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Abstract. Color separation and highly optimized context tree mod-
eling for binary layers have provided the best compression results
for color map images that consist of highly complex spatial struc-
tures but only a relatively few number of colors. We explore whether
this kind of approach works on photographic and palette images as
well. The main difficulty is that these images can have a much
higher number of colors, and it is therefore much more difficult to
exploit spatial dependencies via binary layers. The original contribu-
tions of this work include: 1. the application of context-tree-based
compression (previously designed for map images) to natural and
color palette images; 2. the consideration of four different methods
for bit-plane separation; and 3. Extension of the two-layer context to
a multilayer context for better utilization of the crosslayer correla-
tions. The proposed combination is extensively compared to state of
the art lossless image compression methods. © 2006 SPIE and
IS&T. �DOI: 10.1117/1.2388255�

1 Introduction
Lossless image compression is needed for applications that
cannot tolerate any degradation of original imagery data,
e.g., medical applications such as mammography, angiog-
raphy, and x-rays. It is essential that the decompressed im-
age does not contain any degradation in quality, since it
could lead to misdiagnosis and health injury. Satellite or
geographical map images are another case where distortion
caused by compression cannot be tolerated.

The earliest lossless compression methods used either
dictionary-based methods or run-length encoding.1 How-
ever, these techniques do not exploit 2-D correlations in the
image, and they are not very efficient for natural images
that contain smooth color variations but do not have repeat-
ing patterns. Predictive modeling, on the other hand, ex-
ploits spatial correlations by predicting the value of the
current pixel by a function of its already coded neighboring
pixels. The difference between the actual and predicted
value, called prediction error, is then encoded.1 A simple
linear prediction is used in the lossless mode of the JPEG
still compression standard and a nonlinear predictor in the
newer JPEG-LS standard.2 Despite their apparent simplic-
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ity, prediction-based techniques are quite effective and used
in state of the art compression methods.

Another approach is to use context modeling followed
by arithmetic coding.3 In context-based models, every dis-
tinctive pixel combination of the neighborhood is consid-
ered as its own coding context. The probability distribution
of the pixel values is estimated for each context separately
based on past samples. In grayscale images, however, the
number of possible pixel combinations is huge and only a
small neighborhood can be used. The number of contexts
must therefore be reduced by context quantization.4 This
approach, combined with predictive modeling, has been
used in the context-based adaptive lossless image compres-
sion �CALIC� algorithm.5 The recent JPEG20006 compres-
sion is based on wavelet transform, and although this algo-
rithm is aimed at lossy compression, it also includes a
lossless variant.

The efficiency of the prediction scheme also depends on
the type of image. For example, CALIC is efficient on pho-
tographic images �see Fig. 1� but not so good on images
that contain smaller amounts of color gradation �see Fig. 2�,
e.g., color palette images, web graphics, geographical
maps, schemes, and diagrams. On the other hand, a method
called the piecewise-constant model �PWC�7 has been op-
timized for this type of image. The algorithm is a two-pass
method. In the first pass, it uses special classification to
establish boundaries between constant color pieces in the
image. In the second pass, the decisions are coded by a
binary arithmetic coder. The method also takes advantage
of uniform regions where the same context repeatedly
appears.

One approach for exploiting spatial correlations effi-
ciently is to decompose the image into a set of binary lay-
ers, as demonstrated in Fig. 3, and then compress the layers
by a binary image compression method such as JBIG.8 The
advantage of this approach is that a much larger neighbor-
hood can be applied in the context model than when oper-
ating on the grayscale values. The decompression process is
reversed: the compressed file is decompressed into a set of
layers, which are then combined back into the grayscale
image.

Unfortunately, JBIG is not very efficient when applied to

bit-plane separated layers, as it is on images that are binary
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by their origin. Typically, the bit layers �especially less sig-
nificant bits� lack predictable structure to be compressed
well. This is because the bit-plane separation destroys the
gray-level correlations of the original image, making the
compressor unable to exploit them when coding the bit
planes separately. In fact, interlayer dependencies are stron-
ger than spatial dependencies within the layers. Embedded
image-domain adaptive compression of simple images
�EIDAC�9 therefore uses a 3-D context model, where con-
text pixels are selected not only from the current bit plane
but also from the already processed layers.

