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Abstract. We introduce two novel methods for content-
based matching of line-drawing images. The methods are
based on the Hough transform (HT), which is used to
extract global line features in an image. The parameter
space of the HT is first thresholded in order to preserve
only the most significant values. In the first method, a
feature vector is constructed by summing up the signifi-
cant coefficients in each column of the accumulator ma-
trix. In this way, only the angular information is used.
This approach enables simple implementation of scale,
translation, and rotation invariant matching. The second
variant also includes positional information of the lines
and gives a more representative description of the im-
ages. Therefore, it achieves more accurate image match-
ing at the cost of more running time.
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1 Introduction

We consider a database of line-drawing images of com-
plex engineering drawings, e.g., electrical circuits, car-
tographic maps, and architectural and urban plans. We
assume that the drawings are binary (black-and-white)
images, and that they consist mainly of line segments.
This is a reasonable assumption for a variety of engineer-
ing drawings.

Flexible usage of the database requires that images
and parts of images can be searched for and retrieved
efficiently. The user should be able to find images con-
taining objects similar to a given query image without
human interaction or exhaustive computing resources.
For example, in remote sensing [19] and in multimedia
systems [8], it is important to analyze sets of images, not
only as temporal sequences, but also as queries from an
image database. This applies also to engineering draw-
ings.

Correspondence to: P. Fränti

A common approach for the image retrieval problem
is to use an indexing scheme in order to avoid full-scale
image matching [18]. There are two main approaches for
the indexing: key words and content-based retrieval. Key
words have the advantage that the solutions for text
retrieval are available for us [26]. This approach, how-
ever, is impractical because we must design key words
and proper classification for the images in the database.
Manual operations are thus needed for generating the
indexing.

In content-based image retrieval, images are auto-
matically indexed by generating a feature vector describ-
ing the global content of the image. The feature vector
can be stored as an index in the database, or it can be
generated on-line during the retrieval process. The sim-
ilarity of the feature vectors of the query and database
images is measured to retrieve the image.

In this paper, we address the problem of generating a
feature vector to be used in image matching and object
recognition. We introduce two novel methods based on
the Hough transform (HT) [9, 13, 17, 21] for extracting
the feature vectors. The HT is well suited for this task
because it gives a global description of the spatial im-
age content. It makes no assumptions on the image type
and, in principle, it should be applicable to any type of
binary images. The HT is essentially a transform of an
image into a parameter domain, also called an accumu-
lator space.

The first variant, presented in [6], uses only the an-
gular information of the accumulator matrix. It gives
a global description of the image with a very compact
index size. This allows fast image retrieval with scale,
translation, and rotation invariant matching. In the case
of larger and more complex images, however, the angu-
lar information is not always sufficient to differentiate
images from each other.

The second variant, presented in [7], alleviates this
problem by including positional information in the in-
dex. The feature vector is a binarized accumulator ma-
trix, in which a number of most significant coefficients of
the matrix are preserved. This gives a more representa-
tive description of the image and therefore allows more
accurate image matching. The main problems of this ap-
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proach are: (1) how to keep the feature vector compact
and (2) how to keep the property of the matching trans-
lation and rotation invariant. We give solutions to both
of these problems. Experiments show that this variant
has better matching accuracy than the first variant, but
at the cost of slower retrieval.

The methods are designed for matching full image
similarity. We show with experiments that the methods
are relatively fast and work well in the case of smaller
image objects. The methods are therefore applicable to
real-time matching of small images and object recogni-
tion. The results, however, are not very promising for
large-scale images. The application to image retrieval
will therefore require the method to be integrated with a
suitable image segmentation technique in order to allow
matching based on smaller image samples.

The feature extraction is also limited to line segments
only; other image features such as complex curves and
irregular shapes are not directly taken into consideration
in the assessment of the similarities. However, variants of
the HT could be used to extract any parametrizable fea-
tures such as circles or elliptical arcs. In addition, the
generalized Hough transform (GHT) could be applied
for more general shapes [15]. Unfortunately, the use of
higher-dimensional features would require sophisticated
solutions for reducing the size of the parameter space.

