
114 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 1, JANUARY 2007

Lossless Compression of Color Map
Images by Context Tree Modeling

Alexander Akimov, Alexander Kolesnikov, and Pasi Fränti

Abstract—Significant lossless compression results of color map
images have been obtained by dividing the color maps into layers
and by compressing the binary layers separately using an opti-
mized context tree model that exploits interlayer dependencies.
Even though the use of a binary alphabet simplifies the context
tree construction and exploits spatial dependencies efficiently, it is
expected that an equivalent or better result would be obtained by
operating directly on the color image without layer separation. In
this paper, we extend the previous context-tree-based method to
operate on color values instead of binary layers. We first generate
an -ary context tree by constructing a complete tree up to a
predefined depth, and then prune out nodes that do not provide
compression improvements. Experiments show that the proposed
method outperforms existing methods for a large set of different
color map images.

Index Terms—Context tree compression, lossless image coding,
map image coding.

I. INTRODUCTION

I N this paper, we consider the problem of lossless compres-
sion of raster map images. These types of images usually

have few colors, a lot of detail, and are large. An example of
a map image is shown in Fig. 1. Predictive coding techniques
such as JPEG-LS [1], CALIC [2], [3], TMW [4], and FELICS
[5] work well on photographic images with smooth changes in
color, but are less efficient on map images, due to the map im-
ages’ sharp change in colors.

The CompuServe Graphics Interchange Format (GIF) and
Portable Network Graphic (PNG) formats are the most com-
monly used file formats for compressing graphics. GIF uses
LZW compression algorithm [6]. PNG uses the DEFLATE algo-
rithm [7], which is a combination of the LZ77 dictionary-based
compression algorithm [8] and the Huffman coding. Both of
these methods can also be used for the compression of map im-
ages. These algorithms are looser than newer algorithms, which
are based on context modeling.

Typical map images have high spatial resolution for repre-
senting fine details, such as text and graphics objects, but do not
have as many color tones as photographic images. The Piece-
wise-constant (PWC) algorithm [9] has been developed for the
compression of palette images. It uses two-pass object-based

Manuscript received October 26, 2005 ; revised July 12, 2006. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Bruno Carpentieri.

The authors are with the University of Joensuu, FI-80101 Joensuu, Finland
(e-mail: akimov@cs.joensuu.fi; koles@cs.joensuu.fi; franti@cs.joensuu.fi).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2006.887721

Fig. 1. Example of color map image: full size (left) 1024� 1024 pixels and
(right) 100� 100 part.

modeling. In the first pass, boundaries between constant color
pieces are established by the edge model and encoded according
to the edge context model, as proposed by Tate [10]. The color
of the pieces are determined and coded in the second pass by
finding diagonal connectivity and by color guessing. Finally, an
arithmetic coder encodes the resulting information. The latest
version of PWC, which includes the skip-innovation technique
and the streaming single-pass variant [9], remains to be one of
the best compression algorithms for palette images.

Statistical context modeling that exploits 2-D spatial depen-
dencies has also been applied for lossless palette image com-
pression. The known schemes can be categorized into those that
divide the images into binary layers and those that apply con-
text modeling directly to the original colors. The separation of
the input image can be done through color separation or through
semantic separation [11], [12]. The binary layers are then com-
pressed by a context-modeling scheme, such as JBIG [13], or
by using the context tree [14]. The best results for this approach
have been achieved by context tree compression with semantic
separation [11], [12], but this requires that the encoder has the
semantic decomposition available beforehand, which is not gen-
erally the case. In terms of color separation, the best results have
been achieved by the multilayer context tree (MCT) compres-
sion with an optimal order of layers and template pixels [12].
The drawback of this approach is the compression time, which
can be quite long due to the time required for the optimal or-
dering of layers.

A possible alternative to color separation is the separation of
the colors into bit planes followed by the separate compression
of each bit plane. Embedded image-domain adaptive compres-
sion of simple images (EIDAC) [15] uses a 3-D context model
tailored for the compression of grayscale images. The algorithm
divides the image into bit planes and compresses them sepa-
rately. However, the context pixels are selected not only from
the current bit plane, but also from the already processed bit
planes.

