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A geodesic distance-based approach to build the neighborhood graph for isometric embedding is pro-
posed to deal with the highly twisted and folded manifold by Wen et al. [Using locally estimated geodesic
distance to optimize neighborhood graph for isometric data embedding, Pattern Recognition 41 (2008)
2226–2236]. This comment is to identify the error in their example and the ineffectiveness of their
algorithm.

© 2008 Elsevier Ltd. All rights reserved.

Wen et al. recently proposed an approachwhich deals with highly
twisted and folded manifold for isometric data embedding [1]. The
approach employs locally estimated geodesic distances to optimize
a neighborhood graph which is usually constructed with Euclidean
distances in some isometric embedding methods such as Isomap [2].
Unfortunately, the example given in Ref. [1] is incorrect, and the
algorithm OptimizeNeighborhoodbyGeod(X, k, m, d) is ineffective.
This comment aims at identifying the errors.

In Ref. [1], the initial neighborhood is determined by Euclidean
distance, and then the local geodesic distance is estimated. Fig. 1,
which is corresponding to Fig. 2 in Ref. [1], illustrates the process
of the estimation. Let N(x) be a set of Euclidean distance based
three nearest neighbors of a data point x, then N(x)={x1, x2, x3}, and
N(x1) = {x11, x12, x13}. Let d(x, y) be the Euclidean distance between
data point x and y. As x1 is a neighbor of x, and x11 is neighbor of
x1, applying triangle inequality theorem, we have

d(x, x11)�d(x, x1) + d(x1, x11). (1)

Furthermore, x11 is not a neighbor of x, that implies

d(x, x11) > d(x, xi), i = 1, 2, 3. (2)
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From (1) and (2), we obtain

d(x, x1) + d(x1, x11) > d(x, xi), i = 1, 2, 3. (3)

That is to say, in Fig. 1, d(x, x1) = 2, d(x1, x11) = 5 and d(x, x3) = 12
cannot exist simultaneously. Accordingly, x3 cannot be optimized
into x11, and for the same reason, x2 cannot be optimized into x12.

Based on the above analysis, the algorithm OptimizeNeighbor-
hoodbyGeod(X, k, m, d) given in Ref. [1] is ineffective. The algorithm
is as follows.

Algorithm 1. OptimizeNeighborhoodbyGeod(X, k, m, d).

/* X= xi be the high dimensional data set, k be the neighborhood
size, m be the scope for locally estimating geodesic distances, d be
the dimension of the embedding space, and m<k. The output is the
optimized neighborhood set N = {N(xi)} for all points */

(1) Calculate the neighborhood N(xi) for any point xi using
Euclidean distance de, where N(xi) is sorted ascendingly. Let
dg(xi, xj) = de(xi, xj) for the pairs of all points.

(2) For i = 1 to |X|, where |X| is the number of points in X.
(3) · For j = 1 to k
(4) ·· Select jth point from N(xi), denoted as xij
(5) ·· For p = 1 to m
(6) · · · Select pth point from N(xij), denoted as xijp
(7) ···If dg(xi, xij)+dg(xij, xijp) < dg(xi, xik) and xijp /∈N(xi) and parent

(xijp) ∈ N(xi)
(8) · · · · ·Delete xik from N(xi)
(9) · · · · · Insert xijp into N(xi) ascendingly
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Fig. 1. Example to optimizing the neighborhood of the point x.

(10) · · · · · dg(xi, xijp) = dg(xi, xij) + dg(xij, xijp)
(11) · · · · · Let j = 1 and break
(12) · · · End
(13) ·· End
(14) · End
(15) End
(16) N = N(xi) be the optimized neighborhood for all points in X

In the step 1, since dg(xi, xj) = de(xi, xj) for the pairs of all points,
i.e. all the local geodesic distances are initialized to corresponding
Euclidean distances. According to the analysis on the example, the
condition of step 7 is never satisfied, and the block from steps 8 to
11 is never executed. Consequently, the algorithm is ineffective.
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