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Abstract—Recent advances in geopositioning mobile phones
have made it possible for users to collect a large number of GPS
trajectories by recording their location information. However,
these mobile phones with built-in GPS devices usually record
far more data than needed, which brings about both heavy data
storage and a computationally expensive burden in the rendering
process for a Web browser. To address this practical problem, we
present a fast polygonal approximation algorithm in 2-D space
for the GPS trajectory simplification under the so-called integral
square synchronous distance error criterion in a linear time com-
plexity. The underlying algorithm is designed and implemented
using a bottom–up multiresolution method, where the input of
polygonal approximation in the coarser resolution is the polygonal
curve achieved in the finer resolution. For each resolution (map
scale), priority-queue structure is exploited in graph construction
to construct the initialized approximated curve. Once the polyg-
onal curve is initialized, two fine-tune algorithms are employed in
order to achieve the desirable quality level. Experimental results
validated that the proposed algorithm is fast and achieves a better
approximation result than the existing competitive methods.

Index Terms—Geographic information systems (GISs), global
positioning system trajectory simplification (GPS TS), polygonal
approximation, priority queue, reduced search dynamic program-
ming (RSDP).

I. INTRODUCTION

L OCATION-ACQUISITION technologies, such as geopo-
sitioning mobile devices, enable users to obtain their

locations and record travel experiences by a number of
time-stamped trajectories. In the location-based Web services,
users can record, then upload, visualize, and share those trajec-
tories [34]. Therefore, people are more likely to find the travel
routes that interest them and acquire reference knowledge fa-
cilitating their travel from other’s trajectories. However, these
GPS devices usually record far more data points than necessary,
and these redundant data points will decrease the performance
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of the data collection. For example, if data are collected at
10-s intervals, a calculation in [32] shows that, without any
compression, 100 Mb is required to store just 400 objects for
a single day. Moreover, these redundant GPS trajectories will
also cause a longer uploading/downloading time to the mobile
service providers. The dense representation will also bring
about a heavy burden for a Web browser when rendering these
trajectories on the client side. In some cases, Web browsers
may even get out of memory and crash. From our experiment, it
takes approximately 1 s for rendering 1000 points on the map.
Therefore, a fast polygonal approximation algorithm is needed
for the trajectory simplification (TS) task, i.e., multiple GPS
TSs are conducted corresponding to different map scale before-
hand such that the trajectories can be efficiently visualized.
In recent years, polygonal approximation in 2-D space has

attracted a considerable interest with a great deal of applica-
tions such as geographic information systems (GISs), computer
graphics and data compression. Given a polygonal curve

, the problem of polygonal approximation is to seek
a set of ordered points (a subset of ), i.e.,

(1.1)

as an approximation of , where .
Polygonal approximation can be categorized into two classes of
subproblems.
1) min- problem: Given -vertices polygonal curve and
integer , approximate a polygonal curve with the
minimum approximation error with at most vertices.

2) min-# problem: Given -vertices polygonal curve and
error tolerance , approximate a polygonal curve with
the minimum number of vertices within the error toler-
ance .

For polygonal approximation, there exist different solu-
tions, which vary in reduction efficiency and computational
overhead. For example, an optimal algorithm provides the
best reduction efficiency but causes the highest overhead

[1]–[5], [10]–[13], [15], whereas
solutions based on heuristics lower the computational overhead
at the cost of reduced reduction rates [7]–[9]. A
compromise between the optimal and heuristic solutions is
the reduced search dynamic programming (RSDP) [17], [18],
[23]. The algorithm uses a bounding corridor surrounding a
reference curve to limit the search space during the minimizing
process. In different applications, different error criteria have
been defined [1]–[5].
For the GPS TS, since both spatial and temporal information

should be considered, a number of heuristic methods have also
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been proposed with different error measures, such as TS [31],
top–down time ratio (TD-TR) [32], Open Window (OW) [32],
threshold-guided algorithm [33], STTrace [33], spatial join
[35], Spatial QUalIty Simplification Heuristic (SQUISH) [37],
and generic remote TS (GRTS) [38]. Performance evaluations
are made for several traditional TS algorithms in [36]. In these
algorithms, the performance is measured on the reduction rate
by the line simplification process. It is noted in [37] that there is
not one algorithm that always outperforms other approaches in
all situations. In the GPS TS, the reduced data points are mostly
directly savedwith afixed bit length,which is required to support
both the rendering process and the effective trajectory queues in
database. On the other hand, when data compression techniques
are used, a better compression ratio is achieved for the GPS
trajectory data [41], which is appropriate for data storage.
In this paper, we present a fast time polygonal approxi-

mation algorithm for the GPS TS. The proposed method applies
a joint optimization for both min-# approximation using the
local integral square synchronous Euclidean distance (LSSD)
criterion and min- approximation using the integral square
synchronous Euclidean distance (ISSD) criterion.
The proposed GPS TS algorithm is implemented in a real-

time application for the rendering process of the GPS trajecto-
ries on the map.1

II. RELATED WORK

In this section, we will review the related work in the GPS
TS in several aspects, such as error measures, approximation of
the polygonal curves, fine-tune solutions by reduced search, and
multiresolution polygonal approximation. The contributions of
this paper are also summarized at the end of each subsection.