1057-7149/$25.00 © 2006 IEEE

AKIMOV et al.: LOSSLESS COMPRESSION OF COLOR MAP IMAGES BY CONTEXT TREE MODELING 115

Fig. 2. Overall scheme of the proposed algorithm.

Fig. 3. Default location and order of the neighbor pixels for standard (left)
1-norm and (right) 2-norm templates.

Another approach is to operate directly on the color values.
Statistical context-based compression known as the prediction
by partial matching (PPM) has been applied for the compression
of map images [16]. The method is a 2-D version of the original
PPM method [17]; it combines a 2-D template with the standard
PPM coding. Spatial context modeling is applied to the original
colors without any separation into binary layers. The method has
been applied both to palette images and street maps [16]. The
major problem with PPM-based methods is the context dilution
problem, which occurs when pixel statistics are distributed over
too many contexts, thus degrading the efficiency of the compres-
sion.

We propose the generalized context tree (GCT) algorithm
[18] of -ary tree with incomplete structure. The GCT approach
has difficulties in its implementation due to its substantial time
and memory requirements, especially for the construction of an
optimal incomplete -ary tree. We propose a fast suboptimal
pruning algorithm, which significantly decreases the processing
time. The compression consists of two main phases. In the first
phase, we construct and prune the context tree. We build up the
context tree to a predefined maximum depth and collect the sta-
tistics for each node in the tree, and then prune out nodes that do
not provide improvement in compression. In the second phase,
entropy coding is applied to the image using the optimized con-
text tree. We need to store the context tree into the compressed
file, as well. It consists of two parts: the description of the con-
text tree structure and the encoded image. The proposed algo-
rithm is outlined in Fig. 2.

II. CONTEXT TREE MODELLING

A. Finite Context Modeling

In context modeling, the probability of the current pixel
depends on the combination of already encoded pixels

. The combination of these pixel values is called
context. The probabilities of the pixels, generated under the
given context, are usually treated as being independent [19].
In 2-D modeling, the context is defined by the set of closest
pixels. There are several ways to define the location and the
order of the context pixels [19], [20]. Simple examples of a 2-D
template are shown in Fig. 3.

The context model is a collection of independent sources
of random variables. By the assumption of independence, it is

simple to assign probabilities to each new pixel generated in
the current context. We denote the frequency of the pixel value

in the context as

(1)

The conditional probability of the pixel value ,
, where is the number of colors in the image, can

then be calculated as

(2)

Using the given statistical model, the entropy coder does the
encoding. The adaptive probability estimator of the entropy
coder operates according to the formula

(3)

Here, the parameter is used for measuring the uncertainty
of the model, and its value depends on the selected modeling
scheme [21]. At the beginning of the encoding, we set to ,
by analogy with [22].

B. Context Tree Algorithm

Theoretically, a better probability estimation of pixels can
be obtained by using a larger context template. However, the
number of contexts grows exponentially with the size of the tem-
plate, and the distribution of the pixel statistics over too many
contexts degrades the compression efficiency.

The use of the context tree algorithm [14] provides a more
efficient approach for context modeling, so that a larger number
of neighboring pixels can be taken into account without context
dilution. The context tree algorithm is applied for the compres-
sion in the same manner as the fixed size context, but with a
different context selection. The selection is made by traversing
the context tree from the root to a terminal node, each time se-
lecting the branch according to the corresponding pixel value.
The terminal node points to the statistical model that is to be
used.

Single-pass context tree modeling [14] constructs the context
tree adaptively. It makes the selection of the context according
to the estimation of its proportion in the reduction of the con-
ditional entropy. If this value outperforms the cost of the node,
then it is selected.

The two-pass context tree modeling [14], [20] constructs the
tree structure and collects the statistics for each context before
coding. The context tree is then pruned in order to minimize the
sum of the overall conditional entropy and tree description cost.
In this approach, the context selection is done by traversing the
context tree until the corresponding symbol points to a nonex-
isting branch, or until the current node is a leaf.