Another way to improve compression performance is to
increase the size of the context template. A larger context
can be achieved by a selective context expansion using
context tree �CT�,10 which allocates memory only for con-
texts that are really present in the image. The size as well as
the ordering of the pixels within the context can be
optimized.11 An attempt to spread the optimized context
tree modeling to a multilayer case called multilayer context
tree �MCT� modeling has been made in the case of
multilayer geographical map images.12 Optimal ordering of
the layers was shown to give additional improvement.13

In general, the efficiency of the particular compression
method depends on the utilization of color and spatial de-
pendencies �see Fig. 4�. Prediction-based algorithms con-
centrate mainly on color dependencies, since they are look-
ing for correlation between gray values in a relatively small
spatial neighborhood. On the other hand, binary image
compression algorithms concentrate more on utilizing spa-
tial dependency than color dependencies. Binary nature of
the input data makes it possible to use a larger spatial con-
text template, but when applied to bit-plane separated data,
the compression efficiency is low, since there are more in-
terlayer �color� dependencies than spatial dependencies

Fig. 1 Test se
among the neighboring bits. A successful compression
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method should utilize both types of dependencies.
We study how well the bit-plane-based approach can

work on natural and palette images. We apply the MCT
method presented in Ref. 13, but instead of the color sepa-
ration, we perform bit-plane separation because of a higher
number of colors in the images. We consider four different
methods: a straightforward bit-plane separation as such,
gray coding, a separate prediction step, as well as the com-
bination of the last two. Furthermore, we extend the two-
layer context model to a multilayer context model for better
utilization of the cross-layer dependencies. In general, one
can use any previously compressed layer as the reference
layers. The first layer is compressed as such, the second

tural images.
Fig. 2 Test set of simple images.
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layer can use the first one as the reference layer, and the
process continues so that the last layer can use all previous
layers. We denote this extension as an N-layer context tree
modeling �NCT�.

The rest of the work is organized as follows. The aspects
concerning context modeling, context tree modeling, and
multilayer context trees are described in Sec. 2. Different
alternatives for bitplane decomposition are studied in Sec.
3. The performance of the proposed schemes is evaluated in
Sec. 4 against the most competitive algorithms both for
natural and palette images. Finally, conclusions are drawn
in Sec. 5.

2 Multilayer Context Tree Modeling
Statistical image compression consists of two phases: mod-
eling and coding. In the modeling phase, the probability
distribution of the pixels to be compressed is adaptively
estimated. The coding process assigns variable length code
words to the pixels according to the probability model, so
that shorter codes are assigned to more probable pixels and
vice versa. The coding is performed by arithmetic coding14

using implementation known as a QM-coder,15 which was
originally introduced for the JBIG standard.

2.1 Context Modeling
The probability of a pixel is conditioned on a context,
which is defined as the black-white configuration of the
neighboring pixels within a local template �see Fig. 5�. The
index of the selected context and the pixel to be coded are
then sent to the arithmetic coder. In principle, better prob-

Fig. 3 Lossless compression of grayscale

Fig. 4 Spatial and color dependency diagram. The algorithms con-

sidered in this work are emphasized by shadow.
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ability estimation can be achieved using a larger context
template. However, it does not always result in compres-
sion improvement, because the number of contexts grows
exponentially with the size of the template. This leads to
the context dilution problem,16 in which the statistics are
distributed over too many contexts, and thus affects the
accuracy of the probability estimates.

2.2 Context Tree
The context tree �CT� concept10 provides a more flexible
approach for modeling the contexts so that a larger number
of neighbor pixels can be taken into account without the
context dilution problem. The contexts in CT are repre-
sented by a binary tree, in which the context is constructed
pixel by pixel. The context selection is deterministic and
only the leaves of the tree are used. The location of the next
neighbor pixels and the depth of the individual branches of
the tree depend on the combination of the already coded
pixel values.

