1/2
exp (− (x− µ)TΣ−1(x− µ)

2
) (2.1)

Dissertations in Forestry and Natural Sciences No 77 7
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A GMM is a mixture of Gaussian models by weights α, each of

which is a probability in [0,1] summing up to 1.

−5 0 5 10 15
0

0.1

0.2

x

p(
x)

Gaussian Mixture Model

 

 

components
mixture model

Figure 2.2: A GMM is plotted to approximate one-dimensional data (left). 2-D clusters

are represented by Gaussian models (right).

When the covariance matrix Σ is a diagonal matrix and equal

in each model, the mean value µ can be represented as the cen-

troid of a cluster in prototype-based clustering. We define a set of

centroids C = {c1, c2, ..., cM} whereby partitions, i.e. cluster la-

bels/memberships for each data point, are defined as P = [pij]N×M

.
M

∑
j=1

pij = 1; ∀i ∈ [1, N] (2.2)

In hard (crisp) clustering, pij is either 0 or 1, and pij = 1 for one

value of j only. In soft (fuzzy) clustering pij ∈ [0, 1] and pi can have

nonzero values in several values of j.

Taking the mean as the centroid of a cluster and MSE as the cost

function, for example in the K-means algorithm, the centroid and

partition are defined as:

cj ← ( ∑
pi=j

xi)/( ∑
pi=j

1), ∀j ∈ [1, M] (2.3)

pi ← argmin
1≤j≤M

∥

∥xi − cj

∥

∥

2
, ∀i ∈ [1, N] (2.4)

where ‖·‖ is Euclidean norm.
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Concepts

For given partitions, the optimal set of prototypes consists of the

centroids (arithmetic mean) of the clusters and vice versa for a given

set of prototypes, where the optimal partition can be obtained by

assigning each point to the cluster with the nearest prototype. Thus,

partitions and centroids are dual structures, in that if one of them is

known, the other one can be determined uniquely. This duality is

utilised in the K-means algorithm [2], which finds the nearest local

minima for a given initialisation by repeatedly applying these two

steps in turn. The two steps are called the partition step and centroid

step, respectively.

2D−Random Data Set

Figure 2.3: The problem of determining the number of clusters. Given the data and par-

titions on different numbers of clusters, which partitioning is better? How should one

evaluate the different partitions?

Cluster Validity includes problems such as measuring the good-

ness of a clustering algorithm by using different parameter settings,

determining the number of clusters (Fig. 2.3) and comparing clus-

tering algorithms (Fig. 2.4).

When the evaluation is based on data set and clustering struc-

tures, it is known as an internal evaluation, so internal validity in-

dexes are functions of X, C and P. Measures of differences between

two clusterings have been found, where one of them is the ground-

truth or reference result, and they are considered in this context

as external evaluation. External indexes are functions of the parti-

tions formed by the clustering algorithm (P1) and the ground truth
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or reference partitions (P2). An example of a comparison between

two clusterings is shown in Fig. 2.4, the difference for which can

be obtained either by the difference of two partitions from external

indexes or the difference of values from internal indexes.

Figure 2.4: Comparison of a random swap clustering solution for the data set S3 against

the K-means result. The difference between two solutions is represented by the grey area.
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3 Cluster Validity

3.1 REVIEW OF VALIDITY INDEXES

Clustering algorithms with different cost functions give different

solutions, and there is no single best choice of the algorithm and

the cost function for all possible data sets. The task is therefore to

select the best possible clustering method for a data set. For most

clustering algorithms, the number of clusters is set as a parame-

ter. However, the number of clusters is initially not available for

most data sets, so determining this number is essential. After the

correct clustering algorithm and the number of clusters have been

selected, evaluating the clustering results on different parameter

settings needs to be addressed. These problems are all related to

the cluster validity analysis.

Milligan and Cooper [78] presented a comparison of 30 inter-

nal validity indexes for hierarchical clustering algorithms, whereas

Dimitriadou et al. [79] conducted their comparison for 15 validity

indexes in the case of binary data. Meanwhile, a systematic study

of 16 external validation measures for K-means clustering is given

in [23, 36]. A survey of cluster validation indexes was conducted in

[87] for the analysis of post-genomic and other application-specific

data.

Since external indexes are based mainly on prior information of

the data, e.g. the optimal number of clusters, the indexes are used

for choosing the best clustering method for a specific data set. Con-

versely, internal indexes can be used to choose the best clustering

algorithm as well as the optimal number of clusters, without the

need for additional information. In practice, prior information re-

garding data sets is often not available, and internal validation is

therefore more useful in general.

Data resampling [88] is an alternative approach for statistical val-

idation of clustering results. The resampling is expected to simulate
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perturbations of the original data set so as to assess the stability of

the clustering results in respect to the sampling variability. The

underlying assumption is that the more stable the results are in re-

spect to the simulated perturbations, the more these results are to

be trusted [74]. Several resampling techniques such as bootstrapping,

jackknife and perturbation [89] are commonly used for generating re-

samples. The choice of the technique depends on the data and

the clustering method used. Once the clustering results have been

generated for the resamples, the stability of the partitioning can be

obtained. The number of clusters is also estimated, typically based

on the maximization or minimization of the stability score from the

resampling.

A gap statistics method is employed in [90] for estimating the

number of clusters by comparing changes in within-cluster disper-

sion with its expectation under uniform distribution of data as a

null hypothesis. Peck et al. [91] developed a bootstrap-based pro-

cedure to obtain approximate confidence bounds on the number of

clusters in the best clustering, while Ben-Hur et al. [89] presented a

method that exploits measurements of the stability of clustering so-

lutions obtained by perturbing the data set. The Prediction strength

method [92] views clustering as a classification problem, and uses

the cross-validation technique in the method. Dudoit and Fridlyand

[93] introduced a prediction-based sampling method, CLEST, in

which a data is first split into two non-overlapping sets – learn-

ing and test sets. The learning set is then clustered and a classifier

is built using the obtained labels for the points in the training set.

The test set is also clustered and the obtained labels from the test

set are compared using an external index.

Extensions of resampling approaches to fuzzy clustering are

also studied in [94, 95]. A method in [94] determines the number

of clusters based on the evaluation of fuzzy partition stability un-

der bootstrap resmapling. An investigation is performed in [95] on

whether resampling approaches for hard clustering can be trans-

ferred to fuzzy clustering. It turns out that they are applicable to

fuzzy clustering as well with certain restrictions.
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Determining the number of clusters relies on the cluster validity

indexes. In order to determine the optimal number of clusters M∗,
other parameters are fixed and parameter M is optimised by the va-

lidity indexes. A procedure for determining the optimal number of

clusters is shown in Fig. 3.1. Given the data set X, a specific cluster-

ing algorithm and a fixed range of number of clusters [Mmin, Mmax],

the basic procedure involves:

1. Repeat a clustering algorithm successively for the number of

clusters M from a predefined range [Mmin, Mmax].

2. Obtain the clustering results (partitions P and centroids C)

and calculate the validity index value for each.

3. Select the M∗ for which the partitioning provides the best re-

sult according to the validity index. (see Fig. 3.3).

4. Compare the M∗ with external information if available.

Input
DataSet (X)

Clustering
algorithm

Validity
Index

M =[Mmin,Mmax ]

C, P

Figure 3.1: Determining the number of clusters in cluster validity analysis.

A knee point is defined as the number of clusters with sig-

nificant change on the validity index values. Given the range of

M ∈ [Mmin, Mmax], the knee point can be the minimum, maximum

or points with obvious changes (see Fig. 3.2) of the validity indexes.

The points with obvious changes exist in some validity indexes

which are monotonously increasing or decreasing with respect to

the increasing of the number of clusters. As shown in Fig. 3.3,

minimum values of WB-index are the knee points indicating the

number of clusters. However, several local minima or maxima of
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the validity index may exist. Besides, the elbow points are diffi-

cult to locate. Thus, it is meaningful to study knee point detection

methods.

Figure 3.2: Knee points: maximum, minimum and points of curves with obvious changes.
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Figure 3.3: A graph of the number of clusters vs. the WB-index [P3] on the data sets

S1–S4.
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It is meaningless to set Mmin = 1 because a test of uniformity

(deficiency of randomness) is enough in this case; the clustering

algorithm has no effect when all data are in a single cluster, so it is

usual to set Mmin = 2. A rule of thumb is to let Mmax ∼ (N/2)1/2

[96] when there is no prior information about the data.

In most validation studies, 2D data sets have been used because

it is then possible to verify visually the validity of the results, i.e.

how well the clustering algorithm discovers the clusters in the data

set. For multidimensional data with more than three dimensions,

visualisation is a non-trivial and highly difficult task [97]. Then ar-

tificially generated data sets and high dimensional data sets with

prior information [85, 98] are commonly used in validation experi-

ments.

A visual cluster validation tool CVAP [83] based on Graphi-

cal user interface (GUI) provides four external validity indexes, 14

internal validity indexes and five clustering algorithms (K-means,

partitioning around medoids [99] (PAM), hierarchical clustering, self-

organising map [100] (SOM) and affinity propagation [101]). CVAP is

designed for the validity evaluation of clustering solutions, estimat-

ing the number of clusters and performance comparisons between

clustering algorithms. An R package clValid [102] contains func-

tions for validating the results of a clustering analysis.

3.2 INTERNAL VALIDITY INDEX

A good clustering algorithm generates clusters with high intra-

cluster homogeneity, good inter-cluster separation and high con-

nectedness between neighboring data points [87]. One category

of internal indexes is based on these properties, and examples of

this type are given by Dunn [103], Davies and Bouldin [104], Xie-

Beni [105], Calinski and Harabasz [106] and S Dbw [107]. Another

category is based on whether the internal indexes are applied to

hard (crisp) or soft (fuzzy) clustering. A review of fuzzy cluster

validity indexes is available in [108].

The sum-of-squares-based indexes are based on sum-of-squares

Dissertations in Forestry and Natural Sciences No 77 15



Qinpei Zhao: Cluster Validity in Clustering Methods

within cluster (SSW) or sum-of-squares between clusters (SSB) values.

Sum-of-squares-based indexes such as Ball and Hall [109], Hartigan

[110], Calinski and Harabasz [106] and Xu [111] are compared in [78,

79].

Examples of other popular indexes are given in [103–105, 107,

112]. Dunn-type indexes [103] are based on the inter-cluster dis-

tance and diameter of cluster hyperspheres. The Dunn index is

sensitive to outliers, whereas the Davies and Bouldin index is de-

fined by the average of cluster evaluation measures for all the clus-

ters. Xie-Beni [105] adopted the minimum distance between any

pair of clusters and the global average of distances between each

data object and clusters as inter- and intra-cluster distances, respec-

tively. S Dbw [107] replaced the total separation with the density of

data points in the middle of two clusters and omitted the weighting

factor. An improved version of silhouette coefficient (SC) in [113]

reduces the computation time on distance calculations by decreas-

ing the number of addition operations.

A model selection method called the Bayesian information crite-

rion (BIC) [114, 115] has been applied in model-based clustering,

but it can be adapted to partition-based clustering [35], too. An-

other popular method for determining the number of components

and simultaneously learning parameters of GMMs, is to use Dirich-

let Process Mixture Model (DPMM) [116] framework.

A summary of internal validity indexes is listed in Table 3.1.

Table 3.1: Formulas for internal indexes

Name Formula

SSW SSWM =
N

∑
i=1

∥

∥xi − cpi

∥

∥

2

SSB SSBM =
M

∑
i=1

ni

∥

∥ci − X
∥

∥

2

Calinski-Harabasz [106] CH = SSBM/(M−1)
SSWM/(N−M)

Ball&Hall [109] BH = SSWM/M

Xu-index [111] Xu = D log2 (
√

SSWM/(DN2)) + log M
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Krzanowski-Lai [117]
di f fM =(M− 1)2/DSSWM−1

−M2/DSSWM

KL = |di f fM| / |di f fM+1|

Hartigan [110] H = (
SSWM

SSWM+1
− 1)(N −M− 1)

or: H = log2 (SSBM/SSWM)

Dunn’s index [103]

d(ci, cj) = min
x∈ci ,x′∈cj

∥

∥x− x′
∥

∥

2

diam(ck) = max
x,x′∈ck

∥

∥x− x′
∥

∥

2

Dunn =

M
min
i=1

M
min
j=i+1

d(ci, cj)

M
max
k=1

diam(ck)

Davies&Bouldin [104]

Rij =
Si + Sj

dij
, i 6= j

where: dij =
∥

∥ci − cj

∥

∥

2

Si =
1

ni

ni

∑
j=1

∥

∥xj − ci

∥

∥

2

and, Ri = max
j=1,...,M

Rij, i = 1, ..., M

DBI =
1

M

M

∑
i=1

Ri

R-square [118] SSW = ∑
k=1,...,M
d=1,...,D

nkd

∑
i=1

(xi − xd)2

SST = ∑
d=1,...,D

nd

∑
i=1

(xi − xd)2

RS = SST−SSW
SST
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RMSSTD [118] RMSSTD =

∑
k=1,...,M
d=1,...,D

nkd
∑

i=1
(xi−xd)2

∑
k=1,...,M
d=1,...,D

(nkd−1)

SC [113]

a(xi) =
1

nm − 1

nm

∑
j=1,j 6=i

∥

∥xi − xj

∥

∥

2

xi ,xj∈cm

b(xi) = min {∑
t 6=m

‖ct − cm‖2}xi /∈Ct

s(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))

SC =
1

N

N

∑
i=1

s(xi)

S Dbw [107]

stdev =

√

√

√

√

M

∑
i=1

‖σ(ci)‖/M

den(c) =
nij

∑
l=1

f (xl , c), xl ∈ ci ∪ cj ⊆ X

f (x, c) =

{

0 if d(x, c) > stdev

1 otherwise

Scat(M) =
1

M

M

∑
i=1

‖σ(ci)‖ / ‖σ(X)‖

Dens bw(M) =

M

∑
i=1

M

∑
j=1

den(cij)

max(den(ci),den(cj))

M(M− 1)

S Dbw = Scat(M) + Dens bw(M)

BIC [112] BIC = L ∗ N − 1
2 M(D + 1)

M

∑
i=1

log(ni)

Xie-Beni [105] XB =

N

∑
i=1

M

∑
k=1

u2
ik‖xi−Ck‖2

N min
t 6=s
{‖Ct−Cs‖2}
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Partition Coefficient [119] PC =
N

∑
i=1

M

∑
k=1

u2
ik/N

Partition Entropy [119] PE = −(
N

∑
i=1

M

∑
k=1

uik log(uik))/N

3.2.1 Knee point detection

BIC has been widely used for determining the number of compo-

nents (clusters) in model-based clustering, but it can be reformu-

lated into partition-based clustering as follows:

BIC =
M

∑
i=1

(ni log
ni

N
− ni × D

2
log (2π)− ni

2
log Σi

− ni −M

2
)− 1

2
M log N (3.1)

and

Σi =
1

N −M

ni

∑
j=1

∥

∥xj − ci

∥

∥

2
(3.2)

where ci represents the ith cluster, ni the size of it and xj the jth

point in cluster ci.

An example of BIC values for partition-based clustering on data

S1–S4 is demonstrated in Fig. 3.4. As a partition-based clustering

algorithm, the RS clustering [25] is employed in the experiment.

The first decisive local maxima of the BIC values is used for deter-

mining the number of clusters in [112]; however, the selection of

a local maximum is subjective and it is difficult to choose among

them when there are several local maxima. The choice of Mmax af-

fects the number of local minima and maxima, which in turn affects

the number of clusters determined.

The second successive difference between index values (Fig. 3.4)

can be used for knee point detection, although this approach only

reflects local information. The second successive difference (SD) of
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BIC values is defined as:

SD = BIC(M− 1) + BIC(M + 1)− 2 ∗ BIC(M) (3.3)

where M ∈ [Mmin + 1, Mmax − 1].

0 5 10 15 20 25 30
−7.6

−7.5

−7.4

−7.3

−7.2

−7.1
x 10

4

number of clusters

B
IC

 v
al

ue

BIC of S1−S4

 

 

s1
s2
s3
s4

0 5 10 15 20 25 30
−500

0

500
Successive Difference

number of clusters
D

iff
er

en
ce

 V
al

ue
 o

f B
IC

s1
s2
s3
s4

local maximas

Figure 3.4: Number of clusters vs. BIC on S1–S4 and its second successive difference.

Other methods, such as the L-method [120], have been proposed

to find the knee point of the validity index curve by examining the

boundary between the pair of straight lines that most closely fit

the curve in hierarchical/segmentation clustering. More general

methods should be used based on the global trend of the curve.

To improve the BIC index and produce more reliable results on

the determined number of clusters, two methods in line with the

knee point detection are proposed in [P1, P2].
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Figure 3.5: Illustration of the angle-based BIC [P1] method used on data set S4. The

original BIC (left), the second successive difference of the BIC (middle) and the angles of

the local changes (right) are indicated.

In [P1], we use the angle property of a curve. As seen in Fig. 3.5,

we calculate the second successive difference of the original BIC
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values and detect l locally significant changes by finding the first

l minimum values in the successive difference. Here, l ≤ M/2−
1 because at least two points can generate one peak in a curve.

We sort the detected local minimum values in a decreasing order

and then start from the points with bigger peak and calculate their

angle. The value of M with a maximum angle is determined as the

knee point, which indicates the global trend of the curve.

Another graphical knee point detection method, called DiffBIC,

is proposed in [P2]. We first normalise the value of BIC to the range

[Mmin,Mmax] giving C1, Cm is then calculated as the average of C1

values over the M clusters and C2 is finally a normalised value of

Cm in the range [Mmin,Mmax].

C1 = (Mmax −Mmin)(BIC− BICmin)/(BICmax − BICmin)

Cm = C1/M

C2 = (Mmax −Mmin)(Cm − Cmmin
)/(Cmmax − Cmmin

) (3.4)

We consider two cases, where the original BIC curve has either

a globally increasing trend (case1) or a decreasing trend (case2). We

define:

Di f f BIC =

{

(C1 + C2)/2, for case1

|C1 − C2|/2, for case2
(3.5)

The range [Mmin,Mmax] is user-defined. Mmax is assumed to

be large enough so that we can refine the range for searching the

optimal M value by resetting Mmax. The operation is called the

max refinement on DiffBIC (see Fig. 3.6). There will be intersections

across the C1 and DiffBIC values because of the normalisations tak-

ing place whenever the trend of the original BIC is increasing or

decreasing. The positions of the intersection are affected by the set-

ting of Mmin and Mmax, and we assume that Mmax is large enough

to contain M∗. With the assumption that Mmax ≥ M∗, the first in-

tersection M = max′, where max′ 6= Mmin and max′ > M∗ exist.

The value of max′ can be thought of as a refinement to Mmax, with

which the range of M can be reduced to [Mmin, max′].
There are two reasons for the max refinement operation. First,

the original range setting is arbitrary and the refined range is a
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Figure 3.6: An illustration of DiffBIC [P2] for data sets S1–S4 with the RS clustering

algorithm. The normalised BIC is represented as C1 in this context.

smaller range that still contains the optimal value of M. Second,

the BIC exhibits a monotonic trend with the number of clusters, so

the points after the intersection have less information. Since there

exist several local maxima of BIC index, the max refinement step

shrinks the search range, which helps the index to produce a more

accurate decision.

The methods in [P1, P2] give a direction on the knee point de-

tection of the BIC, which can also be a reference for other validity

indexes.

3.2.2 WB-index

The sum-of-squares within (SSW) clusters is a commonly used mea-

sure of compactness, while the sum-of-squares between (SSB) clus-

ters is a measure of separation. Sum-of-squares-based indexes (see
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Table 3.1) are mainly functions of M, N, D, SSW and SSB, and they

usually have a so-called elbow phenomenon. As seen in Fig. 3.7,

knee points are minimum and maximum values in Xu-index and

Calinski-Harabasz index. However, Ball & Hall and Hartigan in-

dexes have unclear knee points. Thus, knee point detection is needed

for them. The second successive difference is commonly used for

the knee point detection.
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Figure 3.7: A graph of the number of clusters vs. sum-of-squares-based indexes on S1–S4.

Knee point detection is needed for Hartigan and Ball & Hall indexes.

We propose a WB-index in [P3]:

WB(M) = M× SSW/SSB (3.6)

Let us assume that cluster i has ni points and we take an av-

erage data point (or representative data point) xi in cluster ci (see

Fig. 3.8). The within-cluster variance for cluster i (Wi) can then be

reformulated as:

Wi = ni ‖xi − ci‖2 , i ∈ [1, M] (3.7)

Bi = ni

∥

∥X− ci

∥

∥

2
, i ∈ [1, M] (3.8)

Dissertations in Forestry and Natural Sciences No 77 23



Qinpei Zhao: Cluster Validity in Clustering Methods

SSW

SSB
(M) =

M

∑
i=1

Wi

M

∑
i=1

Bi

=
W1 + W2 + ... + WM

B1 + B2 + ... + BM
> 0 (3.9)

Figure 3.8: The calculation of Wi and Bi.

With increment of one cluster, the difference of SSW/SSB can

be written as:

∆
SSW

SSB
(M) =

SSW

SSB
(M− 1)− SSW

SSB
(M)

=

M−1

∑
i

Wi

M−1

∑
i

Bi

−

M−1

∑
i

Wi + WM

M−1

∑
i

Bi + BM

=

(
M−1

∑
i

Wi)(
M−1

∑
i

Bi + BM)− (
M−1

∑
i

Bi)(
M−1

∑
i

Wi + WM)

(
M−1

∑
i

Bi)(BM +
M−1

∑
i

Bi)

=

BM

M−1

∑
i

Wi −WM

M−1

∑
i

Bi

(
M−1

∑
i

Bi)(BM +
M−1

∑
i

Bi)

(3.10)
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Since
M−1

∑
i

Wi is monotonously decreasing and
M−1

∑
i

Bi is monotonously

increasing with respect to increasing M, ∆SSW/SSB(M) is then

monotonously decreasing also. This indicates that the decrement

of SSW/SSB from cluster size M− 1 to M is larger than that from

M to M + 1. i.e., the decrement is decreasing with increasing M

(see Fig. 3.9). When the decrement degree of ∆SSW/SSB is larger

than linear increment of M at the beginning, WB is decreasing until

M∗ ≥ Mmin. A special case is that WB is increasing for all M when

M∗ = Mmin. Thus, there exists M∗ such that WB(M) ≥ WB(M∗)
for M ≤ M∗ and WB(M) < WB(M∗) for M > M∗. The number of

clusters is determined by the minimum value of WB-index. Result

of WB-index on data S1–S4 is shown in Fig. 3.3. Although SSW de-

creases monotonically with increasing M, WB-index has a U-shape

with a clear minima at M = 15.
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Figure 3.9: Values of SSW/SSB are decreasing when M is linearly increasing. Values of

∆(SSW/SSB(M)) as a function of M are decreasing also.

We develop two approaches for assessing the statistical signif-

icance of the proposed method. One approach analyses the vari-

ability of each index value by using the quartile range. Quantiles

can be used to characterize data with unknown theoretical distri-

bution. With the same input parameter settings, we fix the number

of clusters and run the clustering algorithm B = 100 times to get
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a distribution of WB-index values on the same number of clusters.

Then the fifth and 95th percentiles of WB-index values are used to

get a 90% probability range of the index. The fifth percentile is ob-

tained by sorting the inde values and taking the fifth value in the

order. The 90% probability intervals with RS and K-means cluster-

ing are shown respectively in Fig. 3.10, in which the dash line is the

boundary of the range.

0 3 9 15 21 27
0.03

0.035

0.04

0.045

number of clusters
0 3 9 15 21 27

0.032

0.034

0.036

0.038

0.04

number of clusters

Figure 3.10: A 90% probability interval of the WB-index with RS and K-means clustering

on data set Iris.

Figure 3.11: Distribution of the WB-index values on Iris data set (M = 3) for 1000

permutations of the partitions with RS clustering. The WB-index value with original

partitions is very extreme referring to this distribution (WB = 0.03).
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Our second approach estimates the certainty of the WB-index

through a resampling method. For analysing the certainty of the

index, we take a partition P and permutate it B = 1000 times, get-

ting a set of partitions {P∗}. The set of index values {WB∗} is

calculated on {P∗} and the certainty is estimated by counting the

probability frequently that WB∗ ≤WB.

Prob =
No.(WB∗ ≤WB)

B
(3.11)

The smaller the probability Prob is, the more certainty the method

obtains. It is not practical to calculate all possible permutations

because of the time involved. An example of the certainty analysis

on the WB-index is shown in Fig. 3.11.

3.3 EXTERNAL VALIDITY INDEX

External validity indexes are preferable when ground-truth labels

are available [121]. The ground-truth consists of class labels as-

signed to each data point. The ideal clustering is selected based

on how well the cluster labels produced by the algorithm match

to the ground-truth labels. External measures are used to compare

the similarity of the two clustering results. A study of 16 external

indexes for K-means clustering was conducted in [36]. The mea-

sures are categorised into pair-counting, set-matching and information

theoretic in [122]. The common basis of the indexes is that their com-

putations are all based on a contingency table [36] (see Table 3.2).

The time complexity of the indexes based on contingency table is

O(M2 + N) for hard partitions.

To construct a contingency table, consider a data set with N

points, and suppose we have two partitions P = {P1, P2, ..., PM}
of M clusters and G = {G1, G2, ..., GM′} for M′ clusters. Denote

nij the number of common points in cluster Pi and Gj. Then the

contingency table of P and G is a matrix of the nij-numbers.

Representatives of pair-counting measures, Rand Index, adjusted

Rand Index, Jaccard coefficient and the Fowlkes and Mallows index [123]

are based on counting the pairs of points on which two clusterings
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Table 3.2: Contingency table between two clustering partitions P and G.

G1 G2 . . . GM′ ∑

P1 n11 n12 . . . n1M′ n1·
P2 n21 n22 . . . n2M′ n2·
...

...
... . . .

...
...

PM nM1 nM2 . . . nMM′ nM·
∑ n·1 n·2 . . . n·M′ n

agree or disagree. Rand Index (Fig. 3.12) is a well-known index

of this class. However, its adjusted form is more commonly used

[24, 124] because the Rand Index lies within the narrower range of

[0.5, 1] in practice. The adjusted Rand Index (ARI) [122] puts the

expected value at zero, which gives a more dynamic range [0, 1].

Figure 3.12: A visual explanation of the Rand Index. (a): a pair of points that belong to

the same cluster in P and G; (b): belong to the same cluster in P but not in G; (c): belong

to the same cluster in G but not in P; (d): are in different clusters in P and G.

Let pij = nij/n, pi = ni·/n, pj = n·j/n. A list of commonly used

external indexes is shown in Table 3.3.
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Table 3.3: Formulas for external indexes

Name Formula

Entropy [125] E = −∑i pi(∑j pij/pi log(pij/pi))

Purity [125] P = ∑i pi(maxj pij/pi)

F-measure [126] F = ∑j pj maxi[2
pij

pi

pij

pj
/(

pij

pi
+

pij

pj
)]

Variation of Information [127]

VI =−∑
i

pi log pi −∑
j

pj log pj

− 2 ∑
i

∑
j

pij log
pij

pi pj

Mutual Information [128] MI = ∑i ∑j pij log
pij

pi pj

Rand index [129] RI =
[(n

2 )−∑i(
ni·
2 )−∑j(

n·j
2 )+2 ∑ij(

nij
2 )]

(n
2 )

Adjusted Rand index [122] ARI =
∑ij(

nij
2 )−[∑i(

ni·
2 ) ∑j(

n·j
2 )]/(n

2 )

1
2 [∑i(

ni·
2 )+∑j(

n·j
2 )]−[∑i(

ni·
2 ) ∑j(

n·j
2 )]/(n

2 )

Jaccard [130] J =
∑ij(

nij
2 )

[∑i(
ni·
2 )+∑j(

n·j
2 )−∑ij(

nij
2 )]

Fowlkes and Mallows [131] FM = ∑ij(
nij

2 )/
√

∑i(
ni·
2 ) ∑j(

n·j
2 )

Hubert Γ statistic [132] Γ =
(n

2 ) ∑ij(
nij
2 )−∑i(

ni·
2 ) ∑j(

n·j
2 )

√

∑i(
ni·
2 ) ∑j(

n·j
2 )[(n

2 )−∑i(
ni·
2 )][(n

2 )−∑j(
n·j
2 )]

Minkowski score [133] MS =

√

∑i(
ni·
2 )+∑j(

n·j
2 )−2 ∑ij(

nij
2 )

√

∑j(
n·j
2 )

Goodman-Kruskal [134] GK = ∑i pi(1−maxj
pij

pi
)

Two topics can be discussed on external indexes – the first is

their extension from hard partitions to soft partitions and the sec-

ond is the use of external indexes in absence of any ground-truth

information.

A fuzzy extension of the Rand index has been introduced in

[135]. Other measures such as the adjusted Rand index, Jaccard
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coefficient and Fowlkes and Mallows index have also been derived

from the same formulation; however, they have a high time com-

plexity of O(M2N2). A pioneer solution for fuzzy clustering [136]

reduces the complexity significantly to O(M2N).

In clustering, prior knowledge of the data is usually not avail-

able, but resampling methods can be used to overcome this diffi-

culty. The Rand index was extended to calculate pairwise stabil-

ity [24], which is calculated as the variability of the clustering re-

sults by resampling the original data or by multiple initialisations.

