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Abstract—In this paper, we present a novel system for joint
speaker identification and speech separation. For speaker iden-
tification a single-channel speaker identification algorithm is
proposed which provides an estimate of signal-to-signal ratio
(SSR) as a by-product. For speech separation, we propose a sinu-
soidal model-based algorithm. The speech separation algorithm
consists of a double-talk/single-talk detector followed by a min-
imum mean square error estimator of sinusoidal parameters for
finding optimal codevectors from pre-trained speaker codebooks.
In evaluating the proposed system, we start from a situation
where we have prior information of codebook indices, speaker
identities and SSR-level, and then, by relaxing these assumptions
one by one, we demonstrate the efficiency of the proposed fully
blind system. In contrast to previous studies that mostly focus on
automatic speech recognition (ASR) accuracy, here, we report the
objective and subjective results as well. The results show that the
proposed system performs as well as the best of the state-of-the-art
in terms of perceived quality while its performance in terms of
speaker identification and automatic speech recognition results
are generally lower. It outperforms the state-of-the-art in terms of
intelligibility showing that the ASR results are not conclusive. The
proposed method achieves on average, 52.3% ASR accuracy, 41.2
points in MUSHRA and 85.9% in speech intelligibility.

Index Terms—BSS EVAL, single-channel speech separation, si-
nusoidal modeling, speaker identification, speech recognition.
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Fig. 1. Block diagram showing how a single-channel speech separation module
can be used as a pre-processing stage to enhance the performance of a target
application.

1. INTRODUCTION

UMAN beings have the amazing capability of perceiving
H individual speech sources from mixtures. For machines,
however, separating speech mixtures recorded by a single mi-
crophone is still a rather difficult task. Designing reliable and ro-
bust speech processing systems for adverse conditions is a chal-
lenging problem since the observed signal is often corrupted by
other interfering signals, making the performance significantly
lower compared to that of clean conditions. In extremely noisy
environments, a high-quality speech separation algorithm is re-
quired as a pre-processing stage prior to the target application,
such as hearing aids, automatic speech recognition, speaker/lan-
guage recognition and speech coding (see Fig. 1). By being
able to separate the desired sources from the interfering ones in
the mixture, one would expect a better performance in all these
applications.

A single-channel speech separation (SCSS) system aims at
recovering the underlying speaker signals from a mixed signal
[1]. At first glance, SCSS is similar to speech enhancement
but the goal in SCSS is to recover all the underlying signals
rather than enhancing the desired speech signal by filtering out
the other components. In speech separation, the stronger signal
can shift its role to a weaker one at some time-frequency re-
gions, and, further, at different signal-to-signal ratios (SSRs) ei-
ther one of the signals may dominate the other one. Arguably,
one would be interested in separating either of the source sig-
nals from their single-channel recorded mixture in certain appli-
cations, including signal recovery at low signal-to-noise ratios
(SNRs), surveillance and tele-conferencing.

The current SCSS methods can be divided into two major
groups, computational auditory scene analysis (CASA) [2], and
model-driven methods [3]-[9]. CASA methods use multi-pitch
estimation methods to extract pitch estimates of the speakers di-
rectly from the mixture. The separation performance of CASA-
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TABLE I
DIFFERENCES IN MAIN BLOCKS OF EXISTING MODEL-BASED SINGLE-CHANNEL SPEECH SEPARATION. THE PROPOSED
ALGORITHMS USED IN THE SYSTEM DIAGRAM IN FIG. 2 ARE HIGHLIGHTED WITH BOLD-FACED FONT
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SID and SSR estimation | Speciral feature |

Speaker model

| Mixture estimator

Signal reconstruction

Iroquois [8], [12], [15]
Improved Iroquois [5]
Closed loop [17]

Adapted SID in [18]

Gammatone filterbank (GTFB)
Mel-frequency band energy (MFBE)
Log STFT [8], [12], [15]
Sinusoidal parameters [9]

based methods, as a consequence, is predominantly affected by
the accuracy of the multi-pitch estimator, especially when the
pitch of one of the speakers is masked by the other [10].

Model-driven methods use pre-trained speaker models as a
priori information to constrain the solution of the ill-condi-
tioned SCSS problem. In particular, source-specific speaker
models are incorporated to capture specific characteristics of
individual speakers at each frame. As a representative example
of model-based methods, non-negative matrix factorization
(NMF), decomposes the short-time Fourier transform (STFT)
of a mixed signal into a product of two low-rank matrices,
namely basis vectors and their corresponding weights [3].
According to [4], NMF cannot always separate speech mixtures
when the sources overlap especially when the speakers are of
same gender.

The components of a typical model-based SCSS system and
algorithms are shown in Table I. SCSS first needs to estimate the
identity of underlying speakers and the gain in which the frames
are mixed. Iroquois [8] is a speaker identification and gain esti-
mation algorithm which uses speaker-specific gain-normalized
models to produce a short-list of candidate speakers using the
frames dominated by one of the speakers. A modified version of
the Iroquois system which uses flooring of the exponential ar-
gument in likelihood computation obtained slight improvement
[5]. Parallel speaker HMMs using Viterbi decoding was used
in [11] to identify only target speaker which is not enough for
model-based speech separation.

The next step is to select a representation of the speech
signal which is suitable for separation purpose. Because of the
promising results shown in [9], we selected sinusoidal features
instead of the conventionally used logarithmic short-time
Fourier transform (STFT) features [7], [8], [14]. Dynamic
models are widely used for speaker modeling [7], [8], [14], [15]
due to their great capability to model the sequence of features.

Mixture estimator is a module for finding the best representa-
tives from speaker models to reconstruct mixed-speech frames.
It is conventionally performed using log-max model [5]-[8],
[14], [15], MMSE power estimator [16] or Algonquin model
(81, [15].

The codevectors found by the mixture estimation stage are
then passed to reconstruction stage which produces the sepa-
rated signals. In terms of how to reconstruct the separated sig-
nals, separation methods are divided into reconstruction [7]-[9]
and mask methods [5], [6], [13], [14], [20]. In the former ap-
proach, the codevectors found in the mixture estimation stage
are directly used for reconstructing the separated signals. The
mask methods, as the name suggests, produce a mask based on
the codevectors selected from the speaker models.

Graphical model [8], [15]
Factorial HMM [7], [14]
subband HMM [6]
vQ [5], 191

Log max [8], [12]-[15]
MMSE power estimator [16]
Algonquin [8], [15]
Maximum likelihood amplitude [9]
Adapted MMSE in [19]

Ideal binary mask [2]
Binary mask [13], [14]
Wiener filter [5], [6], [16]
Overlap-and-add [7]-[9]
Sq. root Wiener filter in sinusoid [20]
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Fig. 2. Block diagram of the proposed joint speaker identification and speech
separation system.

The contribution of the current study, as highlighted in Table I
and illustrated in Fig. 2, is a novel joint speaker identification
and speech separation system. Some of the building blocks were
studied individually previously. In addition to the system de-
sign, the novel contributions in this paper include extension of
the SID module [18] for SSR estimation and generalization of
the MMSE mixture estimator in the amplitude domain [19] to
sinusoidal features. Considering the high computational com-
plexity of the Iroquois system, a speaker identification (SID)
algorithm first proposed in [17] and improved in [18], is uti-
lized in this paper and adopted to the speech separation chal-
lenge. Since we look for SCSS algorithm that works equally
well also in terms of perceived signal quality basis, the min-
imum mean square error (MMSE) amplitude spectrum estima-
tion in [19] is adapted for the sinusoidal parametrization. De-
spite the better upper-bound achieved by dynamic models, we
choose static vector quantization (VQ) speaker model which
is not limited by the vocabulary and grammar size unlike dy-
namic models. Moreover, VQ-based models also provide faster
decoding. In this work, we use mask-based reconstruction be-
cause it leads to promising results in the sinusoidal feature do-
main [20]. For speaker recognition stage, we use mel-frequency
cepstral coefficients (MFCCs) as features and Gaussian mixture
models (GMMs) as speaker models and for separation stage we
employ sinusoids as features and vector quantization as speaker
model.

In evaluating and comparing the proposed method with two
state-of-the-art systems [7], [8], we employ a wide range of both
subjective and objective quality measures, in addition to stan-
dard ASR accuracy. These measures have been introduced in di-
verse studies in literature but have never been reported together
on the speech separation challenge [21]. This has two bene-
fits. Firstly, assessing the separated signals by different metrics
rather than ASR has the advantage that the results are expected
to carry on to other applications beyond ASR, as indicated in
Fig. 1. Secondly, our analysis provides thorough answers to
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which of the objective measures correlate best with the subjec-
tive measures in SCSS application. The corresponding sections
describing each of the presented algorithms are shown inside
the blocks in Fig. 2.

