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ABSTRACT:  
 

This thesis consists of two main parts: 

In the first part, we study filtering algorithms for raster map images. 

Raster maps are one type of color-mapped images, where each color 

represents a different class of semantic map object. They are mostly 

used at the client side with no additional rendering cost. Firstly, a 

multi-layer filtering algorithm is proposed by transforming the 

problem of color-mapped image denoising into the binary domain. 

Secondly, we present a statistical filtering algorithm that extends the 

solution dealing with additive Gaussian noise and mixed Gaussian-

impulsive noise. Later, we focus on the problem of optimized context 

selection using a novel context-based voting method to identify the 

noisy pixels. 

The second part of the thesis is dedicated to the simplification and 

compression of vector maps and Global Positioning System (GPS) 

trajectory. Firstly, a bottom-up multi-resolution polygonal 

approximation algorithm with linear time complexity is proposed for 

the GPS trajectory simplification. This gives a joint optimization on the 

two proposed error criteria; local integral square synchronous 

Euclidean distance (LSSD), and integral square synchronous Euclidean 

distance (ISSD). Secondly, we study the problem of lossy vector map 

compression in Geographic Information Systems (GIS). New 

compression algorithms are designed by combining point reduction 

and a quantization process. We propose a fast solution as well as an 

optimized codebook selection strategy. We also extend the problem for 

lossy compression of GPS trajectories under maximum synchronous 

Euclidean distance (SED). In the proposed algorithm, speed and 

direction changes are used in the encoding process instead of the 

differential coordinates used in vector map compression. Line 

simplification and quantization are combined in order to seek an 

optimized approximated trajectory for compression. 

 

Keywords: Raster Map Image, Image denoising, Statistical Filtering, Vector 

Map Compression, GPS Trajectory Simplification, GPS Trajectory 

Compression. 
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1. Introduction 

With the rapid development of wireless communication, mobile 

computing technologies, location-based services have become 

increasingly important research areas; especially concerning data types, 

such as GPS trajectories, vector maps, and raster maps. 

1.1 GPS TRAJECTORY 

Over recent decades many spatial trajectories have been collected 

by geo-positional mobile devices, which represent the mobility of a 

variety of moving objects, such as: people, vehicles, animals, and 

natural phenomena, in both indoor and outdoor environments (Fig. 

1.1). To explore the broad applications, much systematic research and 

development in the new computing technologies has investigated the 

storage, preprocessing, retrieving, and mining of these spatial 

trajectories [70]. 

Recently, the pre-processing of spatial trajectories has become an 

important research topic that has attracted extensive attention. For 

example, reducing the data size of the trajectories is important to 

alleviate storage and communication overheads, as well as the 

computational workload on the server. Given that a GPS trajectory 

consists of a full series of time-stamped location points, the 

simplification process aims at generating its approximated trajectory 

by reducing the number of points with negligible errors. This can be 

considered as a polygonal approximation problem, which has been 

studied in computational geometry for many years [8].  
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Fig. 1.1. GPS trajectory dataset in MOPSI (up-left), Berlin MOD Cycling dataset 

(up-right), Geolife dataset (bottom-left) and animal movement analysis (bottom-right) 

 

 

If the encoding process is also considered, the problem becomes a 

topic in data compression, where the coding algorithm will also be 

integrated [97]. The difference between simplification and compression 

is, in the simplification process, the reduced data points are saved 

directly with a fixed bit-length, which is required to support the 

trajectory queues in the database. Meanwhile, these reduced 

trajectories can also be used for improving the efficiency of the 

visualization process, where spatial trajectories with different 

reduction rates are displayed to fit maps with different scales. On the 

other hand, when data compression techniques are used, a better 

compression ratio is achieved for the spatial trajectory data, which is 

appropriate for data storage. 
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1.2 VECTOR MAP FORMAT 

Vector map is another important data type in location-based 

systems. Fig. 1.2 is a vector-based collection of Earth data at various 

levels of detail in a Geographic Information System (GIS). Vector maps 

are more compact and suitable for large databases providing both 

excellent flexibility for display and compact size for storage. Because of 

the large size of digital maps, their data often need to be compressed 

for map database storage and transmission to remote users [3, 58, 59, 

62, P5, P6]. 

However, the main disadvantage of vector maps is their complex 

data structure, which can result in a higher cost during the 

visualization process. 

 

Fig. 1.2. Example of vector map of Europe 

1.3 RASTER MAP FORMAT 

In order to save on the visualization cost, raster formats are mostly 

used at the client-side because no additional processing is needed. In 

raster formats, the images are stored as a regular grid of pixel colors in 

which each color represents a different class of semantic map object. 

Raster maps often consist of repeated pixel-level detailed structures 

and sharp edges, but lack the smooth color transitions that are typical 
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of photographic images. They are mostly converted from a vector 

database by a vector-raster conversion, or from old maps using a 

digitization process, see Fig. 1.3.  

 

Fig. 1.3. Example of raster map 

1.4 STUCTURE OF THE THESIS 

The rest of the thesis will be organized as follows: we will describe 

two new filtering algorithms for raster map images in Section 2. A 

simplification algorithm for GPS trajectories will be presented in 

Section 3. Subsequently, compression of vector maps will be discussed 

in Section 4. In Section 5, compression algorithms for GPS trajectories 

will be offered. A summary of the contribution will be drawn in 

Section 6 and conclusions in Section 7.  
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2. Filtering of Raster 

Map Images 

Raster maps have become an increasingly important source in 

geographic information systems. They do not require any additional 

processing and are suitable for delivery to multimedia applications. 

However, image degradation may occur in the digitization process 

or during the vector-raster conversion, which results in mismatch and 

false recognition of important semantic map objects. Image denoising 

is therefore needed for accurate conversion of older maps into a raster 

format. Denoising can also be crucial for the later stage of raster map 

analysis, when extracting the semantic content (roads, contours and 

river) from a map [23, 47, 52, 71]. 

A great variety of noise removal techniques have been investigated 

for color image processing. However, most noise removal algorithms 

are developed specifically for only one type of noise model. For 

instance, to eliminate impulsive noise, a number of denoising 

algorithms have been developed by firstly identifying the potential 

noisy pixels in a color image and then employing a class of vector 

median filters over those pixels. Noisy pixels can be detected either by 

classifying each pixel directly in RGB color space [114] or by setting 

some statistical rules in terms of the variation within the local 

neighborhood [14, 15, 73, 100, 103]. However, these approaches need a 

training dataset or prior knowledge for constructing the statistical 

rules. 

For additive Gaussian noise, a number of denoising algorithms have 

been proposed by selecting an optimal linear combination of a few 

basis elements in pixel-wise or block-wise order. For example, wavelet 

denoising [90] is proposed based on a local Gaussian scale mixture 

model in an overcomplete oriented pyramid representation. In a non-

local means filter [11], the concept of locality in a bilateral filter is 

extended to the entire image. The dictionary-based method (K-SVD) is 

proposed in [35] by assuming that the image patches are sparse 
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representable. In K-SVD, singular value decomposition (SVD) and 

orthogonal matching pursuit (OMP) are used in dictionary learning and 

the denoising step, respectively. Based on the assumption that similar 

patches share similar dictionaries, K-SVD framework is further 

improved by a non-local sparse model (NLSM) [74]. Another patch 

redundancy-based framework, BM3D [28], adopts a hybrid approach 

of grouping similar patches and performing collaborative filtering in a 

DCT domain. Markov random fields (MRF) [95] or conditional random field 

(CRF) [7] are also applied to denoising natural images, where a 

training process is used to learn the parameters of the model from 

example images. In [18], patch-based locally optimal wiener filtering 

(PLOW) is proposed where patch redundancies are considered to 

improve the denoising performance on both geometric and 

photometric properties. Recently, sparsity-based image denoising [33] has 

been presented to unify both local and non-local properties in a natural 

image. It is formulated as a double-header L1-optimization problem 

where the regularization involves both dictionary learning and 

structural clustering. 

However, these algorithms are limited to the cases where the true 

signal can be approximated by a linear combination of a few basis 

elements and therefore, they are mostly designed for denoising 

continuous tone images and do not work well for color-mapped 

images. 

On the other hand, raster maps have different properties, such as: 

complicated spatial structures, one-pixel thin lines, textured areas, 

dashed and dotted lines, text, and symbols. The problem of false 

filtering exists with most filters designed for photographic imagery 

when processing these kinds of spatial structures. This is because these 

filters consider local intensity variation as noise, but ignore repeated 

patterns in the entire image. High variance regions including written 

text, symbols, and textured backgrounds lack uniformity, but their 

presence is vital for the readability of the map. Examples of such 

structures are shown in Fig. 2.1. Filtering of raster map images can be 

chosen as a case study of a more general class of color-mapped image 

denoising problem with a discrete number of output colors. 
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Fig. 2.1. Examples of complicated structures that are treated as noise by most filters. 

2.1 MULTI-LAYER FILTERING  

Problems with filtering of raster map images can be partially solved 

by applying an ordering criterion in local regions to only those pixels 

that are identified as (or assumed to be) noise or outliers [14, 15, 73, 100, 

103]. However, nonlinear filters designed for conventional color 

images may eliminate the most useful edge information and detailed 

structures when they are applied to raster map images. Even though 

statistical modeling approaches [64, 89, 108] have made significant 

progress by learning image structure and preserving the repetitive 

structures, these methods have high memory consumption and 

computational expense. 

Thus, a multi-layer image filtering approach is proposed in [P1]. 

The use of multi-layer decomposition was originally presented in [38] 

for image compression. Instead of using an order-statistics filter for 

color vectors, the image I is first decomposed into a series of binary 

layers. Suppose (i, j) denotes a given pixel of the raster map image I, 

and that the number of colors N for I is very limited, e.g., N << 256. The 

color for the given pixel I(i, j) can be uniquely determined by a binary 

vector xL: 

1
  

1,if  ( , )
( ( , ), ( , )),where ( , )

0, otherwiseL N t

t I i j
L i j L i j L i j


  


x  (2.1) 

Lt(i,j) can be treated as the value of pixel (i, j) of tth binary layer. 

Therefore, any binary filtering algorithm, such as a morphological 

filter [10] or statistical filter [108], can be applied to each binary layer 

separately. 
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Once all the layers have been filtered, the resulting binary images 

{L*t | t = 1,, N } are merged to reconstruct a raster map image IG in a 

similar format of the input map image I. However, for a given pixel (i, 

j), there might be a number of layers LC such that: 

LC ={ L*t | L*t(i, j) = 1, 1 ≤ t ≤ N} (2.2) 

which indicates that the resulting color IG(i, j) must be selected among 

LC according to some criteria. In other words, for each pixel (i, j), N 

binary layers must be ordered for the sake of merging the filtered 

binary layers. 

For example, a graph-based algorithm [65] has been developed for 

ordering these binary layers, which is used in the compression of 

raster maps. The algorithm seeks an optimal ordering of the binary 

layers by using the minimum spanning tree over a compression cost 

matrix. However, the construction of a compression cost matrix often 

incurs a huge computational cost. A simple way is to prioritize each 

color according to its frequency or occurrence. Namely, the higher the 

occurrence of one color, the lower priority it will be assigned. A 

demonstration of a multi-layer map image filtering algorithm by 

global color frequency can be found in Fig. 2.2. 

Merging the filtered binary images using the same ordering 

criterion will result in the problem of damaging the important 

disconnected semantic objects. For example, in Fig. 2.2, blue color is 

assigned with a higher priority than white by using a global layer 

ordering scheme. As a result, it will cause the island inside the sea 

region to become corrupted after the merging step. 

To overcome this difficulty, a region-based ordering scheme is 

proposed. An image segmentation operation is firstly conducted to 

segment the raster map image into several distinct regions. After that, 

different color priorities can be set according to the color occurrence in 

different segmented regions. Here, instead of performing image 

segmentation on the input raster map, a multi-layer image 

segmentation algorithm is applied, which first extracts large-size initial 

regions from all the filtered binary layers L*. Those candidate regions 

are then refined via dilation, filling holes, and connected component 

labeling, sequentially. A mask image is then constructed by adding 

those initial candidate regions one by one, according to two region-

based features: the ratio of object pixels and the percentage of 
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unlabeled pixels. Once the mask image is obtained, unlabeled pixels 

are assigning with the label of their nearest segmented region. Figure 

2.3 illustrates an example of the merging process on filtered binary 

images by using the proposed region-based layer ordering scheme. 

 
Fig. 2.2. Multi-layer framework using global layer ordering 

 
Fig. 2.3. Merging the filtered binary layers by region-based layer ordering 
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2.2 STATISTICAL FILTERING OF RASTER MAP IMAGES 

Although the multi-layer method is computationally efficient, the 

layer-ordering scheme does not work well when the number of colors 

increases. Therefore, statistical filtering is also considered in raster 

map image denoising. The main idea of the statistical filter follows an 

assumption that the image signal originates from a universal source. 

Hence, if the conditional probability P(I(x)|c) in context c is less than a 

predefined value, the current pixel can be treated as noise and then 

replaced by the most probable color in the context.  

A pioneering work in the art of statistical filtering is discrete 

universal denoising (DUDE) [108] for binary data filtering with a known 

noise channel. It comprises two steps: counting statistics for all context 

patterns encountered (analysis step), and denoising by utilizing the 

conditional probability in a local context (denoising step). This method 

is applicable in denoising binary images if the noise level δ can be 

reliably estimated. Namely, if the conditional probability of the current 

pixel x in context P(I(x)|c) is lower than 2δ(1 – δ), it is considered to be 

noise and replaced by its complementary value. This kind of context-

based approach can also be extended to the denoising problem with an 

unknown channel using the min–max criterion [42].  

In contrast to the denoising algorithms that incorporate a prior 

model, statistical filtering is based on an unsupervised learning 

paradigm. Patterns that are frequently presented in the image are 

detected and considered as important image structures that should be 

preserved, whereas pixels that seldom appear in their context are 

treated as noise and can be filtered out. This allows filtering with 

preservation of borders and regular structures regardless of their size 

and variance. Three examples of context and their corresponding 

statistical distributions are demonstrated in Fig. 2.4. Domination of the 

most probable color can be observed in the first two examples (left and 

middle), but not in the final example (right). 
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Fig. 2.4. Examples of context distribution: the pixels in the left and middle contexts are 

filtered using the dominant color, whereas no filtering is done for the pixel in the 

context on the right. 

2.2.1 Context Tree Modeling 

In DUDE, the memory allocation for learning the patterns grows 

exponentially with the size of the context template (number of the 

pixels in the context), which makes it of limited use in practice. 

Moreover, the conditional probability estimation becomes inaccurate 

when the contexts have rare appearance, which is known as the context 

dilution problem. To circumvent this problem, context-tree modeling [64, 

85, 89] is applied by pruning redundant nodes of the context tree. 

The classical context-tree modeling technique has been widely-used 

in the field of data compression [94, 107] with a time complexity of 

O(kN), where N is the length of the data sequence and k is the depth of 

the context tree. The tree is built by estimating the count statistics via a 

sequential traversal of the image pixel by pixel. Each node of the 

context tree represents a single context by storing the count statistics of 

each color appearing for the current pixel relative to this context. As 

not all possible contexts are presented in the image, memory is 

allocated only for the actual pixel combinations appearing in the image.  

In image compression, all pixels must be encoded regardless of the 

reliability of their contexts; moreover, one can keep track of the 

compression performance. Poor probability estimation leads to a 

longer code length and thus a large file size. Optimal pruning is done 

on each node of the tree in order to achieve the highest overall 

compression rate. For instance, a dynamic programming pruning 

technique was proposed to improve the context selection in [85], 

whereas universal context modeling was employed in [111]. 
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There are other spanning criteria, such as maximum likelihood [43] 

and minimum coding cost [4, 85]. Adaptive context selection has also 

been extended for denoising gray-scale images [109] by using a 

minimum description length (MDL) guided criterion, where an optimal 

balance between the variance and bias of the errors in fitting a 2D 

piecewise autoregressive (PAR) model is found. 

In our solution [P2], the spanning of the tree is terminated if the 

frequency of the context on a given node is less than a predefined 

threshold T. According to our experiments, there are only 50,000–

100,000 contexts for a context template with 20 pixels in a 16 color map 

image, which is far below 1620. An example of context-tree modeling is 

shown in Fig. 2.5. 

 

X XX X
X

19 12 16
15 8 1 5 20

11 4 2 9
18 7 3 6 13

14 10 17

1 1 1

Root

1N1=220
N2=110
N3=25
N4=35

N1=405
N2=117
N3=238
N4=6

N1=46
N2=810
N3=44
N4=75

N1=400
N1=58
N1=24
N1=30

Children pointer array

X

1

2

N1=85
N2=16
N3=0
N4=10

X
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Fig. 2.5. Part of the context tree (first two levels) and its context template 

2.2.2  Impulsive Noise 

In this sub-section, a filtering algorithm for impulsive noise is 

presented for a raster map image, where a clean image is corrupted 

over an M-ary Symmetric Channel during the transmission. 

In the filtering process for impulsive noise, conditional probability 

estimation plays a crucial role. Inaccurate conditional probability 

estimation can cause either a lack of detection of a noisy pixel or the 

addition of new noise. In contrast to image compression, several 

challenges exist when statistical filtering is applied for image filtering. 

Firstly, in practice, it is difficult to estimate the noise level from a 

single image. Secondly, in statistical filtering, the contexts themselves 

may include a significant number of noisy pixels. If the neighborhood 

pixels are contaminated by erroneous colors, the particular context 

would appear infrequently in the image, which causes an inaccurate 
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estimation of its conditional probability distribution. Thirdly, a proper 

decision rule for the filtering is a non-trivial design problem. 

For the improvement of the statistical filter, we discuss the 

following three design problems: 

a) Decision Rule for Pixel Denoising 

Suppose we have a map image with impulsive noise that is 

generated by transmitting a clean image X over an M-ary Symmetric 

Channel. The optimal decision rule in discrete universal denoising (DUDE) 

[108] is essentially a MAP estimator, which is: 

{1,..) ., }0 (argmax ( ( )| )  MI xu P I x c (2.3) 

where c is the context of the pixel x. In image filtering, the current pixel 

x will be replaced by u0, which is the value with the highest probability 

if the decision rule in Eq. (2.4) is met: 

2

0

0 0

( 1) (1 )
( ( ) | )

((1 ) 1)

( 1)
( ( ) | ) 1, 1, 2,...,

((1 ) 1)


 



 
 

 


  
 

M
P I x x

M

M
P I x u x M

M

c

c

 (2.4) 

Note that this decision rule is designed for the count statistics 

collected on the noisy image. If the statistical distribution is collected 

on a clean image, the decision rule is: 

0 0( ( ) | ) / ( 1),  1,2,...,   P I x x M x Mc (2.5) 

b) Context-Merging Strategy 

Although DUDE follows a so-called “asymptotic optimality” 

property, it requires an infinite sequence of data source for estimating 

all the conditional distributions of the contexts, which is not realistic in 

practice. In particular, when the context of the pixel is contaminated by 

erroneous colors, the context can appear infrequently and its 

associated conditional probability would be far from its true 

distribution. In order to alleviate this problem, context-tree modeling 

is used by terminating the tree spanning with different criteria. 
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In [64, 89], a pruning step is used to remove those contexts with a 

frequency less than a predefined threshold T. After pruning, the 

statistics of its parent node are used for the probability estimation 

instead. The main challenge for the pruning step is that the tree is 

constructed in a fixed order, and that the noisy pixels may appear 

anywhere in the tree, not just in the leaf nodes. Thus, in many cases a 

clean pixel may also be removed from the context. 

To this end, in [P2], we present a context-merging strategy for those 

infrequent contexts that are expected to be contaminated. For each 

context c, we first construct a set of sub-contexts: 

1( ) { | { / }}   k
i i i iS xc z z c (2.6) 

by removing the ith element from the original context c, where i = 1, , 

k, and zi is the sub-context. We sum up all the count statistics of the 

sub-contexts as the estimated distribution, if the frequency of the 

context c is lower than T: 

0

10

0

( ( ) | ( )),

            if ( )
* ( ( ) | )

( ( ) | ),

     otherwise



 

    
  



M

i

P I x x x S

n i T
P I x x x

P I x x x

c

c

c

c

 (2.7) 

The idea of this context-merging strategy is that the sub-context will 

appear much more frequently in the image if the noisy pixel is 

removed from the context, whereas removing a clean pixel will not 

greatly change the statistics. After the context-merging operation, only 

noise-free sub-contexts become dominant, which serves as a good 

estimation of the conditional probability in the summation of all the 

sub-context distributions. An example can be seen in Fig. 2.6. 
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Fig. 2.6. Example of context-merging strategy. A more reliable context distribution 

(93, 167, 661, 13, 37) is obtained instead of the estimation (4, 30, 25, 1, 2) obtained by 

the pruning operation. Colors with low probability (yellow and white) are replaced by 

the dominant color (brown). 

The computational complexity of the merging process is calculated 

as follows: for each infrequent context, the statistical distributions of 

M2 (M is the size of the color palette) similar contexts are identified by 

tree traversal on the constructed context-tree, whereas the conditional 

probability estimation is calculated by summing up all the statistical 

distributions of the sub-contexts. Suppose that we have an infrequent 

context c with k pixels in context, the time complexity of the tree 

traversal is: 

2

1

(( ) ( 1) ) ( )


   
k

i

k i i M O k M  (2.8) 

c) Noise Level Estimation 

In order to improve the filtering robustness under different noise 

levels, an estimation of the noise level δ of impulsive noise is needed. 

This can be estimated either in terms of the min–max criterion [42] or 

by using some image context metrics [115]. However, those solutions 

conduct the noise estimation in terms of the filtering results for each 

noise level, which is computationally expensive. A more practical 

estimate of δ in [84] is the minimized conditional probability in the 

contexts with “sufficient frequency”. In a similar manner, the noise 

level δ is estimated here on the noisy image directly as: 

2, ( ) 10
1 max ( ( ) | )  

 
y p

P I y
c

c (2.9) 
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where P(c) is the probability of context c.  

2.2.3 Additive Gaussian Noise 

For completeness, we study the statistical filtering in the case of 

additive Gaussian noise as well. In this case, the filtering of raster map 

images can be considered as a continuous-input–finite-output problem. 

For a noisy image Y, the problem is defined as finding a denoised 

color-mapped image Z with M colors. As the size of the color palette is 

limited for raster map images, color quantization [63, 77, 113] can be 

efficiently applied if the color components are easily separable. 

After color quantization, color space is partitioned into several 

regions, in which each color vector Y(y) is represented by its centroid 

mI(y). As some color components can overlap, misclassification is 

inevitable in color quantization (see the quantized image in Fig. 2.7). 

Therefore, a novel iterative fusion algorithm is proposed in [P2], by 

calculating the distance from a pixel to the centroids in the color 

palette and the conditional probability relative to its context: 

( ) {1,..., } 2 ( )

2

2
( )

( ) 2

( ) arg min ( log ( ( ) | )

                                          log ( ( ) | ))

|| ( ) ||
( ( ) ) exp( )

2

 




 

I y M I y

I y
I y

I y g y

P I y

y
g y

Y m

c

Y m
Y | m

 
(2.10) 

where σ is the variance of the additive Gaussian noise and y is the 

current pixel in the noisy image Y. This fusion filter can be considered 

as a specific form of the energy function in a Markov random field [19, 

104], which is derived by replacing the neighborhood similarity with 

conditional probability in the context.  

After the fusion process, the color palette and the estimated noise 

variance σ are re-estimated. The fusion and estimation processes are 

performed iteratively. An example of the fusion result is shown in Fig. 

2.7. 
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Noisy image Quantized image

  
Filtering after one iteration Filtering after five iterations 

  
Fig. 2.7 Filtering example (fragment from Image #1-26) of the fusion process for 

additive Gaussian noise.

2.2.4 Mixed Gaussian-Impulsive Noise 

To denoise an image with mixed Gaussian-impulsive noise, a 

straightforward approach is to apply two filters successively: one for 

the impulsive noise and the other for the Gaussian noise. For example, 

an algorithm based on fuzzy peer group [80] combines a statistical 

method for impulsive noise detection with replacement by an 

averaging operation to smooth out Gaussian noise. 

In a similar manner, the proposed statistical filtering can also be 

extended to the problem of denoising mixed Gaussian-impulsive noise. 

The extension in [P2] combines both the case of the statistical filtering 

for impulsive noise, and the case of the fusion process for additive 

Gaussian noise. Namely, if the DUDE decision rule is met, the current 

pixel is identified as impulsive noise and then replaced by the color 
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with the maximum conditional probability. Otherwise, the fusion 

process is applied.  

2.2.5 Time Complexity  

In this sub-section, we give the time complexity of the proposed 

statistical filter for raster map image. 

In general, the context-tree construction leads to a time complexity 

of O(kN), where k is the size of the context and N is the number of the 

pixels in the image. Any context can have a maximum of NM/T child 

nodes, where M is the size of the color palette and T is the frequency 

threshold for context merging. In context merging, because the time 

complexity of every merging process is O(k2M) in Eq. (2.8), the total 

time complexity of the context-merging process is O(k2M ·NM/T). 

Additionally, the noise estimation procedure has a time complexity of 

O(M) in which all the contexts with a frequency higher than p(c) = 0.01 

are extracted by the tree traversal process. In the denoising step, the 

DUDE decision rule is applied to determine whether a pixel is filtered 

or not. As the conditional probability of all contexts is pre-calculated, 

the filtering procedure has a time complexity of O(N). As a result, the 

total time complexity for denoising impulsive noise is O(k2M2·N/T). 

For additive Gaussian noise, the clustering-based color 

quantization step has a time complexity of O(MN). Context-tree 

construction and context merging have the same complexity as 

impulsive noise filtering. In the fusion procedure, the cost function of 

Eq. (2.10) needs to be calculated for each pixel for all the colors in the 

color palette, and thus it leads to a time complexity of O(MN). The 

total time complexity of denoising additive Gaussian noise is therefore 

O(k2M2·N/T). 

In the case of the mixed noise, either the DUDE decision rule based 

statistical filtering, or the fusion process is applied and no additional 

cost is incurred. The time complexities are summarized in Table 2.1. 
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Table 2.1 Time Complexity of the Proposed Statistical Filter 

Impulsive noise  Additive Gaussian noise  

Step Complexity Step Complexity 

Context-tree 

modeling 
O(kN) 

Color 

quantization 
O(MN) 

Context-

merging 
O(k2M2·N/T) 

Context-tree 

modeling 
O(kN) 

Noise level 

estimation 
O(M) 

Context-

merging 
O(k2M2·N/T) 

Statistical 

filtering 
O(N) 

Fusion 

procedure 
O(MN) 

Total O(k2M2·N/T ) Total O(k2M2·N/T) 

2.3 ADAPTIVE FILTERING USING OPTIMIZED CONTEXT 
SELECTION 

Several context-based approaches have been developed using fixed 

context templates [108], context tree modeling [89], or a context-

merging strategy [P2]. However, these algorithms fail to reveal the 

local geometrical structures when the underlying contexts are 

contaminated by more than one noisy pixel. To address this problem, 

in [P3] we propose a novel context-based voting method to identify the 

possible noisy pixels, and these detected noisy pixels are excluded in 

the context selection for conditional probability estimation.  

For example, when the context of a given pixel is contaminated by 

erroneous colors, it will be credited to a “wrong” context with rare 

appearance, which causes inaccurate estimation of the context 

distribution. This motivates us to investigate a criterion for context 

classification.  

In [P3] all the contexts are categorized into three groups: good, 

uncertain or bad according to a context efficiency function: 

2

( ) ( | )
F( ) log ( )  ( | )log( )

( ) ( )
  

xE

P P x
k P x

P P x

c c
c c

c
 (2.11) 

where: PE(c) = ΠiP(yi), P(c) is the probability of a given context c and 

PE(c) is the estimated probability of c, yi is the color of ith element in a 
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given context c, and P(yi) the probability of color yi in the image. PE(c) 

is computed by assuming all elements in the context are mutually 

independent.  

In the sense of image compression, the first term on the right-hand 

side of (2.11) can be interpreted as the difference of the context code 

length achieved according to the actual context probability and the 

expected context probability. Higher values for this term indicate that 

context c is a repetitive structure, and thus it can be used as a direct 

filter when a dominant color exists. The second term is the so-called 

Kullback-Leiber distance between conditional probability and color 

probability of the entire image. Larger distances imply that more bits 

can be saved when context c is used in coding.  

Those frequent contexts associated with a dominant color (e.g., 

conditional probability > 90%), are termed as good context, on which 

filtering can be directly applied. Those contexts with rare appearance, 

which include noise elements, are defined as bad contexts because 

estimation of conditional probability under such contexts is inaccurate. 

Accordingly, all the contexts are categorized into three groups:  

 good: F(c) >Tmax, with a dominant color 

 bad: F(c) < Tmin  

 uncertain: otherwise 

Once all the contexts have been categorized into these three classes, 

the context tree is processed by identifying the good and bad nodes. 

The offspring nodes of any good or bad node will be removed in the 

tree pruning using top-to-bottom tracing. Three context examples are 

shown in Fig. 2.4. Two good contexts with dominant colors of black (left) 

and brown (middle) can be directly used for filtering, while the bad 

context on the right contains a noisy pixel. Fig. 2.9 shows an example 

of good and bad context distribution in a test image. The unmarked 

pixels belong to an uncertain context. 
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Fig. 2.8 Bad context and its reduced context, black pixel is possible a noisy pixel with 

high F(zi) - F(c) difference 

 

 
 N W SW S 

Bad context 

 
Reduced 

context 
 

F(zi)-F(c) 5.41 5.69 5.51 1.79 

Fig. 2.9 Sample image with good and bad context demonstrated in red and green colors 

(top left), its voting image (top right). Voting example for the white pixel labeled with 

purple with accumulated F(zi)-F(c) value 18.30 (bottom). 

 

As most of the bad contexts contain noisy pixels in themselves, they 

are seldom used to estimate a statistical model. However, they can be 

very useful in detection of noisy pixels when a noisy pixel is not 

isolated from most of the inherited geometrical structures. Given a bad 

context c, a set of sub-contexts is constructed in a similar way with Eq. 

(2.6), where zi is the reduced-size context after removal of the ith pixel. 
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If the removed pixel xi is a noisy pixel, it is expected that the 

reduced-size context will have a higher efficiency: F(zi) > F(c), such that 

each pixel in c can be assigned with a meaningful value F(zi) - F(c). The 

higher the difference, the more likely xi is to be a noisy pixel. Figure 2.8 

gives an example of bad context and its reduced context. 

A voting image R is then constructed according to the following 

rule: if the context c is detected as bad context, the accumulated voting 

score of every other pixel xi in the same context c can be updated by: 

R( ) = R( ) + F( ) - F( )i i ix x z c (2.12) 

Intuitively, we may conclude that most of the contexts containing 

noisy pixels may be detected as bad contexts. If the noisy pixel is 

removed from the bad context, the reduced-size context will have 

much better context efficiency. Namely, the accumulated voting score 

according to Eq. (2.12) is significantly higher than those of its 

neighborhood pixels. In this sense, the noisy pixel can then be detected 

by finding the high peak points in the voting image. An example of a 

voting scheme is shown in Fig. 2.9. 

Once the voting image has been obtained, an adaptive context-

based filter is applied in two manners. Firstly, if the context c is good, 

statistical filtering is applied directly by the decision rule in Eq. (2.4). 

Secondly, if x is detected as a noisy pixel in the voting scheme and its 

context c is not good, the context is re-selected adaptively excluding 

those noise pixels using a 3  3 context template. Statistical distribution 

of the adaptive context is collected and the DUDE framework is then 

applied. An example of the adaptive context selection can be seen in 

Fig. 2.10 and a filtering example is given in Fig. 2.11. 
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Fig. 2.10 Example of adaptive context selection. For noise pixels (black and white, with 

high voting value), a new context in 3  3 region excluding surrounding noise pixels 

is selected, statistical information is collected for new contexts, black pixel is correctly 

changed to blue while white pixel changed to brown. 