In [123], a bootstrapping-based measure is proposed. The cluster-

ing algorithm is interpreted as a statistical estimator and external

indexes are then used for comparing the partitions. Bootstrap re-

sampling has been utilised in evaluating fuzzy partition stability

in [94], and its fuzzy extension was introduced in [135], but these

methods lead to high time complexity in general.

An extension of external indexes for both hard and soft parti-

tions with no ground-truth (see Algorithm 1) is introduced in [P4].

First, we perform a state-of-the-art sub-sampling algorithm [137]

with O(N) time complexity on the original data set X to reduce the

number of data points Xs.

Then the procedure in Fig. 3.1 (see page 13) is performed to

get the number of clusters. The algorithm consists of two parts:

first is to use a reference partition in calculating external validity

index, and the second is to apply a resampling method for statistical

validation of clustering results.

The reference partition G is generated by an assumption that

the data points are indexed subsequently such that for example the

reference partition is that the first 100 data points belong to one

cluster and the second 100 points into another cluster when a data

set of 200 points contains two clusters. Let c = ⌊N/M⌋, in which

case reference partition GN×M is generated by:

[G]ij =

{

1, i f i > (j− 1)× c & i < j× c + 1

0, otherwise
(3.12)

Similar as the resampling method in [90], the proposed method
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compares the external index value with its expectation under uni-

form distribution.

I = EB{Iu} − Ix (3.13)

where EB denotes the expectation of validity index values under

a sample of size B from the uniform distribution, i.e., EB{Iu} =

∑
B
b=1 Iu/B. The samples are generated uniformly for each dimen-

sion of data independently over the range of the original data set at

that dimension. The external index value Ix is calculated between

the partition from the sub-sampled data Xs (Px) and the reference

partition (G), and Iu represents a set of the external index values be-

tween the partition from the uniform samples (Pu) and the reference

partition (G).

Input: X = {x1, x2, ..., xn}, Mmax

Output: Mopt

Xs = subsampling(X) ;1

for m = 2 : Mmax do2

Set reference labels G = [gij]N×M ;3

Px = CLUSTER(Xs) ;4

Ix = ExternalIndex(Px, G) ;5

for b = 1 : B do6

Generate reference data Xb uniformly ;7

Pu = CLUSTER(Xb) ;8

Iu = ExternalIndex(Pu, G) ;9

end10

I(m) = EB{Iu} − Ix ;11

end12

Mopt = min(I(m)) ;13

return Mopt14

Algorithm 1: Pseudocode of the proposed method

The external index involved in the method is the adjusted Rand

Index (ARI), however, any other external indexes can also be em-

ployed instead. When an efficient fuzzy extension of the external in-

dex [136] is employed, the proposed method is applicable for fuzzy
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partition. Soft clustering algorithms such as the EM algorithm and

Fuzzy C-means (FCM) [138] are studied in the method. For hard

partition, K-means and hard-cut of EM and FCM are used.

An example of the result from the proposed method is demon-

strated in Fig. 3.13. The sub-sampled data of S2 and the partition

from FCM on the data is displayed. The sub-sampling method re-

duces 38%-78% of the running time in the experiment and the fuzzy

extension of the external index affects little on the running time (see

the running time in Fig. 3.13). For determining the number of clus-

ters, the proposed method works well on real data sets and small

Gaussian-distributed data sets. In general, it has better performance

on hard partitions than on soft ones.
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Figure 3.13: Clustering on the sub-sampled data set of S2 from FCM, a comparison on the

running time of the proposed method on different soft and hard clusterings and the index

value of the proposed method (hard and soft clustering respectively) on the increasing

number of clusters. FCM H and FCMH represent the hard partition of FCM, similar for

EM H and EMH . FCM S and FCMS represent the soft partition of FCM, similar for

EM S and EMS.
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3.4 CENTROID RATIO

There is little research on cluster-level evaluation measures, which

are based on centroids only. Centroids play an important role in

clustering because they reveal the allocation of clusters. In eval-

uation of clustering, the time complexity of internal and external

indexes is usually O(MN) or O(N2) and utilising centroids only in

evaluation reduces the time complexity to O(M2). A cluster-level

evaluation criterion called the centroid ratio is introduced in [P5].

Let C1 = {c11, c12, ..., c1M} and C2 = {c21, c22, ..., c2M} be the cen-

troids of two clusterings C1 and C2, respectively.

Definition The nearest pairing of two sets of centroids (C1 and C2)

can be stated in graph-theoretic terms as the minimum matching of

a given bipartite graph where nodes correspond to the centroids,

edges connect centroids from different clusterings, and edge cost

stands for the centroid distance.

Pair Ratio

D
2

D
12

D
1 C

2

C
1

Figure 3.14: Calculation of the pair ratio for one pair of centroids.

Definition The Pair ratio for centroid i, PR(i), is the degree of

matching in terms of distance between centroid i from C1 and C2

after the nearest pairing.

The minimum matching in the nearest pairing is solved in a greedy

way whereby, for each i, j, where 1 ≤ i ≤ M, 1 ≤ j ≤ M, we
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consider they are paired if c2j is the closest centroid to c1i out of

{c21, c22, ..., c2M}. We thus iterate M times the operations:

{i, j} = argmin
c1i∈C1,c2j∈C2

∥

∥c1i − c2j

∥

∥

2

C1 ← C1\{c1i}
C2 ← C2\{c2j} (3.14)

For paired centroids c1i ∈ C1 and c2j ∈ C2, we define the dis-

tances:

D1(i) = min
c1s∈C1

‖c1i − c1s‖2

D2(i) = min
c2s∈C2

∥

∥c2j − c2s

∥

∥

2

D12(i) =
∥

∥c1i − c2j

∥

∥

2

(3.15)

The value of D12 is the distance of the matched centroids in two

clustering results C1 and C2. D1 is the nearest distance of two cen-

troids in the same set of centroids C1 and similarly, D2 is the nearest

distance in C2. The centroids in two clusterings are strictly matched

when D12 = 0. We consider centroid i is stable or correctly located

when D12 ≤ D1 and D12 ≤ D2. Thus, the Pair Ratio for a centroid i

of clustering C1 with respect to C2 (see Fig. 3.14) is defined by:

PR(i) =
D12(i)

D1(i)
× D12(i)

D2(i)
(3.16)

A centroid i is considered as stable or correctly located when PR(i) ≤
1. For unstable and incorrectly located centroids, PR(i) > 1.

Definition Similarity S between the two clusterings C1 and C2 is:

S(C1, C2) = 1−
M

∑
i=1

γi/M

γi =

{

1 if PR(i) > 1

0 otherwise
(3.17)

S is in the range of [0, 1], where 1 indicates a complete match of two

clusterings, and 0 indicates a complete mismatch.
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Definition The centroid ratio is involved with the calculations of

pair ratio (PR) and similarity (S), where PR finds incorrectly lo-

cated centroids and the S value indicates the similarity of the two

clusterings.
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4 Clustering Algorithms

In this chapter, we give a closer look at the partition-based (or

centroid-based) clustering represented by K-means, random swap

based clustering, and the EM algorithm and its variants in model-

based clustering.

4.1 REVIEW OF ALGORITHMS

As a representative of the centroid-based clustering algorithms, K-

means suffers from an initialisation problem: the result of the clus-

tering depends on the initial setting of the centroids. A common

way of addressing this problem is to run K-means multiple times

with a different set of randomly chosen initial centroids [28] and

to choose the best solution as a result. We call this variant repeated

K-means (RKM). For different data sets, the correct number of rep-

etitions for RKM is an empirical choice. K-means++ [32] chooses

initial centroids (seeds) for K-means. This improves both the speed

of the computation and the quality of the clustering. In addi-

tion, it is Θ(log M)-competitive with optimal clustering [32], i.e.

E[φ] ≤ 8(log M + 2)φOPT, where φ indicates the cost function and

M represents the number of clusters. Other methods based on the

selection of initial cluster centroids are proposed in [33, 34].

Several methods based on stochastic global optimisation have

been developed, such as simulated annealing [29] and genetic algo-

rithms [30], although these methods have not gained wide accep-

tance because of their high time complexity. An accelerated algo-

rithm on K-means is introduced in [31, 139]. The algorithm avoids

unnecessary distance calculations by applying triangle inequality

in two different ways and by keeping track of the lower and upper

bounds for distances between points and centres in [139]. Kd-tree

is used in [31] for storing the data points, while a global K-means

algorithm (GKM) [27] is an incremental approach that dynamically
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adds one cluster centroid at a time through a deterministic global

search procedure. The search procedure consists of N (number of

data points) executions of the K-means algorithm from suitable ini-

tial positions. Experimental results show that the GKM algorithm

considerably outperforms the conventional K-means algorithm.

The stability of clustering has been proposed as a measure of

the quality for clustering algorithms, and the stability of K-means

clustering is analysed in [24, 140, 141]. Variants are available for

improving the K-means by combining the problem of determining

the number of clusters. For example X-means [35] searches the

space for cluster locations and the number of clusters is optimised

by the Bayesian Information Criterion (BIC) efficiently.

Clustering can be found by a sequence of centroid swaps and by

fine-tuning their exact location by K-means [25, 38]. In each swap-

based clustering iteration, a swap strategy is employed to search for

a pair of centroids, of which one is to be removed and the other is

inserted to lead to an improved solution. If this gives an improved

solution, the swap is made and the procedure is iterated after a

fine-tuning step by K-means. Swap-based clustering is simple to

implement and produces good quality results independent of the

initialisation.

In model-based clustering, the expectation maximisation (EM)

algorithm [40, 41] is well studied. It iteratively refines the maxi-

mum likelihood (ML) parameter estimation by first calculating the

expectation of the posterior of the latent variables (as opposed to

observable variables) while keeping the parameters fixed, at which

time the algorithm finds the maximum of the parameters. This it-

erative process is guaranteed to converge [40,41]. However, the EM

algorithm shares the initialisation problem with the K-means algo-

rithm, as both are hill climbing algorithms, as shown in Fig. 4.1.

An initial set of parameters is needed for the initialisation, but un-

fortunately not all initial values of the parameters lead to the same

unique solution when the algorithm has converged [15], and espe-

cially for Gaussian mixture models, the log-likelihood landscape is

multimodal [142].
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Figure 4.1: The effect of initialisation of model parameters on the EM algorithm: two

different initial solutions (left); two EM results (right).

Several initialisation methods have been presented in [43,44]. A

common way to address this problem is to run EM multiple times

with a different set of randomly chosen initial parameters [15] and

pick the best performing solution as the result. We call this variant

repeated EM (REM) and it gives higher stability with respect to the

log-likelihood and less dependence on the initialisation and data

set [43]. However, the deficiency of REM is that it leads to a great

waste of computation because it restarts at every initialisation and

unimproved solutions make no contribution to the final result. An

accelerated EM algorithm [58] is accomplished by deriving a region

bounding the possible locations of the local optimum, followed by

upper bound estimation on the maximum likelihood. As a result of

the estimation, the EM algorithm can be terminated in advance to

avoid useless solutions.

A more sophisticated strategy for escaping a poor initial solu-

tion is to alternate between converging the solution by EM and in-
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troducing a perturbation to the solution. While EM converges to a

solution pointed to by a steepest gradient, perturbation can, at least

in principle, circumvent that restriction. By accepting only a solu-

tion that improves the log-likelihood, perturbation-based methods

guarantee that the best solution found so far is not discarded [57].

One possible perturbation operation is to split one component

and merge two other components. Ueda and Nakano proposed

the split and merge EM (SMEM) algorithm [45]. Improved the split-

and-merge operation, a variant of SMEM is introduced in [46].

Other algorithmic strategies employed to escape local maximum

are: competitive learning [60], incremental clustering implemented in

greedy EM (GEM) [47] and stochastic variants such as stochastic EM

(SEM) [55] and Monte Carlo EM (MCEM) [49].

Input: X, M

Output: C, P, MSE

cj = xi|i = random(1, N), 0 ≤ j ≤ M ;1

while ∆MSE ≥ ǫ do2

pi ← argmin
1≤j≤M

d(xi, cj)
2, ∀i ∈ [1, N] ;

3

cj ← (∑pi=j xi)/(∑pi=j 1) ;4

MSE = ∑
N
i=1 d(xi, Cpi

)2/N ;5

end6

return C, P, MSE ;7

Algorithm 2: K-means algorithm

4.2 K-MEANS AND SWAP-BASED CLUSTERING

The K-means (Algorithm 2) is the most famous clustering algo-

rithm. It aims to partition N points into M clusters with minimal

cost. The mean squared error (MSE) is commonly used as the cost

function:

MSE =
1

N

N

∑
i=1

M

∑
j=1

d(xi, cj)
2 (4.1)
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where the distance function d is commonly the Euclidean distance.

The initilisation of the centroids in K-means is typically done

by randomly selecting M data points. The algorithm stops until

convergence when the difference of MSE between two iterations

becomes less than a given threshold (ǫ = 1.53× 10−5 in our study).

Another option for the algorithm is to stop after a fixed number of

iterations defined by user.

Input: X, M

Output: C, P, MSE

C← initialiseCentroids(X) ;1

P← OptimalPartition(X, C) ;2

for T times do3

Cnew ← RandomSwap(C);4

Pnew ← LocalRepartition(P, Cnew) ;5

KmeansIteration(Pnew, Cnew) ;6

if MSE(Pnew, Cnew) < MSE(P, C) then7

(P, C)← Pnew, Cnew ;8

end9

end10

MSE = 1
N ∑

N
i=1 ‖xi − C‖2 ;11

return C, P, MSE ;12

Algorithm 3: Pseudocode of Random Swap algorithm

The initialisation problem of K-means causes that the algorithm

may get stuck at local optima. In swap-based clustering, centroids

are perturbed through a certain strategy in order to get rid of local

minima, and the swap is accepted if it improves the clustering qual-

ity. This trial-and-error approach is simple to implement and very

effective in practice. The random swap algorithm (RS) is based on

randomisation whereby a randomly selected centroid is swapped

to another randomly selected location in the region of the data.

After that, local repartitioning is performed and the clustering is

fine-tuned by two K-means iterations. The pseudo code of RS is in

Algorithm 3. However, since the swapping is completely random
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in RS, the running time is not stabilised. As such, the deterministic

swap (DS), using different swap criteria, is also studied in [39].

Deterministic swap operations aim at finding good swaps by

a systematic analysis rather than in a trial-and-error manner. In

general, a favorable clustering can be found in a few swaps only,

if the algorithm would know the centroid that should be swapped

and the location where it should be relocated.

Several heuristic criteria have been considered for selection of

the centroids to be swapped, but simple criteria such as selecting

the clusters with the smallest size or variance do not work very well

in practice. Other approaches, like removing one cluster [86] or

merging two existing clusters, as in agglomerative clustering [143],

have also been introduced. With random and deterministic swap

strategies, an analysis combining the deterministic heuristic with a

random swap was conducted in [39].

4.3 PAIRWISE RANDOM SWAP CLUSTERING

In random swap, the swapping is completely random, so it needs a

large number of iterations to provide a clustering of good quality.

A method using deterministic swaps aims at finding good swaps

through systematic analysis rather than making pure trial and er-

ror. The pairwise random swap (PRS) (see Algorithm 4) clustering

employs the centroid ratio in section 3.4 to establish candidates for

swapping, and no parameter for the number of iterations is needed

[P5].

Given a data set X and the number of clusters M as the input,

two centroid sets (C1, C2) with M clusters are obtained initially by

K-means. Then, we calculate the pair ratio value to attain the set of

incorrectly located centroids Sid and the similarity value S(C1, C2)

according to Eq. 3.17. We then perform the swap function (Algo-

rithm 5) to get an improved solution, in which we swap the detected

centroid c1j and c2j in C1 and C2 (j ∈ Sid) randomly and fine-tune

the clustering by K-means. The algorithm stops when the similarity

between two centroid sets S is 1, which indicates that the two clus-
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Input: X, M

Output: C, MSE

Two initializations: I1, I2;1

(C1, MSE1) = k-means(X, I1, M);2

(C2, MSE2) = k-means (X, I2, M);3

Calculate Sid = i|PR(i) > 1 and S(C1, C2);4

while S 6= 1 do5

(C
′
1, C

′
2, MSE

′
1, MSE

′
2) = Swap(X, M, C1, C2, MSE1, MSE2,6

Sid);

MSE1 = MSE
′
1; MSE2 = MSE

′
2;7

C1 = C
′
1; C2 = C

′
2;8

Calculate Sid = {i|PR(i) > 1} and S(C1, C2);9

end10

return min (MSE1, MSE2) and corresponding C1 or C2;11

Algorithm 4: Pairwise Random Swap clustering algorithm

Input: X, m, C1, C2, MSE1, MSE2, Sid

Output: C
′
r1, C

′
r2 and MSE

′
r1, MSE

′
r2

MSE
′
r1 = MSE1 + 1;1

while MSE
′
r1 > MSE1 do2

Cr1 ← random swap Sid on C1;3

(C
′
r1, MSE

′
r1) = k-means(X, Cr1, m);4

end5

MSE
′
r2 = MSE2 + 1;6

while MSE
′
r2 > MSE2 do7

Cr2 ← random swap Sid on C2;8

(C
′
r2, MSE

′
r2) = k-means(X, Cr2, m);9

end10

return C
′
r1, C

′
r2 and MSE

′
r1, MSE

′
r2;11

Algorithm 5: Function of Swap
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terings are matched. The final solution for the PRS algorithm is the

centroid set corresponding to a lower MSE value of the two cluster-

ings. On occasion, the initial centroid sets C1 and C2 are completely

matching but the partition is local optimal, i.e. S(C1, C2) = 1 and

Sid ∈ ∅ at the beginning, in which case the PRS algorithm performs

a random swap on the centroids.

The proposed algorithm is a type of deterministic swap clus-

tering, since the selection of centroids to be swapped is chosen by

the centroid ratio and the allocated position of the centroids is ran-

dom. The time complexity of the removal step is O(M2) and O(1)

for the addition step. Although the swap heuristic is capable of

moving out of a local minimum, it may take a long time to move

near to a local minimum. Thus, it is profitable to use K-means for

fine-tuning after the swap heuristic [26]. A note for the PRS algo-

rithm is that K-means can be substituted by other prototype-based

clustering algorithms.

4.4 EXPECTATION MAXIMISATION ALGORITHM

4.4.1 EM algorithm

The EM algorithm can be used to estimate the maximum likelihood

(ML) parameters of many different types of parametric densities.

Here, we restrict the discussion to the problem of finding the ML es-

timates of the Gaussian mixtures with a known number M of com-

ponents. The goal is then to maximise the following log-likelihood:

L(Θ) = log p(X|Θ) =
N

∑
i=1

log
M

∑
j=1

αjN (xi|Θj), (4.2)

where N (.|.) is Gaussian distribution, X = (x1, . . . , xN) is the ob-

served d-dimensional data set of size N), Θ is the configuration of

all components and Θj = (µj, Σj) are the mean vector and covari-

ance matrix of the jth Gaussian, respectively. Finally, αj is the mix-

ture weight of the jth component. The parameters αj must satisfy
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the following constraints:

M

∑
j=1

αj = 1, and, αj ≥ 0, j = 1, ..., M. (4.3)

Unfortunately, a closed-form solution of the (4.2) is not possi-

ble [40], since it contains the log of the sum. Maximization is then

performed on the expectation of the complete-data log-likelihood,

given posterior density of the latent variables [40]. This function is

usually called the Q-function, and can be written for iteration t in a

concrete form of Gaussian mixtures as:

Q(Θ, Θt−1) =
N

∑
i=1

M

∑
j=1

τij

{

log αj + logN (xi|Θt−1
j )

}

. (4.4)

where Θt−1 are parameters estimated in the previous iteration. Max-

imization of Eq. (4.4), in terms of Θ can be performed easily, by

keeping the posterior probabilities τij fixed. Then, given estimated

parameters, the posterior probability τij of xi from component j, can

be calculated as follows:

τij =
N (xi|Θt−1

j )αj

∑
M
l=1N (xi|Θt−1

l )αl

(4.5)

The EM algorithm is in Algorithm 6. To find an initial set of

parameters in EM algorithm, one possibility is to randomly select

mean vectors and set equal weights and whole data covariance ma-

trix for all components [14]. A more common practice is to first

run k-means on the dataset to get a hard partitioning. The initial

mean vectors are directly the cluster centroids, partition covariance

is the component covariance matrix and proportion of vectors in

each partition is the component weight. Several short runs of k-

means starting with random initial solutions each followed by a

long run of EM is recommended in [43].

The implementation of Expectation-step and Maximisation-step

for each component j, j = 1, ..., M at each iteration is summarised
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Input: Data Set X = {x1, x2, . . . , xN}
Output: Parameters Θ = {α, µ, Σ} and log-likelihood L(Θ)

[Θ, L(Θ)]← initialisation(X);1

while |L(Θ)− L(Θt−1)| > ǫ do2

Expectation-step: calculate Q-function Q(Θ|Θt−1);3

Maximisation-step: find Θ that maximizes Q(Θ|Θt−1);4

end5

return Θ, L(Θ)6

Algorithm 6: EM algorithm

as follows:

αt
j =

1

N

N

∑
i=1

τt−1
ij

µt
j =

1

αt
jN

N

∑
i=1

τt−1
ij xi

Σt
j =

1

αt
jN

N

∑
i=1

τt−1
ij (xi − µt

j)(xi − µt
j)

T (4.6)

The algorithm proceeds by using the newly derived parameters as

a guess for the next iteration. A detail derivation of the equations

refers to [144].

4.4.2 Split-and-Merge EM

One strategy to overcome sensitivity to the initialisation of the EM

algorithm is to identify the parts of the solution that do not fit well

to the data, and then revise the solution by making local changes.

One way is to split a component into two parts and to merge two

other components into one. Carrying out both of these actions at

the same time keeps the number of components unchanged. The

split and merge EM (SMEM) [45] makes a systematic search through

all possibilities, after which the algorithm selects the best candi-

dates and performs the necessary operations. After the split and

46 Dissertations in Forestry and Natural Sciences No 77



Clustering Algorithms

merge operations have been completed, SMEM smooths the af-

fected components with a few partial EM iterations that change

the parameters of the affected components only (see Algorithm 7).

The conventional EM is then performed until convergence.

Input: Data Set X = {x1, x2, . . . , xN}
Output: Parameters Θ = {α, µ, Σ} and log-likelihood L(Θ)

[Θ0, L(Θ0)]← EM(X);1

while candidates left to process do2

Sort candidates (i, j, k)Cmax
by JMerge and JSplit3

(equation 4.7);

for c = 1 : Cmax do4

[Θ
′
, L(Θ

′
)]← partialEM((i, j, k)c);5

[Θ∗, L(Θ∗)]← EM(X, Θ
′
);6

if (L(Θ∗) > L(Θ)) then7

Θ = Θ∗; L(Θ) = L(Θ∗);8

end9

end10

end11

return Θ, L(Θ)12

Algorithm 7: SMEM algorithm

SMEM algorithm searches among the candidates composed of

combinations of all components i, j and k until the likelihood value

improves [45]. The candidates are sorted by the merge and split

criteria. Merge criterion is based on the correlation of posterior

probabilities of components i and j. The split criterion is based on

the Kullback-Leibler divergence between component k and the local

data density.

JMerge(i, j) =
τi(Θ)Tτj(Θ)

||τi(Θ)||||τj(Θ)||

JSplit(k) =
∫

fk(X, θk) log
fk(X, θk)

pk(X, θk)
dx (4.7)

where, τi(Θ) = (τ1i(Θ), ..., τNi(Θ)) is an N-dimensional vector con-
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sisting of the posterior probabilities for the ith component. T de-

notes the transpose operation and 1 < k 6= i 6= j < M. The fk(X, θk)

is the local data density around the component k and the pk(X, θk) is

the empirical distribution of X. The merged components are com-

bined linearly and the split component is split by adding a small

offset ǫ in vector or matrix on the original parameters. Then a par-

tial EM step is performed on the merge and split candidate.

The original acceptance rule, line 7 in Algorithm 7, used the Q-

function instead of L(Θ) [45]. However, it was found in [48] that

by doing so the global maximum might be accidentally rejected. In

[P6], we therefore check the log-likelihood in order to accept the

new solution.

4.4.3 Greedy EM and stochastic EM

The Greedy EM (GEM) [47] algorithm increases the number of com-

ponents by one at each iteration. Selection of the component for

insertion is a crucial step in the algorithm. The data is partitioned

into M disjoint subsets Ai for a M-component mixture. For each

subset Ai, k candidate components are generated. Two data points

xl and xr are randomly picked from subset Ai. The subset is then

partitioned into two disjoint subsets Air and Ail in such a way that

the elements in Ail are closer to xl than xr and vice versa for Air.

The mean and covariance of Ail and Air are used as parameters for

two candidate components. It is repeated until k candidate compo-

nents are obtained for subset Ai. Partial EM is performed on the

M× k candidates. After that, the new component is selected among

M × k candidates such that it maximizes the log-likelihood when

mixed into the existing mixture. The time complexity of the greedy

EM algorithm is O(M2N) or O(kMN) if M < k, where k = 10 is the

number of candidates in [47].

Stochastic variants of the EM algorithm have also been intro-

duced [51]. These variants typically perform a simulation of the

conditional distribution of the missing data τij, to approximate the

Q function. Partitions P = (P1, ..., PN) of X is designed by assigning
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each point xi randomly to one of the mixture components accord-

ing to the multinomial distribution with τij in the simulation step of

MCEM [49] and SEM [55]. A comparison between three stochastic

variants of the EM algorithm can be found in [52], while a number

of asymptotic convergence properties of the stochastic EM algo-

rithms are presented in [59]. The time complexity of the stochastic

versions is O(kMN), where k is the number of simulations in one

simulation step.

4.5 RANDOM SWAP EM ALGORITHM

The idea of the random swap EM (RSEM) [P6, P7] algorithm is to

alternate between simple perturbation by random swap and con-

vergence towards the nearest optimum by employing the EM algo-

rithm. The random swap consists of removal and addition opera-

tions of components.

The pseudo code for RSEM is presented in Algorithm 8. The

initialisation is performed as for the EM algorithm, described in

Section 4.4.1. After the solution has been initialised, we perform

t random swap iterations (called RS-iterations). During each itera-

tion, a component is removed, a new one is added and the resulting

solution is improved using the EM algorithm. The best solution, in

terms of log-likelihood, is maintained as the starting point for the

next RS iteration.

Let L(Θt) denote the value of the log-likelihood function ob-

tained at iteration t of the EM algorithm. Furthermore, suppose

that component r is the randomly selected component for removal

and the rest of components will be kept unchanged. Then the pos-

terior probability after swapping will be calculated as:

τs
ij =

αt
jN (xi|Θt

j)

∑
M
l=1,l 6=r αt

lN (xi|Θt
l)

(4.8)

and the equations for parameter changes on the rth component are:
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µs
r = xp

αs
r = αt

r or αs
r =

M

∑
l=1,l 6=r

(

N

∑
i=1

τs
ij

)

αt
l

Σs
r = Σt

r or Σs
r =

M

∑
k=1,k 6=r

τs
ijΣk

(4.9)

In order to retain a valid Gaussian mixture model after the swap

operation, the weights αi, 1 ≤ i ≤ M are normalised to sum up to

unity.

Input: Data Set X = {x1, x2, . . . , xN}
Output: Parameters Θ = {α, µ, Σ} and log-likelihood L(Θ)

[Θ0, L(Θ0)]← initialisation(X);1

Θ = Θ0, L(Θ) = L(Θ0) ;2

for Iteration = 1 : t do3

r = U(1, M), remove rth component: αr = 0, µr = 0;4

p = U(1, N), add a new component at pth position (see5

equation 4.9);

normalise weights α to sum to 1;6

new parameters Θs = {αs, µs, Σs};7

[Θst, L(Θst)]← EM(X, Θs);8

if L(Θst) > L(Θ) then9

Θ = Θst;10

L(Θ) = L(Θst);11

end12

end13

return Θ, L(Θ)14

Algorithm 8: RSEM algorithm

After each swap, the new parameters Θs are set as initial solu-

tions for EM, which fine-tunes the result. After EM has converged,

with a new likelihood value L(Θst), we compute

∆L = L(Θst)− L(Θt) (4.10)
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If ∆L is positive, the new parameter estimate replaces the previous

best solution. Otherwise the new parameter estimate is discarded.

This process is repeated until all possible swap pairs are tried out

and none of them improves the solution. However, as a practical

matter we restrict the total number of swaps to a user selectable

number of RS iterations t. A result for RSEM on S2 is shown in

Fig. 4.2.
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Figure 4.2: Surface plot of GMM’s probability density (S2) and a clustering result from

RSEM on S2.

Dissertations in Forestry and Natural Sciences No 77 51



Qinpei Zhao: Cluster Validity in Clustering Methods

52 Dissertations in Forestry and Natural Sciences No 77



5 Image Segmentation

Image segmentation is a key step in several image analysis meth-

ods [145]. In image analysis, the pixels contained in each region

provide a good statistical sampling of data values for more reliable

labeling in feature space. In image compression, the regions form

a basis for a compact representation of image data. Content-based

image indexing for image retrieval is another potential application

of image segmentation [56].