A. Speaker Identification and Gain Estimation

Speaker identification (SID) is the task of recognizing
speaker identity based on the observed speech signal [22].
Typical speaker identification systems consist of the short-term
spectral feature extractor (front-end) and a pattern matching
module (back-end). In traditional SID, the basic assumption is
that only one target speaker exists in the given signal whereas
in co-channel SID, the task is to identify two target speakers in
a given mixture. Research on co-channel speaker identification
has been done for more than one decade [23], yet the problem
remains largely unsolved.

Most of the current SCSS systems use the model-driven Iro-
quois system [8] to identify the speakers in a mixed signal.
Recognition accuracy as high as 98% on the speech separation
corpus [21] has been reported for Iroguois [8], which makes it as
a viable choice to be used in SCSS systems [7]. In the Iroquois
system, a short-list of the most likely speakers are produced
based on the frames of the mixed signal that are dominated by
one speaker. This short-list is then passed to a max-based EM al-
gorithm to find the SSR and the two speakers’ identities. In sub-
sequent subsections we introduce an alternative approach with
lighter computational load in operation phase.

B. Recognition Approach

Generative modeling is widely used for speaker identifica-
tion [5], [8], [22]. Maximum likelihood (ML) trained GMMs
were used in [8]; however, maximum a posteriori (MAP) de-
rived GMMs [24] are much more accurate in speaker verifica-
tion and we follow this latter approach employing conventional
MFCGC:s as feature vectors. Let A denote a GMM of one speaker.
Then the probability density function is

M
P(X[A) = wnpm (). (1)
m=1

The GMM density function is a weighted linear combination of
M Gaussian densities p,, (x), where py, (X) ~ N (X; y,,, X ).
Here X¥,, is a diagonal covariance matrix and the mixture
weights w,, further satisfy the constraints 2%21 Wy, = 1 and
Wy, > 0. The speaker-dependent GMMs are adapted from a
universal background model (UBM) [24]. The UBM is a GMM
trained on a pool of feature vectors (MFCCs), extracted from as
many speakers as possible, to serve as a priori information for
the acoustic feature distribution. When adapting the speaker-de-
pendent GMMs, usually only mean vectors are adapted while
weights and covariances are shared between all speakers [24].
In traditional speaker recognition, the UBM is trained from
a pool of data from different speakers. To characterize mixed
speech, in this study we propose to train the UBM (Aypwm)
from mixed utterance pairs at different SSR levels. For the 2th
speaker, the gain-dependent models, A;g4, are adapted from the
UBM using sth speaker speech files corrupted by other speakers
signal at SSR level g. Using SSR-dependent speaker models,
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the system captures speaker-specific information when it is
contaminated by other speakers. Our method is similar to that
of having an SSR-dependent bias in the GMM [8], but we build
separate GMMs for each SSR level to utilize the advantages
of GMM-UBM system [24]. Using SSR-dependent speaker
models enables us to find the most probable speakers along
with the most probable SSR level.

1) Frame Level Likelihood Score: One approach to measure
the similarity between test utterance and pre-trained speaker
models is to calculate frame-level likelihood score. We define
the log-likelihood score for a feature vector x; given the th
speaker model as s;; = max,{s;4}, where

Sigt = log p(X¢|Aig). 2)

For each frame we find the most probable speaker. Finding the
winner speaker for all of the feature vectors of test utterance,
we associate a FLLg;q score for each speaker based on the
number of frames where the speaker is selected as the winner.
During recognition, the UBM is evaluated first and then only
the top-scoring Gaussians get evaluated in each SSR-dependent
speaker model. We define FLLg, score as the number of times
that winner speaker came from g-th SSR-dependent model.

2) Kullback-Leibler Divergence Score: Another approach
to measure similarity of the test utterance with speaker models,
{A:}, is to train a model of the test utterance, A., with MAP
adaptation and calculate the distance between . and the
speaker models. We use the Kullback-Leibler divergence
(KLD) as an approximate distance measure between the two
probability distributions [25]. Since this distance cannot be
evaluated in closed form for GMMs, we use the upper-bound
which has successfully been applied to speaker verification
[26]:

M

1 _
KLD'ig = 5 Z wm(p"me. - Il'mig)TEml (l"’nle - Il'mig)' (3)
m=1

Here g ranges in a discrete set of pre-defined SSR levels, p,,,.
is the mth mean vector in A. and p,,,,, is the mth mean vector
in \;4, whereas w,, and X,, are the weights and the covari-
ances of the UBM, respectively. Considering D as the number
of speakers, we form an D X G distance matrix and associate
a KLDy;4 score for each speaker as the smallest KLD distance
(3) over all SSR levels. The original D x G distance matrix is
used as the KLD,, score.

3) Combined Approach: To enable taking benefits from
different recognizers, we combine the two scores with equal
weights summation. This approach has shown to provide better
recognition accuracy than the individual recognizers [18]. Al-
though non-equal weights can be estimated from development
data [18], we found that using equal weights yields similar
accuracy. Note that we normalize the range of scores from two
recognizers before fusion.

C. Selecting the Optimal SID and SSR Pair

The joint speaker identification and separation module pro-
duces short-lists of speaker identities and the SSR candidates.
In our preliminary speaker identification experiments, we found
that the dominant speaker was always correctly identified and



MOWLAEE et al.: JOINT APPROACH FOR SINGLE-CHANNEL SPEAKER IDENTIFICATION AND SPEECH SEPARATION
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Fig. 3. Demonstration of the reduced search space for speaker-SSR combina-
tion. There are D(D — 1)/2 X G possible combination for D speakers and
G SSR levels, which is reduced to 2 x 3 combinations by the proposed joint
speaker identification and gain estimation algorithm.

the second speaker also ends up most of the time in the top-3
list. Thus, rather than selecting the top-scoring speaker or the
most likely SSR level, we propose the following procedure to
select the best pair of speakers and SSR level.

Let SID; denote the estimated identity for the first speaker.
Assume that the estimated top-2 identities for the second
speaker are SID; = {SIDS", SID%Q);. Additionally, we de-
fine SSR = {SSR{’ SSR{), SSR{"} as the short-list for
SSR candidates consisting of three most likely SSR levels for
combination of speakers SID; and SIDS’) with i € {1,2}.
The search space is shown graphically in Fig. 3. The speaker
identity and SSR candidates in the reduced search space are
further passed to the separation module which attempts to
reconstruct the mixed signal as combinations of both the two
top-scoring speakers and the three SSR candidates. A pair of
speakers that minimize the average mixture estimation error
(21) in one of the identified SSR-levels (Fig. 3) is selected as
the best combination.

II. SINGLE-CHANNEL SPEECH SEPARATION SYSTEM

Let s, (n) denote the nth sample of the observed mixed signal
with IV samples composed of K additive signals as,

“

Here, sj(n) is the kth speaker signal in the mixture, and gy, is
its gain. Note that the speaker gains, g1 and g», are assumed to
be fixed over the entire signal length denoted by N. This as-
sumption, although somewhat unrealistic, is made in most cur-
rent speech separation systems [21]. For the sake of simplicity
and tractability, we consider the case K = 2, a mixture of two
speakers. We further define p = ¢7/¢g3 = 105SR/10 where
SSR is the signal-to-signal ratio in decibels. Similar to [27]
we assume that the two signals have equal power before gain
scaling, i.e., Zf::ol s2(n) = Zi\:ol s3(n) = GZ. By defining
g. = Zf::ol 52(n) and considering s1(n) and s2(n) as two in-
dependent processes, for large enough N, E[s1(n)sa(n)] = 0
and g2 = G3(g? + g3) [27]. The mixed signal can now be rep-
resented as below

QZ\/:5 9z
—s51(n) + ————s
Gov1+p () Govl+p 2

The speaker signals s1(n) and s2(n) as well as their mixing SSR
level (p) are unknown while g, and s, (n) are given and Gy is
arbitrary for gain scaling.

s.(n) = (n). (5)
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A. Sinusoidal Signal Representation

The selected features used for separation need to meet at least
two requirements: (i) high re-synthesized signal quality, and (ii)
low number of features for computational and statistical reasons
(curse of dimensionality [28]). A vast majority of the previous
separation methods are based on short-time Fourier transform
(STFT) features of uniform resolution which poorly match the
logarithmic frequency sensitivity of auditory system [12]. In this
paper, we choose sinusoidal modeling which satisfies both of
the aforementioned requirements and leads to improved signal
quality compared to the STFT approaches in terms of both ob-
jective and subjective measures [9]. Furthermore, in [29], it was
shown that applying a sinusoidal coder as speaker model re-
sults in a better quantization performance compared to STFT
features, in having less outliers [29].

