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Abstract

Genetic algorithm (GA) provides high quality codebooks for vector quantization (VQ) at the cost of high running

time. The crossover method is the most important choice of the algorithm. We introduce a new deterministic crossover

method based on the pairwise nearest neighbor method. We show that high quality codebooks can be obtained within a

few minutes instead of several hours as required by the previous GA-based methods. The method outperforms all

comparative codebook generation methods in quality for the tested training sets. Ó 2000 Elsevier Science B.V. All

rights reserved.
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1. Introduction

We study the problem of generating a codebook
for a vector quantizer (VQ). The aim is to ®nd M
code vectors (codebook) for a given set of N train-
ing vectors (training set) by minimizing the average
pairwise distance between the training vectors and
their representative code vectors (Gersho and
Gray, 1992). The most cited and widely used
method is the generalized Lloyd algorithm (GLA),
as proposed by Linde et al. (1980). It starts with an
initial codebook, which is iteratively improved
until a local minimum is reached. The result of the

GLA is highly dependent on the choice of the
initial codebook.

Better results can be achieved using an optimi-
zation technique known as genetic algorithm (GA).
As shown by Fr�anti et al. (1997), the best GA
variant outperforms all comparative methods (in-
cluding the GLA), but at the cost of high running
time. The problematic part of the algorithm is the
crossover. The existing crossover methods are
heuristic and therefore incapable of generating
competitive codebooks as such. A few iterations of
the GLA are therefore always needed for ®ne-
tuning the solution. This makes the GA signi®-
cantly slower than the comparative methods be-
cause there are many candidate solutions to be
generated, and each of them must be ®ne-tuned by
the GLA.

We introduce a new deterministic cross-
over method for the GA. The main part of the
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crossover algorithm is the pairwise nearest neigh-
bor method (PNN). The method has three vital
improvements over the previously reported im-
plementation (Fr�anti et al., 1997): (i) The repre-
sentation of solution is revised so that we do not
merge only the codebooks, but maintain both
partition and codebook for each solution. In this
way, the partition of a new solution can be e�-
ciently computed from those of the parent solu-
tions. Access to the partition gives also a more
precise initialization for the PNN, which results in
higher quality candidate solutions. (ii) Empty
partitions are removed before the application of
the PNN. This is vital for avoiding the slowness of
the PNN. (iii) As the new candidate solutions are
already close to a local minimum, the GLA itera-
tions can be performed extremely fast using the
grouping technique recently introduced by
Kaukoranta et al. (1999).

For the tested training sets, the proposed
method outperforms all comparative methods,
including the previous variants of the genetic al-
gorithm. The use of a deterministic crossover
achieves also a fast convergence with rather small
population size. The algorithm is therefore re-
markably faster than any of the previously re-
ported genetic algorithms.

2. Codebook generation

We consider a set X � fx1; x2; . . . ; xNg of N
training vectors in a K-dimensional Euclidean
space. The aim is to ®nd a codebook
C � fc1; c2; . . . ; cMg of M code vectors by mini-
mizing the average distance between the training
vectors and their representative code vectors. The
distance between two vectors is de®ned by their
squared Euclidean distance. The distortion of the
codebook is then calculated as

f �P ;C� � 1

N

XN

i�1

kxi ÿ cpik2
: �1�

Partition P � fp1; p2; . . . ; pNg de®nes for each
training vector xi the index pi of the code vector
where it is mapped to. A solution for the codebook
generation problem can therefore be de®ned by the
pair (P, C), see Fig. 1. These two depend on each

other in such a manner that if one of them is given,
the optimal choice for the other one can be con-
structed using the following optimality conditions.

Partition optimality: Given a codebook C, the
optimal partition P minimizing (1) is obtained by
assigning each training vector xi to its nearest code
vector cj

pi � arg min
16 j6M

kxi ÿ cjk2
: �2�

Codebook optimality: Given a partition P, the
optimal codebook C minimizing (1) is obtained by
calculating the code vectors cj as the centroids of
the clusters

cj �
P

pi�j xiP
pi�j 1

; 16 j6M : �3�

In codebook generation, we usually concentrate
on ®nding a codebook C and the mapping func-
tion P is assumed to be optimally de®ned accord-
ing to Eq. (2). Next we recall three known methods
for generating codebook.

