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Abstract

Agglomerative clustering generates the partition hierarchically by a sequence of merge operations. We propose an alternative to the
merge-based approach by removing the clusters iteratively one by one until the desired number of clusters is reached. We apply local
optimization strategy by always removing the cluster that increases the distortion the least. Data structures and their update strategies
are considered. The proposed algorithm is applied as a crossover method in a genetic algorithm, and compared against the best existing
clustering algorithms. The proposed method provides best performance in terms of minimizing intra-cluster variance.
© 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Clustering is an important problem that must often be
solved as a part of more complicated tasks in pattern recog-
nition, image analysis and other fields of science and en-
gineering [1-3]. Clustering is also needed for designing a
codebook in vector quantization [4]. The clustering problem
is defined here as follows. Given a set of N data vectors
X ={x1,x2,...,xn}, partition the data set into M clusters
such that a given distortion function f is minimized.

Agglomerative clustering generates the partition hierar-
chically by a sequence of merge operations. The cluster-
ing starts by initializing each data vector as its own clus-
ter. Two clusters are merged at each step and the process
is repeated until the desired number of clusters is obtained.
Ward’s method [5] selects the cluster pair to be merged so
that it increases the given objective function value least. In
the vector quantization context, this is known as the pair-
wise nearest neighbor (PNN) method due to Ref. [6]. In the
rest of this paper, we denote it as the PNN method.

The PNN is an attractive approach for clustering because
of its conceptual simplicity and relatively good results [7]. It
has also been combined with k-means clustering as proposed
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in Ref. [8], or used as a component in more sophisticated op-
timization methods. For example, the PNN method has been
used in the merge phase in the split-and-merge algorithm
[9] resulting in a good time-distortion performance, and as
the crossover method in genetic algorithm [10], which has
turned out to be the best clustering method among a wide
variety of algorithms in terms of the minimizing the distor-
tion [11].

The main restriction of the PNN method is that the clusters
are always merged as a whole. Once the vectors have been
assigned to the same cluster, it is impossible to separate them
later. This restriction is not significant at the early stage of the
process when merging smaller clusters but it can deteriorate
the clustering performance at the later stages when merging
larger clusters.

In this paper, we propose a more general approach called
iterative shrinking (IS), which generates the partition by a
sequence of cluster removal operations: clusters are removed
one at a time by reassigning the vectors in the removed clus-
ter to the remaining nearby clusters. The PNN method can
be considered as a special case of the iterative shrinking, in
which the vectors of the removed cluster are all forced to
move to the same neighbor cluster, see Fig. 1. In the pro-
posed approach, the vectors can be reassigned more freely
as shown in Fig. 2. Apart from the difference in the removal
operation, we follow the local optimality strategy of the PNN
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Fig. 1. The merging process of the PNN method.
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Fig. 2. The cluster removal process of iterative shrinking.

method, and always remove the cluster that increases the
cost function value least. We also consider briefly the case
where the number of clusters must also be determined.

The method is also integrated within a genetic algorithm.
The proposed method and its genetic variant are extensively
compared against the best existing clustering algorithms.
The results show that the iterative shrinking provides com-
petitive result for all test sets, and the variant with the genetic
algorithm gives the best result among all tested algorithms
in terms of minimizing the intra-cluster variance. The run-
ning time of the proposed method can be rather large but we
show how the genetic variant can also be tuned for better
time-distortion performance. The idea of iterative shrinking
and its genetic variant have been originally presented in two
conference papers [12,13].

Similar idea has been recently proposed for the opposite
(incremental) direction in Ref. [14]. The method, known as
Global k-means (GKM), generates the partition iteratively
by adding one new cluster to the partition. At each step,

the method considers every data vector as a potential loca-
tion for the new cluster. It applies k-means to all candidate
partitions, and keeps the one that decreases the objective
function value most. The approach itself is feasible but its
time complexity is rather high varying from O(gNM?) to
0 (gN?>M?) depending on the variant, where g is the num-
ber of k-means iterations applied.

The rest of the paper is organized as follows. In Section 2,
we give formal definition of the clustering problem consid-
ered here, and then recall the PNN method. The new itera-
tive shrinking method is then introduced in Section 3. We
first present the definition of the secondary partition in Sec-
tion 3.1. A straightforward solution for finding the cluster to
be removed is given in Section 3.2, and its exact calculation
is derived in Section 3.3. Update of the secondary partition
is considered in Section 3.4. The relationship between the
PNN and the IS methods is discussed in Section 3.5. The
time complexities are summarized in Section 4. In Section 5,
we apply the method within a genetic algorithm, and also
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extend the method to the case of an unknown number of
clusters. Experimental results are reported in Section 6, and
conclusions drawn in Section 7.

2. Pairwise nearest neighbor

Given a set of N data vectors X = {x, x2, ..., xn}, clus-
tering aims at solving the partition P = {p1, p2,..., PN},
which defines for each data vector the index of the cluster
where it belongs to. Cluster s, is defined as the set of data
vectors that belong to the same partition a:

sa ={xi | pi =a}. (D

The clustering is then represented as the set S = {s1, 52, ...,
sspy ). In vector quantization, the output of the clustering is
a codebook C = {cy, 2, ..., cy}, which is usually the set
of cluster centroids.