The proposed separation system transforms the underlying
speaker signals into a parametric feature set composed of am-
plitude, frequency and phase vectors of sinusoidal. The sinu-
soidal parameter estimation is described as follows [9]; On the
training data, the STFT magnitude spectrum is calculated using
Hann window of 32 msec with hop size of 8 msec. According to
the conclusion in [30], replacing the uniform resolution STFT
representation with a warped frequency scale, improves the dis-
jointness of the transformed mixtures, and consequently facili-
tates the separation task since source signals with higher sparsity
have less overlap in their mixture. To take the logarithmic sensi-
tivity of the human auditory system into account, we divide the
frequency range to frequency bands whose center frequencies
are equally distributed on the mel-scale. The frequency bands
are non-overlapping and each corresponds to a set of STFT
bands. At each band the spectral peak with the largest ampli-
tude is selected. Defining Sy, (w)e’?*(“) = DFTg{s(n)} as
the complex spectrum for the kth speaker, with DFT i as the
F-point DFT operator, and S (w) as its amplitude and ¢y (w)
as its phase component, the objective in the sinusoidal param-
eter estimation used here is to find the set of sinusoids with the
following constraints [9]:

Wi = arg max Sp(w), (6)
Ak,qjejd)k'j :Sk(wk’i)ej(f)k(wk,r), )

where €; is a set composed of all discrete frequencies within
the ith band and 7 € [1, L] with L the number of frequency
bands (sinusoidal model order), and Ay, ;, w i, ¢r,; as the am-
plitude, frequency and phase for the ¢th sinusoid, respectively,
and argmax(-) returns the argument where Sy (w) attains its
maximum value. It should be noted that as L approaches to F',
each frequency subband include one DFT point.

Assume that the kth speaker time-domain signal is denoted
by {sk(n)};ygol where k € [1,2], n as the time sample index
and N as the window length in samples. Forn = 0,--- N — 1,
at each frame, we represent s (n) as [31]

L
sp(n) = Z Ay i cos(nwi,i + dr.i) + ex(n),

i=1

®)
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where ey, (n) is the estimation error, ¢ is an index that refers to the
sth sinusoidal component. The sinusoidal components are char-
acterized by the triple set [a, wy, ¢, denoting the amplitude,
frequency and phase. We define o, = [A 1Ak - Ag )7,
wi = [wiawko - wie ]t @ = [Pr1dra - i) as the
kth speaker’s amplitude, frequency and phase vectors, respec-
tively, each of size L X 1, and L being the sinusoidal model
order. We further define

DFTF{(E:Ahﬂm%mww+¢hJ)UK”%

i=1
®)
where C(ay,wy, @, ) is the amplitude spectrum of the kth
source represented by the triple [a,ws, @] of size 3L x 1,
and w(n) is a window function. For a single speaker, the in-
terference effects by sinusoids, taken per frequency subbands,
are negligible as the frequencies are rather well separated
with respect to each other. Then, from Fourier transformation,
the power spectrum for the harmonic-part for the kth source
is well approximated by Pi(w) = Z,L.Lzl A%’iW(w — Wg,i)
where W (w) is the power response of the Fourier transform for
window function, w(n). The magnitude of the STFT is then
approximated by S (w) ~ Zle A i W(w — wg;) as in [32].
Taking the highest peak of the amplitude spectrum in (6) is
equivalent to choosing the maximum likelihood estimate for fre-
quency of single sinusoid in white Gaussian noise per band [33,
ch. 13]. In case of no peak detection in a frequency band, we as-
sign an insignificant value of 0.001 for the amplitude and assign
the band’s center frequency as the frequency of the sinusoid.
According to our previous studies [9], [29], this choice would
not change the perceived quality of the reconstructed speech but
helps to avoid the complicated variable dimension VQ by pre-
serving the fixed dimensionality of the sinusoids.

C(aktwk>¢k):

B. Speaker Codebooks

Split-VQ codebooks composed of sinusoidal amplitude and
frequency vectors are used as speaker models [9], [29]. In
the split-VQ codebooks, each amplitude vector have several
corresponding frequency vectors. The training stage to ob-
tain split-VQ codebooks is composed of two steps; First the
amplitudes of sinusoids are coded, then as the second stage,
frequency codevectors are found by using vector quantization
on frequency candidates assigned to each amplitude codeword
found in the first step. For more details see [29]. At the end of
the training stage, the codebook entries composed of amplitude
and frequency parts are both of the same dimensionality as the
sinusoidal model order (L). The split-VQ used in this paper
can be replaced by any other sinusoidal coder already available
in the speech coding literature, e.g., [34]. The importance of
the quantization step is explained in Section IV-C-3.

C. Double-Talk Detection

A mixed speech signal can be classified into single-talk (one
speaker), double-talk (speech mixture), and noise-only regions.
This information can be used to simplify the computationally
expensive separation task since we only need to process the
mixed frames with the separation system. To detect double-
talk regions with two speakers present, we employ a MAP de-
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tector proposed recently in [35]. The proposed method is based
on multiple hypothesis test and can be implemented in both
speaker-dependent and speaker-independent scenarios. We con-
sider here the speaker-dependent scenario since the informa-
tion for speaker identities are given by SID module (Section II).
We use three candidate models for describing the mixed signal,
namely,

M, : None of the speakers are active (non-speech)

M : One of the speakers is active (single-talk)

M : Both of the speakers are active (double-talk)
We use the decision making among Mg, M, and M5 to narrow
down the separation problem only for the mixed frames. For the
single-speaker frames, the observed signal is directly re-synthe-
sized according to the corresponding speaker models. For more
details of the method, refer to [35].

D. Sinusoidal MMSE Estimator for Mixture Amplitude

In model-driven speech separation we estimate the codevec-
tors in the speaker models whose combination best matches
the mixed signal. This is accomplished by employing a mix-
ture estimator. In the following, we present the MMSE mixture
estimator for the SCSS problem. We define S, (w)e/®=(«) =
DFTg{s.(n)} as the complex spectrum for the mixture. Be-
ginning from the relationship between the mixed signal and the
underlying signals in time-domain given in (4), we have

() =/ 9253 ()+ 353 (w)+ 2019251 () Sa(w) cos (),

(10)
where we define Sy(w), Sa(w) and S, (w) are the frequency
components of the magnitude spectrum for the first speaker, the
second speaker and the mixed signal, respectively. We also de-
fine f(w) = ¢1(w) — Ppa2(w) as the phase difference between the
kth frequency bin of the underlying spectra. Dividing both sides
of (10) by g2S?(w) # 0, we arrive at

S:w) _ . 63S3Hw) | 2010251(w)Sa(w)
ASw) T gSkw) T giSiw)

By defining S.(w) 2 In S2(w) and S;(w) 2 In S2(w) for i =
{1,2} and using (11) we get

cosf(w). (11)

S. (w)=1In gg—p + 31(w) +In(1+ 1632(“))_31 (w)
: G(1+p) 0
cos f(w)
In {1 - 12
+In |1+ ol (_1np+525w)—51(w)) (12)

A similar expression can be derived by dividing both sides of
(10) by S2(w) # 0. The derivation presented here is similar to
[36], for representing the relationship among the log-spectra of
the noisy signal for speech enhancement, but adopted here for
speech mixture of two speakers.

In the following, we derive a closed-form representation for
the MMSE mixture estimation in sinusoids. Integrating out the
mixture phase modeled with uniform distribution [37], the mix-
ture magnitude spectrum domain is given by

Slw) = — / €055-) 9 ). (13)
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where S.(w) is the sinusoidal MMSE estimate for mixture
magnitude spectrum averaging out #(w) when we replace the
kth speaker signal spectrum with its estimated spectrum rep-
resented by its sinusoidal features denoted by C(ay,ws, . )
where a;, and wy, are calculated using (5) and (6). It is important
to note that, as we have no access to each speaker’s phase value
{ ¢k}z=1 in its corresponding sinusoidal representation, we set
¢, = ¢.. This choice is in line with the fact that the phase
of the noisy observation is the MMSE phase estimate for the
clean speech [38]. Furthermore, the authors in [32] showed
that the choice of the phase spectrum sampled at frequencies
of sinusoids as the estimated phase of sinusoids is sufficient
for estimating the sinusoidal parameters in MMSE sense.
Following a similar approach as in [19], (13) simplifies to (14)
shown at the top of the page,

N

S.(w) =f(Clai,w1,9.),C(az,ws,9.),p)
N/

1
= 1+pC(a1,w1,¢2)—l—\/T—pc(az,w27¢z)
9:€ (7p(w))
G “4)

where f(-) is the MMSE mixture approximation and -y,(w) =

A
2/(\/&p(w)+(1//&(w))) and we define SSR prior = &, (w) =
VPC(a1,w1,¢.)/C(az,ws,¢,) and £(-) is the complete El-
liptic integral of the second kind. This integral can be approxi-
mated by the following series:

== {1- 3 [T (%57) | oo |- 09

m=1 [v=1

The Elliptic series denoted by £(+) can also be written as

E(y(w)) = (16)

22
where o F}(a,b;c;t) is Gauss’ hypergeometric function with
t as an argument replaced by v?(w). Provided that |t| < 1,
E(~(w)) will converge absolutely, and since y(w) < 1, con-
vergence is indeed guaranteed. Note that the values of o F ()
can be found from a look-up table since it depends on a single
variable, v(w). This helps keep the complexity of the mixture
estimator low.