The rest of the paper is organized as follows. The
problem formulation and application area are briefly
summarized in Sect. 2. The two variants of the new HT-
based image matching are then introduced in Sects. 3 and
4. Practical experiments are described in Sect. 5, and fi-
nally conclusions are drawn in Sect. 6.

2 Content-based image retrieval

In image retrieval, a typical task is to find all database
images similar to a given query image. The search can
be limited to a given subdirectory defined by the user.
The result of the query can be a list of similar images
in descending order of similarity and the user may then
repeat the search, using any of the result images as a
new query image. This is the notion of query by image
example [18].

Content-based image retrieval consists of three com-
ponents: feature extraction, multidimensional indexing,
and the retrieval engine. Feature extraction determines
the representation of the visual features as multidimen-
sional feature vectors. The images are indexed by their
feature vectors, and the similarity of the feature vectors
of the query image and the database images are mea-
sured to retrieve the images.

The selection of the features is the key part of the
image retrieval. The index should be small enough to be
stored compactly and processed efficiently, but it should
also be representative so that the images can be differ-
entiated from each other on the basis of their feature
vectors. Fast matching of the feature vectors is also desir-
able. The design of the indexing scheme is a compromise
between retrieval accuracy and speed.

The choice of the feature extraction method also de-
pends on the application because different features rep-
resent different visual entities [18, 23]. Color and texture
are commonly used features in the case of photographic
images [14]. Unfortunately, there are typically no col-
ors and texture in binary images and these features are,
therefore, not likely to be useful.

Shape-based image retrieval, however, can be applied
in the case of binary images [20]. Shape representation
is usually required to be invariant to geometric transfor-
mations such as translation, rotation, and scaling [20].
Methods of shape representation can be divided into
two categories: boundary based and region based [18, 23].
The methods in the first category utilize only the outer
boundary of the shape, while the methods in the second
category utilize the entire shape region. Boundary-based
methods include Fourier descriptors [16, 22] and polygo-
nal approximation [1]. Moment invariants are commonly
used region-based shape features [10].

Since moment invariants are region based, they apply
mainly to images with solid objects of filled regions. In
contrast, most boundary-based features such as Fourier
descriptors require that the boundary of the shape is
closed in order to be rotation invariant. Therefore, these
shape features are not very useful for comparing line-
drawing images.

There has been a substantial amount of research on
graphics recognition. Especially the steps required in
the automatic conversion of images into CAD models
(raster-to-vector conversion) have been studied exten-
sively [2, 3, 5, 24, 25]. Structural image comparison can
be built on these ideas and methods, as has been done
with graph matching [4, 12]. Separate steps are required
for the interpretation of the image for extracting the fea-
tures, building the graph, and finally the graph matching
itself. Unfortunately such systems can be rather complex
and computationally expensive, which can be a serious
limitation in a practical image retrieval system. Some
work for inexact graph matching using histograms of
pairwise attributes has been done to lower the cost of
matching [11].

3 HT-based image matching

We apply the HT for feature extraction, as it gives a
scale-independent global description of the spatial im-
age content. This approach lies somewhere between the
general image attributes (e.g., moment invariants) and
structural matching because the features are extracted
with global information of the images as is done with
general features, but the feature itself represents the
structure of the image, i.e., the relations between the
individual points and lines.

Next, we introduce the variant where we use only the
angular information. In this way, we limit the number
of comparison operations needed in the matching. Fur-
thermore, the angular information is independent of the
spatial location of the lines, and therefore the method is
translation and scaling invariant by its nature.
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3.1 The Hough transform (HT)

In the HT, global features are sought as sets of individual
points over the whole image. In the simplest case, the
features are straight line segments. In the case of binary
images, the line detection algorithm can be described as
follows:

1. Create the set of the foreground pixels in the image.
2. Transform each pixel in the set into a parametric

curve in the parameter space.
3. Increment the cells in the accumulator matrix A de-

termined by the parametric curve.
4. Detect local maxima in the accumulator array. Each

local maximum may correspond to a parametric curve
in the image space.