The tree can be constructed beforehand using a training
image �static approach�,17 or optimized directly to the im-
age to be compressed �semiadaptive approach�.10 We use
the latter approach because it optimizes the structure and
size of the tree directly to the input image without any
parameter tuning or prior training. The structure of the tree
must then be stored in the compressed file, and it takes 1 bit
per node. In the case of our test sets �see Sec. 4�, this
corresponds to a 10 to 25% proportion of the compressed
file.

A variant called free tree10 optimizes the location of the
template pixels adaptively at each step of the tree construc-
tion. When a new child node is created, every possible

by a binary-image-oriented compression.

Fig. 5 Sample contexts defined by JBIG 10-pixel template �left�,
and the template optimized for a geographical image �right�. The
numbers refer to the order in which the pixels have been selected
for this particular context.
images
Oct–Dec 2006/Vol. 15(4)3
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location for the next context pixel is considered within a
predefined search area and the compression efficiency is
estimated by the entropy of the current context model HN.
The entropy is calculated as the sum of entropies of indi-
vidual contexts:

HN = − �
j=1

N

p�Cj��pw
Cj · log2pw

Cj + pb
Cj · log2pb

Cj� ,

where p�Cj� is the probability of the context Cj, pw
Cj and pb

Cj

are the probabilities of the white and black pixels in the
context Cj, and N is the total number of contexts. The prob-
abilities pw

Cj and pb
Cj are calculated on the basis of observed

frequencies.10 The position providing the best estimated-
compression gain is included into the context rtemplate.
The optimization, however, comes at the cost of additional
computation time and increase in tree storage size. A
sample context optimized by the free tree is demonstrated
in Fig. 5.

2.3 Two-Layer Context Tree
The CT modeling can be extended to the multilayer case,
called MCT, by defining a context template where pixels
from previously coded layers can also be included. In this
way, information from other bit layers, called reference lay-
ers, can compensate the loss of color correlation caused by
the bit-layer separation. A two-layer model was considered
in Ref. 12 using a search area consisting of 40 pixels from
the current layer, and 37 from the reference layer. The pix-
els in the current layer can be located in the neighborhood
area including already coded pixels, but the pixels in the
reference layer can be located anywhere, since they are
already known by the decoder, as the reference layer is
always coded before the current one.

Further optimization exploits the fact that the efficiency
of the compression of any particular layer strongly depends
on the choice of the reference layer. In general, we can
select any predefined order on the basis of known �or as-
sumed� dependencies. When image source is not known
beforehand, the optimal order of the layers can be solved as
a directed minimum spanning tree problem13 for maximal
utilization of the interlayer dependencies. Again, the opti-
mization comes at the price of a remarkable increase in the
processing time.

2.4 N-Layer Context Tree
In this work we generalize the idea by considering the
N-layer context tree, further referred as NCT. We consider
all previously compressed layers as reference layers. When
the first layer is compressed, the free-tree context template
involves only already processed pixels of the current layer.
After being compressed, this layer becomes a reference
layer for the second one. Figure 6 illustrates the search area
used for the compression of the third layer. It consists of
52 pixel positions, of which ten are from the current layer
and 42 are from the reference layers. Each template posi-
tion is examined for the provided compression gain, and the
most efficient position is included in the template at each
step. The process then continues as long as further im-
provement will be achieved. A sample context is illustrated

in Fig. 7.
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The ordering of the layers affects the compression per-
formance in NCT in the same way as in MCT. For example,
when test image Airplane is compressed starting from the
least significant bit �LSB� toward the most significant bit
�MSB�, the obtained total code size would be
148,388 bytes. On the other hand, when compressed with
reversed ordering �from MSB toward LSB�, the code size is
136,185 bytes. In Ref. 13, the optimal ordering was solved
as a directed minimum spanning tree problem, which was
possible because only one previous layer was used as a
reference layer. In the case of an N-layer context tree, simi-
lar formulation would lead to a traveling salesman problem.
In this case, the optimal solution would take O�n ! �, and an
even faster heuristic would influence the processing time
significantly because of a larger search area. Fortunately,
the optimal ordering is not as critical as in the MCT, and
therefore, we used a fixed order starting from MSB to LSB.