The most important choice in clustering is the cost func-
tion f for evaluating the goodness of the clustering. When
the data vectors belong to Euclidean space, a commonly
used function is the mean square error (MSE) between the
data vectors and their cluster centroids. Given a partition P
and the codebook C, the MSE is calculated as

N
1
MSE(C, P) =~ - Dl = ep . 2)

i=1

Ward’s method [5], or the pairwise nearest neighbor (PNN)
as it is known in vector quantization [5,6], generates the clus-
tering hierarchically by a sequence of merge operations as
described in Fig. 3. In each step of the algorithm, the num-
ber of clusters is reduced by merging two nearby clusters:

Sq < Sq U sp. 3)

The cost of merging two clusters s, and s, is the increase
in the MSE-value caused by the merge. It can be calculated
using the following formula [5,6]:

ngnp

dap = ~llea - e, 4)

’ ng +n

where n, and np are the corresponding cluster sizes. The
PNN method applies a local optimization strategy: all pos-
sible cluster pairs are considered and the one increasing

PNN(X, M) — S
FOR i1to NDO
Si e {x};
REPEAT

(sa, Sp) « SearchNearestClusters(S);
Merge(sa, Sb);

UNTIL ISI=M,

Fig. 3. Structure of the PNN method.

MSE least is chosen:

a,b=arg min d;;, (®)]
i.jell,m]
i
where m is the current number of clusters. There exist many
variants of the PNN method. A straightforward implementa-
tion recalculates all distances at each step of the algorithm.
This takes O (N3) time because there are O (N) steps in to-
tal, and O(N?) cluster pairs to be checked at each step.

Another approach is to maintain an N x N matrix of the
merge cost values. The merge cost values are needed to be
updated only for the newly merged cluster. Nevertheless,
the algorithm still requires O(N?>) because the search of
the minimum cluster pair takes O (N 2y time [15]. Kurita’s
method [16] maintains an N x N matrix but it also utilizes
a heap structure for searching the minimum distance. The
method thus runs in O(N? - log N) time. The storage of
the matrix, however, requires O (N?) memory, which makes
these variants impractical for large data sets.

A fast implementation with linear memory consumption
of the PNN method is obtained by maintaining a pointer from
each cluster to its nearest neighbor, and the corresponding
merge cost value [17]. The cluster pair to be merged can be
found in O (N) time, and only a small number (denoted by 1)
of the nearest neighbor needs to be updated after each merge.
The implementation takes O(tN 2) time in total. Further
speed-up can be achieved by using lazy update of the merge
cost values [18], and by reducing the amount of work caused
by the distance calculations [7].

All the variants cited above give either asymptotic or
relative improvement in the time complexity but they do
not provide any improvements in the clustering quality. The
clustering result is therefore bounded by the fundamental re-
striction caused by the merge step of the PNN method. The
only way to improve the quality of the partition is to replace
the merge step by a more general solution.

3. Iterative shrinking

Iterative Shrinking (IS) starts by assigning each data vec-
tor to its own cluster. It then removes one cluster at a time
until the desired number of clusters has been reached. The
data vectors of the removed cluster are repartitioned to the
nearby clusters. The centroids of the neighbor clusters are
updated according to the changes. The general structure of
the IS algorithm is presented in Fig. 4, and the details are
discussed in the following subsections.

3.1. Finding secondary cluster

For the cluster removal, we need to find the second nearest
cluster for each data vector in the selected cluster. We there-
fore maintain the secondary partition Q ={q1,q2, ..., qn}
for every data vector. It can be generated in a similar
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IS(X, M) = §
FOR i1to NDO
i {x};
REPEAT

Sa < SelectClusterToBeRemoved(S);
RemoveCluster(S, sz);

UNTIL ISI=M;

Fig. 4. Structure of the IS method.

manner to the primary partition but excluding the current
nearest cluster in the search:

gi=arg min |lx; —c;|*. (6)
J#pi

The squared Euclidean distance, however, does not take into
account the centroid update, which will take place after the
removal process. It is therefore more accurate to apply the
merge cost function of Eq. (4), and measure the cost of
merging the data vector to the neighbor cluster s; instead of
the mere distance to the cluster centroid:

gi=arg min —I—|lx; —¢;|% (7)
1<j<m p; 41 J
J#pi

Now the cost function will put more weight on larger clusters
as their centroids are less likely to move, and less to smaller
clusters.

3.2. Selecting cluster to be removed

We adopt the local optimization strategy of the PNN
method and select the cluster to be removed as the one that
increases the cost function least. Because the data vectors of
the removed cluster can be divided among several neighbor
clusters, we calculate the effect of the removal cost for each
data vector separately. We first determine how much the
cost function will increase if the data vector x; is merged to
its secondary cluster s, , and then how much it will decrease
when the data vector is removed from its current cluster s,.
The net effect of the change is the difference:

n,.
qi 2 2
AD; = ——|lx; — cq; |17 — lIlxi —call”. (3)
ng +1
The removal cost of cluster s, can now be estimated as the
sum of the individual move costs of the data vectors:

di= Y AD;. ©)

XiE€Sq

We refer this as the simple calculation of the removal cost.
It gives a correct result if every data vector moves to a
different neighbor cluster. In practice, several data vectors
can move to the same neighbor cluster and they all affect
on the movement of the cluster centroid. Eq. (8) is therefore
not accurate because it does not take into account the overall
movement of the centroids. Instead, it tends to over estimate

the cost function when more vectors are moving to the same
destination cluster.

3.3. Exact calculation of the removal cost

To realize the exact calculation for the removal cost, we
divide the data vectors x; in s, into subclusters s, ; according
to their secondary partition g;:

Sa,j:{xi GSalQi=j}~ (10)

For example, there are five data vectors of the cluster s,
divided into four subclusters in Fig. 2. The removal is con-
ceptually considered as a three step process: (1) remove the
vectors from the current cluster s,, (2) form the subclusters
Sq,j» and (3) merge the subclusters to the neighbor clusters
sj. Thus, the removal cost is composed of the three terms
corresponding to this process:

m
do= =Y lea=xil*+ > > leaj —xil?