5. Extract the curve segments using the knowledge of
the maximum positions.

In Step 2, the transformation can be ρ = x ·cos θ+y ·
sin θ, where (x, y) are the coordinates of the pixel to be
transformed, and ρ and θ are the parameters of the cor-
responding line. Thus, every pixel (x, y) can be seen as a
curve in the (ρ, θ) parameter space, where θ varies from
the minimum to the maximum value, giving the corre-
sponding ρ values. By transforming every point (x, y) in
the image into the parameter space, the line parameters
can be found in the intersections of the parameterized
curves in the accumulator matrix.

3.2 Generating feature vectors

We denote the accumulator matrix by A, where each row
corresponds to one value of ρ, and each column to one
value of θ. The procedure for generating the feature vec-
tor from the accumulator matrix is described in Fig. 1.
First we extract only the most significant information by
thresholding the matrix using a threshold value T (step
1). Next, we shrink the thresholded accumulator matrix
to a one-dimensional θ vector by summing up the re-
maining coefficients in each column (step 2). Thus, only
the angular information of the matrix will be used. Fi-
nally, we normalize the feature vectors according to the
mean value of the components of the vector (steps 3 and
4).

3.3 Translation- and scale-invariant matching

The usage of the angular information (θ vector) has sev-
eral advantages. Firstly, the matching is independent
of the spatial location of the lines, and therefore, the
method is translation and scaling invariant by its na-
ture. This is verified by the fact that every line has the
same θ value independent of scaling and translation of
the image. The angular information can be sufficient for
separating different image types. For example, a drawing
of buildings consists mainly of 45◦ and 90◦ angles.

We approximate the dissimilarity of the images by
calculating the distance of their feature vectors. Let us
assume that we have the feature vector R for a database

1. Threshold the matrix:

A′
ij =

{
Aij , ifAij > T
0, ifAij ≤ T

∀ i = 1..M, j = 1..N

2. Calculate preliminary feature vector:

F 0
j =

M∑
i=1

A′
ij ∀ j = 1..N

3. Calculate vector mean:

m =
1
N

N∑
j=1

F 0
j

4. Normalize the feature vector:

Fj =
F0

j

m
∀ j = 1..N

Fig. 1. Algorithm for generating the feature vector

image and the feature vector S for the sample query
image (both of size N). Their distance is calculated as:

d (R,S) =
N∑

j=1

(Rj − Sj)2 . (1)

Here d = 0 coincides to absolutely similar images
and d = dmax coincides to images with no similarities
found. An important advantage of the simplicity of the
formula is its speed. This is a highly desired property for
searching a large image database.

3.4 Rotation-invariant matching

Rotation-invariant matching of the method can be ob-
tained with minor modifications at the cost of increas-
ing computation time if we consider the matching as a
histogram-matching problem. Consider the two images
and their rotated variants in Fig. 2. The feature vectors
of the Image A and its rotated variant (see Fig. 3) have
the same shape, but they have different locations along
the θ-axis. The best match can be found by rotating the
feature vector of the sample query image, and calculating
the distance in all positions.

