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a b s t r a c t

Gaussian mixture model with universal background model (GMM–UBM) is a standard reference classifier
in speaker verification. We have recently proposed a simplified model using vector quantization (VQ–
UBM). In this study, we extensively compare these two classifiers on NIST 2005, 2006 and 2008 SRE cor-
pora, while having a standard discriminative classifier (GLDS–SVM) as a point of reference. We focus on
parameter setting for N-top scoring, model order, and performance for different amounts of training data.
The most interesting result, against a general belief, is that GMM–UBM yields better results for short seg-
ments whereas VQ–UBM is good for long utterances. The results also suggest that maximum likelihood
training of the UBM is sub-optimal, and hence, alternative ways to train the UBM should be considered.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Typical speaker verification systems use mel-frequency cepstral
coefficients (MFCCs) to parameterize speech signal. The features
are usually processed with some form of feature normalization or
transformation to enhance robustness against channel variability.
A voice activity detector (VAD) is also needed for rejecting non-
speech frames.

A speaker model is created from the extracted features. In the
21st century, two approaches have been dominant for speaker
modeling. The first one, based on generative modeling, uses maxi-
mum a posteriori (MAP) adaptation of a speaker-independent uni-
versal background model (UBM) (Reynolds et al., 2000; Hautam€aki
et al., 2008). The second approach, based on discriminative train-
ing, finds the parameters of a hyperplane that separates the target
speaker from a set of background speakers (Campbell et al., 2006a).
A recent trend are hybrid models that combine the good properties
of both approaches (Campbell et al., 2006b; Lee et al., 2008). For in-
stance, in the GMM supervector method (Campbell et al., 2006b),
the MAP-adapted mean vectors are stacked to form a single,
high-dimensional feature vector for the utterance. These supervec-
tors are then treated as feature vectors when training an SVM. Lat-
ll rights reserved.
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est solutions also use a so-called eigenchannel transformation and
joint factor analysis (JFA) to reduce the effects of channel and ses-
sion variability in the speaker models (Burget et al., 2007; Kenny
et al., 2008; Vogt and Sridharan, 2008).

We use MFCCs and focus on the speaker modeling component
(classifier). We consider the following speaker modeling
techniques:

(i) Gaussian mixture model with UBM (GMM–UBM) (Reynolds
et al., 2000),

(ii) Vector quantizer with UBM (VQ–UBM) (Hautam€aki et al.,
2008),

(iii) Generalized linear discriminant sequence support vector
machine (GLDS–SVM) (Campbell et al., 2006a).

We set the following limitations in order to keep the baseline
simple: (1) we use only telephone data for background modeling,
(2) we do not use any intersession variability compensation, (3)
we do not make use of ASR component, (4) we do not make use
of language information, (5) we do not use additional score nor-
malization on top of UBM normalization, such as T-norm. More
complete systems used in recent NIST speaker recognition evalua-
tions (SRE) use such techniques in conjunction with each other.
Our simplifications allow us to focus more deeply on the modeling
component, but on the other hand, weaken the overall perfor-
mance in comparison to more complete systems, especially for
non-telephony data.
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Vector quantization speaker modeling was popular in the 1980s
and 1990s (He et al., 1999; Soong et al., 1987), but after the
introduction of the background model concept for GMMs (Rey-
nolds et al., 2000), GMM has been the dominant approach. Even
so, usually only the mean vectors of the GMM are adapted while
using shared (co)variances and weights for all speakers. This raises
a question whether the variances and weights are needed at all. To
answer this question, we derived MAP adaptation algorithm for the
VQ model (Hautam€aki et al., 2008) as a special case of the MAP
adaptation for GMM, involving only the centroid vectors. Posterior
probabilities needed in the adaptation are estimated based on hard
quantization with nearest neighbor classification. The VQ approach
achieves speed-up in training compared to GMM with comparable
accuracy.

In this paper, we further explore the inherent differences of
the GMM–UBM and the VQ–UBM classifiers in the speaker veri-
fication task, while having the GLDS–SVM classifier as a point of
reference. The results presented here are based on our submis-
sions to NIST 2006 and NIST 2008 speaker recognition evalua-
tions. We focus on parameter setting for fast N-top scoring,
model order, performance for different amounts of training data
and effects of mismatched data. In (Hautam€aki et al., 2008),
our main focus was in formal derivation of the algorithm rather
than in extensive testing. This paper serves for that latter
purpose.

Since the VQ model has less free parameters to be estimated, it
may be hypothesized that VQ-based classifier will outperform
GMM for small amounts of data; see, for instance, (David, 2002)
for such an observation. This hypothesis is probably true if both
models are trained using maximum likelihood (mean square error
minimization). However, it is less clear how the situation changes
when using MAP training for both models. In this paper, we will
show surprising experimental evidence that suggests the opposite:
GMM–UBM is better for short utterances whereas VQ–UBM out-
performs GMM–UBM when the length of training and test data in-
creases. We discuss the possible reasons for this and its
implications.