 

Original Image Noisy Image DUDE Proposed 

  
Fig. 2.11 Example of voting-based adaptive filtering 

2.4 SUMMARY 

In conclusion, in [P1] we have proposed a multi-layer approach 

filtering algorithm for raster map images. The proposed method 

provided a solution for processing map images in a binary domain. It 

has lower computation costs and memory consumption comparing 

with statistical methods. 

In [P2] we have proposed a statistical filtering algorithm dealing 

with map images distorted by impulsive noise, additive Gaussian 

noise, and mixed Gaussian-impulsive noise. The proposed filter 

incorporates an information fusion process that exploits both the color 

distribution in RGB space, and the conditional probabilities of a given 

pixel in a local context. It operates with no prior knowledge of the 
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properties of the noise and aims at maximal preservation of repetitive 

structures of the image. This is an essential property for raster map 

images and is expected to generalize to other types of color-indexed 

imagery as well.  

In [P3] we have extended the algorithm in [P2] and proposed an 

adaptive filtering algorithm using optimized context selection, which 

is designed via a novel voting-based noise estimation scheme.  

The proposed context-based filter can be viewed as a pilot study to 

restore the raster map image distortion caused by uncertain noise. This 

algorithm can also be applied to other problems, such as image 

segmentation and color quantization. 
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3. Simplification of GPS 

Trajectories 

Spatial-temporal data exist in many areas, such as: geographic 

information systems (GIS), location-based services (LBS), computer 

graphics and computational geometry. The processing and analysis of 

spatial-temporal data has been discussed widely in the literature [70]. 

In this chapter, we discuss the problem of GPS trajectory 

simplification in location-based services. 

3.1 BACKGROUND 

Location-acquisition technologies, such as geo-positioning mobile 

devices, enable users to obtain their location and record travel 

experiences by a number of time-stamped trajectories. In location-

based web services, users can record, upload, visualize and share those 

trajectories [40, 41, 112]. Therefore, people are more likely to find the 

travel routes that interest them and acquire reference knowledge 

facilitating their travel from other trajectories.  

However, GPS devices usually record far more data points than 

necessary and these redundant data points will decrease the 

performance of the data collection. For example, if data are collected at 

10 second intervals, a calculation in [79] shows that without any 

compression, 100 Mb of storage capacity is required to store just 400 

objects for a single day. Moreover, these redundant GPS trajectories 

will also cause a longer uploading/downloading time to the mobile 

service providers. The dense representation will also place a heavy 

burden on a web browser in client-side rendering of these trajectories. 

In some cases, web browsers may even run out of memory and crash. 

Therefore, a fast polygonal approximation algorithm is needed for the 

trajectories simplification task, i.e., conducting multiple GPS trajectory 



Minjie Chen: Processing of Maps and GPS Trajectories in Location-based 

Applications 

26 Dissertations in Forestry and Natural Sciences No 81  

simplifications corresponding to different map scales beforehand, such 

that the trajectories can be visualized more efficiently.  

This can be considered as a polygonal approximation problem in 2-

dimensional space. Given a polygonal curve P = (p1, …, pn) with N 

points, the problem of polygonal approximation is to seek an ordered 

subset P':  

1 2
' ( , ,..., )

mi i iP p p p (3.1) 

as an approximation of P, where 1 = i1 <…< im = N. A polygonal 

approximation can be categorized into two classes of sub-problems: 

a) min-ε problem: given N-points, polygonal curve P, and integer M, 

approximate a polygonal curve P' with at most M points, which has 

the minimum approximation error. 

b) min-# problem: given N-points, polygonal curve P, and error 

tolerance ε, approximate a polygonal curve P' with the minimum 

number of points within the error tolerance ε. 

In [P4] we present a fast O(N) time polygonal approximation 

algorithm for the GPS trajectory simplification. The proposed method 

applies a joint optimization for both min-# approximation and min-ε 

approximation. The main contributions are summarized as follows: 

First, we extend the local integral square error criterion (LISE) and the 

integral square error criterion (ISE) [26, 86, 92] and derive two new error 

measures for the GPS trajectory simplification problem, called local 

integral square synchronous Euclidean distance (LSSD) and integral square 

synchronous Euclidean distance (ISSD). The main advantage of LSSD and 

ISSD is that time information is also considered in the approximation 

process. Meanwhile, they have the same properties with LISE and ISE, 

i.e., they can be obtained efficiently in O(1) time after pre-calculating 

all the accumulative terms within O(N) time. 

Second, for each resolution (map scale), an initial approximated 

curve is constructed by a combination of a priority queue structure [29-

31] and a stopping search criterion [55], which leads to O(N2/M) time 

complexity and O(N) space complexity. However, using a stopping 

search criterion will cause a trade-off in the optimality. 

Third, we extend the reduced search algorithm and employ two 

fine-tune strategies to minimize both the number of output points M 

and the approximated error ε, which lead to time complexities 
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O(WN2/M) and O(N2/M), respectively where W is the width of the 

bounding corridor.  

The algorithm is implemented by a bottom-up multi-resolution 

approach and it achieves a linear time and space complexity. The 

proposed GPS trajectory simplification algorithm can be used in a real-

time application for the rendering process of the GPS trajectories on 

the map. 

3.2 ERROR MEASURE: FROM LISE TO LSSD 

The primary goal of the GPS trajectory simplification techniques is 

to reduce the data size without compromising the precision. Thus, 

there is a need to find appropriate error measures for use in the 

algorithms and performance evaluation.  

In polygonal approximation, different error criteria have been 

defined, such as: tolerance zone, parallel-strip, uniform measure, minimum 

height and minimum width [17, 26, 50, 78, 86, 105]. 

However, Meratnia [79] indicated that such algorithms were not 

suitable for GPS trajectory because both spatial and temporal 

information should be considered. Therefore, the errors are measured 

through distances between pairs of temporally synchronized positions, 

which are called the synchronous Euclidean distance (SED). In 

synchronized Euclidean distance, the continuous nature of moving 

objects necessitates the inclusion of temporal, as well as spatial 

properties of the objects.  

In addition to the two error measures described above, other error 

functions are also considered in some literature. For example, position, 

speed and orientation information are all used in the threshold-guided 

algorithm [91]. In [16] a new distance function called spatial join was 

proposed, which was bounded for spatial-temporal queries. In the area 

of shape matching, Fréchet distance [5, 6] also takes the continuity of 

shapes into account with a time complexity O(MN). Note that 

topological and geometric properties are also considered as important 

constraints in the simplification process in GIS applications. In [36] 

simple Detours (SD) heuristic was proposed, where no new (Steiner) 

vertices would be introduced after the approximation process. 
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However, in most algorithms, in order to calculate the 

approximated error of line segment i jp p , at least j - i distance 

calculations are needed. In [30] the calculation process was solved in 

dual space by a priority queue structure, which achieved the best 

processing time O(logN) with a preprocessing time O(NlogN). 

In order to improve the computational efficiency, two error 

measures, which are called integral square error (ISE) and local integral 

square error (LISE) [26, 27, 86, 92], are jointly used in this paper for 

approximating polygonal curves. The main advantage of the integral 

square error criteria is that the approximation error ( ) j

iP  can be 

obtained efficiently in O(1) time after pre-calculating all the 

accumulative terms within O(N) time (see equation 3.6) [27, 86]. An 

example of calculating ISE and LISE is illustrated in Fig. 3.1.  

 

LISE and ISE LSSD and ISSD 

 
Fig. 3.1. An example of calculating ISE, LISE, LSSD and ISSD. Given P = (p1, p2, p3, 

p4, p5, p6), and the approximated curve P'= (p1, p4, p6), where p2’, p3’ and p5’are the 

approximated temporally synchronized position. ISE is estimated as d12+d22+d32 and 

LISE is estimated as d12+d22 (left). Meanwhile, ISSD is estimated as d1’2+d2’2+d3’2 and 

LSSD is estimated as d1’2+d2’2(right). 

Although the LISE and ISE criteria are computational efficient, time 

information is not considered. Therefore, for the simplification of the 

GPS trajectories, we extend LISE and ISE criteria and derive two new 

error measures, called local integral square synchronous Euclidean distance 

(LSSD) and integral square synchronous Euclidean distance (ISSD), which 

have the same properties as LISE and ISE: 
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Sx, Sy, St, Sx2, Sy2, St2, Stx and Sty are the accumulated sums of x, y and 

t on the GPS trajectory respectively: 
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Computation of the above approximation errors SED2 ( ) j
iP  also 

takes O(1) time with an O(N) time accumulated sum pre-calculation. 

The proof of the LSSD/ISSD calculation can be seen in [P4]. LSSD and 

ISSD criteria are used for the GPS trajectory simplification. 

3.3  NEAR-OPTIMAL POLYGONAL APPROXIMATION  

Optimal polygonal approximation methods are generally 

implemented by incrementally constructing a directed acyclic graph 

(DAG), and therefore inevitably suffer a computational cost limitation 

of O(N2) at minimum[17, 20, 26, 45, 50, 78, 86, 98, 105]. An advance 

achieved in [1] is to combine an iterative graph algorithm and a 

divide-and-conquer approach, which offers the best time and space 

complexity of O(N4/3+δ) by using the L1 metric, where δ > 0 is an 

arbitrarily small constant. Later, the graph-based framework has been 



Minjie Chen: Processing of Maps and GPS Trajectories in Location-based 

Applications 

 

30 Dissertations in Forestry and Natural Sciences No 81        

significantly re-organized and optimized by using priority queues 

dynamically [30].  

In a real-time application, quadratic time complexity is too high, 

and therefore, most applications utilize a class of heuristic methods in 

order to achieve near-linear time complexity. A set of well-known 

heuristic algorithms are the split and merge approaches [34, 48, 87]. The 

split algorithms divide the segment causing the biggest deviation, and 

the merge algorithms merge the pair of segments with least deviation. 

The classic Douglas–Peucker split algorithm [34] can be implemented in 

O(NlogN) time on average. Later Hershberger [48] showed that it can 

be implemented in O(Nlog*N) time, where log* denotes the iterated 

logarithm function. Respectively, Pikaz [87] proposed a merging 

algorithm with O(NlogN) time complexity. These heuristic methods 

are of low time complexity, but may lead to an undesirable 

approximation result.  

In the GPS trajectory simplification, a number of algorithms have 

also been well studied and developed. In [79] a trajectory 

simplification algorithm is implemented greedily by a so-called 

opening window approach. Synchronous Euclidean distance is also defined 

and applied by incorporating the time dimension instead of the 

original perpendicular distance. In [91] the parameters including 

coordinates, speed, and orientation are all considered in calculating the 

safe area of the next point, which is called the threshold-guided algorithm. 

Indeed, all these algorithms solve the min-# problem in a greedy 

manner, of which the time complexity is O(N2). The STTrace sampling 

algorithm [91] is also implemented using a bottom-up strategy where 

the synchronous Euclidean distance is minimized in each step. In [68] a 

generic remote trajectory simplification protocol (GCTS) combined optimal 

and heuristic algorithms [50, 79], which allowed a trade-off of 

computational complexity against reduction efficiency. Recently, a 

new simplification algorithm SQUISH [82] was proposed based on the 

priority queue data structure, which preserved speed information at a 

much higher accuracy. In [22] a trajectory simplification algorithm is 

proposed, where different point headcounts are assigned in terms of 

the product of the average heading change and the distance of each 

segment. After that, the min-ε problem is solved in each segment by 

using a local weighting process in O(NlogM) time. However, as the 
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distances of neighborhood points are used instead of the 

perpendicular distance in the simplification procedures, the algorithm 

is not robust when the sampling frequency is non-uniform. Moreover, 

the error of the GPS signals may also cause the inaccurate estimation 

both in the trajectory segmentation and the local weighting process. 

Performance evaluations are made for several traditional trajectory 

simplification algorithms in [81]. However, it is noted in [82] that there 

is not one algorithm that always outperforms other approaches in all 

situations. 

Note that except for the linear approximation of GPS trajectories, 

non-linear methods are also considered in the literature, such as: 

Bézier curves [24], spline interpolation [53], clothoid [67] and 

Chebyshev polynomials [83]. 

 

3.3.1 Min-# Initialization 

For the min-# problem, Imai and Iri’s graph-based approach [50] 

comprises two essential steps: constructing DAG and shortest path 

search by breadth-first traversal (BFT). In order to construct DAG, N(N - 

1)/2 approximation errors are calculated for every pair of vertices, 

which is called as edge tests here. Thus, the time complexity for the 

min-# problem is O(N2) using the LISE or LSSD criterion. In [P4] we 

revisit two computationally efficient improvements for the min-# 

problem.  

The first improvement is to reduce the computational cost of DAG 

construction by maintaining two priority queue structures, of which one 

corresponds to vertices that can be reached via k - 1 links, and the other 

corresponding to vertices reachable via k links [29-31]. The reason for 

this is that there is no need to construct the graph G explicitly, and that 

only edges visited by the BFT should be included. Although the 

priority-queue based search is not able to completely mitigate the 

worst case time complexity, it turns out in the experiments that a 

number of edge tests were saved in the practical implementations. 

The second improvement is to apply a stopping criterion in the 

iterative shortest path search, which is very efficient in the case of low 

error tolerance. For example, a good stopping criterion has been 

proposed for tolerance zone criterion [20] by maintaining two 
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intersection cones. An alternative solution has also been proposed in 

[29-31] by verification in dual space. Both of the implementations hold 

the optimality for solving the min-# problem. To pursue the best 

possible computational cost savings for the LISE/LSSD criteria, a 

simple stopping criterion is applied in the edge tests by utilizing a 

preset high threshold, e.g., two times the given tolerance [55]. Edge tests 

for the subsequent vertices in the un-visited vertices set will be omitted 

once the approximation error becomes larger than a given high 

threshold. Applying stopping criteria achieves a significantly 

improved time complexity of O(N2/M), but the optimality is not 

guaranteed. To overcome this difficulty, we extend our effort in 

improving the robustness of the stop search criterion. Instead of using 

a fixed high threshold, we adopt the approximation error tolerance of 

the next coarser resolution as the high threshold in the multi-

resolution implementation; see Section 3.4 for more detailed discussion. 

We combine both the advantage of the priority queue structure and 

the stopping criterion to achieve the most computationally efficient 

implementation in the initialization of the min-# problem. Accordingly, 

the output of the initialization of the min-# problem is a tree structure; 

see Fig. 3.3 (left). The proposed initialization algorithm for solving the 

min-# problem under the LISE/LSSD criteria leads to an expected time 

complexity of O(N2/M) and a space complexity of O(N), respectively.  

3.3.2 Fine-tuning the Initial Approximation  

For the GPS trajectory simplification, the optimal algorithm 

provides the best reduction efficiency, but causes the highest overhead, 

while solutions based on heuristics lower the computational overhead 

at the cost of worsening reduction rates. A compromise between the 

optimal and heuristic solutions is the reduced search dynamic 

programming [55, 56, 61].  

The algorithm uses a bounding corridor surrounding a reference 

curve or initialized curve in the state space (Fig. 3.2), followed by a 

limited search for the minimum cost path. This idea is presented and 

known as the Sakoe-Chiba band [96], which has been used extensively 

in Dynamic Time Wrapping (DTW) approaches dealing with the 

similarity calculation of time-series [32]. 
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Fig. 3.2. An example of the reduced search dynamic programming with N = 35 and M 

= 14, where the width of the bounding corridor W = 2. Reference curve is represented 

with the gray circles while the full state space is surrounded by the dashed line. 

 

In reduced search dynamic programming, if the initialized curve is 

evenly distributed in the state space, the time complexity for RSDP is 

ideally O(W2N2/M2). In [P4] we also prove that the expected time 

complexity is still achievable as O(W2N2/M2), even if the precondition 

of even distribution is not satisfied. In particular, if the number of 

vertices for the approximated curve is proportional to that of the input 

curve, namely, M = N/c, a linear time complexity can be achievable for 

RSDP. This will be later shown to be an important property when 

selecting bottom-up approaches for the multi-resolution case. However, 

the main difficulty with RSDP is that a large corridor bound and many 

iterations are needed in order to achieve a desirable solution when the 

approximated curve is poorly initialized, which causes a high 

computational cost.  

To the benefit of best computational efficiency, the initialization in 

section 3.3.1 for the min-# problem is a compromise of the optimality 

for minimizing the number of vertices. In order to mitigate the limited 

optimality, we minimize the number of vertices based on the 

initialized curve, so that a better result can be achieved. The reduced 

search algorithm can be utilized for minimizing the number of vertices. 

To speed up the procedure, we exploit a new fine-tune method at a 

time complexity of O(WN2/M) instead, which is achieved by lifting the 

vertex position in the output tree structure after the initialization step.  

A graphical illustration is demonstrated in Fig. 3.3 of lifting the 

vertex position: starting from vertex p1 with 0 links, at each iteration, 

edge tests are performed to verify whether the approximation error is 

less than the given tolerance between the currently processed vertices 
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with k links, and those target vertices with {k + 2, … , k + W + 1} links. 

An example is given in Fig.3.3 (left) when the width of the bounding 

corridor is W = 2. The process of updating the tree structure can be 

done recursively as shown in Fig. 3.3 (right). 

The proposed fine-tune algorithm provides the following 

advantages over the original reduced search approach for the min-# 

problem. Firstly, calculation of the approximated errors between any 

pair of vertices with adjacent number of links is unnecessary and can 

be omitted. Secondly, once the tree structure is updated by the lifting 

operations, edge tests for those lifted vertices are also avoided.  
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Fig. 3.3 An example of reducing the number of output vertices with bounding corridor 

W = 2: the target vertices with 1 links (left, which is a typical example after the 

initialization step) and target vertices with 2 links after tree structure updated (right).  

 

 
Fig. 3.4. An example of equivalent solutions in min-# approximation, where both 

approximated curves meet the error tolerance ε =2 and have same output M = 4. 

 

The proposed algorithm for the output vertex reduction under the 

LSSD criterion has an expected time complexity of O(WN2/M) and 

space complexity of O(N), respectively.  

However, an equivalent solution problem may exist even after the 

min-# problem is solved by the LSSD criterion. In other words, given 

an error tolerance ε, a number of solutions for the min-# 

approximation can be achieved with the same number of output 



Simplification of GPS Trajectories 
 

Dissertations in Forestry and Natural Sciences No 81       35 

vertices M, but they lead to distinct approximation performance, see 

Fig. 3.4.  

Hence, after the tree structure is updated, additional post-

processing is performed in order to identify the best possible curve P', 

among these equivalent solutions with the minimum ISSD. This can be 

can be solved by dynamic programming in terms of the following 

recursive expression: 

2

2

2

( ) min( ( ) ( )),1

( ) arg min ( ( ) ( )),1
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A p D p P i j
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 (3.5) 

where A(pj) is the parent vertex of pj and D(pj) is the accumulated ISSD. 

The minima are found in O(N2/M) time and no iterations are needed. 

The above minimization offers significant improvement (theoretically 

W2 time faster) over the original RSDP that has a time complexity of 

O(W2N2/M).  

In summary, a polygonal approximation algorithm for GPS 

trajectory simplification is proposed by joint optimization of both the 

min-# approximation using the LSSD criterion, and the min-ε 

approximation using the ISSD criterion. The proposed algorithm has 

been introduced as a three step procedure: initialization of the min-# 

problem, minimizing the number of output vertices, and minimizing 

integral square error. The proposed algorithm has O(N2/M) expected 

time complexity and O(N) space complexity. An example of the 

proposed algorithm is shown in Fig. 3.5. The improvement of time 

complexity is also summarized in Table 3.1. 
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Table 3.1 Summary of the proposed near-optimal polygonal 

approximation algorithm, where * represents the initial curve is 

equally partitioned 

Step 
Time complexity Improvements and 

contributions 
RSDP Proposed 

I O(N2/M) O(N2/M) Combine priority queue 

structure to reduce the 

computation cost. Proof is 

given. 

II O(W2N2/M)* O(WN2/M) Time complexity reduced. 

Proof is given. 

III O(W2N2/M)* O(N2/M) Time complexity reduced. 

Proof is given. 
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Fig. 3.5. An example of the proposed polygonal approximation. Artificial curve in [43] 

is used with ε = 1500 and the optimal solution is Mopt = 86. Initial approximated curve 

is obtained with M' = 91 (up-left). Approximated curve (M = 86) is obtained after 

reducing number of output vertices with fISE(P') = 1.04·105 (up-right). The final 

solution is obtained by minimizing ISE with fISE(P') = 4.88·104 (bottom).
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3.4 LINEAR TIME MULTI-RESOLUTION POLYGONAL 
APPROXIMATION  

In order to improve the computational efficiency, a bottom-up 

multi-resolution polygonal approximation approach is proposed with 

linear time complexity in [P4]. The error criterion is the joint 

optimization on both the min-# approximation using the LSSD 

criterion and the min-ε approximation using the ISSD criterion, as in 

Section 3.3. 

A multi-resolution polygonal approximation can be applied for 

scalable representation and compression of vector maps in GIS [12, 13]. 

For solving the min-ε problem, two heuristic approaches: split (top-

down), and merge (bottom-up) are known with a time complexity of 

O(NlogN). It is important to mention that split and merge are applied 

locally and can often result in undesirable approximation results in the 

later hierarchy process. 

…
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error e1*
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Get LISE 
error ek*

P1* P2*

PA

Pk*
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error e3* 

P3*

…

Given 
ε

P’

Fig. 3.6. Workflow of the proposed bottom-up multi-resolution method. Error 

tolerance of coarser resolution is selected as high threshold for polygonal 

approximation, which is labeled by dashed line in the figure. In this example, with e2* < 

ε < e3* the approximation of P3* and P4*,… can be skipped. 

An optimal split algorithm (OSA) was proposed in [57], where the 

optimal approximation at the higher resolution level is achieved using 

the result of a lower (previous) resolution level. This provides 

resolution hierarchy in an order (1→2→4→….), but at a cost of O(N2) 

time complexity. 

In [75] a bottom-up multi-resolution algorithm for the min-ε 

problem is proposed with near-linear time complexity. The min-ε 

problem is solved using the fine resolution as input for approximating 

the corresponding coarser resolution iteratively (N→N/2→N/4→….). 

For each scale, RSDP is also incorporated. As an ISE criterion is used, 
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the approximation error between two vertices in any resolution level 

can be calculated in a constant time, according to the pre-calculating 

cumulative summation of x, y, x2, y2 and xy in the original curve, see 

Section 3.2. 

Although the bottom-up approach [75] is computationally efficient, 

this approach can only solve the min-ε problem. In practice, in order to 

progressively display the GPS trajectory data, we need to approximate 

a number of approximated results with corresponding error tolerance 

for each resolution (map scale), which is considered as a min-# 

problem. Moreover, the reduced search algorithm is a fine-tune 

method that needs an initial curve beforehand. If the curve is poorly 

initialized, a number of iterations must be needed to find the near-

optimal result by the reduced search algorithm. 

In [P4], given error tolerance ε, a joint optimization for both the 

min-# approximation using the LSSD criterion and the min-ε 

approximation using the ISSD criterion is solved in linear time. The 

underlying algorithm consists of three sequential procedures in each 

resolution: 

I. Error tolerance initialization. Initialize logcN error tolerances 

{e1*, e2*, e3*,…}(e1*< e2*< e3*…). 

II. Initial curve approximation. A number of polygonal curves 

{P1*,P2*,…,Pk*} are approximated based on a bottom-up multi-

resolution approach with corresponding error tolerance {e1*, e2*, 

e3*,…}. The algorithms of Section 3.3 are used for 

approximating the curve of each resolution. 

III. Final approximation. A polygonal approximation is conducted 

under the given error tolerance ε by selecting the most suitable 

input curve amongst those approximated curves {P1*, P2*,…, 

Pk*}. 

In step I, the error tolerances e1*, e2*, e3*… (e1*< e2*< e3*…) are estimated 

according to the LISE/LSSD error criterion: 
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where c is a parameter in the proposed multi-resolution approach. The 

above estimation can be viewed as the average LISE/LSSD error for all 

approximated segments when the curve is equally partitioned. The 

approximated curve under the error tolerance ek* has the property Mk ≈ 

N/ck, where Mk is the number of output vertices in the kth resolution. 

In step II, the bottom-up multi-resolution algorithm is applied to 

estimate the approximated curves P1*, P2*, P3*, … under the 

corresponding error tolerances e1*, e2*, e3*, …. Here, ek+1* is used as the 

high threshold in the approximation procedure of resolution k. The 

curve achieved in the previous finer resolution is used as the input of 

polygonal approximation in the next coarser resolution (Nk+1 = Mk), and 

the algorithms from Section 3.3 are applied. As the optimality of these 

initial approximation results is not significantly compromised, the step 

of minimizing the number of vertices can be omitted.  

In step III, given error tolerance ε, a polygonal approximation is 

conducted to get the final approximation result by selecting the most 

suitable inputs curve Pk* among those approximated curves in step II, 

such that: 

*argmax ( ) k kk e  (3.7) 

The workflow of the proposed algorithm is presented in Fig. 3.6. As 

the time complexity of the approximation process is O(Nk2/Mk) on each 

resolution, both the time complexity and the space complexity of the 

proposed bottom-up multi-resolution algorithm are O(N).  

An application of the proposed approximation algorithm for the 

GPS trajectory simplification is demonstrated in Fig. 3.7. The sample 

route with 575 vertices is visualized in different map scales with 44, 13, 

6 vertices correspondingly in our MOPSI system. As a suitable error 

tolerance is selected for each resolution, the visualization of the GPS 

trajectory is not compromised by the reduced data, whereas the 

rendering time is greatly reduced. 

3.5 SUMMARY 

In conclusion, in [P4] we have proposed a fast O(N) time polygonal 

approximation algorithm for the GPS trajectory simplification, by a 
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joint optimization on both LSSD and ISSD criteria, which is effective 

and very computationally efficient. The proposed method is designed 

by a bottom-up multi-resolution approach with a linear time 

complexity. In each resolution, a near-optimal polygonal 

approximation algorithm is exploited, which has a time complexity of 

O(N2/M). Both the theoretical analysis and the experimental tests have 

demonstrated that the proposed method has made significant progress 

in solving polygonal approximation in a real-time application. 

Moreover, the proposed polygonal approximation algorithm and fine-

tune strategy can also be extended and exploited to other error criteria. 

Original Route with 575 

points

Approximated result with 

13 points 

Approximated result with 

6 points 

 
Visualized result with 44 

points for resolution 1
Visualized result Visualized result 

 
Fig. 3.7. Example of the GPS trajectory simplification by the proposed algorithm. 
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4. Compression of Vector 

Maps 

A vector map can be formulated as a 2-dimensional vector 

sequence P = (p1, p2,…, pn). It embraces a number of objects such as 

waypoints, routes and areas. A sample curve and the distribution of 

the corresponding differential coordinates are shown in Fig. 4.1. 

A vector map consists of a large number of geographic objects, 

which cause a high data storage cost. Therefore, a variety of 

compression algorithms has been studied and developed [2, 3, 58, 60, 

72, 101, 102, 110]. Existing algorithms are based on two strategies: 

polygonal approximation and quantization.  
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Fig.4.1. Test map Britain with 10,910 points (left), and the prediction residuals. 

 

In polygonal approximation, the number of points in the vector 

map is reduced so that the polygonal curve is represented in a coarser 

resolution. Polygonal approximation can be achieved either by fast 

heuristic methods [9, 76], or by graph-based methods [86, 98]. 

On the other hand, most quantization-based approaches calculate 

the differential coordinates of adjacent data points as the prediction 

error, and these residual vectors are then quantized using different 

quantization strategies, such as: product uniform quantization [72], 
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product scalar quantization [2], and vector quantization with fixed-size 

codebook [102].  

A better rate-distortion performance is achieved later by combining 

both the advantage of polygonal approximation and prediction error 

quantization. For instance, reference line method [3] first identifies a 

series of reference lines by polygonal approximation. For the 

remaining points, the prediction errors are then estimated according to 

their nearest reference lines, followed by product scalar quantization in a 

similar manner to [2]. Likewise, in [110], a number of data points were 

first reduced by the Visvalingam-Whyatt algorithm to preserve a 

consistent topology, and were subsequently quantized and encoded by 

a clustering-based method. 

4.1 FAST DYNAMIC QUANTIZATION 

In [58], dynamic quantization (DQ) is proposed by performing a joint 

optimization on both polygonal approximation and vector 

quantization. For a given quantization level l, product uniform 

quantization is employed in the joint optimization by a given 

Lagrangian parameter λ. Thus, a rate-distortion curve corresponding to 

the given quantization level l, will be constructed by traversing 

different Lagrangian parameters λ.  

A common practice for data compression encompasses three 

essential procedures: prediction, quantization of the residual vectors, 

and entropy coding. In vector map compression, the prediction 

procedure calculates the differential coordinates of adjacent points as a 

prediction error, instead of using the absolute coordinates. After these 

residual vectors are quantized in the coding process, we assumed that 

they obeyed an empirical distribution of a random variable, e.g., 

uniform distribution, geometric distribution, negative binomial distribution, 

or Poisson distribution. 

To avoid quantization error propagation, the prediction is done 

using closed-loop prediction: 

 (4.1) 
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where: Q is a 2-D product uniform quantizer, vi is the residual vector, 

and -1
r
ip  is the estimated position of the previous point. For a given 

quantization level l, the product uniform quantizer is formulated as: 

( ) [ / ] ([ / ] ,[ / ] )      i iQ l l x l l y l lv vi i (4.2) 

Thus, the relation between the quantization error D0 and 

quantization level l is solved, which gives D0 = l2/6. 

Coding Q(vi) is equivalent to coding an integer vector q = ([Δxi/l], 

Δyi/l]), which can be encoded by probability distributions of qx and qy. 

2 2( ) log ( log (    xi yir f q f qv i (4.3) 

Note that the codebook itself also needs to be encoded and 

transmitted to the decoder. Thus, a large codebook is intractable in 

order to achieve a desirable coding efficiency. In [P5] we use a single-

parameter geometric distribution to model |qx| and |qy|: 

| |(| |) (1 )  xq
x x xf q p p  (4.4) 

where parameters px and py are approximated by their maximum 

likelihood estimation. Therefore, no codebook is needed and the code 

length achieved by arithmetic coding can be written as: 

2 2

2 2

( ) (| | log (1 ) log ( )) 2

(| | log (1 ) log ( ))

    
   

xi x x

yi y y

r q p p

q p p

vi
 (4.5) 

d4

d2
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d3

d1
r
ip

r
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Fig. 4.2. Poly-line (pi,…, pj) (solid line) is approximated by line segment ( , )r r
i jp p

 
(dot 

line ) in the approximation process.
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Meanwhile, polygonal approximation is also embedded into the 

closed-loop framework in dynamic quantization. Suppose that a 

polygonal curve (pi, … , pj) is approximated by line segment r r
i j(p ,p ) , 

local integral square error (LISE) [26, 86] is used as the approximated 

error of the approximation process, see Fig. 4.2.  

2
2 ( , ) ( , ( , ))




j

r r r r
i j k i j

k i

e p p d p p p  (4.6) 

The approximation error of Eq. (4.6) can be calculated in constant 

time by pre-computing the accumulated sums of x2, x, xy, y2 and y [26, 

86]. In this way, a joint optimization of polygonal approximation and 

prediction error quantization can be considered as minimizing the 

following cost function: 

1 12 2
1

( ( , ) ( , )) 
 



     m m m m

M
r r r r
i i i i

m

J E R e p p r p p  (4.7) 

where M is the number of points output by polygonal approximation. 

This problem can be solved by finding the shortest path on a weighted 

directed acyclic graph (DAG). Suppose Ji is the minimum weighting 

sum from p1 to pi on G, and A is an array used for backtracking 

operation, then the recursive formulation of the problem is: 

2 1
{1 1}

2
{1 1}

min ( ( , ) ( , )), 0

argmin( ( , ) ( , ))




  

  

   

  

r r r r
i k k i k i

k i

r r r r
i k k i k i

k i

J J e p p r p p J

A J e p p r p p
 (4.8) 

In the existing approach [58], all the rate-distortion curves with 

respect to each of the quantization levels are calculated so that the best 

quantizer is the lower envelope of the set of curves. However, the 

computation cost of the entire set of rate-distortion curves is hugely 

time-consuming. For example, a unique rate-distortion curve can be 

constructed by considering 30-40 Lagrangian parameter λ. It would 

lead to over 300 minimization processes of Eq. (4.7) by selecting 

different quantization levels. 

