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Abstract—Usually the mel-frequency cepstral coefficients are
estimated either from a periodogram or from a windowed pe-
riodogram. We state a general estimator which also includes
multitaper estimators. We propose approximations of the variance
and bias of the estimate of each coefficient. By using Monte Carlo
computations, we demonstrate that the approximations are accu-
rate. Using the proposed formulas, the peak matched multitaper
estimator is shown to have low mean square error (squared bias
-+ variance) on speech-like processes. It is also shown to perform
slightly better in the NIST 2006 speaker verification task as com-
pared to the Hamming window conventionally used in this context.

Index Terms—Cepstral analysis, MFCC, multiple windows, mul-
titapers, speaker verification, speech analysis.

I. INTRODUCTION

HE cepstrum was introduced by Bogert, Healy and Tukey
T in the early 1960s [1]. It is defined as the inverse Fourier
transform of the log-spectrum of a stationary random process
[2]. The cepstrum has become a fundamental tool in many ap-
plications, such as speech and audio processing [3]. In these ap-
plications, a psycho-acoustically motivated frequency warping
transformation is usually applied to the spectrum before the log-
arithm and the inverse Fourier transform, such as in the popular
mel-frequency cepstral coefficients (MFCCs) [3]. The results
presented in this letter will hold for any frequency warped cep-
strum, including the ordinary cepstrum, but we will still use the
term “MFCC” for brevity.

Typically, the spectrum for MFCC computation is estimated
using the periodogram, i.e., squared magnitude of the Fourier
transformation of the data. The periodogram suffers from large
bias and large variance, altogether causing large estimation
errors in the cepstral coefficients. The bias can be reduced
by windowing the time series with, for example, a Hamming
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window [4]. The windowed periodogram has low bias in gen-
eral, but it still suffers from high variance. Therefore, one may
consider using a so-called multitaper spectral estimator instead.
A multitaper spectral estimator is an average of windowed
periodograms using different orthogonal windows (aka tapers),
e.g., the Thomson [5], the sine [6], and the peak matched
multitapers [7]. The multitaper spectrum estimator is known to
have low variance, but has not gained much attention in MFCC
estimation [8]. One reason may be that the statistical properties
of the multitaper MFCC estimator have previously not been
investigated. It is our purpose to address this issue in this letter.

In Section II of this letter we state the general form of an
MEFCC estimator, which will include the MFCC computed from
the periodogram, the windowed periodogram, the Bartlett and
the Welch method, as well as multitaper spectrum estimators.
The statistical properties of the cepstrum computed from the
periodogram are well known [2], [9], [10]. However, the bias
and variance of the cepstrum or of the MFCCs computed from
the multitaper spectrum estimator have not been, to the best of
our knowledge, studied so far. In Section III-A, we therefore
derive approximate expressions for the bias and variance of our
general MFCC estimator. From a statistical viewpoint, this is
an important result, since one may argue that it is hazardous to
use an estimator without knowing its bias and variance. In Sec-
tion III-B, we compare the approximations with Monte Carlo
computations which show that our approximations are accurate.

The approximate formulas for the bias and variance that we
derive are then used in Section IV to compare the mean square
error (MSE = squared bias + variance) of different MFCC
estimators, including the Hamming window, the Thomson mul-
titapers, the sine multitapers and the peak matched multitapers
on speech-like random processes. Our results show that the mul-
titaper MFCC estimators have much lower MSE than the com-
monly used Hamming window estimator. Finally, we demon-
strate the effectiveness of multitaper MFCC estimation over the
conventional Hamming window based MFCC extraction, in a
speaker verification context. The results, in the framework of
NIST 2006 speaker recognition evaluation (SRE), are presented
in Section V.