A common property of the context-based techniques is
that in the case when the statistical dependencies of the
source are extremely weak, the code size produced by the

Fig. 6 Joint 52-pixel three-layer search area. The position of the
current pixel is marked with “?” and the corresponding positions on
the reference layers are emphasized with bold circles.

Fig. 7 A sample three-layer context constructed by the free-tree
approach using the search area presented in Fig. 6. The black color
represents 1 bit and white color represents 0 bits in the correspond-
ing bit layer. The current pixels position is emphasized with a bolder

circle.
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compressor could be even greater than the size of the un-
compressed file. This issue is especially essential for the
compression of the less significant bit layers, which are
quite noisy. In this situation, we transmit the uncompressed
bit layer as such.

3 Methods for Bit-Plane Separation
The proposed grayscale compression scheme consists of
two independent lossless stages as shown in Fig. 8. In the
first stage, the grayscale image is decomposed into a set of
binary images �layers�. In the second stage, the MCT or
NCT compression method is applied. The decompression is
performed in reverse order: first, an archive file is decom-
pressed into a set of binary layers, which are then combined
into a grayscale image. We consider the following four de-
composition methods:

• bit-plane separation �BPS�
• gray code separation �GCS�
• Prediction error separation �PES�
• gray code prediction error separation �GCPES�.

The first scheme is a straightforward bit-plane separation
�scheme 1 in Fig. 8�, which is a classical method for creat-
ing bit planes where each pixel value corresponds to a par-
ticular bit of the original grayscale image. The second
scheme is a gray-code separation �scheme 2 in Fig. 8�,18

which codes the pixel intensities so that the change of pixel
value by +1 or −1 causes the change of only 1 bit value in
the corresponding bit layers. This transform is defined as

x → G�x� = x � �x � 1� ,

where � indicates the “exclusive-or” function, and » indi-
cates the “binary shift-right” operation �i.e., m»n=m /2n�.
For example, when the gray code is not applied, increasing
value 127 �01111111b� by 1 gives 128 �10000000b�, which
causes changes in all eight bit layers. On the other hand, the
gray code for 127 is 64 �01000000b�, and for 128 it is 192
�11000000b�, which differ in 1 bit only. Gray coding has
turned out to be an efficient preprocessing technique for
improving compression performance.19

The third scheme uses a separate prediction step fol-
20,21

Fig. 8 Overall compression algorithm accordin
lowed by bit plane separation �scheme 3 in Fig. 8�. The
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idea is to encode the prediction error, i.e., the difference
between the predicted and the actual value of a pixel, in-
stead of the original gray value. Error prediction is a loss-
less transformation converting a grayscale image of gray
values varying from 0 to 255 into a so-called prediction
error image, where every pixel represents the prediction
error varying from −255 to +255. Therefore, when using
this scheme, the grayscale image is decomposed into nine
binary layers instead of eight as in the first two schemes.
When the predictor is effective, the prediction error values
are mostly concentrated around zero. Therefore, after bit-
plane decomposition, more significant bit planes contain a
very small amount of variation, thus having low entropy
and resulting in high compression ratio.

The fourth scheme �scheme 4 in Fig. 8� employs gray
coding of the prediction error image with the following
bit-plane separation. The bit layers produced by the four
different bit plane separation schemes for the image Air-
plane are illustrated in Fig. 9.

An important design question is the choice of prediction
technique. In this works, we considered three popular pre-
dictors in order to choose the most efficient for further use.
The first scheme is a simple linear predictor defined as:

p�x,y� =
�x,y − 1�

2
+

�x − 1,y�
2

+
�x + 1,y − 1�

4

+
�x + 1,y + 1�

4
,

where �x, y� is the pixel value at coordinates x and y. This
is referred to further as linear. The second technique is a
slightly more complicated prediction method employed in
the JPEG-LS compressor,2 which we refer to here as a me-
dian predictor. Finally, for the third scheme we have chosen
the gradient-adjusted prediction �GAP� algorithm used in
CALIC,5 which is the most complicated of the three pre-
dictors considered. This predictor is referred here to as
GAP.