In the following, we first describe in Section 2 the system com-
ponents and the development datasets for optimizing the systems.
The performance of the classifiers is then studied in Section 3, with
the motivation of optimizing their parameters. Namely the number
of components used in VQ and GMM, and the N-top parameter in
the UBM. The best parameters are then applied for the NIST 2008
data in Section 4, followed by more detailed discussion of the
GMM–UBM and VQ–UBM classifiers in Section 5. Finally, conclu-
sions are drawn in Section 6.
1
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html.

2
http://niko.brummer.googlepages.com/focal.
2. System description

2.1. Feature extraction

Our front-end processing is similar to other systems used in
NIST evaluations, such as (Reynolds et al., 2005) and (Tong et al.,
2006). The MFCCs are extracted from 30 ms Hamming-windowed
frames with 50% overlapping. First, 12 MFCCs are computed using
a 27-channel mel-filterbank. The MFCC trajectories are then
smoothed with RASTA filtering (Hermansky and Morgan, 1994),
followed by computation and appending of the delta and double
delta features. A FIR kernel h ¼ ½�1; 0;1� is used for obtaining the
deltas. Double-deltas are obtained by applying the same kernel
to the delta features. The last two steps are voice activity detection
(VAD) and utterance-level mean and variance normalization in
that order.

We use an adaptive, energy-based algorithm for VAD that uses a
file-dependent detection threshold based on maximum energy
level of the file. For completeness, we provide the Matlab code
fragment in the following:

E = 20*log10(std(Frames’) + eps); % Energies

max1 = max(E); % Maximum

I = (E>max1�30) & (E>�55); % Indicator

2.2. Classifiers

GMM–UBM system follows the standard implementation (Rey-
nolds et al., 2000). Diagonal covariance matrices are used in the
mixture components. Two gender-dependent UBMs are trained.
A deterministic splitting method is used for initializing the mean
vectors, followed by 7 K-means iterations, after which the weights
and variance vectors are initialized. Finally, two EM iterations are
performed.

When adapting the target models, we adapt only the mean vec-
torsa using a relevance factor r = 16. During recognition, the N top
scoring Gaussians are found from the UBM for each feature vector,
and only the corresponding adapted Gaussians in the target model
are evaluated. Match score is the difference of the target model and
the UBM log-likelihoods.

The VQ–UBM system (Hautam€aki et al., 2008) is similar to
GMM–UBM but simpler in its implementation. The UBM consists
of only centroid vectors without any variance or weight informa-
tion. Two gender-dependent UBMs are trained using the splitting
method, followed by 20 K-means iterations. The centroids are
adapted by using a modified K-means algorithm. We use a rele-
vance factor r = 12 and I = 2 iterations as in (Hautam€aki et al.,
2008). In the recognition phase, the N closest UBM vectors are
searched for each vector. In the speaker model, nearest neighbor
search is limited on the corresponding adapted vectors only. Match
score is the difference of the UBM and target quantization errors.

GLDS–SVM system follows the basic implementation presented
in (Campbell et al., 2006a). The 36-dimensional MFCCs are first ex-
panded by calculating all the monomials up to order 3, implying a
new feature space of 9139 dimensions. The expanded features are
then averaged to form a single characteristic vector for each utter-
ance. During enrollment, the target speaker vector is labeled as
+1, whereas the background vectors are labeled as �1. Similar to
GMM–UBM and VQ–UBM, we use gender-dependent background
sets also for GLDS–SVM. The characteristic vectors, assigned with
appropriate labels, are then used for training the SVM. The com-
monly available Statistical Pattern Recognition Toolbox1 is used for
this purpose. The result of the training is a model vector of dimen-
sion 9139. The match score is computed as the inner product be-
tween the model vector and the vector corresponding to the test
utterance.

In addition to the three base classifiers, we consider their fusion
by linear score weighting. The scores are standardized using global
mean and variance estimates of the scores prior to weighting. We
use a logistic regression objective function, as implemented in the
FoCal toolkit,2 to optimize the fusion weights. In preliminary exper-
iments, we experimented with several other solutions such as Bayes
nets and neural networks. The logistic regression yielded the best fu-
sion gain on average and was therefore chosen.

2.3. Corpora and performance evaluation

We use NIST 2005 and NIST 2006 speaker recognition evalua-
tion (SRE) data sets for optimizing the parameters, of which the

http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html
http://niko.brummer.googlepages.com/focal
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Fig. 1. Effect of N-top scoring to recognition accuracy.