XjE€Sq j=lxi€sq,j
N 1 sa, ]
J " 1%a,j 2
+Y e = ca
o1t 1]
m
2
== lsajl - llca = cajl
j=1
N 1 sa, ]
J " 1%a,j 2
+) " lej — ca jlI%, (11)
ot Isal

where [s,, ;| is the size of the subcluster s, ;. The first term
is the sum of the distances to the current cluster centroid c,,
i.e. the cost of the cluster before removal. The second term
is the sum of the cost values inside the subclusters, where
cq,j represents the centroid of the subcluster. The third term
is the sum of the costs of merging the subclusters s, ; to
their neighbor clusters ;.

Eq. (11) gives the exact removal cost, and provides the
result of the local optimization strategy as desired. The situ-
ation, however, is not as simple as this because the optimal-
ity is restricted by the choice of the secondary partition Q.
Eq. (7), for example, assumes that the vectors are moved in-
dependently from each other. The movement of the vector,
however, has an effect on the cluster centroid, and there-
fore, indirectly affects the removal cost values of other data
vectors, too.

The problem is that there is no way to determine the best
moving sequence without trying all possible combinations.
The only reasonable choice is therefore to apply some kind
of heuristic. We content ourselves with the one given in Eq.
(7), in which the partition of all data vectors is determined
independently from each other.
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3.4. Partition updates

The removal of a cluster s, affects most of the data struc-
tures. The primary partition P is updated for the vectors in
the removed cluster by copying the information from the
secondary partition:

Vxi €S4: Dpi < 4qi. (12)

The codebook C is then updated by recalculating the cen-
troids of the affected clusters. As a consequence of this,
there can be further changes both in the primary and sec-
ondary partition due to the movement of the centroids. This
can affect the accuracy of the removal cost estimation if the
necessary updates are not made.

We consider next different strategies for updating the sec-
ondary partition Q. For this purpose, the clusters are classi-
fied to three categories according to the location with respect
to their removed cluster:

e removed cluster,
e neighbor clusters, and
e all other clusters.

A cluster s; is defined to be a neighbor cluster if any data
vector from the removed cluster s, has been reassigned to
sj. The set of neighbor clusters is denoted here as Y;:

Yo={sj|3xi €54 :qi=J} (13)

The secondary partition update of a single vector requires
that we search its second nearest cluster among all clusters.
This takes O (m) distance calculations per data vector, where
m is the current number of clusters. It is therefore vital for
the time complexity to make the number of updates as small
as possible. We consider three alternative update strategies:

e minimum update,
e standard update, and
e extensive update.

The data vectors that are updated in these strategies are de-
noted as the sets G minimum» Gstandard aNd Gextensive. Lhe sets
have an increasing amount of updates so that Gminimum <
Gtandard € Gextensive & X. The inclusion of the vectors in
these three sets is summarized in Table 1 according to the
type of the cluster in the primary and secondary partition.
The situation is also illustrated in Fig. 5.

The minimum update strategy updates the secondary par-
tition of the vectors that is only absolutely necessary. This
includes all vectors in the removed clusters, and also some
vectors in the neighbor clusters:

Gminimum = {xi | pi =a Vv q; = a}. (14)

Firstly, a new secondary cluster must be resolved for the
moved vectors (p; = a) because they have just been reas-
signed according to their secondary partition, see Eq. (12).

Table 1
Classification of the data vectors according to the type of its primary and
secondary clusters

Primary partition P

Removed Neighbor Other
Secondary Removed N/A Minimum Minimum
update update
partition Q Neighbor Minimum Standard Extensive
update update update
Other N/A Extensive -
update

Secondly, a vector in the neighboring cluster must be up-
dated if its secondary cluster was the removed one (¢; =a).

The standard update includes slightly more data vectors
than the minimum update:

Gtandard = Gminimum U {x; | sp; € Yo A Sq; € Ya}. (15)

In other words, we update the secondary partition also for
those vectors in the neighbor clusters whose secondary parti-
tion is another neighbor cluster. This provides more accurate
maintenance of the secondary partition with only a moder-
ate amount of extra work. On the other hand, the update is
not mandatory.

In addition to the previous data vectors, the extensive up-
date strategy contains also all data vectors that have any
connection to the neighbor clusters. In other words, the up-
date is performed for data vector x; if either its primary or
secondary partition is one of the neighbor cluster:

Gextensive = Gstandard U {X; |Sp,~ €Y, Vsy € Yy} (16)

This update strategy covers all vectors that should be up-
dated, and it can be performed using a reasonable amount
of computation. It is expected that the number of vectors
in Gextensive 1S still remarkably smaller than the size of the
overall data set.

3.5. IS versus PNN

The PNN method can be seen as a special case of the IS
method, as it can be simulated by the IS method as follows.
We first select the cluster to be removed as one of the two
clusters (s, and s5) selected for the merge. The merge is
then performed by moving all the vectors from s, to s,, and
thus, removing s. The centroid of s, is updated accordingly.
The result is equivalent to that of the PNN method, and it
is easy to see from Figs. 1 and 2 that some of the vector
reassignments could be done better resulting in a smaller
increase in the cost function value.