The distance of the feature vectors is defined as the
minimum distance of all possible fittings:

d (R,S) = min
k=1,2,...,N

N∑
j=1

(Rj − S
(k)
j )2 , (2)

where S(k) is a vector obtained by cyclic rotation of the
feature vector S by k steps to the right. Thus, we use
an exhaustive search for finding the minimum distance.
This requires O(N2) time, where N is the size of the
feature vector.
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Image A Image A - rotated by 70° Image B Image B - rotated by 45°

Fig. 2. Sample images and their ro-
tated variants
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Fig. 3. a Graphical represen-
tation of the feature vectors;
b its rotated variant

a b

Fig. 4a–c. Example of the feature extraction for two sample
images; Image A is on the top and Image B is on the bottom.
The figures are: a an accumulator array (ρθ-matrix) of the
sample image; b a thresholded and binarized array; c a com-
bination of the feature vectors of the image and its rotated
variant

4 Matching with the full matrix

The angular information can be sufficient for differenti-
ating images with clearly different types. However, larger
and more complex images can result in a practically uni-
form distribution of θ values, and in this case, the use
of angular information may not be sufficient to differ-
entiate such images. We therefore extend the approach
presented in Sect. 3 by including positional information
of the lines in the feature vector.

We propose to use the full matrix and, in this way,
also use the spatial location of the lines with respect to
each other. The main problem of this approach is that
the matrix can be quite large, even after thresholding.
This is because the lines are recognized not only by their

orientation (θ), but also by their distance to the origin
(ρ). This distributes the observations more widely in the
feature space. At the same time, the storage and retrieval
constraints force us to keep the feature vector relatively
small.

Therefore, we utilize the full accumulator matrix,
which is thresholded and binarized in order to keep the
feature vector compact. The matching procedure is re-
vised in order to preserve scale, translation, and rotation
invariant matching.

We reduce the amount of information in the follow-
ing ways. Firstly, we extract only the K most significant
coefficients by thresholding the matrix, and then we bi-
narize the thresholded values. Secondly, we optimize the
size of the accumulator array by normalizing the coor-
dinate space. This is done by calculating the centroid
(µx, µy), i.e., the arithmetic average of the location of
the object pixels:

µx =
1

NM

NM∑
i=1

xi µy =
1

NM

NM∑
i=1

yi . (3)

The purpose of the normalization is to utilize the ac-
curacy of the array more effectively by eliminating empty
space from the matrix. We can now obtain a proper range
for ρ by calculating the standard deviation of the spatial
location of the object pixels in respect to their centroid:

σ =

√√√√ 1
NM

NM∑
i=1

{
(xi − µx)

2 + (yi − µy)
2
}
. (4)

The range can then be defined as:

[ρmin, ρmax] = [0, 2.5 · σ] , (5)

where 2.5 is a constant so that approximately 99% of
the pixels belong to the range, assuming that the pixels
are scattered around the centroid with a Gaussian distri-
bution. Denote the binary matrix value of the database
image as Rij , and of the query image as Sij . Scaling-
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Fig. 5. Test database of ten images.
The images have been generated by 3-
D rotation of the two original images
(Image A and Image B)

θ-vector approach: Full matrix approach:
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Fig. 6. Matching results of the query
images A and B (scaled a1s, b1s;
scaled and rotated a1sr, b1sr). The
diagrams to the left show the results
for the θ-based approach according to
Eq. 2, and the diagrams to the right
for the full matrix approach accord-
ing to Eq. 7
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Fig. 7. A symbol library of 25 line-drawing objects

Displacement noise
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Salt and pepper noise

(α=0.4) (α=0.8) (α=1.2) (α=1.6) (α=2.0)

Fig. 8. Examples of library symbols after rotation and ad-
dition of noise

Table 1. Summary of run times of the matching process

Feature Matching Total
extraction

On-line Off-line

θ-vector 126.0 ms 2.5 ms 3339 ms 189 ms
Full matrix 72.0 ms 19.0 ms 2347 ms 547 ms

and translation-invariant matching can be obtained by
calculating their distance as:

dTS (R,S) =
N∑

i=1

M∑
j=1

Sij · min
Rkl �=0

{
(i− k)2 + (j − l)2

}
. (6)

In other words, for each nonzero coefficient Sij , we cal-
culate its distance in the parameter space to the nearest
nonzero coefficient Rij . This can be performed in O(K2)
time, which is computationally feasible if the feature vec-
tor is small.