We use the second approach for constructing the context tree:
optimize the context model according to the encoded data and
store it to the compressed file. This approach requires a lot of
memory and calculation resources during the encoding, but the

116 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 1, JANUARY 2007

decoding is much faster and requires significantly less memory
resources, because the tree already exists.

C. Construction of an Initial Context Tree

To construct an initial context tree, it is necessary to
process the image data to collect statistics for all potential
contexts—that is, for all leaves and internal nodes. Each node
stores information of the counts of each color appearing in the
particular context. The algorithm of the context tree construc-
tion operates as follows.

Step 1) Create a root of the tree.
Step 2) or each pixel , .

• Traverse the tree along the path defined by the values of the
context pixels , , where the positions of the
pixels are defined according to a predefined template.

• If the position of some pixel in the context is outside of the
image, then the pixel value is set to zero.

• If some node along the path does not have a consequent
branch for the transition to the next context pixel, then the
algorithm creates the necessary child node and processes
it. Each new node has counters, which all are initially set
to zero.

• In all visited nodes, the algorithm increases the count of
the current pixel value by 1.

This completes the construction of the context tree for all pos-
sible contexts. The time complexity of the algorithm is ,
where is the maximum depth of the context tree, and is the
number of pixels in the image.

D. Pruning the Context Tree

The initial context tree is pruned by comparing every parent
node against its children nodes to find the optimal combination
of siblings. We denote the overall tree as , and the nodes of the
tree as . The number of bits, required to store the node in
the compressed file, is denoted as and is defined by

if is a leaf
otherwise.

(4)

The leaves a significant part of all nodes in the context tree,
and (4) reduces the total number of bits required for the context
tree description. We denote the set of all terminal nodes of the
tree as . We denote the count of the symbol as ,
where . The estimated code length generated by a ter-
minal node is calculated using the following expression [19],
[23]:

(5)

This definition corresponds to the result obtained by a single-
pass arithmetic coder [21]. We define the cost of the context tree

as

(6)

The first term gives the cost of the storage of the tree, and the
second term gives the cost of the compression of the image with
this tree. The goal of the tree pruning is to modify the structure of
the context tree so that the cost function (6) will be minimized.
For solving this problem, we use a bottom-up algorithm [21],
which is based on the principle that the optimal tree consists of
optimal subtrees.

For any node in the tree , we denote the vector of counts
as , and the child nodes as . We
denote the vector describing the structure of the node branches
as the node configuration vector. This vector ,

, defines which branches will be pruned out in the
optimization: If , then the -th branch is pruned.

The maximum number of possible configuration vectors for
a node is . The optimal cost for any given tree can
be expressed by the recursive (7) and (8)

if has no subtrees
otherwise (7)

(8)

Here, is a subtree of starting from its child node .
The operator “ ” denotes the Hadamard product (the element
by element product of two vectors/matrices). These formulae
require that, for the calculation of the optimal cost of any tree,
we first need to calculate the optimal costs of all its subtrees.
The calculation of the cost function and pruning of the
context tree can be described as follows.

Step 1) If has no subtrees, then return the accumulated
code length of its root according to (6).

Step 2) For all subtrees , calculate their optimal costs
recursively.

Step 3) According to the found values , the vectors
of counts and , find the config-
uration vector that minimizes (8).

Step 4) Prune out the subtrees according to the vector .
Step 5) Return the value .
The algorithm recursively prunes out all unnecessary

branches, and outputs the structure of the optimal context tree.
An example of pruning a single node is shown in Fig. 4. The
best configuration is chosen between 16 different variants of the
pixel distribution between the parent and children. The resulting
distribution produces the smallest value of the function (6).

III. FINDING THE OPTIMAL CONFIGURATION VECTOR

Finding the optimal node configuration vector is the most
time-consuming phase in the construction of the -ary incom-
plete context tree. In the case of the full context tree, the config-
uration can be chosen only from two alternatives: either prune
all subtrees of the considered node or preserve them all. In the
case of incomplete context tree, however, we need to solve a
more complicated optimization problem.