The difference of the merging and removal strategies is
illustrated further in Fig. 6. We have six data vectors located
symmetrically, and the task is to find a partition of two
clusters. After the first three merges, the output of the PNN
and IS methods are equivalent but in the fourth merge the
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Code vectors:

() Code vector to be removed

C) Remaining code vectors

Data vectors:

Data vectors of the minimum update: x
Data vectors of the standard update: x Uy

Data vectors of the extensive update: x Uy U z
Other data vectors +

Fig. 5. Hlustration of the vectors whose secondary partition is updated at the different levels of the update strategy. The removed cluster is s1, and the

neighbor clusters are s7, s3, 54 and s5.

PNN IS
After
merge
After
C DO o DD
merge

Fig. 6. Example of the different functions of the PNN and the IS methods.

PNN method is already restricted by the previous merges
and the result is suboptimal. The IS method, on the other
hand, ends up with the optimal result no matter what is the
order of the previous cluster removals.

It is noted, that it is still possible (although rare) to get
better result by the PNN method than by the IS method
because locally optimal steps does not necessarily lead to
the global optimum. Nevertheless, it is expected that the IS
method would give better partition than the PNN method in
most cases.

4. Complexity analysis
Detailed pseudo-code of the IS method is given in Fig. 7.

The initialization phase requires O (N 2y distance calcula-
tions due to the construction of the secondary partition. For

IS(X, M) > C, P

me« N;

FORV ie[1, m]:
Ci & Xi,
pi< i
nie1;

FOR VYV ie[1, m]:
g; < FindSecondNearestCluster(C, x);

REPEAT
CalculateRemovalCosts(C, P, Q, d);
a « SelectClusterToBeRemoved(d);
RemoveCluster(P, Q, a);
UpdateCentroids(C, P, a);
UpdateSecondaryPartitions(C, P, Q, a);
mem-1;

UNTIL m=M.

Fig. 7. Pseudo-code of the IS method.

simplicity, we assume here that the size of the data vector is
constant. The main loop of the algorithm is then repeated by
N — M times. The most time consuming operations during
the iteration are the calculation of the removal costs, and the
update of the secondary partition. The simple calculation of
the removal cost requires at most O (N) time per iteration.
The exact calculation requires a little bit more than that but
still no more than O (N).
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Table 2
Summary of the time complexities of the exact PNN and the IS

PNN Iterative shrinking
Original Fast Minimum Standard Extensive
Initialization O(N) O(N?) O(N?) O(N?) O(N?)
Single step
o Cluster selection O(Nz) O(N) O(N) O(N) O(N)
e Merge/removal o(l) o(l) O(N) O(N) O(N)
o Update o(1) O(tN) O(N) O(N -log N/M) O(N -log% N)
Algorithm in total O(N?) O(TN?) O(N?) O(N? -log N/M) O(N? -10gZ N)

The update of the secondary partition requires n - m dis-
tance calculations, where n is the number of data vectors to
be updated, and m is the number of clusters. We first esti-
mate the number of data vectors within one cluster, and then
derive the number of distance calculations in the minimum
update, standard update, and the extensive update.

The main question is the number of data vectors in a
cluster. After (N —m) removal steps, the N data vectors are
divided into the m clusters so that there are N/m vectors
per cluster, on average. As the algorithm tends to remove
smaller clusters, it is reasonable to estimate that the number
of vectors is no more than N /m, on average. If we sum it up
from all N — M steps, we get the total number of vectors as

My M oY

N N-1 M

=N ]—f- : + —i—l (17)
N M M+1 N)’

For the case M = 1, this gives

N 1+1+ —i—l = O(N -logN) (18)
172 N)~T 08 ).

The algorithm actually iterates only N — M steps, so a more
accurate upper bound is N - (log N — log M). Thus, the
average number of vectors in the cluster is approximated by:

N - (logN —log M)
N-—-M

= O(log N). (19)

The minimum update processes only the vectors of the re-
moved cluster, and the vectors that were mapped to the re-
moved cluster in their secondary partition. The number of
distance calculations per vector is not equal in all iterations
but it varies from N to M, and thus, can be approximated
as follows:

N N N-1 al M N N—-M)-N 20
SN =D M = )N (0)
We assume that the same result applies both to the primary
partition and secondary partitions. The number of distance
calculations in the minimum update variant is therefore es-
timated as 2(N — M) - N = O(N?).

The standard update includes also vectors from the neigh-
bor clusters. The number of distance calculations can be
approximated by multiplying the result in Eq. (20) by the
number of neighbor clusters |Y|. The obvious upper bound
for |Y| is the number of vectors in a single cluster as in
Eq. (19). The result from this is

N - (logN —log M)
N-M

N
.(N—M).NzNz-logM. 1)

Thus, the number of distance calculations is O(N? -
log(N/M)).

The extensive update includes also vectors from other
clusters. Suppose that we have |Y| neighbor clusters, and
assume that each of them have also |Y| neighbors. Some
of the clusters are the same but this anyway gives a simple
estimation for the number of affected clusters as |Y|?. The
total number of distance calculations is therefore estimated
as O(N? -log” N).

The overall time complexities of the different IS variants
are summarized and compared to the main PNN variants in
Table 2. The IS method with minimum update is theoreti-
cally faster than the PNN method but not necessarily so in
practice. This is because the number of updates (7) in the
PNN method is relatively small, and the removal step in the
IS method is more complicated. The standard and extensive
update variants have somewhat higher time complexities but
still smaller than the O (N 3 ) that would have been the result
if all data vectors were updated at every iteration.