To overcome this difficulty, an error balance principle is proposed in 

[60] based on an assumption that the quantization errors are equal to 
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the approximation error of polygonal approximation. Thus, an optimal 

number of points M, can be identified in the min-ε polygonal 

approximation using binary search for a given quantization level l. 

However, in practice, the time complexity for the min-ε polygonal 

approximations is equal to O(N2) as well [98]. 

In order to reduce the computational cost, in [P5] a fast dynamic 

quantization (FDQ) algorithm is proposed. For a given quantization level 

l, its corresponding optimal Lagrangian parameter λ is derived, which 

is: 

21
ln 2

6
  l  (4.9) 

Thus, only one rate-distortion curve needs to be constructed. An 

example is shown in Fig. 4.3. 
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Fig. 4.3. Rate-distortion curve for quantization step qk=0.01/2k, where k = 0, 1/2, 1,… 

5 (from left to right), black ‘+’ is the position when error balance principle is applied, 

red ‘o’ is the proposed. The red line is the rate-distortion curve when optimal λ is 

selected. 

The shortest path algorithm on a weighted DAG takes O(N2) time at 

minimum [17, 20, 26, 45, 50, 78, 86, 98, 105]. This can be further 

improved by incorporating a specific search criterion: 
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22
( , )( , )

( ) ( )


 
i

r rr r
A ik i

i

e p pe p p

i k i A
 (4.10) 

where 
i

r r
A i(p ,p )  is the shortest path so far and r

kp  is the current point. 

For a target point r
ip , the search for the shortest path will terminate the 

weight calculation before point pk if Eq. (4.10) is satisfied. The 

proposed method can also be applied for the entropy-constrained 

problem, in which the vector map is compressed under a certain bit-

rate. The result can be obtained by several iterations of the proposed 

algorithm using binary search on the quantization level l. Visualization 

performance for different compression bit-rate is shown in Fig. 4.4. 
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Fig. 4.4. Performance under different bit-rate on a fragment of the testing UK map 

with 10911 points. 

4.2 OPTIMIZED VECTOR QUANTIZATION  

Quantization plays an important part in lossy vector map 

compression. In [P6] we proposed an entropy-constrained vector 

quantization to jointly optimize the size and the structure of the 
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codebook. In order to lower the distortion to a desirable level, we 

exploit two-level design strategy, where the vector quantization 

codebook is designed only for the most common vectors and the 

remaining (outlier) vectors are coded by uniform quantization.  

In vector quantization, we quantize the residual vectors by 

minimizing mean square error under a constraint that the average bit-

rate does not exceed c: 

2

1

min , . . ,  (|| ( ) || )


  
N

i

D s t R c where D Qi iv v  (4.11) 

where: vi is the residual vector and Q(vi) is its quantized form. 

In entropy-constrained vector quantization (ECVQ), the constraint 

minimization procedure can be solved by converting it as an 

unconstrained optimization problem [25], formulated as J = D + λR. 

For each Lagrangian parameter λ, it has a corresponding point on the 

rate-distortion curve. However, using a fixed-size codebook does not 

solve the problem efficiently, as the prediction error for vector data 

may vary in different cases. In order to find a better combination of 

Lagrangian parameter λ and size of codebook k, a high computation 

cost is needed for ECVQ, and thus, it is suitable only for off-line 

processes. 

In order to improve the computational efficiency, entropy-

constrained pair-wise nearest neighbor for vector quantization (ECPNN-VQ) 

has been proposed in [66]. It merges the pair of clusters that result in 

the smallest increase in distortion and largest decrease in bit-rate. Here, 

the increased distortion after merging two clusters i and j can be 

calculated by: 

2
2|| ||


  i j

i j

n n
D

n n i jc c  (4.12) 

where: ni and nj are the number of vectors in cluster i and j, 

respectively, and ci and cj are their centroid vectors. Thus, the change 

of the bit-rate can be calculated as: 
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log( / ) log( / )

( ( ) log(( ) / ) )

   

    
i i j j

i j i j q

R n n n n n n

n n n n n r
 (4.13) 

where: rq is the code length of one quantized vector in the codebook, n 

is the number of residual vector. 

In every merge step, the pair of clusters with the minimum -ΔD/ΔR 

is merged. This can also be considered as searching the minimum 

slope in the rate-distortion curve. It therefore guarantees the 

optimality of each merge step. As in classic ECVQ frameworks, λ is 

interpreted as the slope of the line supporting the operational rate-

distortion curve, and it is approximated in ECPNN-VQ as: 

λ≈ -(Dn+1-Dn)/(Rn+1-Rn) (4.14) 

As a merge-based clustering method, ECPNN-VQ will stop 

reducing the size of the codebook when a given bit-rate constraint is 

met. The time complexity of ECPNN-VQ is O(τN2), the same as the 

traditional PNN algorithm [39]. 

After ECPNN-VQ, the cost of each residual vector vi in cluster j can 

be formulated as: 

2
2 2|| || ( log ( / ) / )    ij j q jJ n n r ni jv c  (4.15) 

Meanwhile, the cost of uniform quantization can be calculated as: J0 

= Σi(D0+ λri0). In [P5] we have derived the optimal relation between 

quantization level l and Lagrangian parameter λ as: 

6 / ln 2l  (4.16) 

In our method, ECPNN is used to initialize the codebook. For a 

given bit constraint c, λ is first approximated on the rate distortion 

curve by Eq. (4.15). Then, a so-called outlier cluster is created with 

quantization level l by Eq. (4.16). Residual vectors are repartitioned to 

the clusters with minimum cost J by: 

( ) , arg min ( ), 0,1..,  j ijQ j J j ki jv c (4.17) 

where j = 0 is the outlier cluster. 
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A centroid step is followed in order to update the codebook. 

Parameters px and py for the geometric distribution are also updated. 

Fig. 4.5 shows an example of the codebook design. We can observe that 

several clusters have been moved completely to the outlier cluster, and 

that the size of the main codebook is reduced from 78 to 30. 
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-0.06
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-0.02
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0.02

0.04

0.06

dx  
Fig. 4.5. Demonstration of the outlier selection (5 bits/point constraint). ECPNN with 

MSE= 8.7·10-6 and codebook size 78(left). The proposed two-level codebook with MSE= 

6.9·10-6 and size 30 (right). Outliers are marked as ‘o’. Grid size for uniform 

quantization is also labeled. The testing curve is the UK map with 10911 points. 

However, selecting the quantized vector according to the closed-

loop framework in Eq. (4.1) cannot guarantee optimality. This is 

because each point is quantized to the quantized position with 

minimum distortion, during the cost function minimization in the 

encoding procedure. In [P6] we keep more candidates (t = 8 in our 

implementation) in each quantization step, and the optimal solution is 

found by a dynamic programming process in the state space of size n·t, 

where n is the number of the points of the vector map. Suppose that 

there are t best solutions recorded for encoding from p1 to pi, with the 

corresponding costs Li,1, Li,2, …, Li,t, and ,1 ,2 ,, ,...,r r r
i i i tp p p are the 

approximating positions for pi. Based on a combination of k quantized 

vectors and t best solutions for pi, in the next step, k·t solutions are 

tested for approximating pi+1 and t best solutions 

1,1 1,2 1,, ,...,  
r r r
i i i tp p p are saved with minimum costs Li+1,1, Li+1,2,…Li+1,t. In 

the end, backtracking is used to find the quantized vectors from 

,1
r
np with minimum cost Ln,1. The time complexity of the proposed 

approach is O(ktn·log kt) in total. 
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In the next iteration, the residual vectors can be updated after the 

approximated curve has been constructed. Given bit-rate constraint c, 

λ is also updated by a binary search in the next iteration.  

4.3 SUMMARY 

In summary, we have made two significant improvements on the 

problem of lossy compression for vector map data. 

Firstly, a fast dynamic quantization (FDQ) algorithm is proposed 

by deriving the optimal relationship between given quantization level l 

and Lagrangian parameter λ, which greatly saves on computational 

cost. 

Secondly, a two-level strategy has been exploited and employed to 

optimize the codebook design. Vector quantization codebook is 

designed only for the most common vectors, and the remaining 

vectors (outliers) are coded by additional bits using uniform 

quantization. Additionally, instead of using a conventionally greedy 

approach in the quantization process, a dynamic programming 

method is utilized to improve the quantized vector selection.  
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5. Compression of GPS 

Trajectory 

Over recent years, enormous numbers of GPS trajectories, which 

record users' spatial and temporal information, have been collected by 

geo-positioning mobile phones providing plenty of test datasets1. The 

massive volume of trajectory data brings about a heavy burden both 

for network transmission and data storage.  

A number of compression algorithms have been proposed by 

reducing the number of points in the trajectory data. These line 

simplification solutions were discussed in Section 3. Except for the 

simplification process by polygonal approximation, semantic meaning 

of the GPS trajectories has also been considered during the 

compression process in urban areas in [99], whereas a trajectory 

compression algorithm with network constraints has been developed 

in [51]. 

However, in these algorithms, the compression is achieved only by 

the approximation process and these methods lack a rigorous 

analytical approach on the encoding procedure of the reduced 

trajectories. Without further compression, 12 bytes are used for saving 

each point including: latitude, longitude, and timestamp. In [54], 

arithmetic coding is also considered in the encoding process, but only 

a simple predefined prediction model is used, which may not be 

robust in a real application. 

                                                      
1 These datasets are: 

BerlinMOD dataset: http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html 

Geolife Dataset: http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-

9fd4-daa38f2b2e13/ 

MOPSI Dataset: http://cs.joensuu.fi/sipu/MOPSI_GPS Traj_TXTv1.zip 
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5.1 PROPOSED COMPRESSION ALGORITHM 

Therefore, a coding algorithm for GPS trajectories with latitude, 

longitude and timestamp information is considered. A lossy 

compression algorithm is proposed in [P7] for GPS trajectories under 

maximum synchronous Euclidean distance (max SED). Suppose pj = (xj, 

yj, tj) is the point on the original GPS trajectory and pj’ is its 

synchronized approximated position. The distortion of the whole 

trajectory is calculated by its maximum synchronized Euclidean 

distance: 

'
1( , ') max ( ( , ))  i n i iSED P P SED p p  (5.1) 

In contrast to the existing trajectory compression algorithm, we 

achieve two significant improvements. 

Firstly, in vector map compression, differential coordinates are 

used directly in the encoding process. However, in GPS trajectories 

they are inconsistent if different reduction rates are applied after the 

simplification (approximation) process. Meanwhile, speed and 

direction changes are more robust variants, even if a simplification 

(approximation) step is applied with different reduction rates in 

different segments; therefore they are used in the proposed algorithm.  

Secondly, line simplification and quantization are combined during 

the approximation process in order to seek the approximated 

trajectory for compression. 

An approximation example is demonstrated in Fig. 5.1. Suppose we 

want to approximate a sub-trajectory 1k

k

i
iP  by line segment

1
' '

k ki ip p , 

where pik’ is the approximated position of pik in the previous step. If 

time interval Δt(k) is known, the speed of the line segment is: 

1
( ) ( ', ) / ( )


 

k ki ispd k dist p p t k (5.2) 

Given max SED tolerance ε, we assume the quantization error of 

point pik+1’ is γε at maximum, thus the quantized level for speed can be 

set as: 
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Fig. 5.1. An example of the quantization process for the GPS trajectory 

 

( ) 2 / ( )    spdl k t k  (5.3) 

Here γ is a parameter as the ratio of the quantized error and the 

total SED, which is set as γ = 0.5 by our experiment. Thus, the 

quantized speed can be calculated as: 

*( ) [ ( ) / ( )] ( ) spd spdspd k spd k l k l k  (5.4) 

Meanwhile, we can get the direction change Δθ(k) with a value 

between –π and π, where a negative value represents the direction 

change in a clockwise direction. 

Given the quantized speed spd*(k), the quantization level for the 

direction change can be estimated as: 

      
1

*

2 / 2
( ) 2 tan

( ) ( ) 2 / 2






 

 
l k

spd k t k
 (5.5) 

Thus, the quantized direction change is: 

*
( ) ( )( ) [ ( ) / ]       k kk k l l  (5.5) 

Based on the quantized speed and direction change spd*(k) and 

Δθ*(k), the quantized position pik+1’= {xik+1’, yik+1’, tik+1’} can be 

approximated as: 
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 (5.6) 

A greedy solution is used for the trajectory approximation. Starting 

from the first point, the furthest point is found with an approximated 

SED less than the given error tolerance. 

Note that when the input of the GPS trajectory is latitude and 

longitude in WGS84 format, a Mercator projection is needed as a 

preprocessing step so that the distance can be calculated directly. 

In the encoding process, we need to encode both the differential 

coordinates and time difference (Δx, Δy and Δt). Suppose pik’= (xik’, yik’, 

tik’) and pik+1’= (xik+1’, yik+1’, tik+1’) are two neighboring points in the 

approximated trajectory P’. Firstly, the time difference is encoded by 

the following probability: 

1

1

/
( ( ) )

1

where ( ( ) / ) / ( ),

max( ( )) / , 1,2,..., 1.
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p t k t t

p t k min s

rtsp t q tsp q m

t tr r  
(5.7) 

where: tspmin is the minimum sampling time on the GPS trajectory (1s 

in most cases) and δt is a bias factor (δt = 0.01), vector rt is initialized as 

a zero vector with size rtspmax × 1. 

After Δt(k) has been encoded, vector rt is updated by: 

1 ( ), /
( )   

( ), else



  

 


t t k min
t

t t

r s s t tsp
r s

r s
 (5.8) 

where μt is a forgetting factor, which gives higher influence on the 

recently encoded time intervals with μt = 0.995 in this paper. The 

reason that we use a forgetting factor is because of the possible 

multiple transportation models in the GPS trajectory. A higher 

reduction rate can possibly be achieved for the segments with slower 

moving speed (e.g., walking) compared with faster moving segments 
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(e.g., car). Thus, it will be helpful to improve the coding performance if 

a forgetting factor is used. 

The speed value is then predicted by spdpred(k) and σspdpred2(k), as: 

 

* 2
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2

2

2

2 2
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 (5.9) 

where: nc1 and nc2 are normalized values for the weighting factors, 

while wt , d and σGPS are parameters with wt = 20, d = 4 and σGPS = 5. The 

second and third terms of σspdpred2(k) are the variance of the quantization 

procedure and the GPS error, respectively. 

The probability is then estimated by assuming the speed has a 

Gaussian distribution:  

*
/ ( )

( ( ))
1








spd spd

spd

p nlv k
p spd k  (5.10) 

where: p has a Gaussian distribution with mean spdpred(k) and variance 

σspdpred2(k), bias factor δspd is set as 0.01. 

Adaptive arithmetic coding is also used directly for direction 

change in [P7]. However, GPS signals are not always accurate and a 

quantization step will also cause errors. Therefore, the encoded and 

true distributions of the direction change are not always same. Here, 

Bayes' theorem is applied to improve the probability estimation for the 

direction changes. Suppose P(Δθ0) is the distribution of direction 

change when the signal is clean, P(Δθk) is the predicted distribution for 

pk, we have: 
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(5.11) 

After pk is encoded, posterior probability P(Δθ0|Δθk) is estimated by: 

0 0
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(5.12) 

P(Δθ0) is then updated: 

0 0 0( ) ( ) ( | )kP P P          
 

(5.13) 

From our experiment, we set 180 levels uniformly distributed 

between –π and π for P(Δθ0). 

Given the estimated probabilities, the time difference and speed 

and direction changes are encoded by arithmetic coding. In the 

compressed file, a 192 bits fixed-length header is used to save the 

parameters of the trajectory. These values include: start position of x 

and y (30 bits + 30 bits), time (32 bits), tspmin (8 bits), rtspmax (16 bits), m 

(24 bits), spdmax (32 bits), and a scaling factor of Mercator projection (20 

bits). 

Complexity analysis is given in Table 5.1. Here τ1, τ2 and τ3 are 

constant values, which are not related to the size of the GPS trajectory 

data. An example of the compression result at different tolerances can 

be seen in Fig. 5.2. In the experiments, the compression algorithm is 

evaluated by KB/h, which tells us the average storage cost under a 

given time duration.  
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3m max SED, 0.36 KB/h 10m max SED, 0.19 KB/h 

 

maxSED =3m meanSED=1.5m

original file is 99549 bytes and compressed file is 544 bytes, bitrate is 0.35562KB/h

original

compressed

  

 

maxSED =10m meanSED=4.9m

original file is 99549 bytes and compressed file is 283 bytes, bitrate is 0.185KB/h

original

compressed

 
50m max SED, 0.06 KB/h

 

maxSED =49.8m meanSED=26.4m

original file is 99549 bytes and compressed file is 129 bytes, bitrate is 0.084328KB/h

original

compressed

Fig. 5.2. Compression example of the proposed GPS trajectory compression (GTC) 

algorithm.  

 

Table 5.1 Summary of the Expected Time Complexity of the 

Proposed GPS Trajectory Compression Algorithm  

Step  Time Complexity 

I. Approximate 

Trajectory 
 O(n2/m) 

II. Encoding 

Process 

Time O(m·τ1), τ1 =rtspmax 

Speed O(m·τ2),τ2 = max




spd
t  

Direction Change O(m·τ3), τ3 = nlvΔθ 

III. Decoding 

Process 
 

Same as in the 

encoding process 
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5.2 FILTERING GPS TRAJECTORY BEFORE COMPRESSION 

GPS trajectories are never perfectly accurate due to sensor noise 

and other factors. Filtering is therefore needed when the trajectory 

data is particularly noisy. Therefore, filtering can be considered 

beforehand on the GPS trajectories to smooth the noise and potentially 

decrease the error in the measurements. A summary of the GPS 

trajectory preprocessing techniques can be found in [70]. 

The noise of GPS trajectories is usually modeled by adding 

unknown, random Gaussian noise, assumed to be drawn from a two-

dimensional Gaussian probability density, with a zero mean and a 

diagonal covariance matrix. Some filters, such as the Kalman filter [44] 

and particle filters [49], require both the measurement model and the 

dynamic model. In reality, the parameters of these models are difficult 

to estimate and may change from one segment to another. 

Therefore, we propose a filtering algorithm for GPS trajectories 

based on its feature properties. Our proposed algorithm has two steps: 

outlier removal and filtering with speed consistency. Prior information, 

such as a road network is not needed in the proposed algorithm. 

Firstly, for those points with unreliable speed and speed change, 

they are selected as outlier points and removed. Secondly, the 

trajectory is smoothed using ridge regression with a smooth speed 

regularized term. It can be considered as an optimization problem for 

both the position distortion and the speed change. 

From our experiment, if a filtering algorithm is performed 

beforehand, the bit-rate can be reduced by around 30%, 20%, and 15% 

for 1m, 3m, and 10m SED, respectively. Meanwhile, if a higher 

tolerance is set, the bit-rate will not be changed even if a filtering 

operation is used. 

5.3 SUMMARY 

In summary, we have addressed the problem of spatial-temporal 

data compression, particularly the lossy compression of GPS 

trajectories with sets of (x, y, t) records. In the proposed algorithm, 
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both data reduction and quantization are considered in the 

approximation process.  

There are several immediate extensions of our present work. First, 

we plan to extend the compression for online application. Second, 

improvement of the approximation and encoding processes will be 

considered, e.g., using dynamic programming to seek an 

approximated trajectory with minimum coding cost, and improve the 

probability estimation by extended Kalman filtering. Third, applying a 

hierarchy of compression stages is an interesting idea for further 

investigation. Finally, the coding scheme of multiple similar GPS 

trajectories can be jointly considered. 
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6. Summary of the 

Contributions  

6.1 CONTRIBUTIONS OF THE THESIS 

In [P1] a multi-layer filtering algorithm is proposed for raster map 

images by transforming discrete denoising into binary domain. It 

consists of three intuitive image operators: layer decomposition, binary 

image filtering, and layer merging. Experimental results show that the 

proposed method has a lower computational cost and memory 

consumption than other statistical filters, and it is efficient for 

denoising raster map images. From our experiment, it achieves a 

similar error rate to that of Discrete Universal Denoising (DUDE), but 

with a lower computational cost. 

 

In [P2] we extended the statistical filter to a specific continuous-

input-and-finite-output problem, in which the map images are 

corrupted by an additive Gaussian noise. The extended method 

iteratively conducts a fusion procedure based on the probability 

distribution of pixels’ intensity in RGB space and their conditional 

probabilities in the local contexts. It can also be considered as an 

energy minimization model similar to the Markov random field, but the 

neighborhood similarity is replaced by a conditional probability of the 

local context. It is also extended for filtering mixed Gaussian-impulsive 

noise. The proposed raster map filtering algorithm achieves better 

results than the previous denoising algorithms for photographic 

images, see Tables 6.1-6.3. It can also be applied in color quantization 

processes for noisy images. 

 

In [P3] we focus on the optimized context selection in filtering raster 

map images. The reason is that identifying and excluding the possible 

noisy pixels in the context template is of great importance in achieving 

a desirable filtering result. To solve the above problems, we propose a 
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novel context-based voting method to detect the possible noisy pixels. 

From our experiment, the error rate is improved by 5% compared with 

[P2] for filtering impulsive noise. The proposed voting strategy can 

also be extended and used in other image analysis problem, such as 

texture analysis. 

 

In [P4] a fast O(N) multi-resolution GPS trajectory simplification 

algorithm is proposed, with both experimental results and theoretical 

analysis. The proposed simplification algorithm is based on a joint 

optimization of two new error measures, local integral square 

synchronous Euclidean distance (LSSD), and integral square synchronous 

Euclidean distance (ISSD). The time complexity is reduced from O(N2) as 

in the TD-TR algorithm [34] to O(N), while our proposed method also 

achieves a better approximation result. The result is summarized in 

Table 6.4. 

 

In [P5] we propose a fast dynamic quantization algorithm for lossy 

compression of vector maps with latitude and longitude information. 

The underlying algorithm first identifies an optimal Lagrangian 

multiplier λ value for each quantization step l, and then constructs 

only one rate-distortion curve for encoding the differential coordinates. 

Experimental results show that the proposed method is 20 times faster 

than the previous dynamic quantization algorithm and achieves a 

similar or better compression performance.  

 

In [P6] a two-level strategy has been exploited to optimize the 

codebook design in vector map compression. To reduce the high 

coding cost of a large codebook in vector quantization, the codebook is 

designed only for the most common vectors, and the rest (called 

outliers) are coded by uniform quantization. A dynamic programming 

method is applied to improve the quantized vector selection in a 

closed-loop framework, instead of using a conventional greedy 

approach. According to our experiments, the proposed algorithm 

achieves approximately a 5% improvement compared with [P5]. The 

result is summarized in Table 6.5. 
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In [P7] we exploit the problem of lossy compression for GPS 

trajectories with latitude, longitude and timestamp information under 

a given error tolerance, i.e., maximum synchronous Euclidean distance 

(max SED). In the proposed algorithm, speed and direction changes 

are used in the encoding process instead of differential coordinates. 

Line simplification and quantization are combined in the encoding 

process in order to seek the approximated trajectory for compression. 

From our experiments, the bit-rate of the proposed algorithm is 0.39 

KB/h for 3m accuracy, and with only 35% of the storage cost of the TD-

TR+LZMA algorithm, see Table 6.6. In comparison with the GPX file 

the proposed algorithm achieves over 100:1 compression ratio, see 

Table 6.7. 

6.2 SUMMARY OF RESULTS 

In this sub-section, Table 6.1-6.7 are listed to summarize the 

experimental results in [P1] - [P7]. 

 

Table 6.1 Statistical filtering for impulsive noise of Set #1 

Error rate (%) Noise level  

δ = 0.05 δ = 0.10 δ = 0.20 

PGF [3] 1.40 3.56 10.9 

CT [19] 1.04 7.83 19.9 

DUDE [11] 0.94 1.95 5.04 

MUD [P1] 0.93 2.12 5.46 

CTM [P2] 0.65 1.31 3.35 

OCTM [P3] 0.62 1.20 3.08 

 

Table 6.2 Statistical filtering for Gaussian noise of Set #1 

PSNR(dB) Noise level  

σ= 15 σ= 25 σ= 35 

BLS-GSM [5] 26.8 24.4 22.2 

NLM [6] 26.9 24.9 22.7 

BM3D [8] 29.1 26.2 23.9 

CTM [P2] 59.4 47.1 42.7 
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Table 6.3 Statistical filtering for mixed Gaussian-impulsive noise of 

Set #1 

PSNR(dB) Noise level  

δ = 0.03, σ= 15 δ = 0.05, σ= 25 δ = 0.10, σ= 35 

FPGA [32] 22.0 19.5 16.4 

PGF [3] +BM3D [8] 22.5 19.8 16.3 

CTM [P2] 25.6 23.6 20.3 

 

Table 6.4 Result of GPS Trajectory Simplification of MOPSI Dataset 

 

Table 6.5 Vector map compression for UK map 

MSE (x10-7) 2 bit/point 6 bit/point 10 bit/point 

CBC [74] N/A 78 20 

Ref Line [75] N/A 450 6 

DFQ [P5] 70 16 1.3 

OVQ [P6] 55 10 1.3 

 

 

 

 

 

 

 RMSE MAE MEDE MAXE 

fLSSD = 50, N/M = 8.02 

D-P [46]  4.51 2.38 1.32 39.0 

TD-TR [34] 1.82 1.41 1.23 4.61 

MRPA[P4]  1.61 1.23 1.05 5.88 

fLSSD = 2000, N/M = 25.1 

D-P [46]   13.8 8.39 5.08 81.1 

TD-TR [34] 6.85 5.55 4.82 17.7 

MRPA[P4]  5.96 4.76 4.07 23.9 

fLSSD =105, N/M = 79.4 

D-P [46]   42.0 29.0 19.9 173.3 

TD-TR [34] 26.7 21.6 18.3 70.5 

MRPA[P4]  22.9 18.5 15.8 79.2 
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Table 6.6 Result of GPS trajectory compression  

 Geolife (KB/h) MOPSI (KB/h) 

 SED = 3m SED = 10m SED = 3m SED = 10m 

TD-TR + 

LZMA [34] 
0.95 0.53 1.94 1.06 

GTC [P7] 0.39 0.19 0.75 0.35 

Filtered Data 

+ GTC [P7] 
0.31 0.16 0.46 0.26 

 

 

Table 6.7 Size of the compressed GPS trajectories  

 Geolife (KB) MOPSI (KB) 

Original 

GPX file 
426,100 75,573 

Compressed

GPX file 
36,514 14,466 

Compressed

SED = 3m 
1,215 258 

Compressed

SED = 10 m 
576 120 
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7. Conclusions 

We have studied raster map filtering, GPS trajectory simplification, 

lossy compression of vector map and GPS trajectories.  

In raster map filtering, both the multi-layer method and statistical 

method are proposed. In the multi-layer method, the problem of color 

image filtering is converted into binary domain. Therefore it can 

achieve a higher computational efficiency. However, even if the local 

color priority scheme is used, this method still has a limitation when 

processing map images with higher number of colors (>10 colors). 

Later, extensions are made for statistical filtering algorithms on 

processing additive Gaussian noise and mixed Gaussian-impulsive 

noise. A novel voting-based context selection scheme is also developed 

to exclude the noisy pixels in the context template. It has a lower error 

rate at the expense of high computational cost. In future work, we will 

consider extending the methodology for processing gray-scale images 

and medical images. 

For vector data and GPS trajectories, both simplification and lossy 

compression algorithms are presented. Two new error measures are 

proposed for spatial-temporal data and the proposed simplification 

algorithm has a linear time complexity. It can be used to improve the 

scheme of map visualization as well as a point reduction solution 

during server-client communication. In future work, a joint 

simplification solution for multiple GPS trajectories will also be 

considered, where a fast trajectory clustering [113] algorithm may be a 

possible solution for real-time application. 

Meanwhile, the lossy compression algorithms for both vector map 

and GPS trajectories are also discussed. As a general compression 

solution, the proposed algorithm uses no prior information during the 

encoding process, and each GPS trajectory is processed separately. In 

the future, history information will also be considered, and a joint 

compression scheme for multiple GPS trajectories can be used. Road 

networks can also be valuable information during the compression 

process to improve both the compression ratio and the accuracy of the 

trajectories. 



 

66 Dissertations in Forestry and Natural Sciences No 81        

 

References 

1. P.K. Agarwal, K.R. Varadarajan, "Efficient algorithms for 

approximating polygonal chains", Discrete Comput. Geom. 23, 273–

291, 2000. 

2. A. Akimov, A. Kolesnikov and P. Fränti, "Coordinate quantization 

in vector map compression", IASTED Conference on Visualization, 

Imaging and Image Processing (VIIP’04), 748-753, 2004. 

3. A. Akimov, A. Kolesnikov and P. Fränti, "Reference line approach 

for vector data compression", IEEE Int. Conf. on Image Processing 

(ICIP'04), vol. 2, 1891-1894, 2004.  

4. A. Akimov, A. Kolesnikov, and P. Fränti, "Lossless compression of 

color map images by context tree modeling", IEEE Trans. Image 

Process., vol. 16, no. 1, 114–120, 2007. 

5. H. Alt, L.J. Guibas, "Handbook of Computational Geometry", pp. 

121-153, 1999. 

6. H. Alt, C. Knauer, C. Wenk, "Matching polygonal curves with 

respect to the Fréchet distance", STACS, LNCS , 63-74, 2001. 

7. A. Barbu, "Training an active random field for real-time image 

denoising", IEEE Trans. Image Process., vol. 18, no. 11, 2451–2462, 

2009. 

8. M. Berg, O. Cheong, M. Kreveld, Computational geometry: 

algorithms and applications, 3rd edition, Springer, 2008. 

9. P. Bhowmick, B.B. Bhattacharya, "Fast Polygonal Approximation 

of Digital Curves Using Relaxed Straightness Properties", IEEE 

Trans. on Pattern Anal. Mach. Intell., 29(9), 1590 – 1602, 2007.



References 

Dissertations in Forestry and Natural Sciences No 81       67 

10. N. Bouaynaya, M. Charif-Chefchaouni, D. Schonfeld, "Theoretical 

foundations of spatially-variant mathematical morphology Part I: 

Binary Images", IEEE Trans. Pattern Anal. Mach. Intell., 30(5), 823-

836, 2008. 

11. A. Buades, B. Coll, and J.M. Morel, "A non-local algorithm for 

image denoising", in Proc. IEEE Int. Conf. Computer Vision and 

Pattern Recognition, vol. 2, 60–65, 2005. 

12. C. Le, T. Ebrahimi, M. Kunt, "Progressive content-based shape 

compression for retrieval of binary images", Computer Vision and 

Image Understanding, 71(2), 198-212, 1998. 

13. B.P. Buttenfield, "Transmitting vector geospatial data across the 

Internet", Proc. GIScience, LNCS, vol. 2478, 51-64, 2002. 

14. J. Camarena, V. Gregori, S. Morillas, A. Sapena, “Fast detection 

and removal of impulsive noise using peer groups and fuzzy 

metrics”, Journal of Visual Communication and Image Representation, 

19(1), 20-29, 2008. 

15. J. Camarena, V. Gregori, S. Morillas, A. Sapena, ”Two-step fuzzy 

logic-based method for impulse noise detection in colour images”, 

Pattern Recognition Letters, 31(13), 1842-1849, 2010. 

16. H. Cao, O. Wolfson, G. Trajcevski, "Spatio-temporal data 

reduction with deterministic error bounds", VLDB Journal, 15(3), 

211-228, 2006. 

17. W.S. Chan, F. Chin, "On approximation of polygonal curves with 

minimum number of line segments or minimum error", Lecture 

Notes in Computer Science, vol.650, 378-387, 1992.  