AKIMOV et al.: LOSSLESS COMPRESSION OF COLOR MAP IMAGES BY CONTEXT TREE MODELING 117

Fig. 4. Example of a single-node pruning: Resulted node configuration is
(0,0,0,1).

A. Full Search Approach

We need to process the pruning of each node of the context
tree. A straightforward approach is to calculate all possible vari-
ants of the subtree configurations and then choose the best one.
If the number of nodes in the context tree is , then the time
complexity of the full search is . In practice, the tree
pruning requires fewer computations because the number of ex-
isting subtrees at each node is usually smaller than in real map
images. Nevertheless, this part is the bottleneck of the algorithm
because the pruning can take several hours, even for a small map
image.

B. Steepest Descent Approach

One possible way to reduce the time complexity is to com-
promise the optimality by considering only a small amount of
all possible configuration vectors. We apply the well-known
steepest descent optimization algorithm. According to (7) and
(8)m the optimization problem for tree can be formulated as

(9)

The candidate solutions are considered as the vertices of an
-dimensional hypercube .
The proposed optimization algorithm is applied for each node

of the context tree. The result of the optimization is the optimal
configuration vector and the cost of the node. The algorithm
works as follows.

Step 1: Find the starting point of the search.
Step 1.1: Calculate values
and . Set the start value

.
Step 1.2: If , then the starting point

, the search direction . Otherwise, the
starting point and .
Step 1.3: Set the left bound (LB) of the search to 1.
Step 2: Process steepest descent optimization for input ar-
guments , and LB.
Step 2.1: If , then return and as the
result of the optimization.
Step 2.2: Generate the set of candidate solutions ,

: ,
. Find value .

If then return and .
Step 2.3: Recursively call the optimization Step
2 for each candidate solution , which satisfies:

Fig. 5. Pseudocode of the local optimal configuration search.

, with new input argu-
ments: , and . Denote
the returned results of optimization as and for
each .
Step 2.4: Find values and

. Return and as the result of the
optimization.
Step 3: If , then set to ,
to , LB to 1, and process the Step 2 of the algorithm
again.

The pseudocodes of the proposed optimization technique and
the steepest descent algorithm are shown in Figs. 5 and 6, corre-
spondingly. In the worst case, the number of calculations in this
steepest descendent algorithm for each node is , which is the
same as in the full search. However, we can adjust the tradeoff
between time and optimality of the algorithm by a suitable se-
lection of the threshold. The threshold value defines how large
the set of possible solutions in the steepest descent optimiza-
tion is. If the threshold value is large, then the set of solutions is
large and the result of the optimization is close to the global op-
timum, but the algorithm works slower. A small threshold value
narrows the set of processed solutions, thereby increasing the
speed of algorithm and reducing the accuracy of the optimiza-
tion. We use the threshold value set to 0.01, which was found
experimentally.

IV. HYBRID TREE VARIANT

Free tree coding was introduced in [20]. The locations of the
context pixels in the previous context algorithm are defined by a
static template, whereas the free tree optimizes the locations to
the encoded image. The locations of each context pixel depend
on the values of the previous context pixels. Fig. 7 shows an ex-
ample of the binary free tree with optimized pixels locations.
In the example, the coordinates of the second context pixels de-
pend on the value of the pixel with relative coordinates .
If the value of the pixel is white, then the next context pixel is
located at position . Otherwise, the next context pixel
is located at position .

A greedy algorithm for free tree constructing has been de-
scribed in [19]. The algorithm builds up the free tree level-by-
level, proceeding through the entire image during each iteration.

118 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 1, JANUARY 2007

Fig. 6. Pseudocode of the recursive steepest descent algorithm.

Fig. 7. Illustrative example of the free tree.

Fig. 8. Example of the hybrid tree: Locations of depths less than or equal to
four are defined by the free tree, and locations of bigger depth are defined by
unused positions in the static template.