A. Error Measures

The primary goal of the GPS TS techniques is to reduce the
data size without compromising much of its precision. Thus,
there is a need to find appropriate error measures in algorithms
and performance evaluation.
In polygonal approximation, different error criteria have been

defined, such as tolerance zone, parallel strip, uniform measure,
minimum height, and minimum width [1]–[5]. Later, Meratnia
and de By [32] indicated that such algorithms were not suit-
able for GPS trajectory since both spatial and temporal informa-
tion should be considered. Therefore, the errors were measured
through distances between pairs of temporally synchronized po-
sitions, called synchronous Euclidean distance (SED).
The definition can be formulated as follows:

is the subcurve of , and is the line
segment between and (an approximated edge in ). For
each point with time on the orig-
inal GPS trajectory, its approximated temporally synchronized
position can be calculated as

(2.1)

(2.2)

1Two datasets are considered, which are MOPSI dataset (http://cs.joensuu.fi/
mopsi) and geolife dataset [34].

After the approximated position is determined, SED is cal-
culated by

SED (2.3)

In SED, the continuous nature of moving objects necessitates
the inclusion of temporal and spatial properties.
Except for the aforementioned error measures, other error

functions were also considered in some literatures. For ex-
ample, position, speed, and orientation information were all
used in the threshold-guided algorithm [33]. In [35], a new
distance function called spatial join was proposed, which was
bounded for spatial-temporal queries. In the area of shape
matching, Fréchet distance [39] also took the continuity of
shapes into account with a time complexity , where
and are the number of points correspondingly [40].
However, in most algorithms, in order to calculate the

approximated error of the line segment , at least dis-
tance calculations are needed. In [15], the calculation process
was solved in dual space by a priority-queue structure, which
achieved the best processing time with a prepro-
cessing time .
In this paper, we further study the cost-effective spatiotem-

poral error measures, which can be computed in constant time.
Namely, we extend local integral square error (LISE) criterion
and integral square error (ISE) criterion [4]–[6] and derive two
new error measures for the GPS TS problems, called LSSD and
ISSD. LSSD and ISSD have the same properties with LISE and
ISE, i.e., they can be computed efficiently in time after
precalculating all the accumulative terms within time,
whereas temporal information is also considered meanwhile.
The further discussion of the error measures will be made in
Section III.

B. Polygonal Approximation: Optimal and Heuristic Methods

Optimal polygonal approximation algorithms are mostly
implemented by incrementally constructing a directed acyclic
graph (DAG) and therefore inevitably suffer a computational
cost limitation of at the minimum [1]–[5], [10], [11],
[13], [30]. An advance achieved by Agarwal and Varadarajan
[12] is to combine an iterative graph algorithm and a di-
vide-and-conquer approach, which offers the best time and
space complexity of by using the metric, where

is an arbitrarily small constant. Later, the graph-based
framework has been significantly reorganized and optimized
by using two priority queues dynamically [15]. Albeit this
approach was not proven to reduce the time complexity in
theory, it provided remarkable improvement in the processing
time in practice.
In real-time application, quadratic time complexity maybe

too high, and therefore, most applications utilized a class of
heuristic methods in order to achieve near-linear time com-
plexity. A set of well-known heuristic algorithms are split
and merge approaches [7]–[9]. The split algorithms divide
the segment causing the biggest deviation, whereas the merge
algorithms combine the pair of segments with the least de-
viation. The classic Douglas–Peucker (D–P) split algorithm
[7] can be implemented in time on average,
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while its worst case time complexity is . Later, Hersh-
berger and Snoeyink [8] showed that it can be implemented in

time, where denotes the iterated logarithm
function. Respectively, Pikaz and Dinstein [9] proposed a
merging algorithm with time complexity. These
heuristic methods are of low time complexity but may lead
to an undesirable approximation result. Note that topological
and geometric properties are also considered as an important
constraint in the simplification process in GIS applications.
In [44], simple-detour heuristic was proposed, where no new
vertices would be introduced after the approximation process.
In the GPS TS, a number of algorithms have been also well

