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A Fast Exact GLA Based on Code Vector
Activity Detection

Timo Kaukoranta, Pasi Fränti, and Olli Nevalainen

Abstract—This paper introduces a new method for reducing
the number of distance calculations in the generalized Lloyd algo-
rithm (GLA), which is a widely used method to construct a code-
book in vector quantization. Reduced comparison search detects
the activity of the code vectors and utilizes it on the classification
of the training vectors. For training vectors whose current code
vector has not been modified, we calculate distances only to the ac-
tive code vectors. Large proportion of the distance calculations can
be omitted without sacrificing the optimality of the partition. The
new method is included in several fast GLA variants reducing their
running times over 50% on average.

Index Terms—Clustering algorithms, codebook generation,
image compression, vector quantization.

NOMENCLATURE

Training vector.
Code vector.
Partition index of training vector .
Dimension of the vectors.
Size of the training set .
Size of the codebook ; typically .

I. INTRODUCTION

WE consider the codebook generation problem involved in
the design of avector quantizer[1]. The aim is to find

code vectors(codebook) for a given set of training vec-
tors (training set) by minimizing the average pairwise distance
between the training vectors and their representative code vec-
tors. The vectors are assumed to belong to a K-dimensional Eu-
clidean space. There are several known methods for generating
a codebook [2]–[6]. Thegeneralized Lloyd algorithm(GLA) is
probably the most cited and widely used method [7] because it
is easy to implement and produces relatively good codebooks in
short time. The algorithm starts with an initial solution, which is
then iteratively improved until the process converges. Each iter-
ation consists of partition step, where the vectors of the training
set are partitioned into a set of disjoint clusters, and ofcode-
book step, where new code vectors are calculated.

Manuscript received December 1, 1998; revised January 11, 2000. The work
of P. Fränti was supported under by a grant from the Academy of Finland. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Antonio Ortega.

T. Kaukoranta and O. Nevalainen are with the Turku Centre for Computer
Science (TUCS), Department of Computer Science, University of Turku, Lem-
minkäisenkatu 14A, FIN-20520 Turku, Finland.

P. Fränti is with the Department of Computer Science, University of Joensuu,
FIN-80101 Joensuu, Finland.

Publisher Item Identifier S 1057-7149(00)06142-X.

A straightforward implementation requires time
for a single iteration, which restricts the usefulness of the GLA
especially in online applications. The GLA method is also
commonly used as an integral part of other algorithms such
as genetic algorithms [8], iterative split and merge [9], and
tabu search [10]. It is characteristic of these algorithms that the
GLA is repeated several times during a run of the algorithm
and it has been reported that the GLA is the bottleneck of the
methods what it comes to speed. Most of the computation in
the GLA originates from the distance calculations between
the training vectors and the code vectors. A single distance
calculation takes time only but there are distance
calculations in total.

We introduce a new method for reducing the number of dis-
tance calculations in the partition step. The new method records
the activity of the code vectors by considering whether they have
been changed in the last codebook step or not. According to the
activity of the code vectors, the clusters are classified intoactive
andstatic clusters. For training vectors in the static clusters, it
is sufficient to search for the nearest code vector among the ac-
tive code vectors, only. A remarkable speed-up can therefore be
achieved because the number of static clusters is usually high
as the number of iteration grows. In addition, it turns out that
we can also omit the recalculation of the distances for a large
part of training vectors in the active clusters. The speed advan-
tage of the new method depends on the stage of the iteration: the
number of static clusters is rather small at the beginning but it
increases rather quickly with the iterations when more and more
clusters start to stabilize. The new method can be integrated to
the original GLA and to several fast GLA variants.

II. V ARIANTS OF THE FAST EXACT GLA

We consider a set of training vectors in a -dimensional
Euclidean space. The aim is to find a codebookof code
vectors by minimizing theaveragesquared distance be-
tweenthe training vectors and their representative code vectors.
The distance between two vectors is defined by their squared
Euclidean distance

(1)

Let be a codebook and the partition of the training
set. Under the usual ergodicity assumption, the distortion of
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Fig. 1. Pseudo-code of the GLA.

the codebook is then determined using the presented training
samples as

distortion (2)

The basic structure of the GLA is shown in Fig. 1. The method
starts by generating an initial codebook, which is then improved
iteratively using the following two steps. In thepartition step,
each training vector is mapped to its nearest code vector
in the current codebook

(3)

The resulting partition is optimal for the given codebook
according to (2). In thecodebook step, a new codebook is

constructed by calculating the centroids of the partitions

(4)

The resulting codebook is optimal for the given partition
. The optimality of the two steps guarantees that the distortion

value for the new solution is always equal to or smaller than for
the previous one. The process is iterated as long as the distor-
tion (2) reduces, or the number of iterations reaches a predefined
limit. The number of iterations depends on the training set, and
on the quality of the initial codebook; ten to 50 iterations are
usually needed when starting from a randomly generated code-
book.