Previous separation systems used either max-model [14]
or Algonquin model [8] as their mixture estimator. A sim-
plified version of the max-model, MAX-vector quantization
(MAX-VQ) was used in [5], [7], [13]. In [8], both the Algo-
nquin and the max-model were studied and compared, and
Algonquin was found to perform slightly better. The max
model and Algonquin model use MMSE criterion in log-power
and power spectrum domain considering the phase as a random
variable. The proposed mixture estimator also takes this into
account in amplitude domain. Furthermore, according to [15],
specifying the mixture estimation stage in the log spectral
domain is convenient because speech states can be represented
efficiently as a mixture of Gaussians in the log-spectrum.
For reconstruction purposes, then, they use anti-logarithmic
transformation. In this paper, we solve the problem directly
in the spectrum amplitude domain matched with our signal
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reconstruction stage (see Section III-F), without the logarithmic
mapping.

E. Estimating Optimal Codebook Indices

Here, we explain how to find the estimated mixture mag-
nitude spectrum, S, (w) given in (14), at each frequency bin.
To implement the mixture estimator in (14), we need the
spectra of the two speakers, C(a1,w1,¢;) and C(az,ws, ¢,).
In the expression for MMSE estimate for mixture ampli-
tude in (14), the signal spectra of the underlying speakers
were considered to be given. However, in the experiments,
we relax this assumption by choosing their estimates as
C(ay,wi,¢,) and C(as,ws, ¢,) selected from the pre-trained
codebooks C; and C, of the two speakers. The estimates for
C(a1,wr) and C(as2,ws) are obtained from the codebooks
of the two speakers, C; = <1) (1) .. (1) 1)} and

= {c ) (2 ,.,ct) (2)} respectrvely, where M
and c((l ) refer to the rth and gth codevector in the codebooks C;
and C», respectively. Let S (w)e’?:(“) = DFTp{s.(n)} to be
the discrete Fourier transform of the mixture. Each codebook
consists of a pair of amplitude and frequency ({a, w}), and M
is the number of codevectors in the speaker models [29].

Let e°(w) be the full-band mixture estimation error in com-
plex spectrum domain defined as the error difference between
the complex spectrum of mixture, S.(w)e?=(“) and the es-
timated complex spectrum of the mixture, S (w)ei®:) as
follows:

e’(w) = S (w)el?=) — Syz(w)ejg’:(“’). (17)
At each frequency subband 7 € [1, L], we define the complex
subband frequency error e§(w) as

eq(w) = Az,iejd):jW(w Az,ieja’:.iw(w

2

- W),

(18)
where we define AZ7,L-, w4, and qAS“ respectively as the ampli-
tude, frequency, and phase of the sinusoid that represent the esti-
mated mixture complex spectrum at the +th frequency subband.
By setting the estimated mixture phase in (18) equal to the mix-
ture phase sampled at w. ; (¢.,; = ¢-;), the absolute error in
subbands becomes

ei(w) =

—w.,) -

A~

Az LW(W - “Dz,i) ’

AZJW(LU , w € Q;.

19)
which has already been used as the MMSE criterion for esti-
mating the sinusoidal parameters [32]. Similar to [34], the sum-
mation of the residual error in (18), in fact approximates the
full band spectral distortion given by [ _|S.(w) — S (w)|2dw.
Minimization of the residual error at each frequency subband
takes advantage of the fact that the error at narrow enough sub-
bands can well be approximated as white noise [39].

To estimate the amplitude and frequency vectors for each of
the underlying signals, mixture estimation is performed. Let
A" 4,@0} as the sinusoidal parameters representative taken
from the ith frequency band in (14). Using speaker codebooks
C; and Co, (14) becomes f(C(&,,w,, ¢, ), C(aq, w4, $.), p) at
each frequency subband i where {a., é’r}i\zr and {a, “A’q}qil
with w € €, are the amplitude-frequency codevectors with r

—w.,) -
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and ¢ as the codebook indices selected from C; and Cs, re-
spectively. We further define the mixture estimation difference
indicated by e, 4 ; defined for frequency subbands ¢ € [1, L] as,

Crg i) = A W (w0 — w2 ) — AZIW (1 - 67)

, W E Q.

(20)
Finally, the mixture estimation is carried out by searching for
the optimal codevectors (pair of amplitude and frequency) of
the codebooks by minimizing

L
JT,Q = Z e%,q,i(w)v
=1

where e, 4 ; is the error vector composed of ew;i(w) at all fre-
quency subbands with w € €; and i € [1, L]. We emphasize
that the speaker codebooks we use here are in the form of a si-
nusoidal coder presented in [29], in which each codevector entry
is composed of two parts denoted as ({e, w}), sinusoidal ampli-
tude and its corresponding frequencies which determines where
the amplitudes are located in the spectrum. To minimize (21),
we are required to do search on pairs of codevectors (consisting
of amplitudes and frequencies) to determine the optimal pair for
signal reconstruction, that is,

21

min

Trg ({0, @, ), {b,@,}) . (22
{r.q}€C1 X Cy a ({ar, @} {ag. w.}). (22)

{r*,q"} = arg
We note that the frequency vectors w, and w, are not the same
as frequencies of sinusoids of mixture w., but selected such
that they together minimize the cost function in (22). Note that,
even after knowing the estimated SSR level and identities of the
speakers, exhaustive search of (22) requires O( M?) evaluations
of the cost function in (22) for all frames, which is impractical.
Considerable time saving, still retaining high separation quality,
can be obtained by using an iterative search as follows. We start
with random r, and keep it fixed while optimizing with respect
to ¢, then switching the roles. This requires a total number of
O(M x I) evaluations of (22), where we particularly set I = 3
iterations. This leads to practical speed-up factor of 700:1 for a
codebook size M = 2048.

F. Signal Reconstruction

The Wiener filter is a classical speech enhancement method
that relies on the MMSE estimation to restore the underlying
clean signal. Previous studies utilized the Wiener filter [40] op-
erate in the STFT domain. Here we propose to use magnitude
ratio filters in the form of square root Wiener filters [40]. Ac-
cording to our preliminary experiments in [20], the reconstruc-
tion filters defined in the sinusoidal domain, improve the sepa-
ration quality as compared to their STFT counterparts. From the
definition of the parametric Wiener filter [40] we have:

Glw) = (%)

where P;(w) withi € {1, 2} are the power spectra of the signals,
which are approximated by the periodograms |.S;(w)|?, and the
parameter 3 determines attenuation at different signal-to-noise
ratio levels. From the speech enhancement results in [40], it is
known that higher values of 3 result in more attenuation of the

(23)
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interfering signal. However, this achievement comes at the price
of increased speech distortion. According to our separation ex-
periments, for signal reconstruction based on the found sinu-
soidal parameters, throughout our experiments, we use square
root Wiener filters (3 = 0.5) instead of the conventional Wiener
filters (8 = 1).

For synthesizing the separated signals, we produce square
root Wiener filters based on sinusoidal feature and apply them
to the mixture to recover the unknown signals. Like other sepa-
ration methods reported in [21], we employ the mixture phase,
¢, for re-synthesizing the separated outputs. The estimated
amplitude-frequency codevectors found in (22) are used to
reconstruct their corresponding amplitude spectrum estimates
C(a+,wr,¢.) and C(ag+,wq+, ¢.) which are further used to
produce square root Wiener filters as below

i (w) = Cla,-,w,,9,)
VO @y, .) + Oy Wy, 9.)
Cofw) = g O O B)
\/CZ(aT*7wT*7¢Z) + C? (g, Wy, 9.)

Accordingly, the separated output time domain signals are given
after taking F'-point inverse DFT:

, 24

. (25)

41(n) =DFT7! {Gl(w) Sz(w)em(w)} 26)

45(n) = DFTF! {GQ(@sz(w)eM:(w)} @)

III. RESULTS

A. Dataset and System Setup

The proposed speech separation system is evaluated on the
speech separation corpus provided in [21]. This corpus consists
of 34, 000 distinct utterances from 34 speakers (18 males and 16
females). The sentences follow a command-like structure with
a unique grammatical structure as six word commands such as
“bin white at p nine soon”. Each sentence in the database is
composed of verb, color, preposition, letter, digit and coda. The
keywords emphasized for speech intelligibility or recognition
task in challenge are the items in position 2, 4, and 5 referring
to color, letter and digit, respectively. The possible choices for
color are green, blue, red, and white. The possible letters are 25
English alphabet letters and the digits are selected from O to 9.