II. THE GENERAL NONPARAMETRIC MFCC ESTIMATOR

We approximate one frame of speech data (~30 ms)
by a stationary Gaussian random process. Thus, let
x = [z(0) x(n—1)]T be a part of a real-valued
Gaussian zero-mean stationary random process in discrete time
with a strictly positive spectrum s(f), 0 < f < 1. Itis assumed
that the covariance function of the process is zero for time-lags
greater than n. Our aim is to estimate the MFCC, cpp € R™, of
this process, which is defined as
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cMéléH log(Ms) ()
m

where log operates element-wise, M € R™*" is a frequency
warping filter bank, the superscript H denotes conjugate trans-
pose, ® is the m-by-m Fourier matrix with the (a, b)th element:

o2 {e—i2w<a—1><b—1>/m}
ab

ands = [s(0/n) s(1/n) s((n—1)/n)]" is the spec-
trum vector, which is symmetrical, i.e., s(k/n) = s((n—k)/n).
The filter bank M is chosen such that Ms possesses the same
symmetry as the spectrum vector s. Due to this symmetry, (1) is
real-valued and can efficiently be computed using the discrete
cosine transform (DCT). Note that cyg reduces to the ordinary
cepstrum if M is chosen to be the n-by-n identity matrix.

In this letter, we will consider the following MFCC estimator:

v = L0 log(MS) 2)
m

where § is the multitaper spectrum estimator [4], [5], given by

s=[500) 5(1) sn—1]" with (3
k n—1 2
$(0) = DA |3 wit)a(e 2
j=1 t=0
k 2
=D M) Wi ex|", p=0,....n—-1 4
j=1
where k& multitapers, w; = [w;(0) wiln—1)]%, 5 =
1,...,n, are used with corresponding weights A(j), and where
¥, is the n-by-n diagonal Fourier matrix defined by
O (e e s ]

The multitaper estimate is thus computed as a weighted av-
erage of k sub-spectra, W;‘-F\Ilpx 2, 7 =1,...,k. This will re-
duce the variance of the estimate, since the multitapers are de-
signed such that the different sub-spectra are approximately un-
correlated with each other [4], [5], [7].

The estimator reduces to the windowed periodogram if k = 1
and A\ = 1 and if additionally, w1 (t) = 1/1/n, it reduces to the
periodogram. It will also account for the Bartlett and the Welch
method by appropriate choice of w; and A(),j = 1,..., k. By
selecting the frequency warping matrix MM, this estimator will
transform to any frequency warped cepstrum, including MFCC
and the ordinary nonwarped cepstrum.

III. BIAS AND VARIANCE OF THE ESTIMATOR

A. Proposed Approximation Using Taylor Expansion

From a statistical perspective, it is of great interest to compute
the bias and variance of a proposed estimator. In this section
we will, for the first time, derive approximate formulas for the
bias, bias [ép], and the covariance matrix, V [¢p], of the MECC
estimator. From a practical perspective, it seems reasonable to
prefer the estimator with the smallest MSE for all coefficients:
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MSE(énm)2E [(em — ém)?] = bias[ém]” + diag (V [ém])
)
where the square operates element-wise.
To derive the bias and variance of our general MFCC esti-
mator, we start with the expectation of the multitaper spectrum
estimator, which is given in [4]

A diag (WT\IIOR\II(? W)
Efs] = ~ ©

A" diag (WT\I!:n_lR\Ilf_IW)

where R denotes the covariance matrix of x, the multitaper
vectors are the columns of W € R™** with weights A =
[A(1) MK)]". The (a,b)th element of the covariance
matrix of the multitaper spectrum estimator can be found, sim-
ilar to what is done in [4, page 229], as

VI = {\T W, R, W[ A
a7 ‘WT\IIG_lR\IIf_IW‘Z/\} )
ab

where the absolute and square operator are defined element-
wise.

We consider the following Taylor expansion around the mean,
m., of a random variable z:

—2?2 ®

(z—m.) — L (m,

m, 2m?2

log(z) = log(m.) +

which is an extension of the commonly used formulas for prop-
agation of uncertainty. Since E [(1/m)(z — m_)] = 0, this ap-
proximation gives us

V[2]
2m?2’

z

E [log(2)] ~ log(m) —

Applying this element-wise on a random vector z gives
diag (V [2])

E[log(z)] =~ log(E [z]) 2E [2]?

where the logarithm, the division and the square operate ele-
ment-wise on vectors. This gives us the following approxima-
tion of the expectation of the multitaper cepstrum estimator:

E[ém] = %QHE [log(MS8)]