studied and developed, and most of them are heuristic methods.
In [32], a TS algorithm is greedily implemented by a so-called
opening-window approach. SED is also defined and applied by
incorporating the time dimension, instead of the original perpen-
dicular distance. In [33], the parameters including coordinates,
speed, and orientation are all considered in calculating the safe
area of the next point, which is called as the threshold-guided al-
gorithm. Indeed, all these algorithms solve the min-# problem in
a greedy manner, the time complexity of which is . The
STTrace sampling algorithm [33] is also implemented using a
bottom–up strategy where the SED is minimized in each step.
In [38], GRTS protocol combines optimal and heuristic algo-
rithms [1], [32], which allows a tradeoff between the computa-
tional complexity and the reduction efficiency. Recently, a new
simplification algorithm SQUISH [37] has been proposed based
on the priority-queue data structure, which preserves speed in-
formation at a much higher accuracy. In [31], TS algorithm
is proposed, where different point headcounts are assigned in
terms of the product of the average heading change and the dis-
tance of each segment. After that, the min- problem is solved in
each segment by using a local weighting process in
time. However, as the distances of neighborhood points are used
instead of the perpendicular distance in the simplification proce-
dures, the algorithm is not robust when the sampling frequency
is not uniform.
Graph-based methods can achieve a better approximation re-

sult than those heuristic ones but at a higher computational cost.
Therefore, in the initialization process of the proposed solution,
graph-based methods are used and further speeded up by both a
novel priority-queue structure and a stopping search criterion,
which leads to time complexity and space
complexity. Here, and are the number of the points for
the input and output GPS trajectories, respectively. However,
using a stopping search criterion will cause a tradeoff of the op-
timality. This will be introduced in Section IV.

C. Fine Tune by Reduced Search

For the GPS TS, optimal algorithms provide the best reduc-
tion efficiency but cause the highest overhead, whereas solu-
tions based on heuristics lower the computational overhead at
the cost of worse reduction rates. A compromise between the
optimal and heuristic solutions is the RSDP [17], [18], [23].
The algorithm uses a bounding corridor surrounding a refer-
ence curve or a initialized curve in the state space, followed by
a limited search for the minimum cost path. This idea is pre-
sented and known as Sakoe–Chiba band [42], which has been

extensively used in dynamic time wrapping approaches dealing
with the similarity calculation of time series [43].
If the initialized curve is evenly distributed in the state space,

the time complexity for RSDP is ideally , where
is the width of the bounding corridor. We will also prove

that the expected time complexity for RSDP is still achievable
as even if the precondition of even distribution
is not satisfied. In particular, if the number of vertices for the
approximated curve is proportional to that of the input curve,
namely, , a linear time complexity can be achiev-
able for the RSDP. This will be later shown to be an important
property when selecting bottom–up approaches for the multires-
olution case. However, the main difficulty of the RSDP is that
a large corridor bound and many iterations are needed in order
to achieve a desirable solution when the approximated curve is
poorly initialized, which causes a high computational cost.
In this paper, we extend the RSDP and employ two fine-tune

algorithms to minimize both the number of output points
and the approximated error , which leads to a time complexity

and correspondingly. The fine-tune
algorithms are speeded up by lifting the vertex position in the
tree structure, also solving the equivalent solution problem. This
will be discussed in Section V.
In Sections III–V, the U.K. map with 10 911 points (see

Fig. 13) will be selected as an example to demonstrate the
proposed algorithm.

D. Multiresolution Polygonal Approximation

Multiresolution polygonal approximation can be applied for
scalable representation and compression of vector maps in the
GIS [19], [20]. For solving the min- problem, two heuristic
approaches, i.e., split (top–down) and merge (bottom–up), are
known with a time complexity of . Split and merge
are locally applied and can often result in undesirable approxi-
mation results in the later hierarchy process.
The optimal split algorithm is proposed in [21], where the

optimal approximation at the higher resolution level is achieved
using the result of the lower (previous) resolution level. This
provides resolution hierarchy in a sequential order

but at a cost of time complexity.
In [22], a bottom–up multiresolution algorithm for the min-

problem is proposed with near-linear time complexity. The
min- problem is solved using the fine resolution as input for
approximating the corresponding coarser resolution iteratively

. For each scale, the simplified
RSDP is also incorporated. As the ISE criterion is used, the
approximation error between two vertices in any resolution
level can be calculated in a constant time according to the
precalculating cumulative summations in the original curve
(see Section III).
Although the bottom–up approach [22] is computationally ef-

ficient, this approach can only solve the min- problem. In prac-
tice, in order to progressively display the GPS trajectory data,
we need to approximate a number of approximated results with
corresponding error tolerance for each resolution, which is con-
sidered as a min-# problem. Moreover, the reduced search algo-
rithm is a fine-tune method, which needs an initial curve before-
hand. If the curve is not well initialized, a number of iterations
are needed to obtain the near-optimal result.
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Fig. 1. Example of calculating ISE, LISE, LSSD, and ISSD. Given and the approximated curve , where , ,
and are the approximated temporally synchronized position. (Left) ISE is estimated as , and LISE is estimated as . Meanwhile, (Right)
ISSD is estimated as , and LSSD is estimated as .

In this paper, a bottom–up multiresolution approach is pro-
posed with linear time and space complexities, which imple-
ments the algorithms in Sections III–V for each intermediate
resolution. This will be discussed in Section VI.