5. Generalizations of IS

We next generalize the iterative shrinking approach to the
case when the number of clusters must also be determined.
The method is then augmented with the genetic algorithm in
the same way as the PNN method has been applied in Refs.
[10,11]. The proposed combination is denoted as GAIS (ge-
netic algorithm with iterative shrinking). We consider both
the fixed and variable number of clusters.
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5.1. Solving the number of clusters

In many cases, the number of clusters is not known be-
forehand but it is a part of the problem. A straightforward
approach is to generate solutions for all possible number of
clusters M in a given range [ Mmin, Mmax ], and then select the
best one according to a suitable clustering validity criterion.
This multiplies the computation time by (Mmax — Mmin)-
Iterative shrinking, on the other hand, produces the solu-
tions in the range [N, M] during the same run. It is there-
fore enough to replace the distortion function by a suitable
clustering validity criterion.

Among many different criteria [19-21], it has been ob-
served in Ref. [22] that variance-ratio F-test based on a sta-
tistical ANOVA test procedure [23] works well in the case
of normally distributed data. Moreover, it was shown in Ref.
[24] that the same distance function that is applied with the
MSE, can also be applied with the F-fest. Therefore, no ad-
ditional changes are required in the algorithm because of
using the F-test as the clustering validity criterion instead of
the MSE. We refer this criterion here as the F-ratio.

The total variance of a data set can be decomposed into
the sum of within-groups variance and between-groups
variance as

N k
o(X) =Y _llxi —cpi 1>+ D _njlle; — %1%, (22)

i=1 j=1

where x is the mean vector of the data set and k is the
number of clusters. The F-ratio is then calculated as the
ratio of the total within-groups variance against the total

GeneticAlgorithm{X) =(C, P)
FOR i1 TO ZDO
C' «—RandomCodebook(X);
P' < OptimalPartition(X, C");
SortSolutions(C,P);
REPEAT

{C,P} « CreateNewSolutions({C,P});

SortSolutions(C,P);

UNTIL no improvement;

CreateNewSolutions({C, P}) =»{C™", P™"}

cnewri’ PnewA <—C P1;
FOR k—2TO ZDO
(a,b) < SelectNextPair,

cm P« Cross(C?, P2, C°, PY);

lterateK-Means(C™"", P™");

Cross(C', P', C?, P?) = (C™", P™")
C™* «CombineCentroids(C', C%);
P"™" < CombinePartitions(P', 7);
C™" «UpdateCentroids(C™", P"™");

RemoveEmptyClusters(C™", P™");
IS( Cr|e\n." Pnew) ;

between-groups variance:

F= k- Zf\;l”xi - Cp([)||2 _ k-MSE
Sk njlle; — x> o(X) — MSE

(23)

The goal of the clustering is jointly to minimize the MSE,
and maximize the between cluster variance. This goal has
now been reduced to the problem of minimizing the F-ratio
instead of the MSE for the evaluation of the clustering result.

5.2. Genetic algorithm

The idea of a genetic algorithm (GA) is to maintain a set
of solutions which make up a population, which is iteratively
improved by genetic operations such as crossover, mutation,
and by the selection principle of evolution. Several different
crossover algorithms have been considered in Ref. [10], and
concluded that significantly better results are obtained when
the PNN method is used as the crossover algorithm instead
a straightforward approach of using random crossover and
k-means. It is therefore logical to consider genetic algorithm
with iterative shrinking as the crossover. We refer the method
here as GAIS.

The sketch of the GAIS algorithm is outlined in Fig. 8, and
it works as follows. The GA is applied here in the problem
domain by operating on the codebook and partition (C, P).
A set of random solutions are first generated by selecting
M random data vectors as the codebook, and by creating
optimal partition with respect to this codebook. The best
solution survives to the next generation as such, and the
rest of the population is filled by new solutions created by

CombineCentroids(C', % = ™"
Cnaw (_CW U CZ

CombinePartitions(C™", P', P*) = P™"
FOR i1 TO NDO

Fle—o <l 0 [ THEN
S I | s
[)'m‘w — ]711
ELSE
P e ot
END-FOR

UpdateCentroids(C', C*) - C™"
FOR j—1 TO IC™"1 DO

JJew

¢’ «CalculateCentroid(P™", j );

Fig. 8. Pseudo-code of the genetic algorithm with iterative shrinking (GAIS).
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crossover. The process is iterated and the best solution in
the final generation is the result of the algorithm.

The crossover starts by merging the parent solutions by
taking the union of their centroids (CombineCentroids). The
partition PV is then constructed on the basis of the exist-
ing partitions P! and P? (CombinePartitions). The partition
of data vector x; is either pi1 or piz. The one with smaller
distance to x; is chosen. The codebook C™" is then updated
(UpdateCentroids) with respect to the new partition PV,
This procedure gives a solution in which the codebook has
twice the size desired. Empty clusters are next removed (Re-
moveEmptyClusters), and iterative shrinking is then applied
to reduce the number of clusters from 2- M to M. Finally, the
solution is fine-tuned by a few iterations of a k-means [25].

Mutations could be generated by moving a randomly cho-
sen cluster centroid to a new location in the data space. Effec-
tively, the mutations simulate local search by making small
modifications to the current solution [26]. If the inclusion of
the mutations were vital, it would imply that the crossover
is not well defined and the algorithm would merely imple-
ment a parallel local search algorithm. In a long run, muta-
tions could be useful as they increase the genetic variation
in the population, and can therefore find new directions for
the search. However, we aim at fast convergence of the al-
gorithm and the use of mutations would merely slow down
the search.

The number of generations (7'), population size (Z), and
the number of k-means iterations (G) are the main param-
eters of the algorithm. Here we consider the following two
strategies:

1. GAIS short: Create new generations only as long as the
best solution keeps improving (7="). Use a small popu-
lation size (Z =10), and apply two iterations of k-means
(G =2).