GLA (Linde et al., 1980) starts with an initial
codebook, which is iteratively improved using the
two optimality conditions in turn. In the ®rst step,
each training vector xi is mapped to its nearest
code vector cj in the previous codebook. In the
second step, the code vectors are recalculated as
the centroids of the new partitions. The new so-
lution is always better than or equal to the pre-
vious one. The algorithm is iterated as long as
improvement is achieved. The algorithm, however,
makes only local changes to the previous solution

Fig. 1. Illustration of the data structures.
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and is therefore highly sensitive to the initializa-
tion.

The method by Zeger and Gersho (1989) ap-
plies stochastic relaxation technique with the GLA
by adding noise to the code vectors after each it-
eration. The amount of noise gradually decreases
with the iteration and eventually, when the noise
has been completely eliminated, the algorithm
converges back to the GLA. The method performs
progressive re®nement of the solution and is
therefore capable of ®nding better global settle-
ment of the code vectors than the GLA. We refer
this method as stochastic relaxation (SR).

PNN by Equitz (1989) uses a di�erent approach
by generating the codebook hierarchically. It starts
by initializing each training vector as a separate
code vector. Two code vectors are merged at each
step of the algorithm and the process is repeated
until the desired size of the codebook is obtained.
The code vectors to be merged are always the ones
whose merge increase the distortion least. The in-
crease is calculated as

da;b � nanb

na � nb
� kca ÿ cbk2

; �4�

where ca and cb are the merged code vectors, na

and nb are the size of the corresponding clusters.
The original implementation of the PNN takes
O(N3) time but a signi®cantly faster O(sN2) time
algorithm was recently introduced by Fr�anti and
Kaukoranta (1998). The idea is to maintain for
each code vector a pointer to its nearest neighbor
and in this way, avoid unnecessary distance cal-
culations. After the merge operation, the pointers
must be updated only for clusters whose nearest
neighbor is one of the merged vectors. On average,
the number of updates (s) is signi®cantly smaller
than N.

3. Genetic algorithm

GA is based on the model of the natural selec-
tion in real life. The main idea is to maintain a set
of solutions (population), which is iteratively re-
generated using genetic operations (crossover and
mutations) and selection. The general structure of
our GA method is shown in Fig. 2. Each initial
solution is created by selecting M random training
vectors as the code vectors and by calculating the
optimal partition according to Eq. (2). The solu-
tions for the next population are then created by
crossing the best solutions of the current popula-
tion.

The number of iterations (T) and the popula-
tion size (S) are the main parameters of the algo-
rithm. In general, a large population should be
used because this would guarantee enough genetic
variation in the population. The number of itera-
tions should be as high as time can be a�orded.
Even if the solution does not improve during a
single iteration it is possible that improvement will
appear later. Mutations can also be applied for
increasing genetic variation in the population, and
it can be useful if the algorithm is iterated long
time. The GLA is used as a local optimizer for
®ne-tuning the new solution towards a local min-
imum. The necessity of the GLA depends on the
choice of the crossover and mutation algorithms.

3.1. Representation of solution

The representation of a solution is an important
choice in the algorithm because it determines the
data structures which are to be modi®ed in the
crossover and mutation operations. Wolpert and
Macready (1997) have pointed out the importance
of incorporating problem-speci®c knowledge into

Fig. 2. Main structure of the genetic algorithm.
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the behavior of the algorithm. A problem-speci®c
representation is therefore used.

For evaluating a solution we need both partition
(P) and the codebook (C). The optimality condi-
tions (2) and (3), on the other hand, indicate that
only one of them is su�cient because the other one
can always be generated. This implies three alter-
native choices for representing a solution:
· Partition: (P)
· Codebook: (C)
· Combined: (P, C)

The ®rst approach operates with P and gener-
ates C using (3). The problem is that only local
changes can be generated to the solution by
modifying the partition. The second approach
operates with C and generates partition using (2).
The advantage of this approach is that the entire
clustering structure can be revised through modi-
®cations of the code vectors. A drawback is that
the generation of partition is computationally ex-
pensive, requiring N á M distance calculations.