The number of all possible contexts and memory requirements
increase exponentially with the depth of the free tree. Therefore,
the construction of a free tree that is deep can be problematic.

As an alternative to the free tree, we consider a so-called hy-
brid tree, where the free tree is built up only to a predefined
depth , and the locations of deeper contexts are defined by a
fixed template. During encoding we traverse along the context
tree and mark all locations that have occurred in a fixed template.
For contexts with depths smaller than or equal to , we choose
the locations according to the free tree structure. For contexts
with depth greater than , we choose the first unused location
in the fixed predefined template. Fig. 8 shows an example of the
hybrid tree.

The hybrid tree coding produces better compression than the
fixed one, but the construction of the tree and the procedure

Fig. 9. Sample 256� 256 pixel fragments of the test images.

TABLE I
PROPERTIES OF THE MAP IMAGES FROM DIFFERENT TEST SETS

for choosing the locations significantly increase the processing
time.

V. EXPERIMENTS AND DISCUSSIONS

The proposed algorithm was tested on six sets of different
map images; see Fig. 9 for illustrative examples and Table I for
their statistics. The sets from #1 to #4 are from the database
of the National Land Survey of Finland [24]. We compare the
following compression methods.

• GIF: CompuServe interchange format [6].
• PNG: Portable network graphics format [7], [8].
• MCT: Multilayer binary context tree with optimized order

of the layers [12].
• PWC: Piecewise-constant image model [9].
• CT: The -ary context tree modeling with full tree structure

[20], [25].
• GCT: Generalized context tree algorithm with an incom-

plete -ary tree structure with fixed template.
• GCT-HT: Generalized context tree algorithm with incom-

plete -ary tree structure with hybrid tree.
We used the MQ coder as the entropy coder, which is a mod-

ification of the Q coder [26]. All benchmarking was done on a
3-GHz P4 computer, with 1-GB of RAM, under Windows XP.

The MCT algorithm was applied to the binary layers after
color separation of the test images. The rest of the algorithms
were applied to the original color images. Because of the huge
processing time needed for the optimal ordering of the layers,
the MCT algorithm was run only with the first five test sets.

AKIMOV et al.: LOSSLESS COMPRESSION OF COLOR MAP IMAGES BY CONTEXT TREE MODELING 119

TABLE II
COMPRESSION RESULTS (BITS PER PIXEL)

TABLE III
TOTAL PROCESSING TIMES (IN SECONDS) OF THE GCT FOR

DIFFERENT STEPS OF THE COMPRESSION AND DECOMPRESSION

We also implemented the two-pass version of CT algorithm
[14], [20] with backward pruning [20]. It utilizes variable depth
context modeling with a full -ary context tree.

Compression results are summarized in Table II. The
proposed algorithm outperformed all comparative methods
in terms of compression performance. The GCT algorithm
worked better with all test sets because it utilized the color
dependencies better. The proposed algorithm gave at least a
6% lower bit rate, on average, than the comparative methods.
Between the two variants, the hybrid tree approach (GCT-HT)
was slightly better than the GCT using a static template.

Tables III and IV report the processing times of the GCT and
GCT-HT algorithms. In the compression stage, most time was
spent on context tree construction and pruning. The experiments
show that the algorithm is asymmetric in execution time: the
decompression stage takes much less time than the compression
stage. It can be observed that the GCT method is suitable for
online processing of images of reasonably small size.

Table V shows the performance of the steepest descent ap-
proach in comparison with the full search for a single map from
test set #5. The results indicate that the steepest descending ap-
proach provides results almost as good the full search but is sig-
nificantly faster. It is, therefore, more applicable to the online
processing of images.

Fig. 10 shows the dependency of the compression efficiency
and the image size. For this experiment, we took the images
from test set #5 and divided them into fragments of dimensions
100 100, 200 200, and 400 400 pixels. The resulting bit
rates were calculated as the average of all compressed files. The

TABLE IV
TOTAL PROCESSING TIMES (IN SECONDS) FOR DIFFERENT PHASES OF

COMPRESSION AND DECOMPRESSION OF THE GCT-HT ALGORITHM

TABLE V
COMPRESSION TIMES (IN SECONDS) OF THE GCT FOR FULL SEARCH AND

STEEPEST DESCENT APPROACHES AS A FUNCTION OF THE MAXIMUM DEPTH

Fig. 10. Dependency of the bit rate on the image size.

experiments showed that the bit rate of the GCT algorithm re-
mains rather stable when operating with images of small size.