III. ERROR MEASURE: FROM LISE TO LSSD

In order to improve the computational efficiency, two error
measures, which are called ISE and local ISE [4]–[6], are jointly
used for approximating polygonal curves, i.e.,

(3.1)

(3.2)

where error can be calculated by

(3.3)

Here, is the perpendicular distance from to .
, , , and , , ,

, are the accumulated sums of the and coordinates
on curve , respectively, i.e.,

(3.4)

The main advantage of the ISE criterion is that the approx-
imation error can be efficiently obtained in time
after precalculating all the accumulative terms within
time [see (3.3)] [4], [16]. An example of calculating ISE and
LISE is illustrated in Fig. 1.
Although LISE and ISE criteria are computationally efficient,

time information is not considered. For the simplification of the

GPS trajectories, we extend LISE and ISE criteria and derive
two new error measures, called LSSD and ISSD, which have
the same properties with LISE and ISE, i.e.,

(3.5)

(3.6)

Here

SED

(3.7)

Here

, , , , , , , and are the accumulated
sums of , , and on the GPS trajectory, respectively, i.e.,

(3.8)

The computation of the aforementioned approximation errors
also takes time with an time accumu-

lated sum precalculation. The proof of the LSSD and ISSD cal-
culation is shown in the Appendix.
In the following sections, ISE and LISE criteria will be used

for the approximation of the polygonal curves, whereas LSSD
and ISSD criteria will be used for the GPS TS.
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IV. MIN-# INITIALIZATION FOR GPS TS

For the min-# problem, Imai and Iri’s graph-based approach
[1] comprises two essential steps, i.e., constructing a DAG and
the shortest path search by breadth-first traversal (BFT). In
order to construct a DAG, approximation errors
are calculated for every pairs of vertices, and thus, the time
complexity for initializing the solution for the min-# problem
is if the LISE or LSSD criterion is applied.
In this paper, we revisit two computationally efficient im-

provements for the min-# problem. The first improvement is
to reduce the computational cost of the DAG construction by
maintaining two priority-queue structures [15], [29]. The reason
is that there is no need to construct graph explicitly and only
edges visited by the BFT are included. For simplicity, we define
a term, i.e., the number of links , to denote the minimum
number of line segments to connect the starting vertex to
under a given error tolerance , i.e.,

(4.1)

where the initial condition is set as . Suppose all
the vertices with links are first identified by the shortest path
search, which is maintained by a priority queue in the de-
scending order. The next search will be performed on the re-
maining unvisited vertices set by testing if they have an
edge connecting with vertices in (i.e., approximation error
lower than a given tolerance ), which is called as edge tests
here. These connected vertices will be removed from unvisited
vertices set and enqueued in the priority queue . Sup-
posing two vertices , with , if and

, then will be removed from such that the edge
test between and can be avoided. Moreover, edge tests
are also avoided for the vertices with the same number of links.
After all the unvisited points have been tested between
and , in the next step, the vertices in will be used as
the starting points for edge tests. The shortest path search will
be terminated when the last vertex is connected to . Albeit
the priority-queue-based search is not able to mitigate the worst
case time complexity, it turns out that a number of edge tests are
greatly saved.
The second improvement is to apply a stopping criterion in

the shortest path search, which is efficient in the case of low
error tolerance. For example, a good stopping criterion has been
proposed for the tolerance zone criterion [11] by maintaining
the intersection of two cones. An alternative solution has been
also proposed in [15] and [28] by verification in dual space. Both
of the implementations hold the optimality for solving the min-#
problem. To pursue the best computational cost savings as pos-
sible for LISE/LSSD criteria, a simple stopping criterion is ap-
plied in edge tests by utilizing a preset high threshold, e.g., two
times of a given tolerance [17]. Edge tests for the subsequent
vertices in the unvisited vertices set will be omitted once the ap-
proximation error becomes larger than a given high threshold.
Applying a stopping criterion leads to a significant improvement
to a time complexity of but the optimality is not
guaranteed. To overcome this difficulty, we extend our effort in
improving the robustness of the stop search criterion. Instead of
using a fixed high threshold, we adopt the error tolerance of the

Fig. 2. Number of edges tests for solving the min-# problem (left) under dif-
ferent error tolerance and (right) with different number of input vertices for U.K.
map (Curve II). In the left figure, the resulting number of output vertices is
shown in the -axis instead of the given error tolerance.

next coarser resolution as a high threshold in the multiresolution
implementation, the robustness of which has been validated by
experiments; see Section VI for additional discussion.
We combine both the advantage of the priority-queue

structure and the stopping criterion to achieve the most com-
putationally efficient implementation in the initialization of the
min-# problem. Accordingly, the output is a tree structure [see
Fig. 5(left)]. The pseudocode is given in Fig. 3. Both the theo-
retical proof and the experiments are given for the complexity
analysis of the proposed initialization algorithm.
Theorem 1: The proposed initialization algorithm for solving

the min-# problem under the LISE/LSSD criterion leads to an
expected time complexity of and a space complexity
of , respectively.