T. Kinnunen et al. / Pattern Recognition Letters 30 (2009) 341–347 343
most important is the model order (number of Gaussians and cen-
troids in GMM and VQ, respectively). Furthermore, we use the lat-
est NIST 2008 SRE corpus to investigate the effect of mismatched
data – the 2008 SRE data contains, for instance, interview data that
is not present in the other corpuses.

In all three corpora, we focus on two test conditions. The first is
the ‘‘core” test, referred to as ‘‘1conv–1conv” in the NIST 2005/
2006 corpora and ‘‘Short2–Short3” in the NIST 2008 corpus. It con-
tains 5 min of telephone-quality train and test data of which about
half (2.5 min) contains speech. The second test condition known as
‘‘10sec–10sec”, contains only 10 seconds of training and test data.
The 1-conversation training files of the NIST 2004 corpus (246
males and 370 females) are used as the background utterances
for all three classifiers. To simplify system optimization and save
processing time, we use the same background training set for all
three corpora.

In evaluating our recognizer performance, we use two well-
known metrics. The first one, equal error rate (EER), corresponds
to the decision threshold that gives equal false acceptance rate
(FAR) and false rejection rate (FRR). The second measure, referred
to as minimum detection cost function (MinDCF), punishes heavily
false acceptances. It is used in the NIST SRE evaluations3 and de-
fined as the minimum value of the function
0:1� FRR þ 0:99� FAR. The minimum is taken over all possible deci-
sion thresholds. For more details about evaluation of speaker verifi-
cation performance, refer to (Briimmer and Preez, 2006).
3
http://www.nist.gov/speech/tests/sre.
3. Optimization results: NIST 2005/2006

3.1. N-top Scoring

First, we study the number of top scoring Gaussians and code
vectors for the GMM–UBM and VQ–UBM systems for match score
computation because of several reasons. Firstly, we are not aware
of a systematic study on the effect of N-top value to the recognition
accuracy. In (Reynolds et al., 2000), it is stated that N = 5 top scor-
ing components are enough. We hypothesized that for higher mod-
el orders, more N-top Gaussians would be required for accurate
recognition as the likelihood computation gets more accurate. On
the other hand, VQ–UBM obtains exactly the same result as full
search if the nearest code to the unknown vector is in the N-top
list. This made us hypothesize that VQ–UBM may require a smaller
value of N.

Fig. 1 displays the EER and MinDCF values for the studied
parameter combinations. We make the following immediate
observations. First, GMM–UBM is somewhat sensitive to the selec-
tion of N; the optimum value depends on both the objective func-
tion (EER, MinDCF) and the model size. VQ–UBM, on the other
hand, is less sensitive to value of N; any value N P 10 minimizes
both EER and MinDCF. Moreover, the result is fairly independent
of the model order. The GMM–UBM and VQ–UBM have some sim-
ilarities as well. In particular, both models achieve a small EER for
‘‘large” N and small MinDCF for ‘‘small” N.

Does larger model require more N-top components as we
hypothesized? According to the results shown here the answer is
no. Even the opposite can happen. For instance, the MinDCF of
the GMM–UBM increases with N for large model sizes. In other

http://www.nist.gov/speech/tests/sre
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words, the more inaccurate the computation of the log-likelihood
ratio, the better MinDCF! This is an indirect indication of sub-opti-
mal speaker model density estimation, and possibly some other
violations in the modeling assumptions. For the rest of the exper-
iments, we fix the values N = 10 for the GMM–UBM and N = 5 for
the VQ–UBM. These values were chosen so as to yield a small
EER with significant speed-up compared to full search.
3.2. Model order

The results for the different classifiers are summarized in Fig. 2
which displays EER against MinDCF. For the GMM–UBM and
VQ–UBM classifiers, results are shown for different model orders
M. The GLDS–SVM does not have a similar control parameter and
hence is presented by a single point.
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We make the following observations:

– Optimal model order depends on both the test condition and on
the type of the model (GMM–UBM or VQ–UBM); for shorter
training and test data the optimal model order is lower com-
pared with longer training and test data.

– GMM–UBM outperforms VQ–UBM for the short training and test
condition (10sec–10sec), and vice versa, VQ–UBM outperforms
GMM–UBM on the long training and test conditions (1conv–
1conv).

– The GMM–UBM performance is consistent across the two data
sets giving nicely convex error curves for both corpora and
conditions.

– Accuracy of the SVM lies in between the other two classifiers for
the 10 s test cases. It gives comparative results to VQ–UBM clas-
sifier on the longer test case (1conv–1conv). It also shows con-
sistent (predictable) performance for both test cases.
3.3. Fusion

Next, we study fusion performance on the NIST 2006 corpus.
The fusion weights and the score standardization parameters were
obtained from the NIST 2005 corpus. The fusion weights were sep-
arately optimized for the core and the 10sec–10sec conditions. The
results are displayed in Fig. 3. The difference between the best and
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worst classifiers is less than 2% unit in both cases. The choice of the
classifier is therefore not critical for the overall performance
assuming that the parameters have been optimized properly. Fu-
sion of the three components provides slight but consistent
improvement in comparison to the best individual classifier.