Many methods [146, 147] have been proposed and studied in

the last decades to solve the image segmentation problem. They

include active contours [148] (e.g., snakes and level sets), region grow-

ing and split-and-merge [149], clustering-based (e.g., mean shift, K-

means, Fuzzy C-means, EM and normalized cuts) and energy-based

methods [150] (e.g., variational formulation and Markov random field).

In this chapter, we give a brief introduction to how clustering

algorithms can be applied in image segmentation. The cluster va-

lidity measures are also studied in clustering-based image segmen-

tation.

5.1 CLUSTERING ALGORITHMS IN IMAGE SEGMENTATION

Clustering is concerned with the partitioning of a data set into sev-

eral groups such that the similarity within a group is larger than

that among groups. It has a similar goal to image segmentation,

where each region is homogeneous and adjacent regions are het-

erogeneous. Image segmentation can be converted into a clustering

problem, the key issue of which is feature selection. An image

has features such as texture, colour and shape, which can be se-

lected as input data for clustering. Clustering algorithms such as

K-means, Fuzzy C-means (FCM), EM and spectral clustering have

been widely applied in image segmentation [151–157].

The most straightforward application of clustering algorithms is
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colour quantisation, which is considered as the simplest colour im-

age segmentation approach using cluster analysis. When the input

data set is the colour space of an image, clustering points in three-

dimensional space are treated as standard colour quantisation. Af-

ter the clusters have been located, typically the points in each cluster

are averaged to obtain the representative colour to which colours of

all pixels in that cluster are mapped. However, the result is closer

to real “segments” if the spatial connectivity of pixels is combined

with colour quantisation.

There exist segmentation methods considering clustering meth-

ods and spatial connectivity in the neighborhood of each pixel si-

multaneously. Spatial information is incorporated into the mem-

bership function for clustering in Fuzzy C-means [158]. A fast gen-

eralized fuzzy c-means (FGFCM) clustering algorithm is proposed in

citeFGFCM by incorporating local spatial and gray information to-

gether. Taking into account the inherent spatial relationships of

pixels, spatial constraints for K-means is introduced in [159] to suc-

ceed in finding an accurate segmentation. A segmentation method

is proposed in [160] based on a fusion of several segmentation maps

from K-means clustering on an input image expressed in different

color spaces. A Bayesian model is proposed in [161] for image seg-

mentation based upon Gaussian mixture model (GMM) with spatial

smoothness constraints.

Considering that the spatial connectivity is applied after fea-

ture clustering, a method called JSEG [156] has been designed

for colour-texture image segmentation. Clustering methods are ap-

plied to obtain class maps from the original colour image, which

can be viewed as a set of spatial data points located on a 2D plane

(Figure. 5.1). The value of each point is the image pixel position, a

2-D vector (x, y). Spatial smoothness between pixels is enforced on

class maps obtained from clustering methods.

To evaluate the difference of pixels, J value (see Eq. 5.3) is calcu-

lated based on between-class and within-class distance information

over a local window (e.g., 9× 9 pixels) of a class map. Suppose that

X represents the pixels in the local window and X is classified into
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clustering
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Color Quantization
class map

J-image

Region
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Region
Merge

original image

Spatial segmentation

human segments

Evaluation
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Figure 5.1: Schematic of the clustering methods applied in image segmentation algorithm

JSEG.

M classes ci, i = 1, ..., M. Let X stand for the mean of the pixels in

the local window.

ST = ∑
x∈X

∥

∥x− X
∥

∥

2
(5.1)

Sw =
M

∑
i=1

∑
x∈ci

‖x− ci‖2 (5.2)

J = (ST − Sw)/Sw (5.3)

The J-image is a grey-scale image whose pixel values represent

the J values calculated over local windows centered on these pix-

els. The image reflects the texture information. With small local

windows, the J-image is useful in localizing the edges, while it is

useful for detecting texture boundaries with large windows. A spa-

tial segmentation algorithm by region growing is then performed

on the J-images.
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5.2 CLUSTER VALIDITY IN IMAGE SEGMENTATION

The evaluation of the quality of image segmentation [162–165] is

important when comparing different segmentation methods. In

most cases, segmentation acquired by dividing an image into salient

regions is objective. For the evaluation of segmentation results, hu-

man interpretation is usually employed as a reference. A generic

framework for evaluation of segmentation is introduced in [162].

A measure of similarity, the normalised probabilistic Rand index, is

used for quantitative comparison between image segmentation al-

gorithms using a hand-labelled set of ground-truth segmentations

in [163]. In this index, the original Rand index is extended by com-

bining multiple ground-truth segmentations of an image. A survey

of unsupervised evaluation methods is given in [164].

Determining the number of clusters has been discussed as find-

ing the number of segments [166–168]. One of the criteria for a

good segmentation is that regions should be uniform and homoge-

neous with respect to certain characteristics. Internal indexes such

as the sum-of-squares-based index can be applied for evaluation

of unsupervised image segmentation, while model selection crite-

ria such as Akaike’s information criterion (AIC) [167] and Minimum

Description Length (MDL) have also been applied for evaluation of

image segmentation when model-based clustering is used.

We used the evaluation method proposed in [P4] and the BIC

on EM result to determine the number of clusters, see Fig. 5.2 for

results with K-means, EM and FCM. The best number of clusters in

this case is three for the method employed in [P4], while it is seven

or eight for the BIC on the EM algorithm. The choice between these

numbers of segments is therefore subjective and expert information

should therefore be involved.

External indexes can be used for evaluation of image segmen-

tation. Usually, human segmentation is required to compare the

results of different segmentation algorithms. We tested a number

of EM variants in image segmentation in Fig. 5.3. It is difficult to

tell the difference between the segmentations from the EM variants
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Figure 5.2: Evaluation results for the proposed method in [P4] (left) and BIC (right) for

an image; The image in the YUV colour space and image segmentations to three clusters

by KM, EM and FCM.

Table 5.1: Evaluation by external indexes on the segmentations by EM variants with a

human-segmented result. Value 1 indicates they are completely matched. The segmen-

tation by RSEM is the closest to the human segmentation and REM generates the most

different segmentation.

RI ARI Jac FM

REM 0.76 0.35 0.29 0.52

SMEM 0.78 0.37 0.31 0.54

RSEM 0.82 0.44 0.36 0.59

SEM 0.79 0.38 0.32 0.54

GEM 0.82 0.44 0.36 0.58

and the human segmentation directly from the images. With the

external indexes such as the Rand Index (RI), adjusted Rand In-

dex (ARI), Jaccard coefficient (Jac) and Fowlkes and Mallows index

(FM), it is more straightforward to see the difference (see Table 5.1).

The higher the index values are, the more agreement the two seg-
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mentations share. Thus, the segmentations from RSEM and GEM

are closer to the human segmentation.

(a) human segmented image (b) RSEM

(c) REM (d) SMEM

(e) SEM (f) GEM

Figure 5.3: Image segmentation results of different EM variants on image flower. For the

pistil area, SEM and SMEM have over segmentation. REM has less segments on the non-

flower area than the others. RSEM and GEM get closer segments as human segmented

result.
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6 Summary of Contributions

In this chapter, we summarise the contribution of the original pub-

lications [P1–P7]. The work can be separated into two research top-

ics: cluster validity [P1–P4] and the clustering algorithm [P5–P7].

[P1]: An angle-based knee point detection method for Bayesian

Information Criterion (BIC) is proposed. The BIC was originally

used in model-based clustering with a Guassian mixture model.

The first decisive local maximum value is considered to give the

number of clusters, although the first decisive maxima is subjective.

We reformulate the BIC for determining the number of clusters in

partition-based clustering. The angle-based method includes infor-

mation on the angles of BIC curve at the local maxima, which gives

more reliable results than just considering the first maxima on the

number of clusters. It provides better results than the original BIC

for six out of 17 data sets while keeping the same result for eight

out of 17 in terms of the percentage of the correctly determined

number of clusters (see Table 7.1, 7.2 and 7.3).

[P2]: This work introduces another knee point detection method

for BIC, which takes advantage of the information on the original

BIC and the number of clusters. It provides better results than the

original BIC for seven out of 17 data sets and maintains the same

result for 10 data sets (see Table 7.1, 7.2 and 7.3). Knee point detec-

tion methods on the BIC can provide a useful guide for using the

BIC in determining the number of clusters. The methods serve also

as a reference to other validity indexes.

[P3]: A new sum-of-squares based validity index is proposed

in this publication. The proposed WB-index takes the minimum

value of the index as the determined number of clusters. The pro-

posed index avoids the problem of knee point detection, which ex-

ists in some of the sum-of-squares based indexes. It detects the cor-

rect number of clusters for eight out of 17 data sets and provides

the most correctly determined number of clusters among sum-of-
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squares indexes in Table 7.1, 7.2 and 7.3. Besides, we also provide

a variability and certainty analysis on the index, where quantile

range and resampling method are used. In our test, the WB-index

was 100% stable under RS, as shown in Fig. 7.2.

[P4]: In this article, we propose a method for extending external

validity indexes for determining the number of clusters by employ-

ing a resampling method, when ground-truth information is not

available. The method is applicable to both soft and hard cluster-

ings and was verified through 10 correctly determined numbers of

clusters in 17 real and artificial data sets in Table 7.1, 7.2 and 7.3.

The proposed method is not affected significantly by the choice of

the clustering algorithm and the structure of data sets.

[P5]: There is scant research on cluster-level validity indexes,

so we propose a new index called the centroid ratio, which can

be used to detect unstably or incorrectly located centroids. The

time complexity of the index is O(M2), which is less than that of

other known validity indexes. A pairwise random swap clustering

approach employing the centroid ratio is also proposed. The algo-

rithm is compared to random swap, deterministic random swap, re-

peated K-means and K-means++ and the new approach is the most

efficient method in these comparisons. Moreover, it is not necessary

to set any parameters in pairwise random swap clustering.

[P6]: The expectation maximisation (EM) algorithm is studied

and an improved variant called the random swap EM (RSEM) is

introduced. RSEM is based on the random swap strategy (addition

and removal) of components to overcome the initialisation problem

of EM. Random swaps of components are repeatedly performed,

which can break the stuck configuration of parameters. The pro-

posed method was in our tests 9–63% faster compared to the re-

peated EM, and 20–83% faster than the split and merge EM.

[P7]: In this publication, the RSEM in [P6] is used for the pa-

rameter estimation of GMMs. When tested with synthetic data, the

parameters estimated by RSEM were closer to those from the EM

and SMEM. The results were also verified in colour image segmen-

tation.
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7 Summary of Results

The data sets1 in the experiment includes shaped, Gaussian-like

and real data. Internal indexes, pairwise random swap clustering

and RSEM, and other EM variants are implemented in C and C++,

the knee point detection methods on the BIC, the method in [P4]

and image segmentation JSEG are implemented using MATLAB.

The program codes can be found in supplementary materials2.

The validity indexes are tested with K-means and RS with rep-

etitions. The results are studied for the performance of the in-

dexes with different clustering algorithms using both artificial and

real data, and Mmin = 2 and Mmax =
√

N. The values of 15 in-

dexes are computed for all clusters for values of M in [Mmin, Mmax].

The determined number of clusters corresponds to the minimum

(Krzanowski-Lai, Xu, Wb, DBI, Xie-Beni, ABIC and External) or

maximum value (Calinski-Harabsz, Dunn, SC, SCI and DiffBIC) of

the indexes. For some of the indexes (Ball&Hall, Hartigan and BIC),

the minimum or maximum value of the second successive differ-

ence is used as a knee point detection method.

We plot the performance of validity indexes on DBI, Xie-Beni

and the WB-index with K-means and RS. As shown in Fig. 7.1 and

Fig. 7.2, the validity indexes with K-means rarely achieve the correct

number of clusters. However, there are clear minima for indexes

with RS. Furthermore, the indexes have higher variance with K-

means than RS, so it is necessary to choose a stable algorithm in

cluster validity. Indexes using the min or max function such as DBI

and Xie-Beni have high variance among 100 repetitions. On the

other hand, sum-of-squares indexes such as the WB-index are more

stable.

The numbers in the tables (Table. 7.1, 7.2 and 7.3) show the per-

centage of the correctly determined number of clusters when using

1http://cs.joensuu.fi/sipu/datasets/
2http://cs.joensuu.fi/sipu/soft/
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Figure 7.1: Validity indexes DBI, Xie-Beni and the WB-index when K-means algorithm

has been repeated 100 times on data sets S1–S4. The solid line is the mean value and the

dashed lines show the minimum and maximum values.
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Figure 7.2: Validity indexes including DBI, Xie-Beni and the WB-index when RS algo-

rithm has been repeated 100 times on data sets S1–S4. The solid line is the mean value

and the dashed lines show the minimum and maximum values.
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different validity indexes with RS. The percentages are obtained

from 100 repetitions, except for birch1 (one repetition) and External

(one for all data) [P4].

Table 7.1: Percentage of the correctly determined number of clusters for different cluster

validity indexes with RS on shaped data.

P
P

P
P

P
P

P
P

P
Index

Data
To

u
ch

in
g

p
at

h
b

as
ed

C
o

m
p

o
u

n
d

A
g

g
re

g
at

io
n

M∗ 2 3 6 7

Mmax 8 17 19 28

Ball& Hall 0 0 3 0

Calinski-Harabsz 50 0 0 0

Hartigan 0 100 0 0

Krzanowski-Lai 50 0 0 0

Xu-index 0 0 0 0

WB-index [P3] 0 0 0 0

Dunn 6 0 0 1

DBI 99 100 0 0

SC 100 100 0 0

SCI 0 100 0 0

Xie-Beni 36 66 0 0

BIC 0 100 0 0

ABIC [P1] 0 20 11 0

DiffBIC [P2] 0 100 0 0

External [P4] 1 1 0 0

For unbalanced and shaped data (e.g., Aggregation), as well as

for data with densities (e.g., Compound), almost all of the indexes

fail (see in Table 7.1. It is interesting to view the performance of

the indexes for these data sets through the lens of density-based

clustering or spectral clustering instead of RS, which can be stud-
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ied in future. DBI and SC work very well for both Touching and

pathbased functions. As seen in Table. 7.1, the number of clusters is

correctly determined in all cases by SC and DBI for data pathbased.

Table 7.2: Percentage of the correctly determined number of clusters for different cluster

validity indexes with RS on Gaussian-like data.

P
P

P
P

P
P

P
P

P
Index

Data
R

15

D
31

S
1

S
2

S
3

S
4

b
ir

ch
1

M∗ 15 31 15 15 15 15 100

Mmax 24 56 70 70 70 70 316

Ball& Hall 66 0 100 0 0 0 0

Calinski-Harabsz 52 44 100 100 0 1 0

Hartigan 41 2 100 18 0 0 0

Krzanowski-Lai 67 5 14 0 0 0 0

Xu-index 80 60 100 100 100 94 0

WB-index [P3] 80 60 100 100 100 96 0

Dunn 0 21 77 74 1 5 0

DBI 53 45 98 71 24 6 0

SC 85 61 100 100 100 90 0

SCI 15 61 100 100 93 0 0

Xie-Beni 62 59 100 87 37 1 0

BIC 0 6 100 1 0 0 0

ABIC [P1] 13 51 96 92 73 5 0

DiffBIC [P2] 15 59 100 100 100 9 0

External [P4] 1 1 0 1 1 1 0

The performance of indexes on Gaussian-like data is much bet-

ter than that on shaped data (see Table 7.2). For large data sets

such as birch1, most of the validity indexes produce cluster num-

bers close to 100; however, none of them gives exactly 100 as the

number of clusters. Among the sum-of-squares indexes, Xu and

the WB-index have similar performances. For highly overlapped
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data such as S4, the Xu and WB indexes and SC have good perfor-

mance in comparison to other indexes. Since ABIC and DiffBIC are

improved versions of the original BIC, they outperform the original

BIC in general.

For real data, the indexes give more diverse results; their per-

formance depends strongly on the data set. For instance, the WB-

index is the only index working for Iris, but it does not work for

wine, control, image and yeast see Table 7.3. DiffBIC outperformed

the original BIC and ABIC in these tests.

Table 7.3: Percentage of the correctly determined number of clusters for different cluster

validity indexes with RS on real data.

P
P

P
P

P
P

P
P

P
Index

Data

Ir
is

W
in

e

C
o

n
tr

o
l

Im
ag

e

W
d

b
c

Y
ea

st

M∗ 3 3 6 7 2 10

Mmax 12 13 24 48 23 38

Ball& Hall 0 0 10 0 0 0

Calinski-Harabsz 0 0 0 0 100 0

Hartigan 0 100 0 0 0 0

Krzanowski-Lai 0 42 0 0 100 0

Xu-index 0 0 0 0 0 0

WB-index [P3] 100 0 0 0 100 0

Dunn 0 0 0 0 0 0

DBI 0 0 0 0 100 0

SC 0 0 0 0 100 0

SCI 0 0 0 0 98 0

Xie-Beni 0 0 100 0 100 0

BIC 0 0 0 0 100 0

ABIC [P1] 0 0 0 0 0 0

DiffBIC [P2] 0 100 100 0 100 0

External [P4] 1 1 0 0 1 0

The GMMs obtained from EM variants on data S2 and R15 are
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shown in Fig. 7.3 and Fig. 7.4. The median and best GMMs of 20

repetitions in terms of log-likelihood value are compared among

the EM variants.

RSEM:−26.43

SMEM:−26.54

REM:−26.52 REM:−26.44

SMEM:−26.42

RSEM:−26.42

Figure 7.3: GMMs on data S2 estimated by EM variants of REM, SMEM and RSEM.

The GMMs with median log-likelihood value from 20 repetitions are in the first column

and the GMMs with the best log-likelihood value are in the second column.
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REM:−6.37REM:−6.42

SMEM:−6.53

RSEM:−6.37

SMEM:−6.33

RSEM:−6.33

Figure 7.4: GMMs on data R15 estimated by EM variants of REM, SMEM and RSEM.

The GMMs with median log-likelihood value from 20 repetitions are in the first column

and the GMMs with the best log-likelihood value are in the second column.
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8 Conclusions

In this thesis, we have studied cluster validity measures for evalu-

ating the quality of clustering and determining the number of clus-

ters. Clustering algorithms, especially swap-based clustering and

the EM algorithm, have been studied in depth. The initialisation

problem of EM for GMM estimation is focused.

The cluster validity is an important issue in cluster analysis, as

evaluating different clustering algorithms helps the user to gain a

better understanding on the properties and efficiency on different

algorithms. Meanwhile, determining the number of clusters can-

not be avoided in cluster methods. Furthermore, according to the

study on existing internal and external validity indexes, there is no

perfect, generic index suitable for every type of data, so finding

the best index among the existing ones, and proposing a general

validity index, is our goal.

In our practical tests, sum-of-squares-based indexes worked well

for Gaussian-type data, although most of them were not capable

of providing a global minimum or maximum point for the correct

number of clusters. As such, two knee point detection methods

were designed. The methods proposed for the BIC can be gener-

alized to other validity indexes as well, and as a sum-of-squares

based index, the WB-index used the minimum value as the optimal

number of clusters. Consequently, it showed the best performance

among sum-of-squares based indexes in our study. The extension

of external indexes for determining the number of clusters by using

the resampling method is less sensitive to the shape of data and

it works with different dataset types. As a drawback, the method

exhibits high time complexity, and so a more efficient design is

needed. We found the results of the indexes are more stable for RS

than for K-means, so this indicates that the performance of valid-

ity indexes is affected by the choice of clustering algorithms. Also,

the sum-of-squares indexes (e.g., WB-index) are more stable than
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indexes employing min-max functions (e.g., DBI). Finally, a validity

index based on centroids only is rarely considered. The centroid ra-

tio for two sets of centroids was proposed to evaluate the clustering

globally, but its application remains a topic of future work. Based

on the results of the study, a more general validity index, which

relies less on the kind of input data and clustering algorithms, is

highly preferred.

Cluster validity indexes were applied in image segmentation to

determine the number of segments and to evaluate segmentation

results. Other applications, for example validity indexes in short

text clustering, can be considered in the future work, too.

Cluster validity depends strongly on clustering algorithms. For

this reason we studied clustering algorithms in this thesis. Our

main focus was on partition-based and model-based clustering al-

gorithms. Pairwise random swap clustering is a swap-based al-

gorithm, which employs the centroid ratio for selecting swapping

candidates. The algorithm required 26% to 96% less processing

time than the random swap, deterministic random swap, repeated

K-means and K-means++ algorithms.

The EM algorithm is an iterative method for parameter estima-

tion of Gaussian mixture models (GMM). A random swap EM algo-

rithm (RSEM) was proposed in order to dispose of the tendency of

the standard EM algorithm to get stuck in local maxima. Compar-

ing the RSEM to the repeated EM, which is the conventional way

to solve the same the problem, RSEM reaches higher or comparable

levels of log-likelihood and is 9-63% faster, which was proved by a

bound derived from our formulas. RSEM is also easier to imple-

ment and more efficient (20-83% faster) than SMEM. Determining

the number of components for GMMs in EM variants is a problem

and it should be studied further.
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[39] P. Fränti and O. Virmajoki, “On the efficiency of swap-based

clustering,” Int. Conf. on Adaptive and Natural Computing Algo-

rithms (ICANNGA’09) 303-312 (2009).

74 Dissertations in Forestry and Natural Sciences No 77



Bibliography

[40] C. Bishop, Pattern Recognition and Machine Learning (Springer

Verlag, 2006).

[41] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood

from incomplete data via the EM algorithm,” Journal of Royal

Statistical Society B 39, 1–38 (1977).

[42] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Section

16.1. Gaussian Mixture Models and k-Means Clustering, Numeri-

cal Recipes: The Art of Scientific Computing (3rd ed.) (New York:

Cambridge University Press. ISBN 978-0-521-88068-8, 2007).

[43] G. Biernacki, C. Celeux, and G. Govaert, “Choosing start-

ing values for the EM algorithm for getting the highest like-

lihood in multivariate Gaussian mixture models,” Computa-

tional Statistics and Data Analysis 41, 561–575 (2003).

[44] D. Karlis and E. Xekalaki, “Choosing initial values for the

EM algorithm for finite mixtures,” Computational Statistics and

Data Analysis 41, 577–590 (2003).

[45] N. Udea, R. Nakano, Z. Gharhamani, and G. Hinton, “SMEM

algorithm for mixture models,” Neural Computation 12, 2109–

2128 (2000).

[46] Z. Zhang, C. Chen, J. Sun, and K. Chan, “EM algorithms for

Gaussian mixtures with split-and-merge operation,” Pattern

Recognition 36, 1973–1983 (2003).

[47] J. Verbeek, N. Vlassis, and B. Krose, “Efficient greedy learning

of Gaussian mixture models,” Neural Computation 15, 469–485

(2003).

[48] A. Minagawa, N. Tagawa, and T. Tanaka, “SMEM algorithm is

not fully compatible with Maximum-Likelihood Framework,”

Neural Computation 14, 1261–1266 (2002).

[49] G. Wei and M. Tanner, “A Monte Carlo Implementation of

the EM algorithm and the poor man’s data augmentation

Dissertations in Forestry and Natural Sciences No 77 75



Qinpei Zhao: Cluster Validity in Clustering Methods

algorithms,” Journal of the American Statistical Association 85,

699–704 (1990).

[50] S. Richardson and P. J. Green, “On Bayesian analysis of mix-

tures with an unknown number of components,” Journal of

the Royal Statistical Society 59, 731–792 (2002).

[51] G. Celeux, D. Chauveau, and J. Diebolt, “On stochastic ver-

sions of the EM algorithm,” Techniqual report no.2514 (1995).

[52] G. Celeux, D. Chauveau, and J. Diebolt, “Stochastic versions

of the EM algorithm: An experimental study in the mixture

case,” Journal of statistical computation and simulation 55, 287–

314 (1996).

[53] N. Ueda and R. Nakano, “Deterministic annealing EM algo-

rithm,” Neural Networks 11, 271–282 (1998).

[54] C. Wu, “On the convergence properties of the EM algorithm,”

The Annals of Statistics 11, 95–103 (1983).

[55] G. Celeux and J. Diebolt, “The SEM algorithm: a probabilis-

tic teacher algorithm derived from the EM algorithm for the

mixture problem,” Computational Statistics Quaterly 2, 73–82

(1985).

[56] S. B. Chad, C. Carson, H. Greenspan, and J. Malik, “Color-

and Texture-Based image segmentation using EM and its ap-

plication to content-based image retrieval,” Proc. of the Sixth

Int. Conf. on Computer Vision 675-682 (1998).

[57] S. Huda, J. Yearwood, and R. Togneri, “A stochastic version of

Expectation Maximization algorithm for better estimation of

Hidden Markov Model,” Pattern Recognition Letters 30, 1301–

1309 (2009).

[58] Z. Zhang and B. T. D. A. K. Tung, “Estimating local optimums

in EM algorithm over Gaussian Mixture Model,” Proc. of the

25th Int. Conf. on Machine Learning 1240-1247 (2008).

76 Dissertations in Forestry and Natural Sciences No 77



Bibliography

[59] S. F. Nielsen, “The stochastic EM algorithm: estimation and

asymptotic results,” Bernoulli 6, 457–489 (2000).

[60] B. Zhang, C. Zhang, and X. Yi, “Competitive EM algorithm

for finite mixture models,” Pattern Recognition 37, 131–144

(2004).
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Abstract. Bayesian Information Criterion (BIC) is a promising method for de-
tecting the number of clusters. It is often used in model-based clustering in 
which a decisive first local maximum is detected as the number of clusters. In 
this paper, we re-formulate the BIC in partitioning based clustering algorithm, 
and propose a new knee point finding method based on it. Experimental results 
show that the proposed method detects the correct number of clusters more 
robustly and accurately than the original BIC and performs well in comparison 
to several other cluster validity indices.  

1   Introduction 

Cluster analysis is to group a collection of patterns, which is usually represented as a 
vector of measurements or a point in a multidimensional space, into clusters accord-
ing to a clustering similarity function or a clustering validity index. The output of 
clustering over the same dataset could be very different if the input parameters for 
clustering vary. This is due to the fact that variation of clustering parameters has 
changed the behaviour and the execution of clustering substantially. An essential 
input parameter for clustering is the number of clusters that best fits a given dataset. 
Thus, a common question arising before clustering is how many clusters are present 
in a given dataset. Moreover, most clustering algorithms face several common issues 
in execution of clustering: if different partitions are obtained for a given dataset, then 
amongst the resulting partitions, which one is the most suitable or optimal one. 

A number of measures have been well developed for this problem in literature  
[1-12]. Milligan and Cooper [1] have provided a comparison of thirty validity indices 
for data sets by using only hierarchical clustering algorithms. Dimitriadou et al [2] 
present another comparison of fifteen validity indices for binary data sets. Based on a 
typical definition of clusters where the points within the same cluster are close to each 
other while the clusters themselves are far from each other, several measures have 
been proposed. Calinski and Harabasz [3] proposed the F-statistic method, which 
takes advantage of within-cluster variance and between-cluster variance. Dunn’s 
index [4] considered both the diameter of each cluster and the distance between clus-
ters. As the diameter will be severely affected by noise, the Dunn’s index may not 
perform very well as a cluster validity index. This issue has been addressed in [5]. 
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Davies-Bouldin index [6] is another well known index which is based on the idea that 
inter cluster separation as well as intra cluster homogeneity and compactness should 
be high for a good partition.  

Because different kinds of clustering algorithms often have different properties, 
different types of measures based on specific clustering algorithms have been pro-
posed. For example, Xie-Beni index [7] was originally proposed to identify separation 
for fuzzy c-partitions. It depends on the data set, geometric distance measure, distance 
between cluster centroids, and more importantly on the fuzzy partition generated by 
any fuzzy algorithm. When dealing with model-based clustering, Banfield and 
Raftery used a heuristically derived approximation to twice the log Bayes factor [8] 
called the “AWE” to determine the number of clusters in hierarchical clustering based 
on the classification likelihood. When EM is used to find the maximum mixture like-
lihood, a more reliable approximation to AWE called Bayesian Information Criterion 
(BIC) [9] is applicable. A new K-means based algorithm incorporating model selec-
tion was proposed in [10]. This so-called X-means algorithm uses BIC to make local 
decisions that maximize the posterior probabilities of the model under the assumption 
that the models are spherical Gaussians. Because of the effectiveness of BIC in 
model-based clustering, we re-formulate BIC to determine the number of clusters in 
partitioning based clustering. 

Some of the indices can be easily used to determine the number of clusters by find-
ing the minimal or maximal value, but several of them cannot. A criterion with 
within-group sum-of-squares objective function trace (W) was proposed by 
Krzanowski [11], in which the plot of index value against number of clusters was 
monotonically decreasing. They considered using the successive difference of the 
function to find the optimum value. Yet, in the visual “number of clusters vs. criterion 
metric” graph, a clear knee point (or jump point) is often used to detect the number of 
clusters, see Fig.1. In principle, the problem of finding the knee point can be attacked 
by successive difference method. But the successive difference method only considers 
some adjacent points and local trend of the graph which may lead to incorrect results. 
We therefore propose to measure the knee point based on the angles of the local sig-
nificant changes in the successive difference results, and demonstrate that by this 
method, the performance of the BIC method can be improved.  