4 Experiments
We used two test image sets to evaluate the algorithms. The

e different bit-plane decomposition schemes.
first set consists of five classical test images: Airplane,

Oct–Dec 2006/Vol. 15(4)5
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Couple, Crowd, Goldhill, and Lena �see Fig. 1�. All of them
are 8-bit grayscale images of size 512�512 pixels. This
test set represents a class of natural images that are typi-
cally photographic images of smooth color gradation. The
second test set represents a class of palette images �see Fig.
2�, where the number of colors is much smaller than the
amount of pixels in the image. Such images can be Web
graphics, schemes, maps, slides and engineering drawings,
for example. This test set consists of eight images used in
Ref. 7, Benjerry, Books, Ccit01, Cmpndd, Flax, Gate,
Sea�dusk, and Sunset.

First, we evaluate the performance of the three predic-
tion techniques: linear, median, and GAP predictors. Then
we evaluate six variants of the proposed algorithms pro-
duced by the combination of the two context modeling
schemes �MCT and NCT�, and the three bit-plane decom-
position schemes �BPS, GCS, and the best prediction-based
scheme�. Finally, we compare the best variants with the
existing compressors. The competitive algorithms are:

• JBIG-GCS: JBIG applied to gray code separated
layers18,19

• JBIG-PES: JBIG applied to prediction error separated
layers

• EIDAC9

• CALIC5

• JPEG-LS2

Table 1 Average compression results �bits per pixel� depending on
the choice of predictor for the natural images.

Predictor

MCT NCT

PES GCPES PES CGPES

Linear 4.53 4.49 4.52 4.50

Median 4.49 4.48 4.50 4.48

GAP 4.45 4.42 4.44 4.43

Fig. 9 Four bit-plane decomposition schemes a
the bit planes starting with the sign bit, and
significant bit. Rows are different bit-plane deco
Journal of Electronic Imaging 043009-
• PWC-G: piecewise constant model optimized for
grayscale images7

• PWC-P: piecewise constant model optimized for pal-
ette images7

• JPEG20006

• PNG.

Results for EIDAC are taken from Ref. 9 and appear
only for the set of palette images. The rest of the results are
reported using publicly available implementations. All tests
have been performed on a Pentium III 996-MHz computer
with 384-MB memory and a Windows XP operating sys-
tem.

4.1 Choice of the Predictor
We tested the performance of the three prediction tech-
niques to choose the best for further comparison. Tables 1
and 2 summarize the overall compression performance of
the PES and GCPES variants depending on the choice of
predictor. In the case of natural images, the GAP predictor
provides the best compression performance with all vari-
ants. The best performance �4.42 bpp� is obtained by the
MCT-GCPES variant. In the case of palette images, the
median predictor works better and the best result is ob-
tained by MCT-PES �210,718 bytes�. In the rest of the
work, we apply the GAP predictor for natural images and
the median predictor for palette images.

to the image Airplane. Columns correspond to
ing from the least significant bit to the most

tions.

Table 2 Total compression results �in bytes� depending on the
choice of predictor for the palette images.

Predictor

MCT NCT

PES GCPES PES CGPES

Linear 282,280 274,525 296,877 290,815

Median 210,718 211,686 221,546 221,921

GAP 279,924 277,994 288,161 286,051
pplied
continu
Oct–Dec 2006/Vol. 15(4)6
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4.2 Comparison of the Proposed Variants
Here we evaluate the proposed algorithms over two test
sets separately and choose the most efficient variants for
further comparison. Table 3 presents the compression re-
sults for the natural image test set. The best result
�4.42 bpp, on average� was obtained by MCT using both
the prediction and gray coding �GCPES�, but the difference
from the corresponding variant of NCT is only marginal.
The results also show that the choice of the bit-plane sepa-
ration method is important when using MCT, as the best bit
rate �4.42 bpp� is significantly better than if neither predic-
tion nor gray coding were used �5.10 bpp�. In the case of
NCT, the choice of the bit-plane separation is less signifi-
cant. This is because NTC can use all previous layers as
references, and thus it exploits the interlayer dependencies
better than MCT, which is limited to only one reference
layer.