Proof: See Appendix.
In the graph-based initialization algorithm, the main bottle-

neck is the cost of edge tests (calculating the edge approxima-
tion errors, line 22 of Algorithm I) during graph construction. In
order to evaluate the computational improvement achieved by
the proposed algorithm, the number of edge tests is calculated
and treated as an indicator of the computational efficiency in
Fig. 2. Here “PRQ” represents the previous graph-based polyg-
onal approximation algorithm using the priority-queue structure
[15], [29], and “StopSearch” is the stopping criterion using a
predefined high threshold [17]. It can be observed that the pro-
posed algorithm is able to combine the computational advan-
tages of both two algorithms.

V. FINE TUNING THE INITIAL APPROXIMATED RESULT

As a stopping criterion is incorporated in Algorithm I (line
27) to reduce the computational cost in the initial approximation
process, the optimality is not guaranteed. Thus, two fine-tune
algorithms are introduced in this section in order to improve the
approximation performance. Both the number of vertices and
the ISE/ISSD are minimized.

A. Minimizing the Number of Vertices

To the benefit of best computational efficiency, the initializa-
tion in Algorithm I for the min-# problem is a compromise of
the optimality for minimizing the number of vertices. In order to
mitigate the limited optimality, we need to minimize the number
of vertices based on the initialized curve so that a better re-
sult can be achieved. The reduced search algorithm (RSDP)
can be utilized for minimizing the number of vertices, but it
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Fig. 3. Pseudocode of min-# initialization.

leads to time complexity. To speed up the pro-
cedure, we exploit a new fine-tune method at a time complexity
of instead, which is achieved by lifting the vertex
position in the output tree structure after the initialization step
in Algorithm I. The pseudocode is given in Fig. 4.
A graphical illustration is demonstrated in Fig. 5 on lifting

vertex position; starting from vertex with 0 links, at each it-
eration (lines 11–30 in Algorithm II), edge tests are performed
to verify if the approximation error is less than the given tol-
erance between the currently processed vertices with links
and those target vertices with links.
An example is given in Fig. 5 (left) when the width of the
bounding corridor is . Supposing and are the ver-
tices with one link, all the vertices with three links ( and )
and four links are chosen as the target
vertices for edge tests. If the connected edge exists, the tree
structure is updated by lifting the target vertices (lines 22–24).
The process of updating the tree structure can be recursively
done [see Fig. 5 (right)]. The proposed fine-tune algorithm pro-
vides the following advantages over the original reduced search
approach for the min-# problem. First, the calculation of the ap-
proximated errors between any pair of vertices with adjacent
number of links is unnecessary and can be omitted. Second,
once the tree structure is updated by the lifting operations, edge
tests for those lifted vertices are also avoided.
Theorem 2: The proposed algorithm for the output vertex

reduction under the LISE/LSSD criterion has an expected time
complexity of and a space complexity of ,

Fig. 4. Pseudocode of minimizing the number of vertices.

respectively. The original RSDP method has an expected time
complexity of .

Proof: See Appendix.
Intuitively, the fine-tune algorithm can be also iteratively

done. However, since the graph-based method has already
achieved an ideal initial approximation, according to our exper-
iments, optimal results can be derived in most cases by setting

with one iteration. The main bottleneck here is also
the number of edge tests (line 20 in Algorithm II). In Fig. 6,
the actual time cost is evaluated by calculating the number of
edge tests against the three parameters, i.e., the width of the
bounding corridor , the number of output vertices , and
the number of input vertices . To further demonstrate the ef-
ficiency of the proposed fine-tune algorithm, we also evaluated
the performance when the initialization step is skipped and the
original polygonal curve is selected as input directly. We can
observe that the optimal result is achieved with less than five
iterations by the proposed fine-tune algorithm and the number
of edge tests is much less than the RSDP, which is shown in
Fig. 7.

B. Minimizing the Global Integral Square Error

After the number of vertices is reduced by the LISE/LSSD
criterion, a so-called equivalent solution problemmay still exist.
In other words, given an error tolerance , a number of solu-
tions for themin-# approximation can be achievedwith the same
number of output vertices , but they lead to distinct approxi-
mation performance (see Fig. 9). Hence, an additional postpro-
cessing step based on the ISE/ISSD criterion is needed in order
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Fig. 5. Example of reducing the number of output vertices with a width of bounding corridor : (left) the target vertices with one link and (right) the target
vertices with two links after tree structure updated given , . (Left figure) Typical example after the initialization step for Algorithm I.

Fig. 6. Number of edge tests in minimizing the number of output vertices. (Left) Different error tolerance, (middle) different number of input vertices, and (right)
different width of bounding corridor are tested on U.K. map (Curve II). (Left figure) The resulting number of output vertices is shown in the -axis instead
of the given error tolerance. (Left and right figures) The input polygonal curve is the U.K. map with .