The rest of the paper is organized as follows. The problem formulation is given in 
Section 2.1. The BIC method in partitioning based clustering is renewed in Section 
2.2 and the angle-based method is introduced in Section 2.3. The proposed method is 
compared to several existing methods in Section 3. The results show that the proposed 
knee point finding method improves the original BIC method, which takes the first 
local minimum as the number of clusters and outperforms most of the existing method 
on the data sets tested. Conclusions are drawn in Section 4. 

2   Proposed Method 

We proposed a knee point finding method for BIC in partitioning based clustering, 
which is called angle-based method. The next section describes the proposed method. 
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2.1   Preliminary 

The problem of determining the number of clusters is defined as follows: 
Given a fixed number of clusters m≥2, and a specific clustering algorithm, find the 

clustering that best fits for the data set with different parameters. The procedure of 
identifying the best clustering scheme involves the following parts:  

• Select a proper cluster validity index. 
• Repeat a clustering algorithm successively for number of clusters, m from a 

predefined minimum to a predefined maximum. 
• Plot the “number of clusters vs. criterion metric” graph and select the m at 

which the partition appears to be “best” when the criterion is optimized. 

Based on this procedure, one can identify the best clustering scheme. However, the 
problem of selecting the optimal m for the validity index remains. Mean square error 
(MSE), for example, exhibits a decrease with respect to m increasing. Meanwhile, 
some indexes show the maximum or minimum in the curve. No matter what kind of 
case we have, there exists the significant local change in the curve called the knee or 
jump point.  

Locating the knee point in the validity index curve is not well-studied. A straight-
forward approach is to take the difference of successive index values, for example, 
calculating the difference between previous and current values of the index. The 
method like L-method [12] is proposed to find the knee point of the curve by the 
boundary between the pair of straight lines that most closely fit the curve. For some 
indexes, the maximum or minimum value will be considered as the knee point. How-
ever, if there are several local maximum (minimum) values existing, the challenge is 
to decide which one is the most suitable one to indicate the information of the data 
sets. According to our study, BIC indicates a good prospect in determining the num-
ber of clusters in partitioning based clustering. To improve the accuracy of BIC, a 
good knee point finding method instead of taking the first local maximum is needed.  

2.2   Bayesian Information Criterion (BIC) 

The Bayesian Information Criterion (BIC) has been successfully applied to the prob-
lem of determining the number of components in model-based clustering by Banfield 
and Raftery. The problems of determining the number of clusters and the clustering 
method are solved simultaneously.  

We derive the formula of BIC based on Kass and Wasserman [13]. 

1
( ) log

2
BIC L m nθ= −  (1) 

Where L(θ) is the log-likelihood function according to each model, m is the number of 
clusters and n is the size of the data set. Under the identical spherical Gaussian as-
sumption, the maximum likelihood estimate for the variance of the ith cluster is: 
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Where ni is the size of each cluster, xj is the jth point in the cluster and Ci is the ith 
cluster. For m clusters, the sum of log-likelihood of each cluster is as follows. 

1

( ) ( )
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i
i

L Lθ θ
=

=∑  (3) 

Define pr(xi) as the probability of the ith point in data sets, and Cp(i) is the cluster 
corresponding to the partitioning. The variable d is the dimension of the data sets. 
Then, log-likelihood of the ith cluster can be derived as follows: 
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To extend the log-likelihood of each cluster to all of the clusters, we use the fact 
that the log-likelihood of the points that belong to every cluster is the sum of the log-
likelihood of the individual ones. So the total log-likelihood will be: 

1

* 1
( log log log(2 ) log ) log
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We use this BIC formula globally for each number of clusters in a predefined 
range. In general, m should be as small as possible according to [9]. Their strategy for 
the number of clusters is that a decisive first local maximum indicates strong evidence 
for the model size. However, according to our experiments, a good knee point detec-
tion method would be a better choice for deciding which local maximum has stronger 
evidence for the correct number of clusters. 

2.3   Angle-Based Method 

Some existing validity indices indicate the structure of data sets very well and con-
tribute a lot to the problem. However, we can not directly obtain the correct number 
of clusters from these indices when they decrease or increase monotonously or only 
have some significant local changes. In this case, the structure of the dataset can be 
revealed by using a good knee point detection method. One efficient way is to calcu-
late the difference between previous and afterward index values. There will be peaks 
at the points with significant local changes in the difference curve. It is also possible 
to consider more points of the curve in successive difference. 

DiffFun(m) = F(m-1) + F(m+1) – 2*F(m) (6) 
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Where DiffFun is the difference function, F(m) is the index value and m is the current 
number of clusters. It takes use of the previous, afterward and current values 
simultaneously. The disadvantage of the successive difference method is that it only 
considers several points instead of the whole curve allowing the index to find only 
local changes without a global perspective. If there are several local changes, then it 
may give a wrong result.  

Fig. 1. Number of clusters vs. criterion metric graph of BIC on four datasets (s1-s4) (left), and 
successive difference (right)  

In Fig.1, the calculated BIC values are plotted using four data sets with different 
degrees of cluster overlapping. There are at least two obvious jumps in each curve. 
The first decisive local maximum is usually considered to be the number of clusters 
in the original BIC. The successive difference graph also gives strong support on 
this rule. The problem is that the second local change (m=15) in the BIC curve also 
indicates strong evidence on the number of clusters in a global view. To decide 
which one is the optimal number, we take use of the angle property of a curve and 
propose an angle-based method to define and locate the optimal local knee (jump) 
in a graph of BIC.  

Given a function F(m) of BIC where m is in the range [min, max]. Calculate the 
successive difference in terms of formula (6) to get the function difference DiffFun 
and detect n local significant changes by finding the first n minimum values in 
DiffFun. Here n ≤ m/2-1 because at least 2 points can generate 1 trough. Sort the local 
minimum values in a decreasing order. Start from the points with bigger troughs; 
calculate the angle of those points by (7).  

Angle = atan(1/|F(m)-F(m-1)|)+atan(1/|F(m+1)-F(m)| (7) 

As in Fig.2 shows, the procedure will stop when the first maxima angle appears, 
which indicates the trend of the curve globally because it makes use of both the suc-
cessive difference and angle property. 
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Angle-based Method on Knee Point Detecting Problem 
  
Input:    Graph(m)  (m[min, max]) 
Output:  Number of clusters m 
Initialize:  
    Current_Value = Graph(min); 
    Previous_Value = Graph(min); 
    After_Value = Graph(min); 
Begin:    
for m = min to max 
    Current_Value = Graph(m); 
    After_Value = Graph(m+1); 
    DiffFunc = Previous_Value + After_Value - 2*Current_Value; 
    Previous_Value = Current_Value; 
end 
Find first n local minimas in DiffFunc 
LocalMin[n] = (m, Current_Value, Previous_Value, After_Value); 
for each n with decreasing order of LocalMin value, 
    angle[n] = AngleCalc(Current_Value, Previous_Value, After_Value); 
    Stop when the first maxima among the angles appear.  
end 
return m with the first maxima angle; 

Fig. 2. Pseudo-code of the angle-based method on knee point detecting problem 

3   Experimental Results 

Here we use four two-dimensional artificially generated data sets denoted as s1 to s4 and 
one four-dimensional real data set Iris (Fig.3). The data sets s1 to s4 are generated with 
varying complexity in terms of spatial data distributions, which have 5000 vectors scat-
tered around 15 predefined clusters with a varying degrees of overlapping. Iris is obtained 
from the UCI Machine Learning Repository. It contains 3 classes of 50 instances each, 
where each class refers to a type of iris plant. The data sets can be found at: 

• s1-s4: cs.joensuu.fi/~isido/clustering/ 
• Iris: www.ics.uci.edu/~mlearn/MLRepository.html 

As the measures have to be tested on a certain clustering algorithm, we run K-
means and Randomize Local Search (RLS) [14] clustering with m= [2, 30] in the case 
 

s1 s2 s3 s4 Iris  

Fig. 3. The two dimensional visual of data sets: s1-s4 and Iris used for testing 
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of s1-s4, and m= [2, 10] in the case of Iris. To emphasize the effectiveness of the 
proposed method, we compare it with other measures:  

• Dunn's index (DI) + maximum 
• Davies-Bouldin's Index (DBI) + minimum 
• Xie-Beni (XB) + minimum 
• Bayesian Information Criterion (BIC) + first local maximum 
• Angle-based BIC (ABIC).  

Among them, DI, DBI and XB select the number of clusters either as the minimum 
or maximum value of the measure. We also report the results of the original BIC 
using the first local maximum as the number of clusters, and the proposed method. 

Table 1. Detected number of clusters (m) of different cluster validity indices using RLS 
clustering algorithm (with 5000 RLS iterations and 2 K-means iterations) 

Data Set  
Index s1 s2 s3 s4 Iris 

DI 15 7 16 25 2 
DBI 15 15 8 13 2 
XB 15 15 4 13 2 
BIC 15 4 4 5 3 

ABIC 15 15 15 15 3 

Table 2. Detected number of clusters (m) of different cluster validity indices using K-means 
clustering algorithm (20 iterations) 

Data Set  
Index s1 s2 s3 s4 Iris 

DI 2 2 2 2 2 

DBI 15 15 11 16 2 

XB 15 15 4 13 2 

BIC 15 4 4 5 3 

ABIC 15 15 15 15 3 

In Table 1 and Table 2, we list the number of clusters found by different measures, 
data sets and clustering algorithms. Fig.4 visualizes the results for the other four 
measures with RLS and K-means clustering algorithms respectively. In Fig.5, we 
show the result of each step in our method with data sets s4 and Iris.  

• DI gives clear maximum for the easiest data set (s1) but fails with more chal-
lenging ones. When K-means is applied with 20 iterations, it fails completely 
even with s1. 

• DBI finds the correct minimum for s1 and s2, but the results for s3 and s4 
indicate minimum somewhere around 10 and 15, resulting to uncorrected 
number of clusters (8, 13 and 2).  
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• XB takes the minimum as the number of clusters, which is clearly visible in 
the case of the easiest data set (s1). A correct result is also found for s2, but 
again, the index fails with the more demanding sets (s3, s4 and Iris). 

• The original BIC, which considers the first decisive local maximum as the 
number of cluster gets the correct number only for s1 and Iris.  

• The proposed ABIC provides accurate results in all cases. 

Fig. 4. Comparison of the other four measures on datasets s1 to s4 with two clustering algo-
rithms: RLS clustering (left column) and K-means clustering (right column) 
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Fig. 4. (continued) 

  

  

Fig. 5. Steps of the angle-based method on data sets s4 and Iris; BIC curve (left), the successive 
difference of BIC (middle) and the angles of the local significant changes (right). 

4   Conclusions 

We re-formulate BIC in partitioning based clustering, which shows a good prospect 
for determining the number of clusters. The original method to decide the knee point 
of BIC is to take the first decisive local maximum, which is not accurate enough ac-
cording to our experiments. To improve the BIC for getting more reliable results, an 
angle-based method for knee point finding of BIC is proposed in this paper. As the  
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proposed method makes use of the global trend of the index curve, it is reliable to get 
the number of clusters. Experimental results also prove its effectiveness compared 
with other measures.  
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Abstract 
   

The main challenge of cluster analysis is that the 
number of clusters or the number of model parameters is 
seldom known, and it must therefore be determined before 
clustering. Bayesian Information Criterion (BIC) often 
serves as a statistical criterion for model selection, which 
can also be used in solving model-based clustering 
problems, in particular for determining the number of 
clusters. Conventionally, a correct number of clusters can 
be identified as the first decisive local maximum of BIC; 
however, this is intractable due to the overtraining 
problem and inefficiency of clustering algorithms. To 
circumvent this limitation, we proposed a novel method 
for identifying the number of clusters by detecting the 
knee point of the resulting BIC curve instead. Experiments 
demonstrated that the proposed method is able to detect 
the correct number of clusters more robustly and 
accurately than the conventional approach. 
                         
1. Introduction  
  

One of the main difficulties for cluster analysis is that, 
the correct number of clusters for different types of 
datasets is seldom known in practice. However, most of 
clustering algorithms are designed only to investigate the 
inherited grouping or partition of data objects according 
to a known number of clusters. Thus, identifying the 
number of clusters is an important task for any clustering 
problem in practice albeit it must be faced with many 
operational challenges. A tractable way for cluster 
analysis is to ask the end user to input the number of 
clusters in advance, which needs the expert domain 
knowledge over the underlying datasets. On the other 
hand, many statistical criteria or clustering validity 
indices have been investigated in the sense of 
automatically selecting an appropriate number of clusters. 
Obviously, the clustering validity criteria must be 
carefully defined not only according to a presumably 
known data distribution of clusters but also to the 
specification of the input datasets. More importantly, 

those clustering validity criteria serve as a tool to measure 
the goodness of groups in clustering as well as a principle 
for selecting the “best” number of clusters meanwhile. A 
number of efforts have been made in the previous 
literatures, e.g., Milligan and Cooper [1] presented a 
comparison study over thirty validity indices for 
hierarchical clustering algorithms whereas Dimitriadou et 
al [2] conducted their comparison study over fifteen 
validity indices for the case of binary data.  

However, one class of clustering methods, model-
based clustering, has received considerable attention 
recently, in a framework of the estimation of Bayesian 
likelihood or the estimation of Bayesian parameters, e.g. 
the well-known EM algorithm. The model-based 
clustering combines both the advantage of the optimal 
model parameter estimation in model selection and the 
advantage of selecting the most appropriate number of 
mixture components [3]. In particular the mixture model 
approach allows for an approximation of Bayes factor [4] 
even if clusters are in distinctively different models. 
Thanks to Banfield and Raftery’s intuitive approximation 
of twice logarithm of Bayes factor, called “AWE”, the 
number of clusters can be identified directly according to 
the classification likelihood. The approximation of Bayes 
factor can be extended to a more general principle, 
Bayesian Information Criterion (BIC) [5-8] for the sake 
of selecting an appropriate number of model parameters 
or the number of clusters.  

In order to seek an optimal number of clusters 
particularly for a large-scale clustering problem, one 
could apply an intuitively heuristic approach instead of 
using an optimization algorithm. A remarkable example is 
that of Thorndike [9] who identified the optimal number 
of clusters such that a flattening of the clustering validity 
curve or a knee point can be observed. In contrast to 
finding the maximum or minimum of clustering validity 
index, the knee point detection algorithm is more practical 
because most of clustering validity indices are 
monotonically decreased or increased [10] with the 
number of clusters. Clearly, seeking a maximum or 
minimum is intractable. The monotony of clustering 
validity indices hinges on the fact that the likelihood of 
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the training data is undesirably improved when the 
number of clusters is increasing, which mainly results in 
overtraining problem if the number of parameters is too 
large. Of course, one could apply the successive 
difference of the clustering validity index, to seek the 
optimal number of clusters. However, most of those 
heuristic decision approaches are highly subjective or 
heuristic. For instance, the first decisive local maximum 
of BIC can be viewed as a good number of clusters but 
the resulting number of clusters is often inaccurate due to 
inefficiency of clustering optimization procedures. To 
overcome these difficulties, we propose a simple knee 
point detection algorithm for BIC in automatic detection 
of the number of clusters. The knee point detection 
algorithm is quite intuitive and heuristic since the 
clustering validity curve monotonically decreases or 
increases after the knee point. For simplicity of 
determining the number of clusters, we re-formulate BIC 
in the framework of partitioning based clustering. 

The rest of the paper is organized as follows. The 
problem formulation is given in Section 2.1. The BIC 
method in partitioning based clustering is renewed in 
Section 2.2, and the proposed method is introduced in 
Section 2.3. The experiments on the proposed method are 
presented in Section 3. The results on different kinds of 
datasets demonstrate that the proposed method improves 
the original BIC knee point detection algorithm. 
Conclusions are drawn in Section 4. 
             
2. Proposed Method 
           
2.1 Preliminary 

                               
The problem of determining the number of clusters is 

defined here as follows: 
Given a fixed number of clusters m≥2, and a specific 

clustering algorithm, find the clustering that best fits for 
the data set with different parameters. The procedure of 
identifying the best clustering scheme involves the 
following parts:  

• Select a proper cluster validity index. 
• Repeat a clustering algorithm successively for 

number of clusters, m from a predefined 
minimum to a predefined maximum. 

• Plot the “number of clusters vs. criterion 
metric” graph and select the m at which the 
partition appears to be “best” in terms of the 
optimization on the criterion. 

Based on this procedure, one can identify the best 
clustering scheme. The problem remains that how to 
select the optimal m for the validity index. Mean square 
error (MSE), for example, exhibits a decreasing monotony 
with respect to the number of clusters, m, whereas some 
clustering validity indices may embrace a local maximum 
or local minimum in the curve. Regardless of the 
monotony of the underlying clustering validity curve, in 

most cases, a significant local change could be observed 
on the curve, which is the so-called knee or jump point.  

Locating the knee point in the validity index curve has 
not been well-studied. A straightforward approach is to 
compute difference of successive index values, for 
example, calculating the difference between previous and 
current values of the index. Other method, such as L-
method [11] has been proposed to find the knee point of 
the curve by the boundary between the pair of straight 
lines that most closely fit the curve in Hierarchical / 
segmentation clustering. For some indices, the local 
maximum or minimum value will be considered as the 
knee point. However, if there are several local maximal 
(minimal) values, the challenge is to decide which one is 
the most suitable one to indicate the information of the 
data sets. According to the experimental results in our 
study, BIC indicates a good estimation in determining the 
number of clusters in partitioning based clustering. To 
improve the accuracy of BIC, a good knee point detection 
method is needed instead of taking the first local 
maximum.  
            
2.2 Bayesian Information Criterion (BIC) 
             

The Bayesian Information Criterion (BIC) has been 
successfully applied to the problem of determining the 
number of components in model-based clustering by 
Banfield and Raftery [12]. The problems of determining 
the number of clusters and the clustering problem are 
solved simultaneously.  

We derive the formula of BIC based on Kass and 
Wasserman [13].  

1( ) log
2

BIC L m nθ= −                                          (1) 

where, L(θ) is the log-likelihood function of data θ  
according to each model, m is the number of clusters and 
n is the size of the data set. Under the identical spherical 
Gaussian assumption, the maximum likelihood estimate 
for the variance of the ith cluster is:  
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where Ci represents the ith cluster or is the ith cluster 
center, ni is the size of the ith cluster and xj is the jth point 
in the cluster. For m clusters, the sum of log-likelihood of 
each cluster is as follows.  
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Suppose that pr(xj) is the probability of the jth data 
point in the data sets, and the variable d is the dimension 
of the data set. Then, log-likelihood of data belonging to 
the ith cluster can be derived as follows:  
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To extend the log-likelihood of each cluster to all of 
the clusters, the fact is applied that the log-likelihood of 
the whole data set is the sum of the log-likelihood of the 
individual cluster. Therefore the total log-likelihood will 
be: 
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We use this BIC formula globally for each number of 
clusters in a predefined range. In general, m should be as 
small as possible according to [5]. Their strategy for the 
number of clusters is that a decisive first local maximum 
indicates strong evidence for the model size. However, 
according to our experiments, a good knee point detection 
method would be a better choice for deciding which local 
maximum has the strongest evidence for the correct 
number of clusters. 
         
2.3   Knee Point Detection of BIC 
         

In this section, we analyze the drawback of knee point 
detection on BIC by using the first decisive local 
maximum as the number of clusters. Successive 
difference on BIC is also analyzed. We then propose our 
knee point detection method on BIC called DiffBIC 
method in partitioning based clustering.  

 
2.3.1 Existing Methods. There is a slight option 
difference on how to find the optimal value of BIC for 
cluster validity except the first decisive local maximum. 
However, our experimental findings indicate several local 
maximums in the BIC curve (see Fig.1) due to the fact 
that the clustering performance is highly subjective to the 
initial clustering guess or partition. Hence, the resulting 
first decisive local maximum could often be the local 
maximum approaching or very close to the initial guess. 
This can be observed in the BIC curve for dataset s3 in 
Fig.1: the first decisive local maximum is achievable at 
m=4 albeit the right number of clusters m is 15 where 
there is a more significant change of BIC (not a 
conventional knee point). The difference values of BIC 
for dataset s3 and s4 also reveal that detection of knee 
point for BIC may be faced with the same challenge as the 

first local decisive maximum. A more objective method of 
detecting the knee point of BIC curve is therefore 
demanded. 

Several alternative techniques on knee point detection 
methods have been proposed in the literature. Successive 
difference of two adjacent points is one possible way and 
it can be calculated as: SD(n) = BIC(n-1)+BIC(n+1)-
2*BIC(n); where n is the current point. However, it can 
locate the knee point only locally as it considers only 
several successive points in the curve as shown in Fig.1. 
According to the figure, we can find the highest 
differences for each dataset with successive difference at 
the points mopt(s1)=15, mopt(s2)=15, mopt(s3)=4 and 
mopt(s4)=5. The detected points offer the most significant 
changes of BIC but without taking into account of BIC 
value itself. Eventually, this method is not always reliable 
in particular when a local maximum close to the initial 
guess can be quickly obtained by clustering algorithms. 

    

 
Figure 1. The original BIC curve (up) for datasets s1 to 
s4 obtained by RLS clustering algorithm [14] and 
successive difference of BIC (down).  

2.3.2 DiffBic Function. We propose to combine both the 
information on BIC and the number of clusters m. The 
value of original BIC contains the information about the 
quality of clustering for each number of clusters. The 
knee point of BIC has to be the one that reflects this 
information overall. Two main features should be 
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satisfied i.e. the detected knee point can indicate the most 
significant change, and be as large as possible. The 
proposed method is designed based on these two features. 

Given the range of m: [mmin, mmax] where mmax>> mopt 
to contain the optimal m, obtain BIC value for each m. 
Normalize the obtained BIC value into the range of [mmin, 
mmax] to get C1. Then C1 is divided by the number of 
clusters m getting the value Cm. This is further 
normalized into the same range of [mmin, mmax] to obtain 
C2. With the normalizations, C1 and C2 are under the same 
range. BICmax and BICmin in (6) represent the maximal and 
minimal value among the BIC values. Besides, Cmmax and 
Cmmin are respectively the maximal and minimal value 
among the Cm values. 

C1 = (mmax − mmin) (BIC−BICmin)/( BICmax − BICmin) 

Cm = C1  ⁄ m 
C2 = (mmax − mmin) (Cm − Cmmin ) /(Cmmax− Cmmin)      (6) 

The value of Cm calculates the ratio between the 
normalized BIC value and the number of clusters, which 
reveals the global trend of the BIC curve as is shown in 
Fig.2. Each Cm value represents the angle α, which makes 
tan(α)=C1/m=Cm. Whenever there is a local maximum in 
the original curve, angle α will indicate a difference.  

 

 
Figure 2.  How the value of Cm (Normalized BIC value 
divided by the number of clusters) reveals the global trend. 
Normalized BIC curve (up); Result of Cm (down). 

 

We consider two cases that the original BIC curve has 
globally increasing trend (case1) or decreasing trend 
(case2). Basically, a large BIC value is preferred to be the 
optimal m. In case1, the value depends on mmax, 
meanwhile in case2, on the other side, it depends on mmin. 
In case1, C2 reaches several local maximums. When C2 
find the point that indicates the most significant change, it 
will not have an increasing trend anymore. The largest 
value of C2 is considered as the most significant change. 
Thus, the sum of C1 and C2 will be calculated to reach the 
maximum information. In the other case, the original BIC 
has a decreasing trend, which makes C2 to show a 
decreasing trend. As both of C1 and C2 are decreasing, the 
absolute subtraction of them is calculated to reach the 
most significant change. In both cases, two is divided in 
order to set the DiffBic value into the same range of C1. 

1 2

1 2

( ) / 2............. 1
| | / 2............ 2
C C case

DiffBic
C C case

+⎧
= ⎨ −⎩

                           (7)  

 
2.3.3 Max Refinement. The range of m: [mmin, mmax] is 
user-defined, which is assumed to contain the optimal m. 
Basically the most reliable way is mmax = n, n is the size of 
the dataset. However, mmax will be set as a more 
reasonable value in practice because of the heavy 
computation when mmax = n. In this paper, we define the 
mmax large enough, and then a max refinement is carried 
out. 

There will be intersections across the C1 and DiffBic 
value in (7) because of the normalizations whenever the 
trend of the original BIC is increasing or decreasing. The 
positions of the intersection are affected by the setting of 
mmin and mmax. We assume that mmax is large enough to 
contain mopt. With the assumption that mmax ≥ mopt, the 
first intersection m=max’ where max’≠ mmin and max’ > 
mopt exists. The value of max’ can be thought as the 
refinement to mmax value. With this max refinement, the 
range of m can be reduced to [mmin, max’]. There are two 
reasons for max refinement designing. One is that the 
original range setting is arbitrary; and the refined range is 
a smaller range that already contains the optimal value. 
The other is that BIC has an increasing or decreasing 
trend with the increment of the number of clusters, the 
points after the intersection has less information. Refine 
the original range [mmin, mmax] into smaller one [mmin, 
max’] can make the decision accurately.  

Finding the maximum value of DiffBic in the new 
range: [mmin, max’], the optimal number of clusters is 
obtained by the proposed method. As Fig.3 shows, we get 
the second case for datasets s1 to s4. For each dataset, an 
intersection can be found to refine the max value. The 
maximum value of the proposed method is thought as the 
optimal number of clusters. According to this, the results 
from the proposed method is: mopt(s1)= 15, mopt(s2)= 15, 
mopt(s3)= 15 and mopt(s4)= 15.  
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Figure 3. The results come from the proposed method for datasets s1 to s4 (left to right, up to down) with RLS clustering 
algorithm. Normalized BIC is represented as C1 in the context; DiffBic is the result from the proposed method.    
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a1 Iris Yeast Control 

Figure 4. Two-dimensional visualization of the datasets for experiments. 
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We have further experiments on the proposed method 
with more datasets here. Both artificially generated 
datasets and real datasets are tested. The two 
dimensional view of the datasets is shown in Fig.4.  

 
3. Experimental Results 

 
The datasets s1 to s4 are generated with varying 

complexity in terms of spatial data distributions, which 
have 5000 vectors scattered around 15 predefined 
clusters with varying degrees of overlapping. The 
dataset a1 is generated in 2-dimensional Gaussian 
distribution. Datasets Iris, Yeast and Control are 
obtained from the UCI Machine Learning Repository. 
Iris contains 3 classes of 50 instances each, where each 
class refers to a type of iris plant. Yeast is originally 
used for protein localization sites prediction. The class 
distribution from a rule-based expert system indicates 
the optimum number of clusters as 10. However, as the 
size of 6 clusters among them is too small, our 
clustering algorithms reach 5 clusters as the optimal 
clustering. Dataset Control contains 600 examples of 
control charts synthetically generated by the process of 
Alcock and Manolopoulos (1999). There are six 
different classes of control charts.  

The data sets can be found here: 
• s1-s4, a1:  http://cs.joensuu.fi/~isido/clustering/ 
• Iris, Yeast, Control:  

  www.ics.uci.edu/~mlearn/MLRepository.html 

Table 1. Data sets with their properties including the 
size of the dataset, dimension, the number of clusters 
and how they have been generated. 

Data Set Size Dimension No. of 
Clusters Generated 

s1-s4 5000 2 15 synthetic 
a1 3000 2 20 synthetic 
Iris 150 4 3 real 

Yeast 1484 8 5 real 
Control  600 NA 6 real 

As cluster validity criterion is related to clustering 
algorithm, we test the revised BIC on both K-means and 
Randomized Local Search (RLS) [14] clustering 
algorithms. The RLS method is run using 5000 
iterations and 2 K-means iterations within the algorithm. 
Meanwhile, in the K-Means clustering algorithm, 20 
iterations are used for synthetic datasets (s1-s4, a1), 200 
iterations for Iris and Yeast, and 500 iterations for 
control dataset. The proposed knee point detection 
method is then applied to the calculated BIC value. The 
results from different datasets by the proposed method 
with K-means and RLS clustering algorithms are 
summarized in Fig.5 and Fig.6. 

The results from different datasets with RLS 
clustering algorithm are all visible and correct. 
However, the results from the K-means clustering 
algorithm are not good for real datasets even if the 
number of iterations is well-tuned. The datasets Control 
gets the result mopt(control)=5. This can not prove the 
failure on our knee point detecting method; the actual 
reason is the K-Means clustering algorithm itself. Table 
2 shows the results from different knee point detection 
methods on BIC. 

 
4. Conclusions 
 
Determining the number of clusters is one of the most 
difficult problems in cluster analysis. We re-formulate 
BIC in partitioning based clustering, which shows good 
prospect for determining the number of clusters. The 
original method to decide the knee point of BIC is to 
take the first decisive local maximum, which is not 
accurate enough according to our experiments. To 
improve the BIC for getting more reliable results, a new 
knee point detecting method of BIC is proposed in this 
paper. As the proposed method takes advantage of the 
information of criterion and number of clusters, it is 
reliable to get the optimal results. Experimental results 
on different kinds of data sets also prove its 
effectiveness.  

Table 2. The number of clusters obtains from different knee point detection method on BIC. BIC represents the first local 
maximum. SD is the successive difference on BIC. Cm is the value that gets from the normalized BIC value divided by the 
number of clusters, taking the maximum as its optimal value. DiffBic represents the proposed knee point detection method. 