18. P. Chatterjee, P. Milanfar, "Patch-based near-optimal image 

denoising", IEEE Trans. on Image Process., 21(4), 1635 -1649, 2012. 

19. C. Chaux, A. Jezierska, J-C. Pesquet, H. Talbot, "A Spatial 

Regularization Approach for Vector Quantization", Journal of 

Mathematical Imaging and Vision, 41(1), 23-38, 2011. 



Minjie Chen: Processing of Maps and GPS Trajectories in Location-based 

Applications 
 

68 Dissertations in Forestry and Natural Sciences No 81        

20. D. Chen, O. Daescu, "Space-efficient algorithms for approximating 

polygonal curves in two dimensional space", Computing and 

Combinatorics, vol.1449, 45-55, 1998. 

21. M. Chen, M. Xu, P. Fränti, "Statistical filtering of raster map 

images", IEEE Int. Conf. on Multimedia & Expo (ICME'10), 

Singapore, 394-399, July 2010.  

22. Y. Chen, K. Jiang, Y. Zheng, C. Li, N. Yu, "Trajectory 

Simplification Method for Location-Based Social Networking 

Services", ACM GIS workshop on Location-based social networking 

services, 33-40, 2009. 

23. Y. Chen, Y. Liu, Z. Fu, and R. Wang, “Automatic extracting 

residential areas from color scanned topographical maps,” Image 

Signal Process., 2009. 

24. J.W. Choi, G.H. Elkaim, “Bézier curves for trajectory guidance”, 

World Congress on Engineering and Computer Science 

(ECECS’08), 625-630, Oct. 2008. 

25. P. Chou, T. Loolabaugh and R.M. Gray, “Entropy-constrained 

vector quantization” , IEEE Trans. on Acoustics, Speech, Signal 

Processing, 37(1), 31–42,1989. 

26. K.L Chung, W.M Yan, W.Y. Chen, "Efficient algorithms for 3-D 

polygonal approximation based on LISE criterion", Pattern 

Recognition 35, 2539-2548, 2002. 

27. K.L. Chung, P.H. Liao, J.M. Chang, "Novel efficient two-pass 

algorithm for closed polygonal approximation based on LISE and 

curvature constraint criteria", Journal of Visual Communication and 

Image Representation 19(4), 219-230, May 2008. 

28. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image 

denoising by sparse 3-D transform-domain collaborative filtering", 

IEEE Trans. Image Process., vol. 16, no. 8, 2080–2095, 2007. 



References 

Dissertations in Forestry and Natural Sciences No 81       69 

29. O. Daescu, "New results on path approximation", Algorithmica 

38(2), 131–143, 2004. 

30. O. Daescu, N. Mi, "Polygonal chain approximation: A query based 

approach", Computational Geometry, 30(1), 41–58, 2005.  

31. O. Daescu, N. Mi, C.S. Shin, A. Wolff, "Farthest-point queries with 

geometric and combinatorial constraints", Computational Geometry, 

33 (3), 174–185, 2006. 

32. H. Ding, G. Trajcevski, P. Scheuermann. X. Wang, E. J. Keogh, 

"Querying and mining of time series data: experimental 

comparison of representations and distance measures", 

Proceedings of the VLDB, 1(2), 1542-1552, 2008. 

33. W. Dong, X. Li, L. Zhang and G. Shi, "Sparsity-based Image 

Denoising via Dictionary Learning and Structural Clustering", 

IEEE Conference on Computer Vision and Pattern Recognition, 457-464, 

2011. 

34. D.H. Douglas, T.K. Peucker, "Algorithm for the reduction of the 

number of points required to represent a line or its caricature", The 

Canadian Cartographer, 10 (2), 112-122, 1973. 

35. M. Elad and M. Aharon. "Image denoising via sparse and 

redundant representations over learned dictionaries", IEEE Trans. 

Image Process., vol. 15, no. 12, 3736–3745, 2006. 

36. R. Estkowski, J. Mitchell, "Simplifying a polygonal subdivision 

while keeping it simple", Symposium on Computational Geometry, 

40-49, 2001. 

37. D. Eu, G.T. Toussaint, "On approximation polygonal curves in 

two and three dimensions", Graphical Models, and Image Processing, 

56(3), 231-246, 1994. 

38. S. Forchhhammer, O. Jensen, "Content layer progressive coding of 

digital maps", IEEE Trans. on Image Process., 11(12), 1349-1356, 

2002. 



Minjie Chen: Processing of Maps and GPS Trajectories in Location-based 

Applications 
 

70 Dissertations in Forestry and Natural Sciences No 81        

39. P. Fränti, T. Kaukoranta, D.-F. Shen and K.-S. Chang, “Fast and 

memory efficient implementation of the exact PNN“, IEEE Trans. 

on Image Process., 9 (5), 773-777, 2000. 

40. P. Fränti, A. Tabarcea, J. Kuittinen, V. Hautamäki, "Location-

based search engine for multimedia phones", IEEE Int. Conf. on 

Multimedia & Expo (ICME'10), Singapore, 558-563, July 2010.  

41. P. Fränti, J. Chen, A. Tabarcea, "Four aspects of relevance in 

location-based media: content, time, location and network", Int. 

Conf. on Web Information Systems & Technologies (WEBIST'11), 

Noordwijkerhout, Netherlands, 413-417, May 2011. 

42. G. Gemelos, S. Sigurjonsson, and T. Weissman, "Algorithms for 

discrete denoising under channel uncertainty", IEEE Trans. Signal 

Process., vol. 54, no. 6, 2263–2276, 2006. 

43. G. Gimel’farb, "Adaptive context for a discrete universal denoiser", 

Structural, Syntactic, and Statistical Pattern Recognition, IAPR Int. 

Workshops, SSPR 2004 and SPR, 477–485, 2004.  

44. M.S. Grewal, L.R. Weill, A. P. Andrews, Chapter 8 in Global 

Positioning Systems, inertial Navigation and Integration. Second 

Edition, John Wiley & Sons, 2007. 

45. A. Gribov, E. Bodansky, "A new method of polyline 

approximation", Proc. of International Conference on Structural, 

Syntactic and Pattern Recognition, LNCS, vol. 3138, 504-511, 2004. 

46. M. Halkidi, Y. Batistakis, and M. Vazirgiannis, "Cluster validity 

methods", ACM SIGMOD Record, 2002. 

47. T. Henderson and T. Linton, “Raster map image analysis,” in Int. 

Conf. Document Analysis and Recognition (ICDAR’09), 376–380, 2009. 

48. J. Hershberger, J. Snoeyink, "Cartographic line simplification and 

polygon CSG formulae in O(n log* n) time", 5th International 

Workshop on Algorithms and Data Structures, 93–103, 1997. 



References 

Dissertations in Forestry and Natural Sciences No 81       71 

49. J. Hightower, G. Borriello, “Particle filters for location estimation 

in ubiquitous computing, a case study”, Int. Conf. on Ubiquitous 

Computing, 88–106, 2004. 

50. H. Imai, M. Iri, "Polygonal approximations of a curve-

formulations and algorithms", Computational Morphology, 71-86, 

Amsterdam, 1988. 

51. G. Kellaris, N. Pelekis and Y. Theodoridis, "Trajectory 

Compression under Network Constraints", Lecture Notes in 

Computer Science, Vol. 5644, 392-398, 2009. 

52. A. Khotanzad and E. Zink, “Contour line and geographic feature 

extraction from USGS color topographical paper maps,” IEEE 

Trans. Pattern Anal. Mach. Intell., 25(1), 18–31, 2003. 

53. M. Koegel, W. Kiess, M. Kerper, M. Mauve, “Compact Vehicular 

Trajectory Encoding”, IEEE Vehicular Technology Conference 

(VTC ’11), 1-5, May 2011. 

54. M. Koegel, M. Mauve, ”On the Spatio-Temporal Information 

Content and Arithmetic Coding of Discrete Trajectories”, 

International Conference on Mobile and Ubiquitous Systems: 

Computing, Networking and Services, Copenhagen, Denmark, 

December 2011.  

55. A. Kolesnikov, P. Fränti, "A fast near-optimal min-# polygonal 

approximation of digitized curves", ACIT'2002, 418-422, 2002. 

56. A. Kolesnikov, P. Fränti, "Reduced-search dynamic programming 

for approximation of polygonal curves", Pattern Recognition Letters, 

24 (14), 2243-2254, October 2003. 

57. A. Kolesnikov, P. Fränti, X. Wu, "Multi-resolution Polygonal 

Approximation of Digital Curves", 17th International Conference on 

Pattern Recognition (ICPR'04), vol.2, 855-858, 2004. 



Minjie Chen: Processing of Maps and GPS Trajectories in Location-based 

Applications 
 

72 Dissertations in Forestry and Natural Sciences No 81        

58. A. Kolesnikov, "Optimal encoding of vector data with polygonal 

approximation and vertex quantization", SCIA’05, LNCS, vol. 

3540, 1186–1195. 2005. 

59. A. Kolesnikov, A. Akimov, "Distortion-constrained compression 

of vector maps", SAC, 8-12, 2007. 

60. A. Kolesnikov, "Optimal algorithm for lossy vector data 

compression", Int. Conf. on Image Analysis and Recognition 

(ICIAR'07), LNCS 4633, 761-771, 2007. 

61. A. Kolesnikov, "Fast Algorithm for ISE-bounded Polygonal 

Approximation“, IEEE International Conference on Image Process., 

1013-1015, 2008. 

62. A. Kolesnikov, "Fast algorithm for error-bounded compression of 

digital curves", IEEE International Conference on Image Processing, 

1453-1456, 2010. 

63. P. Kopylov and P. Fränti, "Color quantization of map images", 

IASTED Conf. Visualization, Imaging, and Image Processing, 837–842, 

2004. 

64. P. Kopylov and P. Fränti, "Filtering of color map images by 

context tree modeling", IEEE Int. Conf. Image Process., vol. 1, 267–

270, 2004. 

65. P. Kopylov and P. Fränti, "Compression of map images by 

multilayer context tree modeling", IEEE Trans. on Image Process., 

14(1), pp.1-11, 2005. 

66. F. Kossentini, “A fast PNN design algorithm for entropy -

constrained residual vector quantization”, IEEE Trans. on Image 

Process., vol.7, 1045-1050, 1998. 

67. L. Labakhua, U. Nunes, R. Rodrigues, F.S. Leite, “Smooth 

trajectory planning for fully automated passengers vehicles - 

spline and clothoid based methods and its simulation”, Informatics 



References 

Dissertations in Forestry and Natural Sciences No 81       73 

in Control Automation and Robotics, Lecture Notes in Electrical 

Engineering, 15(2), 169-186,2008. 

68. R. Lange, T. Farrel, F. Dürr, K. Rothermel, "Remote real-time 

trajectory simplification", IEEE International Conference on Pervasive 

Computing and Communications, 1-10, 2009. 

69. J.G. Lee, J. Han, K.Y. Whang, “Trajectory clustering: a partition-

and-group framework”, ACM SIGMOD Int. Conf. on Management 

of Data, 593-604, New York, USA, 2007. 

70. W.C. Lee and J. Krumm, "Chapter 1: Trajectory Preprocessing", in 

Book Computing with Spatial Trajectories, Springer, 2011. 

71. S. Leyk and R. Boesch, “Colors of the past: color image 

segmentation in historical topographic maps based on 

homogeneity,” Geoinfomatica, vol. 14, 1–21, 2010. 

72. Z. Li, and S. Oppenshaw, "A natural principle for the objective 

generalization of digital maps", Cartography and Geographical 

Information Systems, vol. 20, 19-29, 1993. 

73. R. Lukac, "Adaptive vector median filtering", Pattern Recognition 

Letters, vol. 24, 1889–1899, 2003. 

74. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, "Non-

Local Sparse Models for Image Restoration," IEEE International 

Conference on Computer Vision, 2272 - 2279, 2009. 

75. P.F. Marteau, G. Ménier, "Speeding up simplification of polygonal 

curves using nested approximations", Pattern Analysis and 

Application, 2008. 

76. A. Masood, "Optimized polygonal approximation by dominant 

point deletion", Pattern Recognition, 41 (1), 227-239, 2008. 

77. D. Mavridis and N. Papamarkos, "Color quantization using 

principal components for initialization of Kohonen SOFM", IEEE 

Int. Conf. Image Process., 1633–1636, 2009. 



Minjie Chen: Processing of Maps and GPS Trajectories in Location-based 

Applications 
 

74 Dissertations in Forestry and Natural Sciences No 81        

78. A. Melkman, J. O’Rourke, "On polygonal chain approximation", 

Computational Morphology, 87-95, Amsterdam, 1988. 

79. N. Meratnia, R.A. de By, "Spatiotemporal compression techniques 

for moving point objects", Proceedings of the Extending Database 

Technology, 765-782, 2004. 

80. S. Morillas, V. Gregori, and A. Hervas, "Fuzzy peer groups for 

reduction mixed Gaussian-impulsive noise from color images", 

IEEE Trans. Image Process., vol. 18, no. 7, 1452–1466, 2009. 

81. J. Muckell, J.H. Hwang, C.T. Lawson, S.S. Ravi, "Algorithms for 

compressing GPS trajectory data: an empirical evaluation", 

SIGSPATIAL International Conference on Advances in Geographic 

Information Systems, 402-405, 2010. 

82. J. Muckell, J.H. Hwang, V. Patil, C.T. Lawson, F. Ping , S.S. Ravi, 

"SQUISH: an online approach for GPS trajectory compression", 

International Conference on Computing for Geospatial Research & 

Applications, 1-8, 2011. 

83. J. Ni, C.V. Ravishankar, “Indexing Spatio-Temporal Trajectories 

with Efficient Polynomial Approximations,” IEEE Trans. on Knowl. 

and Data Eng., vol. 19, 663–678, May 2007. 

84. E. Ordentlich, G. Seroussi, S. Verdú, M. Weinberger, and T. 

Weissman, "A discrete universal denoiser and its application to 

binary images," IEEE Int. Conf. Image Process., 117–120, 2003.  

85. E. Ordentlich, M.J. Weinberger, and T. Weissman, "Multi-

directional context sets with applications to universal denoising 

and compression", IEEE Int. Symp. Inform. Theory, 1270–1274, 2005.  

86. J.C. Perez, E. Vidal, "Optimum polygonal approximation of 

digitized curves", Pattern Recognition Letter, vol. 15, 743–750, 1994. 

87. A. Pikaz, I. Dinstein, "An algorithm for polygonal approximation 

based on iterative point elimination", Pattern Recognition Letters, 16 

(6): 557-563, 1995. 



References 

Dissertations in Forestry and Natural Sciences No 81       75 

88. A. Podlasov, E. Ageenko, P. Fränti, "Morphological reconstruction 

of semantic layers in map images", Journal of Electronic Imaging, 15 

(1), 013016, January-March 2006. 

89. A. Podlasov, P. Kopylov, and P. Fränti, "Statistical filtering of 

raster map images using a context tree model", Int. Conf. Signal-

Image Technology & Internet-based Systems, 467–474, 2007. 

90. J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli, "Image 

denoising using a scale mixture of Gaussians in the wavelet 

domain", IEEE Trans. Image Process., vol. 12, no. 11, 1338–1351, 

2003. 

91. M. Potamias, K. Patroumpas, T. Sellis, "Sampling Trajectory 

Streams with Spatiotemporal Criteria", Proceedings of the Scientific 

and Statistical Database Management (SSDBM), 275-284, 2006. 

92. B.K. Ray, K.S. Ray, "A non-parametric sequential method for 

polygonal approximation of digital curves", Pattern Recognition 

Letter. 15, 161–167, 1994. 

93. M.D. Reavy and C.G. Boncelet, "BACIC: a new method for lossless 

bi-level and grayscale image compression", IEEE Int. Conf. on 

Image Processing, vol.2, 282-285, 1997. 

94. J. Rissanen, "A universal data compression system", IEEE Trans. 

Inf. Theory, vol. 29, no. 5, 656–664, 1983. 

95. S. Roth and M.J. Black, "Fields of experts: A framework for 

learning image priors", International Journal of Computer Vision, vol. 

82, no.2, 205-229, 2009. 

96. H. Sakoe, S. Chiba, "Dynamic Programming Algorithm 

Optimization for Spoken Word Recognition", IEEE Trans. on 

Acoustics, Speech and Signal Processing, 26(1), 43-39, 1978. 

97. D. Salomon, Data Compression, The Complete Reference, 4th edition, 

Springer, 2006. 



Minjie Chen: Processing of Maps and GPS Trajectories in Location-based 

Applications 
 

76 Dissertations in Forestry and Natural Sciences No 81        

98. M. Salotti, "Optimal polygonal approximation of digitized curves 

using the sum of square deviations criterion", Pattern Recognition, 

35(2), 435-443, 2002. 

99. F. Schmid, K.F. Richter and P. Laube, "Semantic Trajectory 

Compression", Lecture Notes in Computer Science, vol. 5644, 411-416, 

2009. 

100. S. Schulte, S. Morillas, V. Gregori, E.E. Kerre, “A New Fuzzy 

Color Correlated Impulse Noise Reduction Method”, IEEE Trans. 

on Image Process., 16(10), 2565-2575, 2007. 

101. G.M. Schuster and A.K. Katsaggelos, "An optimal polygonal 

boundary encoding scheme in the rate-distortion sense", IEEE 

Trans. on Image Processing, vol.7, 13-26, 1998.  

102. S. Shekhar, S. Huang, Y. Djugash, J. Zhou, "Vector map 

compression: a clustering approach", 10th ACM Int. Symp. 

Advances in Geographic Inform, 74-80, 2002. 

103. B. Smolka and A. Chydzinski, "Fast detection and impulsive noise 

removal in color images", Real-Time Imaging, vol. 11, no. 5–6, 389–

402, 2005.  

104. R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. 

Agarwala, M. Tappen, and C. Rother, "A comparative study of 

energy minimization methods for Markov random fields with 

smoothness-based priors", IEEE Trans. Pattern Anal. Mach. Intell., 

vol. 30, no. 6, 1068–1080, 2008. 

105. G.T. Toussaint, "On the complexity of approximating polygonal 

curves in the plane", IASTED International Symposium on Robotics, 

Switzerland, 59-62, 1985. 

106. Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, "Image 

quality assessment: From error visibility to structural similarity", 

IEEE Trans. Image Process., vol. 13, no. 4, 600–612, 2004. 



References 

Dissertations in Forestry and Natural Sciences No 81       77 

107. M. Weinberger, J. Rissanen, and R. Arps, "Application of 

universal context modeling to lossless compression of gray-scale 

images", IEEE Trans. Image Process., vol. 5, no. 4, 575–586, 1996. 

108. T. Weissman, E. Ordentlich, G. Seroussi, S. Verdґu, and M. 

Weinberger, "Universal discrete denoising: Known channel", IEEE 

Trans. Inf. Theory, vol. 51, no. 1, 5–28, 2005. 

109. X. Wu, G. Zhai, X. Yang, and W. Zhang, "Adaptive sequential 

prediction of multidimensional signals with applications to 

lossless image coding ", IEEE Trans. on Image Process., vol.20, no.1, 

36-42, 2011. 

110. B. Yang and Q. Li, "Efficient compression of vector data map 

based on a clustering model", Geo-spatial Information Science, 12(1), 

13-17, 2009. 

111. J. Yu and S. Verd´u, "Schemes for bidirectional modeling of 

discrete stationary sources", IEEE Trans. Inform. Theory, vol. 52, no. 

11, 4789–4807, 2006. 

112. Z. Yu, X. Zhou, "Computing with Spatial Trajectories", Springer, 

2011.  

113. Q. Zhao, V. Hautamäki, I. Kärkkäinen, and P. Fränti, "Random 

swap EM algorithm for finite mixtures models in image 

segmentation", IEEE Int. Conf. Image Processing, 2397–2400, 2009. 

114. H. Zhou and K. Mao, "An impulsive noise color image filter using 

learning-based color morphological operation", Digit. Signal 

Process., vol. 18, 406–421, 2008.  

115. X. Zhu, P. Milanfar, "A no-reference image content metric and its 

application to denoising", IEEE Int. Conf. Image Processing, 1145–

1148, 2010. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Paper P1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M. Chen, M. Xu and P. Fränti, "Multi-layer Filtering Approach for 

Map Images", IEEE Int. Conf. on Image Processing (ICIP'09), Cairo, 

Egypt, 3953-3956, 2009. 
© 2009 IEEE Reprinted, with permission 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Multi-layer Filtering Approach for Map Images 
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ABSTRACT 

Raster map image is an important set of color images with 
similar patterns and textures presented in a limited number 
of colors. Manipulating this class of color images using 
conventional image filters may lead to a severe over-
filtering problem, by which important details structures are 
over eliminated or degraded. Even if the statistical based 
algorithms have been recognized as a set of most efficient 
filters, their exponentially high memory consumption and 
computational cost can make them intractable in practice. 
To solve this operational difficulty, this work proposed a 
novel multi-layer image filtering approach transforming 
map image filtering into binary domain. It consists of three 
intuitive image operators: layer decomposition, binary 
image filters and layer merging. Experimental results 
demonstrated that the new proposed approach is very 
efficient for filtering of raster map image. 

 
Index Terms—Digital image processing, filtering. 

1. I�TRODUCTIO� 

A class of widely used color images in geosciences is raster 
map images that are encoded in a regular grid of pixel 
colors arrayed in rows and columns. In contrast to the 
conventional color images (e.g., photographic images),  
raster map images do not allow smooth continuous tone 
changes in colors but merely display pixel level repetitive 
detail structures, which are essential for interpreting map 
objects. This is because each color in the image represents a 
different semantic map object. However, in many 
applications, the color information of map images may be 
distorted by lossy compressions, vector-to-raster conversion, 
or during the digitization process itself. This color distortion 
may lead to a severe false recognition of map objects.  

A common way to address this problem is to apply image 
filtering before further processing. The main challenge in 
color image filtering is that most of color images contain 
multivariate data with color correlations, which make the 
design of image filters very difficult in practice. A proven 
set of intuitive color image filters is to apply gray-scale 
image filters for each channel of color images separately. 
However, this approach does not take into account the 
necessary color correlations, which results in a production 
of false colors and edge degradation. To overcome this 
difficulty, many filters have been studied using nonlinear 

approaches. For instance, a class of efficient color image 
filters can be designed using a set of ordering criterions or 
order-statistics for color vectors [3]. However, in most cases, 
the set of ordering criterions must be defined in terms of the 
distance between two color vectors, which is usually not 
appropriate for our case.  

This problem can be partly revealed by applying the 
ordering criterions only to the pixels that are identified (or 
assumed) as noises or outliers by using adaptive vector 
median [2] or fast peer group filter [4]. However, nonlinear 
filters designed for conventional color images may eliminate 
the most useful edge information (e.g., thin edges 
containing important information) when they are applied to 
map images. This is because each color in map images 
represents a distinct class of map objects, which forces the 
conventional filters to over-smooth the more detailed 
structures. Even though statistical modeling approaches [8, 
9] have made significant progress by learning image 
structure and preserving the repetitive structures, their 
memory consumption and computational expense are 
exponentially high. 

In this paper, we propose a multi-layer image filtering 
approach. Instead of using an order-statistics filter for color 
vectors (e.g., the adaptive vector median filter), the image I 
is first decomposed into a series of binary layers. For a 
given pixel (i,j), amongst � number of layers of {Lt(i,j)| t = 
1,��} there exists only one layer t where the pixel belongs 
to: Lt(i,j)= 1. Then each binary layer is processed separately 
by a binary image filtering method. In this way, we avoid 
the problem of dealing with color distances. Instead, the 
problem is reduced back into a simpler (binary) domain of 
which set operations (as in morphological filters), or rank-
order operations can be applied.  

For the sake of reconstructing the resulting filtered color 
image I* from the set of binary layers {L*t | t = 1,�� }, the 
layers must be ordered according to the color priority. 
Namely, for a given pixel (i,j), its output color in the filtered 
image, IG(i,j) must be selected from those layers such that 
{L*t(i,j)| L*t(i,j) ! 0, t = 1,��}. For this reason, prioritizing 
the colors is needed. We apply region-based ordering where 
the image is first divided into segments having different 
background color, and then deriving the color propriety for 
each segment locally.  

2. MULTI-LAYER DECOMPOSITIO� OF IMAGES 

The use of multi-layer decomposition was originally 
proposed in [5] for image compression. We extend this 
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framework to the filtering of map image. The basic idea 
behind the multi-layer approach is illustrated in Fig. 1. The 
image decomposition is straightforward, and the following 
filtering can be performed using any binary image filtering 
method. The last step is to merge the layers back to a color 
image, which requires some attention.  

Here, (i,j) denotes a pixel of a image I with limited 
number of colors, i.e. � << 256. The output color for the 
pixel, I(i,j), can be uniquely determined by a binary vector, 
xL,  

1( ( , ), ( , ))� �L �L i j L i jx  (1)
where each component xk such that: 

1, if ( , )
( , )

0, otherwiset
t I i j

L i j
��

� �
�

 (2)

Here, Lt(i,j) can be treated as the value of pixel (i,j) for tth 
binary layer. Clearly, any filter applicable to binary images 
can be performed on each of the � number of binary layers, 
e.g., median filter, morphological filter [7] and the statistical 
filter [8]. Once each of binary layers is processed, the 
resulting binary layers, {L*t | t = 1,�� }, are merged to 
reconstruct the output color image, IG. However, for a given 
pixel (i,j), there might be several layers LC where the pixel 
is set to 1: { L*t | L*t(i,j) = 1, 1<t<�}. Since the resulting 
only one color can be assigned to each pixel, it must be 
selected from the set LC according to some criterion. We 
make the selection based on color priority so that the output 
color is selected as the color layer with the highest priority:  

arg max * ( , ) 1
( , )

1, otherwise

� ��� �
��

� t
t tG

L i j
I i j  (3)

In other words, the decomposed binary layers must be 
ordered for the sake of merging the filtered binary images 
using (3). In image compression, graph based algorithm [10] 
has been applied to find optimal ordering of the binary 
layers using minimum spanning tree algorithm based on a 
compression cost matrix. However, the construction of the 
cost matrix have huge computational cost, which may not be 
feasible for filtering, and our criterion should be based on 
maximizing information in the image but not minimizing it.  

One useful heuristic is to order the layers according the 
frequency of object pixels appearing on it. The higher is the 
occurrence of a color, the lower priority is assigned to it. 
The idea is that frequent colors represent either background 
or other large objects, whereas infrequent colors represent 
finer details, which are more likely to be more important for 
the quality of the image. The ordering of the colors (binary 
layers) is the same for every pixel, and is therefore denoted 
as global layer ordering. An example of this is shown in Fig. 
1. The drawback of this approach is that the importance of 
the colors can be different in different regions. For example, 
the dominant (background) color that should be given the 
lowest priority is usually white in the map shown in Fig. 1, 
but in water areas it is blue and in some places it can be 
yellow (fields). To overcome this problem, we propose a 

region based algorithm for ordering the binary layers to 
localize the choice of color priority.  

 
Fig. 1 Multi-layer framework using global layer ordering  

3. REGIO� BASED ORDERI�G OF THE LAYERS 

Merging the filtered binary images using global ordering 
results in a severe problem of damaging important 
disconnected structures. For example, the island inside the 
lake region in Fig. 1 disappeared as a result of the merging 
because the global layer ordering scheme assigns the blue 
color with higher priority than the white color, thus destroys 
the small island. 

 A region based ordering scheme is proposed for merging 
the binary layers L* as follows. A multi-layer based image 
segmentation operation was firstly conducted to segment the 
raster map image into several distinct regions, S = {sk | " sk 
= I, k = 1,� K, and sk # sl = $, � 1<k, l < K }. After this 
preliminary segmentation, the color priority for each image 
pixel (i,j) is calculated according to the color occurrence in 
its region Sk, where (i,j) � Sk. The main idea of exploiting 
this region based color ordering scheme is to incorporate the 
statistical features behind those disconnected semantic 
regions into image filters. For the sake of image 
segmentation, the conventional gradient-based segmentation 
algorithms in [6] are seemingly not applicable due to an 
inadequate number of colors for extracting the edge 
information. Hence, instead of performing image 
segmentation on the input raster map, a multi-layer based 
image segmentation algorithm is applied. After a dilation, 
hole fillings and region labeling operation on all the filtered 
binary layers L*, a set of large-sized candidate or initial 
regions (M number of candidate regions) are extracted from 
all these layers. For simplicity of implementation, those 
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refined candidate regions are maintained in a list of size M, 
R = {Rm |, m = 1,� M} in a descending order according to 
their pixel size. These candidate regions in the list are 
evaluated one by one according to two region based features 
(f1 and f2). The first feature (f1) is the number of object 
pixels in the candidate region relative to the size of the 
region:  

( )
( , )

1

* ( , )

( )
| |

��
�

m

t m
i j R

m
m

L i j

f R
R

 (4)

where Rm is the candidate region in the t(m)th layer. The 
second feature (f2) is the percentage of labeled pixels in Rm 
so far: 

2
| ( , ) 0 ( , ) |

( )
| |

M m
m

m

S i j i j R
f R

R
! # �

�  (5)

where SM is a label mask image for the image segmentation 
S such that sk = {(i,j) | SM(i,j) = k, (i,j) � I}. The 
pseudocodes of the underlying image segmentation 
algorithm can be found in Fig. 3. 

Once the label mask image has been obtained using the 
algorithm in Fig. 3, the remaining non-labeled pixels 
( (i,j)=0) are processed by distance transform algorithm. It 
assigns these pixels the same label as their nearest 
segmented region.  

For the final region sk in S, its color frequency is 
calculated, and the local color ordering within this region is 
determined by sorting the color from lowest to highest 
frequency. A demonstration of the segmentation results is 
given in Fig. 2, by showing the background color (the 
lowest priority color) of each segmented region.  

The overall algorithm is demonstrated in Fig. 4 by 
showing the resulting regions, and their corresponding color 
priorities. The merging process is also demonstrated where 
the image is composed step-by-step. At first step, the 
background colors are added for each region, and the 
remaining colors then one by one.  

 
Fig. 2 Background color for each segmented region 
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Fig. 3 Pseudocodes of multi-layer image segmentation algorithm

4. RESULT A�D DISCUSSIO� 

We have evaluated the proposed multi-layer filtering 
algorithm using a set of six map images from the database 
provided by [1]. These images are presented by 5-16 colors, 
and they are of different spatial resolutions. Some of them 
include quantization noise whereas others are converted 
from vector origin. For evaluating the performance of the 
image filters, we artificially distort those images by adding 
impulsive and content-dependent noise as described in [9].  

As a performance comparison, four alternative filters for 
color images are studied. Adaptive vector median (AVM) [2] 
and color morphological (MM) [3] are the filters designed 
for general color image filtering,  while fast peer group 
filter (FPGF) [4] and context-tree filter (CT) [9] are tailored 
methods for color-index image. We measure the mean color 
distance (�E) in L*a*b color space. Although this measure 
does not match completely how human see the image, it 
gives rough idea about the relative performance of the filters. 

For implementation of the proposed multi-layer image 
filtering approach, two binary filters, spatially-variant 
morphology [7] and discrete universal denoising [8] are 
incorporated into the framework of filtering each 
decomposed binary layers. We termed them as MSM and 
MUD in Table 1 respectively.  

The objective experiment results obtained by using the 
six raster map image filters are summarized reported in 
Table 1 and subjective comparison in Fig. 5. It turns outs 
from the results that the proposed multi-layer method can 
work more efficiently than the other four filters when image 
is converted from vector origin with less color number 
(Image#1, 2).When those map images are generated by 
quantization of scanning maps with more colors, some 
meaningless layers may exist because of the inaccurate 
quantization, which make the frequency-based ordering 
does not work. 