Table 4 presents results for the palette image test set.
The best results �in total� are obtained by NCT without any
prediction �BPS� or by using gray-coding �GCS�. From

Table 3 Compression results �

Image

MCT

BPS GCS G

Airplane 4.60 4.21

Couple 5.22 4.68

Crowd 4.76 4.38

Goldhill 5.68 5.10

Lena 5.25 4.62

Average 5.10 4.59

Table 4 Compression result

Image

MCT

BPS GCS

Benjerry 4236 4173

Books 8749 10,145

Ccitt01 12,046 11,827

Cmpndd 68,215 62,330

Flax 82 81

Gate 24,381 22,512

Sea�dusk 739 748

Sunset 83,011 75,673

Total 201,459 187,452 2
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this, we make three main observations. First, NCT per-
forms better than MCT and is therefore the recommended
variant for palette images. Second, the prediction-based bit-
plane separation is extremely inefficient. Third, a notice-
able exception is the simplest three-color image �flax�, for
which the MCT provides significantly better results. In this
test set, the larger image files dominate the results. How-
ever, if we were to compress a large number of small im-
ages with very simple structure, then the preferred variant
should be MCT.

4.3 Comparison with Existing Methods
The best variant of the proposed method �MCT-GCPES� is
compared against existing methods in Table 5. As expected,
the proposed algorithm outperforms the standard JBIG ap-
plied for separated binary layers. It also gives better results
than PWC-P, which is a palette-image-oriented technique,
and PNG, which is a dictionary-based method. However,
the MCT fails to compete with the best grayscale oriented
methods such as CALIC, JPEG-LS, and JPEG2000, as well

r pixel� for the natural images.

NCT

BPS GCS GCPES

4.13 4.16 4.08

4.78 4.72 4.54

4.13 4.14 4.24

5.02 5.08 4.88

4.58 4.59 4.41

4.53 4.54 4.43

tes� for the palette images.

NCT

BPS GCS PES

2988 3135 5071

7948 8486 15,041

12,055 11,990 27,993

57,229 59,080 70,710

156 146 213

18,954 19,937 25,082

992 859 1203

75,268 73,914 76,233

8 175,590 177,547 221,546
bits pe

CPES

4.05

4.54

4.09

4.96

4.46

4.42
s �in by

PES

6204

14,610

18,312

70,645

142

25,144

1047

74,614

10,71
Oct–Dec 2006/Vol. 15(4)7
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Table 5 Compression results �bits per pixel� for the natural images.

Image

Proposed Competitive

MCT-
GCPES

JBIG-
BPS

JBIG-
GCS CALIC

JPEG-
LS

PWC-
G PWC-P JPEG2K PNG

Airplane 4.05 5.23 4.38 3.74 3.81 3.84 4.40 4.01 4.28

Couple 4.54 5.82 4.83 4.25 4.26 4.27 5.02 4.49 4.50

Crowd 4.09 5.35 4.57 3.77 3.91 3.93 4.46 4.19 4.52

Goldhill 4.96 6.17 5.26 4.64 4.71 4.71 5.33 4.81 4.88

Lena 4.46 5.66 4.72 4.11 4.23 4.33 4.96 4.28 4.60

Average 4.42 5.64 4.75 4.11 4.18 4.21 4.84 4.36 4.56
Table 6 Compression results �in bytes� for the palette images.