Fig. 11 illustrates the dependency of the GCT compression
efficiency on the number of colors. The tests were processed on
test set #6, where the number of colors was decreased by color
quantization from 67 down to 32, 16, 10, 6, and 2.

The proposed algorithm can be used mainly for the compres-
sion of palette and halftone images in general, but there are some
problems, which can decrease its efficiency in the case of photo-
graphic images. The necessity of storing the context tree in the
compressed file can decrease the compression performance if
the number of colors is increased significantly. The storage de-
mands are about bits per each node and the space requirement
increases exponentially with tree depth. The algorithm is, there-
fore, not expected to work efficiently for images with a large
color palette (more than 128 colors), or for small images (with
the size less than 100 100 pixels).

In the case of larger images, the processing time of the algo-
rithm can still be a bottleneck in real time applications. Most
of the time, the compression is taken by the construction and
pruning of the context tree, and the time increases as the number

120 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 1, JANUARY 2007

Fig. 11. Dependency of the bit rate on the image color depth.

of colors and maximum depth of the tree increases. The time
could be reduced further by applying fast calculation of the es-
timated code length, in the same manner as proposed in [19].

VI. CONCLUSION

In this paper, we propose an -ary context tree model with
incomplete tree structure for the lossless compression of color
map images. A fast heuristic pruning algorithm was also intro-
duced to decrease the time required in the optimization of the
tree structure.

The proposed -ary incomplete context-tree-based algorithm
outperforms the competitive algorithms (MCT, PWC) by 20%,
and by 6% in the case of full context tree (CT) algorithm.

The compression method was successfully applied to raster
map images up to 67 colors. If the overwhelming memory con-
sumption can be solved in the case of images with a larger
number of colors, then it is expected that the method could also
be applicable to photographic images. This is a point for further
study.

REFERENCES

[1] M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless
image compression algorithm: Principles and standardization into
JPEG-LS,” IEEE Trans. Image Process., vol. 9, no. 8, pp. 1309–1324,
Aug. 2000.

[2] X. Wu, “An algorithmic study on lossless image compression,” in Proc.
IEEE Data Compression Conf., Apr. 1996, pp. 150–159.

[3] N. Memon and A. Venkateswaran, “On ordering color maps for loss-
less predictive coding,” IEEE Trans. Image Process., vol. 5, no. 11, pp.
1522–1527, Nov. 1996.

[4] B. Meyer and P. Tischer, “TMW—A new method for lossless image
compression,” presented at the Int. Picture Coding Symp., Sep. 1997.

[5] P. Howard and J. Vitter, “Analysis of arithmetic coding for data com-
pression,” in Proc. IEEE Data Compression Conf., Apr. 1991, pp. 3–12.

[6] T. Welch, “A technique for high-performance data compression,”
Comput. Mag., vol. 17, no. 6, pp. 8–19, Jun. 1984.

[7] P. Deutsch, DEFLATE Compressed Data Format Specification,
rfc1951, 1996 [Online]. Available: http://www.cis.ohio-state.edu/
htbin/rfc/rfc1951.html

[8] J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343, May
1977.

[9] P. Ausbeck, “The piecewise-constant image model,” Proc. IEEE, vol.
88, no. 11, pp. 1779–1789, Nov. 2000.

[10] S. Tate, “Lossless Compression of Region Edge Maps,” Tech. Rep.
CS-1992-09, Dept. Computs. Sci., Duke Univ., Durham, NC.

[11] S. Forchhammer and O. Jensen, “Content layer progressive coding
of digital maps,” IEEE Trans. Image Process., vol. 11, no. 12, pp.
1349–1356, Dec. 2002.