Using Eq. 6, we define rotation-invariant matching by
rotating the feature matrix along the θ-axis, and calcu-
lating the distance in all positions. The distance is de-
fined as the minimum distance of all possible fittings:

dRTS (R,S) = min
m

{
dTS

(
R,S(m)

)}
. (7)

In the database, the feature matrix would be stored
as a list of the preserved values: {(θ1, ρ1), (θ2, ρ2), ...,
(θK , ρK)}. In this way, the feature vector can be stored
compactly, and the space requirement (in bits) is:

K · log2 ·qρ +K · log2 ·qθ , (8)

where qρ and qθ are the numbers of quantization steps
for the ρ and θ.

The feature extraction process is illustrated in Fig. 4
in the case of two sample images. Column a shows the
original parameter space of the HT, and the column b,
the parameter space after thresholding and binarization.
In column c, we have combined the features of the image
(black pixels) with the features of the same image after
rotation by 45◦ degrees (gray pixels). It can be seen that
the features of the rotated image are shifted to the right
approximately by the amount of the rotation.

5 Experiments

We first test the matching accuracy of the proposed
methods using the two images of Fig. 2. A small database
is generated by rotating these images by 5, 10, 15, 20, and
25 degrees around the y-axis (Fig. 5). The idea is that the
rotation is performed in 3-D vector space, which should
gradually destroy the 2-D similarity of the images. The
original images are denoted as images A and B, and their
rotated versions as images A1, A2, A3, A4, A5, B1, B2,
B3, B4, and B5.

As query images, we use the same images processed
as follows: the first query image (a1s) is a scaled version
of the image A, and the second one (a1sr) is a scaled
and 2-D rotated version of the same image. The amount
of rotation is shown in Fig. 2. The third (b1s) and fourth
(b1sr) images are generated from image B.

The first hypothesis is that the matching should be
equally good with and without 2-D rotation (a1s vs. a1sr
and b1s vs. b1sr). The second hypothesis is that the first
two query images should match the database image A1
best, since only scaling and 2-D rotation were applied.
The matching should be slightly weaker for the images
A2, A3, A4, and A5. Moreover, the images a1s and a1sr
should not match the images B1, B2, B3, B4, and B5.

The results are show in Fig. 6 as the distances be-
tween the query and database images. The first observa-
tion is that the matching accuracy is virtually the same
with and without the rotation, which supports the hy-
pothesis that the matching is rotation invariant. The sec-
ond observation shows that the image A1 is the closest
to both a1s and a1sr; and the image B1 is the closest to
b1s and b1sr. The results also show that images A2 and
A3 are rather close according to the measured distance
values of both approaches. However, in the case of the
θ-based approach, images A4 and A5 do not match as
well, as their distance is already as great as that of the
best matched images B4 and B5 in the wrong test set.
The full matrix approach, however, is capable of differ-
entiating the two image sets in the case of all five images.

A second experiment was carried out with the sym-
bol library of the symbol recognition contest in Interna-
tional Conference on Pattern Recognition (ICPR′2000,
Barcelona, Spain) (Fig. 7). As query images, we use the
same set of images distorted by the following processes:
the image is first rotated by a random amount, and then
noise is included in the image. The noise model was also
provided by the organizers of the symbol recognition con-
test.
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Fig. 9. Matching perfor-
mance as a function of
noise parameters

The noise consists of two separate components: dis-
placement and salt-and-pepper noise. The noise is mod-
eled as the probability function for a pixel to change its
color to the opposite value. In the salt-and-pepper noise,
the probability is constant. In the displacement noise,
the probability is a negative exponential function of

A. The distance to the closest pixel of the opposite color.
B. The distance to an open area of a given size of the

opposite color.