Image

Proposed Competitive

NCT-
BPS

JBIG-
BPS

JBIG-
GCS EIDAC CALIC JPEG-LS PWC-G PWC-P PNG

Benjerry 2988 7209 7104 2659 5939 6707 3960 3120 4846

Books 7948 23,277 14,927 8517 22,299 39,859 14,878 8972 15,019

Ccitt01 12,055 103,864 13,549 5471 22,547 35,840 20,619 14,056 46,772

Cmpndd 57,229 89,822 67,244 48,305 71,917 71,469 66,090 50,026 72,695

flax 156 1208 1143 71 760 3411 3485 1380 420

gate 18,954 31,020 26,198 16,662 25,038 27,656 23,127 16,242 24,922

Sea�dusk 992 2444 2344 870 1219 4061 941 1292 1986

Sunset 75,268 93,069 79,434 58,402 76,577 83,552 65,831 49,256 79,085

Total 175,590 351,913 211,943 140,957 226,296 272,555 198,931 144,344 245,745
Table 7 Compression results �bits per pixel� for Bridge image. Algorithms where prediction error modeling is used provide the worst results.

Image

Proposed Competitive

MCT-
BPS

MCT-
GCS

MCT-
PES

JBIG-
BPS

JBIG-
GCS CALIC

JPEG-
LS PWC-G PWC-P

Bridge 4.40 4.93 5.80 5.37 5.20 5.37 5.50 4.09 4.16
Journal of Electronic Imaging Oct–Dec 2006/Vol. 15(4)043009-8
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as the PWC-G, which is also optimized for grayscale im-
ages. We conclude that the proposed method is most effi-
cient when comparing to binary, dictionary-based, and
palette-oriented compression algorithms, but the best
grayscale-oriented techniques cannot be outperformed.

Similar comparisons for palette images are shown in
Table 6. Again, the best variant of the proposed method
�NCT-BPS� outperforms JBIG and all grayscale-oriented
methods: CALIC, JPEG-LS, and PWC-G, as well as the
dictionary-based PNG. Results for wavelet-based
JPEG2000 are not presented, since this algorithm demon-
strated extremely weak performance. On the other hand, the
best palette-oriented algorithms such as EIDAC and
PWC-P are more efficient.

Although error prediction applied to natural images is
efficient in general, one can find an image where it fails to
improve the compression performance. The Bridge image
�see Fig. 1� is an example of such an image, as illustrated in
Table 7. Note that MCT-PES failed, presenting the worst bit
rate. The same holds for all competitive algorithms in

Fig. 10 Image Airplane with sequentially reduced graydepth.

Table 8 Compression results for gray depth re
every color depth separately.

Color depth,
bpp.

Proposed Gra

MCT-
GCPES NCT-BPS

1 �binary
image�

0.42 0.16

2 0.55 0.18

3 2.28 0.50

4 3.46 1.00

5 4.30 1.72

6 4.50 2.59

7 4.46 3.56

8 �original
image�

4.42 4.53
Journal of Electronic Imaging 043009-
which error prediction is used—CALIC and JPEG-LS. This
example shows that even for a continuous-tone image case,
there can be found counterexample where prediction error
modeling fails to improve the compression.

4.4 Grayscale Versus Palette Compression

Competitive algorithms are designed to be applied to par-
ticular classes of images, either palette or photographic.
These classes can be considered as images with the oppo-
site characteristics: typical photographic images contain a
lot of unique colors and have smooth color gradation, while
palette images have only few colors and have sharp edges.
We next study how the efficiency of the compression algo-
rithms depends on how close the given image is to the class
for which the algorithm is tuned to.

We designed an artificial test set to fill the gap between
photographic and palette images by sequentially decreasing
the gray depth of the original 8-bpp images. For each five
images, we produced eight images with sequentially re-
duced gray depth, giving a set of 40 images in total. The
process is illustrated in Fig. 10 for the image Airplane. We
then compressed the images with two variants of the pro-
posed algorithm: MCT �GCPES variant, the best variant for
natural images� and NCT �BPS variant, the best variant for
palette images�, and compared them with CALIC, PWC-P,
and PNG.