Fig. 7. Performance comparisons of the proposed fine-tune algorithm and
RSDP when the original curve is selected as the initial curve directly. U.K.
map (Curve II) is tested with .

to find the best approximation result among these equivalent so-
lutions, which can be also considered as a min- problem. The
pseudocode is shown in Fig. 11.
After executing Algorithm II, which effectively updates the

tree structure, additional postprocessing is performed to identify
the best possible curve with the minimum ISE/ISSD, i.e.,

(5.1)
This can be solved by dynamic programming in terms of the

following recursive expression:

(5.2)

where is the parent vertex of and is the accu-
mulated ISE/ISSD.
Theorem 3: The minimization of the global ISE/ISSD under

the constraint of the LISE/LSSD has an expected time com-
plexity of and a space complexity of .

Proof: See Appendix.
From Theorem 3, the minima can be found in

time, and no iterations are needed. The aforementioned min-
imization offers a significant improvement (theoretically
time faster) over the original RSDP that has a time complexity of

. In Fig. 10, the histograms of the approximated
LISE are plotted before and after the fine-tune step. As the ISE
is the sum of the LISE for all the approximated segments, we
can observe that the ISE is significantly reduced, whereas the
LISE has not increased after the fine-tune process.

C. Summary of the Near-Optimal Approximation Algorithm

The polygonal approximation algorithm for the joint opti-
mization of both the min-# approximation using the LISE/LSSD
criterion and the min- approximation using the ISE/ISSD cri-
terion has been introduced as a three-step procedure, i.e., the
initialization of the min-# problem, minimizing the number of
output vertices, and minimizing the ISE/ISSD. Proof has been
given that the proposed algorithm has expected time complexity
of and space complexity of , and experiment
results have demonstrated that the practice is consistent with
the theoretical analysis. An example of the proposed algorithm
is shown in Fig. 8. The improvement of the time complexity is
also summarized in Table I.
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Fig. 8. Example of the proposed polygonal approximation. Curve I [25] is used with , and the optimal solution is . (Left) Initial approximated
curve is obtained with . (Middle) Approximated curve is obtained after reducing number of output vertices with .
(Right) The final solution is obtained by minimizing ISE with .

Fig. 9. Example of equivalent solutions in min-# approximation, where both
approximated curves meet the error tolerance and have same output

.

Fig. 10. LISE distribution of all the approximated edges with for
Curve II. The best approximation result (right) with is found
from all the equivalent solutions, which is much lower than result after Algo-
rithm II (left) with . Both approximation results have

.

VI. LINEAR-TIME MULTIRESOLUTION POLYGONAL
APPROXIMATION METHOD

In order to further improve the computational efficiency, in
this section, a bottom–up multiresolution polygonal approxi-
mation approach is proposed by implementing Algorithms I
and III in Sections III–V in each map scale, which achieves
linear time and space complexity. Given an error tolerance , a
joint optimization for both the min-# approximation using the
LISE/LSSD criterion and the min- approximation using the
ISE/ISSD criterion is solved. The underlying algorithm consists
of three sequential procedures.
1) Error tolerance initialization. Initialize error toler-
ances .

2) Initial curve approximation. A number of polygonal
curves are approximated based on the
bottom–up multiresolution approach with corresponding
error tolerance . Algorithms I and III are
used for approximating the curve of each resolution.

3) Final approximation. A polygonal approximation is con-
ducted under the given error tolerance by selecting

Fig. 11. Pseudocode of minimizing ISE.

TABLE I
SUMMARY OF THE PROPOSED POLYGONAL APPROXIMATION ALGORITHM.

REPRESENTS THAT THE INITIAL CURVE IS EQUALLY PARTITIONED
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Fig. 12. Workflow of the proposed bottom–up multiresolution method. Error tolerance of coarser resolution is selected as high threshold for polygonal approxi-
mation, which is labeled by dashed line in the figure. In this example, if , then the approximation of and can be skipped.

Fig. 13. Testing data in the experiments.

the most suitable input curve among those approximated
curves .

In step 1, the error tolerances
are estimated according to the LISE/LSSD error criterion, i.e.,

(6.1)

Here is a parameter to control the number of interme-
diate scale. For example, if , in each scale, the number
of points will be around The afore-
mentioned estimation can be viewed as the average LISE/LSSD
error for all approximated segments when the curve is equally
partitioned. The approximated curve under the error tolerance
has property , where is the number of output

vertices in the th resolution. Note that there are less interme-
diate scales when a larger is selected, thus achieving a better
reduction rate at the cost of a higher computational cost. When

, there are no intermediate scales, and it is exactly the ap-
proximation algorithm that we described with time
complexity (Algorithms I–III).
In step 2, a bottom–up multiresolution algorithm is applied

to estimate the approximated curves under the
corresponding error tolerances . Here, is used
as the high threshold in the approximation procedure of resolu-
tion . The approximated result achieved in the previous finer
resolution is used as the input of polygonal approximation in the
next coarser resolution , where Algorithms I and
III are applied in each approximation. Since the optimality of
these initial approximation results is not significantly compro-
mised, the step of minimizing the number of vertices described
in Algorithm II can be omitted.