[12] P. Kopylov and P. Fränti, “Compression of map images by multilayer
context tree modeling,” IEEE Trans. Image Process., vol. 14, no. 1, pp.
1–11, Jan. 2005.

[13] JBIG, Progressive Bi-Level Image Compression, ISO/IEC International
Standard 11544, 1993.

[14] J. Rissanen, “A universal data compression system,” IEEE Trans. Inf.
Theory, vol. 29, no. 5, pp. 656–664, Sep. 1983.

[15] Y. Yoo, Y. Kwon, and A. Ortega, “Embedded image-domain adaptive
compression of simple images,” in Proc. 32nd Asilomar Conf. Signals,
Systems, Computers, Nov. 1998, vol. 2, pp. 1256–1260.

[16] S. Forchhammer and J. Salinas, “Progressive coding of palette images
and digital maps,” in Proc. IEEE Data Compression Conf., Apr. 2002,
pp. 362–371.

[17] J. Cleary and I. Witten, “Data compression using adaptive coding and
partial string matching,” IEEE Trans. Commun., vol. 32, no. 4, pp.
396–402, Apr. 1984.

[18] A. Martin, G. Seroussi, and M. Weinberger, “Linear time universal
coding and time reversal of tree sources via FSM closure,” IEEE Trans.
Inf. Theory, vol. 50, no. 7, pp. 1442–1468, Jul. 2004.

[19] B. Martins and S. Forchhammer, “Tree coding of bi-level images,”
IEEE Trans. Image Process., vol. 7, no. 4, pp. 517–528, Apr. 1998.

[20] R. Nohre, “Topics in Descriptive Complexity,” Ph.D. dissertation,
Univ. Linköping, Linköping, Sweden, 1994.

[21] P. Howard and J. Vitter, “Fast and efficient lossless image compres-
sion,” in Proc. IEEE Data Compression Conf., Apr. 1993, pp. 351–360.

[22] G. Martin, “An algorithm for removing redundancy from a digitized
message,” presented at the Video and Data Recording Conf., Jul. 1979.

[23] M. Weinberger and J. Rissanen, “A universal finite memory source,”
IEEE Trans. Inf. Theory, vol. 41, no. 5, pp. 643–652, May 1995.

[24] National Land Survey of Finland. Helsinki, Finland [Online]. Avail-
able: http://www.nls.fi/index_e.html

[25] M. Weinberger, J. Rissanen, and R. Arps, “Application of universal
context modeling to lossless compression of gray-scale images,” IEEE
Trans. Image Process., vol. 5, no. 4, pp. 575–586, Apr. 1996.

[26] J. Mitchell and W. Pennebaker, “Software implementations of the
Q-coder,” IBM J. Res. Develop., vol. 32, no. 6, pp. 753–774, Nov.
1988.

Alexander Akimov received the M.Sc. degree in apllied mathematics in 2000
from Saint Petersburg State University, Saint Petersburg, Russia, and the M.Sc
degree in computer science in 2001 from the University of Joensuu, Joensuu,
Finland, where he is currently pursuing the Ph.D.degree in Department of Com-
puter Science.

His main research areas are the compression of raster and vector map images.

Alexander Kolesnikov received the M.Sc. degree in physics in 1976 from the
Novosibirsk State University, U.S.S.R., and the Ph.D. degree in computer sci-
ence in 2003 from the University of Joensuu, Joensuu, Finland.

From 1976 to 2003, he was a Senior Research Fellow with the Institute of Au-
tomation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia.
In 2003, he joined the Department of Computer Science, University of Joensuu.
His main research areas are in signal and image processing, vector map pro-
cessing, and compression.

Pasi Fränti received his M.Sc. and Ph.D. degrees in computer science in 1991
and 1994, respectively, from the University of Turku, Finland.

From 1996 to 1999, he was a Postdoctoral Researcher with the Academy
of Finland. Since 2000, he has been a Professor at the University of Joensuu,
Joensuu, Finland. His primary research interests are in image compression, clus-
terization, and speech technology.