~
~

3|~

o (log (ME[E]) - diag (MV [8] MT)>

2 (ME [8])’
C))

The bias of the estimator is

g Lo ME [§]> diag (MV [s] M7)
bias [¢nm] ~ m<I> (log< Ms 2 (ME [8))°
(10)

Based on comparisons with Monte Carlo computations as de-
scribed in Section III-B, it is our experience that the last term in
the Taylor expansion in (8) significantly improves the approxi-

mation of the bias. The approximation of the variance, however,
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Fig. 1. This figure shows how accurate the proposed approximate formulas of
bias and variance are. In the left plot, the approximation of the bias and the true
bias (Monte Carlo computed) is shown when the MFCC is estimated using a
Hamming window and peak matched multitapers with & = 12 for a Gaussian
AR(10) process. In the right plot, the approximate variance of the MFCC esti-
mated using a Hamming window and peak matched multitapers with & = 12
for a Gaussian AR(10) process is compared to the true variance. As seen the
approximations are accurate.

Bias Variance MSE = Bias? + Variance

N [
Peak m. k=8

0.01¢-

Peak m. k=16

0.005

0 0
0 10 20 0 10 20 0 10 20
Mel-cepstral coefficient Mel-cepstral coefficient Mel-cepstral coefficient

Fig. 2. Bias, variance and MSE (squared bias plus variance) of the MFCC
estimator on speech-like random processes when Hamming window and peak
matched multitapers (k = 4, 8,16) are used.

is sufficiently accurate even when omitting the last term. Thus,
after dropping the last term in (8), we find
V [z

2
z

V{log(z)] ~

For a random vector z, the above expression generalizes into the
following approximation of the covariance matrix:

Vz]

V [log(z)] ~ W

(1)

where the division is element-wise. Consequently we can ap-
proximate the covariance matrix of the MFCC estimator as

Viem] =V [%@H log (Mé)}

1 MV [8] M7
m? " ME[8] E[§]" MT

(12)

Using (10) and (12), we can approximate the MSE of each of
the different coefficients for any given Gaussian random process
and for any given set of multitapers in our general MFCC esti-
mator by the equation given in (5).

B. Confirmation of the Proposed Approximate Formulas

In this section, we will demonstrate the accuracy of the pro-
posed approximate formulas (10) and (12) by comparing them
with Monte Carlo computations. The bias and variance of the
MEFCC estimator can be Monte Carlo computed for any given
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random process that we can simulate realizations of, and for any
given set of multitapers. The number of simulations is chosen
large enough (100 000) for the Monte Carlo error to be negli-
gible. We choose a Gaussian AR(10) process with parameters
estimated from a recorded /a/ in the Swedish word “Halla”, n =
240, with sampling frequency fs = 8 kHz, and we choose to
use the ordinary mel-scale filterbank with m = 27 [3]. Compu-
tations are made for a Hamming window and for a peak matched
multitaper with k& = 12 windows [7]. The result is shown in
Fig. 1. In this example, the approximation is very accurate. In-
deed, the approximations are so close to the true values that it
is even difficult to separate the lines. Similar observations were
made also for other AR-processes using Hanning, rectangular,
Thomson, sine, and peak matched multitapers with different
number of tapers and with and without the mel-scale filterbank.
One also notes that although the bias is, in general, larger for the
peak matched multitaper, the variance is smaller, resulting in a
smaller MSE.

The bias and variance depend on the random process, the
multitapers, the mel-filter bank and the coefficient number. This
may be compared with the rough approximations in [2], where
it is stated that the bias of the cepstrum is asymptotically zero
and the variance of the cepstrum is (72 /6n) =~ 0.007 for all co-
efficients, where n = 240 is the frame length.