Method 
Data Sets 

s1 s2 s3 s4 a1 Iris Control Yeast 
BIC 15 4 4 5 3 3 2 2 
SD 15 15 4 5 3 17 2 2 
Cm 15 14 4 14 3 NA 2 2 
KP 15 15 15 15 20 3 6 5 
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Figure 5. Results on different datasets (a1, Iris, Yeast, Control from left to right, top to down) with RLS clustering 
algorithm; Normalized BIC is represented as C1 in the context; DiffBic is the result from the proposed method. 
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Figure 6. Results on different datasets (a1, Iris, Yeast, Control from left to right, top to down) with K-Means clustering 
algorithm; Normalized BIC is represented as C1 in the context; DiffBic is the result of the proposed method. 
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Abstract. Different clustering algorithms achieve different results with certain 
data sets because most clustering algorithms are sensitive to the input 
parameters and the structure of data sets. The way of evaluating the result of the 
clustering algorithms, cluster validity, is one of the problems in cluster analysis. 
In this paper, we build a framework for cluster validity process, while 
proposing a sum-of-squares based index for purpose of cluster validity. We use 
the resampling method in the framework to analyze the stability of the 
clustering algorithm, and the certainty of the cluster validity index. For 
homogeneous data based on independent variables, the proposed clustering 
validity index is effective in comparison to some other commonly used indexes.  

1   Introduction 

Clustering is an unsupervised process which intends to discover the unknown 
structure of data sets accurately. There are a number of clustering algorithms [1] 
based on different strategies and they are developed to satisfy with different needs 
from the data sets. The common sense is that there is no general algorithm applicable 
to all kinds of data sets. The problem comes up that how to evaluate the effect of 
clustering algorithms on different data sets. Cluster validity provides the way of 
validating the quality of clustering algorithms and the means of discovering the 
natural structure of the data sets. If cluster analysis is to make a significant 
contribution, much more attention must be paid to the cluster validity issues. Cluster 
validity measures are the methods, which can not only compare the results of two 
different sets of clustering algorithms to determine the better one, but determine the 
“correct” number of clusters in the data set. 

Amounts of cluster validity indexes have been proposed. Milligan and Cooper [2] 
have presented a comparison study over thirty validity indexes for hierarchical 
clustering algorithms whereas Dimitriadou et al [3] conducted their comparison study 
over fifteen validity indexes for the case of binary data. Different indexes under 
different situations achieve different results. We introduce several indexes mentioned 
in these two literatures for purpose of comparison.  

                                                           
* Thanks to Nokia Foundation for financial support. 
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We separate the indexes in this paper into two types, one is sum-of-squares based 
type, and the other is classical type. The methods in the first type measure the 
dispersion of the data points within a cluster and between the clusters respectively. 
The indexes are: 

• Ball and Hall [4], the maximum value of the successive difference is 
determined as the optimal number of clusters. 

• Calinski and Harabasz [5], the minimum value of the successive difference is 
determined as the optimal number of clusters. 

• Hartigan [6], the minimum value of the successive difference is determined as 
the optimal number of clusters. 

• Xu [7], the maximum value can be determined as the optimal number of 
clusters, the successive difference is applicable but not necessary. 

The classical measures are mostly proposed in different area and perform well to 
some extend. These measures share the advantage of using the maximum or minimum 
value as the optimal number of clusters.  

• Dunn’s index [8], the maximum of the index value is determined as the 
optimal number of clusters. 

• Davies-Bouldin index [9], the minimum of the index value is determined as 
the optimal number of clusters. 

• Xie-Beni’s separation index [10], the minimum of the index value is 
determined as the optimal number of clusters. 

• Bayesian Information Criterion [11], which is a model selection criteria. The 
first local maximum is determined as the optimal number of clusters. 

• Silhouette Coefficient [12], the maximum of the index value is determined as 
the optimal number of clusters. 

Applications of resampling method, such as bootstrapping, subsampling, or cross 
validation to cluster validity are not new in the cluster validity. Peck et al. [13] 
developed a bootstrap-based procedure to obtain approximate confidence bounds on 
the number of clusters in the “best” clustering. Ben-Hur et al. [14] presented a method 
that exploited measurements of the stability of clustering solutions obtained by 
perturbing the data set. Cluster validation by prediction strength [15] considered 
clustering as a classification problem, which used the way of cross validation 
technique. Dudoit and Fridlyand [16] introduced a prediction-based sampling method, 
CLEST, in which, the data was first split into two non-overlapping sets. Then the 
learning set was clustered and a classifier was built using the obtained labels; the test 
set was also clustered and the obtained labels were compared using an external index.  

We establish a framework of cluster validity process with resampling methods to 
validate the clustering algorithm and the validity index. Moreover, a sum-of-squares 
based index is proposed. The rest of the paper is organized as follows. We introduce 
the framework of the cluster validity in Section 2. The proposed index is formulated 
in Section 3. Experiments on the proposed method are presented in Section 4, in 
which the results on both artificial generated and real data sets are also displayed. 
Two clustering algorithms are applied in the experiment. A further step on variability 
and certainty analysis is introduced in Section 5. Conclusions and future work are 
drawn in Section 6. 
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2   Related Work 

Cluster validity relates to the clustering algorithms. The fundamental clustering 
problem is to partition a given data set into groups, so that the points in the same 
group are more similar to each other than the points in different groups. Thus, one 
way of the cluster validity is to analyze within-between group variance.  

Let X = {x1, x2 … xn} be a set of data with n samples. Suppose the samples in X 
have hard labels that mark them as representatives of m non-overlapping clusters, says 
C = {C1, C2 … Cm}. The clustering algorithm is to find the optimal partition P = {P1, 
P2 … Pm}. The most important parameter among them is the parameter m, the number 
of clusters, because most of the clustering algorithms require the parameter m as the 
input and thus the clustering result is also affected by it.  

Given the data set X, a specific clustering algorithm, and a fixed range of number 
of clusters, the basic procedure of the cluster validity involves the following steps:  

• Fix the data sets with external information. 
• Repeat the clustering algorithm successively for the number of clusters, m 

from a predefined minimum mmin, to a predefined maximum mmax. 
• Get the clustering results: partitions and codebooks. Calculate the index 

value of each number of clusters. 
• Plot the “number of clusters vs. index metric” graph and select the m at 

which the partition appears to be the “best” according to how the index is 
optimized.  

• Compare the detected number of clusters (m*) with the “external 
information” to prove the effectiveness of the index. 

 

m*

({P*, C*})({X})

Resampling

INPUT:
DataSet(X)

Clustering
Algorithm

Validity
Index

Resampling'

Parameters
m

Partitions P
Codebook C

 

Fig. 1. Scheme diagram of cluster validity process 

The clustering algorithm can be any of the existing algorithms. We use the 
Random Local Search algorithm (RLS) [17] in the validity procedure. The RLS 
clustering algorithm shares the advantage of both the k-means and the local search. 
To eliminate the effect on index from the clustering algorithm, K-means clustering, 
the most typical clustering algorithm is also tested in this paper.  

Based on this procedure, we can easily have the scheme diagram of cluster validity 
in Fig.1. To estimate the stability of the clustering algorithm, we could use resampling 
method as is shown in the resampling part. Furthermore, in order to exclude the effect 



316 Q. Zhao, M. Xu, and P. Fränti 

of data sets and clustering algorithm, another resampling method is employed, as the 
resampling’ part shows. This part will be shown in section 4 in detail. 

Basically, comparison is essential to prove the effectiveness. The two types’ 
indexes mentioned above are compared to the proposed index in the experiments 
section. 

3   Proposed Method 

In cluster analysis, the within group variance and between group variance can be 
calculated by sum-of-squares within cluster (SSW) and sum-of-squares between 
clusters (SSB) respectively. We analysis the existing index based on SSW and SSB, 
and then propose a sum-of-squares based method, so-called WB-index. 

The value of SSW is defined as:  

( )
1

1
( , ) || ||

i

m

j P j
i j C

SSW C m x C
n = ∈

= −∑∑  (1) 

which is minimized over all m-partitions C in the clustering procedure. According to 
ANOVA, the total sum-of-squares (SST) can be decomposed into two parts that are 
SSW and SSB for any partition C.  

1

1
( , ) || ||

m

i i
i

SSB C m n C x
n =

= −∑  (2) 

where ni is the number of elements in each cluster, and x  is the mean value of the 
whole data set, m is the number of clusters. Hence, we can now define a generalized 
within-between cluster type (SSWB) in Eq.3, which is a function of the SSW or SSB:  

( ( , ), ( , ))SSWB function SSW C m SSB C m=  (3) 

Table 1. Sum-of-squares based indexes 

No. Index Name Formula 
1 Ball & Hall SSW/m 

2 Calinski&Harabasz 
/( 1)

/( )

SSB m
CH

SSW n m

−=
−

 

3 Hartigan log( / )H index SSW SSB− = −  

4 Xu 2log( /( )) log( )Xu d SSW dn m= +  
 
 
The sum-of-squares based methods above (table.1) are all based on the property of 

the SSW and SSB. We study these indexes in Fig.1. As in Fig1.(a) shows, the trends of 
normalized SSW and SSW/SSB are almost same, indicating that the factor of the SSW 
has a more important effect in the ratio of SSW/SSB. In other WB-type indexes except 
for Xu’s index, we find that they either monotonously increase/decrease or need 
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additional knee point detection method, such as successive difference in order to get the 
optimal number of clusters. Xu’s index has clear minimum knee point; however, our 
experiments in section 4 will show it doesn’t work well on real data sets.  

Thus, we propose a simpler sum-of-square method, WB-index as: 

/WB m SSW SSB=  (4) 

We emphasize the effect of SSW with multiplying the number of clusters. The 
advantages of the proposed method are that it determines the number of clusters by 
minimal value of it without any knee point detection method, and it is easy to be 
implemented. 

 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 2. (a). Comparison of SSW and SSW/SSB; (b)-(f). Comparison of several sum-of-square 
based indexes with four artificial data sets (s1-s4).  
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4   Experimental Results 

In this paper, we test the methods with the data sets in table.2. The data sets s1 to s4 
are generated with varying complexity in terms of spatial data distributions, which 
have 5000 vectors scattered around 15 predefined clusters with a varying degrees of 
overlap. The datasets a1 and R15 are generated in 2-dimensional Gaussian 
distribution. Iris and Breast are the real data sets obtained from the UCI Machine 
Learning Repository. Iris is a four-dimensional data set, containing three classes of 50 
instances each, in which each class refers to a type of iris plant. The second real data 
set is the Wisconsin breast cancer data set (Wolberg and Mangasarian, 1990). 

For purpose of comparison, we test five other classic measures:  

• Dunn's index (DI)  
• Davies-Bouldin's Index (DBI)  
• Xie-Beni (XB)  
• Bayes Information Criterion (BIC)  
• Silhouette Coefficient (SC) 

In the special case of m=1, SSW equals to SST. Clustering algorithm is therefore 
performed by m=[2,30] in the case of S1-S4, and m=[2,10] in the case of the real data 
sets.  

Table 2. Information of the data sets in the experiments 

DataSet Size Dimension
# of 

clusters 
Generated

s1-s4 5000 2 15 artificial 

a1 3000 2 20 artificial 

R15 600 2 15 artificial 

Breast 699 11 2 real 

iris/Iris 150 4 3 real 

Table 3. Results using the RLS (with 5000 RLS iterations and 2 K-means iterations) 

DataSet BH* CH* Har* Xu DI DBI XB SC BIC*
WB-

INDEX
3 15 15 15 15 15 15 15 15 15
3 15 4 15 7 15 15 15 4 15
4 15 4 15 16 8 4 15 4 15

s1-s4

3 15 3 15 25 13 13 15 5 15
a1 3 20 3 20 34 20 20 20 3 20

R15 3 15 15 15 2 15 15 15 8 15
Breast 3 3 3 NA 14 2 2 2 2 2

Iris 3 3 3 NA 2 2 2 9 6 3  
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Fig. 3. The results with different validity indexes and data sets. The results of Xu’s index and 
the proposed index on real data set Iris are on the last row. It is unable to find the minimum 
value of Xu’s index as the optimal number of clusters as it is monotonously decreasing.  
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4   Significance Analysis 

The results of the experiments with different clustering algorithms and data sets 
demonstrate that the proposed index can provide an accurate estimation of the number 
of clusters, which also shows the effectiveness of the cluster validity. Fundamentally, 
we can demonstrate the proposed index as it shows in the experiments. Moreover, we 
want to confirm the results in this section by further significance analysis.  

4.1   Variability Analysis 

With an uncertain distribution of the results, resampling method can be employed as a 
natural approach for the variability estimation associated with each index value. As in 
the process shows (Fig.1), we could resample on the original data set (X), get a new 
data set (X*) and apply the new data set for the validation procedure again. Repeat the 
resampling B times, deal with the B times index values to get the statistical 
significance. However, the RLS clustering algorithm is designed with randomization, 
in which there is random swapping of the code vectors. Hence, we keep the data set 
unchanged and utilize the randomization of the clustering algorithm by running B 
times to analyze the results. 
 
 

 

Fig. 4. 90% probability interval of the WB-index with the RLS and KMeans clustering on the 
data set Iris 

Quartile range is one of the measures used to estimate variability. We use it into 
our scheme to analyze the variability of each index value. With the same setting of 
input parameters, fix the number of clusters, and run the clustering algorithm B times 
to get B values on the same number of clusters. Then the 5th and 95th percentiles of the 
B index values are calculated to get 90% probability range.  

Iris data as a real data set is a representative to be tested. According to the results, 
only the proposed method and the BIC with knee detection get the correct number on 
Iris. In this case, both of the clustering algorithms with the same data set and index 
are tested. We run B = 100 times of the clustering algorithm with the same input 
parameters setting. The 90% probability interval with the RLS and K-means is shown 
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respectively in Fig.4, and the dash line is the boundary of the range. It is clear that the 
range m = [2, 3] strongly indicates the optimal number of clusters with the RLS 
clustering; and m = [2, 5] with the K-means clustering. The range of m is wider with 
the K-means clustering than the RLS clustering. Thus we can conclude that RLS 
clustering is more stable than the K-means and the variability of the K-means on m = 
3 is convincingly larger than that of the RLS on the Iris. 

4.2   Certainty Analysis 

We develop another way to prove the certainty of the proposed index, which employs 
the resampling method. As Fig.1 shows, the effect of the validity index is affected by 
the data set and the clustering algorithm. In this case, resampling the data set cannot 
prevent the effect coming from the clustering algorithm. Hence, we process the 
resampling method on the partitions getting from the clustering to avoid this problem. 

In the first run of the validity procedure, a set of partitions (P) is generated. 
Basically, this set of partitions is the optimal one according to the clustering 
algorithm. A WB-index value (WBI) is obtained on P. We permute the original 
partitions (P) by B times, get {P*}, and recalculate the index values {WBI*}. As the 
optimal value of the WB-index should be as small as possible, we can estimate the 
certainty by counting the probability that WBI*≤ WBI. 

.( * )

.( *)

No WBI WBI
P

TotalNo WBI

≤=  (5) 

The smaller the probability P is, the more certainty the method obtains. It is not 
practical to calculate all possible permutations due to the involved time. Generally, at 
least B =1000 times permutations should be done. In this paper, 1000 random 
permutations were performed on the partitions (Fig.5). It indicates the certainty of the 
index, as the observed optimal value is much smaller than any of the values obtained 
under permutation. 

 
 
Fig. 5. Distribution of the WB-index on Iris data set (m=3) for 1000 permutations of the 
partitions with the RLS clustering. The “optimal” value of the WBI is very extreme by 
reference to this distribution (WBI = 0.032653).  
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5   Conclusions 

We represented a framework with the resampling step for the estimation on the 
stability of the clustering algorithm and the variability of the validity index in cluster 
validity process. In addition, we proposed a new sum-of-squares based index which 
indicates simplicity and good prospect compared to other indexes. Based on the 
proposed index, we completed the whole process of the cluster validity.  
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Abstract—External validity measures in cluster analysis eval-
uate how well the clustering results match to a prior knowledge
about the data. However, it is always intractable to get the
prior knowledge in the practical problem of unsupervised
learning, such as cluster analysis. In this paper, we extend the
external validity measures for both hard and soft partitions by
a resampling method, where no prior information is needed.
To lighten the time burden caused by the resampling method,
we incorporate two approaches into the proposed method: (i)
extending external validity measures for soft partitions in a
computational time of 𝑂(𝑀2

𝑁); (ii) an efficient sub-sampling
method with time complexity of 𝑂(𝑁). The proposed method
is then applied and reviewed in determining the number of
clusters for the problem of unsupervised learning, cluster
analysis. Experimental results has demonstrated the proposed
method is very effective in solving the number of clusters.

Keywords-external cluster validity, clustering, subsampling,
image segmentation

I. INTRODUCTION

External validity measures are preferable for evaluating
the goodness of clusterings when ground truth labels are
available [1]. With the ground truth consisting of class labels
assigned to the patterns, the ideal clustering is selected based
on how well the cluster labels produced by the algorithm
match. External measures are also used to compare the
similarity of two clustering results.

Rand Index [2], [3], Jaccard coefficient, Fowlkes and
Mallows index [4] are typical external measures, which
evaluate the clustering quality by the similarity of the pairs
of data objects in different partitions. A study of 16 external
measures for K-means clustering has been conducted in [5].
According to the result of this survey, we only investigated
Adjusted Rand Index in the experiments.

External measures are mainly designed for hard par-
titions. Researchers shed light on extensions of external
measures for fuzzy results. A fuzzy extension of the Rand
index has been introduced [6]. Other measures such as
adjusted Rand Index, the Jaccard coefficient, the Fowlkes
and Mallows index have also been derived from the same
formulation. However, they are as computationally expensive
as 𝑂(𝑀2𝑁2), where 𝑀 is the number of clusters and 𝑁
is the data size. Thanks Michele’s pioneer solution of fuzzy

clustering, the computational cost of external measures has
significantly reduced to 𝑂(𝑀2𝑁) time [7].

In clustering, however, prior knowledge of the data is
usually not available. To overcome this difficulty, Rand
Index was extended to calculate a pairwise stability [8],
where the pairwise stability is calculated as the variability
of the clustering results by resampling the original data or
multiple initializations. For example, bootstrap resampling
has been utilized in evaluating the fuzzy partition stability
in [9], and its fuzzy extension has been introduced in [6].
However, these methods lead to a high time complexity in
general.

Since the goal of image segmentation shares the common-
alities with clustering, several clustering methods have been
applied in image segmentation successfully [10]. A com-
mon way to evaluate the segmentation result is supervised
evaluation, in which manually segmented reference images
are used as ground truth. However, external information is
difficult to acquire and require human assistance. Generating
a reference image is also a subjective, and time consuming
task. Even given the reference information, it is not guaran-
teed that the reference is unique. Considering the difficulty,
a framework for a similarity measure is suggested in [11],
where the measure is based on an objective comparison
between the results from image segmentation algorithms and
several manual segmentations.

In this paper, we mainly extend the external measures
by a resampling method to the case of cluster analysis
that no ground truth is available. The proposed method
combined both the benefits of resampling method and fast
implementation of external measures in determining the
number of clusters, which is applicable for both hard and soft
partitions in clustering problems. With numerous clustering
algorithms and varies of image types, evaluation of the
segmentation result is an open question. We employed the
proposed method on segmentation evaluation to prove the
validity of the method.

II. EXTERNAL MEASURES

Clustering aims at partitioning a set of 𝑁 and 𝑑-
dimensional data points 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} into 𝑀
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clusters. The partition is defined as:

𝑃 = [𝑝𝑖𝑗 ]𝑁×𝑀 ;

𝑀
∑

𝑗=1

𝑝𝑖𝑗 = 1 (1)

Here 𝑃 is a 𝑁 × 𝑀 partition matrix, 𝑝𝑖𝑗 represents the
probability of the 𝑖th point belonging to the 𝑗th cluster. In
hard clustering, 𝑝𝑖𝑗 is either 0 or 1, while in soft clustering
𝑝𝑖𝑗 ∈ (0, 1). Given two partitions 𝑃 and 𝐺, external
validity measures are used to measure the similarity of two
clusterings by the proportion of pairs of vectors that agree by
belonging either to the same cluster or to different clusters
in both partitions.

A. Hard partitions

External validity measures can be computed from the
contingency matrix in 𝑂(𝑀2 +𝑁) time for hard partitions.
A contingency matrix is defined as:

𝐶𝑖𝑗 =

𝑁
∑

𝑡=1

𝐼(𝑃 (𝑡) = 𝑖 ∧𝐺(𝑡) = 𝑗) (2)

where 𝐼 is the indicator function, 𝑡 is the data point, and
𝑖, 𝑗 < 𝑀 are the group labels. The quantities 𝑎, 𝑏, 𝑐, 𝑑 are
defined as follows:

𝑎 =

𝑀
∑

𝑖=1

𝑀
∑

𝑗=1

𝐶2

𝑖𝑗 −𝑁

𝑏 =
𝑀
∑

𝑗=1

(
𝑀
∑

𝑖=1

𝐶𝑖𝑗)
2 −

𝑀
∑

𝑖=1

𝑀
∑

𝑗=1

𝐶2

𝑖𝑗

𝑐 =

𝑀
∑

𝑖=1

(

𝑀
∑

𝑗=1

𝐶𝑖𝑗)
2 −

𝑀
∑

𝑖=1

𝑀
∑

𝑗=1

𝐶2

𝑖𝑗

𝑑 =
𝑀
∑

𝑖=1

𝑀
∑

𝑗=1

(𝐶𝑖𝑗

𝑀
∑

𝑙 ∕=𝑖

𝑀
∑

𝑠 ∕=𝑗

𝐶𝑙𝑠)

(3)

These calculate the number of points that belongs to the
same cluster in 𝑃 and 𝐺 (𝑎); belongs to the same cluster in
𝑃 but to different in 𝐺 (𝑏 ); inverse of 𝑏 (𝑐); are in different
groups in 𝑃 and 𝐺 (𝑑). Terms 𝑎 and 𝑑 measure the amount
of agreement of 𝑃 and 𝐺, whereas terms 𝑏 and 𝑐 measure
the amount of disagreement. The Adjusted Rand index is
now derived by:

𝐴𝑅𝐼 =
2× (𝑎× 𝑑− 𝑏× 𝑐)

(𝑐× 𝑐+ 𝑏× 𝑏+ 2× 𝑎× 𝑑+ (𝑎+ 𝑑)× (𝑐+ 𝑏))
(4)

The definitions of Rand index, Jaccard coefficient and
Fowlkes-Mallows indices are all based on Eq. 3, see [6],
[7] for the exact definition.

B. Efficient extension to soft partitions

An efficient extension of external measures into soft
partitions in [7] is based on an update definition of con-

tingency matrix. In soft partitions, each point has a mem-
bership/probability value to each cluster. The calculation of
contingency matrix for soft partitions is defined as:

𝐶𝑖𝑗 =

𝑁
∑

𝑡=1

(𝑃𝑡𝑖 +𝐺𝑡𝑗)
𝛼 (5)

where, 𝑡 is the data point, 𝑖, 𝑗 are the number of cluster.
The value 𝛼 is used to boost the influence of higher member-
ships and reduced the influence of lower memberships. We
discuss its setting in Section IV. Given two soft partitions
of the same data set, the contingency matrix is calculated
according to Eq. 5. The calculations of 𝑎, 𝑏, 𝑐, 𝑑 are the same
as in Eq. 3 with the only difference of the calculation of 𝑎,
which is defined as follows:

𝑎 =
𝑀
∑

𝑖=1

𝑀
∑

𝑗=1

𝐶2

𝑖𝑗 −
𝑀
∑

𝑖=1

𝑀
∑

𝑗=1

𝐶𝑖𝑗 (6)

The time complexity of the soft version is 𝑂(𝑀2𝑁).

III. DETERMINING THE NUMBER OF CLUSTERS

For determining the number of clusters, the basic idea is to
test whether the points in a data set are randomly structured
or not. Resampling techniques such as bootstrapping [12],
subsampling [13], cross validation [14], sampling by Monte
Carlo method [15] have been utilized as a solution for this
problem. They allow one to simulate the process of estimat-
ing the probability density function of a validity measures
using random numbers, i.e. the resampling-based method
discover the structure of the data by simulation. However,
as a non-parametric method the resampling method requires
high computation.

We propose a resampling-based method for determining
the number of clusters in a more efficient way. The idea of
this method is to estimate 𝑖𝑛𝑑𝑒𝑥(𝑘) by comparing an index
value on the original data 𝐼𝑥 with an expectation under index
values on an appropriate null reference distribution of the
data 𝐼𝑢. The estimated optimal number of clusters is the
value that minimizes 𝑖𝑛𝑑𝑒𝑥(𝑘).

𝑖𝑛𝑑𝑒𝑥(𝑘) = 𝐸𝑏[𝐼𝑢]− 𝐼𝑥 (7)

where 𝐸𝑏 denotes expectation under a sample with size 𝐵
from the reference uniform distribution. This idea is similar
with the gap-statistic [15]. The most significant difference
is that the proposed method is applied to external measures,
which are working differently with internal measures. The
proposed method is applicable both to hard and soft cluster-
ings. To speed up the method, an efficient extension of soft
external measures and a sub-sampling method are employed.

The proposed method is described in Algorithm 1. First,
we perform a sub-sampling algorithm [16] with 𝑂(𝑁) time
complexity on the original data set to reduce the computa-
tion. The parameters setting is the same as in [16]. Clustering
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Figure 1. The settings of parameter B make little difference on the performance of the proposed index (left) while the processing time increases with the
increment of B value (right).

algorithm is run on the sub-sampled data 𝑋𝑠, and 𝑃𝑥 is the
result. We compute an index value 𝐼𝑥 of the defined external
index between a reference partition 𝐺 and 𝑃𝑥. Here, 𝐺 is
built according to the intuition about the clustering structure
of the data set that the data set is not randomly collected.
Let 𝑐 = ⌊𝑁/𝑀⌋, the reference partition 𝐺𝑁×𝑀 is generated
by:

[𝐺]𝑖𝑗 =

{

1, 𝑖𝑓 𝑖 > (𝑗 − 1)× 𝑐 & 𝑖 < 𝑗 × 𝑐+ 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8)

Next, 𝐵 synthetic data sets 𝑋𝑏 are generated in the area of
the sub-sampled data (for each dimension independently) by
a uniform distribution. The same clustering algorithm is run
on these data sets, and let 𝑃𝑢𝑏 be the resulting clustering.
We compute index values 𝐼𝑢𝑏 of the same external index
between the reference partition 𝐺 and 𝑃𝑢𝑏. Index values 𝐼𝑢𝑏
are the approximation of the probability density function of
the defined external index. We define 𝐼∗ =

∑𝐵
𝑏=1

𝐼𝑢𝑏/𝐵 as
a reference of 𝐼𝑥.

Input: 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛}, 𝐾𝑚𝑎𝑥

Output: 𝐾𝑜𝑝𝑡

𝑋𝑠 = subsampling(𝑋) ;1

for 𝑘 = 2 : 𝐾𝑚𝑎𝑥 do2

Set reference labels 𝐺 = [𝑔𝑖𝑗 ]𝑁×𝑀 ;3

𝑃𝑥 = CLUSTER(𝑋𝑠) ;4

𝐼𝑥 = 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐼𝑛𝑑𝑒𝑥(𝑃𝑥, 𝐺) ;5

for 𝑏 = 1 : 𝐵 do6

Generate reference data 𝑋𝑏 uniformly ;7

𝑃𝑢𝑏 = CLUSTER(𝑋𝑏) ;8

𝐼𝑢𝑏 = 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐼𝑛𝑑𝑒𝑥(𝑃𝑢𝑏, 𝐺) ;9

end10

𝑖𝑛𝑑𝑒𝑥(𝑘) = 𝐼∗ − 𝐼𝑥 ;11

end12

𝐾𝑜𝑝𝑡 = 𝑚𝑖𝑛(𝑖𝑛𝑑𝑒𝑥) ;13

return 𝐾𝑜𝑝𝑡14

Algorithm 1: Pseudocode of the proposed method

Finally, 𝐼𝑥 and 𝐼𝑢𝑏 are obtained for different number

of clusters within the range 𝑘 ∈ [2,𝐾𝑚𝑎𝑥], where a rule
of thumb of 𝐾𝑚𝑎𝑥 is 𝐾𝑚𝑎𝑥 ∼ (𝑁/2)1/2 [17]. Thus,
𝑖𝑛𝑑𝑒𝑥(𝑘) = 𝐼∗ − 𝐼𝑥 is calculated under different 𝑘, and
𝐾𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘{𝑖𝑛𝑑𝑒𝑥(𝑘)}.

Table I
DESCRIPTION OF THE DATA SETS, D IS DIMENSIONALITY, N IS DATA

SIZE AND M IS NUMBER OF CLUSTERS.

Name D N M Generated
Touching 2 73 2 artificial

rdata3 2 300 3 artificial
S1-S4 2 5000 15 artificial

Iris 3 150 3 real
wine 13 178 3 real(Normalized)
wdbc 30 569 2 real(Normalized)

Zernike 47 2000 10 real(Normalized)
image 3 116*261 NA real

IV. EXPERIMENTS

Experiments were performed on several real and synthetic
data sets (Table I). The data set S1-S4 consists of 5000
vectors and 15 Gaussian clusters with different degree of
cluster overlapping. The rdata3 is generated under Gaus-
sian distribution with three smaller groups of data points.
Touching contains two connecting clusters. The real data
sets are obtained from UCI Machine Learning Repository
[18]. All real data sets instead of Iris are normalized by
statistical normalization. The image in (Fig. 4) in YUV color
space is used for image segmentation. We test the proposed
method on K-means (KM), EM and Fuzzy C-means (FCM)
clustering algorithms for hard and soft clustering.