We take the third approach and maintain both
P and C. The key point is that both data structures
are needed for evaluating the solution, and it
would be computationally ine�cient to recalculate
either data structure from scratch in every step of
the algorithm. Instead, the data structures of the
existing solutions can be fully utilized.

3.2. Selection method

The main goal of the selection is that better
solutions are chosen more often in the crossover
than worse solutions, the exact implementation of
the selection is not so vital. We use an elitist ap-
proach, in which only the best solutions are con-
sidered and the rest are discarded. The solutions
are sorted in an increasing order given by their
distortion values. We permute all possible pairs in
a greedy manner until the population is completed.

3.3. Crossover

Several crossover methods were summarized by
Fr�anti et al. (1997). These crossover methods have
two weaknesses. Firstly, the methods are heuristic
and can rarely generate competitive solutions
without the application of a few GLA iterations.

Secondly, they cross only the codebooks and ig-
nore the partitions of the parent solutions. The
partition of the new solution must therefore be
recalculated from scratch, which requires N á M
distance calculations.

We take an alternative approach and perform
the crossover in deterministic manner. We com-
bine the existing solutions (C1, P1) and (C2, P2) so
that the new solution (Cnew, Pnew) is competitive
already before the use of the GLA. In addition to
that, unnecessary computation is not wasted for a
complete repartition but the partitions of the
parent solutions are utilized. The sketch of the new
crossover algorithm is shown in Fig. 3.

The crossover starts by merging the parent
codebooks by taking their union (Combine-
Centroids). The partition Pnew is then constructed
on the basis of the existing partitions P1 and P2

(CombinePartitions). The partition of training
vector xi is either pi

1 or pi
2. The one with smaller

distance to xi is chosen. In this way, Pnew can be
generated using 2 á N distance calculations only.
The codebook Cnew is then updated (Update-
Centroids) using (3) in respect to the new partition
Pnew. This procedure gives a solution in which the
codebook has twice the size as it is allowed to. The
®nal task is to reduce the codebook size from 2 á M
to M.

Empty clusters are ®rst removed (RemoveEmp-
tyClusters) because they would cause computa-
tional ine�ciency in the PNN. It is possible (even
likely) that the same code vector is obtained from
both parents. In this case, all training vectors in
their clusters are mapped to the same vector and
leaving the other cluster empty. In the worst case,
there are M empty clusters and this would lead to
O�M3� time for the PNN.

The ®nal size of the codebook is then obtained
using the PNN algorithm (PerformPNN) as given
by Fr�anti and Kaukoranta (1998) with the fol-
lowing two di�erences. Firstly, we do not perform
the PNN for full training set but start from an
initial solution of at most 2 á M vectors. The
crossover can therefore be performed in O(sM2)
time instead of the original O(sN2) time. Secondly,
the partition data is also updated during the
crossover and therefore not needed to be recalcu-
lated after the PNN.
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At the ®rst step of the PNN, we search for each
code vector its nearest neighbor (FindNearest-
Neighbor) that minimizes the merge cost according
to (4). The nearest neighbor pointers are stored in
Q � fq1; q2; . . . ; qMg. The vectors to be merged can
be determined by ®nding qi with minimal merge
cost (FindMinimimumDistance). After the merge
(MergeClusters), the pointers are updated (Up-
datePointers), and the process is repeated until the
size of the codebook is reduced to M.

3.4. Mutations

Mutations are generated by replacing a ran-
domly chosen code vector by a randomly chosen
training vector. This method is denoted as random
swap, and it is the neighborhood method used in
the local search algorithm by Fr�anti et al. (1998).
The use of mutations is not necessary in our al-
gorithm. It slows down the search whereas we aim
at fast convergence. In the long run, however,
mutations can be used for increasing genetic vari-
ation in the population. The purpose is to discover
new search paths when the population becomes
too homogenous for the crossover to achieve sig-
ni®cant improvement anymore. E�ectively, the
mutations simulate local search by making small

modi®cations to the current solution. If the in-
clusion of the mutations is vital, it implies that the
crossover is not well-de®ned and the algorithm
actually implements a parallel local search algo-
rithm.