2. GAIS long: Create a large number of generations (7' =
100) with a large population size (Z = 100) and iterate
k-means relatively long (G = 10).

It is expected that the short variant is good enough to com-
pete with the other clustering algorithms in terms of quality.
The purpose of the long variant is to squeeze out the best
possible result at the cost of a very long computation time.

It is also possible to apply the GA with unknown number
of clusters. In this case, we take any initial number of clusters
My, and generate the initial population accordingly. The new
solutions in the crossover are reduced from 2M to 1 and
the intermediate partition that minimizes F-ratio is taken as
the new candidate solution. The number of clusters will be
automatically determined during the optimization process of
the GA.

6. Experiments

We consider three image data sets (Fig. 9), four syntheti-
cally generated data sets (Fig. 10), and the BIRCH data sets

[27]. The vectors in the first set (Bridge) are 4 x 4 non-
overlapping blocks taken from a gray-scale image, and in
the second set (Miss America) 4 x 4 difference blocks of
two subsequent frames in video sequence. The third data set
(House) consists of color values of the RGB image. The num-
ber of clusters is fixed to M = 256. The data sets S1—S4 are
two-dimensional artificially generated data sets with vary-
ing complexity in terms of spatial data distributions with
M = 15 predefined clusters. The summary of the data sets
is presented in Table 3. All tests have been performed in
Sun Enterprise 450 with 400 MHz UltraSPARC2 processor,
2 GB memory and Solaris 7 (SunOS 5.7) operating system.

6.1. Comparison of the IS variants

The clustering test results of the three data sets are sum-
marized in Table 4 for all the variants of the IS method
considered here, and for the fast exact PNN method as im-
plemented in Ref. [17]. In all cases, the IS method pro-
duces smaller distortion but at the cost of about 2—6 times
slower running time. The corresponding time-distortion per-
formance is illustrated in Fig. 11.

The extension in the amount of updates of the secondary
partition decreases the MSE but also slows down the pro-
cess. The running time of the standard update is only about
4-9% longer than that of the minimum update whereas the
extensive update increases the running time about 58—140%
depending on the data set. In other words, the results of
the minimum and standard update are rather similar to each
other whereas the extensive update gives a clearer effect both
in the MSE and in the running time.

The method of calculating the removal cost (simple or
exact) has only a small effect on the MSE but the exact
calculation is about 10-40% slower than the simple method.
The time-distortion performance of the simple variant seems
to be marginally better according to Fig. 11. On the other
hand, if the MSE is the primary concern, we should use the
exact calculation with the extensive update. Thus, we will
fix this parameter setup in the following tests.

6.2. Running time

We consider next the running time of the IS method in
more detail. As shown in Section 4, it depends on the size
of the data set (N), and on the number of neighbor clusters,
which was approximated by the term log(N/M). We calcu-
lated the average number of the neighbor clusters and ob-
tained values 2.0, 2.4, 3.0 for Bridge, House and Miss Amer-
ica. The number is small in the early iterations (mostly 1)
because the algorithm removes small clusters. It gradually
increases during the process but remains small on average.
These numbers support the observation made in Table 4 and
Fig. 11 that the choice of the IS variant does not have radical
effect on the running time. The source of the computation
is demonstrated in Table 5 in more detail.
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Color vectors:

Spatial residual vectors:

Fig. 9. Source of the data. *Duplicate data vectors are combined and frequency information is stored.

Data set S Data set S, Data set S, Data set S,

Fig. 10. Two-dimensional data sets with varying complexity in terms of spatial data distributions. The data sets have 5000 vectors around 15 predefined
clusters with a varying degrees of overlap.

Table 3
Summary of the data sets

Data set Type of data set Number of data Number of Dimension of
vectors (N) clusters (M) data vector (K)
Bridge Gray-scale image 4086 256 16
House RGB image 34112 256 3
Miss America Residual vectors 6480 256 16
Data set S1—S4 Synthetically generated 5000 15 2
BIRCH|-BIRCH3 Synthetically generated 100 000 100 2
Table 4
The MSE values and running times (in seconds) of the PNN and IS variants for the three data sets (M = 256)
Bridge House Miss America
Running time MSE Running time MSE Running time MSE
PNN 272 168.92 4391 6.27 709 5.36
Simple IS Minimum update 315 166.18 9614 6.11 824 5.24
Standard update 324 166.08 9997 6.12 874 5.23
Extensive update 564 164.22 16 043 6.10 1820 5.19
Exact IS Minimum update 481 165.93 12 288 6.15 1283 5.24
Standard update 499 165.44 13 161 6.10 1334 5.23

Extensive update 705 163.38 19 280 6.11 2290 5.19
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6.3. Solving the number of clusters

The PNN and IS methods were both applied to the S data
sets using the F-ratio for determining the number of clusters.
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Fig. 11. The MSE-values and running times (in seconds) of the PNN
and the IS methods for Bridge, House and Miss America (M = 256).
The results within a curve are from left to right: the minimum update,
standard update and extensive update.

Table 5

The results for the PNN and IS methods are virtually the
same with S and S, but the IS performs better with the sets
S3 and S4, see Fig. 12. The difference is significant with
data set Sy, for which the IS method finds the minimum for
the number of clusters (M = 15) whereas the PNN method
finds the minimum in the wrong place (M = 14).