For the setting of parameter B, we run the proposed
method with increasing B values. As shown in Fig. 1, the
increment of B value increases the processing time while it
brings little effect on the index value. Thus B in Algorithm
1 is set to 20 to get less processing time.

Spearman’s rank correlation [19] is a non-parametric
measure of statistical dependence between two variables. To
decide the setting of 𝛼, we calculate the Spearman’s rank
correlation among ARI for hard partitions and ARI for soft
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partitions in different 𝛼 settings in Table II. As shown in
the table, it has very high correlation among the ARI values
on 𝛼 = 10, 𝛼 = 15 and 𝛼 = 20. However, it has very low
correlation among the values when 𝛼 = 1 and the others.
The correlation of the ARI values on hard partitions and soft
partitions is the highest when 𝛼 = 5. Thus, we set 𝛼 = 5 in
this paper.

Table II
SPEARMAN’S RANK CORRELATION AMONG ARI FOR HARD PARTITIONS

AND ARI FOR SOFT PARTITIONS IN DIFFERENT 𝛼 SETTINGS.

hard 𝛼=1 𝛼=5 𝛼=10 𝛼=15 𝛼=20
hard 1 0.65 0.87 0.79 0.78 0.76
𝛼=1 0.65 1 0.64 0.57 0.53 0.51
𝛼=5 0.87 0.64 1 0.95 0.93 0.91
𝛼=10 0.79 0.57 0.95 1 0.99 0.98
𝛼=15 0.78 0.53 0.93 0.99 1 1
𝛼=20 0.76 0.51 0.91 0.98 1 1
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Figure 2. Original and sub-sampled data distribution (left) and the results
from the proposed method on both data sets (right).

A. Sub-sampling algorithm

First, we need to verify if the sub-sampling algorithm
affects the final result. As shown in Fig. 2, the original
data size is sampled from 5000 to 1724 data points so that
the data structure is preserved while the density is reduced.
The result of the proposed method on the sub-sampled data
has similar trend as that on the original data in Fig. 2.
It indicates that the sub-sampled data works well in our
method, although variation exists.

Table III
THE PROCESSING TIME WITHOUT AND WITH SUB-SAMPLING ON

DIFFERENT PARTS IN THE PROPOSED METHOD. THE RUNNING TIME FOR

THE SUB-SAMPLING PROCEDURE IS 0.09 SECONDS.

without with reduced
External measures 0.13s 0.08s 38%

K-means 8.41s 1.82s 78%
EM 28.43s 8.42s 70%

FCM 42.12s 14.22s 66%

The time costs in Table III are for external measures
and clustering algorithms in Algorithm 1 for data set S2
with 15 clusters. The sub-sampling method reduces time
cost 38%-78% on different parts in the proposed method
according to Table III. Compared to the running time for
sub-sampling procedure, which is 0.09s, the reduced time is
much more than that. The sub-sampling method can reduce
remarkable running time in resampling method since the
clustering algorithms employed in the method need to be
repeated multiple times.

B. Determining the number of clusters

We tested the proposed method on the data sets in Table I.
The hard partitions are resulted from K-means and the soft
partitions of FCM and EM algorithm by taking the cluster
with the maximal membership value.

An example on data S2 is shown in Fig. 3, where the data
distribution with partitioning from FCM is displayed. The
running time of the proposed method varies from different
clustering algorithms, where K-means is the fastest and EM
is the slowest. Thus, the running time depends highly on
the choice of the clustering algorithm. Compare hard and
soft clusterings, for example, hard and soft partitions from
FCM and EM, the computation time have little difference
as Fig. 3 indicates.

The index values of the proposed method with the in-
creasing number of clusters are plotted, where the minimal
values of the curve indicate the number of clusters. For data
set S2, the proposed method reveals the structure of the data
set on hard partitions from different clustering algorithms.
Results from soft partitions work similar as those from hard
partitions with higher variance. The main reason is that
external measures on hard partitions are more robust than
that of soft partitions.

To validate the proposed method, we listed the determined
number of clusters for the data presented in Table I by
the proposed method and two internal measures [20] in
Table IV. Calinski-Harabsz (CH) index is popular as an
internal measure, which is based on within and between
cluster variance. Xie and Beni proposed a validity index
(XB) for fuzzy clustering, which considered the data set,
geometric distance measure, distance between cluster cen-
troids and more importantly on the fuzzy partition generated
by any fuzzy algorithm used. We employed K-means results
for Calinski-Harabsz index and FCM results for Xie-Beni
index. The bold-faced numbers in Table IV represents the
correctly determined number of clusters.

For determining the number of clusters, the proposed
method works well on real data sets and small Gaussian-
distributed data sets. For higher overlapped data S3 and
S4, the proposed method works well. In general, it has
better performance on hard partitions than soft ones. Internal
measures have less accurate result on real data sets, but Xie-
Beni index works well on artificial data sets.
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Figure 3. (a) a clustering on data set S2 from FCM; (b) a comparison on the running time of the proposed method on different soft and hard clusterings;
(c) and (d) the index value of the proposed method (hard and soft clustering respectively) on the increasing number of clusters.

Table IV
THE NUMBER OF CLUSTERS DETERMINED BY THE PROPOSED METHOD FOR HARD AND SOFT PARTITIONS.

Data 𝐾𝑀𝐻 𝐹𝐶𝑀𝐻 𝐸𝑀𝐻 𝐹𝐶𝑀𝑆 𝐸𝑀𝑆 𝑋𝐵 𝐶𝐻

Iris 3 3 3 3 2 2 2
wine 3 3 3 3 3 2 2
wdbc 2 2 2 6 8 2 2

Zernike 10 5 10 4 10 2 2
image 3 3 3 5 5 2 2
rdata3 3 3 3 3 2 3 10

Touching 2 2 2 3 6 2 2
S1 17 14 17 13 18 15 15
S2 15 14 14 14 15 15 20
S3 15 15 15 15 15 4 6
S4 15 15 15 15 15 15 16

C. Unsupervised evaluation of image segmentation

For image segmentation, K-means, FCM and EM algo-
rithms are conducted. For simplification, the segmentation
results are represented by the clustering labels. We use the
proposed method to determine the number of clusters for
images. The proposed index and BIC (Bayesian Information
Criterion) are used to evaluate the segmentation results, see
Fig. 4, where the image in YUV color space is segmented
into 3 clusters by different algorithms. The evaluation under
different numbers of clusters (from 2 to 10) are shown in
Fig. 5. There is a strong indication on three clusters by the
proposed method, whereas BIC on EM algorithm has no
clear suggestion.

Figure 4. An image in YUV color space and image segmentations of three
clusters by KM, EM and FCM.

2011 11th International Conference on Intelligent Systems Design and Applications 935



1 3 5 7 9
−0.2

−0.15

−0.1

−0.05

0

number of clusters

in
d

ex
 v

al
u

e

KM
H

FCM
H

EM
H

local minimum

1 3 5 7 9
−4.4

−4.2

−4.0

−3.8

−3.6

−3.4

−3.2

−3.0

number of clusters

B
IC

 (
10

6 )

local maximas

Figure 5. Evaluation results of the proposed method (left) and BIC (right) for the image.

V. CONCLUSION

We extended the external measures for both hard and soft
partitions in clustering problems when no prior information
is available. To the computational efficiency of resampling
method, a state-of-art sub-sampling method is implemented
and applied instead. Experimental results indicate that the
proposed method are very effective in solving the number
of clusters in practice, for example, the unsupervised evalu-
ation of image segmentation. The proposed method can be
envisioned as a general approach that can be applicable to
other clustering algorithms and external measures.
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Abstract—Clustering based on swap strategy is to improve prototype-based clustering. The swap strategy can be either random
or deterministic. Design of the swap strategy is critical because wrong design can make the algorithm either stuck into a local
optima or in low efficiency. In this work, a new swap strategy is proposed in a novel Pairwise Random Swap clustering algorithm.
The swap strategy is based on a cluster-level evaluation measure, so called Centroid Ratio. The measure is used to compare two
clusterings based on centroids, whereas other measures are based on partitions, or both partitions and centroids. It has low time
complexity and is applicable for detecting unstable or incorrectly located centroids. The centroid ratio is shown to highly correlate
to external indices and mean sqaure error (MSE). The pairwise random swap clustering algorithm employing centroid ratio as the
swap strategy has low time complexity and comparable MSE values. An empirical study on synthetic and real data indicates that
the proposed clustering algorithm works more efficiently than Random Swap, Deterministic Random Swap, Repeated k-means
and k-means++.

Index Terms—data clustering, random /deterministic swap, clustering evaluation, k-means

✦

1 INTRODUCTION

PROTOTYPE-based clustering is a typical clustering
method for finding a sequence of prototypes that

best fit the data with unknown structure. For example,
a single prototype (centroid) is used to represent a
cluster in k-means [1], which has been widely applied
for data grouping in real applications not only because
it has low computation and memory space require-
ments but it also achieves good result in most cases.
However, it is known to be sensitive to initialization.

A common way to address the initialization prob-
lem is to run k-means multiple times with a different
set of randomly chosen initial parameters [2] and
to choose the best solution as a result. We call this
variant repeated k-means (RKM). For different data sets,
proper number of repetitions for RKM is an empirical
choice. Several other methods have been developed,
which are based on stochastic global optimization
such as simulated annealing [3] and genetic algorithms
[4]. These methods have not gained wide acceptance
because of their high time complexity. A global k-means
algorithm (GKM) [5] is an incremental approach that
dynamically adds one cluster center at a time through
a deterministic global search procedure. The search
procedure consists of N (data size) executions of the
k-means algorithm from suitable initial positions. K-
means++ [6] chooses initial values (seeds) for k-means,
and improves both the speed and accuracy of k-
means. It is Θ(log M)-competitive with the optimal
clustering [6], i.e. E[φ] ≤ 8(log M + 2)φOPT where

• Q. Zhao and P. Fränti are with the School of Computing, University
of Eastern Finland, FI 80110.
E-mail: qinpei.zhao@uef.fi

φ indicates the cost function and M represents the
number of clusters.

Swap-based clustering algorithm [7] is a local search
heuristic to find optimal centroids. In each iteration,
a swap strategy is employed to look for a pair of
centroids, of which one is to be removed, and the
other is inserted to lead an improved solution. If
better prototypes are found, the swap is made and the
procedure is repeatedly performed after a fine-tuning
step by k-means. Swap-based clustering is simple to
implement and has good quality of results indepen-
dent on the initialization. The swap strategy could be
either random or deterministic. A random swap means
choosing a cluster to be removed and a location to
be inserted randomly. The random swap algorithm
has linear dependency on the number of data vectors
(N ) but quadratic on the number of clusters (M ),
and inverse dependency on the dimensionality (D)
according to [8].

A problem concerning deterministic swap is to design
a criteria for selecting a prototype to be removed
and a location to be inserted. The balance between
the removal and addition steps is a key factor for
a good performance. The candidate to be removed
could be the one with the smallest size or variance.
The new location of the prototype can be chosen by
considering the locations of all possible data vectors
as in J-means [9]. Both J-means and random swap
achieve good clustering result but they do not always
work efficiently, since they generate a large number
of candidate solutions during swapping. Therefore,
deterministic swap-based methods have been consid-
ered by selecting a centroid to be swapped as the one
increasing the cost function value least [10], [11], or
by adding one cluster [5] and merging two existing
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clusters [12] following the spirit of agglomerative
clustering. The deterministic swap strategy is usually
based on clustering structures such as prototypes and
partitions. Even though the correct clustering can
be obtained by much fewer swaps compared to J-
means and random swap, the time complexity for
each deterministic swap is at least O(MN) where N is
the data size, M is the number of clusters. Therefore,
the lower time complexity of a single swap reduces
the overall efficiency of a deterministic swap-based
clustering.

In this paper, we first propose a cluster validity
index called centroid ratio, which can be used to com-
pare two clusterings and find unstable and incorrectly
located centroids in the clusterings. The index has
a time complexity of O(M2) because it relies on
centroids only. Then we design a pairwise random
swap clustering algorithm, which employs centroid
ratio as a swap strategy.

In clustering evaluation, partitions at point level
are often used for evaluating clusterings by external
indices [13] such as Rand index, Jaccard coefficient. Since
these evaluation measures are at point level, they
provide high accuracy but their time complexity are
related to both O(M) and O(N), typically O(MN).
There is very little work done on clustering evalua-
tion based on centroids only. Centroids represent a
global structure of prototypes, and by using them,
the centroid ratio can provide a global evaluation on
the clustering. Utilizing only centroids in evaluation
reduces the time complexity to O(M2). In this paper,
we show that the proposed centroid ratio has high
correlation with other evaluation measures.

As the centroid ratio can find incorrectly located
centroids in two clusterings, we utilize this property
and propose a novel deterministic swap based clus-
tering called Pairwise Random Swap (PRS) clustering
algorithm. The centroid ratio is used to select a cluster
to be swapped and it is also used as a stopping crite-
rion in the algorithm. We compare the PRS algorithm
to other algorithms such as random swap clustering
(RS), deterministic random swap clustering (DRS),
repeated k-means (RKM) and k-means++ (KM++) on
a variety of data sets in Section 4. The experimental
result indicates that the proposed algorithm requires
26% to 96% less processing time than the second
fastest algorithm RS and avoids the local optimal-
ity problem better than the other non-random swap
strategies.

2 RELATED WORK

2.1 k-means

Given X = {x1, x2, ..., xN} as a set of N points in
a d-dimensional Euclidean space to be clustered, we
define C and P as a specific partition of these points
into M clusters, where C = {c1, c2, ..., cM} presents
the centroids and P = {p1, p2, ..., pN} the point level

partitions. A cost function is used to evaluate the
quality of the clustering. There is no universal func-
tion for all clustering problems, and the choice of
the function depends on the application. We consider
the clustering as an optimization problem, and mean
squared error (MSE) is the most common cost function,
calculated as:

f =
1
N

N
∑

i=1

‖xi − C‖2 (1)

K-means (Algorithm 1) is the most famous cluster-
ing algorithm, which aims to partition N objects into
M clusters so that each object belongs to the cluster
with the minimum Euclidean distance to the cluster
centroid.

Input: X , M
Output: C, P , MSE
cj = xi|i = random(1, N), 0 ≤ j ≤M ;1

while ! convergence do2

pi ← argmin
1≤j≤M

‖xi − cj‖2, ∀i ∈ [1, N ] ;
3

cj ← (
∑

pi=j xi)/(
∑

pi=j 1) ;4

MSE = 1
N

∑N
i=1 ‖xi − C‖2 ;5

end6

return C, P , MSE ;7

Algorithm 1: k-means algorithm

It is known that k-means suffers from the ini-
tialization. With different initial solutions, k-means
converges to different local minima, which makes the
final result unstable. Previous work on improving the
clustering results based on standard k-means employs
different strategies [2], [3], [4], [5], [6], [7], [14], of
which the swap-based approach is simple but effec-
tive.

2.2 Swap-based clustering

In swap-based clustering, centroids are perturbed by
a certain strategy in order not to get stuck into a local
minima. A swap is accepted if it improves the clus-
tering quality. This trial-and-error approach is simple
to implement and very effective in practice.

Random Swap algorithm (RS), originally called Ran-
domized Local Search [7], is based on randomization
where a randomly selected centroid is swapped to
another randomly selected location. After that, a local
repartition is performed and the clustering is fine-
tuned by two k-means iterations. Pseudocode of the
random swap algorithm is described in Algorithm 2.

To ensure a good clustering quality, the number
of iterations T for random swap should be set large
enough to find successful swaps. For a more accurate
analysis, with a given confidence level q, the number
of iterations T for a successful swap has an estimated
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bound [8] as follows:

T = Θ
(

−M2

α2
· ln q

)

(2)

where M is the number of clusters, and α is the
number of neighbor clusters.

Input: X , M
Output: C, P , MSE
C ← InitializeCentroids(X) ;1

P ← OptimalPartition(X, C) ;2

for T times do3

Cnew ← RandomSwap(C);4

Pnew ← LocalRepartition(P, Cnew) ;5

KmeansIteration(Pnew, Cnew) ;6

if f(P new, Cnew) < f(P, C) then7

(P, C)← Pnew, Cnew ;8

end9

end10

MSE = 1
N

∑N
i=1 ‖xi − C‖2 ;11

return C, P , MSE ;12

Algorithm 2: Pseudocode of Random Swap algo-
rithm

Deterministic swap aims at finding good swaps by
a systematic analysis rather than in a trial-and-error
manner. In general, the clustering can be found in a
few swaps only if the algorithm knows the centroid
that should be swapped and the location where it
should be relocated.

Several heuristic criteria have been considered for
selection of the centroids to be swapped, but simple
criteria such as selecting the clusters with the smallest
size or variance does not work very well in practice.
Other approaches remove one cluster [11], or merge
two existing clusters as in agglomerative clustering
[12]. The deterministic removal takes N distance cal-
culations for each of the M clusters. Thus, the overall
time complexity of the deterministic removal step
becomes O(MN).

The replacement location of the swapped centroid
can be chosen by considering locations of all possible
data points, however it would be very inefficient.
In order to find the correct location, the task can
be divided into two parts: select an existing cluster
and select a location within this cluster. One heuristic
selection is to choose the cluster that has the largest
distortion (Eq. 1). The exact location within the cluster
can be chosen considering the following heuristics: 1)
current centroid of the cluster with small movement;
2) furthest data point; 3) middle point of the current
centroid and furthest data point; 4) random.

With the random and deterministic swap strategies,
an analysis combining the deterministic heuristic with
random swap was conducted in [15].

3 METHODOLOGY

3.1 Centroid Ratio

Design of swap criterion is based on three elements:
data set, point level partitions and centroids. Mean
square error (MSE) is a conventional criterion for
evaluating clustering, which is calculated by these
three elements. External indices [13], however, utilize
only partitions by comparing the given clustering
against ground truth. The ground truth is usually
built by using human assessors or output of another
clustering. External indices count pairs of points on
the agreement or disagreement of two partitions. The
evaluation measures are well studied in literature [13],
[16], [17].

The criterion such as MSE uses quantities and fea-
tures inherent in the dataset, which gives a global
level of evaluation. Since it relates to points and clus-
ters, time complexity is at least O(MN). The partition-
based criteria are based on pointwise evaluation of
two partitions, which give the time complexity of
O(N2) usually. The time complexity of point-pair
measures can be reduced to O(N + M 2) [18] by a
contingency matrix.

There is little research on cluster level evaluation
measure, which is based on centroids only. As an
important structure of clustering, centroid reveals the
allocation of clusters. Two clusterings {X, P1, C1} and
{X, P2, C2} from k-means are shown in Fig. 1, where
centroids and partitions have high correlation with
each other. The partition shows little difference (left)
at the border of the clusters while centroids also
display little difference on the location. For incorrectly
located centroids (right), the partitions differ greatly.
The evaluation of the clustering can be performed on
either partition P or centroids C. Motivated by this,
we introduce a cluster level criterion in this section.

Fig. 1. Clusterings from k-means, showing the connec-
tion between centroids and partitions.

Let C1 = {c11, c12, ..., c1M} and C2 =
{c21, c22, ..., c2M} be the centroids of two clusterings
C1 and C2 respectively and |C1| = |C2|.

A pairing problem between two sets of centroids
can be represented by a bipartite graph in which
the vertex classes are the centroids in C1 and C2
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separately, and centroids in C1 are joined by edges
to centroids in C2.

Definition The Nearest Pairing of two sets of centroids
(C1 and C2) can be stated in graph-theoretic terms
as the minimum matching of a given bipartite graph
where nodes correspond to the centroids, edges con-
nect centroids from different clusterings, and edge
cost stands for the centroid distance.

4

1

Nearest Pairing

6

2

5

3

C
1

C
2

Fig. 2. Nearest pairing of two clusterings C1 and C2.

Definition Pair Ratio for centroid i, PR(i), is the
degree of matching between centroid i from C1 and
C2 after nearest pairing.

D
12

D
2

D
1

Pair Ratio C
1

C
2

Fig. 3. Calculate Pair Ratio for one pair of centroids.

The minimum matching in nearest pairing is solved
in a greedy way. For each i,j, where 1 < i < M , 1 <
j < M , we consider they are paired if c2j is the closest
centroid to c1i out of {c21, c22, ..., c2M}. We thus iterate
M times the operations:

{i, j} = argmin
c1i∈C1,c2j∈C2

‖c1i − c2j‖2

C1 ← C1\{c1i}
C2 ← C2\{c2j}

(3)

For paired centroids c1i ∈ C1 and c2j ∈ C2, we

define the distances:

D1(i) = min
c1s∈C1

‖c1i − c1s‖2

D2(i) = min
c2s∈C2

‖c2j − c2s‖2

D12(i) = ‖c1i − c2j‖2
(4)

The value of D12 is the distance of the matched
centroids in two clustering results C1 and C2. D1

is the nearest distance of two centroids in the same
set of centroids C1 and similarly, D2 is the nearest
distance in C2. The centroids in two clustering sets are
strictly matched when D12 = 0. We consider centroid
i is stable or correctly located when D12 ≤ D1 and
D12 ≤ D2. Thus, the Pair Ratio for a centroid i of
clustering C1 with respect to C2 (see Fig. 3) is defined
by:

PR(i) =
D12(i)
D1(i)

× D12(i)
D2(i)

(5)

A centroid i is considered as stable or correctly located
when PR(i) ≤ 1. For unstable and incorrectly located
centroids, PR(i) > 1.

Definition The similarity S between two clusterings
C1 and C2 is:

S(C1, C2) = 1−
M
∑

i=1

γi/M (6)

where, γi =

{

1 if PR(i) > 1
0 otherwise

, and here S value is

in the range of [0, 1], where 1 indicates a completely
match of two clusterings while 0 indicates a complete
mismatch.

Definition Sid is a set of incorrectly located centroids
and Sid = {i|PR(i) > 1}. Given T sets of clustering
results, the degree of stability of centroid i is defined
as:

stability(i) =
∑T

t=1

∑T
s=1 (1− γi){Ct,Cs}

T 2
(7)

If the stability is 1, the centroid i is correctly located
among T sets of clustering results.

Definition Centroid Ratio is defined as a combination
of Pair Ratio (PR) and the similarity S, where PR finds
incorrectly located centroids and the S value indicates
the similarity of two clusterings.

Intuitively, the clustering is stable with respect to a
data set in case a global optimal exists [19], and the
difference among clustering results is little. The sta-
bility of cost function in clustering algorithm implies
the stability of actual centroids of clusters. We show
in the following lemma that the similarity S is highly
correlated to the difference of MSE in Euclidean space.

Lemma 3.1: Assume that the data x in each cluster
lies in an Euclidean ball in R

d, i.e. x ⊂ R
d. Let

P be the probability measure function and fC1 =
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1
N

∑M
i=1

∑

xj∈c1i
‖xj − c1i‖2. For ε > 0, suppose that

the difference between two clustering results

‖fC1 − fC2‖L1(P ) ≤ ε (8)

where L1(P ) stands for L1 norm of P . In case of stable
clusterings, the difference between two clusterings is
little (ε→ 0) and ‖fC1 − fC2‖ P→ 0. Then we can prove

S(C1, C2)
P→ 1 (9)

Proof: Suppose the distance ‖c1i − c2j‖ = R, and
consider B(c1i, R/2) be a ball of radius R/2, centered
at c1i. So for x ∈ B(c1i, R/2), we have ‖x− c1i‖2 ≤
‖x− c2j‖2, and for any x, ‖x− c1i‖2 ≤ fC1 . From
Eq. 8,

‖fC1 − fC2‖L1(P ) =
∫

|fC1(x)− fC2(x)| dP (x)

for x ∈ B(c1i, R/2),

≥
∫

B(c1i,R/2)

|fC1(x) − fC2(x)| dP (x)

=
∫

B(c1i,R/2)

∣

∣

∣
fC1(x)− ‖x− c2j‖2

∣

∣

∣
dP (x)

=
∫

B(c1i,R/2)

‖x− c2j‖2 − fC1(x)dP (x)

≥
∫

B(c1i,R/2)

(‖x− c2j‖2 − ‖x− c1i‖2)dP (x)

since ‖x− c2j‖2 ≤ (R/2)2,

≥
∫

B(c1i,R/2)

(R/2)2 − ‖x− c1i‖2 dP (x)

≥ a1

∫ R/2

0

((R/2)2 − r2)rd−1dr

= a1(
1
2
)d+2[

1
d
− 1

d + 2
]Rd+2

= aRd+2 ≤ ε

(10)

where, a is a constant. Thus, we get R ≤ (ε/a)1/(d+2).
Suppose the clustering is stable, i.e. ε → 0, we get
R→ 0, which implies that the difference between two
sets of centroids for certain clustering approaches to
0, i.e. ‖c1i − c2j‖ P→ 0. For M centroids of C1 and C2,
S(C1, C2)

P→ 1.
The above lemma indicates the relationship be-

tween the proposed similarity and the difference of
MSE values of two clusterings C1 and C2. MSE value
reflects a global view, but there is no way to track
detail information of each point through it. External
indices such as Rand index can compare two cluster-
ings pointwisely, but they can not give information
directly on clusters. The proposed centroid ratio can
reveal the information at a cluster level, which is
able to give a global evaluation and detect unstably
or incorrectly located centroids. In Section 3.2, we
introduce a clustering algorithm employing centroid
ratio, which can improve the local optimal problem
of k-means in an efficient way.

3.2 Pairwise Random Swap algorithm

The pairwise random swap algorithm (PRS) takes a
given data set X and the number of clusters M as
its input. It starts by generating two centroids sets
(C1, C2) and MSE values (MSE1, MSE2) from con-
ventional k-means as described in Algorithm 3. Then,
we calculate the pair ratio value PR(i) for each paired
centroids to get a set of incorrectly located centroids
Sid and the similarity value S(C1, C2) according to
Eq. 6. We perform Swap function (Algorithm 4) to
get an improved solution, in which we randomly
swap the detected centroids c1j and c2j in C1 and
C2 (j ∈ Sid) and fine-tune the result by k-means. The
algorithm stops when the similarity of two centroid
sets S is 1, which indicates that the centroids of two
clusterings are matched. The final solution of the PRS
algorithm is the centroid set that has lower MSE value,
i.e. min (MSE1, MSE2).

Input: X , M
Output: C, MSE
Two initializations: I1, I2;1

(C1, MSE1) = k-means(X , I1, M );2

(C2, MSE2) = k-means (X , I2, M );3

Calculate Sid = i|PR(i) > 1 and S(C1, C2);4

while S 
= 1 do5

(C
′
1, C

′
2, MSE

′
1, MSE

′
2) = Swap(X , M , C1, C2,6

MSE1, MSE2, Sid);
MSE1 = MSE

′
1; MSE2 = MSE

′
2;7

C1 = C
′
1; C2 = C

′
2;8

Calculate Sid = {i|PR(i) > 1} and S(C1, C2);9

end10

return min (MSE1, MSE2) and corresponding C111

or C2;
Algorithm 3: Pairwise Random Swap clustering al-
gorithm

Input: X , m, C1, C2, MSE1, MSE2, Sid

Output: C
′
r1, C

′
r2 and MSE

′
r1, MSE

′
r2

MSE
′
r1 = MSE1 + 1;1

while MSE
′
r1 > MSE1 do2

Cr1 ← random swap Sid on C1;3

(C
′
r1, MSE

′
r1) = k-means(X , Cr1, m);4

end5

MSE
′
r2 = MSE2 + 1;6

while MSE
′
r2 > MSE2 do7

Cr2 ← random swap Sid on C2;8

(C
′
r2, MSE

′
r2) = k-means(X , Cr2, m);9

end10

return C
′
r1, C

′
r2 and MSE

′
r1, MSE

′
r2;11

Algorithm 4: Function of Swap

On occasion, the initial centroid sets C1 and C2 are
completely matching but the partition is local optimal,
i.e. S(C1, C2) = 1 and Sid ∈ ∅ at the beginning, in
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TABLE 1
Summary of time complexities on one iteration of deterministic swap. RD represents random removal and
deterministic addition; DR, deterministic removal and random addition and DD, deterministic removal and

deterministic addition. PRS is for the proposed PRS algorithm.

RD DR DD PRS
Removal O(1) O(MN) O(MN) O(M2)
Addition O(N) O(1) O(N) O(1)
fine-tuning O(sN) O(sN) O(sN) O(sN)
Total O(sN + N) O(sN + MN) O(sN + MN) O(sN + M2)

which case the PRS algorithm performs a random
swap on the centroids.

The proposed algorithm is a type of deterministic
swap clustering (DR) since centroids to be swapped
are chosen by the centroid ratio and the allocated po-
sition is random. The time complexity of the removal
step is O(M2) and O(1) for addition step. Although
the swap heuristic is capable of moving out of a local
minimum, it may take a long time to move near to a
local minimum. Thus, it is profitable to use k-means
for fine-tuning after the swap heuristic [20]. A note for
the PRS algorithm is that k-means can be substituted
by other prototype-based clustering algorithms.

3.3 Efficiency Analysis

The efficiency of a swap-based clustering algorithm
depends on two issues: how many iterations (swaps)
are needed and how much time each iteration con-
sumes.