The partition step dominates the running time of the GLA.
For each training vector, the nearest code vector is found by an
exhaustive search from the codebook. There are distances
to be calculated in total, and each distance calculation takes

time. Thus, the total running time of the partition step is
, which is also the time complexity of the whole it-

eration step. In the codebook step a new codebook is calculated
by summing the training vectors in each cluster and dividing
the sums by the sizes of the clusters. This takes time,
which is negligible in comparison to the time required by the
partition step.

The methods for speeding up the time expensive partition step
can be categorized toexactandapproximate. The exact methods
always select the nearest code vector whereas the approximate
methods use some heuristics for finding a close (not necessary
the closest) code vector for the training vector. In the sequel, we
concentrate on the exact methods that preserve the optimality of

the partition step. We will briefly recall three known techniques
of this type, and later show that our technique can be success-
fully integrated with each of these.

Speed-up is usually achieved by utilizing information of the
candidate for being the nearest code vector. This candidate may
be the code vector from the previous partition (which is usually
a good initial guess), or it may be the nearest code vector found
so far. Approaches are characteristic of utilizing the distance to
the current candidate vector. The first approach to the utiliza-
tion reduces the number of dimensions processed in distance
calculations, and the second one reduces the number of distance
calculations by excluding certain code vectors from the search.
Of the following three fast techniques, the first one utilizes the
first approach whereas the other two take both approaches at the
same time.

In thepartial distortion search(PDS) by Bei and Gray [11],
the distance between two vectors is calculated cumulatively by
summing up the squared differences in each dimension. If the
cumulative distance exceeds the current minimum distortion at
any time, the rest of the distortion calculation is omitted and the
candidate is rejected. The effectiveness of this action depends
on the quality of the current candidate. It is therefore advisable
to calculate first the distance of the training vector to the (pos-
sibly updated) code vector , which was the nearest at the
previous iteration. In the rest of the paper, we suppose that this
modification is applied in the PDS.

In the triangular inequality eliminationtechnique (TIE) by
Chen and Tsieh [12] the number of distance calculations is re-
duced by a condition derived from the triangle inequality. As the
vectors are in an Euclidean space they satisfy the inequality

(5)

where is the training vector, is the nearest code vector
found so far, and is another code vector. We can thus avoid
the distance calculation betweenand a code vector if:

(6)

A practical implementation of this idea utilizes an
matrix of the distances between all code vectors. The entries
of the matrix are recalculated at the beginning of each partition
step. Efficient use of the distance matrix is possible if the rows
are sorted into an increasing order by the distances. A drawback
of the method is that it requires extra space.

In TIE, the search for the nearest code vector proceeds as
follows. The nearest code vector of the previous partition
is chosen as the initial guess. The rest of the code vectors are
then checked using the PDS in the order given by the rowof
the distance matrix. Only the first code vectors up to the limit
given by the rule (6) are checked, and the rest can be eliminated.
The overall running time is reduced if the speed-up is greater
than the overhead from generating the distance matrix. This is
usually the case (assuming that since the calculation
of the distance matrix takes time whereas the time
complexity of the partition step is .

Themean-distance-ordered partial search(MPS) technique
introduced by Ra and Kim [13] is designed for the encoding part
of a vector quantizer but it also applies to the partition step of
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the GLA. They show that the calculation of can be
avoided if

(7)

where is the current nearest code vector. The left side of the
condition is very fast to evaluate using preprocessing.

An efficient implementation of MPS sorts the codebook into
an ascending order of component means of the code vectors.
An initial guess for is the code vector whose mean value
is closest to that of . This is found by using binary search.
Equation (7) gives lower and upper limits for the bi-directional
search, which utilizes the PDS technique. The method reduces
the running time if the improvement from the rejection of the
vectors exceeds the overhead caused by the sorting, which takes

time.

III. REDUCED-COMPARISONSEARCH

It is observed that the GLA makes only local changes in the
codebook and the amount of changes differs from vector to
vector. Some code vectors will therefore stabilize within few
iterations while others develop much longer before stabilizing.
This observation is utilized by detecting theactivityof the code
vectors indicating whether the code vector was changed during
the previous iteration. The code vectors are classified into two
groups:activeandstatic vectors. The cluster of a static code
vector is called astatic cluster. The number of static code vec-
tors increases with the iteration.

The activity information is used for reducing the number of
distance calculations in the case of vectors in static clusters.
Consider a training vector in a static cluster , and denote the
code vector of this cluster by . Our first observation is that
if another static code vector was not the nearest code vector
for in the previous iteration, it cannot be the nearest code
vector in the current iteration either. The partition of the training
vectors in a static cluster cannot therefore change to another
static cluster. For these vectors, it is sufficient to calculate the
distances only to the active code vectors because only they may
become closer than the code vector of the current cluster.