3.5. Local optimization by GLA

The result of the crossover can practically al-
ways be ®ne-tuned by the GLA. It can be iterated
until the nearest local minimum is reached al-
though a few iterations are usually su�cient for
making the new solution competitive. The inclu-
sion of the GLA was shown to be vital in the
previous GA implementations (Fr�anti et al., 1997)
because heuristic crossover can rarely produce
solutions that are competitive with the parent so-
lutions. The heuristic methods therefore relies on
the use of the GLA, and the e�ect of the crossover
is mainly to create di�erent starting points for the
GLA.

The PNN crossover, on the other hand, can
produce competitive solutions as such. The use of
the GLA is therefore not necessary although still
recommended because of its extra bene®t in ®ne-
tuning of the solution. The inclusion of the GLA
can be rather time-consuming because there are

Fig. 3. Pseudocode for the PNN crossover. (More detailed pseudocode is available in Electronic Annexes of PATREC.)
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several candidate solutions to be processed. Most
of the computation in the GLA originates from the
calculation of N á M vector distances. Fortunately,
a large proportion of these distance calculations
can be avoided using the grouping technique in-
troduced by Kaukoranta et al. (1999). The
grouping technique is very e�ective when applied
for solutions that are already of good quality,
which is the case after the PNN crossover.

4. Test results

We generated three training sets: Bridge, Miss
America, and House, see Fig. 4. The vectors in the
®rst set (Bridge) are 4 ´ 4 pixel blocks from the
image. The second set (Miss America) has been
obtained by subtracting two subsequent image
frames of the original video image sequence, and
then constructing 4 ´ 4 spatial pixel blocks from
the residuals. Only the ®rst two frames have been
used. The third data set (House) consists of color
values of the RGB image. Applications of this kind
of data sets are found in image and video image
coding (Bridge, Miss America), and in color image
quantization (House). The size of the codebook is
®xed to M � 256 throughout the experiments.

We study ®rst the population size (S) and the
number of iterations (T). Experiments show that
improvement can appear during a long time but
most remarkable improvement is obtained during
the ®rst few iterations only. The later modi®ca-

Fig. 4. Sources for the training sets.

Table 1

Running times (min:s) of the GA with the PNN crossover

Bridge Miss

America

House

Previous GA 332 536 805

Proposed GA 13 7 6

SR 8 21 41

GLA 0.12 0.25 0.50

Fig. 5. Distortion performance of the GA as a function of time.

The parameters were set up as �S � 16; T � 50� for Bridge,

�S � 5; T � 50� for Miss America, and (S� 6, T� 50) for

House.
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tions are more or less ®ne-tuning of the solution
and further improvement remains marginal. It is
therefore reasonable to stop when the algorithm
®rst time fails to improve. Using this stopping
criterion, we performed the GA with all popula-
tion sizes from S � 2 to 32. Two GLA iterations
were applied for all solutions but no mutations
were performed.

The results were compared to the best previous
crossover method (Fr�anti et al., 1997), in which the
parameters were setup as S � 45 and T � 50. We
found out that the smallest population size (on
average) needed to bypass the previous results was
S � 16 (Bridge), S � 5 (Miss America), and S � 6
(House). The corresponding number of iterations
were T � 15 (Bridge), T � 17 (Miss America), and
T � 12 (House). Equally good codebooks can
therefore be obtained with signi®cantly less com-
puting e�orts.

The running times of the proposed method are
summarized in Table 1. The slowness of the pre-
vious implementation originates from three facts:
(i) a large number of candidate codebooks are
generated, (ii) all candidates are iterated by the
GLA and (iii) the crossover is very slow. The new
method gives signi®cant improvement in all these
cases. Firstly, the improved quality of the cross-
over is utilized by reducing the number of candi-
dates by a factor of 10±40. Secondly, the GLA
iterations can be performed extremely fast for the
codebooks resulting from the PNN crossover. Fi-
nally, the removal of the empty clusters avoids the
slowness of the PNN implementation. Overall, the
proposed method reduces the running time by a
factor of 25±50 in comparison to the previous
implementation. The GA is still slower than the
GLA but the di�erence is much smaller.