����



 
Fig. 4 An example of merging of filtered binary images (right) using the region based layer ordering (left) 
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Fig. 5 Performance comparison of the six image filters tested in the experiments 

 
Table 1 the filter efficiency for 5% impulsive noise (I) and 20% 
content-dependent noise (CD) 

�E Image 1 2 3 4 5 6 
Colors 5 5 9 10 16 16 

I 

AVM 3.47 5.81 8.98 7.83 1.68 6.18
MM 4.80 4.16 12.0 10.0 2.60 12.8

FPGF 0.95 1.00 1.77 1.45 0.87 3.35
CT 0.77 0.95 1.54 1.97 0.83 2.24

MSM 0.99 1.21 3.10 2.56 1.67 8.09
MUD 0.68 0.89 1.87 1.69 1.06 3.88

CD 

AVM 4.14 5.58 9.26 8.07 1.89 7.21
MM 4.61 4.31 12.0 9.96 2.73 12.5

FPGF 1.99 1.70 3.51 3.35 1.42 5.02
CT 2.08 1.91 3.15 3.66 1.17 3.56

MSM 2.03 2.02 4.52 4.05 2.05 9.01
MUD 2.04 1.81 3.37 3.23 1.39 5.22

 

5. CO�CLUSIO� 

We have proposed a multi-layer approach for filtering 
algorithm for raster map images. This proposed method 
provided a solution for processing map image in binary 
domain. It also has lower computation cost and memory 
consumption comparing to statistical method. Experimental 
results have validated that the proposed algorithm is very 
efficient for filtering raster map images.  

Future work can be done in two aspects: refining the 
proposed filtering algorithm in denoising the true color 

images and optimizing the region based layer ordering using 
shape analysis. 
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Adaptive Context-Tree-Based Statistical Filtering
for Raster Map Image Denoising

Minjie Chen, Student Member, IEEE, Mantao Xu, and Pasi Fränti, Senior Member, IEEE

Abstract—Filtering of raster map images is chosen as a case
study of a more general class of palette-indexed images for the
denoising problem of images with a discrete number of output
colors. Statistical features of local context are analyzed to avoid
damage to pixel-level patterns, which is frequently caused by
conventional filters. We apply a universal statistical filter using
context-tree modeling via a selective context expansion cap-
turing those pixel combinations that are present in the image.
The selective context expansion makes it possible to use a much
larger spatial neighborhood, with a feasible time and memory
complexity, than fixed-size templates. We improve the existing
context-tree approaches in two aspects: Firstly, in order to cir-
cumvent the context contamination problem, a context-merging
strategy is applied where multiple similar contexts are considered
in the conditional probability estimation procedure. Secondly, we
study a specific continuous-input-finite-output problem in which
the map images are corrupted by additive Gaussian noise. Perfor-
mance comparisons with competitive filters demonstrate that the
proposed algorithm provides robust noise filtering performance
and good structure preservation in all test cases without any a
priori information on the statistical properties of the noise.

Index Terms—Context-tree modeling, raster map image, statis-
tical filtering.

I. INTRODUCTION

G EOGRAPHICALmap images are classified into two for-
mats: raster and vector. Vector format is suitable for large

databases, providing excellent flexibility for display and com-
pact storage size. A raster image, on the other hand, is encoded
in a regular grid of pixel colors in which each color represents a
different class of semantic map object. It consists of pixel-level
detailed structures and sharp edges but lacks smooth color tran-
sitions that are typical for photographic images. It does not re-
quire any additional image processing and is suitable for de-
livery to multimedia applications as such.
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Raster maps are an important source of geospatial informa-
tion due to popularized geographic information systems. A large
number of topographic maps have been collected during the last
century, and they contain geographic features that can be used in
the verification of map-image-guided navigation applications.
Advances in digital information technology have brought the
conversion of these older physical documents into digitized rep-
resentations. However, the digitization of maps may incur addi-
tional noise and errors in the digital versions. Aging of paper
archived for a long period also leads to additional random color
variations. This kind of image degradation results in mismatch
and false recognition of important semantic map objects. Image
denoising is therefore needed for accurate conversion of these
older maps into raster format. This preprocess can be crucial for
the later raster map analysis step, when extracting the semantic
content (roads, contours, river) on a map [31]–[34]. Image de-
noising can also be applied as a preprocessing when converting
a raster map into a vector format.

A great variety of noise removal techniques have been
investigated for color image processing. However, most noise
removal algorithms are developed for only one type of noise
model specifically. For instance, to eliminate impulsive noise,
a number of denoising algorithms have been developed by
first identifying the potential noisy pixels in the color image
and then employing a class of vector median filters over those
detected noisy pixels. Noisy pixels can be detected either by
classifying each pixel directly in RGB color space [1] or by
setting some statistical rules in terms of the variation in the
local neighborhood [2], [3]. However, these approaches need
a training dataset or prior knowledge for constructing the
statistical rules. A multi-layer approach was recently proposed
[4] to solve the problem in the binary domain.

For additive Gaussian noise, a number of state-of-the-art de-
noising algorithms have been proposed by selecting an optimal
linear combination of a few basis elements in pixel-wise or
block-wise order. These pioneer denoising techniques include
wavelet denoising [5], non-local means [6], dictionary-based
method (K-SVD) [7], block-matching and 3-D filtering [8],
Markov random fields, and active random fields [9], [10]. How-
ever, they are limited to the case when the true signal can be
approximated by a linear combination of a few basis elements,
and therefore, they are designed for denoising continuous tone
images and do not apply well for palette-indexed images.

Raster map images contain a number of complicated spatial
structures such as one-pixel thin lines, textured areas, dashed
and dotted lines, text, and symbols. The problem of false fil-
tering exists with most filters designed for photographic im-
agery when processing these kinds of spatial structures. This is

1520-9210/$26.00 © 2011 IEEE
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Fig. 1. Examples of complicated structures that are treated as noise by most
filters.

because these filters consider local intensity variation as noise
but ignore repeated patterns in the entire image. On the other
hand, high variance regions including written text, symbols, and
textured background lack uniformity but their presence is vital
for the readability of the map. Examples of such structures are
shown in Fig. 1.

A pioneer work in the art of statistical filtering is the so-called
discrete universal denoising (DUDE) [11] in design of a filter
for binary data with a known noise channel, which comprises
two steps: counting statistics for all context patterns encoun-
tered (analysis step), and denoising by utilizing the conditional
probability in a local context (denoising step). This method is
applicable in denoising of binary images if the error probability
can be reliably estimated. Namely, if the conditional proba-

bility of the current pixel in its context is lower
than , it is considered as noise and replaced by its com-
plementary value.

This kind of context-based approach can be extended to the
denoising problemwith an unknown channel using themin-max
criterion [12]. In contrast to the previous algorithms [1]–[10]
that incorporate a prior model, statistical filtering is based on
an unsupervised learning paradigm. Patterns that are frequently
presented in the image are detected and considered as impor-
tant image structures that should be preserved. On the contrary,
pixels that appear seldom in their context are treated as noise and
can be filtered out. This allows filteringwith preservation of bor-
ders and regular structures regardless of their size and variance.

However, the memory allocation for learning the patterns
grows exponentially with the number of pixels within the
pattern (context), which makes it of limited use in practice.
Moreover, the conditional probability estimation becomes inac-
curate for those contexts with rare appearance, which is known
as the context dilution problem. To circumvent this problem,
context-tree modeling [13], [14], [19] has been applied by
pruning redundant nodes of the context tree. This can be done
according to different criteria, such as fixed frequency [13],
maximum likelihood [15], or the coding cost of the model [14],
[16]. Adaptive context selection has also been extended for
denoising gray-scale images [17] by using a minimum descrip-
tion length (MDL) guided criterion aimed at finding an optimal
balance between the variance and bias of the errors in fitting a
2-D piecewise autoregressive (PAR) model to input images.

In this paper, we propose a new adaptive context-tree-based
statistical filtering algorithm for raster map images. In contrast

to the existing context-tree-based methods, we achieve two sig-
nificant improvements described below.

Firstly, although the context-tree-based algorithms are effi-
cient for the images with a smaller number of noisy pixels, the
contexts themselves will embrace a significant number of noisy
pixels when noise level is increased in the image. Including
noisy pixels (outliers) in the surrounding contexts will make
it difficult to estimate a good conditional probability distribu-
tion for context models. We call this the context contamination
problem, when the contexts themselves contain a number of out-
liers. For those infrequently appearing contaminated contexts,
we present a context-merging strategy in order to improve con-
ditional probability estimation. In our method, multiple similar
contexts are considered jointly in the conditional probability es-
timation procedure.

Secondly, we extend the algorithm to deal with map images
with additive Gaussian noise or mixed Gaussian-impulsive
noise. The extended method iteratively conducts a fusion
procedure according to the probability distribution of pixels’
intensity in the RGB space as well as their conditional proba-
bilities of contexts.

The rest of the paper is organized as follows. The proposed
method is introduced in Section II, experimental results are
reported in Section III, and finally, conclusions are drawn
in Section IV. A preliminary version of this paper has been
presented at ICME [30].

II. PROPOSED METHOD

For concreteness, a noise-free map image can be formulated
as follows: A clean map image has colors (size of color
palette) such that the alphabet includes all
possible index values in the image. For any pixel with
index value , its corresponding color in RGB space is

(1)

according to the color palette . Im-
pulsive noise is often produced in the transmission of the clean
image signal over an M-ary Symmetric Channel with tran-
sition matrix

(2)

where denotes the probability of output index when
the input index is , and is the noise level. The performance of
denoising impulsive noise can be evaluated using the following
measures:
1) Error rate: the percentage of different pixel values between

the noise-free and filtered images.
2) False acceptance rate (FA): the percentage of noise to sur-

vive after filtering (efficiency of noise removal).
3) False rejection rate (FR): the probability of an original

(clean) image pixel being filtered (amount of corruption
imposed by the filter).

Since the clean image is also an RGB image, the corre-
sponding noisy image can be produced by adding the same
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Fig. 2. Part of the context tree (first two levels) and its context template.

Fig. 3. Examples of context distribution: the pixels in the left and middle con-
texts are filtered using the dominant color whereas no filtering is done for the
pixel in the context on the right.

additive Gaussian noise with variance to each color channel
independently:

(3)

where and are the RGB color vectors of pixel .
The quality of denoising of the image with Gaussian noise can
be evaluated by:
1) PSNR: Peak signal-to-noise ratio in RGB color space.
2) SSIM: Structural similarity index [21].

A. Context-Based Statistical Filter

Suppose that the clean image contains colors and
is small. A context can be defined as a set
of pixels. A sample 20-pixel context template is shown in
Fig. 2(left), where the current pixel is marked with “ ”. For
simplicity, a context of pixel is denoted as . The con-
text can be associated with a vector
called a vector of statistics for the current pixel , where
is the count statistics of index value . After the vectors of sta-
tistics have been collected for every context of the image, the
conditional probability of every pixel appearing in its context is
estimated as

(4)

For simplicity, we denote the conditional probability in the con-
text as ).

Statistical filtering can be performed in a two-pass procedure,
of which the first pass is the estimation of conditional prob-
abilities (statistical context modeling) and the second pass is
the filtering of the noisy pixels. The main idea of the statis-
tical filter follows an assumption that the image signal originates
from a universal source. Hence, if the conditional probability

in context is less than a predefined value, the cur-
rent pixel can be treated as noise and then replaced by the most
probable color in the context. Three examples of contexts and
their corresponding statistical distributions are demonstrated in
Fig. 3. Domination of the most probable color can be observed

in the first two examples (left and middle) but not in the last ex-
ample (right).

B. Context-Tree Modeling

In practical implementation, we optimize memory alloca-
tion using context-tree modeling. The classical context-tree
modeling technique has been widely used in the field of data
compression with a time complexity of , where is the
length of the data sequence and is the depth of the context
tree. The tree is built by estimating the count statistics via a
sequential traversal of the image pixel by pixel. Each node
of the context tree represents a single context by storing the
count statistics of each color appearing for the current pixel
relative to this context. Since not all possible contexts are
present in the image, memory is allocated only for the actual
pixel combinations appearing in the image. In our implemen-
tation, the spanning of the tree is terminated if the frequency
of the context on a given node becomes less than a predefined
threshold value . According to our experiments, there are
only 50 000–100 000 contexts for a 20-pixel context template
in a 16 color map image, which is far below . An example
of context-tree modeling is shown in Fig. 2, where each node
represents a single context including the count statistics of each
color for the current pixel in respect to the context. An example
of the context distribution is shown in Fig. 3.

C. Statistical Filtering by Context-Tree Modeling

Context-tree modeling has been extensively studied in the
problem of image compression [28], [29]. In image compres-
sion, all pixels must be encoded regardless of the reliability of
their contexts. Moreover, one can keep track of the compression
performance. Poor probability estimates only lead to a longer
code length and thus a large file size. Optimal pruning of a con-
text tree can be done on each node in order to achieve the highest
overall compression performance. For instance, a dynamic pro-
gramming pruning technique was proposed to improve context
selection in [14], whereas universal context modeling was em-
ployed in [18].

However, conditional probability estimation plays a crucial
role in image denoising. Wrongly estimated conditional prob-
ability can cause either a lack of detection of a noisy pixel
by the algorithm or changing of a clean pixel, causing new
noise. In contrast to image compression, several challenges exist
when applying statistical context modeling for image denoising.
Firstly, the distribution of noise is seldom known, and therefore,
it is hard to estimate in practice. Secondly, the contexts them-
selves may include a significant number of noisy pixels and lead
to a so-called context contamination problem. If the neighbor-
hood pixels were contaminated by erroneous colors, the partic-
ular context would appear infrequently in the image. This causes
an inaccurate estimation of the conditional probability distribu-
tion. Thirdly, a proper decision rule for the filtering is not trivial
to design.

For the improvement of the statistical filter, we will discuss
the following three design problems:

a) how to determine the decision rule for filtering;
b) how to calculate the conditional probability of the infre-

quent contexts;
c) how to estimate the noise level of the image.
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a) Decision Rule for Pixel Denoising: Suppose we have
a map image with impulsive noise generated by transmitting a
clean image over an M-ary Symmetric Channel. The optimal
decision rule in DUDE [11] is essentially a MAP estimator,
which is

(5)

where is the context of the pixel . In image filtering, the
current pixel will be replaced by , which is the index value
of the highest probability if the decision rule in (6) is met:1

(6)

b) Improve Conditional Probability Estimation by a
Context-Merging Strategy: Although DUDE follows a
so-called “asymptotic optimality” property, it requires an
infinite sequence of data source for estimating all the condi-
tional distributions of contexts, which is not realistic in practice.
In particular, when the context of the pixel is contaminated by
erroneous colors, the context can appear infrequently and its
associated conditional probability would be far from its true
distribution. In order to alleviate this problem, context-tree
modeling is used by terminating the tree spanning if the fre-
quency of the context becomes less than a given threshold
. In Fig. 5(left), the number of noisy pixels in the context is

compared between a fixed-template context and the context-tree
modeling. No more than two noisy pixels are observed in most
contexts regardless of the noise level.

A pruning step is added to remove those contexts as in [13]
and [19] if the frequency of a context is less than a predefined
threshold . After pruning, the statistics of its parent node are
used for the probability estimation instead. The main challenge
for the pruning is that the tree is constructed in a fixed order, and
the noisy pixels may appear anywhere in the tree, not just in the
leaf nodes. Thus, a clean pixel may also be removed from the
context in many cases.

To this end, we will present a context-merging strategy for
those infrequent contexts that are expected to be contaminated.
For each context , we first construct a set of sub-contexts:

(7)

by removing the th element from the original context , where
, and is the sub-context. Without loss of gener-

1This decision rule is designed for the count statistics collected on the noisy
image. For a clean image, the decision rule is � ����� � � � �� � ���� �
��� � � �� �� � � � �� instead.

Fig. 4. Example of context-merging strategy. A more reliable context distribu-
tion (93, 167, 661, 13, 37) is obtained instead of the estimation (4, 30, 25, 1,
2) obtained by the pruning operation. Colors with low probability (yellow and
white) are replaced by the dominant color (brown).

ality, we sum up all the vectors of statistics of the sub-contexts
as the estimated distribution of the original context if the fre-
quency of the context is lower than . See (8) at the bottom of
the page. The idea of this context-merging strategy is that the
sub-context will appear much more frequently in the image if
the noisy pixel is removed from the context. On the contrary,
removing a clean pixel will not change the statistics much. For
example, in Fig. 4 it is difficult to conclude anything from the
original context as it is so infrequent. However, by analyzing the
statistics of the sub-contexts we can see that the black pixel is
the noisy one and should be removed. After this context-merging
operation, only noise-free sub-contexts become dominant in the
summation of all the sub-context distributions, which serves as
a good estimation of the conditional probability for the context
model.

The effect of the context-merging strategy is evaluated in
Fig. 5(middle and right) when the contexts contain different
numbers of noisy pixels. We can observe that the proposed
context-merging strategy achieves a lower error rate and false
acceptance rate compared to the previous context-pruning
method. Even after the context-merging process, some sub-con-
texts are still corrupted by one noisy pixel but they have become
frequent enough to be useful. Those contexts can be consid-
ered statistically significant for the filtering and they mostly
appear in the background region. That is why the proposed
context-merging strategy retains its efficiency even when two
noisy pixels appear in the context.

Performance comparisons are also made for three approaches
in Fig. 6(left): a fixed-template context algorithm with different
context sizes , a context-pruning algorithm with different
thresholds , and a context-merging algorithm with different
thresholds . We can observe that a lower false acceptance
rate is achieved at the cost of an increased false rejection rate
when a greater is used. In other words, more noisy pixels are
filtered out with a trade-off that more clean pixels are replaced
by a wrong color. Moreover, it is observed in Fig. 6(middle)

(8)
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Fig. 5. Comparison of the denoising performance when different numbers of noisy pixels are included in the context. The numbers of noisy pixels in the context
are compared for a fixed-template context and context-tree modeling, respectively (left). The error rate (middle) and false acceptance rate (right) are also evaluated,
respectively. Image #1-26 is used is this example with � � ���.

Fig. 6. False acceptance rate (FA), false rejection rate (FR), and error rate are evaluated on different conditional probability estimation algorithms for filtering
impulsive noise. The performances are compared by selecting different thresholds � (left), different iterations (middle), and different noise levels (right). Image
#2-05 is used as the test image by adding 5% impulsive noise (left and middle), while � � ��� and � � � are used in the middle and on the right.

that further image degradation is not caused even after running
several iterations of the proposed statistical filtering algorithm.2

Image denoising performance is evaluated with different noise
levels in Fig. 6(right).

The computational complexity of the merging process is cal-
culated as follows: for each infrequent context, the statistical
distributions of ( is the size of the color palette) sim-
ilar contexts are identified by tree traversal on the constructed
context tree whereas the conditional probability estimation is
calculated by summing up all the statistical distributions of the
sub-contexts. Suppose that we have an infrequent context with
elements; the time complexity of the tree traversal is

(9)

c) Noise Level Estimation: In order to improve the fil-
tering robustness under different noise levels, an estimation of
noise level is needed. It can be estimated either in terms of the
min-max criterion [12] or by using image context metrics [22].
However, those solutions conduct the noise estimation in terms
of the filtering results for each noise level, which is computa-
tionally expensive. A more practical estimate of in [23] is the

2The denoising result of the previous iteration is only used for context pixels.
The conditional probability estimation is still based on the noisy input.

minimized conditional probability in the contexts with “suffi-
cient frequency”. In a similar manner, the noise level is esti-
mated here on the noisy image directly as

(10)

where is the probability of context . The performance of
the proposed noise level estimation is evaluated on 65 test im-
ages, and the results are summarized in Fig. 7. We can observe
that the noise level estimation algorithm is reasonably accurate
for all tested noise levels.

D. Filtering Additive Gaussian Noise

For completeness, we study the statistical filtering in case of
additive Gaussian noise as well. In this case, filtering of raster
map images can be considered as a continuous-input-finite-
output problem. For a noisy image , the problem is defined
as finding a denoised palette-indexed image with colors,
which needs an estimation for the color palette. Since the size
of the color palette is limited for raster map images, color quan-
tization [20], [24], [25] can be efficiently applied if the color
components are well separable [see Fig. 8, (left)]. In the fol-
lowing, several approaches to this problem are addressed.

a) Color Palette Estimation: The nature of the color
palette estimation problem is shown in Fig. 8, where five
source colors exist in the map image. Some of the colors are
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Fig. 7. Performance of noise level estimation on 65 test images.

Fig. 8. Distribution in RGB color space for two map images corrupted by
Gaussian noise with � � ��.

Fig. 9. Pseudo code for filtering Gaussian noise.

located near the borders of the RGB color cube. In the noisy
images, the colors are spread to form a Gaussian distribution
around the source colors. Colors near the border have been
truncated, causing the distributions to be one-sided Gaussians.
In -means clustering, this would cause inaccurate estimation
of the representative color. We therefore apply a -medians al-
gorithm where the median value is used (for each color channel
separately) to estimate the palette color instead of the mean.

b) Size of the Color Palette : In color quantization, the
size of the color palette can be determined by using a variety of
criteria [26] such as the F-test ratio, Bayesian information cri-
terion (BIC), and minimum description length (MDL). For sim-
plicity, we assume that the additive Gaussian noise model shares

Fig. 10. Filtering example (fragment from Image #1-26) of the fusion process
for additive Gaussian noise.

Fig. 11. PSNR and SSIM of the proposed fusion process under different noise
levels (#1-26). PSNR and SSIM at iteration 0 are the results of the pre-quanti-
zation step.

the same covariancematrix ( is a unit matrix) for each RGB
color component and the possible size of the color palette for
raster map images is limited to 2–16. This is the operative range
for which we expect the algorithm to work well. Accordingly,
the size of the color palette is determined as follows:

(11)

(12)

where is the frequency of the colors on each component for
the color palette, and is the variance of the th component in
color channel .

c) Iterative Fusion Process With Conditional Probability
in Context: After color quantization, RGB color space is parti-
tioned into several regions, in which each color vector is
represented by its centroid:

(13)
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Fig. 12. Workflow of the proposed adaptive context-based method.

Since some color components can overlap (Fig. 8, right), mis-
classification is inevitable in color quantization (see the quan-
tized image in Fig. 10). To overcome this problem, a novel it-
erative fusion algorithm is proposed by calculating the distance
from a pixel to its color component in the color palette and the
conditional probability relative to its context is then applied:

(14)

where is the variance of the additive Gaussian noise and is
the current pixel in the noisy image . This fusion filter can be
considered as a specific form of the energy function in a Markov
random field [27], which is derived by replacing the neighbor-
hood similarity with conditional probability in the context.

After the fusion process, the color palette and the estimated
noise variance are re-estimated as

(15)

(16)

The fusion and the estimation processes are performed itera-
tively. The pseudo code of the algorithm is described in Fig. 9,
and an example of the fusion result is shown in Fig. 10.

Performance comparisons (PSNR and SSIM) are made for
different noise levels in Fig. 11. It is observed that the proposed
fusion process is effective and very robust for different noise
levels. To sum up, the workflow of the proposed adaptive con-
text-tree-based statistical filtering is summarized in Fig. 12.

E. Process Noisy Image With Mixture Noise

To denoise an image with mixed Gaussian-impulsive noise,
a straightforward approach is to apply two filters successively:
one for impulsive noise and another one for Gaussian noise, re-
spectively. For example, a fuzzy peer group [35] combines a sta-
tistical method for impulsive noise detection with replacement
by an averaging operation to smooth out Gaussian noise.

In a similar manner, the proposed statistical filtering can be
extended to the problem of denoising the mixed noise, as out-
lined in Fig. 13. The proposed extension combines both the case
of the statistical filtering for impulsive noise and the case of
the fusion process for additive Gaussian noise. Namely, if the
DUDE decision rule is met, the current pixel is identified as

Fig. 13. Pseudo code for filtering mixture noise.

impulsive noise and then replaced by the color with the max-
imum conditional probability. Otherwise, the fusion process is
applied.

F. Computational Analysis

In general, the context-tree construction leads to a time com-
plexity of , where is the size of the context and is
the number of the pixels in the image. Any context can have
a maximum of child nodes, where is the size of
the color palette and is the frequency threshold for context
merging. In context merging, since the time complexity of every
merging process is in (9), the total time complexity of
the context-merging process is . Additionally,
the noise estimation procedure has a time complexity of
in which all contexts with a frequency higher than
are extracted by the tree traversal process. The DUDE decision
rule is applied to determine whether or not a pixel is filtered.
As the conditional probability of all contexts is pre-calculated,
the filtering procedure has a time complexity of . As a re-
sult, the total time complexity for denoising impulsive noise is

.
For filtering additive Gaussian noise, the clustering-based

color quantization step has a time complexity of .
Context-tree construction and context merging have the same
complexity as in impulsive noise filtering. In the fusion proce-
dure, the cost function of (14) needs to be calculated on each
pixel for all the colors in the color palette, and thus, it leads to
a time complexity of . The total time complexity of
denoising additive Gaussian noise is therefore .
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Fig. 14. Sample images from the test set: #1-26, #2-05, #3-03, #4-04, #5-01, and #5-02.

TABLE I
TIME COMPLEXITY OF THE PROPOSED ALGORITHM

In case of the mixed noise, either the DUDE decision rule-
based statistical filtering or the fusion process is applied, and no
additional cost is incurred. The time complexities are summa-
rized in Table I.

III. EXPERIMENTS

We evaluate the proposed adaptive context-based statistical
filtering algorithm (ACS) on a set of map images chosen from
the Finnish National Land Survey (http://cs.joensuu.fi/sipu/im-
ages/mapset.zip); see Table II and Fig. 14. The images have
different types (topographic, roadmap) and scales. To test the
performance, we artificially distort the images with impulsive
noise, with additive Gaussian noise, and with mixed Gaussian-
impulsive noise.

A. Parameter Adjustment

In order to choose the appropriate adjustment of the denoising
parameters, we analyzed the performance with different se-
lections of parameters. These include the threshold for the
context merging, the number of iterations of filtering impulsive
noise, and the number of iterations of the fusion procedure.

TABLE II
DESCRIPTIONS OF THE TEST IMAGES

TABLE III
COMPARISONS OF THE ERROR RATE (TEST SET #1) WHEN CONDITIONAL

PROBABILITY ESTIMATION OF A LOCAL CONTEXT IS PERFORMED

SEPARATELY OR JOINTLY ON THE WHOLE SET

First, we investigate how to select the threshold . The best
selection of depends on both the number of colors and the
noise level of the input image. When the number of colors in-
creases, a larger should be selected but the exact value of the
threshold was found not to be critical for the performance of the
algorithm. In our experiments, we set for test sets #1
and #2 and for test sets #3–5.

From our experiment, an appropriate selection of the number
of iterations in the filtering of impulsive noise can be adopted
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TABLE IV
ERROR RATE, FALSE ACCEPTANCE RATE, AND FALSE REJECTION RATE FOR FILTERING IMPULSIVE NOISE

TABLE V
PSNR AND SSIM FOR FILTERING ADDITIVE GAUSSIAN NOISE

Fig. 15. Performance comparison with different noise levels (Image #01-26 is
used).

as follows: two iterations are conducted for images of impul-
sive noise with noise levels smaller than 10% and three itera-
tions are conducted for images with noise levels greater than
10%. For denoising additive Gaussian noise, five iterations pro-
vide a good compromise between denoising performance and

Fig. 16. Worst case example of the denoising result for image #05-01: noisy
image (left) and the denoised image (right). Noise has been eliminated; text
and other details are preserved. However, due to the sub-optimal color palette
estimation, the light blue and white colors have been merged, which leads to the
loss of essential information.

computational complexity (see Fig. 11). For denoising mixed
Gaussian-impulsive noise, five iterations of the fusion process
are conducted for Gaussian noise denoising, and two iterations
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Fig. 17. Visual performance comparison.

of DUDE decision rule-based statistical filtering are performed
for detecting and denoising impulsive noise.

Test set #1 consists of 50 topographic images of size
1024 1024, which all use the same types of notations to rep-
resent topographic information and include the same patterns.
We therefore test whether the denoising performance will im-
prove when the conditional probability estimation is estimated
on the entire test set using the same conditional probability
of each context for all the images. From our experiments, the
algorithm performance improves by 10% compared with the

case of conditional probability estimation on a single image
(see Table III). To sum up, if the type of image is known,
the context modeling can be trained and better performance
is achieved. Nevertheless, this approach is not used in the
following experiments.

B. Objective Evaluation

a) Impulsive Noise: First, we compare the proposed al-
gorithm with four alternative filters: adaptive vector median
(AVM) [2], fast peer group filter (PGF) [3], context-tree filter
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TABLE VI
PSNR AND SSIM FOR FILTERING MIXED NOISE

(CT) [13], [19], and discrete universal denoising (DUDE) [11],
[14] by using images corrupted by impulsive noise. The per-
formance is measured by the error rate (%), false acceptance
rate (%), and false rejection rate (%) (see Table IV). Exper-
iments show that the algorithms based on statistical filtering
(CT, DUDE, ACS) achieve better noise reduction performance
(lower false acceptance rate) and better preservation of image
details than the best of the conventional filters (AVM, PGF).
This is because raster map images consist of pixel-level detailed
structures, sharp edges, and repetitive patterns whereas those
traditional algorithms are based on a priori assumption that the
images have smooth color transitions.

The context-tree filter with a predefined filtering threshold
lacks robustness in denoising images with different noise levels.
However, both the noise estimation and DUDE decision rule
have been exploited here to achieve robust performance in the
proposed statistical filter. Since the conditional probability esti-
mation is further improved by the context-merging strategy, the
proposed algorithm achieves better performance than DUDE,
which has been the best solution for universal discrete denoising
problems so far.

b) Additive Gaussian Noise: Four state-of-the-art fil-
ters for denoising Gaussian noise are also evaluated: wavelet
denoising using Gaussian scale mixtures (BLS-GSM) [5],
non-local means (NLM) [6], block matching and 3-D filtering
(BM3D) [8], and active random fields (ARF) [10]. Their per-
formance comparisons are summarized in Table V using the
peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) and are visually demonstrated in Fig. 17. It can
be observed that the proposed method achieves both visually
and numerically better results than the comparative filters. The
difference is remarkable for test sets #1–4. This is because the
comparative algorithms are designed with a priori assumption
of smooth color transitions in the images. Moreover, raster map
images have a very limited output and this is not considered in
those algorithms.

We also compared the performances between the images with
different noise levels as shown in Fig. 15. It can be observed that
the proposed algorithm is also robust to the noise level. How-
ever, the performance is less impressive for image #05-01 than
for the other images. This is because most color components
become more overlapped and those color components lack sep-
aration in color space when its number increases. In the color
palette estimation of Section II-D, those overlapped color com-
ponents are merged into the same output color. This problem
is demonstrated in Fig. 16 for #05-01, in which the number of
output colors is reduced to nine, and it degrades the denoising
performance.

c) Mixed Noise: We compare the performance using
images with mixed Gaussian-impulsive noise against PGF,3

BM3D, and Fuzzy Peer Group Averaging (FPGA). An addi-
tional experiment was carried out by using BM3D as a first
step for denoising Gaussian noise followed by PGF as a second
step for denoising impulsive noise. The results are reported in
Table VI and Fig. 17. Both the numerical results and visual
examinations show that the proposed algorithm is superior to
all the comparative algorithms in denoising images with mixed
Gaussian-impulsive noise.

d) Real-World Examples: We performed additional tests
by printing and re-scanning two selected images from set #1 and
#2; see Fig. 17 for scanning image. The resulting images have
slightly different colors than their original ones and Gaussian
type of noise and blurred contours also appear. Among the other
filters, PGF cannot remove the Gaussian-type of noise in these
real examples, and BM3D causes blurring effect around the con-
tours. The proposed method (ACS) preserves the larger struc-
tures in Set #2 very well but some of the noisy thin structures
are broken. For the image from set #1, thin structures are mostly
well restored. No false colors or blurring effects appear in the
output image either, but discontinuation of thin contours appears
at places.

3DUDE and the CT algorithm can only be used for discrete denoising prob-
lems and cannot be applied when the input is a continuous-tone image.
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IV. CONCLUSION

We have proposed a statistical filtering algorithm dealing
with map images distorted by impulsive noise, additive
Gaussian noise, and mixed Gaussian-impulsive noise. The
proposed filter incorporates an information fusion process
which exploits both the color distribution in RGB space and the
conditional probabilities of a given pixel in a local context. It
operates with no prior knowledge of the properties of the noise
and aims at maximal preservation of repetitive structures of
the image. This is an essential property for raster map images
and is expected to generalize to other types of palette-indexed
imagery as well. It can also be viewed as a pioneer study to
attack distortion caused by unknown noise types. Experiments
with different noise types and spatial image resolutions show
that the proposed filter provides robust and reliable filtering
performance and good structure preservation ability.