In random swap, the swap step is completely ran-
dom so it needs a large number of iterations to
provide a good quality of result. It takes O(sN) (s
is the number of neighboring clusters on average) at
least for each iteration with a fast variant of k-means
for fine-tuning [21]. The main bottleneck of random
swap is that the number of iterations T has quadratic
dependency on the number of clusters M (Eq. 2),
which increases the overall time complexity.

The selection criterion for swapping in DR is to
find clusters that increase cost function (MSE) least
when they are swapped. In DD, the centroid to be
removed is chosen by calculating removal cost, and
the addition is made within the cluster of the highest
distortion. In this case, the number of iterations is
limited because the algorithm will stop whenever
there is no improvement. However, the time required
for each iteration is high. It takes O(MN) for finding
the minimum removal cost, O(N) for the addition
cost and O(sN) for the local partition and fine-tuning,
so the total time complexity of one iteration in DD
is O(sN + MN). Time complexities for variants of
deterministic swap are summarized in Table 1. As
shown in the table, time complexities of the existing
deterministic strategies are either related to O(N) or
O(MN). The time complexity of the swap strategies
is the only difference in the total time complexity of
variants.

In the proposed method, the algorithm needs
O(M2) to find incorrectly located centroids and O(1)
for addition. The main computation comes from
repartitioning and fine-tuning by the k-means itera-
tions, which takes O(sN). The total time complexity
is O(k2(k1sN + M2)), where k1 is the number of
iterations for k-means and k2 is the repeated times
of centroid ratio step. It is shown by experiment that
the selection of k1 affects very little on the final result
and the algorithm can stop in less than M runs of
centroid ratio, i.e. k2 ≤M .

To sum up, random swap needs a large number of
iterations to provide a good quality of clustering. The
deterministic swap needs less number of iterations,
but it takes more time for each iteration than random
swap. For the variants of deterministic swap, the main
computation coming from the local partitioning is the
same. However, the time complexity of deterministic
strategies differs and the number of iterations de-
pends on the swap strategies.

The time complexity for global k-means is
O(TM2N2) with incrementally adding one cluster at
a time through a deterministic global search, where T
is an average k-means iterations. The kmeans++ has
an additional procedure for choosing initial cluster
centers, which adds O(MN) to the time complexity
of the standard k-means.

4 EXPERIMENTS

We tested the algorithms using both synthetic and
real data sets from various sources as summarized in
Table 2.

TABLE 2
Attributes of the data sets used in our experiments.
For the data sets where the number of clusters is

unknown, the model sizes used in the experiments are
shown in parenthesis.

Name Dimensionality Data Size #Clusters
Synthetic data sets

S1-S4 [11] 2 5000 15
Aggregation [22] 2 788 7

R15 [23] 2 600 15
BIRCH1-BIRCH2 [24] 2 100000 100

Real data sets
CM [25] 9 68040 NA(20)
CT [25] 16 68040 NA(20)
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The synthetic data sets are two dimensional and
contain a known number of clusters, which are easy
from visualization point of view. The ground-truth
labels are known for S1 to S41, which have gradually
more overlapping clusters. In S1 the overlap is the
smallest whereas in S4 the overlap is the greatest.
BIRCH sets [24] are large data sets with 100 clusters
among 100,000 data points. BIRCH1 contains clusters
in regular grid structures, BIRCH2 has clusters at a
Sine curve. R15 [23] is generated as 15 similar 2-D
Gaussian distributions that are positioned in rings.
Data Aggregation (A7) [22] consists of seven per-
ceptually distinct groups of points, where there are
non-Gaussian clusters. The distribution of two dimen-
sional data sets are shown in Fig. 4.

S1 S2

S3 S4

R15 Aggregation

BIRCH1 BIRCH2

Fig. 4. Visualization of two-dimensional data sets.

The real data sets are the color moments (CM) and

1. http://cs.joensuu.fi/sipu/datasets/

co-occurrence texture (CT) data sets from [26]. It is
unknown whether the data is clustered. We selected
the number of components of CM and CT as 20 in
the experiment, because the number of clusters of
these two data sets are unknown and the problem
of determining the number of clusters is out of our
scope.

4.1 Centroid Ratio Validity

We study the validity of the proposed centroid ratio
in this Section. To compare with other clustering
evaluation measures, we define consistency in terms
of similarity between their rankings on a number of
clustering results. The compared measures include
Rand index (RI), Adjusted Rand index (ARI), Jaccard
coefficient (Jac), Fowlkes and Mallows index (FM) and
ΔMSE. The similarity is based on the Spearman’s rank
correlation, which is a non-parametric measure of sta-
tistical dependence between two variables. The clus-
tering results are obtained from 50 runs of standard k-
means clustering on data set S2 with 15 clusters until
convergence. The ground-truth labels are known for
the data set S2.

TABLE 3
Spearman’s rank correlation on different clustering

validity measures.

RI ARI Jac FM -ΔMSE CR
RI 1 1 1 1 0.90 0.96

ARI 1 1 1 1 0.90 0.96
Jac 1 1 1 1 0.90 0.96
FM 1 1 1 1 0.90 0.96

-ΔMSE 0.90 0.90 0.90 0.90 1 0.94
CR 0.96 0.96 0.96 0.96 0.94 1

The correlation in Table 3 indicates that external
measures have very high correlation with each other.
The proposed centroid ratio has higher correlation
with external measures than ΔMSE. By the high
correlation of centroid ratio and other measures, we
conclude that the centroid ratio is valid for clustering
evaluation.

According to the definition for stability degree of
centroids in Section 3.1, we tested the stability of
centroids in standard k-means and Global k-means
(GKM) [5] separately. We repeated T = 10 runs
and pairwisely calculated the degree of stability from
ten clusterings by Eq. 7. The degree of stability for
each centroid in k-means and GKM is shown in
Fig. 5, centroids 2, 4, 5, 7, 9, 10, 14 are not stable from k-
means, while it is stable in GKM for all centroids. The
degree of the stability is reflected on each centroid,
for example, centroid 7 is the most unstable centroid
in k-means. According to the stability of centroids
from different algorithms, we can then conclude the
stability of the algorithms.



8

1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1 k−means

1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

Centroid

S
ta

b
ili

ty

Global k−means

Fig. 5. The stability of each centroid and finding
unstable centroids by centroid ratio.

4.2 Validity of Pairwise Random Swap algorithm

We compare PRS with other variants of k-means,
including repeated k-means (RKM) and kmeans++
(KM++) [6]. We also compare it with the Random
Swap algorithm (RS) and Deterministic Random Swap
algorithm (DRS). The clustering algorithms2 are im-
plemented in C and tested under the same environ-
ment.

Swapping iterations are needed in RS and DRS
and repetitions are needed for RKM and KM++ to
guarantee good performance. We summarized the
parameter setting in the experiments in Table 4. The
number of swapping iterations in RS can refer to
Eq. 2. For RKM and KM++, the number of repetitions
is selected experimentally. All algorithms employ k-
means, the number of iterations of k-means in RS and
DRS is set two and running until converge in RKM
and KM++.

TABLE 4
Parameter settings for algorithms: RS, DRS, RKM and
KM++. The numbers in the table represent the number

of iterations for swaps and repetitions in the
experiments.

Data RS/DRS RKM/KM++
S1-S4 130 130
R15 130 130
A7 60 60

BIRCH1 1400 300
BIRCH2 10000 300

CM 2000 300
CT 2000 300

We study the relationship between the number
of k-means iterations and clustering result by MSE
values and processing time in Fig. 6. We repeated
PRS 50 times on each number of iterations for k-
means. The differences of MSE values among the

2. http://cs.joensuu.fi/sipu/soft/

runs with different numbers of k-means iterations are
less than 0.0007%, which is negligible. The processing
time has variance on each run with different numbers
of iterations. However, a larger number of k-means
iterations does not necessarily lead to a better result
and higher processing time according to Fig. 6. Thus,
we set k-means iterations in PRS to 10.
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Fig. 6. MSE and time on different number of k-means
iterations in PRS on data set S2.

We observe from the experiment on several syn-
thetic data sets that the probability is 100% for k2 ≤M
(see Fig. 7). The experiment is to run 100 times of PRS
on data sets S1-S4, Aggregation and R15.
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2)

Fig. 7. Boxplot to show the PRS iterations for different
synthetic data sets. The probability is 100% for k2 ≤
M , where M = 15 for S1-S4 and R15, and M = 7 for
Aggregation.

One way to compare the performance of the meth-
ods is to plot the MSE values with increasing time.
With enough processing time, the time-distortion fig-
ure can be used to check estimated quality at the time
axis.

We performed 50 runs of each algorithm on each
data set to study their average performance (see
Fig. 9). Box plots of MSE values and processing time
are used to reflect the performance of the algorithms
in average. Each box includes minimum, median (the
central red line), the 25th and 75th percentiles (the
edges of the box) and maximum values.
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Fig. 8. MSE values with increasing time from clustering algorithms on S-sets.

The time-distortion plots on S-sets (S1-S4) are com-
pared in Fig. 8. Among the clustering algorithms (RS,
DRS, PRS, RKM, KM++), PRS works best in terms
of the MSE value and processing time. Because of
the stopping criterion, PRS stops while the other
algorithms are still running. DRS reaches the local
minimum faster than RS because DRS stops whenever
there is no improvement and RS stops when the
number of iterations has been reached. Determinis-
tic selection converges faster than random selection.
RKM is the most inefficient algorithm since not every
repetition helps on the final result and a waste of
computation exists in RKM. For example, too many
repetitions are not improving the result on S4 (see
Fig. 8). KM++ reaches local minimum comparably fast
as RS, DRS and PRS, and the setting of repetitions for
KM++ is over-set in the experiment. This arises the
question that how many iterations are proper for RKM
and KM++ in order to obtain a good performance in
an efficient way.

As shown in the box plot for S-sets (Fig. 9), enough
running time guarantees good performance of RKM
and KM++. The degree of overlapping of S-sets in-
creases the running time of RKM and KM++ and
brings minor effect on swap-based clustering algo-
rithms. The running times of RS is stable. The swap-
ping candidates in deterministic swap depends on the
selection criterion. Thus, both DRS and PRS have high
variance on the processing time. PRS is a good choice
according to its MSE values and processing time.
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Fig. 9. Box plots of S-sets including minimum, 25th
percentile, median, 75th percentile and maximum. The
central red line represents median value, the edges of
the box are the 25th and 75th percentiles.

CM and CT contain multi-dimensional data. When
the data is high-dimensional, the feature space is
usually sparse [27]. The standard k-means algorithm
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for cluster analysis often do not work well in high
dimensional spaces. Thus, the algorithms employing
k-means are restricted by the performance of k-means.
RKM has a little bit better result than KM++ on
data CM, while KM++ works better than RKM on
CT. In terms of MSE values, RKM and KM++ work
better than swap-based algorithms on both CM and
CT (Fig. 10). However, the running times of RKM
and KM++ are higher than those for swap-based
algorithms. For highly separated data space, the prob-
ability of getting a good swap is relatively low, which
explains the high variance of MSE values for RS, DRS
and PRS. PRS performs better than RS and DRS on
CM; however, PRS is not stable on CT (Fig. 11). In
terms of the processing time, PRS is still the most
efficient one among the tested algorithms.

A summary table on processing time in Table 5
presents numerical results on different algorithms.
PRS requires 26% to 96% less processing time than
the others on different data sets.

4.3 An Application on Image Color Quantization

The most straightforward application of clustering
algorithms in image processing is color quantiza-
tion. When the input data set is the color space of
images, clustering points in three-dimensional space
are treated as standard color quantization. After the
clusters have been located, typically the points in each

TABLE 5
Summary of the median processing times (in

seconds).

RS DRS RKM KM++ PRS
S1 0.23 0.21 2.22 0.50 0.2
S2 0.27 0.30 2.97 4.59 0.1
S3 0.32 0.35 3.80 6.78 0.1
S4 0.34 0.35 5.47 12.93 0.1
A7 <0.1 <0.1 <0.1 <0.1 <0.1
R15 <0.1 <0.1 0.121 0.117 <0.1

BIRCH1 262 173 2413 1787 134
BIRCH2 315 413 535 539 126

CM 237 321 1112 1562 14
CT 497 306 1845 1261 19

cluster are averaged to obtain the representative color
to which all colors in that cluster are mapped.

We compare the proposed clustering algorithm with
other popular clusterings on the images3 for color
quantization. The images are in RGB color space
with size of 481*321 pixels. In order to speed up the
running time for all of the clustering algorithms, we
reduce the amount of image data by a subsampling
method [28]. The subsampling method can reduce the
size of image from 14% to 42% while the running time
reduced 55% to 94%. The difference of MSE values
for original images and subsampled images is from
-23% to 19%. Based on the numbers, we conclude
that the subsampling method is applicable in color
quantization.

The proposed method is compared to the algo-
rithms including random local search (RS), Fuzzy
c-means (FCM) and Genetic algorithm (GA) and
kmeans++ (KM++). The evaluations of the clusterings
by mean square error (MSE) and peak signal-to-noise
ratio (PNSR) are listed in Table 6. Comparing the
MSE and PNSR values, there is no clustering algo-
rithm that works for all images. The performance is
equally distributed among the algorithms and images.
The proposed algorithm has best performance at the
running time. A visualization of quantization results

3. http://cs.joensuu.fi/∼zhao/DATA/
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TABLE 6
MSE, PNSR (dB) and processing time (second) of different clusterings on subsampled images at quantization

level 32.

image 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MSE

RS 173 118 80 256 68 492 100 38 101 174 162 82 76 229 12
FCM 191 151 159 267 69 417 97 40 114 201 194 90 85 238 17
GA 177 118 79 260 67 399 102 38 103 171 158 82 77 233 11

KM++ 134 100 80 188 53 236 69 41 123 110 144 93 84 208 16
PRS 140 101 107 189 58 202 67 43 137 114 129 93 90 212 16

PSNR

RS 25.7 27.4 29.1 24.0 29.8 21.2 28.1 32.4 28.1 25.7 26.0 29.0 29.3 24.5 37.5
FCM 25.3 26.4 26.1 23.9 29.7 21.9 28.3 32.1 27.6 25.1 25.3 28.6 28.8 24.4 35.7
GA 25.7 27.4 29.2 24.0 29.8 22.1 28.1 32.4 28.0 25.8 26.2 29.0 29.3 24.5 37.5

KM++ 26.9 28.1 29.1 25.4 30.9 24.4 29.7 32.0 27.2 27.7 26.6 28.4 29.0 24.9 36.1
PRS 26.7 28.8 27.9 25.4 30.5 25.1 29.9 31.8 26.8 27.6 27.0 28.4 28.6 24.9 36.1

time

RS 152 133 78 150 125 139 129 203 112 117 105 89 131 162 42
FCM 73 47 41 66 80 52 62 74 73 58 51 108 58 58 24
GA 642 712 407 833 889 789 785 4353 530 623 577 685 666 756 259

KM++ 226 174 96 207 184 174 201 298 158 158 144 111 183 222 47
PRS 17 46 13 4 5 34 13 17 42 16 17 3 19 19 34

(a) original image (b) PRS (c) KM++

(d) RS (e) FCM (f) GA

Fig. 12. Sample quantization results for image 11 at quantization level 32. The main difference is shown in the
red circles.

from different algorithms is shown in Fig. 12.

5 CONCLUSION

We proposed a novel evaluation criterion so-called
centroid ratio based on centroids in prototype-based
clustering, which compares two clusterings and detect
unstably/incorrectly located centroids. The centroid
ratio highly correlates with external indices and MSE.
Since the proposed measure can detect incorrectly
located clusters, it is employed as a swap criterion
in Pairwise Random Swap algorithm. The algorithm
is compared with other algorithms, such as Ran-
dom Swap, Deterministic Random Swap, Repeated k-
means, and k-means++. It is the most efficient method
among these algorithms according to the experimental
results.

In practice, users suffer from a problem of param-
eter setting of algorithms when there is little prior
knowledge about data and algorithm. In the proposed

algorithm, it is not necessary to set any parameters
except the number of clusters.
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[7] P. Fränti and J. Kivijärvi, “Randomized local search algorithm
for the clustering problem,” Pattern Analysis and Applications,
vol. 3(4), pp. 358–369, 2000.



12
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Abstract

Expectation maximization (EM) algorithm is a popular way toestimate the param-

eters of Gaussian mixture models. Unfortunately, its performance highly depends

on the initialization. We propose a random swap EM for the initialization of EM.

Instead of starting from a completely new solution in each repeat as in repeated

EM, we make a random perturbation on the solution before continuing EM iter-

ations. The removal and addition in random swap are simpler and more natural

than split and merge or crossover and mutation operations. The most important

benefit of random swap is its simplicity and efficiency. RSEM needs only the

number of swaps as a parameter in contrast to complicated parameter-setting in

Genetic-based EM. We show by experiments that the proposed algorithm is 9%-

63% faster in computation time compared to the repeated EM, 20%-83% faster

than split and merge EM except in one case. RSEM is much faster but has lower

log-likelihood than GAEM for synthetic data with a certain parameter setting. The

proposed algorithm also reaches comparable result in termsof log-likelihood.

Key words: Expectation Maximization; Random Swap EM; Gaussian Mixture

Model; Split and Merge EM; Genetic-based EM; data clustering;
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1. Introduction1

Maximum likelihood (ML) estimation of theGaussian mixture models (GMMs),2

does not lead to a closed form solution. However, if the estimation problem is re-3

formulated in terms of so called latent or hidden variables,a numerical gradient4

ascent approach can be used. As the latent variables cannot be observed directly,5

expectation maximization (EM) [1, 2] algorithm iteratively refines the ML esti-6

mate by first calculating the expectation of the posterior ofthe latent variables,7

while keeping the parameters fixed. While keeping the posteriors fixed, the al-8

gorithm then computes the maximum of the parameters. This iterative process is9

guaranteed to converge.10

EM has two well known deficiencies. First, user needs to know in advance the11

number of Gaussian components. Second deficiency is that thequality depends12

on the initial parameters. A number of methods have been proposed to attack13

both problems simultaneously [3, 4]. However, such a solution needs to change14

the optimization cost. In general, we assume that the problem of the number of15

components can be solved by a validity index, and therefore,we do not consider16

the number of components as a parameter to be optimized.17

Initial parameters are needed for the first E-step. Unfortunately, not all initial18

parameters lead to the same unique solution when the algorithm converges [5]. Es-19

pecially for Gaussian mixture models, log-likelihood landscape is multimodal [6].20

A common way to address this problem is to run EM multiple times with differ-21

ent randomly chosen initial parameters [5] and pick the bestsolution as the re-22

sult. We call this variantrepeated EM (REM). The strategy gives good stability23

with respect to the log-likelihood and reduces dependency on the initialization [7].24

However, the solution space is searched inefficiently in REM,because after each25
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restart it can take a long time to converge without any guarantee that it leads to26

an improved solution. Running time can be improved by computing in each itera-27

tion a bound on the locally optimal log-likelihood and stopping early if the bound28

shows no improvement [8].29

Assuming that a complete restart is not necessary, search strategy based on30

changing only a part of the converged model can be utilized. One such strategy31

is to split one component into two and merge two other components [4, 9, 10, 11,32

12]. A method utilizing this strategy is calledsplit and merge EM (SMEM) [10],33

which searches systematically the best choice for the threecomponents: one for34

split (O(MN) operation,N is the data size andM is the number of components)35

and two for merge (O(M2N) operation). The choice is based on how well compo-36

nents match the local density of the data. Algorithm will terminate when no split37

and merge candidate brings improvement. Systematic approach needs to consider38

O(M3) triplets in total. In practice, the number of candidates searched is set lower39

than the number of all possible triplets.40

Genetic-based EM (GAEM) [13] improves the repeated EM by considering a41

parallel set of solutions (populations) instead of sequential ones. Operations such42

as crossover, mutation and selection are applied to the population iteratively. A43

single-point crossover, which exchanges components between two populations is44

employed. Mutation selects the components with similar parameters and swaps45

them to random positions. A new generation of populations isfinally obtained46

by a selection operation. There are five parameters involvedin the algorithm. In47

general, GAEM can achieve a good result by a proper set of parameters.48

Some other algorithmic strategies employed to escape a local maximum are:49

competitive learning [4], incremental clustering implemented ingreedy EM (GEM) [14],50
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stochastic variants such asstochastic EM (SEM) [15] andMonte Carlo EM (MCEM) [16].51

In this work, we use randomization instead of systematic search to select the52

component. Preliminary results of the proposed method werepublished in [17,53

18]. In the proposed algorithm,random swap EM (RSEM), replaces the split and54

merge -operations by more general addition and removal -operations. Proposed55

operations are simple and efficient. Removing a component, which is anO(1)56

time operation, is more straightforward than merging and only one component is57

involved. Creation of a new component is also simpler than splitting a component,58

where split is usually ill-posed (i.e., more variables thanequations). GAEM has59

five parameters, all of which affect the running time and performance. Proposed60

method is thus simpler and easier to adapt to different datasets and applications.61

In RSEM, randomly selected component is swapped to a new location in the62

feature space and the weight and covariance matrices are updated. The time com-63

plexity is O(NM), which is the same as one EM iteration. Even though more64

iterations are needed by random swap approach due to its trial-and-error nature,65

the total number of candidates is significantly less than by systematic search such66

as SMEM or repeated EM. After the swap is performed, EM is iterated until con-67

vergence. New solution is accepted only if it improves the previous one. In prin-68

ciple, RSEM algorithm terminates when none of the possibleNM swaps result69

in an improved solution [19]. However, a fixed number of swapsis sufficient in70

practice.71

2. EM algorithm and its Variants72

In this section, we first describe the existing methods that are compared to the73

proposed method, which is presented in Section 3.74
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2.1. EM algorithm75

EM algorithm can be used to estimatemaximum likelihood (ML) parameters

of many different types of parametric densities. For GMMs, the goal is to maxi-

mize the following log-likelihood:

L(Θ) = log p(X|Θ) =
N
∑

i=1

log
M
∑

j=1

αjN (xi|Θj), (1)

whereN (.|.) is Gaussian distribution,X = (x1, . . . ,xN) is the observedd-

dimensional data-set ofN vectors,Θ is the GMM andΘj = (µj,Σj) are the

mean vector and covariance matrix of thejth Gaussian, respectively. Finally,αj

is the mixture weight of thejth component. The parametersαj must satisfy the

following constraints:

M
∑

j=1

αj = 1, and, αj ≥ 0, j = 1, ...,M. (2)

Unfortunately, closed-form solution of the (1) is not possible [1], since it con-

tains the log of the sum. Maximization is then performed on the expectation of the

complete-data log-likelihood, given posterior density ofthe latent variables [1].

This function is usually called the Q-function, and can be written in a concrete

form for Gaussian mixtures as:

Q(Θ, Θt−1) =
N
∑

i=1

M
∑

j=1

τij {log αj + logN (xi|Θj)} . (3)

Θt−1 are parameters estimated in the previous iteration. Maximization of Eq. (3),

in terms ofΘ can be performed easily, by keeping the posterior probabilities τij

fixed. Then, given estimated parameters, posterior probability of xi from compo-

nentj, τij can be calculated as follows:

τij =
N (xi|Θj)αj

∑M

l=1N (xi|Θl)αl

(4)
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To find an initial set of parameters in EM algorithm, one possibility is to ran-76

domly select mean vectors and set equal weights and whole data covariance matrix77

for all components [20]. A more common practice is to first runk-means on the78

dataset to get hard partitioning. The initial mean vectors are directly the cluster79

centroids, partition covariance is the component covariance matrix and propor-80

tion of vectors in each partition is the component weight. Several short runs of81

k-means starting with random initial solutions each followed by a long run of EM82

is recommended in [7].83

EM suffers from the local maximum problem [6]. A standard solution for84

the initialization problem (REM) is to repeat random initializations withk-means85

followed by EM [7]. The best performing solution, in terms oflog-likelihood,86

is retained. This introduces a new parameter, the number of repeats. From the87

linearity of expectation, it is expected that the number of EM iterations in REM88

is multiplied by the number of repetitions. It means that themodel quality can89

be improved by increasing the number of repetitions, but at the cost of linearly90

increasing the processing time.91

2.2. Split-and-Merge EM92

One strategy to overcome the sensitivity to initializationof EM algorithm is93

to identify parts of the solution that do not fit well to the data, and revise the solu-94

tion by making local changes. When working in the component domain, we can95

change the solution by splitting a component into two and by merging two com-96

ponents into one.Split and merge EM (SMEM) [10] makes a systematic search97

through all possibilities for split and merge after which the algorithm selects the98

best candidates and performs the operations.99

SMEM algorithm searches among the candidates composed of combinations
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of all componentsi, j andk until the likelihood value improves. The candidates

are sorted by the merge and split criteria. Merge criterion is based on the correla-

tion of posterior probabilities of componentsi andj. The split criterion is based

on the Kullback-Leibler divergence between componentk and the local data den-

sity.

JMerge(i, j) =
τi(Θ)T τj(Θ)

||τi(Θ)||||τj(Θ)||

JSplit(k) =

∫

fk(X, θk) log
fk(X, θk)

pk(X, θk)
dx

(5)

where,τi(Θ) = (τ1i(Θ), ..., τNi(Θ)) is an N-dimensional vector consisting of the100

posterior probabilities for theith component.T denotes the transpose operation101

and1 < k 6= i 6= j < M . Thefk(X, θk) is the local data density around the102

componentk and thepk(X, θk) is the empirical distribution. The merged com-103

ponents are combined linearly and the split component is split by adding constant104

movements on the original parameters. Then a partial EM stepis performed on105

the merge and split candidate.106

The original acceptance rule, line 7 in Algorithm 1, used theQ-function, in-107

stead ofL(Θ) [10]. However, it was found in [21] that by doing so the global108

maximum might be accidentally rejected. In our experiments, we therefore use109

improvement of the log-likelihood as the acceptance rule.110

A practical problem of split and merge approach is that the split and merge111

operations are not straightforward to design. The assumption behind split-and-112

merge approach is that only the components of the triplet(i, j, k) are affected and113

the rest of the model is unchanged. Merge operation has a closed-form solution114

when we assume that the distributions are Gaussian. However, it is not possible115

to find a unique solution to the problem of splitting one component into two.116
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One alternative was proposed in [12], where one randomly selected singular value117

decomposition basis vector of the covariance matrix is usedto compute two new118

covariance matrices. It is also used in combination with theoriginal mean vector119

to generate two new mean vectors.120

Input: Data SetX = {x1,x2, . . . ,xN}
Output: ParametersΘ = {α,µ,Σ} and log-likelihoodL(Θ)

[Θ0, L(Θ0)] ← EM(X);1

while candidates left to process do2

Sort candidates(i, j, k)Cmax
by JMerge andJSplit (equation 5);3

for c = 1 to Cmax do4

[Θ
′

, L(Θ
′

)] ← partialEM((i, j, k)c);5

[Θ∗, L(Θ∗)] ← EM(X, Θ
′

);6

if (L(Θ∗) > L(Θ)) then7

Θ = Θ∗; L(Θ) = L(Θ∗);8

end9

end10

end11

returnΘ, L(Θ)12

Algorithm 1: SMEM algorithm

Furthermore, due to the split and merge operations,Cmax = M(M − 1)(M −121

2)/2 candidate triplets are generated. A systematic search through all possible122

triplets leads toO(M4NIEM) time complexity, whereIEM is the number of EM123

iterations needed to reach convergence after perturbation. Final processing time124

can be reduced by considering only topCmax candidates. In [10],Cmax was set to125
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five. We first experimentally find suitableCmax before comparing SMEM to other126

methods.127

Input: Data SetX = {x1,x2, . . . ,xN}, IEM , Ig, Ip, pc, tcorr

Output: ParametersΘ = {α,µ,Σ} and log-likelihoodL(Θ)

[Θp[Ip], L[Ip]] ← Initialization(X);1

for GAEM-iteration=1 to Ig do2

[Θp[Ip], L1[Ip]] ← EM(Θp[Ip], IEM );3

Θc[H]← crossover(Θp[Ip], pc); H = Ip ∗ pc;4

[Θc[H], L2[H]] ← EM(Θc[H], IEM );5

[Θs[Ip], L1(Θs[Ip])] ← Select (Θp[Ip], Θc[H], L1[Ip], L2[H]);6

Θs[Ip]←mutation(Θs[Ip], tcorr);7

Θp[Ip]← Θs[Ip];8

end9

execute lines 3 to 6 once;10

[Θ, L] ← EM(Θs[best], IEM );11

returnΘ, L12

Algorithm 2: GAEM algorithm

2.3. Genetic-based EM128

Genetic-based EM (GAEM) for learning Gaussian mixture models is proposed129

in [13]. Original design of GAEM includes the model selection. However, num-130

ber of componentsM is left as a user defined parameter in our task definition.131

So, we have modified the algorithm by keepingM fixed and removing the part132

where decision regardingM is made. Also, instead of MDL criterion we use133

log-likelihood during the selection in Algorithm 2.134
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In GAEM, the single point crossover operator selects a component index. First135

child gets components before the index from first parent and from the index on-136

wards from the second parent, and vice versa for the second child. Mutation op-137

erator selects components that model the data points similarly by using posterior138

probabilities (i.e.,JMerge(i, j)). If there is a correlation above a given parameter139

limit, the components are moved to random positions. New generation is selected140

from parent and child populations.141

There are two deficiencies in GAEM. One is that the algorithm involves mul-142

tiple solutions (population). When the population size (Ip) is large enough, a good143

result is achieved but it increases the running time linearly. The other one is the144

parameters. For crossover, mutation and selection steps, parameters are involved.145

In crossover, a probabilitypc determines the number of offsprings after crossover.146

A threshold for correlation coefficienttcorr between components is set for muta-147

tion. There are also parameters for GAEM iterationsIg and EM iterationsIEM .148

3. Random Swap EM149

The idea of therandom swap EM (RSEM) algorithm is to alternate between150

simple perturbation to the solution by random swap and convergence towards151

nearest optimum by the EM algorithm. A random swap consists of removal and152

addition operations.153

RSEM is presented in Algorithm 3. The initialization is performed as in the154

EM algorithm, described in Section 2.1. After the solution has been initialized, we155

performt random swap iterations (called RS-iterations). During eachiteration, a156

component is removed, a new one is added and the resulting solution is converged157

towards nearest optimum using EM algorithm. The best solution, in terms of log-158
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likelihood, is maintained as the starting point for the subsequent RS-iteration.159

Input: Data SetX = {x1,x2, . . . ,xN}
Output: ParametersΘ = {α,µ,Σ} and log-likelihoodL(Θ)

[Θ0, L(Θ0)] ← Initialization(X);1

for RS-iteration=1 to t do2

r = U(1,M), removerth component;3

p = U(1, N), add atpth position (see equation 7);4

normalize weightsα to sum to 1;5

new parametersΘs = {αs,µs,Σs};6

[Θst, L(Θst)] ← EM(X, Θs);7

if L(Θst) > L(Θ) then8

Θ = Θst;9

L(Θ) = L(Θst);10

end11

end12

returnΘ, L(Θ)13

Algorithm 3: RSEM algorithm

The removal operation is done by selecting a componentr randomly among160

M components from uniform distribution,r = U(1,M). This is a constant-time161

operation.162

The location of the new component is decided by selecting onedata point,163

xp, p = U(1, N) and setting it as the mean vector of the new component. The164

new component is therefore more likely to be placed in areas of high point density,165

such as cluster centers, than areas of low point density.166
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Figure 1: Result by RSEM for a two-dimensional Gaussian mixture density estimation problem.