Our second observation is that the reduced-comparison
search can also be applied for certain training vectors in an
active cluster. Consider a training vectorin an active cluster
. If the code vector moves closer to than it was before

the update, then can be treated as it was in a static cluster.
In practice, we do not classify the training vectors according
to their cluster status but according to the direction of the
movement of the code vector [see Fig. 2]. To implement this
extension we store for each training vector its distance to
the current code vector . For the remaining training vectors
(whose distance to current code vector was increased) we must
perform full search by calculating the distances to all code
vectors in the codebook.

To implement the reduced comparison search we maintain a
set of the active code vectors. This is done in the codebook step
by comparing the new and the previous code vectors with at
most extra work and extra space. In the parti-
tion step, we first check for each training vectorif its current

Fig. 2. Example of the classification of the vectors.

code vector is in the set of active vectors. If this is not the
case, we perform the search for the nearest code vector from
the set of the active code vectors only by using any fast search
method. Otherwise, when is mapped to active code vector

, we calculate the distance . If this distance is
greater than the distance in previous iteration, we perform a full
search using any fast search method. If, however, the distance
does not increase we perform the search from the set of the ac-
tive code vectors only. To store the distances of the previous
iteration we need extra space.

Denote the number of active clusters by and the number
of training vectors in these clusters by . The proportion of the
training vectors (in active clusters) whose distance to the current
code vector is increased is denoted by. The number of distance
calculations is thus in the case of active
clusters, and in the case of static clusters. It is
expected that because of the centroid operation. The
total number of distance calculations in a single partition step is
therefore

(8)

In other words, the distances to the active code vectors must
be calculated for all training vectors, but the distances to the
static code vectors only for a part of the training vectors.
These are the training vectors of the active clusters for which
the distance to their current code vector has increased. The ben-
efit of the reduced comparison search depends directly on the
number of active clusters .

The reduced comparison search can be implemented with any
fast GLA variant as follows. The partition step contains two dif-
ferent kind of searches. Some search operations are performed
for the full codebook as usual, and the other searches for the sub-
codebook of the active code vectors. This must be considered in
the implementation because some GLA variants (like TIE and
MPS) use special data structures for the search. In practice, we
must generate search structures both for the full codebook and
for the subcodebook. We generate first the structure for the full
codebook as usual and then eliminate the static vectors for ob-
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Fig. 3. Pseudo-code of the GLA with reduced comparison search.

Fig. 4. Number of active and static clusters during the iteration (forMiss
America, N = 19 940,M = 256).

taining the search structure for the subcodebook. Fig. 3 summa-
rizes the control flow of the GLA with the reduced comparison
search.

IV. TEST RESULTS

We generated training sets from three different images:
bridge (256 256 pixels, 8 bits per pixel),Miss America(360

288 pixels, 8 bits per pixel), andhouse(256 256 pixels, 24
bits per pixel). The vectors in the first set (bridge, 4096,

16) are 4 4 pixel blocks from the image. The second
set (Miss America, 19 940, 16) has been obtained
by constructing 4 4 spatial pixel blocks from the first three
frames of the video sequence. The third data set (House,
65 536, 3) consists of color values of the image.
Applications of this kind of data sets are found in image and
video image coding (bridge, Miss America), and in color image
quantization (house).

In the following we study the behavior of the proposed
method usingMiss Americaas a test case, and then give
a summary of the main results for the three test sets. The
classification of the clusters is illustrated in Fig. 4, and the
classification of the training vectors in Fig. 5. We observe that
the number of active clusters decreases rapidly and during the
last thirty iterations it is close to zero. The proportion of static
clusters was 82% in total, when observing all iteration steps.
The number of favorable training vectors develops in similar
way. In total, 83% of the training vectors were in static clusters
(“no change”), and 8% of the vectors have decreased distance to

Fig. 5. Classification of the training vectors in respect to their distance to the
code vector of their current cluster (forMiss America,N = 19 940,M = 256).

Fig. 6. Number of distance calculations (relative to the full search) when
activity grouping is applied to the original GLA (forMiss America, N =

19 940,M = 256).

their code vector (“moved closer”). Full search was performed
for the rest 9% of the training vectors (“moved farther”).

Fig. 6 illustrates from which type of vectors the compu-
tation originates. Almost 40% of all distance calculations of
the improved GLA are caused by the training vectors in the
“moved farther” group. The favorable training vectors are not
completely free of computation either. In total, over 40% of
all distance calculations comes from the training vectors in the
“no change” group, and less than 20% from the “moved closer”
group. Over half of the distance calculations originate from the
first ten iterations.