For each speaker, 500 clean utterances are provided for
training purposes. The test data is a mixture of target and
masker speakers mixed at six SSR levels ranging from —9 dB
to 6 dB. For each of the six test sets, 600 utterances are pro-
vided of which 200 are for same gender (SG), 179 for different
gender (DG), and 221 for same talker (ST). The sentences were
originally sampled at 25 kHz. We decrease the sampling rate
to 16 kHz (some additional experiments are also carried out at
8 kHz).

For speaker identification, we extract features from 30 ms
Hamming-windowed frames using a frame shift of 15 ms. A
27-channel mel-frequency filterbank is applied on DFT spec-
trum to extract 12-dimensional MFCCs, followed by appending
A and A? coefficients, and using an energy-based voice activity
detector for extracting the feature vectors. We add the signals
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TABLE II
SPEAKER IDENTIFICATION ACCURACY (% CORRECT) WHERE
BOTH SPEAKERS ARE CORRECTLY FOUND

SSR (dB) -9 -6 -3 0 3 6 Average
Iroquois [8] 96.5 981 982 990 99.1 984 98.2
Saeidi et. al. [18] 86.7 93.0 97.1 962 928 91.6 92.9
Proposed 875 932 972 962 929 091.7 93.2

with an average frame-level SSR to construct the universal back-
ground model (UBM) and the target speaker GMMs. For each
of the 34 target speakers, 50 randomly chosen files from each
speaker are mixed at SSR levels g € {—9,-6,-3,0,3,6} dB
with 50 random files from all other speakers, which gives us
about 180 hours of speech for UBM training. The number of
Gaussians is set to M = 2048.

Each SSR-dependent GMM, J;4, is trained by mixing 100
random files from the th speaker with 100 random files from
all other speakers which gives about 1.8 hours data for training.
The relevance factors in MAP adaptation were set to 3 = 16
for training the speaker models and 8 = 0 for training the test
utterance models, respectively. The choice of 3 = 0 for the test
utterance was done due to short length of data for adaptation.

Table II shows the accuracy of the proposed speaker iden-
tification module for finding both target and masker speakers.
An average accuracy of 93.2% is achieved using the proposed
SID module. Considering D speakers, M Gaussians and G
SSR-levels, the number of Gaussian evaluations for the speaker
recognition system are O(DM ™) for the Iroquois system [8].
The proposed approach, on the other hand, has computational
complexity of O(DGM) only. Therefore, the proposed SID
module is much faster in operation in exchange of reduced
accuracy.

For separation, we extract features by employing a Hann
window of length 32 ms and shift of 8 ms. We use split-VQ
based on sinusoidal parameters [29]. The source models are di-
vided into magnitude spectrum and frequency parts where each
entry is composed of a sinusoidal amplitude vector and several
sinusoidal frequency vectors as its candidates. According to
previous experiments, we set the sinusoidal model order to
L = 100 for 16 kHz and L = 50 for 8 kHz [9]. For speaker
modeling, we use 11 bits for amplitude and 3 bits for frequency
part in the sinusoidal coder. This results in codebook size of
2048 in split-VQ for modeling sinusoidal features. Studying
the other features effect in the subsequent subsections, the same
codebook size of 2048 is also used for speakers’ VQ models.
The pre-trained speaker codebooks are then used in the test
phase to guide the speech separation. The codebooks are used
for both the mixture estimator and the double-talk detector
(Fig. 2). For the mixture estimator given in (14), we used the
first 5 terms of the elliptic series in (15).

As our benchmark methods, we use the two systems in [7] and
[8] participated in the SCSS challenge. We report the separa-
tion results on the outputs obtained by the super-human speech
recognition system [8] as top-performing separation systems in
the challenge. This system even outperforms human listeners in
some of the speech recognition tasks [21]. As the second bench-
mark system, we use another top-performing separation system,
“speaker-adapted full system” proposed in [7] (see Table II in
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[71), where Iroquois [8] system was used for estimating the
speaker identity and the SSR level both in [7] and [8].

We had access only to a limited number of separated clips!
for the system in [8], where the authors in [7] supplied their
separated signals on the whole GRID corpus. To this end, we
evaluate the performance of the proposed system in terms of
four experiments:

* Demonstrating how the mixture estimation is performed
in sinusoidal domain using the proposed MMSE mixture
amplitude estimator in (14) and studying its impact on per-
formance compared to the full band STFT case.

* Subcomponent comparison versus the existing state-of-
the-art.

* Comparing the proposed method versus benchmark in [7]
employing the whole corpus using perceptual evaluation
of speech quality scores (PESQ) and short-time objective
intelligibility measure (STOI).

* Comparing proposed method versus benchmarks in [7] and
[8] on limited number of clips using different objective and
subjective measures.

B. Experiment 1: Case Study for MMSE Mixture Amplitude
Estimator in Sinusoid

We select the mixture of two female speakers 7 and 11 from
GRID corpus test set mixed at SSR = 0 dB. We represent
speech signals using limited number of sinusoids where fre-
quencies and amplitudes are obtained using the peak picking
on the mel-scale as described in (6-7). We consider two sce-
narios: i) ideal case, where the speaker spectra are known, and
ii) estimated by the optimal codebook entry, determined as the
result of the codebook search in (22). The results for the ideal
scenario and estimated from codebook are shown in Fig. 4 on
the right and the left panels, respectively. Fig. 4 (right) shows
how the proposed sinusoidal MMSE mixture amplitude esti-
mator works by minimizing the error over the harmonic lobes
of the sinusoids, estimated per frequency subbands, defined in
(20). Subplot (a) shows the observed mixture spectrum of two
speakers and the mixture estimated using the proposed MMSE
estimator in (14). Subplot (b) displays the mixture estimation
error power in decibels for both STFT and sinusoidal features.
Subplots (c) and (d) illustrate the original spectra of the two un-
derlying speakers, as well as the STFT and sinusoidal spectrum
amplitude. Comparing the MSE results of full-band and sinu-
soidal shown in subplot (b), it is concluded that the proposed
sinusoidal MMSE amplitude estimator defined in (18) well ap-
proximates the full-band mixture estimation error defined in
(17). For visual clarity, we use dB-scale for the spectral mag-
nitudes but all computations use the original spectral magnitude
values. We have only shown the frequencies in the range of [0,
3800] Hz at a sampling frequency of 8 kHz.

As a second scenario, we compare the results of mixture es-
timation in full-band STFT domain and sinusoidal features by
performing codebook search on the STFT codebooks and sinu-
soidal split-VQ codebooks, respectively. The results are shown

IThe clips are Clip 1: target sp6:bwba masker sp30:pgah6a (mixed at —3
dB), Clip 2: target spl4:lwax8s masker sp22:bgwf7n (mixed at 0 dB), Clip 3:
target sp33:bwidla masker sp33:1gii3s (mixed at —6 dB) and Clip 4: target
spS5:swah6n masker sp5:bbirdp (mixed at 0 dB) signal-to-signal ratio.
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Fig. 4. Shown are the magnitude spectrum for (left) codebook search scenario (right) ideal scenario. The descriptions of each panel: (a) shows the original and

estimated mixture spectrum amplitude denoted by 5. (w) and f(C(a1,wy, .

),- 0(027“)27 ¢:)7ﬂ

), respectively, (b) mixture estimation error power e(w) in

decibels. The MSE value for full-band and sinusoidal cases are reported for the bottom plot, and (c) speaker one: S;(w) and C'(a1, w1, @), (d) speaker two:

Sa(w) and Claz, w2, @.).

in the left panel of Fig. 4. The sinusoidal MMSE amplitude es-
timator achieves a lower MSE compared to the STFT case. The
selected codevectors result also in a more accurate amplitude
spectrum representation than the STFT scenario (see subplots
(c) and (d) in the left panel).

C. Experiment 2: Analysis of the System Sub-Components:
Features, Frequency Warping, Mixture Estimator, Type of Mask

In this subsection, we experimentally compare the choice of
each component in our full system to alternative state-of-the-art
components. To this end, we evaluate the separation perfor-
mance in terms of different attributes: i) joint feature and
mixture estimator, ii) feature selection independent of speaker
model, iii) quantization effect, and iv) different filters for signal
reconstruction. As our experiment setup, we selected two
speakers, 9 and 19, from the GRID corpus for mixing. As our
quality assessment measure, we chose PESQ and the results are
averaged over 50 utterances.