(a) An initial solution by 10 runs ofk-means, (b)-(c) Removal and addition operation for the1st

iteration , (d) Convergence by EM, (e)-(g) The procedures onthe3rd iteration, (h) The final result

by RSEM with 10 iterations, (i) Ground-truth Gaussians.

The best solution found so far, in terms of log-likelihood, is always used as167

the starting point for the next iteration. If a swap and EM iterations fail to produce168

a better solution than the starting point, the new solution is discarded. Swap will169

decrease the log-likelihood of the solution but it can also change the solution so170
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that iterating EM will move it towards different optimum.171

The technique has been successfully applied to clustering with centroid model [22,172

23, 24]. We observed that the effect of a bad initialization is diminished when ran-173

dom swap is used. We therefore expect random swap to yield good results with174

Gaussian mixture models, too.175

The solution is fine-tuned with EM algorithm, so reasonable values for the

weight and covariance matrix are sufficient. Suppose the current likelihood func-

tion L(Θt) at RS-iterationt is obtained by EM. Letr be the component selected

for removal, and keep the rest of the components unchanged. The posterior prob-

ability is updated as follows:

τ s
ij =

αt
jN (xi|Θt

j)
∑M

l=1,l 6=r αt
lN (xi|Θt

l)
(6)

The equations for the new parameters of therth component are:

µs
r = xp

αs
r = αt

r or αs
r =

M
∑

l=1,l 6=r

(

N
∑

i=1

τ s
il

)

αt
l

Σ
s
r = Σ

t
r or Σ

s
r =

M
∑

k=1,k 6=r

(

N
∑

i=1

τ s
ik

)

Σk

(7)

In order to retain a valid Gaussian mixture model after the swap operation, weights176

αi, 1 ≤ i ≤ M are normalized so that they sum up to 1. The time complexity of177

the addition operation is linear with respect to the model sizeM . After each swap,178

the new parametersΘs are set as initial solutions for EM. After EM has converged,179

we get a new likelihood valueL(Θst) and we compute∆L = L(Θst)− L(Θt), If180

the difference is positive, the new parameter estimate replaces the previous best181

solution. Otherwise the new parameter estimate is discarded. This process is182
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repeated until all possible swap pairs are tried out and noneis left to improve the183

solution. However, as a practical matter we restrict the total number of swaps184

to a user selectable number of RS iterationst. An example of RSEM algorithm185

operating on data is illustrated in Fig. 1.186

To ensure a good solution, the number of iterationst for random swap should187

be set large enough so that there are enough successful swaps. Given the number188

of componentsM , the probability of selecting a component to be removed is189

1/M . The probability of selecting a point to be added is also1/M . Only if190

the point is inside one cluster, it will be a successful addition because EM can191

fine-tune the location even after then. Therefore it is not necessary to find near-192

optimal location during creation of a component. For a good swap to occur, a193

badly-placed component must be chosen and a location from the area where the194

component needs to move must also be chosen. Hence the probability of a single195

good swap is at least1/M2, andt > M2.196

4. Summary of Iterative Methods197

4.1. Comparing REM and RSEM198

RSEM is faster than REM if it converges with fewer iterations after a swap.199

We prove in [18] that the increment of Q-function value by randomly swapping a200

component in RSEM is greater than that by a random restart on all components in201

REM, which leads to the fact that processing time of RSEM is lessthan REM for202

reaching the optimal result. We will approximate log-likelihood by the Q-function203

as in [8].204

Theorem 4.1. A random swap limits Q(Θs, Θt−1) − Q(Θt, Θt−1) into the lower205
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and upper bounds of [−Nαt

r

2
d, Nαt

r

2
d], where d is the Mahalanobis distance be-206

tween the swapped centroids µt
r and µs

r.207

Theorem 4.2. For REM and RSEM, if d < 1
3
, the probability of Q(Θs, Θt−1) −208

Q(Θt, Θt−1) > Q(Θ, Θt−1)−Q(Θt, Θt−1) is 1. If d ≥ 1
3
, the probability is 1

2
+ 1

6d
.209

We see that the farther the new component is from the original, the closer to210

P = 1/2 we approach. However, REM will not have a higher probability than211

RSEM to reach a high Q-function value.212

4.2. Comparison of time complexities213

The time complexities of the algorithms are shown in Table. 1. M andN are214

the number of clusters and data vectors, respectively.S represents the number215

of REM repetitions, the number of RSEM swaps and the number of SMEM it-216

erations with improvement. ParametersI1, I2 andI3 are the iteration counts of217

EM convergence in the algorithms andC in SMEM indicates the number of can-218

didates, which is setC = 20 in our experiments. ParameterIg is the number219

of generations,IEM is the number of EM iteration used in GAEM andIp is the220

population size.221

REM and RSEM have similar strategies. The difference is in the number of222

EM iterations to converge in both methods. Since not every run of EM contributes223

to the final result in REM, the proposed RSEM algorithm, which changes only a224

part of the solution, achieves better or same result faster than REM. This is shown225

theoretically in [18] and experimentally in Section 5. For SMEM, the number of226

SMEM iterations with improvementS takes a major role in the time complexity227

of SMEM. It highly depends on the size of search space caused by the the number228

of candidatesC. RSEM is faster than SMEM whenI2 ≤ M + CI3. The merge229
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Table 1: Time complexity analysis on the methods.

total

REM EM O(I1MN) O(SI1MN)

SMEM

merge O(MN + M2N)

O(S(M2N + CI3MN))split O(MN + N log N)

EM O(3N)

GAEM

mutation O(M2)

O(IgI
2
pIEMMN)crossover O(IpM)

EM O(I2
pMNIEM)

RSEM

removal O(1)

O(SI2MN)addition O(MN)

EM O(I2MN)

operation in SMEM takes much more time than removal in RSEM. Thus, RSEM230

is faster than SMEM in most cases. In GAEM, number of generation Ig plays a231

similar role asS, then RSEM is faster than GAEM if an average EM iterations are232

less thanI2
pIEM . On the other hand, we can also restrict EM iterations in RSEM233

to IEM , then extra computations caused by GAEM is quadratic to population size.234

5. Experimental Results235

We tested the algorithms1 using both synthetic and real data sets from various236

sources summarized in Table 2. We divide the sets into two categories. The first237

category is synthetic data sets. These are fairly small and contain a known number238

of clusters. In the tests, we match the number of components with the number239

1http://cs.joensuu.fi/sipu/soft/
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of clusters whenever the number of clusters is known. The second category is240

large data sets obtained from UCI Machine Learning Repository[25]. We set the241

number of components to 15 for CM and 20 for CT.

Table 2: Attributes of the data sets used in our experiments.

Data sets Name Dimension Data Size No. of Clusters

Synthetic
S1-S4 [26] 2 5000 15

R15 [27] 2 600 15

Real
CM [28] 9 68040 15

CT [28] 16 68040 20

242

In all experiments Gaussian mixture models are restricted to diagonal covari-243

ance matrices. The baseline algorithm is the REM algorithm. Initialization of the244

GMM for each repetition is described in Section 2.1. RSEM is given one random245

initial solution and the same number of RS-iterations is performed as the number246

of random solutions given to REM. The EM algorithm or partial EM algorithm is247

allowed to iterate until convergence (threshold =1.53e − 05), except in GAEM,248

IEM = 3.249

The number of candidatesCmax considered in each SMEM round is fixed to250

20 as it seems to provide the best accuracy and processing time trade-off (see251

supplementary2). Increasing the number of candidates closer to maximumO(M3)252

does not improve the accuracy at all. SMEM algorithm immediately accepts a253

candidate that results in a better solution. When none of theCmax candidates254

result in improvement, the algorithm stops.255

2http://cs.joensuu.fi/ ˜ zhao/Software/supplementary1.pdf
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For GAEM, bothIp and Ig affect the running time. However, the result in256

terms of log-likelihood depends more onIp. An experiment on different combi-257

nations ofIp andIg on data S2 is conducted (see the supplementary file). The258

number of generations helps little to improve the log-likelihood, which however259

brings high running time. Thus, we selectIg = 10. The population sizeIp affects260

the result clearly. It seems the log-likelihood is stable whenIp > 20 for S2. How-261

ever, since the running time of GAEM (proportional toI2
p ) depends highly onIp,262

we chooseIp = 15 to reduce the running time. The crossover probabilitypc = 0.8263

andtcorr = 0.95 following the setting in [13].264

REM:−26.52 SMEM:−26.54 GAEM:−26.43 RSEM:−26.43
two 

components

Figure 2: Gaussian models on data S2 estimated from EM variants.

We demonstrate the Gaussian models estimated from REM, SMEM,GAEM265

and RSEM on data set S2 in Fig. 2. The experiment is conducted by20 repetitions.266

The average among them in terms of log-likelihood is shown. The models are267

displayed as ellipses. REM and SMEM are clearly worse in parameter estimation268

than GAEM and RSEM.269

For S1 to S4, ground-truth distributions are available. Forcomparing the270

GMMs obtained from different EM variants, we calculate the squared Euclidean271

distance between estimated and ground-truth GMMs using theclosed-form solu-272

18



tion in [29]. The distance values are the average of 50 results. There are two out273

of four cases that RSEM is closer to ground-truth than competing methods even274

though log-likelihood is the best in all cases. It implies that in terms of parameter275

estimation by likelihood is not always a good proxy. The goalmetric, however in276

the present work is log-likelihood.277
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Figure 3: Squared Euclidean distance between ground-truthGMM and estimated solutions vs.

log-likelihood values.

To obtain robust estimates of average log-likelihood and CPUtime values,278

each algorithm is repeated 50 times. A summary on the mean log-likelihood val-279

ues is presented in Table 3 and processing time in Table 4. Statistical tests run280

on the distributions of log-likelihood values and processing times showed that the281

processing time follows Gaussian distribution while log-likelihoods do not. Fur-282

thermore, the shapes of the log-likelihood distributions differ from each other.283
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Hence statistical significance tests such as t-test or normal rank-sum test can not284

be used for log-likelihoods. Thus, we performed t-test onlyon the processing time285

of RSEM and other three methods (REM, SMEM and GAEM) respectively to em-286

phasize that RSEM is significantly faster than the EM variantswith comparable287

or better log-likelihood. We use an asterisk (*,p < 0.05) to indicate the significant288

difference between RSEM and other EM variants.289

Table 3: Summary of the mean log-likelihood values.

S1 S2 S3 S4 R15 CM15 CT20

REM -26.20 -26.51 -26.63 -26.37 -6.48 -10.34 -3.64

SMEM -26.25 -26.53 -26.61 -26.38 -6.57 -10.35 -3.65

GAEM -26.11 -26. 43 -26.59 -26.34 -6.35 -10.35 -3.65

RSEM -26.15 -26.45 -26.60 -26.34 -6.43 -10.33 -3.63

Table 4: Summary of the mean processing times (seconds).

S1 S2 S3 S4 R15 CM15 CT20

REM 3.18* 3.94* 4.59* 4.07* 0.32* 794* 2551*

SMEM 2.29* 2.80* 3.34* 4.38* 0.29* 2267* 961

GAEM 7.09* 6.82* 6.45* 6.59* 1.13* 157 315

RSEM 1.27 1.66 1.71 1.70 0.21 355 1568

In processing time SMEM can vary greatly. The variance mainly comes from290

theCmax candidates. The algorithm stops if there is no improvement among the291

candidates, which decreases the running time in some cases.This is also reflected292

in log-likelihoods for CT data set. SMEM is capable of improving the initial293

solutions according to log-likelihood, but the effort needed varies greatly, resulting294
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in large variation in running times. The other algorithms are not affected much295

by the data set. Difference in running time between REM and RSEMis explained296

by the need to improve the entire model in REM versus the smaller changes in297

RSEM.298

GAEM has good performance in terms of log-likelihood, however, it is much299

slower than RSEM for synthetic data. For real data, the running time is faster than300

RSEM, however the log-likelihood is worse. This is a major difficulty in using301

GAEM in practical applications. How to set parameters for a new dataset in such302

way that quality of the solution is maintained while processing time is kept in303

control. In contrast, RSEM offers simplicity to users. If processing time is not an304

issue, RSEM can be run until convergence, and then no parameter is required.305

6. Conclusions306

We proposed a random swap EM algorithm in order to get rid of the tendency307

of the standard EM algorithm to get stuck in a local maximum. The proposed308

RSEM indicates that it is not necessary to start from the beginning in each restart309

as it does in the repeated EM. The RSEM is also shown to be simpler and more ef-310

ficient than other EM variants. The removal and addition operations in RSEM are311

more general and simpler than split and merge operations in SMEM. They use less312

parameters than crossover and mutation in GAEM, where crossover involves two313

populations at a time and a criterion is needed in mutation. Comparing the pro-314

posed algorithm to the REM, we found that RSEM reached higher orcomparable315

level of log-likelihood 9%-63% faster, which was proved by abound derived from316

formulas. RSEM is also easier to implement and more efficient than the split-and-317

merge EM (20%-83% faster). Genetic EM has good performance,however, the318
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complicated parameter setting makes it less useful in practice.319

The number of swaps is a key parameter in the proposed method,which de-320

cides the performance of RSEM. As a future work, we plan to investigate ways321

to automatically select the number of swaps, as well as theoretical support for322

random swap strategy in Gaussian mixture models.323
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ABSTRACT
The Expectation-Maximization (EM) algorithm is a popular
tool in estimating model parameters, especially mixture mod-
els. As the EM algorithm is a hill-climbing approach, prob-
lems such as local maxima, plateau and ridges may appear. In
the case of mixture models, these problems involve the initial-
ization of the algorithm and the structure of the data set. We
propose a random swap EM algorithm (RSEM) to overcome
these problems in Gaussian mixture models. Random swaps
are repeatedly performed in our method, which can break the
configuration of the local maxima and other problems. Com-
pared to the strategies in other methods, the proposed algo-
rithm has relative improvements on log-likelihood value in
most cases and less variance than other algorithms. We also
apply RSEM to the image segmentation problem.

Index Terms— EM algorithm, unsupervised learning,
mixture models, image segmentation

1. INTRODUCTION

As a standard method for the fitting of finite mixture mod-
els, particularly normal mixture models, the use of EM algo-
rithm [1] has been demonstrated for the analysis of data from
a wide variety of fields. However, the EM algorithm has sev-
eral drawbacks: it is sensitive to initialization, it is known to
get stuck at local optimal solutions, and sometimes it con-
verges to the boundary of the parameter space [2].

To overcome the problems mentioned above, many vari-
ants of the EM algorithm have been proposed. Several meth-
ods for choosing sensible starting values have been discussed
in [3]. To address the inappropriate distribution of the compo-
nents in data space when locally trapped, Ueda and Nakano
proposed the Split and Merge EM (SMEM) algorithm [4]. It
escapes the local maxima in many situations and performs
better than DAEM [5]. However, the split and merge opera-
tion in the SMEM algorithm is an ill-posed problem accord-
ing to [6]. Greedy EM (GEM) algorithm was proposed in
[7]. It reduces the problem of learning a k-component mix-
ture model to a sequential learning of two-component model,

*The author is funded by Nokia Foundation, Finland.

and it offers a mechanism of dynamically allocating new com-
ponents outside the overpopulated center regions. In addition,
its time complexity is lower than that of SMEM.

In this paper, we propose a randomized version of the
EM algorithm to overcome the limitations of the EM vari-
ants as mentioned above. The motivation of the random swap
EM (RSEM) can be considered as random perturbations of
the results generated by EM. The reasons for introducing the
randomization are: the random perturbations prevent the pro-
posed algorithm from staying near the unstable or hyperbolic
fixed points of EM, as well as from its stable fixed points
corresponding to insignificant local maxima of the likelihood
function. Consequently, the slow convergence of the EM al-
gorithm can also be avoided. Moreover, because of the ran-
domization in the algorithm, it becomes less sensitive to its
initialization, which is one of the main reasons that cause the
local maxima problem.

2. EM ALGORITHM AND ITS VARIANTS

2.1. Conventional EM algorithm

We briefly review the main features of the EM algorithm [8].
The log-likelihood function for complete data Z =

{X, Y }, where Y = {y1, .., yn, ..., yN} is the observed
data, X = {x1, .., xn, ..., xN} is the missing information, is
defined as:

L(Θ|Z) = log p(X, Y ; Θ) = log (p(Y |X ; Θ)p(X)) (1)

N is the data size and Θ is an unknown parameter set and
p(X, Y ; Θ) is the joint probability density of Z and p(X) is
the probability density of X . The log-likelihood L(Θ|Z) is
unobservable since p(X) is unknown.

The log-likelihood function for incomplete data can be
defined as:

L(Θ|Y ) = log
N
∏

n=1

p(yn|Θ) =
N

∑

n=1

log

M
∑

m=1

αmgm(yn; θm)

(2)
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(b) EM results

Fig. 1. The effect of initialization on EM algorithm: two dif-
ferent initial solutions (left); two EM results (right).

Here M is the number of components, αm is the mixing pro-
portion of the mth component, which satisfy the constraints:

M
∑

m=1

αm = 1, and, αm ≥ 0, m = 1, ..., M. (3)

The gm(yn; θm) is a d-dimensional density model corre-
sponding to the mth component, where θm is the parameters
of it, and yn is the nth observed data point.

It is difficult to optimize Equation 2 because it con-
tains the log of the sum. Hence the expectation function
of L(Θ|Z) given Y is defined as Q function in the EM
algorithm: Q(Θ; Θ(k)) = E{L(Θ|Z)|Y, Θ(k)}. The EM
algorithm is as follows:

1. Expectation-step: calculate Q function Q(Θ; Θ(k));

2. Maximization-step: choose Θ to be any value which
maximizes Q(Θ; Θ(k)).

It may not be numerically feasible to find the value of Θ
that globally maximizes the Q function. That is, one chooses
Θ(k+1) to increase the Q function Q(Θ; Θ(k)) over its value
at Θ = Θ(k), rather than to globally maximize it over all
Θ. Under suitable regularity conditions, Θ(k) converges to
a stationary point of L(Θ). However, when there are several
stationary points (local maxima, minima, saddle points), Θ (k)

does not necessarily converge to a significant local maximum
of L(Θ) [9].

In practice, the EM algorithm has been observed to be
extremely slow in some applications. As mentioned in [10],
slow convergence appears when the proportion of missing in-
formation is high. Moreover, the convergence rate of EM de-
pends on the initial positions. When the log-likelihood sur-
face is littered with saddle points and sub-optimal maxima,
final solution of EM greatly depends on its initial solution.

For example, as shown in Fig.1, with two different initial so-
lutions generated by k-means and the same data set, EM gives
different final solutions. A solution could be a random initial-
ization with several runs of EM itself or k-means. Common
practice with EM is to first iterate k-means and then use the
partitions to initialize component weights and covariance ma-
trices. This has the advantage that we do not need to make
educated guesses about the initial covariance matrices or use
a scaled version of the covariance matrix of the entire data set.

2.2. Variants of the EM algorithm

Split and merge strategies have been often used in image
segmentation. An iterative split-and-merge algorithm is used
to generate codebook in vector quantization [11]. Splitting
is applied in the X-means algorithm [12] to to overcome the
problems existing existing in K-means.

With the split and merge operations in EM algorithm,
the criteria for choosing the candidates should be considered.
There are many ways to decide the criteria for splitting and
merging based on the data set and algorithm itself. Conse-
quently, finding a proper criterion is one of the constraints in
SM operations. In the proposed method, random swap (RS)
is an operation to randomly pick a component and swap it to
another randomly selected place. The original configuration
of the whole solution is perturbed in an uncertain way by RS
operation without changing the number of components. We
will see the different results coming from these two opera-
tions in the next section.

Two existing variants of EM algorithm are introduced
for the purpose of comparisons. One is SMEM algorithm
[4] with unchanged number of components. The other is the
GEM algorithm [7], which only employs addition operation
and the number of components increases with each addition.
The key point of SMEM is

Q∗ = Q∗
i + Q∗

j + Q∗
k +

∑

m �=i,j,k

Q∗
m (4)

Here, Q is the Q-function mentioned in Section 2.1, and m
represents the components. SMEM performs split and merge
on the ith, jth, kth components until a better result is achieved
(i.e. Q∗ improves).

The GEM employs the strategy that starts with one com-
ponent and optimally adds new components one after another.
Let fm(y) =

∑M
m=1 αmgm(yn; θm). The optimal new com-

ponent φ(yn; θ) is found by log-likelihood, and correspond-
ing mixing weight needs to satisfy:

{θ∗, α∗} = argmax
α

N
∑

n=1

log[(1− α)fm(yn) + αφ(yn; θ)]

(5)
The Greedy EM algorithm repeats these two steps until a stop-
ping criterion is met: insert a new component to split the orig-
inal one and apply EM until convergence.
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Table 1. Parameters estimated from different EM-based algorithms
Parameters: Θ True values: Θ∗ Initial values: Θ0 EM: Θ∧ SMEM: Θ∧ RSEM: Θ∧

α1 0.333 0.333 0.318 0.005 0.332
α2 0.333 0.333 0.379 0.694 0.336
α3 0.333 0.333 0.303 0.301 0.332
μ1 (0, -2) (-1, 0) (-1.175, -0.054) (0.482, -2.316) (-0.086, -2.023)
μ2 (0, 0) (0, 0) (-0.049, 0.006) (-0.035, 0.929) (-0.06, -0.02)
μ3 (0, 2) (1, 0) (-1.126, 0.105) (-0.1, -2.05) (-0.01, 2.09)
Σ1 (2, 0; 0, 0.2) (1, 0; 0, 1) (1.41, 0; 0, 2.99) (0.43, 0; 0, 4.6) (1.81, 0; 0, 0.17)
Σ2 (2, 0; 0, 0.2) (1, 0; 0, 1) (0.80, 0; 0, 3.06) (2.08, 0; 0, 1.53) (2.20, 0; 0, 0.19)
Σ3 (2, 0; 0, 0.2) (1, 0; 0, 1) (1.38, 0; 0, 2.93) (1.81, 0; 0, 0.16) (1.96, 0; 0, 0.21)

2.3. Random Swap EM

As EM starts with a random (potentially poor) solution, the fi-
nal result of EM highly depends on the initialization. To avoid
the sensitivity to initialization, RSEM randomly picks a com-
ponent and relocates it to a random position. The parameters
of the components will be modified accordingly. The proce-
dure of randomization breaks up the configuration of the pre-
vious step, which can overcome the problems of EM. More-
over, the underlying EM characteristic helps to find good es-
timates of the parameters in a comparatively small number of
iterations. The algorithm can be described as follows:

1. Initialization by several runs of k-means;
2. Perform a number of RSEM iterations and select the

best solution.
Randomly pick up one component (i) and one position

among the points (yx). Update the Q function as follows:

Q∗ = Q
′
i +

∑

j �=i

Qj (6)

Here Q
′
i is the updated Q function of the randomly selected

component where the parameters are Θ
′
i = {α′

i, μ
′
i, Σ

′
i}. The

new parameters are: μ
′
i = yx, α

′
i =

∑M
j=1,j �=i(αj ∗ Pj),

where Pj is the posterior probability and the covariance Σ
′
i is

kept unchanged. Maximize the Q function to find Θ, if the
log-likelihood improves, Q = Q∗; otherwise, continue;

In split and merge operations, the candidates have to be
chosen in order to find the optimal one. The number of can-
didates affects the time complexity of the algorithm. Sim-
ilarly, the criteria for merge and splitting also influence the
time complexity. However, random swap will not increase
time complexity since randomly picking up and changing po-
sition is a linear time operation with respect to model size.
The time complexity of SMEM algorithm is O(N 2 + M5).
If the number of component is large, the time complexity of
SMEM will be a problem. Because of splitting and partial
update, the time complexity of the Greedy EM is O(M 2N).
In contrast to the SM based methods, the time complexity of
RSEM is only O(kMN), where k is the number of swapped
iterations used in the algorithm.

3. EXPERIMENTAL RESULTS & APPLICATIONS

3.1. Split and Merge EM vs. Random Swap EM

We found out that SMEM algorithm is not compatible with
the log-likelihood framework, which is also mentioned in
[13]. In this case, a simple data set is generated according
to the true parameters (Θ∗) shown in Table 1 to display the
effectiveness of our algorithm. With the initial value Θ0, the
final results from EM, SMEM and RSEM are listed in the
table. As we can see, the parameters estimated by RSEM are
closer to the true parameters than those by other algorithms.

3.2. Greedy EM vs. Random Swap EM

As GEM changes the number of components, we set the
maximum number allowed as the same as the true number of
components. A comparison of log-likelihoods between con-
ventional EM, GEM and RSEM is shown in Table 2. The data
sets (Q1, Q2, S1, S4) are artificially generated with normal
distribution (no. of components are 6,3,15,15 respectively).
According to the mean and standard deviation value of the
log-likelihood from 50 runs, the results indicate that RSEM
has two significant digits’ difference on likelihood for Q1,Q2
and S1 and at least 10% less standard deviation than the GEM.

3.3. Image Segmentation

We applied the proposed RSEM algorithm to color image seg-
mentation on standard test images1. YUV color space per-
forms better than RGB in our experiments, thus we display
the segmentation results of ”pepper” in YUV color space by
EM, SMEM and RSEM algorithm in Fig.2. The number of
components is set as 12, which also indicates the number of
colors in the algorithms. As shown in the figure, EM is the
fastest algorithm with the lowest log-likelihood value. RSEM
is the compromise between EM and SMEM, and it has visibly
better results than EM. We compared the number of segments
obtained from the results of the three algorithms, where the

1www.imageprocessingplace.com/root files V 3/image databases.htm

2399



Table 2. Log-likelihood comparisons of RSEM, GEM and EM.
��������Method

Data Q1 Q2 S1 S4
mean std mean std mean std mean std

GEM -6.874 0.0103 -3.598 0.0827 -26.308 0.4347 -26.76 0.19
RSEM -6.795 0.0019 -3.422 0.0254 -26.117 0.0191 -26.38 0.026
EM -6.873 0.0668 -3.572 0.013 -26.26 0.081 -26.377 0.033

segments are the objects in the image. RSEM has less seg-
ments than SMEM as shown in the figure, where more seg-
ments indicate unnecessary objects are detected in our case.

(a) Original Image

(b) EM

(c) SMEM (d) RSEM

Fig. 2. Image segmentation results. (a). Original image and
result of 80 segments by Canny operator (b). EM algorithm
with 57 segments(CPU time: 2.31s, log-likelihood: -11.3162)
(c). SMEM algorithm with 59 segments(CPU time: 24.97s,
log-likelihood: -11.2564) (d). RSEM algorithm with 45 seg-
ments(CPU time: 8.55s, log-likelihood: -10.8137)

4. CONCLUSIONS

The proposed RSEM algorithm is capable of estimating the
parameters better, and with randomly perturbing the config-
uration of the results from the EM algorithm, it overcomes
existing problems of the EM algorithm with lower time com-
plexity than other tested methods. Experiments conducted on
different data sets and differentmethods demonstrated that the
proposed algorithm made a clear improvement over the con-
ventional EM algorithm. Meanwhile, the application in color
image segmentation also gives promising results. We believe
that the proposed method is widely applicable.
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