We also investigate the context contamination problem in
conditional probability estimation in statistical filtering and a
context-merging strategy is proposed to improve the estimation
accuracy for those infrequent contexts.

The proposed algorithm can also be used for other types of
color palette images such as engineering drawings, schemes,
comic books, and similar art imagery. Raster map images have
the typical properties (sharp edges and repeated patterns) that
also exist in other kind of images, and were therefore selected
here as a typical but challenging case study for evaluating the
efficiency of the proposed algorithm.

Future work can be done to extend the proposed filtering
method to continuous-tone images in addition to color indexed
images. More theoretical analysis is needed on how to select the
optimal threshold in context merging.
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ABSTRACT 

Filtering of raster map images or more general class of 
palette-indexed images is considered as a discrete denoising 
problem with finite color output. Statistical features of local 
context are used to avoid damages of some specific but 
frequently occurring contexts caused by conventional filters. 
Several context-based approaches have been developed 
using either fixed context templates or context tree modeling. 
However, these algorithms fail to reveal the local 
geometrical structures when the underlying contexts are also 
contaminated. To address this problem, we propose a novel 
context-based voting method to identify the possible noisy 
pixels, which are excluded in the context selection and 
optimization. Experimental results show that the proposed 
context based filtering outperforms all other existing filters 
both for impulsive and Gaussian additive noise.� 
Index Terms —�onlinear filters, context modeling 
 

1. I�TRODUCTIO� 
Raster map images are commonly encoded in a regular 

grid of pixel colors arrayed in rows and columns, in which 
each color represents a different class of semantic map 
object. It consists of pixel level detailed structures and sharp 
edges but lacks smooth color transitions that are typical for 
photographic images. It does not require any additional 
image processing procedure and is therefore suitable for the 
delivery to the multimedia applications. However, such 
images can be degraded in image acquisition (digitization) 
process and this color degradation may lead to severe false 
recognition of important semantic map objects. Hence, 
image filtering is needed before publishing the image. There 
are several technical challenges for designing suitable filter 
for this kind of images.  

A great variety of noise removal techniques have been 
extensively investigated for color image processing.  The 
multi-layer approach in [1] converts the problem into binary 
domain whereas other approaches try to work in the color 
domain. However, these algorithms are usually developed in 
terms of specifically noise model, such as impulsive noise 
[2-3] and additive Gaussian noise [4-7]. In the case of 
impulsive noise, noisy pixels could be detected if suitable 
statistical rules based on the local variation were designed. 
However, these rules are always based on presumable 
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knowledge, which inevitably incur a significant 
misclassification error. For additive Gaussian noise, most of 
filters are designed by selecting an optimal linear 
combination of a few basis elements, either pixel-wise or 
block-wise. These methods assume that the true signal can 
be approximated by a linear combination of few basis 
elements and designed only for continuous tone images. 
They are not applicable for map images in general, because 
raster map images need a finite color output. Moreover, the 
repeatable geometrical structures inherited in map images 
haven’t been considered in these methods. In other words, 
the literature lacks of methods that is capable to filter this 
kind of images properly.  

A pioneer work in the art of statistical filtering is the 
so-called discrete universal denoising (DUDE) [8] for 
filtering binary data with a known noisy channel. It consists 
of two steps: counting statistics for all context patterns 
encountered, and denoising by utilizing the conditional 
probability of local context. This method is applicable in 
denoising of binary image if the error probability � can be 
estimated presumably. Namely, for a given pixel x, if the 
conditional probability in the surrounding context P(x|c) is 
lower than 2�(1-�), it would be treated as noise pixel and 
replaced by the complementary value. However, the 
memory allocation for running this algorithm grows 
exponentially with the size of the fixed context, which 
makes the implementation of this algorithm intractable. To 
circumvent this memory allocation problem, the context tree 
modeling [9, 10] has been applied by pruning redundant 
nodes of contexts.  

In practice, albeit the above algorithms are very efficient 
for the input images with a few number of noise pixels, the 
contexts themselves will embrace a significant number of 
noise pixels when noise level is increased for the input 
image. Even refining the contexts adaptively using the 
pruning algorithm [10-12] was not able to remedy this open 
problem completely. Obviously, including noise pixels or 
outliers in the surrounding contexts will make it extremely 
difficult to estimate a good conditional probability 
distribution for context modeling. Thus, the underlying 
noise pixels in the selected contexts must be first detected 
and then need to be excluded in the modeling.  

The motivation of this work is to attack the problem by 
removing detected outliers from the context by classifying 
the context according to its filtering efficiency. Each 
problematic context is processed by removing one pixel in 
turn. In case of significant change in the self-entropy of the 
context, we conclude that the removed pixel is noisy one. 
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The modified context is then used in the filtering if it 
remains statistically significant in order to separate valid 
values from noisy ones. In this way, the context-based 
filtering is significantly improved.  

2.  PROPOSED METHOD 

2.1 Context Tree Modeling 
The classical context tree modeling technique has been 

widely used by data compression community with linear 
time complexity. A context tree is built by estimating the 
count statistics via a sequential traversal of the image 
pixel-by-pixel. Each node of the context tree represents a 
single context by storing the count statistics over each color 
for the current pixel relative to the node of context. Since 
not all possible contexts are present in the image, memory is 
only allocated for the actual number of pixel combinations. 
In our implementation, the spanning of tree is terminated 
once the frequency of the context on a given node is less 
than a predefined value.  

2.2 Context Efficiency Validation 
In image compression, all pixels must be encoded 

regardless of the reliability or probability of the context 
surrounding that pixel. One keeps track of how well it 
performs. In case of bad probability estimate, the coding of 
that pixel just takes more space. Optimal pruning of a 
context tree is always done on each of possible node in 
order to achieve a highest overall compression performance.  

In image filtering, however, the main challenge is that the 
distribution of noise data is seldom known, and thus no 
evaluation can be done on how well filtering works. The 
critical issue is how to find some “meaningful” local 
contexts and filter only the pixels with lower conditional 
probability in local contexts. In DUDE [8], this decision rule 
is, in essence, a MAP estimator, which can be formulated as 
follows: for a local context c, the output of filtering x, equals 
to u0, is the index value with highest conditional probability 
when equation (2) is met. 

0  arg max ( | )x Au P x�� c  (1) 
2

0 0
( 1) (1 ) ( 1)( | ) ( | ) 1
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M MP x x P x u

M M
�

� � �
	 	 	

� 	 � 

	 	 	 	

c c (2) 

Albeit DUDE has a so-called “asymptotic optimality” 
property, it demands an infinite sequence of data source for 
estimating all the conditional distributions of local contexts. 
This is of course not realistic in practice. In particular, when 
the context of a given pixel is contaminated by erroneous 
colors, the count corresponding to the symbol will be 
credited to the “wrong” context with rare appearance, which 
also causes inaccurate estimation of the context distribution.   

This scenario motivates us to investigate a criterion for 
context classification. Those frequently contexts associated 
with a dominant color (conditional probability>90%), are 
termed as good context, on which filtering can be applied  

directly. Those rare appearance contexts, which include 
noise elements, we define as bad context because estimation 
of conditional probability under such contexts is inaccurate. 
In order to improve this estimation, a voting scheme is 
applied to find those noise pixels based in the bad contexts. 
An accurate conditional probability can be estimated on a 
new context excluding those noisy pixels. Here, all the 
contexts are categorized into three groups: good, uncertain 
or bad according to a so-called context efficiency function: 

2
( ) ( | )F( ) log ( )  ( | ) log( )
( ) ( )xE

P P xk P x
P P x

� 
 �c cc c
c

 (3) 

where PE(c) = �iP(yi),  P(c) is the probability of a given 
context c and PE(c) is the estimated probability of c, yi is the 
color of ith element in a given context c, and P(yi) the 
probability of yi. PE(c) is computed by assuming all 
elements in the context are mutually independent.  

In a sense of image compression, the first term in the right 
hand side of (3) can be interpreted as the difference of the 
context code length achieved according to the actual context 
probability and the expected context probability. Higher 
value for this term indicates that context c is a repetitive 
structure, and thus, it can be used as a direct filter when 
dominant color exists. The second term is the so-called 
Kullback-Leiber distance between conditional probability 
and color probability of the entire image. Larger distance 
implies that more bits can be saved when context c is used 
in coding.  

To this end, all contexts are categorized into three groups 
accordingly: good: F(c)>Tmax with a dominant color, bad: 
F(c) < Tmin and uncertain: otherwise. Once all contexts have 
been categorized into these three classes, the context tree is 
processed by identifying the good and bad nodes. The 
offspring nodes of any good or bad node will be removed in 
the tree pruning using top-to-bottom tracing. Tmax, Tmin and k 
are adopted as values of 3, -0.5 and 0.5 in this work. Three 
context examples are shown in Fig. 1. Two good contexts 
are with dominant colors of black (left) and brown (middle) 
both having the conditional probability over 90%, which can 
be used for filtering directly, while the right one is a bad 
context containing noise pixel in it. Fig. 3 shows an example 
of good and bad context distribution in a test image. The 
unmarked pixels belong to an uncertain context. 

2.3 Voting Image  

Fig. 1 Examples of context classifications 
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Fig. 2 Bad context and its reduced context ,black pixel is 
possible a noise pixel with high F(zi) - F(c) difference 

Since most of bad contexts contain noise pixels in 
themselves, they are seldom used to estimate a statistical 
model. However, they can be very useful in detection of 
noise pixels – except the case when a noisy pixel is isolated 
from most of inherited geometrical structures. Given an bad 
context c, a set of sub-contexts, 

1( ) { | /{ }}k
i i i iS x �� �c z z c  (4) 

are constructed by removing ith pixel xi from the context c, i 
= 1, �k, where zi is the reduced-size context after removal 
of the ith pixel. If the removed pixel xi is a noise, it is 
expected that the reduced-size context will have a higher 
efficiency: F(zi) > F(c), such that each pixel in c can be 
assigned with a meaningful value F(zi) - F(c). The higher the 
difference, the more likely xi is a noise pixel. Fig. 2 gives an 
example of bad context and its reduced context. 

A voting image R is constructed according to the 
following rule: if the surrounding context c for a given pixel 
x is detected as bad, the accumulated voting score of each 
other pixel xi in the same context c can be updated by: 

R( ) = R( ) + F( ) - F( )i i ix x z c  (5) 

Intuitively, we may conclude that most of contexts 
containing a noise pixel may be detected as bad contexts. If 
the noise pixel is removed from the bad context, the 
reduced-size context may have much better context 
efficiency. Namely, the accumulated voting score according 
to (5) is significantly higher than those of its neighborhood 
pixels. In this sense, the noise pixel can then be detected by 
finding the high peak points in the voting image. An 
example of a voting scheme is shown in Fig. 4. 

2.4 Adaptive Context Selection 
Once the voting image has been obtained, an adaptive 

context-based filter is applied in two manners. Firstly, if the 
surrounding context c in the context tree is good, there 
always exist one dominant color in the context, and 
eventually the value of the pixel x is replaced by the 
dominant color in that particular context if (2) meets. 
Secondly, if x is detected as a noise pixel in voting scheme 
and its surrounding context c is not labeled as good, the 
context is re-selected adaptively excluding those noise 
pixels using a 3�3 context template. Statistical distribution  

 N W SW S 

Bad 
context 

   

Reduced 
context 

  
F(zi)-F(c) 5.41 5.69 5.51 1.79 

Fig. 3 Sample image with good and bad context demonstrated in 
red and green colors (top left), its voting image (top right). 
Voting example for the white pixel labeled with purple with 
accumulated F(zi)-F(c) value 18.30 (bottom).  

Fig. 4 Example of adaptive context selection. For noise pixels 
(black and white, with high voting value), a new context in 3�3 
region excluding surrounding noise pixels are selected, statistical 
information are collected for new contexts, black pixel is 
correctly changed to blue while white pixel changed to brown. 
of this adaptive context is collected and the DUDE 
framework is then applied. An example of adaptive context 
selection can be seen in Fig. 4. In order to improve the 
filtering robustness under different noise level, an estimation 
of � is needed. Here, it is estimated by the minimum 
conditional probability occurred for contexts with 
“sufficient frequency”, which is formulated as: 

2, ( ) 10
1 max ( | )

x p
P x� 	� �

� 	
c

c  (6)
The filtering can also be applied iteratively. Contrary to 
conventional filters, the images will not be degraded after 
applying several iterations. 

2.5 Extension for Additive Gaussian �oise  
During the map digitization, as limited color output is 

desired, a color quantization process can be applied for 
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reducing the number of colors. However, the noise will be 
incurred during the scanning process, which causes the 
possible overlapping in color space for some color 
components. Thus, we need to avoid misclassifying pixels 
caused by conventional color quantization. A novel iterative 
algorithm is proposed in [13] to optimize both the 
estimation of the indexed image and its color palette. For 
each pixel x, both the distance between RGB color vector to 
its corresponding component in the color palette, and its 
conditional probability of local context (estimated in Section 
2.2-2.4) are taken into account as follows: 

(1.. ) 2 2

2 2

( ) arg min ( log ( | ) log ( | ))

 ( ) exp( || || /2 )
x M xI x f P x

f �
�� 	 	

� 	 	
x

x x x x

y M c

y | M y m
 (7)

where Mx is 3-D Gaussian distribution with mean mx and 
covariance matrix �2I. This formula is similar to the energy 
function in Markov random fields, but the term 
neighborhood homogeneity is replaced by the conditional 
probability of the local context. The color components in 
color palette and the mean variance are updated following 
with the minimization step, see [13] for more details. 

3. EXPERIME�TS 
We evaluate the proposed adaptive context-based filtering 

algorithm (ACF) on a set of images from �ational Land 
Survey of Finland. For testing the performance of the filter, 
we artificially distort those images by adding impulsive or 
additive Gaussian noise. For comparison, four alternative 
filters [2, 3, 8, 10] are investigated for impulsive noise and 
four for Gaussian noise [4-7]. Performance comparisons are 
demonstrated in Fig. 5. It can be observes that the proposed 
filtering algorithm achieves significantly better numerical 
and visual quality.  

4. CO�CLUSIO� 
We have proposed an efficient adaptive filtering using 

optimal context selection, which is designed via a novel 
voting-based noise estimation method. The proposed 

context-based filter can be viewed as a pilot study to 
conquer the raster map image distortion caused by uncertain 
noises. This algorithm can also be applied in other problem 
domains, such as image segmentation and color 
quantization.  
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A Fast Multiresolution Polygonal
Approximation Algorithm for GPS

Trajectory Simpli�cation
Minjie Chen, Student Member, IEEE, Mantao Xu, and Pasi Fränti, Senior Member, IEEE

Abstract—Recent advances in geopositioning mobile phones
have made it possible for users to collect a large number of GPS
trajectories by recording their location information. However,
these mobile phones with built-in GPS devices usually record
far more data than needed, which brings about both heavy data
storage and a computationally expensive burden in the rendering
process for a Web browser. To address this practical problem, we
present a fast polygonal approximation algorithm in 2-D space
for the GPS trajectory simpli�cation under the so-called integral
square synchronous distance error criterion in a linear time com-
plexity. The underlying algorithm is designed and implemented
using a bottom–up multiresolution method, where the input of
polygonal approximation in the coarser resolution is the polygonal
curve achieved in the �ner resolution. For each resolution (map
scale), priority-queue structure is exploited in graph construction
to construct the initialized approximated curve. Once the polyg-
onal curve is initialized, two �ne-tune algorithms are employed in
order to achieve the desirable quality level. Experimental results
validated that the proposed algorithm is fast and achieves a better
approximation result than the existing competitive methods.

Index Terms—Geographic information systems (GISs), global
positioning system trajectory simpli�cation (GPS TS), polygonal
approximation, priority queue, reduced search dynamic program-
ming (RSDP).

I. INTRODUCTION

L OCATION-ACQUISITION technologies, such as geopo-
sitioning mobile devices, enable users to obtain their

locations and record travel experiences by a number of
time-stamped trajectories. In the location-based Web services,
users can record, then upload, visualize, and share those trajec-
tories [34]. Therefore, people are more likely to �nd the travel
routes that interest them and acquire reference knowledge fa-
cilitating their travel from other’s trajectories. However, these
GPS devices usually record far more data points than necessary,
and these redundant data points will decrease the performance
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of the data collection. For example, if data are collected at
10-s intervals, a calculation in [32] shows that, without any
compression, 100 Mb is required to store just 400 objects for
a single day. Moreover, these redundant GPS trajectories will
also cause a longer uploading/downloading time to the mobile
service providers. The dense representation will also bring
about a heavy burden for a Web browser when rendering these
trajectories on the client side. In some cases, Web browsers
may even get out of memory and crash. From our experiment, it
takes approximately 1 s for rendering 1000 points on the map.
Therefore, a fast polygonal approximation algorithm is needed
for the trajectory simpli�cation (TS) task, i.e., multiple GPS
TSs are conducted corresponding to different map scale before-
hand such that the trajectories can be ef�ciently visualized.

In recent years, polygonal approximation in 2-D space has
attracted a considerable interest with a great deal of applica-
tions such as geographic information systems (GISs), computer
graphics and data compression. Given a polygonal curve

, the problem of polygonal approximation is to seek
a set of ordered points (a subset of ), i.e.,

(1.1)

as an approximation of , where .
Polygonal approximation can be categorized into two classes of
subproblems.

1) min- problem: Given -vertices polygonal curve and
integer , approximate a polygonal curve with the
minimum approximation error with at most vertices.

2) min-# problem: Given -vertices polygonal curve and
error tolerance , approximate a polygonal curve with
the minimum number of vertices within the error toler-
ance .

For polygonal approximation, there exist different solu-
tions, which vary in reduction ef�ciency and computational
overhead. For example, an optimal algorithm provides the
best reduction ef�ciency but causes the highest overhead

[1]–[5], [10]–[13], [15], whereas
solutions based on heuristics lower the computational overhead
at the cost of reduced reduction rates [7]–[9]. A
compromise between the optimal and heuristic solutions is
the reduced search dynamic programming (RSDP) [17], [18],
[23]. The algorithm uses a bounding corridor surrounding a
reference curve to limit the search space during the minimizing
process. In different applications, different error criteria have
been de�ned [1]–[5].

For the GPS TS, since both spatial and temporal information
should be considered, a number of heuristic methods have also

1057-7149/$31.00 © 2012 IEEE



CHEN et al.: FAST MULTIRESOLUTION POLYGONAL APPROXIMATION ALGORITHM FOR GPS TS 2771

been proposed with different error measures, such as TS [31],
top–down time ratio (TD-TR) [32], Open Window (OW) [32],
threshold-guided algorithm [33], STTrace [33], spatial join
[35], Spatial QUalIty Simpli�cation Heuristic (SQUISH) [37],
and generic remote TS (GRTS) [38]. Performance evaluations
are made for several traditional TS algorithms in [36]. In these
algorithms, the performance is measured on the reduction rate
by the line simpli�cation process. It is noted in [37] that there is
not one algorithm that always outperforms other approaches in
all situations. In the GPS TS, the reduced data points are mostly
directly saved with a �xed bit length, which is required to support
both the rendering process and the effective trajectory queues in
database. On the other hand, when data compression techniques
are used, a better compression ratio is achieved for the GPS
trajectory data [41], which is appropriate for data storage.

In this paper, we present a fast time polygonal approxi-
mation algorithm for the GPS TS. The proposed method applies
a joint optimization for both min-# approximation using the
local integral square synchronous Euclidean distance (LSSD)
criterion and min- approximation using the integral square
synchronous Euclidean distance (ISSD) criterion.

The proposed GPS TS algorithm is implemented in a real-
time application for the rendering process of the GPS trajecto-
ries on the map.1

II. RELATED WORK

In this section, we will review the related work in the GPS
TS in several aspects, such as error measures, approximation of
the polygonal curves, �ne-tune solutions by reduced search, and
multiresolution polygonal approximation. The contributions of
this paper are also summarized at the end of each subsection.

A. Error Measures

The primary goal of the GPS TS techniques is to reduce the
data size without compromising much of its precision. Thus,
there is a need to �nd appropriate error measures in algorithms
and performance evaluation.

In polygonal approximation, different error criteria have been
de�ned, such as tolerance zone, parallel strip, uniform measure,
minimum height, and minimum width [1]–[5]. Later, Meratnia
and de By [32] indicated that such algorithms were not suit-
able for GPS trajectory since both spatial and temporal informa-
tion should be considered. Therefore, the errors were measured
through distances between pairs of temporally synchronized po-
sitions, called synchronous Euclidean distance (SED).

The de�nition can be formulated as follows:
is the subcurve of , and is the line

segment between and (an approximated edge in ). For
each point with time on the orig-
inal GPS trajectory, its approximated temporally synchronized
position can be calculated as

(2.1)

(2.2)

1Two datasets are considered, which are MOPSI dataset (http://cs.joensuu.�/
mopsi) and geolife dataset [34].

After the approximated position is determined, SED is cal-
culated by

SED (2.3)

In SED, the continuous nature of moving objects necessitates
the inclusion of temporal and spatial properties.

Except for the aforementioned error measures, other error
functions were also considered in some literatures. For ex-
ample, position, speed, and orientation information were all
used in the threshold-guided algorithm [33]. In [35], a new
distance function called spatial join was proposed, which was
bounded for spatial-temporal queries. In the area of shape
matching, Fréchet distance [39] also took the continuity of
shapes into account with a time complexity , where
and are the number of points correspondingly [40].

However, in most algorithms, in order to calculate the
approximated error of the line segment , at least dis-
tance calculations are needed. In [15], the calculation process
was solved in dual space by a priority-queue structure, which
achieved the best processing time with a prepro-
cessing time .

In this paper, we further study the cost-effective spatiotem-
poral error measures, which can be computed in constant time.
Namely, we extend local integral square error (LISE) criterion
and integral square error (ISE) criterion [4]–[6] and derive two
new error measures for the GPS TS problems, called LSSD and
ISSD. LSSD and ISSD have the same properties with LISE and
ISE, i.e., they can be computed ef�ciently in time after
precalculating all the accumulative terms within time,
whereas temporal information is also considered meanwhile.
The further discussion of the error measures will be made in
Section III.

B. Polygonal Approximation: Optimal and Heuristic Methods

Optimal polygonal approximation algorithms are mostly
implemented by incrementally constructing a directed acyclic
graph (DAG) and therefore inevitably suffer a computational
cost limitation of at the minimum [1]–[5], [10], [11],
[13], [30]. An advance achieved by Agarwal and Varadarajan
[12] is to combine an iterative graph algorithm and a di-
vide-and-conquer approach, which offers the best time and
space complexity of by using the metric, where

is an arbitrarily small constant. Later, the graph-based
framework has been signi�cantly reorganized and optimized
by using two priority queues dynamically [15]. Albeit this
approach was not proven to reduce the time complexity in
theory, it provided remarkable improvement in the processing
time in practice.

In real-time application, quadratic time complexity maybe
too high, and therefore, most applications utilized a class of
heuristic methods in order to achieve near-linear time com-
plexity. A set of well-known heuristic algorithms are split
and merge approaches [7]–[9]. The split algorithms divide
the segment causing the biggest deviation, whereas the merge
algorithms combine the pair of segments with the least de-
viation. The classic Douglas–Peucker (D–P) split algorithm
[7] can be implemented in time on average,
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while its worst case time complexity is . Later, Hersh-
berger and Snoeyink [8] showed that it can be implemented in

time, where denotes the iterated logarithm
function. Respectively, Pikaz and Dinstein [9] proposed a
merging algorithm with time complexity. These
heuristic methods are of low time complexity but may lead
to an undesirable approximation result. Note that topological
and geometric properties are also considered as an important
constraint in the simpli�cation process in GIS applications.
In [44], simple-detour heuristic was proposed, where no new
vertices would be introduced after the approximation process.

In the GPS TS, a number of algorithms have been also well
studied and developed, and most of them are heuristic methods.
In [32], a TS algorithm is greedily implemented by a so-called
opening-window approach. SED is also de�ned and applied by
incorporating the time dimension, instead of the original perpen-
dicular distance. In [33], the parameters including coordinates,
speed, and orientation are all considered in calculating the safe
area of the next point, which is called as the threshold-guided al-
gorithm. Indeed, all these algorithms solve the min-# problem in
a greedy manner, the time complexity of which is . The
STTrace sampling algorithm [33] is also implemented using a
bottom–up strategy where the SED is minimized in each step.
In [38], GRTS protocol combines optimal and heuristic algo-
rithms [1], [32], which allows a tradeoff between the computa-
tional complexity and the reduction ef�ciency. Recently, a new
simpli�cation algorithm SQUISH [37] has been proposed based
on the priority-queue data structure, which preserves speed in-
formation at a much higher accuracy. In [31], TS algorithm
is proposed, where different point headcounts are assigned in
terms of the product of the average heading change and the dis-
tance of each segment. After that, the min- problem is solved in
each segment by using a local weighting process in
time. However, as the distances of neighborhood points are used
instead of the perpendicular distance in the simpli�cation proce-
dures, the algorithm is not robust when the sampling frequency
is not uniform.

Graph-based methods can achieve a better approximation re-
sult than those heuristic ones but at a higher computational cost.
Therefore, in the initialization process of the proposed solution,
graph-based methods are used and further speeded up by both a
novel priority-queue structure and a stopping search criterion,
which leads to time complexity and space
complexity. Here, and are the number of the points for
the input and output GPS trajectories, respectively. However,
using a stopping search criterion will cause a tradeoff of the op-
timality. This will be introduced in Section IV.

C. Fine Tune by Reduced Search

For the GPS TS, optimal algorithms provide the best reduc-
tion ef�ciency but cause the highest overhead, whereas solu-
tions based on heuristics lower the computational overhead at
the cost of worse reduction rates. A compromise between the
optimal and heuristic solutions is the RSDP [17], [18], [23].
The algorithm uses a bounding corridor surrounding a refer-
ence curve or a initialized curve in the state space, followed by
a limited search for the minimum cost path. This idea is pre-
sented and known as Sakoe–Chiba band [42], which has been

extensively used in dynamic time wrapping approaches dealing
with the similarity calculation of time series [43].

If the initialized curve is evenly distributed in the state space,
the time complexity for RSDP is ideally , where

is the width of the bounding corridor. We will also prove
that the expected time complexity for RSDP is still achievable
as even if the precondition of even distribution
is not satis�ed. In particular, if the number of vertices for the
approximated curve is proportional to that of the input curve,
namely, , a linear time complexity can be achiev-
able for the RSDP. This will be later shown to be an important
property when selecting bottom–up approaches for the multires-
olution case. However, the main dif�culty of the RSDP is that
a large corridor bound and many iterations are needed in order
to achieve a desirable solution when the approximated curve is
poorly initialized, which causes a high computational cost.

In this paper, we extend the RSDP and employ two �ne-tune
algorithms to minimize both the number of output points
and the approximated error , which leads to a time complexity

and correspondingly. The �ne-tune
algorithms are speeded up by lifting the vertex position in the
tree structure, also solving the equivalent solution problem. This
will be discussed in Section V.

In Sections III–V, the U.K. map with 10 911 points (see
Fig. 13) will be selected as an example to demonstrate the
proposed algorithm.

D. Multiresolution Polygonal Approximation
Multiresolution polygonal approximation can be applied for

scalable representation and compression of vector maps in the
GIS [19], [20]. For solving the min- problem, two heuristic
approaches, i.e., split (top–down) and merge (bottom–up), are
known with a time complexity of . Split and merge
are locally applied and can often result in undesirable approxi-
mation results in the later hierarchy process.

The optimal split algorithm is proposed in [21], where the
optimal approximation at the higher resolution level is achieved
using the result of the lower (previous) resolution level. This
provides resolution hierarchy in a sequential order

but at a cost of time complexity.
In [22], a bottom–up multiresolution algorithm for the min-

problem is proposed with near-linear time complexity. The
min- problem is solved using the �ne resolution as input for
approximating the corresponding coarser resolution iteratively

. For each scale, the simpli�ed
RSDP is also incorporated. As the ISE criterion is used, the
approximation error between two vertices in any resolution
level can be calculated in a constant time according to the
precalculating cumulative summations in the original curve
(see Section III).

Although the bottom–up approach [22] is computationally ef-
�cient, this approach can only solve the min- problem. In prac-
tice, in order to progressively display the GPS trajectory data,
we need to approximate a number of approximated results with
corresponding error tolerance for each resolution, which is con-
sidered as a min-# problem. Moreover, the reduced search algo-
rithm is a �ne-tune method, which needs an initial curve before-
hand. If the curve is not well initialized, a number of iterations
are needed to obtain the near-optimal result.
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Fig. 1. Example of calculating ISE, LISE, LSSD, and ISSD. Given and the approximated curve , where , ,
and are the approximated temporally synchronized position. (Left) ISE is estimated as , and LISE is estimated as . Meanwhile, (Right)
ISSD is estimated as , and LSSD is estimated as .

In this paper, a bottom–up multiresolution approach is pro-
posed with linear time and space complexities, which imple-
ments the algorithms in Sections III–V for each intermediate
resolution. This will be discussed in Section VI.

III. ERROR MEASURE: FROM LISE TO LSSD

In order to improve the computational ef�ciency, two error
measures, which are called ISE and local ISE [4]–[6], are jointly
used for approximating polygonal curves, i.e.,

(3.1)

(3.2)

where error can be calculated by

(3.3)

Here, is the perpendicular distance from to .
, , , and , , ,

, are the accumulated sums of the and coordinates
on curve , respectively, i.e.,

(3.4)

The main advantage of the ISE criterion is that the approx-
imation error can be ef�ciently obtained in time
after precalculating all the accumulative terms within
time [see (3.3)] [4], [16]. An example of calculating ISE and
LISE is illustrated in Fig. 1.

Although LISE and ISE criteria are computationally ef�cient,
time information is not considered. For the simpli�cation of the

GPS trajectories, we extend LISE and ISE criteria and derive
two new error measures, called LSSD and ISSD, which have
the same properties with LISE and ISE, i.e.,

(3.5)

(3.6)

Here

SED

(3.7)

Here

, , , , , , , and are the accumulated
sums of , , and on the GPS trajectory, respectively, i.e.,

(3.8)

The computation of the aforementioned approximation errors
also takes time with an time accumu-

lated sum precalculation. The proof of the LSSD and ISSD cal-
culation is shown in the Appendix.

In the following sections, ISE and LISE criteria will be used
for the approximation of the polygonal curves, whereas LSSD
and ISSD criteria will be used for the GPS TS.
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IV. MIN-# INITIALIZATION FOR GPS TS

For the min-# problem, Imai and Iri’s graph-based approach
[1] comprises two essential steps, i.e., constructing a DAG and
the shortest path search by breadth-�rst traversal (BFT). In
order to construct a DAG, approximation errors
are calculated for every pairs of vertices, and thus, the time
complexity for initializing the solution for the min-# problem
is if the LISE or LSSD criterion is applied.

In this paper, we revisit two computationally ef�cient im-
provements for the min-# problem. The �rst improvement is
to reduce the computational cost of the DAG construction by
maintaining two priority-queue structures [15], [29]. The reason
is that there is no need to construct graph explicitly and only
edges visited by the BFT are included. For simplicity, we de�ne
a term, i.e., the number of links , to denote the minimum
number of line segments to connect the starting vertex to
under a given error tolerance , i.e.,

(4.1)

where the initial condition is set as . Suppose all
the vertices with links are �rst identi�ed by the shortest path
search, which is maintained by a priority queue in the de-
scending order. The next search will be performed on the re-
maining unvisited vertices set by testing if they have an
edge connecting with vertices in (i.e., approximation error
lower than a given tolerance ), which is called as edge tests
here. These connected vertices will be removed from unvisited
vertices set and enqueued in the priority queue . Sup-
posing two vertices , with , if and

, then will be removed from such that the edge
test between and can be avoided. Moreover, edge tests
are also avoided for the vertices with the same number of links.
After all the unvisited points have been tested between
and , in the next step, the vertices in will be used as
the starting points for edge tests. The shortest path search will
be terminated when the last vertex is connected to . Albeit
the priority-queue-based search is not able to mitigate the worst
case time complexity, it turns out that a number of edge tests are
greatly saved.