6.4. Genetic algorithm

We test the IS method within the GA (denoted as GAIS)
and the corresponding results are demonstrated in Fig. 13
for Bridge. Comparative results are given for the GA with
PNN crossover—with and without the use of two k-means

0.000100
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0.000085 1
0.000080 1
0.000075 1
0.000070 1
0.000065 1
0.000060

F-ratio

\minimum
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Number of clusters

0.000120
0.000115 t
0.000110
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0.000100 -
0.000095 -
0.000090 H
0.000085 -
0.000080

F-ratio

minimum
25 20 15 10 5
Number of clusters

Fig. 12. Comparison of the PNN and IS methods in the search of the
number of clusters.

Total number of distance calculations made in the case of Bridge for the different IS variants. The numbers shown are the absolute (x 10%) and relative

values (%)

Removal calculation

Simple calculation

Exact calculation

Update Minimum Standard Extensive Minimum Standard Extensive
Initialization phase 16.7 16.7 16.7 16.7 16.7 16.7
18.1% 17.1% 9.2% 15.6% 14.9% 8.6%
Calculation of the removal costs 31.5 31.5 31.5 44.6 44.6 444
33.8% 32.1% 17.3% 41.5% 39.6% 22.7%
Update of the secondary partition 44.8 49.7 133.6 46.0 51.4 134.4
48.1% 50.8% 73.5% 42.9% 45.5% 68.7%
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Fig. 13. Performance of the GA (Z =10, T =50) with different crossover
methods (with and without k-means iterations) as a function of the number
of iterations.
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Fig. 14. Convergence of the GAIS method using F-ratio for unknown
number of clusters. The number of clusters is 205 in the initial population,
and then varies from 3 to 4 in the following iterations.

iterations. The first observation is that the IS crossover is bet-
ter than the PNN. The experiments also show that improve-
ment can appear during a long time but most remarkable
improvement is obtained in the first few iterations. The later
improvement is more or less fine-tuning of the solution. In
the case of Bridge, the first local minimum is reached after
eight iterations with the value of 161.59. The results for the
other data sets were similar.

Next we test the GAIS method with the F-ratio allowing
it dynamically change the number of clusters. The algorithm
takes any initial guess for the number of clusters; we have
used the heuristic rule of My= N/20=205. With the S data
sets, the GAIS method converges to the correct number of
clusters (M =15) in a single iteration. The convergence with
the image data sets takes a little bit longer but the number of
clusters in the best solution also settles in the first iteration,
see Fig. 14. It is also worth noting that the GAIS method
is actually not much slower than the IS method because it
starts process with the initial number of clusters My, which
is usually much smaller than N, where the IS method must
start from.

6.5. Comparison

Finally, we compare the performance of proposed meth-
ods (IS and GAIS) to other clustering algorithms in the min-
imization of the MSE. We test the following algorithms:

random clustering,

k-means [25],

SOM: self-organizing maps [28],

FCM: fuzzy C-means [29],

Split: iterative splitting method [30],

RLS: randomized local search [26],
Split-and-merge [9],

SR: stochastic relaxation [31],

PNN: pairwise nearest neighbor [17],

GKM: global k-means [14],

IS: iterative shrinking (proposed),

GA: genetic algorithm with PNN crossover [10,11],
GA: genetic algorithm with k-means crossover [10],
GAIS: genetic algorithm with IS crossover (proposed).
SAGA: self-adaptive genetic algorithm [32].

In the comparison, we have included only methods that, ac-
cording to our experiments, consistently provide high qual-
ity partition, and methods that are popular due to their sim-
plicity or for other reasons. The hierarchical approaches are
also combined with the k-means to get further improvement
whereas the other algorithms implicitly include k-means it-
erations in one form or another. The best results of the algo-
rithms are summarized in Table 6. The Random, k-means,
FCM, and SR have been repeated 10 times. The reported re-
sults are the best result found, except random is the average.

The k-means, SOM and FCM are well known and popular
due to their simple implementation. Despite of this, the k-
means is sensitive to the initialization and the SOM is very
sensitive to a proper parameter setup. Even a slightest change
in the parameter setup can provide noticeable improvement
with one data set but turn out to give significant weaker
result with another set. With the chosen parameter setup
[33] SOM finds the best solution with S> and S4 but with
significantly weaker results for S; and S3, and for the Birch
data sets. The FCM finds the best solutions for S1—S4 but
does perform worse with the image data sets. The k-means
is implemented as in Ref. [34].

The Split method [30] always selects the optimal hyper
plane dividing the particular cluster along its principal axis,
augmented with a local repartitioning phase at each division
step. This chosen Split variant is optimized for quality rather
than speed. Faster Split variants also exists but, depending
on the variant, the results vary somewhere between k-means
and Random.

The RLS, Split-and-merge, and SR are all competitive in
terms of quality. The RLS is the most attractive because of
its easy adaptation between speed and quality, even though
Split-and-merge sometimes gives slightly better results but
with a significantly more complex implementation. The RLS
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Table 6
Performance comparison of the algorithms (for M = 256)