The results presented in Table 8 and illustrated in Fig. 11
show that, as expected, the best results for the 8-bpp im-
ages are obtained by CALIC and the worst by palette-
optimized PWC-P. For images with 1 and 2 bpp, the situa-
tion inverts and the best results are shown by PWC-P and
the worst by CALIC. The PNG presented an intermediate
performance in both cases. NCT, on the other hand, has a
slight edge over the other methods, performing best every-

. Results are average bit rate over test set for

optimized Palette optimized Universal

LIC PWC-P PNG

23 0.18 0.43

39 0.23 0.55

10 0.53 1.11

13 1.07 1.65

14 1.86 2.66

85 2.89 3.37

08 3.97 4.01

11 4.84 4.56
duction

yscale

CA

0.

0.

1.

2.

3.

3.

4.

4.
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where else between 2 and 8 bpp. It seems to be the best
choice when the images are not clearly of one type: photo-
graphic or palette images.

5 Conclusion
We study the efficiency of binary-oriented compression al-
gorithms based on statistical probability estimation and
arithmetic coding applied to grayscale and palette images.
We consider two modeling schemes. The first scheme
�MCT� uses two-layer free-tree modeling with optimized
layer ordering. The second scheme �NCT� extended the
context modeling to a true multilayer case with fixed order-
ing. We use four schemes for bit-plane decomposition: bit
plane separation �BPS�, gray code separation �GCS�, pre-
diction error separation �PES�, and gray-coded prediction
error separation �GCPES�.

For prediction-based schemes, we evaluate three predic-
tors: a simple linear scheme, median predictor employed by
JPEG-LS, and gradient-adjusted prediction �GAP� used by
CALIC. We find that the gray-coded GAP predictor to-
gether with MCT �MCT-GCPES� modeling provides the
most efficient compression for natural images. The results
also show that prediction-based bit-plane separation is in-
efficient for palette images. For this class of images, NCT
with BPS separation �NCT-BPS� is the most efficient,
though its advantage over NCT-GCS is minor. We conclude
that NCT modeling is less dependent on the chosen bit-
plane separation method.

The comparison with the existing compression algo-
rithms on the Natural test set showed that MCT-GCPES
outperforms JBIG, which is of similar nature, dictionary-
based PNG, and palette-optimized PWC. Its performance is
also close to that of lossless JPEG2000. However, other
grayscale optimized algorithms—CALIC, JPEG-LS, and
grayscale optimized PWC—are not outperformed. For this
test set, we conclude that binary-based compression, even if
applied with a very high degree of optimization, cannot
outperform grayscale-oriented algorithms due to its binary
nature.

The same comparison applied to a test set of palette
images shows that NCT-BPS outperforms all binary-based
techniques �JBIG-BPS and JBIG-GCS� as well as
grayscale-optimized algorithms �CALIC, JPEG-LS,

Fig. 11 Compression efficiency �bpp� depending on the color depth.
PWC-G, and universal PNG�. Palette-optimized compres-

Journal of Electronic Imaging 043009-1
sors EIDAC and PWC-P, however, are not outperformed,
though the performance of the proposed method is closer to
the best algorithm than to the worst.

The results of the palette test set inspired us to perform
a detailed investigation of the algorithm’s behavior depend-
ing on the amount of colors in the image. We designed
eight test sets of images where color depth is sequentially
decreased from 8 �grayscale case� to 1 bpp �binary case�
and examined the performance of best palette �PWC-P and
the proposed NCT-BPS�, grayscale �CALIC and the pro-
posed MCT-GCPES�, and universal PNG. We found out
that NCT-BPS performs closely to PWC-P and even out-
performs it on some bit depths whereas MCT-GCPES loses
to CALIC in all cases. From this observation, we conclude
that first, bit-plane separation and binary modeling such as
MCT-GCPES cannot be considered to be efficient for natu-
ral images, even if strong optimization is involved. Second,
context-based compression techniques, such as NCT-BPS,
could be considered efficient to be applied for compression
of simple �palette� images and the optimization results in
compression improvement.
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