The second improvement is to apply a stopping criterion in
the shortest path search, which is ef�cient in the case of low
error tolerance. For example, a good stopping criterion has been
proposed for the tolerance zone criterion [11] by maintaining
the intersection of two cones. An alternative solution has been
also proposed in [15] and [28] by veri�cation in dual space. Both
of the implementations hold the optimality for solving the min-#
problem. To pursue the best computational cost savings as pos-
sible for LISE/LSSD criteria, a simple stopping criterion is ap-
plied in edge tests by utilizing a preset high threshold, e.g., two
times of a given tolerance [17]. Edge tests for the subsequent
vertices in the unvisited vertices set will be omitted once the ap-
proximation error becomes larger than a given high threshold.
Applying a stopping criterion leads to a signi�cant improvement
to a time complexity of but the optimality is not
guaranteed. To overcome this dif�culty, we extend our effort in
improving the robustness of the stop search criterion. Instead of
using a �xed high threshold, we adopt the error tolerance of the

Fig. 2. Number of edges tests for solving the min-# problem (left) under dif-
ferent error tolerance and (right) with different number of input vertices for U.K.
map (Curve II). In the left �gure, the resulting number of output vertices is
shown in the -axis instead of the given error tolerance.

next coarser resolution as a high threshold in the multiresolution
implementation, the robustness of which has been validated by
experiments; see Section VI for additional discussion.

We combine both the advantage of the priority-queue
structure and the stopping criterion to achieve the most com-
putationally ef�cient implementation in the initialization of the
min-# problem. Accordingly, the output is a tree structure [see
Fig. 5(left)]. The pseudocode is given in Fig. 3. Both the theo-
retical proof and the experiments are given for the complexity
analysis of the proposed initialization algorithm.

Theorem 1: The proposed initialization algorithm for solving
the min-# problem under the LISE/LSSD criterion leads to an
expected time complexity of and a space complexity
of , respectively.

Proof: See Appendix.
In the graph-based initialization algorithm, the main bottle-

neck is the cost of edge tests (calculating the edge approxima-
tion errors, line 22 of Algorithm I) during graph construction. In
order to evaluate the computational improvement achieved by
the proposed algorithm, the number of edge tests is calculated
and treated as an indicator of the computational ef�ciency in
Fig. 2. Here “PRQ” represents the previous graph-based polyg-
onal approximation algorithm using the priority-queue structure
[15], [29], and “StopSearch” is the stopping criterion using a
prede�ned high threshold [17]. It can be observed that the pro-
posed algorithm is able to combine the computational advan-
tages of both two algorithms.

V. FINE TUNING THE INITIAL APPROXIMATED RESULT

As a stopping criterion is incorporated in Algorithm I (line
27) to reduce the computational cost in the initial approximation
process, the optimality is not guaranteed. Thus, two �ne-tune
algorithms are introduced in this section in order to improve the
approximation performance. Both the number of vertices and
the ISE/ISSD are minimized.

A. Minimizing the Number of Vertices
To the bene�t of best computational ef�ciency, the initializa-

tion in Algorithm I for the min-# problem is a compromise of
the optimality for minimizing the number of vertices. In order to
mitigate the limited optimality, we need to minimize the number
of vertices based on the initialized curve so that a better re-
sult can be achieved. The reduced search algorithm (RSDP)
can be utilized for minimizing the number of vertices, but it
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Fig. 3. Pseudocode of min-# initialization.

leads to time complexity. To speed up the pro-
cedure, we exploit a new �ne-tune method at a time complexity
of instead, which is achieved by lifting the vertex
position in the output tree structure after the initialization step
in Algorithm I. The pseudocode is given in Fig. 4.

A graphical illustration is demonstrated in Fig. 5 on lifting
vertex position; starting from vertex with 0 links, at each it-
eration (lines 11–30 in Algorithm II), edge tests are performed
to verify if the approximation error is less than the given tol-
erance between the currently processed vertices with links
and those target vertices with links.
An example is given in Fig. 5 (left) when the width of the
bounding corridor is . Supposing and are the ver-
tices with one link, all the vertices with three links ( and )
and four links are chosen as the target
vertices for edge tests. If the connected edge exists, the tree
structure is updated by lifting the target vertices (lines 22–24).
The process of updating the tree structure can be recursively
done [see Fig. 5 (right)]. The proposed �ne-tune algorithm pro-
vides the following advantages over the original reduced search
approach for the min-# problem. First, the calculation of the ap-
proximated errors between any pair of vertices with adjacent
number of links is unnecessary and can be omitted. Second,
once the tree structure is updated by the lifting operations, edge
tests for those lifted vertices are also avoided.

Theorem 2: The proposed algorithm for the output vertex
reduction under the LISE/LSSD criterion has an expected time
complexity of and a space complexity of ,

Fig. 4. Pseudocode of minimizing the number of vertices.

respectively. The original RSDP method has an expected time
complexity of .

Proof: See Appendix.
Intuitively, the �ne-tune algorithm can be also iteratively

done. However, since the graph-based method has already
achieved an ideal initial approximation, according to our exper-
iments, optimal results can be derived in most cases by setting

with one iteration. The main bottleneck here is also
the number of edge tests (line 20 in Algorithm II). In Fig. 6,
the actual time cost is evaluated by calculating the number of
edge tests against the three parameters, i.e., the width of the
bounding corridor , the number of output vertices , and
the number of input vertices . To further demonstrate the ef-
�ciency of the proposed �ne-tune algorithm, we also evaluated
the performance when the initialization step is skipped and the
original polygonal curve is selected as input directly. We can
observe that the optimal result is achieved with less than �ve
iterations by the proposed �ne-tune algorithm and the number
of edge tests is much less than the RSDP, which is shown in
Fig. 7.

B. Minimizing the Global Integral Square Error
After the number of vertices is reduced by the LISE/LSSD

criterion, a so-called equivalent solution problem may still exist.
In other words, given an error tolerance , a number of solu-
tions for the min-# approximation can be achieved with the same
number of output vertices , but they lead to distinct approxi-
mation performance (see Fig. 9). Hence, an additional postpro-
cessing step based on the ISE/ISSD criterion is needed in order
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Fig. 5. Example of reducing the number of output vertices with a width of bounding corridor : (left) the target vertices with one link and (right) the target
vertices with two links after tree structure updated given , . (Left �gure) Typical example after the initialization step for Algorithm I.

Fig. 6. Number of edge tests in minimizing the number of output vertices. (Left) Different error tolerance, (middle) different number of input vertices, and (right)
different width of bounding corridor are tested on U.K. map (Curve II). (Left �gure) The resulting number of output vertices is shown in the -axis instead
of the given error tolerance. (Left and right �gures) The input polygonal curve is the U.K. map with .

Fig. 7. Performance comparisons of the proposed �ne-tune algorithm and
RSDP when the original curve is selected as the initial curve directly. U.K.
map (Curve II) is tested with .

to �nd the best approximation result among these equivalent so-
lutions, which can be also considered as a min- problem. The
pseudocode is shown in Fig. 11.

After executing Algorithm II, which effectively updates the
tree structure, additional postprocessing is performed to identify
the best possible curve with the minimum ISE/ISSD, i.e.,

(5.1)
This can be solved by dynamic programming in terms of the

following recursive expression:

(5.2)

where is the parent vertex of and is the accu-
mulated ISE/ISSD.

Theorem 3: The minimization of the global ISE/ISSD under
the constraint of the LISE/LSSD has an expected time com-
plexity of and a space complexity of .

Proof: See Appendix.
From Theorem 3, the minima can be found in

time, and no iterations are needed. The aforementioned min-
imization offers a signi�cant improvement (theoretically
time faster) over the original RSDP that has a time complexity of

. In Fig. 10, the histograms of the approximated
LISE are plotted before and after the �ne-tune step. As the ISE
is the sum of the LISE for all the approximated segments, we
can observe that the ISE is signi�cantly reduced, whereas the
LISE has not increased after the �ne-tune process.

C. Summary of the Near-Optimal Approximation Algorithm

The polygonal approximation algorithm for the joint opti-
mization of both the min-# approximation using the LISE/LSSD
criterion and the min- approximation using the ISE/ISSD cri-
terion has been introduced as a three-step procedure, i.e., the
initialization of the min-# problem, minimizing the number of
output vertices, and minimizing the ISE/ISSD. Proof has been
given that the proposed algorithm has expected time complexity
of and space complexity of , and experiment
results have demonstrated that the practice is consistent with
the theoretical analysis. An example of the proposed algorithm
is shown in Fig. 8. The improvement of the time complexity is
also summarized in Table I.
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Fig. 8. Example of the proposed polygonal approximation. Curve I [25] is used with , and the optimal solution is . (Left) Initial approximated
curve is obtained with . (Middle) Approximated curve is obtained after reducing number of output vertices with .
(Right) The �nal solution is obtained by minimizing ISE with .

Fig. 9. Example of equivalent solutions in min-# approximation, where both
approximated curves meet the error tolerance and have same output

.

Fig. 10. LISE distribution of all the approximated edges with for
Curve II. The best approximation result (right) with is found
from all the equivalent solutions, which is much lower than result after Algo-
rithm II (left) with . Both approximation results have

.

VI. LINEAR-TIME MULTIRESOLUTION POLYGONAL
APPROXIMATION METHOD

In order to further improve the computational ef�ciency, in
this section, a bottom–up multiresolution polygonal approxi-
mation approach is proposed by implementing Algorithms I
and III in Sections III–V in each map scale, which achieves
linear time and space complexity. Given an error tolerance , a
joint optimization for both the min-# approximation using the
LISE/LSSD criterion and the min- approximation using the
ISE/ISSD criterion is solved. The underlying algorithm consists
of three sequential procedures.

1) Error tolerance initialization. Initialize error toler-
ances .

2) Initial curve approximation. A number of polygonal
curves are approximated based on the
bottom–up multiresolution approach with corresponding
error tolerance . Algorithms I and III are
used for approximating the curve of each resolution.

3) Final approximation. A polygonal approximation is con-
ducted under the given error tolerance by selecting

Fig. 11. Pseudocode of minimizing ISE.

TABLE I
SUMMARY OF THE PROPOSED POLYGONAL APPROXIMATION ALGORITHM.

REPRESENTS THAT THE INITIAL CURVE IS EQUALLY PARTITIONED
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Fig. 12. Work�ow of the proposed bottom–up multiresolution method. Error tolerance of coarser resolution is selected as high threshold for polygonal approxi-
mation, which is labeled by dashed line in the �gure. In this example, if , then the approximation of and can be skipped.

Fig. 13. Testing data in the experiments.

the most suitable input curve among those approximated
curves .

In step 1, the error tolerances
are estimated according to the LISE/LSSD error criterion, i.e.,

(6.1)

Here is a parameter to control the number of interme-
diate scale. For example, if , in each scale, the number
of points will be around The afore-
mentioned estimation can be viewed as the average LISE/LSSD
error for all approximated segments when the curve is equally
partitioned. The approximated curve under the error tolerance

has property , where is the number of output
vertices in the th resolution. Note that there are less interme-
diate scales when a larger is selected, thus achieving a better
reduction rate at the cost of a higher computational cost. When

, there are no intermediate scales, and it is exactly the ap-
proximation algorithm that we described with time
complexity (Algorithms I–III).

In step 2, a bottom–up multiresolution algorithm is applied
to estimate the approximated curves under the
corresponding error tolerances . Here, is used
as the high threshold in the approximation procedure of resolu-
tion . The approximated result achieved in the previous �ner
resolution is used as the input of polygonal approximation in the
next coarser resolution , where Algorithms I and
III are applied in each approximation. Since the optimality of
these initial approximation results is not signi�cantly compro-
mised, the step of minimizing the number of vertices described
in Algorithm II can be omitted.

In step 3, given an error tolerance , a polygonal approxi-
mation is conducted to obtain the �nal approximation result by
selecting the most suitable input among those approximated
curves in step 2 such that

(6.2)

The work�ow of the proposed algorithm is presented in
Fig. 12. As the time complexity of the approximation process
is on each resolution, we have the following
theorem:

Theorem 4: Both the time complexity and the space com-
plexity of the proposed bottom–up multiresolution algorithm
are .

Proof: See Appendix
Corollary 4.1: Given as the
number of error tolerances, its corresponding approximated

curves can be also constructed in linear time.
Proof: As the approximated curve for error tolerance

can be used as the input for approximating the curve with error
tolerance , the total time complexity is

.

VII. EXPERIMENTS

In order to evaluate the performance of the proposed mul-
tiresolution polygonal approximation algorithm, two polygonal
curves are used as a test case. Curve I is an arti�cial curve used
in [25] with 5004 vertices; curve II is the U.K. map contour
with 10 911 vertices. For the GPS TS algorithm, two datasets
are used, which are the MOPSI dataset and the Geolife dataset
[31]. The graphical presentations are shown in Fig. 13.
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TABLE II
COMPARISON OF THE EFFICIENCY AND THE PROCESSING TIME

TABLE III
EFFICIENCY AND PROCESSING TIME FOR CURVES I AND II WHEN DIFFERENT IS SELECTED

TABLE IV
PERFORMANCE OF GPS TS BY SED

A. Performance for Arti�cial Polygonal Curve and Vector Map
For the min-# problem, the performance of polygonal approx-

imation is evaluated by its ef�ciency [26], [27], which is de�ned
as

ef�ciency (7.1)

Here is the result of the optimal solution.

In Table II, ef�ciency and computational cost are evaluated
under different error tolerance. It can be observed that the
proposed bottom–up multiresolution approach has a lower
time cost and its performance is better than that of the two fast
heuristic methods, i.e., split [7] and merge [9].

In Table III, we compare the performance when parameter
varies. For larger , better performance is achieved at higher

time cost. We can observe that the least time cost is achieved
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Fig. 14. Processing time cost is plotted for different number of input vertices for curve II. (Left) Low and (right) high error tolerances are both tested.

Fig. 15. Ef�ciency and ISE for different error tolerances , , 1,
and 100.

when , which is in accordance with the theoretical
analysis.

In Fig. 14, time cost is also analyzed in comparison with the
split and merge algorithms when the size of the input curve

increases. Both the low- and high-error-tolerance cases are
tested in the experiment. We can observe that the time cost of
the proposed algorithm linearly increases in both cases and it
achieves better result than the two comparative heuristic algo-
rithms when the number of input vertices increases.

As the proposed approximation algorithm is a joint optimiza-
tion for both the min-# approximation using the LISE criterion
and the min- approximation using the ISE criterion, in Fig. 15,
a comparison is made on the ISE and the ef�ciency of the ap-
proximated curve by using different error tolerances. We can
observe that the proposed algorithm has achieved both higher
ef�ciency (less number of output vertices) and equal or less ISE
compared with the competitive algorithms.

B. Performance Evaluation for GPS TS
The performance of the proposed GPS TS algorithm is

tested on two datasets, which are the MOPSI dataset with 344
trajectories and 744 610 points, and the Geolife dataset with
640 trajectories and 4 526 030 points. The root mean square
error, the average error, the median error, and the maximum
error are all calculated in order to evaluate the ef�ciency of the
proposed algorithm under the SED. In Table V, we also com-
pare these error measures for the GPS trajectories with walking
and no-walking segments. We can observe that, although the
same LSSD error tolerance is used, walking trajectories can
have less distortion with more detailed information comparing
with no-walking segments.

TABLE V
PERFORMANCE OF PROPOSED GPS TS ALGORITHM FOR DIFFERENT

TRANSPORTATION MODES UNDER SED (IN MOPSI DATASET)

TABLE VI
TIME COST OF THE TS

The proposed polygonal approximation algorithm is also
compared with other GPS TS algorithms with the same number
of approximated points. These competitive algorithms are the
D–P algorithm [7], TD-TR [32], OW [32], STTrace [33], and
TS [31]. The results are shown in Table IV, where SED is con-
sidered as the error measure. We can observe that the proposed
algorithm yields the minimum distortion than other solutions.
The time cost of the TS is also summarized in Table VI. It
follows from our experiment that the time cost of the proposed
algorithm is higher than the TS algorithm [31]. This is because
the constant factor in the proposed algorithm is larger than other
solutions, which comes from the LISE/LSSD calculation and
the graph structure maintenance. For example, based on our
experiment, in Fig. 14, when 10 000, the proposed solution
will have less time cost than the split or merge algorithm. Note
that the proposed solution also achieves a better approximation
performance than those fast solutions.

An application of the proposed approximation algorithm for
the GPS TS is demonstrated in Fig. 16 over a sample route with
575 vertices, where the GPS trajectory is visualized in different
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Fig. 16. Example of the GPS TS by the proposed algorithm.

map scales with 44, 13, and 6 vertices correspondingly. As the
suitable error tolerance is selected for each resolution, the visu-
alization of the GPS trajectory is not compromised by the re-
duced data, whereas the rendering time is greatly reduced. The
code and the testing dataset can be seen on http://cs.joensuu.�/
sipu/GPSTS.htm.

VIII. CONCLUSION

We have proposed a fast time polygonal approx-
imation algorithm for the GPS TS by a joint optimization
on both the LSSD and ISSD criteria, which is effective and
computationally ef�cient. The proposed method has been
designed by the bottom–up multiresolution approach. In each
resolution, a near-optimal polygonal approximation algorithm
has been exploited, which has a time complexity of .
Both the theoretical analysis and the experimental tests have
demonstrated that the proposed method had made a signi�-
cant progress in solving the GPS TS problem in a real-time
application. Moreover, the proposed polygonal approximation
algorithm and �ne-tune strategy in Algorithms II and III can be
also extended and exploited to other error criteria.

There are several potential extensions of our paper. For ex-
ample, in our future work, topology properties, road network
information, and the similarity of the multiple GPS trajectories
can be also considered in the approximation process.

APPENDIX

Proof of the LSSD in (3.7):

For the sake of the computational ef�ciency of the SED, we
extend the LISE criterion and derive a new error measure, called
LSSD, where

SED

where is the approximated position at time if subcurve
is approximated by edge [see the de�nition in (2.3)].

Thus
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where

where , , , , , , , and are the accumu-
lated sums of , , and on the GPS trajectory, respectively.

The computation of the aforementioned approximation error
takes time with an time accumulated

sum precalculation.

Proof of Theorem 3:

Suppose that, under an error tolerance , curve with ver-
tices can be approximated by curve with vertices. The
number of vertices with links is .
In total, the space is needed to record the accumulated er-
rors and the backtracking vector; thus, it has a space complexity

.
As every node is only visited once in the tree traversal step

with in total, the main bottleneck is the cost on edge tests,
which can be calculated as follows:

Suppose that vertices are �rst selected with the number of
links from 0 to , respectively. For the remaining
vertices, if the number of links of every vertices is randomly
distributed under a multinominal distribution, then we have

Mult

where and the corresponding
statistical properties of can be formu-
lated as follows:

cov

cov

Thus, the expected time complexity, i.e.,

To sum up, the expected time complexity is and
space complexity .

Proof of Theorem 1:

As the output of the min-# initialization is a tree structure,
space is needed in order to record all the parent and child nodes
on the tree, and its space complexity is .

The time complexity of the min-# initialization mainly con-
sists of two parts, i.e., the number of edge tests and the mainte-
nance cost of two priority queues. The cost of edge tests can be
calculated in a similar manner as in Theorem 3, i.e.,

Mult

where , , and

From Theorem 3, we have

Thus, , as

The cost of maintaining the priority queues is

Suppose a linear function is constructed as follows:
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The constructing function has property , and thus

Thus, the min-# initialization has an expected time com-
plexity of and a space complexity of .

Proof of Theorem 2:

First, we give the proof of the time complexity for simpli�ed
RSDP method. Suppose the initial approximated curve

, where are the indexes on the
curve, s.t.

The number of edges tests of RSDP is

Let us de�ne , , and assume
that curve is randomly initialized as in Theorem 3 such that

has the following property:

Mult

The expected time complexity is therefore estimated as

According to Theorem 3, we have

Thus, .
On the other hand, the proposed reduced search method is

achieved by lifting the vertex position in the output tree struc-
ture in the initialization. The memory cost of maintaining a tree
structure is . Likewise, the cost of number of edges tests
is calculated as

As , we have
Thus, it has an expected time complexity of and
a space complexity of .

Proof of Theorem 4:

From Theorems 1–3, the space complexity of the near-op-
timal polygonal approximation algorithm is . An addi-
tional cost is the precalculated sums, which also takes the
space. As we do not need to record all the information of the in-
termediate scales, the total space complexity is .

The time complexity of the proposed bottom–up multiresolu-
tion algorithm mainly consists of three parts, i.e., the error toler-
ance initialization (step 1), the initial curve approximation (step
2), and the �nal approximation (step 3). As the approximation
error between two vertices can be calculated in constant time,
the time cost of step 1 can be calculated as follows:

In step 2, the time complexity of the proposed polygonal ap-
proximation method is . As the number of input and
output vertices obeys equation for each resolution,
the time complexity can be estimated by

Since the proposed polygonal approximation algorithm (Al-
gorithms I–III) has time complexity of , the com-
putational cost of step 3 can be written as , where the
value of the parameter is always .

To sum up, the proposed multiresolution polygonal approxi-
mation has a time complexity of .
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ABSTRACT 

 
Vector map compression can be solved by incorporating 
both data reduction (polygonal approximation) and 
quantization of the prediction errors, which is the so-called 
dynamic quantization. This straightforward solution is to 
calculate all the rate-distortion curves with respect to each 
of the quantization levels such that the best quantizer is the 
lower envelope of the set of curves. But computing an entire 
set of rate-distortion curves is computationally expensive.  
To solve this problem, we propose a fast algorithm first 
estimates an optimal Lagrangian parameter � for each given 
quantization level l and thus only one rate-distortion curve 
is achievable for constructing the optimal quantizer of 
prediction errors. An experimental result demonstrates that 
proposed algorithm reduces the computational complexity 
significantly without compromising its rate-distortion 
performance. 
 

Index Terms— Data compression, Computational 
geometry 
 

1. I�TRODUCTIO� 
 
Vector maps embrace a number of geographic information 
or objects such as waypoints, routes and areas. Those 
geographic objects can be represented with a sequence of 
points in a given coordinate system. However, encoding and 
achieving the geographic objects in a map image may 
require expensive data storage and processing time.  In 
order to reduce this computational cost, a variety of 
algorithms has been studied and developed [1-8]. Existing 
algorithms have been explored via two classes of strategies: 
polygonal approximation and quantization.  

The main advantage of polygonal approximations is the 
high compression rates, which can be achievable either by 
the fast heuristic methods in [9, 10] or by the graph-based 
methods in [11, 12]. The number of points in the vector map 
is reduced by polygonal approximations such that the 
polygonal curve can be represented in a coarser resolution.  
But they quite often incur a high image distortion. On the 
other hand, the quantization-based approaches calculate the 
differential coordinates of adjacent data points as the 
prediction error and then the residual vectors are quantized 
using different quantization strategies including product 

uniform quantization [2], product scalar quantization [3], 
and vector quantization with fixed-size codebook [4]. 
However, they often lead to less distortion error with the 
limited compression gains. A pioneer solution is to combine 
both the advantage of polygonal approximations and 
prediction error quantization to achieve the best rate-
distortion performance. For instance, the previous reference 
line method [5] first identified a series of references lines by 
using polygonal approximation, prediction errors are then 
estimated for the remaining points according to their nearest 
reference lines followed by product scalar quantization in a 
similar manner to [3]. Likewise in [8], a number of data 
points were first reduced by Visvalingam-Whyatt algorithm, 
to preserve a consistent topology, and then were quantized 
and encoded by a clustering-based method.  

Motivated by the previous progress made by polygonal 
approximation and polygonal quantization, a so-called 
dynamic quantization (DQ) in [6] was sincerely investigated. 
The dynamic quantization algorithm performs a joint 
optimization using both polygonal approximation and 
vector quantization via dynamic programming. For a given 
quantization level l, a naive product uniform quantization is 
employed in the joint optimization using a Lagrangian 
parameter �. Traversing different Lagrangian parameter � 
will construct a rate-distortion curve that depends on the 
quantization level l. The optimal solution is selected 
according to the lower envelope of these curves. However, a 
main challenge for the joint optimization is its expensive 
computational cost. To overcome this difficulty, the error 
balance principle was proposed in [7] based on a strict 
assumption that the total quantization error equals to the 
error for polygonal approximation without quantization. For 
a given quantization level l, an optimal number of points M 
can be identified in the min-� polygonal approximation 
problem by using binary search. However, in practice, the 
time complexity for min-� polygonal approximations equals 
to O(�2) [12] as well, which is still intractable for real-time 
application.  

In this work, we have proposed a fast algorithm for 
vector map compression. For a given quantization level l, an 
optimal Lagrangian parameter � was first estimated and the 
vector map is compressed by solving a shortest path 
problem in a directed acyclic graph with cost function J = E 
+ �R, where E is the distortion for the approximation curve  
and R is the coding cost. Moreover, the algorithm is further 
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Fig. 1, Test map Britain with 10,910 points (left), and 
corresponding prediction residuals (right).  
 
improved by using a specific search criterion. The structure 
of this presentation is organized as follows: section 2 
describes the improved dynamic quantization algorithm; the 
experimental results are reported in section 3 and finally a 
conclusion is drawn in section 4. 
 

2.  PROPOSED METHOD 
2.1 Prediction and encoding 
 
Vector map compression can be formulated as a data 
compression problem for a 2-dimensional vector sequence P 
= (p1, p2,…, pn). A common practice for data compression 
encompasses the three essential procedures: prediction, 
quantization of the residual vectors and entropy coding. The 
prediction procedure calculates the differential coordinates 
of adjacent points as a prediction error instead of using the 
absolute coordinates for data quantization. It can be 
assumed that the prediction errors obey a distribution of 
random variable empirically, e.g., uniform distribution or 
geometric distribution. An example of polygonal curve can 
be observed in fig. 1, where the resulting differential 
coordinates obeys a geometric distribution. 

To avoid quantization error propagations, the prediction 
must be done in a way of closed-loop prediction: 

-1( )r r
i ip Q p� 
v i  (1) 

where Q is a two-dimensional product uniform quantizer vi 
is the residual vector and -1

r
ip is the estimation of the 

previous point. For a given quantization level l, the product 
uniform quantizer is formulated as: 

( ) [ / ] ([ / ] ,[ / ] )i iQ l l x l l y l l� � � � � � �v vi i  (2) 
Obviously, coding Q (vi) is equivalent to coding an integer 
vector q = ([�xi/l], �yi/l]), which can be encoded by 
probability distributions of qx and qy. 

2 2( ) log ( log (xi yir f q f q� 	 � 	 �v i  (3) 
where the codebook itself must be also encoded and 
transmitted to the decoder. But a large-sized codebook is 
intractable in order to achieve a desirable coding efficiency. 
An intuitive solution is to adopt a single-parameter 
geometric distribution to model |qx| and |qy|: 

| |(| |) (1 ) xq
x x xf q p p� 	  (4) 

 
Fig. 2, Poly-line {pi,…, pj} (solid line) is approximated by{ , }r r
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where px can be approximated by using maximum likelihood 
estimation. Thus, the code length led by an arithmetic 
coding according to the geometric distribution is written as 

2 2
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( ) (| | log (1 ) log ( )) 2
(| | log (1 ) log ( ))
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r q p p
q p p
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vi  (5) 

where no codebook is needed.  
We should mention when the data has different property, 

uniform distribution, negative binomial distribution or 
Poisson distribution can also be considered instead of 
geometric distribution. 
 
2.2 Dynamic quantization 
 
In dynamic quantization, polygonal approximation is 
embedded into the closed-loop framework by using 
dynamic programming. Suppose that a poly-line {pi,…,pj} 
is approximated by line segment { , }r r

i jp p , the approximation 
error can be defined as the sum of square distances from 
vertices pk (i�k�j) to { , }r r

i jp p in fig. 2: 

2
2 ( , ) ( ,{ , })

j
r r r r
i j k i j

k i
e p p d p p p

�

� �  (6) 

This approximation error in (6) can be calculated in a 
constant time [11] by pre-computing the accumulated sum 
for curve coordinates x2, x, xy, y2 and y. The dynamic 
quantization becomes a joint optimization of polygonal 
approximation and prediction error quantization, which 
minimizes the cost function: 

1 12 2
1
( ( , ) ( , ))

m m m m

M
r r r r
i i i i

m
J E R e p p r p p� �


 

�

� 
 � 
 ��  (7)

where M is the number of points output by polygonal 
approximation. The minimization problem can be solved by 
the shortest path search on a weighted directed acyclic 
graph (DAG) or dynamic programming. Suppose Ji is the 
minimum weighting sum from p1 to pi on G, A is an array 
used for backtracking operation, the recursive equation can 
be defined by: 

2 1{1 1}
min ( ( , ) ( , )), 0r r r r

i k k i k ik i
J J e p p r p p J�

� � 	
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 �  (8)

2
{1 1}
arg min( ( , ) ( , ))r r r r

i k k i k i
k i

A J e p p r p p�
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Fig. 3, Rate-distortion curve for quantization step qk=0.01/2k, 
where k=0, 1/2,1,…, 5 (from left to right), black ‘+’ is the position 
when error balance principle is applied, red ‘o’ is the proposed(� 
is selected by (10)).The red line is the rate-distortion curve when 
optimal � is selected with qk=0.01/2k, where k=0, 1/5, 2/5,…, 5. 
 

Existing approach intuitively calculates all the rate-
distortion curves with respect to each of the quantization 
levels such that the best quantizer is the lower envelope of 
the set of curves. This method computes an entire set of 
rate-distortion curves which is hugely time-expensive.   

To resolve this operational problem, a fast dynamic 
quantization (FDQ) algorithm is proposed. We have proved, 
for each quantization level l, one optimal Lagrangian 
parameter � can be estimated as (see appendix): 

21 ln 2
6

l� �  (10)

Eventually, only one dynamic quantization needs to be 
conducted for a given quantization level l. However, by 
traversing different quantization level l, a unique rate-
distortion curve can be constructed. An example can be 
found in Fig. 3. In the figure, it was also illustrated that the 
pervious methods have investigated different quantization 
levels by considering 30-40 number of �s for each l, which 
leads to 300 iterations of minimization of (7).  
 
2.3 Search criterion  

 
The shortest path algorithm on a weighted DAG takes O(�2) 
time. This can further be improved by incorporating a 
specific search criterion: 

22
( , )( , )

( ) ( )
i

r rr r
A ik i

i

e p pe p p
i k i A

��
	 	

 (11)

where {
i

r
Ap , r

ip } has a shortest path so far and r
kp  is the 

current testing point. Namely, for a target point r
ip , the 

shorted path search will terminate weight calculation before 
point pk once if equation (11) is satisfied. The experimental 
testing in this presentation has revealed that the processing 

time can be reduced by more than 95% with � =40. Pseudo 
code of proposed algorithm is shown in Fig. 4. 