Image sets Birch data sets Synthetic data sets Time
Bridge House Miss America B By B3 S1 S S3 S4 Bridge
Random 251.32 12.12 8.34 14.44 35.73 8.20 78.55 7291 55.42 47.05 <1
k-means (aver.) 179.87 7.81 5.96 5.52 7.99 2.53 20.53 20.91 21.37 16.78 5
k-means (best) 176.95 7.35 5.93 5.13 6.87 2.16 13.23 16.07 18.96 15.71 50
SOM 173.63 7.59 5.92 13.50 10.03 15.18 20.11 13.28 21.10 15.71 376
FCM 178.39 7.79 6.22 5.02 5.29 2.48 8.92 13.28 16.89 15.71 166
Split 170.22 6.18 5.40 4.81 2.29 1.91 8.95 13.33 17.50 16.01 13
Split + k-means 165.77 6.06 5.28 4.064 2.28 1.91 8.92 13.28 16.92 15.77 17
RLS 164.64 5.96 5.28 4.64 2.28 1.86 8.92 13.28 16.89 15.71 1146
Split-and-merge 163.81 5.98 5.19 4.064 2.28 1.93 8.92 13.28 16.91 15.75 85
SR (average) 162.45 6.02 5.27 4.84 3.39 1.99 9.52 13.68 17.31 15.80 213
SR (best) 161.96 5.98 5.25 4.76 3.12 1.98 8.93 13.28 16.89 15.71 2130
PNN 168.92 6.27 5.36 4.73 2.28 1.96 8.93 13.44 17.70 17.52 272
PNN + k-means 165.04 6.07 5.24 4.64 2.28 1.88 8.92 13.28 16.89 16.87 285
GKM—fast 10 164.12 5.94 5.34 4.64 2.28 1.92 8.92 13.28 16.89 15.71 91 721
1S 163.38 6.09 5.19 4.70 2.28 1.89 8.92 13.29 16.96 15.79 717
IS + k-means 162.38 6.02 5.17 4.64 2.28 1.86 8.92 13.28 16.89 15.71 719
GA (k-means) 174.91 6.61 5.54 6.58 5.96 2.45 11.66 15.99 19.22 16.14 654
GA (PNN) 162.37 5.92 5.17 4.98 2.28 1.98 8.92 13.28 16.89 15.71 404
SAGA 161.22 5.86 5.10 4.64 2.28 1.86 8.92 13.28 16.89 15.71 74 554
GAIS (short) 161.59 5.92 5.11 4.64 2.28 1.86 8.92 13.28 16.89 15.72 1311
GAIS (long) 160.73 5.89 5.07 4.64 2.28 1.86 8.92 13.28 16.89 15.71 387 533

The results with the S sets have been multiplied by 108. The last column gives running times for Bridge (in seconds).

and SR are both relatively simple to implement but the SR
is more sensitive to the initialization: it works well for the
image data sets but fails to find good partition in about
10-20% of times with the easier S data sets.

Among the hierarchical variants, the PNN method works
rather well in most cases but sometimes (S3 and S4) the
results are clearly inferior to that of the IS method. The
combination with the k-means makes sense because the PNN
and IS methods do not do local fine-tuning of the clusters
during the process except the partition update operations in
the IS method. In particular, the IS + k-means outperforms
the other variants except the genetic algorithms.

The results of the GKM are obtained using the faster
O(gN M?) algorithm with g = 10, and by using intermedi-
ate codebook of size 2 - M to reduce the number of candi-
date vectors considered at each step of the algorithm. This
provides competitive results but with much slower running
time. The algorithm can be useful when the number of clus-
ters M is small.

The proposed genetic algorithm (GAIS) gives significantly
better results than using k-means as the crossover method,
and slightly better results than the GA with PNN crossover.
It reaches the lowest MSE with only one exception (House),
thus, effectively matching or even outperforming the previ-
ously best known clustering algorithm SAGA. The result of
the GAIS method is also consistent on the initialization as
shown in Fig. 15.

The negative side of the genetic algorithm is its slow
running time, and the long variant can take several days for
the largest data sets. However, much faster convergence can

Frequency

160 165 170 175 180 185 190
MSE

Fig. 15. Histograms of the MSE-values of 50 runs of the GAIS method,
and 500 runs of the k-means. The corresponding standard deviations are
o =0.11 (GAIS) and ¢ = 1.41 (k-means).

be reached by tuning the parameters of the GAIS short as
follows. We use the IS algorithm with the simple removal
calculation and standard update. The GAIS method starts
with a small population Z = 2, which is then increased by
one up to Z = 100 after every generation. Two k-means
iterations are applied (g =2). In this way, good solutions are
reached much faster but the method is still able to improve
in the long run.

Time-distortion performance of the tuned GAIS algo-
rithm is compared in Fig. 16 with that of the k-means
(repeated from new random solutions), RLS, and SAGA.
The GAIS method outperforms both the repeated k-means
and RLS when more than 10s is spent in the optimization,
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Fig. 16. Time-distortion performance of the selected algorithms.

and converges approximately to the same result as SAGA.
The method is inferior to RLS and k-means only when 10s
or less is used for generating the solution.

7. Conclusions

We have proposed the iterative shrinking (IS) method for
the clustering problem. The method generates the cluster-
ing hierarchically by removing one cluster at a time. At
each step of the algorithm, the cluster to be removed is se-
lected optimally. The merge-based agglomerative clustering
can be considered as a special case of the proposed ap-
proach. Experimental results show that the method achieves
better results than the comparative methods at the cost of
slower speed. The time complexity of the method varies
from O(N?) to O(N? - log2 N) depending on the variant.

The proposed method can also be applied as a crossover
method in the genetic algorithm (GAIS). According to exper-
iments, the genetic combination outperforms all comparative
algorithms in terms of minimizing the distortion. Iterative
shrinking method extends also to the case where the number
of clusters must also be determined simply by changing the
optimization function. This does not add to the time com-
plexity as the solutions for a variable number of clusters can
be found during a single run of the algorithm.

To sum up, the proposed clustering method (GAIS) is ca-
pable of providing the best results in minimizing intra clus-
ter variance with competitive time-distortion performance.
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