In addition to the slight improvement in accuracy, another ben-
efit of the fusion is to reduce the risk of selecting wrong classifier.
Even if an individual classifier works well for one kind of data, it
may fail for another. In our tests, fusion seems to avoids this prob-
lem. On the other hand, fusion as a secondary classifier in top of the
base classifiers complicates the system optimization which is not
attractive for practical application.
4. Results on the NIST 2008 corpus

The optimized classifiers were then evaluated on the NIST 2008
data. The results shown here are based on our primary submission
system to the NIST 2008 SRE campaign. Due to page limitations,
only a few selected cases are shown.

The following model sizes were used for the Short2–Short3 and
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microphones of varying quality. Selected results shown in Fig. 4 are
two fold. On one hand, for the 10sec–10sec test case, the observa-
tions made for NIST 2006 results generalize well to the 2008 cor-
pus: GMM–UBM is the best individual classifier and fusion gives
slight improvement of the accuracy. The results for the Short2–
Short3 telephone data are also consistent with those of NIST
2006 1conv–1conv case as GMM–UBM is still the worst. However,
GLDS–SVM performs now slightly better than VQ–UBM.

On the other hand, the interview material does not exist in our
background training data nor in the NIST 2005 and NIST 2006 eval-
uation data. The methods tuned for these corpora do therefore not
apply well to the trials where interview data is present. The results
with the worst channel mismatch (interview–telephone case),
GLDS–SVM appears to be most robust.

5. Discussion

The most interesting observation, in our opinion, is that
VQ–UBM clearly outperforms GMM–UBM on the longer training
and test data, whereas GMM–UBM is better for short training
and test samples. This contradicts intuition and our initial hypoth-
esis: since speaker models in the VQ–UBM approach have less
parameters, one would expect it to perform better on short
samples.

Are the differences between the GMM–UBM and VQ–UBM due
to the inherent differences in the models themselves or just be-
cause of differences in their parameter settings? One may argue
that, as we used only 2 EM iterations to train the background mod-
el for the GMM–UBM system and 20 K-means iterations for the
VQ–UBM, the setting is unfair for GMM. To study this, we varied
the number of EM iterations for the UBM training in the GMM–
UBM system as a post-evaluation analysis. The results displayed
in Fig. 5 clearly indicates that the number of EM iterations (I) is
an insignificant parameter compared to selection of the model or-
der (M). In other words, maximum likelihood criterion training of
the UBM is not optimal; if this was the case, further iterations
would improve accuracy.

To gain further insight into the structure of the models, we ana-
lyzed the volume of the hypercube that encloses the UBM in each
model. For the VQ–UBM model, we found the 95-percentile inter-
vals containing any centroid in each dimension. For the GMM–
UBM model, we found the 95-percentile intervals containing the
l� 3r points.

The result in Fig. 6 indicates that the background model in the
VQ–UBM system is much more spread out in the feature space,
yielding possibly more flexible adaptation for longer training and
test data. One hypothesis is that the VQ–UBM adaptation may bet-
ter take into account some infrequently occurring speech sounds,
which are considered outliers in the GMM for large amounts of
data. The Gaussians in the GMM–UBM seem to concentrate on a
denser region. On the other hand, it can be hypothesized that the
variance information helps to ‘‘interpolate” between the training
feature vectors, yielding better generalization performance on lim-
ited data tasks.
6. Conclusion

In this paper, we have experimentally compared VQ- and GMM-
based speaker models trained using MAP criterion. The most sur-
prising observation was that VQ–UBM gave better results for long-
er training and test segments whereas GMM–UBM was better for
short segments. Analysis of the background models revealed that
the UBM in the VQ system is more spread out in the feature space,
yielding possibly more flexible adaptation for longer training and
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test data. In summary, the differences seem not only due to param-
eter settings but in the model types themselves.

In future, it would be interesting to artificially de-sharpen the
Gaussians in GMM to see if the accuracy gets better. It would be
also interesting to study the combination of the VQ–UBM and sup-
port vector machine as already done for the GMM–UBM by several
authors (Lee et al., 2008; Campbell et al., 2006b). Finally, an impor-
tant point is to improve robustness against session variability; for
this, adopting the recently proposed eigenchannel or JFA compen-
sation techniques (Burget et al., 2007; Kenny et al., 2008; Vogt and
Sridharan, 2008) for the VQ–UBM model seems a promising
direction.
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