The proposed method can also be applied for entropy- 
constrained problem, in which we compress the vector map 
data under a certain bit-rate. The result can then be obtained 
by several iterations of the algorithm using bisection search 
on the quantization level l. 
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Fig. 4 Pseudo code of fast dynamic quantization method
 

3. EXPERIME�TS 
 
The proposed fast dynamic quantization algorithm (FDQ) is 
evaluated on a 10,910-point vector map representing the 
contour of Britain (Fig. 1). We compare the performance 
with the previous dynamic quantization (DQ) algorithm [7], 
and with several other approaches as well: clustering-based 
method (CBC) [4], and reference line method (RL) [5]. The 
distortion is measured here by mean squared error (MSE). 
The corresponding rate-distortion curves are plotted in 
Fig. 5. It can be observed that the proposed algorithm 
achieves significantly better rate-distortion result than the 
other approaches in this work considered and can be also 
comparable with the DQ algorithm. The computational cost 
for solving the entropy-constrained problem can be reduced 
within 1 second by using the proposed dynamic 
quantization. In the experiments, the proposed algorithm 
only takes 5% of the time as the previous approaches do. 
The proposed algorithm is also applicable to variable-
resolution compression problem for a real-time application. 
The visualization performance in the decoder for different 
compression bit-rate can be found in fig. 6.  
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Fig. 5, Performance comparison 
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4. CO�CLUSIO� 

 
We have proposed a fast dynamic quantization algorithm 
for lossy compression of vector map. The underlying 
algorithm first identified an optimal Lagrangian multiplier � 
value for each quantization step l and then constructed only 
one rate-distortion curve for design of predicted-error 
quantizer. In addition, a powerful searching criterion was 
exploited for the sake of speeding up the dynamic 
quantization. 

Experimental results have shown that the proposed 
method is twenty times faster than the previous dynamic 
quantization algorithm but achieves a similar or better 
compression performance. Future work can be considered in 
the following perspectives:  
1.  The dynamic quantization can be improved by combining 

vector quantization and uniform product quantization. 
2. Lattice VQ can be used instead of uniform quantization. 
3. Linear prediction can be considered to improve the 

prediction of the residual vectors. 
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APPE�DIX: PROOF OF (10) 
The cost function is defined as: J= E + �R. In uniform product quantization, 
for a given quantization step l, mean square error E can be calculated by: 
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where E=l2/6. For residual vector vi, after uniform product quantization, if it 
is estimated by geometric distribution,           
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Abstract 

 
Quantization plays an important part in lossy 

vector map compression, for which the existing 
solutions are based on either a fixed size open-loop 
codebook, or a simple uniform quantization. In this 
paper, we proposed an entropy-constrained vector 
quantization to optimize both the structure and size of 
the codebook at the same time using a closed-loop 
approach. In order to lower the distortion to a 
desirable level, we exploit two-level design strategy, 
where the vector quantization codebook is designed 
only for most common vectors and the remaining 
(outlier) vectors are coded by uniform quantization.  
 
1. Introduction 
 

Vector maps consist of geographic information 
such as waypoints, routes and areas, which can be 
represented as a sequence of points in a given 
coordinate system. To reduce the archive space and 
transmission time, a variety of compression algorithms 
have been investigated and developed for compressing 
vector maps [2-6]. Existing lossy compression 
algorithms use two different strategies: polygonal 
approximation and quantization-based method.  

In polygonal approximation, the number of points 
is reduced and the curve represented by a coarser 
approximation [1]. In quantization-based method, 
differential coordinates of subsequent sampling points 
are considered as the prediction error and these 
residual vectors are quantized using various methods, 
such as uniform quantization [2], product scalar 
quantization [3] and vector quantization with fixed 
size codebook [4]. In [5], reference line method first 
identified a series of references lines by polygonal 
approximation and then estimated prediction errors for 
the remaining points according to their nearest 

reference lines followed by product scalar 
quantization in a similar manner to [3]. In [6], 
dynamic quantization was studied where the curve 
approximation was performed by taking into 
consideration vector quantization of the approximation 
line segments. 

In this paper, we propose three concrete 
improvements for the quantization-based method. 
Firstly, all the previous methods use a fixed size 
codebook, whereas entropy-constrained pair-wise 
nearest neighbor for vector quantization (ECPNN-VQ) 
is used that optimizes the size of the codebook as well. 
As a merge-based clustering method, ECPNN-VQ will 
stop reducing the size of the codebook when a given 
bit-rate constraint is met. 

Secondly, the codebook is further optimized where 
the codebook of vector quantization is only applied for 
most common vectors and the rest (outliers) are 
processed by uniform quantization. In contrary to 
typical image compression, vector data has a wide 
dynamic range that can vary significantly from a 
dataset to another. In conventional approaches, a 
large-size codebook has therefore been required in 
order to achieve lower distortion. In practice, however, 
the code length and cost of the codebook itself must 
also be taken into account, which is ignored in the 
existing vector quantization methods. In specific, 
large-size codebooks are required when high bit rate is 
desired, and it is difficult to achieve a desirable 
compression performance due to the additional code 
length of the codebook. To attack this problem, an 
additional “outliers” cluster is designed for vectors 
that differ too much from the majority of the vectors. 
Those vectors with significantly high cost in the rate-
distortion sense are selected as “outliers” and coded 
by a separate escape codeword. The underlying 
quantization method leads to a robust compression 
performance both for high and low bit-rates. 
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Fig. 1, Test map Britain with 10,910 points (left), and the 
prediction residuals with MSE =1.8·10

-4
.  

Finally, the close-loop structure in the encoding 
step was improved by dynamic programming 
algorithm. The remainder of the paper is organized as 
follows. The proposed method is introduced in section 
2; Section 3 reports the corresponding experimental 
results; and conclusions are drawn in section 4. 
 
2. Proposed Method 
 

In vector map compression, we want to compress a 
given 2-D vector sequence: P= (p1, p2,…, pn), under 
given bit-rate constraint c. General compression 
procedure contains three steps: prediction, 
quantization of the residual vectors and entropy 
coding. Differential coordinates of subsequent 
sampling points are used as the prediction error in 
prediction step. A sample test curve and the 
distribution of the corresponding differential 
coordinates for which the quantization codebook is 
designed, are shown in Fig. 1. 
 
2.1 Initial the codebook in vector quantization 
 

In vector quantization, we want to quantize the 
residual vectors by minimizing mean square error 
under a constraint that the average bit-rate does not 
exceed c: 

2

1
min , . . ,  (|| ( ) || )

N

i
D s t R c where D Qi iv v  (1) 

vi is the residual vector and Q(vi) is its quantized form. 
In entropy-constrained vector quantization (ECVQ), 

the problem can be solved by a Lagrangian 
minimization procedure by converting it as an 
unconstrained optimization problem [7], formulated as 
J = D + R. For each Lagrangian parameter , it has a 
corresponding point on the rate-distortion curve. 
However, unlike image coding, prediction error for 
vector data varies for different case, and thus, using a 
fixed size (k) in codebook design does not solve the 
problem efficiently. In order to find a better 
combination of  and k, ECVQ can be applied but at 
the cost of higher time complexity, which makes it 
suitable only off-line.  

Entropy-constrained pair-wise nearest neighbor for 
vector quantization (ECPNN-VQ) has been proposed 
in [8]. It merges the pair of cluster that results in the 
smallest increase in distortion and largest decrease in 
rate. The increased distortion after merging two 
clusters i and j can be calculated by: 

2
2|| ||i j

i j

n n
D

n n i jc c  (2) 

ni and nj are the number of vectors in cluster i and j, 
respectively, and ci and cj are their centroid vectors.   
The change in bit-rate can be calculated as: 

log( / ) log( / )

( ( )log(( ) / ) )
i i j j

i j i j q

R n n n n n n
n n n n n r

 (3) 

rq is the code length of one quantized vector in 
codebook, n is the number of residual vector. 

In every merge step, the pair of clusters with 
minimum - D/ R is merged. This can also be 
considered as searching the minimum slope in the 
rate-distortion curve, and thus, it guarantees the 
optimality of each merge step. Since in classic ECVQ 
framework,  is interpreted as the slope of the line 
supporting the operational rate-distortion curve, and 
therefore, in ECPNN-VQ, it is approximated by:  

 -(Dn+1-Dn)/(Rn+1-Rn). (4) 

The time complexity of ECPNN-VQ is O( N2), the 
same as that of the traditional PNN algorithm [9]. 
 
2.2 Optimize quantization by outlier cluster 

 
After ECPNN-VQ, the cost of each residual vector i 

in cluster j can be formulated as: 
2
2 2|| || ( log ( / ) / )ij j q jJ n n r ni jv c  (5) 

If a very high accuracy is needed, a large-sized 
codebook is intractable in achieving a desirable coding 
efficiency. Better compression performance can be 
achieved by uniform quantization because no 
overhead is needed for storing the codebook. 
Therefore, we apply two-level codebook so that the 
most common vectors are coded by vector 
quantization using the optimized codebook, while the 
outlier vectors are coded by uniform quantization. In 
uniform quantization, given quantization level l, 
residual vector vi is quantized as Q(vi) = ([ xi/l]·l, 
[ yi/l]·l), where qxi =[ xi/l], qyi =[ yi/l] are integer 
value be coded.  

The mean square error D0 can be calculated by: 
/2 2 2

00 /2

1 1 1( )
2

l l

l
x dx l x D

l l
 (6) 

We have D0 =l2/6. 
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Fig.2, Comparison of the vector 
quantization of the residual vectors 

Fig. 3, Demonstration of the outlier selection (5 bits/point constraint). ECPNN with 
MSE= 8.7·10

-6
 and codebook size 78(left). The proposed two-level codebook with 

MSE= 6.9·10
-6

 and size 30 (right). Outliers are marked as ‘o’. Grid size for uniform 
quantization is also labeled.

 
We observe that the |qx| and |qy| can be described by 
geometric distribution: 

| |(| |) (1 ) xq
x x xf q p p  (7) 

where px is the parameter, which is approximated by: 

1

11 / ( | | 1)
n

x xi
i

p q
n

 (8) 

The coding length for uniform quantization is: 

0 2 2 2 0

2 2

(| | log (1 ) log ( )) log ( / ) 2
(| | log (1 ) log ( ))

i xi x x

yi y y

r q p p n n
q p p

 (9)

where n0 is the number of vectors used for uniform 
quantization. The cost of uniform quantization is 
calculated by: J0 = i(D0+ ri0). By setting 0 / 0J l , 
we got the optimal quantization level: 

6 / ln 2l  (10)

In our method, ECPNN is used to initialize the 
codebook. For a given bit constraint c,  is first 
approximately on the rate distortion curve by (4). 
“Outlier cluster” is then created with quantization 
level l by (10). Residual vectors are repartitioned to 
the clusters with minimum cost J by: 

( ) , arg min ( ), 0,1..,j ijQ j J j ki jv c  (11)

A centroid step is followed in order to update the 
codebook. Parameters px and py for the geometric 
distribution are also updated. Fig.3 shows an example 
of the codebook design. We can observe that several 
vectors and some clusters have completely been 
moved to the “outlier cluster”, and the size of the 
main codebook is reduced from 78 to 30. 

The corresponding rate-distortion curve of the two-
layer quantization step in Fig.2 shows better rate-
distortion performance than the corresponding one-
level ECPNN, or the uniform quantization under 
different bit-rate conditions. We should mention when 
the data has different property, uniform distribution, 
negative binomial distribution or Poisson distribution  

 
can also be considered instead of geometric 
distribution. 

 
2.3. Encoding by closed-loop with dynamic 

programming 
 
After prediction and quantization of the residual 

vectors, we compress the vector data by entropy 
encoding. In order to avoid error propagation, the 
prediction must take into account the quantization 
effect of the previous point by using closed-loop 
prediction: 

-1
r

i ip piv  (12)

-1( )r r
i ip Q piv  (13)

here r
ip  is the approximated point after entropy 

coding. The total cost can be calculated by: 
2
2

1
,  || ||

n
r

n i i i i i
i

L J where J p p r  (14)

where ri is the coding length for pi. 
Selecting the quantized vector according to (13) 

cannot guarantee optimality during minimizing the 
cost function in this encoding procedure. In our 
method, we keep more possible candidates (t=8 in our 
implementation) in each step and the optimal solution 
is found by a dynamic programming process in the 
state space of size n·t. Suppose that t is the best 
solution recorded for encoding from p1 to pi, with the 
corresponding costs Li,1,Li,2,…Li,t, ,1 ,2 ,, ,...,r r r

i i i tp p p is the 
approximating points for pi. Based on a combination 
of k quantized vector and t best solutions for pi, k·t 
solutions are tested for approximating pi+1 and t best 
solutions 1,1 1,2 1,, ,...,r r r

i i i tp p p is saved with minimum 
costs Li+1,1, Li+1,2,…Li+1,t. In the end, backtracking is 
done to find the quantized vectors from ,1

r
np with 

minimum cost Ln,1. The time complexity of proposed 
approach is O(ktn·log kt). 
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Fig. 4 Workflow of the proposed method 

 
The residual vectors can be updated by (12) after the 

approximated curve has been constructed. Given bit-
rate constraint c,  is updated by a binary search in the 
next iteration.  
 
3. Experiments 

 
We evaluated the proposed algorithm with optimal 

codebook design (OCVQ) on a 10,911-point vector 
map representing the contour of Britain (Fig. 1). For 
comparison, two alternative methods are investigated 
in the experimental tests: Clustering-based method 
(CBC) [4] and the reference line method (RL) [5]. The 
distortion is measured by mean squared error (MSE). 
We further integrate our method into Dynamic 
quantization (DQ) [6], where integral square error 
(ISE) is used as the error measure. The corresponding 
rate-distortion curves are plotted in Fig. 5. The 
proposed algorithm compares favorable with the 
existing approach. 
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Fig. 5, Performance comparison 

 

4. Conclusion 
 
We propose a lossy compression algorithm for 

vector map data under a certain bit-rate constraint. In a  

 
comparison to the previous clustering-based method, a 
two-level strategy has been exploited and employed to 
optimize the codebook design. Vector quantization 
codebook is designed only for most common vectors, 
and the remaining vectors (outliers) are coded by 
additional bits using uniform quantization. 
Additionally, a dynamic programming method is 
utilized to improve the quantized vector selection in 
closed-loop framework, instead of using a 
conventionally greedy approach.  
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Abstract: Enormous amounts of GPS trajectories, which record users' spatial 
and temporal information, are collected by geo-positioning mobile phones in 
recent years. The massive volumes of trajectory data bring about heavy burdens 
for both network transmission and data storage. To overcome these difficulties, 
a number of compression algorithms have been proposed by reducing the 
number of points in the trajectory data. But these algorithms lack a rigorous 
investigation on how to encode the reduced trajectories. In this paper, we 
propose an algorithm that optimizes both the trajectory simplification and the 
coding procedure using the quantized data. The underlying algorithm is also 
compared with the existing methods across 640 trajectories from Microsoft 
Geolife dataset using synchronous Euclidean distance (SED) as the error 
metrics. Experimental results show that the proposed method saves 60% of 
compression cost against the current state of the art compression algorithms. 

1. Introduction 

Location-acquisition technologies have generated a great deal of enthusiasms in the 
global mobile market in recent years. For example, the Location Based Services (LBS) 
enables the end-users of GPS mobile phones to obtain their locations, and therefore 
record travel experiences by a number of time-stamped trajectories. However, most of 
LBS applications bring about an enormous volume of data to the end-users as well as 
incur a large amount of redundant storage and a longer uploading/downloading time to 
mobile service providers. For example, if data is collected at 10 second intervals, a 
calculation in [1] shows that without any compression, 100 Mb of storage capacity is 
required to store the GPS trajectories of 400 users for a single day in server side. 

To overcome this difficulty, a number of GPS trajectory compression algorithms have 
been studied in literature. In these algorithms, an approximation technique called line 
simplification has been treated as an active research topic in data reduction of the GPS 
trajectories, amongst which the Douglas-Peucker algorithm [2] is the most popular one. 
The algorithm divides the line segment with biggest deviation at each step until the 
approximated error is smaller than a given error tolerance. 

Later, Meratnia [1] indicated that such algorithms were not suitable for GPS trajectory 
since both spatial and temporal information should be considered. Thus, the so-called 
TD-TR algorithm was developed, where synchronous Euclidean distance was used 
instead of the perpendicular distance in the Douglas-Peucker algorithm. Similarly, 
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Opening Window [1] algorithm was also proposed to solve the line simplification 
problem sequentially in a greedy manner. Another solution [3] was the threshold-guided 
algorithm via estimating the safe area of the next point using the position, speed and 
orientation information. STTrace sampling algorithm was also implemented using a 
bottom-up strategy such that the synchronous Euclidean distance was minimized in each 
step. In [4], a new distance-function called spatial join was proposed, which was bounded 
for spatial-temporal queries. 

Recently, a new simplification algorithm SQUISH [11] has been proposed based on the 
priority queue data structure that preserves the speed information at a much higher 
accuracy. A multi-resolution simplification algorithm MRPA has also been designed with 
linear time complexity in [12]. Semantic meanings of the GPS trajectories are also 
considered during the compression process in urban area in [15] whereas trajectory 
compression algorithm with network constraint has been developed in [14]. Performance 
evaluations are also made for several traditional trajectory simplification algorithms [10]. 
However, there is not one algorithm that always outperforms other compression 
approaches in all situations [11].  

In these algorithms, the performance is measured only on the reduction rate by the line 
simplification process. The reduced data points are saved directly, which is useful to 
support the effective trajectory queues in database. However, they lack of a rigorous 
analytical approach on the encoding procedures of the reduced trajectories. Namely, 
without further compression after line simplification, 12 bytes are needed at minimum for 
encoding each point including latitude, longitude and timestamp information. On the 
other hand, when data compression techniques are used, we can achieve a better 
compression ratio for the spatial trajectory data, which is appropriate for data storage. 

To circumvent the above problem, a quantization technique can be applied to further 
improve the encoding procedure of these reduced GPS trajectories. The quantization 
approach has been analytically investigated in the so-called vector map compression 
problem [5-8]. In these algorithms, differential coordinates of adjacent data points are 
used as the prediction error and the residual vectors are then quantized using a variety of 
quantization strategies, including uniform quantization, product scalar quantization [5] 
and vector quantization with fixed-size codebook [6]. Amongst them, a pioneer solution 
in [7] combines both the advantage of line simplification and quantization via dynamic 
programming and hence the terminology of dynamic quantization (DQ). Likewise, the 
quantized vectors can be further compressed by arithmetic coding based on the 
assumption that the resulting quantized differential coordinates obeys a geometric 
distribution [8].  In all these methods, timestamp information is not considered. 

In this paper, we consider the problem of lossy compression for GPS trajectories with 
latitude, longitude and timestamp information, under a given error tolerance, i.e., 
synchronous Euclidean distance. In contrast to the existing algorithms, we achieve two 
significant improvements described below. Firstly, speed and direction changes are 
incorporated in the encoding process instead of using the differential coordinates in the 
previous methods. Secondly, line simplification and quantization are combined in the 
encoding procedures in order to seek the approximated trajectory for compression. 

The rest of the paper is organized as follows. The proposed GPS trajectory compression 
(GTC) algorithm is introduced in Section II, experimental results are reported in Section 
III, and finally, conclusions and discussions are drawn in Section IV.  
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2. Proposed GPS Trajectory Compression Algorithm 
2.1. Synchronized Euclidean Distance 

In this paper, synchronized Euclidean distance [1] is used as the error metrics for 
evaluating the distortion of the approximated (compressed) GPS trajectories. Here, the 
error is measured through distances between pairs of temporally synchronized positions, 
one on the original and one on the approximated trajectories, which can be formulated as 
follows: 

Suppose P = {p1, p2, …, pn} = {(x1, y1, t1),…,(xn, yn, tn)} and P’ = {pi1’, pi2’, …, pim’} = 
{(xi1’, yi1’, ti1’), … , (xim’, yim’, tim’)} are the original and the corresponding approximated 
GPS trajectories with i1 < i2 < … < im, i1 = 1, im = n and m � n. For each point pj = (xj,  yj,  
tj) on the original trajectory, its approximated synchronized position can be calculated as: 

1 1

1
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After pi’ is determined, synchronized Euclidean distance is calculated by: 
' ' 2 ' 2( , ) ( ) ( )i i i i i iSED p p x x y y= − + −  (3)

In order to evaluate the distortion of the whole trajectory, maximum synchronized 
Euclidean distance is used, which is defined as: 

'
1( , ') max ( ( , ))i n i iSED P P SED p p≤ ≤=  (4)

In synchronized Euclidean distance, the continuous nature of moving objects 
necessitates the inclusion of temporal as well as spatial properties of moving objects. 

2.2. Approximate GPS trajectory with given error bound 

We consider both the line simplification and the quantization in the approximation 
process. In vector map compression, differential coordinates are used in the encoding 
process. However, for GPS trajectories, because of the inconsistency of the differential 
coordinates after the approximation process, the coding efficiency may be reduced if 
differential coordinates are used directly.  Meanwhile, speed and direction will be more 
consistent even if a simplification (approximation) step is applied with different reduction 
rate in different segments.  

An approximation example is demonstrated in Fig. 1, suppose we want to approximate 
a sub-trajectory 1k

k

i
iP +  by line segment

1
' '

k ki ip p
+

, where '
ki

p  is the approximated position in 
previous step. If time interval �t(k) is known, the speed of the line segment is: 

1
( ) ( ', ) / ( )

k ki ispd k d p p t k
+

= Δ  (5)

Given maximum SED tolerance �, we assume the quantization error of point 
1
'

ki
p

+
 is �� 

at maximum, thus the quantized level for speed can be set as: 
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Fig. 1: An example of the quantization process for the GPS trajectory 

( ) 2 / ( )spdl k t kγ ε= ⋅ ⋅ Δ  (6)

Here � is a parameter as the ratio of the quantized error and the total SED on the target 
point, which is set as � = 0.5 by our experiment. Thus, the quantized speed for 
approximated segment can be calculated as: 

*( ) [ ( ) / ( )] ( )spd spdspd k spd k l k l k= ⋅  (7)

Meanwhile, we can get the direction change ��(k) with a value between –� and �, 
where negative value represents the direction change in clockwise. 

Given the quantized speed spd*(k), the quantization level for the direction change can 
be estimated by: 

1
*

2 / 2( ) 2 tan
( ) ( ) 2 / 2

l k
spd k t kθ

γε
γε

−
Δ =

⋅ Δ +
 (8)

Thus, the quantized direction change is: 
*

( ) ( )( ) [ ( ) / ]k kk k l lθ θθ θ Δ ΔΔ = Δ ⋅  (9)

Based on the quantized speed and direction change spd*(k) and ��*(k), the quantized 
position 

1 1 1 1
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+ + + +

=  can be approximated as: 
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A greedy solution is used for the trajectory approximation in this paper.  Start from the 
first point, the farthest point is found with an approximated SED less than the given error 
tolerance 1

1
( , ' ')k

k k k

i
i i iSED P p p ε+

+
≤  for every line segment

1
' '

k ki ip p
+

. The pseudocode can be 
seen in Fig. 2. 

 Note that when the input of GPS trajectory is latitude and longitude in WGS84 format, 
Mercator projection is needed as a preprocessing step so that the distance can be 
calculated directly. 
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ALGORITHM I, APPROXIMATION OF GPS TRAJECTORY 
INPUT   
P = {p1, p2 ,…, pn}:  original trajectory 
�: SED error tolerance  
OUTPUT 
P’ = {pi1’, pi2’, …, pim’} 
 
i  ← 1 
j  ← 2 
pi1’ ← p1 
m  ← 2 
FOR i = 1 TO i = n - 1 DO 

IF j > n          
           pim’ ← pn’ 
         BREAK 
    END 
     d ← ( , ' ')j

i i jSED P p p  
     IF d � �           
           j  ← j + 1 

ELSE 
          pim’ ← pj-1’ 

m  ← m + 1  
i  ← j - 1 
j  ← i + 1 

     END 
END 

Fig. 2: Pseudocode of proposed GPS trajectory approximation process 

2.3. Encoding Process on the Approximated Trajectory 

In the encoding process, we need to encode both the differential coordinates and time 
difference (�x, �y and �t). Suppose '

ki
p  and 

1
'

ki
p

+
 are two neighbor points in the 

approximated trajectory P’. Firstly, the time difference is encoded by the following 
probability: 

1

1

/( ( ) )
1

where ( ( ) / ) / ( ), max( ( )) / , 1,2,..., 1.
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= Δ = Δ = −�t tr r
 (11)

tspmin is minimum sampling time internal on the GPS trajectory (1s in most cases) and �t 
is a bias factor (�t = 0.01), vector rt is initialized as a zero vector with size rtspmax × 1. 

After �t(k) has been encoded, vector rt  is updated by: 

1 ( ), /
( )   

( ), else
t t k min

t
t t

r s s t tsp
r s

r s
μ

μ
+ = Δ�

= �
�

 (12)

where �t is a forgetting factor[13] which gives higher influence on the recently encoded 
time intervals with �t = 0.995 in this paper. The reason that we use a forgetting factor is 
that the possible multi-model in the GPS trajectory. A higher reduction rate can possibly 
be achieved for the segments with slower moving speed (e.g., by walking) comparing 
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with fast moving segments (e.g., by car). Thus, it will be helpful to improve the coding 
performance if a forgetting factor is used. 

The speed value is then predicted by spdpred(k) and �spdpred
2(k), which is: 

( )

* 2
1

* 2
2 2

2
2

2

2 2
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d
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t i t i

k γ ε σσ

−= ⋅ Δ ⋅ − ⋅ ≥ − ⋅ Δ

Δ= ⋅ + +−
Δ Δ

�

�
 (13)

nc1 and nc2 are normalized values for the weighting factors, while wt , d  and �GPS
 are 

parameters with wt = 20, d = 4 and �GPS = 5. The second and third term of �spdpred
2(k) are 

the variance of the quantization procedure and the GPS error correspondingly. 
The probability is then estimated by assuming the speed has a Gaussian distribution:  
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δ
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+
=

+
 (14)

where p has a Gaussian distribution with mean spdpred(k) and variance �spdpred
2(k), bias 

factor �spd  is set as 0.01. 
For the direction changes, the encoding process has a similar form with the encoding 

process for time difference, which is: 
0
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(15)

where the size of vector r�� is (1+2lv��) × 1 and 0nlv θΔ  is set as 180 from our experiment. 
After ��(k) has been encoded, vector r��  is updated by: 
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0 * 0
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where forgetting factor ��� is set as 0.995 here. 
The probabilities of the time difference, speed and direction change are encoded by 

arithmetic coding. The pseudocode can be seen in Fig. 3. 
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Note that in the compressed file, a 192 bits fixed-length head file is used to save the 
parameters of the trajectory. These values includes start position of x (30 bit), y (30 bit), 
time(32 bit), tspmin (8 bit), rtspmax (16 bit), m (24 bit), spdmax (32 bit) and scaling factor of 
Mercator projection (20 bit). 
 

ALGORITHM II, ENCODING PROCESS OF THE APPROXIMATED TRAJECTORY 
INPUT   
P = {p1, p2 ,…, pn}: original trajectory 
�: SED error tolerance  
OUTPUT 
Encoding file 
 
P’  ← Calculate the approximated trajectory by Figure 2. 
Calculate parameters rtspmax, tspmin, spdmax 
Write head file 
FOR k= 1 TO k = m - 1 DO 

Encode �t(k) by (11) 
Update rt by (12) 
Predict spdpred(k) and �spdpred

2(k) by (13) 
Encode spd*(k) by (14) 
Encode ��*(k) by (15) 
Update r� by (16) 

END 
Fig. 3: Pseudocode of the encoding process of the proposed GPS trajectory compression 
algorithm 

2.4.  Complexity Analysis 

In this section, we give the complexity analysis for each step of the proposed algorithm, 
which is listed the Table I. Note that 	1, 	2 and 	3 are constant values, which are not 
related to the size of the trajectory data.  

 
TABLE I: Summary of the Expected Time Complexity of the Proposed GPS Trajectory 

Compression Algorithm 
STEP   TIME COMPLEXITY 

I. Approximated Trajectory  O(n2/m) 

II. Encoding Process 

Time Difference O(m·	1), 	1 =rtspmax 

Speed max
2 2( ),  spdO m tτ τ

ε
⋅ = Δ  

Direction Change O(m·	3), 	3 = nlv�� 

III.  Decoding Process  Same as the encoding process 

3. Experiments 

In order to evaluate the performance of the proposed compression method, we use 
Microsoft Geolife dataset [8] for testing purpose. It includes 640 trajectories with 
4,526,030 points, which has a sampling rate between 1s to 5s with different transportation 
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mode such as walking, bus, car, airplane or a multimodal. The code is written in Matlab 
and all the experiments have been performed on Intel Pentium-4 3.0 GHz CPU running 
Windows XP with 2G RAM. 

The compression performances (KB/hour) are evaluated for different error tolerance: 
1m, 3m, 10m, 30m and 100m maximum synchronous Euclidean distance (SED). The 
proposed GPS trajectory compression algorithm (GTC) is compared with the state-of-art 
method TD-TR [1]2. LZMA (7-zip) is used to further compress the reduced trajectory of 
TD-TR algorithm 3 . We also evaluate the performance of vector map compression 
algorithm (VMC) [8] for compressing the position information, while the time 
information is encoded in the same way as in GTC. We can observe in Fig. 4 (left) that 
the coding cost of the proposed algorithm is only about 35%-40% compared with TD-TR, 
and it is consistent on different tolerance level. Note that for an uncompressed GPS 
trajectory with 1s sampling frequency, if twelve bytes were allocated for each point, the 
total storage cost would be 42.2 KB/hour. Thus, the proposed method achieves a 
compression ratio more than 100:1 for a 10m max SED. We also evaluate the reduction 
rate for different approximation algorithms in Fig. 4 (right). Experiments show that 
although we design a different reduction and approximation algorithm for the encoding 
purposes, the reduction rate is still similar. 

 Time costs of the encoding and decoding process are calculated and shown in Fig. 5 
(left).  The decoding cost reduces when maximum tolerance increases, because more 
points are reduced already in the approximation step. For the encoding process, since a 
O(n2/m) time complexity is needed for the approximation step, the time cost will slightly 
increase with the high tolerance case.  

We evaluate the bit-rate for each component on the reduced trajectory: time difference, 
speed and direction change. They are compared with the coding cost using differential 
coordinates [8], which is given in Fig. 5 (right). We observe that the bit-rate of time 
difference increases when maximum SED increases. This is because the time difference 
varies more when the trajectory has a higher reduction rate. However, the bit-rate of 
speed and direction change will not increase even if a higher tolerance is used. This is 
because we select a higher quantized level when the given tolerance increases. We also 
notice that a lower bit-rate is needed when speeds and direction changes are considered 
instead of the differential coordinates, especially for lower error tolerance.  

For the given max SED, its corresponding mean or median SED are also evaluated, 
which is around 50% of the maximum SED for all the tolerance levels in our experiment. 

Note that GPS trajectories are never perfectly accurate, due to sensor noise and other 
factors. Many filtering algorithms are proposed which are summarized in [16]. From our 
experiment, if a filtering algorithm is performed beforehand, the bit-rate can be reduced 
around 30%, 20%, 15% for 1m, 3m, 10m maximum SED correspondingly. Meanwhile, if 
higher tolerance is set, bit-rate will not be changed even if a filtering operation is used.  
                                                 
2 Various GPS compression algorithms reported in [10] are all based on the line simplification. There are 
only around 10%-20% differences on the reduction rate in all these methods. Thus, here TD-TR is selected 
as a typical example in our experiments to evaluate these types of solutions.  
3 We use a similar evaluation method with a commercial software on: http://www.droyd.org/gps-trajectory-
compression. 
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Further information such as proof of the time complexity, details of the experiment 
result and the matlab code can be seen on http://cs.joensuu.fi/~mchen/GPSTrajComp.htm. 

Fig. 4: Comparison of the compression performance (left) and the percentage of 
remaining points after approximation process. 

Fig. 5: Time cost of the encoding and decoding process (left), bit-rate of each reduced 
point for time, differential coordinates (VMC), speed and direction (GTC). (right) 

4. Conclusion 

In this paper, we have addressed the problem of spatial-temporal data compression, 
particularly the compression of GPS trajectories with sets of (x, y, t) records. In the 
proposed algorithm, both data reduction and quantization are considered in the 
approximation process. Experimental tests demonstrate that the proposed method makes 
a significant improvement comparing with the state-of-the-art TD-TR algorithm. 

There are several immediate extensions of our present work. Firstly, we plan to extend 
the compression for online application. Also, improvement of approximation and 
encoding process by dynamic programming will also be considered. Finally, applying a 
hierarchy of compression stages is an interesting idea for further investigation. 
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