In step 3, given an error tolerance , a polygonal approxi-
mation is conducted to obtain the final approximation result by
selecting the most suitable input among those approximated
curves in step 2 such that

(6.2)

The workflow of the proposed algorithm is presented in
Fig. 12. As the time complexity of the approximation process
is on each resolution, we have the following
theorem:
Theorem 4: Both the time complexity and the space com-

plexity of the proposed bottom–up multiresolution algorithm
are .

Proof: See Appendix
Corollary 4.1: Given as the
number of error tolerances, its corresponding approximated

curves can be also constructed in linear time.
Proof: As the approximated curve for error tolerance

can be used as the input for approximating the curve with error
tolerance , the total time complexity is

.

VII. EXPERIMENTS

In order to evaluate the performance of the proposed mul-
tiresolution polygonal approximation algorithm, two polygonal
curves are used as a test case. Curve I is an artificial curve used
in [25] with 5004 vertices; curve II is the U.K. map contour
with 10 911 vertices. For the GPS TS algorithm, two datasets
are used, which are the MOPSI dataset and the Geolife dataset
[31]. The graphical presentations are shown in Fig. 13.
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TABLE II
COMPARISON OF THE EFFICIENCY AND THE PROCESSING TIME

TABLE III
EFFICIENCY AND PROCESSING TIME FOR CURVES I AND II WHEN DIFFERENT IS SELECTED

TABLE IV
PERFORMANCE OF GPS TS BY SED

A. Performance for Artificial Polygonal Curve and Vector Map

For themin-# problem, the performance of polygonal approx-
imation is evaluated by its efficiency [26], [27], which is defined
as

efficiency (7.1)

Here is the result of the optimal solution.

In Table II, efficiency and computational cost are evaluated
under different error tolerance. It can be observed that the
proposed bottom–up multiresolution approach has a lower
time cost and its performance is better than that of the two fast
heuristic methods, i.e., split [7] and merge [9].
In Table III, we compare the performance when parameter
varies. For larger , better performance is achieved at higher
time cost. We can observe that the least time cost is achieved
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Fig. 14. Processing time cost is plotted for different number of input vertices for curve II. (Left) Low and (right) high error tolerances are both tested.

Fig. 15. Efficiency and ISE for different error tolerances , , 1,
and 100.

when , which is in accordance with the theoretical
analysis.
In Fig. 14, time cost is also analyzed in comparison with the

split and merge algorithms when the size of the input curve
increases. Both the low- and high-error-tolerance cases are

tested in the experiment. We can observe that the time cost of
the proposed algorithm linearly increases in both cases and it
achieves better result than the two comparative heuristic algo-
rithms when the number of input vertices increases.
As the proposed approximation algorithm is a joint optimiza-

tion for both the min-# approximation using the LISE criterion
and the min- approximation using the ISE criterion, in Fig. 15,
a comparison is made on the ISE and the efficiency of the ap-
proximated curve by using different error tolerances. We can
observe that the proposed algorithm has achieved both higher
efficiency (less number of output vertices) and equal or less ISE
compared with the competitive algorithms.

B. Performance Evaluation for GPS TS

The performance of the proposed GPS TS algorithm is
tested on two datasets, which are the MOPSI dataset with 344
trajectories and 744 610 points, and the Geolife dataset with
640 trajectories and 4 526 030 points. The root mean square
error, the average error, the median error, and the maximum
error are all calculated in order to evaluate the efficiency of the
proposed algorithm under the SED. In Table V, we also com-
pare these error measures for the GPS trajectories with walking
and no-walking segments. We can observe that, although the
same LSSD error tolerance is used, walking trajectories can
have less distortion with more detailed information comparing
with no-walking segments.

TABLE V
PERFORMANCE OF PROPOSED GPS TS ALGORITHM FOR DIFFERENT
TRANSPORTATION MODES UNDER SED (IN MOPSI DATASET)

TABLE VI
TIME COST OF THE TS

The proposed polygonal approximation algorithm is also
compared with other GPS TS algorithms with the same number
of approximated points. These competitive algorithms are the
D–P algorithm [7], TD-TR [32], OW [32], STTrace [33], and
TS [31]. The results are shown in Table IV, where SED is con-
sidered as the error measure. We can observe that the proposed
algorithm yields the minimum distortion than other solutions.
The time cost of the TS is also summarized in Table VI. It
follows from our experiment that the time cost of the proposed
algorithm is higher than the TS algorithm [31]. This is because
the constant factor in the proposed algorithm is larger than other
solutions, which comes from the LISE/LSSD calculation and
the graph structure maintenance. For example, based on our
experiment, in Fig. 14, when 10 000, the proposed solution
will have less time cost than the split or merge algorithm. Note
that the proposed solution also achieves a better approximation
performance than those fast solutions.
An application of the proposed approximation algorithm for

the GPS TS is demonstrated in Fig. 16 over a sample route with
575 vertices, where the GPS trajectory is visualized in different
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Fig. 16. Example of the GPS TS by the proposed algorithm.

map scales with 44, 13, and 6 vertices correspondingly. As the
suitable error tolerance is selected for each resolution, the visu-
alization of the GPS trajectory is not compromised by the re-
duced data, whereas the rendering time is greatly reduced. The
code and the testing dataset can be seen on http://cs.joensuu.fi/
sipu/GPSTS.htm.