IV. PERFORMANCE ON SPEECH-LIKE RANDOM PROCESSES

Using the proposed formulas derived in Section III-A, we can
approximate the bias, variance and MSE of each coefficient in
the MFCC estimator for a given random process and for a given
multitaper and mel-filterbank. For further investigation, we take
a set of 50 different recordings of the /a/ in the Swedish word
“Halld”, n = 240 and f; = 8 kHz, and model each of these
recordings both as an AR(10) process and an AR(20) process.
Similarly, we choose a set of 50 different AR(10) processes and
aset of 50 different AR(20) processes with parameters estimated
from the /l/ in the same word. For these four sets of processes,
we compute the average bias, variance and MSE of each coeffi-
cient in the MFCC estimator for the following methods: Ham-
ming window, Thomson multitapers, sine multitapers and peak
matched multitapers, all with & = 2,4, ...,16. The Thomson
and sine multitapers are commonly used, and peak matched
multitapers are designed for peaked spectra, which may be suit-
able for speech analysis.

Fig. 2 shows the results of the peak matched multitapers with
k = 4,8, and 16, and the Hamming window, averaged over
the set of 50 different AR(10) models of the /a/. Generally, the
bias is larger and the variance lower when more multitapers are
used. This is expected since averaging over more subspectra cor-
responds to more smoothing of the spectrum estimate [5]. Even
though it is possible to use different estimators for different cep-
stral coefficients, it seems that peak matched multitapers with k&
between 8 and 16, represent a good tradeoff between bias and
variance for most cepstral coefficients. We got similar results
for the Thomson and sine multitapers and also for the AR(20)
models and for the models of the /1/.

V. SPEAKER VERIFICATION EXPERIMENTS

In speaker verification, the MFCCs are usually estimated
using a Hamming-windowed periodogram, although multita-
pers provide smaller MSE on speech-like random process as
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seen above. To study whether this advantage carries on to a full
recognition system, we consider the core task of the NIST 2006
SRE corpus!. It contains conversational telephony speech from
816 target speakers with 5077 genuine and 48 889 impostor
verification trials. The length of speech data for training and
testing is about 2.5 min.

Based on the result from Section IV, we chose to com-
pare the conventionally used Hamming window with peak
matched multitapers, & = 12. A more thorough evaluation of
different multitapers and databases will be the topic of future
work. MFCCs are extracted from 30 ms frames (fs = 8 kHz,
n = 240). Depending on the method, the frame is first pro-
cessed either by a single Hamming window or by k£ = 12 peak
matched multitapers, followed by 27-channel mel-frequency
warped filterbank, log-compression and DCT. Twelve cepstral
coefficients are retained. RelAtive SpecTrAl (RASTA) filtering
is used for reducing channel effects. Delta and double delta
coefficients are then added followed by voice activity detection
(VAD) and utterance level cepstral mean and variance normal-
ization (CMVN).

We use a standard Gaussian mixture model with universal
background model (GMM-UBM) [11] and a generalized linear
discriminant sequence kernel support vector machine (GLDS-
SVM) [12] for classification. The background modeling data
were taken from the NIST 2004 corpus. For more details of the
system setup, refer to [13], [14].

We use two standard metrics to assess recognition accuracy:
equal error rate (EER) and minimum detection cost function
value (MinDCF). EER corresponds to the threshold at which the
miss rate (Pp;ss) and false alarm rate ( Pg,) are equal; MinDCF
is the minimum value of a weighted cost function given by 0.1 x
Priss +0.99 X Pg,. In addition, we plot detection error tradeoff
(DET) curves which show the full tradeoff curve between false
alarms and misses in a normal deviate scale, see Fig. 3. The ac-
curacies for the Hamming window based MFCCs estimator and
peak matched multitaper estimator are close to each other in the
case of GMM-UBM system. For the support vector classifier,
however, the peak matched multitaper estimator outperforms the
Hamming window based estimator.

VI. CONCLUSIONS

The MFCC can be estimated from a Hamming-windowed pe-
riodogram or by using a multitaper spectrum estimator. We pro-
posed new approximate formulas for the bias and variance of
these MFCC estimators. Moreover, we demonstrated that these
approximations are accurate. On a set of processes similar to the
phoneme /a/ we showed that the peak matched MFCC estimate
has lower MSE than the popular Hamming window. The re-
sult was the same for the phoneme /1/, indicating the robustness
of the multitaper estimator for speech-like processes. We also
demonstrated that the peak matched MFCC performs slightly
better than the Hamming window MFCC in the NIST 2006 SRE.
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Fig. 3. Recognition accuracy on the NIST 2006 speaker recognition corpus.
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