The convergence of the new method is illus-
trated in Fig. 5. Most of the improvement appear
during the ®rst few iterations. The use of muta-
tions are therefore not needed but they can be
useful in the long run. Comparative results are
shown for random crossover, and a method
without any crossover where the best solution is
replicated and mutated. The deterministic cross-
over is superior both in time and quality, and it
always converges very fast and more steadily than
the other methods.

The distortion performance of the proposed
GA method is compared with the other methods in
Table 2. The ``fast'' refers to the discussed pa-
rameter combination, for which the quality of the
codebook was equal to that of the previous GA
implementation. The ``best'' refers to another pa-
rameter combination, in which we aim at the
highest possible quality by setting the parameters
as S � 100; T � 500. Mutations and ten GLA-it-
erations are also applied for every solution. The
extra bene®t remains marginal and the ``fast''
variant is therefore recommended.

Additional results are shown in Table 2 in the
case when the test set is outside of the training
set. For Bridge, we use 25% randomly chosen
vectors as training data, and the rest 75% of the
vectors are used as test data. For Miss America,
we use di�erent frames for training and for test-
ing. For House, we apply a prequantized image (5
bits per color component) for training, and the
original image (8 bits) is used for testing. The
main observation is that the proposed GA per-
forms well also outside the training set although
the di�erences are smaller. This indicates the
importance of the proper choice of the training
set.

Table 2

Performance comparison of the various algorithms

Inside training set Outside training set

Bridge Miss America House Bridge Miss America House

Random 251.32 8.34 12.12 277.99 9.99 11.23

GLA 179.68 5.96 7.81 251.71 8.60 9.52

PNN 169.15 5.52 6.36 250.07 8.60 8.91

SR 162.45 5.26 6.03 250.85 8.73 9.13

GA-fast 162.01 5.17 5.92 248.65 8.52 8.92

GA-best 160.92 5.09 5.85 248.30 8.52 8.89
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5. Conclusions

A deterministic crossover method was intro-
duced for the GA in VQ. The use of a deterministic
crossover has the advantage that good results are
achieved much faster. The proposed GA-based
method can therefore produce high quality code-
books within a few minutes instead of several
hours as required by the previous implementation.
The method outperforms the comparative code-
book generation methods for the tested training
sets, although the di�erence to SR is rather small.

Acknowledgements

The work of Pasi Fr�anti was supported by a
grant from the Academy of Finland.

References

Equitz, W.H., 1989. A new vector quantization clustering

algorithm. IEEE Transactions on Acoustics, Speech and

Signal Processing 37, 1568±1575.

Fr�anti, P., Kaukoranta, T., 1998. Fast implementation of the

optimal PNN method. In: IEEE Proceedings of the

International Conference on Image Processing (ICIPÕ98),

Chicago, Illinois, USA (revised version will appear in IEEE

Transactions on Image Processing).

Fr�anti, P., Kivijr�avi, J., Kaukoranta, T., Nevalainen, O., 1997.

Genetic algorithms for large scale clustering problems. The

Computer Journal 40, 547±554.

Fr�anti, P., Kivijr�avi, J., Nevalainen, O., 1998. Tabu search

algorithm for codebook generation in VQ. Pattern Recog-

nition 31, 1139±1148.

Gersho, A., Gray, R.M., 1992. Vector Quantization and Signal

Compression. Kluwer Academic Publishers, Dordrecht.

Kaukoranta, T., Fr�anti, P., Nevalainen, O., 1999. Reduced

comparison search for the exact GLA. In: Proceedings of

the IEEE Data Compression Conference (DCCÕ99), Snow-

bird, Utah, USA, pp. 33±41.

Linde, Y., Buzo, A., Gray, R.M., 1980. An algorithm for vector

quantizer design. IEEE Transactions on Communications

28, 84±95.

Wolpert, D.H., Macready, W.G., 1997. No free lunch theorems

for optimization. IEEE Transactions on Evolutionary

Computing 1, 67±82.

Zeger, K., Gersho, A., 1989. Stochastic relaxation algorithm for

improved vector quantiser design. Electronics Letters 25,

896±898.

68 P. Fr�anti / Pattern Recognition Letters 21 (2000) 61±68