VIII. CONCLUSION

We have proposed a fast time polygonal approx-
imation algorithm for the GPS TS by a joint optimization
on both the LSSD and ISSD criteria, which is effective and
computationally efficient. The proposed method has been
designed by the bottom–up multiresolution approach. In each
resolution, a near-optimal polygonal approximation algorithm
has been exploited, which has a time complexity of .
Both the theoretical analysis and the experimental tests have
demonstrated that the proposed method had made a signifi-
cant progress in solving the GPS TS problem in a real-time
application. Moreover, the proposed polygonal approximation
algorithm and fine-tune strategy in Algorithms II and III can be
also extended and exploited to other error criteria.
There are several potential extensions of our paper. For ex-

ample, in our future work, topology properties, road network
information, and the similarity of the multiple GPS trajectories
can be also considered in the approximation process.

APPENDIX

Proof of the LSSD in (3.7):

For the sake of the computational efficiency of the SED, we
extend the LISE criterion and derive a new error measure, called
LSSD, where

SED

where is the approximated position at time if subcurve
is approximated by edge [see the definition in (2.3)].

Thus
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where

where , , , , , , , and are the accumu-
lated sums of , , and on the GPS trajectory, respectively.
The computation of the aforementioned approximation error

takes time with an time accumulated
sum precalculation.

Proof of Theorem 3:

Suppose that, under an error tolerance , curve with ver-
tices can be approximated by curve with vertices. The
number of vertices with links is .
In total, the space is needed to record the accumulated er-
rors and the backtracking vector; thus, it has a space complexity

.
As every node is only visited once in the tree traversal step

with in total, the main bottleneck is the cost on edge tests,
which can be calculated as follows:

Suppose that vertices are first selected with the number of
links from 0 to , respectively. For the remaining
vertices, if the number of links of every vertices is randomly
distributed under a multinominal distribution, then we have

Mult

where and the corresponding
statistical properties of can be formu-
lated as follows:

cov

cov

Thus, the expected time complexity, i.e.,

To sum up, the expected time complexity is and
space complexity .

Proof of Theorem 1:

As the output of themin-# initialization is a tree structure,
space is needed in order to record all the parent and child nodes
on the tree, and its space complexity is .
The time complexity of the min-# initialization mainly con-

sists of two parts, i.e., the number of edge tests and the mainte-
nance cost of two priority queues. The cost of edge tests can be
calculated in a similar manner as in Theorem 3, i.e.,

Mult

where , , and

From Theorem 3, we have

Thus, , as

The cost of maintaining the priority queues is

Suppose a linear function is constructed as follows:
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The constructing function has property , and thus

Thus, the min-# initialization has an expected time com-
plexity of and a space complexity of .

Proof of Theorem 2:

First, we give the proof of the time complexity for simplified
RSDP method. Suppose the initial approximated curve

, where are the indexes on the
curve, s.t.

The number of edges tests of RSDP is

Let us define , , and assume
that curve is randomly initialized as in Theorem 3 such that
has the following property:

Mult

The expected time complexity is therefore estimated as

According to Theorem 3, we have

Thus, .
On the other hand, the proposed reduced search method is

achieved by lifting the vertex position in the output tree struc-
ture in the initialization. The memory cost of maintaining a tree
structure is . Likewise, the cost of number of edges tests
is calculated as

As , we have
Thus, it has an expected time complexity of and
a space complexity of .

Proof of Theorem 4:

From Theorems 1–3, the space complexity of the near-op-
timal polygonal approximation algorithm is . An addi-
tional cost is the precalculated sums, which also takes the
space. As we do not need to record all the information of the in-
termediate scales, the total space complexity is .
The time complexity of the proposed bottom–up multiresolu-

tion algorithm mainly consists of three parts, i.e., the error toler-
ance initialization (step 1), the initial curve approximation (step
2), and the final approximation (step 3). As the approximation
error between two vertices can be calculated in constant time,
the time cost of step 1 can be calculated as follows:

In step 2, the time complexity of the proposed polygonal ap-
proximation method is . As the number of input and
output vertices obeys equation for each resolution,
the time complexity can be estimated by

Since the proposed polygonal approximation algorithm (Al-
gorithms I–III) has time complexity of , the com-
putational cost of step 3 can be written as , where the
value of the parameter is always .
To sum up, the proposed multiresolution polygonal approxi-

mation has a time complexity of .
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