The following alternatives for the feature and mixture esti-
mator are considered:

* Features: Gammatone auditory scale filter bank (GTFB),
mel-frequency band energy (MFBE), STFT and sinusoidal
feature. For GTFB features, we considered 128 log-en-
ergy of gammatone auditory scale filter-bank whose filters
are quasi-logarithmatically spaced, based on the equivalent
rectangular bandwidth (ERB)-scale [2]. The bandwidth in-
creases with center frequency from about 35 Hz at 100 Hz
to around 670 Hz at 6000 Hz. We select MFBE features
as a commonly used auditory scale features in variety of
applications. Following the setup in [30], to extract MFBE
features, we designed the filterbank in ERB scale and ap-
plied the filterbank to the power spectrum of signal. In the
reconstruction stage a pseudo-inverse of the filterbank is
utilized to minimize the Euclidean norm, as suggested in
[41]. The number of filterbanks was set to 60 based on our
preliminary experiments.

e Mixture estimator: MMSE in log-power spectrum, power
spectrum, spectrum amplitude domain (proposed), sinu-
soidal estimator of [9], and subband perceptually weighted
transformation (SPWT). SPWT uses STFT features and
employs a perceptually weighted spectral distortion in fre-
quency subbands by imposing a weighting to emphasize
different frequency division in an uneven manner in con-
trast to STFT case [42]. We used four frequency subbands
division in Mel-scale as it led to the highest PESQ as re-
ported in [42].

In the proposed system, the codebook indices  and g are jointly
estimated from the mixed signal using (22). In turn, if we esti-
mate r and q (the codevector indices in the two codebooks) from
the original spectra, S1(w) and S2(w), using

o = arg min [[Clar,wi.¢,) ~ Clar.wr. b))l (28)
Cr 1
(]* = argcnggz ||C(a27w27¢2) - C(aq7wq>¢2)|”;7 (29)

where ay,, w;, are the amplitude-frequency feature set obtained
by applying sinusoidal feature extraction (5-6) on the kth
speaker signal, si(n), we call the set-up as VQ-based upper
bound. The VQ-based upper bound is the best possible per-
formance obtainable by the proposed model-driven speech
separation approach [43].

1) Studying the Joint Impact of Feature and Mixture Esti-
mator: Here we evaluate the separation performance in terms
of two attributes (1) feature domain representation and (2) mix-
ture estimator selection. To this end, we select STFT, mel-fre-
quency band energy (MFBE), sinusoidal feature space while the
mixture estimators are MMSE in log-power spectrum, power
spectrum, and spectrum amplitude domain (proposed). In addi-
tion, to locate the performance of the proposed algorithm among
the previously similar ones, we also report the results obtained
by ML sinusoidal estimator [9] and SPWT [42]. The separation
performance results are shown in Fig. 5. We make the following
observations:
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Fig. 5. Comparing the separation performance of the proposed system in terms
of PESQ for different combination of mixture estimators MMSE estimator in
log-power, power, and amplitude domain (proposed) with different features

(STFT and sinusoidal). The performance of subband perceptually weighted
transform in [42] and sinusoidal estimator in [9] are also included.

* For a given speaker codebook, the closer the method
asymptotes to its VQ-based upper-bound performance,
the more accurate the mixture estimator is. we observe
that the differences between STFT- and sinusoidal-based
estimators are not significant.

* The impact of replacing STFT features with sinusoidal fea-
tures is observed by comparing the VQ-based upper-bound
performance obtained by the selected features in Fig. 5.
It is observed that sinusoidal features offer a considerably
higher upper-bound compared to the STFT.

* For the STFT features, the proposed MMSE amplitude es-
timator results in improved separation performance com-
pared to both the MMSE log-power and the MMSE power
estimators for SSR. > 0 decibels. For SSR < 0 all the
MMSE estimators achieve similar performance. The same
trend is also observed for the sinusoidal features. In par-
ticular, when SSR increases, the performance of the am-
plitude MMSE estimator approaches the VQ-based upper-
bound performance.

e The proposed MMSE amplitude estimator in sinusoid
achieves slightly better performance compared to the
sinusoidal estimator presented in [9] and SPWT.

From the PESQ results shown in Fig. 5, we conclude that the
impact of the selected feature is more pronounced than that of
different mixture estimators.

2) Studying the Impact of the Selected Feature Independent
of the Speaker Codebook: To assess the separation results for
different features without considering the effect of model type
(VQ) and its selected order, we present the separation results
for ideal binary mask (IBM) for different features. The ideal
binary mask is defined as the mask produced by keeping all
time-frequency cells where the target speaker dominates the in-
terfering one and removing those where the target is masked by
the interfering speaker [2]. The results are shown in Fig. 6. It is
concluded that replacing STFT with auditory transform or sinu-
soidal, improves the signal quality results across all SSRs.

3) Studying the Effect of Quantization: In model-based
speech separation, it is required to capture speaker character-
istics with a model. However, as in any modeling technique,
the quantization process in representing an actual speech event
with an average model, degrades the achievable separation
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Fig. 6. Studying the feature impact independent of the quantization. Showing
the separation performance obtained by using ideal binary mask for different
features.
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Fig. 7. Showing the quantization effect on sinusoidal features in an oracle sep-
aration scenario.

performance. The impact of the quantization step on the sep-
aration performance is evaluated throughout the experiments
by reporting the “VQ-based upper-bound” performance shown
in Fig. 7. In an oracle separation scenario, we conduct an
experiment to study the effect of replacing the quantized sinu-
soidal features in (24-25) with the unquantized features. For
quantized sinusoids we use C(a,,w,,¢;) and C(ay,w,, d,)
with 7 € C; and g € C, while for the unquantized features, we
directly use C(@1,w1, ¢, ) and C(az, w2, @5 ). This experiment
demonstrates how accurately the quantized sinusoidal features
represent the original sinusoidal parameterization. The small
gap in PESQ between quantized and unquantized sinusoidal
features indicates that the employed split-VQ model represents
the sinusoidal parameters of signal accurately. The reason why
PESQ scores are increasing as the SSR evolves is that the
mixture information is utilized when reconstructing the output
signals.

4) Studying the Impact of Different Filters for Signal Recon-
struction: First, we compare the two mask methods as follows:
i) employing the square root Wiener filters (1 (w) and G (w) as
defined in (24-25); ii) replacing the phase integrated out mixture
estimate S, (w) in (14), to the denominator of the square root
Wiener gain function in (24-25). To recover the corresponding
source estimates, each filter is then applied to the mixed signal.
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Fig. 8. (Top) perceptual evaluation of speech quality scores (PESQ), and (Bottom) short-time objective intelligibility measure (STOI) scores for target and masker.
According to [44], for normal subjective test material the PESQ values lie between 1.0 (bad) and 4.5 (no distortion). According to [46], the intelligibility score lies
between 0 (bad) and 100 (no distortion). All the results are reported on the speech separation challenge test data provided in [21].

TABLE III
COMPARING THE SEPARATION PERFORMANCE IN PESQ FOR DIFFERENT
CHOICES OF MASK FUNCTION IN SIGNAL RECONSTRUCTION STAGE

Source number Speaker 1 Speaker 2

Feature STFT Sinusoidal STFT Sinusoidal
Filter using (14) 1.77£0.09 | 2.36%+0.09 | 1.76+0.14 | 2.1140.13
Filter using (24-25) | 2.01+0.09 | 2.66+0.10 | 1.914+0.20 | 2.42+0.17

The two filters differ only in terms of their denominator; To re-
cover the corresponding source estimates, each gain function is
then applied to the mixed signal. The results are summarized in
Table III. The results obtained for both the STFT and sinusoidal
features indicate that improvement is achieved with square root
Wiener gain functions (G4 (w), Go (w) in (24-25)) compared to
masks with phase integrated out (S (w) in (14)). This is justi-
fied from the improvement of 0.3 in PESQ for both speakers.

D. Experiment 3: PESQ & STOI Evaluation on Whole Test Set

To study the performance of the proposed speech separation
system, we consider six different setups, covering cases from
all parameters known to all parameters estimated. These six
setups are shown in the legend of Fig. 8 as scenarios 1, 2 and
3 with their corresponding upper-bounds (which we call known
codebook index). Parameters that we consider include codebook
index, speaker identity and SSR level. The scenarios are defined
as:

e Scenario 1: known SID and SSR,

¢ Scenario 2: estimated SID and known SSR,

e Scenario 3: estimated SID and SSR.

In scenario 1, given the correct SID and SSR level, we
investigate the accuracy of the mixture estimation stage. Ad-
ditionally, we also consider degradations caused by erroneous
speaker identities and SSR estimation as in scenarios 2 and 3,
respectively.

For objective measurement, we use PESQ [44] as it correlates
well with subjective listening scores [45] and STOI [46] since
it showed higher correlation with speech intelligibility com-
pared to other existing objective intelligibility models. Fig. 8
shows the separation results in terms of PESQ and STOI ob-
tained for different scenarios. The results obtained from mixture
and scores calculated for the separated wave files of [7] are also
shown for comparative purposes.