Next we study how the new method applies for different GLA
variants. The amount of work generated by the distance calcula-
tions is summarized in Table I. Results are given for the original
methods (without activity grouping) and for the methods im-
proved by our technique (with activity grouping). In all cases,
initial codebook is generated by selecting random training vec-
tors omitting duplicates. For the full search the number of dis-
tance calculations is sometimes below the size of the codebook

because we have stopped the search when an equal
code vector (distance 0) was found. The number of distance cal-
culations performed by the TIE and MPS methods depends on
the training set, and it varies from 4% to 74% of full search. Our
grouping technique gives further reduction, which is more than
50%, within all GLA variants for the tested training sets.
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TABLE I
AVERAGE NUMBER OF DISTANCE CALCULATIONS PER TRAINING VECTOR AND THEAVERAGE NUMBER OF PROCESSEDVECTORDIMENSIONS DURING THE

DISTANCE CALCULATIONS. THE RESULTS AREAVERAGES OFTEN RUNS (FOR MISSAMERICA,N = 19 940,M = 256,K = 16)

TABLE II
RUNNING TIMES (IN SECONDS) FOR THETHREE TRAINING SETS. RESULTS AREAVERAGES OF50 RUNS (M = 256)

The second columns in Table I demonstrate the effect of the
PDS technique. The PDS alone reduces the number of processed
dimensions to the range from 15 to 37 per cent depending on the
training set. Both the TIE and the MPS utilize the PDS in dis-
tance calculations. However, they have to process roughly 50%
of the dimensions because they calculate distances mainly to
nearby code vectors and these calculations proceed quite further
before exiting due to the PDS. It is observed that our method
has no significant effect on the number of processed dimen-
sions. This indicates that the grouping technique utilizes dif-
ferent properties than the PDS. The total amount of distance
calculations (per training vector per iteration) is shown in the
third columns of Table I.

The overall running times of the GLA variants are summa-
rized in Table II. The speed-up achieved by our method ranges
from 30% to 80% depending on the GLA variant and on the
training set. Among the different GLA variants, the TIE is the
fastest method forHouseand the MPS for the other two sets,
when our technique is not applied. With our grouping technique,
the MPS is the best for all test sets. This variant takes only about
2% to 4% of the time required by the full search.

Fig. 7 illustrates the effect of the codebook size M on the
running time. The MPS is relatively independent on the size of
the codebook. The TIE, on the other hand, performs worse for
larger values of because the maintenance of the distance ma-
trix still requires time, where is the number
of active code vectors. The relative improvement of the activity
grouping tends to increase as a function of the codebook size,
but it stabilizes for large codebooks, see Fig. 8. In TIE, however,
the time required by the maintenance of the distance matrix in-
creases faster than the saving achieved by the activity grouping
technique. This is visible in the relatively weak results of TIE
in Fig. 8. Note that the activity grouping is used to reduce the
ordering operation of the algorithm.

Fig. 7. Running time (in seconds) as a function of the codebook size. The
grouping technique is applied in all GLA variants. The methods marked by an
open symbol (TIE and MPS) reduce the number of distance calculations. The
results are averages of ten runs (forMiss America,N = 19 940).

Fig. 8. Improvement obtained by the grouping technique within the GLA
variants as a function of the codebook size. The results are averages of ten runs
(for Miss America, N = 19 940).
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V. CONCLUSIONS

We introduced an improvement to the exact GLA that pre-
serves the optimality of partition. The key observation is that a
large proportion of the distance calculations is unnecessary be-
cause only few of the code vectors remain active to the end of
the iterations. Significant speed-up is therefore obtained in the
partition step by detecting the activity of the clusters. The pro-
posed method, however, is only for speeding up the codebook
generation and the technique cannot be used in the encoding part
of vector quantization.

An important property of the new method is that the speed-up
is not limited only to the full-search GLA but it applies also to
other faster GLA variants. The method is capable of improving
the running time by 60% to 80% in the case of the PDS and MPS
methods, and by 30% to 60% in the case of the TIE method.
Overall, the fastest method was the MPS augmented with our
grouping technique. Moreover, the speed-up is based on a gen-
eral property of the GLA and not on a property of the distance
metric such as the triangular inequality. We therefore expect that
the method is suitable also for applications using different, pos-
sibly nonmetric distance function.

As noted by one of the reviewers, the above organization
of the reduced comparison GLA is not the only possible. The
method could be enhanced by maintaining an matrix of
the distances between all training vectors and the code vectors.
The remaining distance calculations to static code vectors for
the “moved farther” training vectors can then be saved. In this
way, the number of distance calculations of full search GLA can
be further reduced from 23% to 19% in case ofMiss Americaat
the cost of extra space. This is a point of future studies.
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