In other words, the closer a pixel is to an edge, the higher
is the probability of noise. The probability function for
background pixels (bg) is

P (fg|bg) = αbg + βbge
−γbg×(BtoF+BtoFBlock/4) , (9)

where αbg is a parameter of the salt-and-pepper noise;
βbg and γbg are the parameters of the displacement noise;
BtoF and BtoFBlock are the distances to the closest
pixel of the opposite color, and the distances to the open
area. The corresponding equation for the foreground pix-
els (fg) is

P (bg|fg) = αfg + βfge
−γfg×(FtoB+FtoBBlock/5) . (10)

The effect of the noise parameters is illustrated in
Fig. 8, and the matching performance is summarized in
Fig. 9. Note that the values of α are presented as per-
centages. The matching process has been repeated ten
times for each image, and the reported results are the
averages of the ten runs. These results indicate that the
full matrix version is the better choice of the two. The
matching accuracy is surprisingly good with the pres-
ence of the displacement noise. Problems arise only with
the highest noise values (γ = 0.2), but this would be
hard even for a human observer. In the case of the salt-
and-pepper noise, the classification accuracy decreases
faster than expected. This is not necessarily a problem
in practice because this kind of noise can be removed
quite efficiently with a median filtering technique.

More detailed examination reveals that there are two
groups of symbols that tend to fail more often than the
others. The first group includes the symbols ground, ca-
pacitor, and battery, which all contain lines parallel to
each other. The second problematic group includes the
symbols voltage meter and current meter. The shapes
of these two are quite similar, and the main difference
is their orientation. At the same time, the matching is
designed to be rotation invariant, which turns out not
necessarily to be a good thing in this particular case.

The dimensions of the parameter space are selected
to maximize the overall matching accuracy. In the case
of the full matrix variant, the dimensions are qρ = 32
and qθ = 32, and 40 maxima are preserved. Moderate
changes in the parameter set-up did not have a signifi-
cant effect on the matching accuracy. The space require-
ment of the feature vectors would be 50 bytes/vector us-
ing 5 bits/maxima. In the θ-vector approach, the length
of a feature vector is 64, which requires 128 bytes of
storage space.

The run times of the matching process with an In-
tel Celeron 400MHz and a Linux 2.2 environment are
summarized in Table 1. In on-line matching, feature ex-
traction must also be performed for the database images.
Thus, the overall run time consists of 1 + 25 feature ex-
tractions and 25 matching procedures, summing up to
3.3 and 2.3 s in the case of the θ-vector and full-matrix
approaches. In off-line matching, the database images
have been indexed beforehand, and only one feature ex-
traction is required in the matching process. The corre-
sponding run times are approximately 0.2 and 0.5 s for
the θ-vector and full-matrix approaches.

6 Conclusions

We have introduced two methods for content-based
matching of line-drawing images using the HT. The meth-
ods were shown to work well in the case of small images.
They are capable of reliably detecting the given query
images and tolerating noise and errors in orientation of
lines. The methods are invariant in scaling, translation,
and rotation, and the matching is relatively fast.

Additional experiments, however, revealed that the
methods cannot be used reliably for very large and com-
plex images because these images have many more lines
with a more uniform distribution in the feature space.
Further improvements are therefore needed if the method
is to be used in image retrieval. However, the method
can be applied as such for on-line matching of smaller
images, and for finding similar objects from a larger im-
age. In this case, the method should be integrated with
a suitable image-segmentation algorithm.

Considering the speed, feature extraction is currently
the bottleneck of the algorithms. This can be a serious
limitation if the features are extracted in real time, the
database is very large, or the method is integrated with a
more complex image segmentation algorithm. However,
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the feature extraction could be speeded up quite easily
by a factor of about 10 to 100 times with a variant of
the randomized Hough transform (RHT) [13]. Effectively,
the matching procedure would become the most time-
consuming part of the algorithm. The use of the RHT
is expected to cause only a minor deterioration in the
quality. These matters are points for future studies.
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