Fig. 8 suggests that the proposed method improves the quality
of the separated signals compared to the mixture. According to
the masking theorem [47], at low SSR levels, energetic masking
occurs and the separation system successfully performs in com-
pensating this effect by separating the underlying speakers for
each frame. At high SSR levels, informational masking is more
dominant and the mixed signal itself is more intelligible than
the separated signals obtained by separation module. The mixed
signal itself achieves higher intelligibility score compared to
the separated target signal since the target speaker becomes
more dominant. At high SSR levels, the proposed method
asymptotically reaches the best possible performance denoted
by VQ-based upper bound performance.

The proposed method outperforms the method in [7] in terms
of PESQ at all SSR levels. It also improves the intelligibility
of the target speaker significantly at low SSR levels (lower
than —3 dB). However, the speaker-adapted full system in [7]
achieves slightly higher intelligibility scores. By comparing
the results of the known (scenario 1) and the estimated speaker
identities (scenario 2), the results are generally close to each
other. The same conclusion holds also for the known and esti-
mated SSR levels. This confirms that the SID and SSR estimates
were relatively accurate as suggested by Table II.

Studying different scenarios, the proposed system performs
better for different gender compared to the same gender. A sim-
ilar observation was reported in [7]. This can be explained by
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TABLE 1V
THREE SYSTEM COMPARISON WITH DIFFERENT METRICS ON FOUR CLIPS FROM GRID CORPUS. SYSTEMS ARE S1: HERSHEY [8], S2: WEISS [7] AND S3:
PROPOSED AT 16 kHz. METRICS ARE STOI [46], CROSS-TALK [48], PESQ [44], SIR [49], SAR [49], SDR [49], SNR,.. MEASURES [50], QUALITY SCORES
[51]. EACH CLIP 1S CHARACTERIZED BY ITS MIXING SSR LEVEL AND THE MIXING SCENARIO: DIFFERENT GENDER (DG), SAME GENDER (SG) AND SAME
TALKER (ST). IN EACH SUB-COLUMN, THE BEST RESULT IS HIGHLIGHTED WITH Shaded Bold FONT

Target Masker p-value

Clip 1 (SG -3dB)|[Clip 2 (DG 0dB)[Clip 3 (ST -6dB)[Clip 4 (ST 0dB)[[Clip 1 (SG -3dB)[Clip 2 (DG 0dB)[Clip 3 (ST -6dB)[Clip 4 (ST 0dB)|S3 vs.[S3 vs.

Criterion S1 82 S3 |S1 S2 S3 |S1 S2 S3 |S1 S2 S3 S1 S2 S3 |S1 S2 S3 |S1 S2 S3 |S1 S2 S3 S1 S2
STOI 0.77 0.70 = 0.79 {0.80 0.82 0.83 [0.74 0.51 0.74 |0.85 0.48 0.75 [[0.83 0.83 0.84 |0.82 0.70 0.74 |0.21 0.43 0.68 [0.13 0.49 0.65 |<0.05|<0.05
Cross-talk[11.5 13.3 8.0 [10.3 119 58 |43 23 59 |44 94 6.3 |{10.1 59 104 (103 10.5 103 (13.8 17.3 11.1 |12.410.1 10.1 |>0.05|>0.05
PESQ 24 14 24 |15 17 24 |22 1.7 22 (28 10 25 |/14 13 20 (22 13 22 (29 10 29 |24 17 24 |>0.05/<0.05
SNRjoss  [0.96 0.98 0.91 [0.99 0.89 0.83 [0.92 0.98 0.92 |0.91 0.98 0.91 ([0.93 0.99 0.92 |0.97 0.98 0.89 |0.96 0.96 0.96 [0.97 0.95 0.90 |<0.05|<0.05
= [SIR 10.820.0 150 [0.1 126 16.5 [2.0 27 14.7 |84 17.0 174 (|24 7.8 153 [11.7 149 20.6 [13.6 69 13.6 |88 -8.7 16.7 |[<0.05(<0.05
7 <>': SAR 79 14 39 |432-13 04 |69 14 19 |95 -33 26 ||77 -51 -08 |92 -03 18 |12.0-6.6 56 |83 -64 -09 [<0.05(<0.05
A B |SDR 58 01 1.1 |1.0 00 02 |26 02 02 |61 01 0.8 |[28 0.1 02 (80 01 10 (87 00 18 |42 00 0.3 |<0.05/<0.05
o~ OPS 53 50 36 [42 19 33 |57 26 41 53 24 30 45 23 36 |66 25 52 |73 18 41 64 33 34 [<0.05[<0.05
» |TPS 82 69 77 |59 79 8 |73 26 75 [80 26 73 76 53 59 |72 50 72 |78 32 75 |75 32 76 |>0.05/<0.05
5 PS 19 8 84 |79 77 8 |72 75 8 |75 66 718 (|69 77 8 |65 71 79 |70 71 78 |78 80 76 |<0.05/<0.05
&~ |APS 60 37 36 |90 14 26 |63 16 33 |58 13 20 61 11 31 72 14 43 |76 90 36 |63 18 29 |<0.05|<0.05

the different time-frequency masking patterns and physiolog-
ical differences in the vocal characteristics of male and female
speakers. Thus, the underlying sources are less overlapped com-
pared to other scenarios.

E. Experiment 4: Performance Evaluation on a Subset of Test
Data

In the following, we compare the proposed method to those
proposed in [7], [8] for selected clips from test dataset com-
posed of same gender, different gender and same talker sce-
narios. The separation results are summarized in Table I'V. For
each of the measures in this experiment, the significance level
for each paired t-test (p-value) is shown in the last column in
Table IV. The p-values determine whether the results obtained
by the proposed method are significantly different than bench-
mark methods. The following observations are made:

1) STOI [46]: The proposed method achieves better perfor-
mance compared to the baseline methods.

2) Cross-Talk [48]: An ideal separation system would filter
out any trace of the interfering speaker signal in the mixture.
As a proof of concept, we use the amount of cross-talk [48] re-
maining in the separated output signal for comparing different
separation methods. From the cross-talk scores, we conclude
that the proposed SCSS method often introduces less cross-talk
compared to [7]. Although the differences are not statistically
significant, we observe that the proposed system leads to rela-
tively less or comparable amount of cross-talk in most of the
cases compared to [7] and [8], respectively.

3) PESQ [40]: The proposed system yields improved results
over the method in [7].

4) SN Rj,ss [50]: This measure was found appropriate in
predicting speech intelligibility in different noisy conditions, in
the sense of producing a higher correlation for predicting sen-
tence recognition in noisy conditions (r = —0.82 higher than
r = 0.77 for PESQ). From the SNR,4 results we observe that
the proposed method consistently outperforms the competitive
methods.

5) BSS EVAL Metrics [49]: To enable comparison with other
source separation algorithms, we evaluate the separation results
in terms of the metrics proposed in blind source separation eval-
uation toolkit (BSS EVAL) [49]. The following observations are
made:

» The proposed method achieves a better signal-to-interfer-
ence ratio (SIR) performance compared to both bench-
mark methods. This improvement in SIR compared to [8]
is attained at the price of introducing more artifacts, i.e.
producing lower signal-to-artifact ratio (SAR). This im-
plies that a separation quality with less cross-talk is fea-
sible but introduces more artifacts. This is analogous to
the tradeoff between speech distortion minimization and
cross-talk suppression provided by the square root Wiener
filter based on sinusoids discussed in Section III-F. This
suggests that the proposed method is often better at re-
jecting interference when recovering the target speaker.
Similar trade-off between SIR and SAR result was inde-
pendently reported in [49].

* The proposed method achieves better SAR and SDR
scores compared to [7] but lower than [8] which achieves
the highest SDR and SAR scores. The signal-to-distortion
(SDR) measure takes into account both interference and
noise level in the excerpts and, consequently, has no pref-
erence over interference signal or noise power; therefore,
the same level of each will degrade the SDR metric by the
same amount.

6) PEASS [51]: We report the separation results in terms
of the state-of-the-art objective metrics called perceptual eval-
uation methods for audio source separation (PEASS) adopted
for the 2010 signal separation evaluation campaign (SiSEC)
[51]. We use the four quality scores proposed in PEASS toolkit
[51]: overall perceptual score (OPS), target-related perceptual
score (TPS), interference-related perceptual score (IPS) and ar-
tifacts-related perceptual score (APS). OPS measures how close
the separated signal is to the clean signal, TPS measures how
close the target-related part of the enhanced signal is to the clean
reference signal, IPS measures the interference cancellation in
the separated signal, and finally, APS shows how close the en-
hanced signal is to the clean one in terms of having no artifacts.
We make the following observations:

* The APS results are in line with SAR results confirming
that [8] produces least artifacts. This might be because [8]
employs both dynamic speaker models and grammar con-
straints. Meanwhile, the proposed method attains higher
SAR and APS performance compared to [7].

* According to TPS results, both [8] and the proposed
method achieve higher performance compared to [7]. The
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paired test outcome between the TPS scores of [8] and the
proposed method indicates insignificant difference.

* The system in [8] achieves the highest OPS scores among
the three systems. The proposed system achieves higher
performance compared to [7].

* The outcome of paired tests on IPS scores confirms those
obtained on SIR, indicating statistically significant differ-
ence of the proposed method over others.

7) MUSHRA [52]: To assess the perceived quality obtained
by the different separation methods, as our first subjective mea-
sure, we conduct subjective test using the so-called MUItiple
Stimuli with Hidden Reference and Anchor (MUSHRA) lis-
tening test as described in [52]. The MUSHRA test is a double
blind test for the subjective assessment of intermediate quality
level benefits obtained by different methods (via displaying all
stimuli at the same time). The MUSHRA test enables simulta-
neous comparison of different separation methods directly.

We conducted the listening experiments in a silent room
using high quality audio device with firewire interface for dig-
ital-to-analog conversion and AKG K240 MKII headphones.
To ease the test procedure, we prepared a graphical user inter-
face (GUI) in MATLAB. Seven untrained listeners participated
in the test (none of the authors were included). The excerpts
consisted of the hidden reference (HR) showing the known
quality on the scale; it is used to check the consistency of the
responses of a subject. A high score is expected for HR. We
also include the mixed signal (without any separation) as an
anchor point to enable comparison of separated signal and
mixture qualities. This reflects how hard it was to perceive
the reference signal when listening to the mixture. The re-
maining four excerpts are the separated signals obtained by
super-human speech recognition system [8], speaker-adapted
full system [7], and our proposed method configured for both
8 kHz and 16 kHz sampling frequencies. The excerpts were
randomly chosen and played for each subject. The excerpts
used in subjective tests are downloadable from the webpage:
http://www.audis-itn.eu/wiki/Demopage2. The listeners were
asked to rank eight separated signals relative to a known refer-
ence on a scale of 0 to 100.

The MUSHRA test results are reported in terms of the mean
opinion score (MOS) and 95% confidence intervals [53] calcu-
lated according to the standard as described in ITU-R BS.1534-1
[52]. Fig. 9 shows the mean opinion score (MOS) for comparing
the separation results obtained by different methods discussed in
this paper. We observe that the maximum and minimum scores
were obtained at hidden reference and speech mixture, respec-
tively, as expected. Furthermore, the proposed method at 16 kHz
achieves better performance compared to [7]. The difference be-
tween the performance of the method studied in [8] and the pro-
posed one is not statistically significant. This result confirms the
PESQ score observation. The proposed method at 8 kHz also
achieves comparable result with [8] and [7].

8) Speech Intelligibility [54]: Following the principle and
standard described in [54], as our second subjective measure-
ment, we conducted a test to assess speech intelligibility of the
separated signals. We chose seven listeners (different from those
that participated in the MUSHRA test) and eight segments to
be played for each listener. We asked the listeners to identify
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Fig. 10. Speech intelligibility test results. The calculated percentage of correct
keywords is averaged over all excerpts and all listeners. Error bars indicate 95%
confidence intervals.

color, letter, and digit spoken during each of the played seg-
ments. The listeners were required to enter their results using
a GUI in MATLAB, which enabled listeners to enter their re-
sults both accurately and comfortably. On average, it took 15
minutes per listener to complete the test.

Fig. 10 shows the results of the intelligibility test averaged
over all excerpts and listeners. We observe that the proposed
method at 16 kHz achieves higher speech intelligibility com-
pared to the methods in [7] and [8]. This result is in agreement
with our observations on both SNR s and STOI. The mixed
signal also has the lowest score while the hidden reference signal
achieves the highest intelligibility score, as expected.

9) ASR Results: Finally, we also configured an automatic
speech recognition system using mean subtraction, variance
normalization, and ARMA filtering (MVA) [55], which gave an
overall recognition accuracy of 52.3% [56]. Comparing the re-
sult with those of the systems reported by the other participants
in the separation challenge [21, Table 1], we observed that our
system ranks on the range of median out of all methods; located
below [8] 78.4% but above [7] 48.0%.
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IV. DiscussioN

Both the objective and subjective results show that fairly
good separation quality and high interference rejection capa-
bility were achieved, in comparison to other methods in the
field. In particular, the subjective measurements indicate that
the proposed system improves both quality and intelligibility
of the signal and achieves a performance comparable to the
systems in [7] and [8]. Although the performance of proposed
system in light of speaker identification and automatic speech
recognition is not better than the top-performing systems but
it is comparable with other algorithms in speech separation
challenge [21]. Our proposed separation system separates
the mixture frame-by-frame and is appropriate for low-delay
applications, such as speech coding.

The proposed system, like other current separation systems,
still has some limitations. The training samples used to train the
speaker models are noise-free and relatively long and the eval-
uation corpus consists of only digitally added mixtures. Addi-
tionally, the gains of the underlying speakers in the mixture are
assumed to be constant and we have a mixture of two speakers
only. We also neglected the environmental or background noise
effects, as well as the reverberation problem. In practice, each
one of these issues and their effect on the overall separation per-
formance should be carefully studied. Future work should sys-
tematically address how these simplifying, yet restrictive and
impractical pre-assumptions could be relaxed. As an example,
[57] provides a new corpus for noise-robust speech processing
research where the goal is to prepare realistic and natural rever-
berant environments using many simultaneous sound sources.

The improvement using the proposed MMSE sinusoidal
mixture estimator over our previous sinusoidal mixture esti-
mator can be elaborated as follows. The ML sinusoidal mixture
estimator presented in [9] ignores the cross-term components
between the underlying speakers’ spectra at each frame, as well
as their phase differences. In some situations, the interference
sinusoidal components, play a critical role and can change the
position of spectral peaks completely. The proposed sinusoidal
MMSE estimator presented in this work, in turn, considers the
cross terms and integrates out the phase difference based on
uniformity assumption of the speech phase. This explains why
the MMSE sinusoidal mixture estimator achieves improved
MSE compared to the sinusoidal mixture estimator of [9].
Finally, similar to other sinusoidal modeling systems like [31],
the proposed method introduces some buzziness for unvoiced
segments. As a future work and room for improving the per-
formance, it is possible to consider more complex modeling
for speech and jointly estimating voicing states and sinusoidal
model parameters of the underlying signals.

The presented system showed high perceived quality and
intelligibility of the separated signals. The results obtained in
the speech intelligibility test can be interpreted as the human
speech recognition results obtained from the separated signals.
There are two possible reasons why the ASR results are in
disagreement with our signal quality scores. Firstly, the word
error rate metric of ASR does not correlate with those used for
assessing the signal quality. Secondly, evaluating the separa-
tion performance using ASR systems depends on the speech
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recognizer configuration, features, training of acoustic and
language models. It is not trivial to configure an ASR-system
optimized for STFT-like features, to work well on sinusoidally
coded speech. Therefore, improvement of the automatic speech
recognition performance of the proposed system is left as a
future work.

V. CONCLUSION

We presented a novel joint speaker identification and speech
separation system for solving the single-channel speech
separation problem. For the separation part, we proposed a
double-talk/single-talk detector followed by a minimum mean
square error mixture estimator for mixture magnitude spectrum
operating in the sinusoidal domain. Importantly, the proposed
method does not require pitch estimates and is based on sinu-
soidal parameters. We relaxed the a priori knowledge of speaker
identities and the underlying signal-to-signal ratio (SSR) levels
in the mixture by proposing a novel speaker identification and
SSR estimation method. The proposed system was evaluated
on the test dataset provided in the speech separation challenge.
Compared to previous studies that mostly report speech recog-
nition accuracies, additionally, we focused on reporting the
signal quality performance obtained by different separation
methods. From the experimental results of various objective
and subjective measurements, we conclude that the proposed
method improves the signal quality and the intelligibility of
the separated signals compared to the mixture and the tested
state-of-the-art methods, while it does not meet the performance
of state-of-the-art systems in terms of speaker identification
and automatic speech recognition accuracy. In many cases,
the method offered separated signals with less cross-talk via
a high interference rejection capability. Considering different
objective and subjective metrics, evaluated on three systems
outputs, we conclude that no single system can produce an
output satisfying all the evaluation metrics. By comparing the
subjective results with those obtained by objective metrics and
performing statistical significance analysis, we conclude that
the ranking of the systems changes according to the chosen
objective metric. The difference between our objective and
subjective results, reveals a mismatch between the performance
evaluation in the back end and the parameter estimation stage
in the separation stage, when the separation system is used as
a pre-processor for a target application, e.g., automatic speech
recognition.
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