Available online at www.sciencedirect.com

'~ ScienceDirect PATTERN

RECOGNITION

THE JOURNAL OF THE PATTERN RECOGNITION SOCIETY

Pattern Recognition 40 (2007) 944-952

www.elsevier.com/locate/pr

Lossless compression of map contours by context tree modeling of
chain codes

Alexander Akimov™*, Alexander Kolesnikov, Pasi Frinti
Department of Computer Science, University of Joensuu, P.O. Box 111, 80110 Joensuu, Finland

Received 24 October 2005; received in revised form 8 July 2006; accepted 7 August 2006

Abstract

We consider lossless compression of digital contours in map images. The problem is attacked by the use of context-based statistical
modeling and entropy coding of the chain codes. We propose to generate an optimal n-ary incomplete context tree by first constructing a
complete tree up to a predefined depth and creating the optimal tree by pruning out nodes that do not provide improvement in compression.
We apply this method for both vector and raster maps. Experiments show that the proposed method gives lower bit rates than the existing

methods of chain codes compression for the set of test data.

© 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Contour compression; Chain code encoding; Context tree

1. Introduction

Digital maps are usually stored as vector graphics in a
database for retrieving the data using spatial location as the
search key. The visual outlook of maps representing the same
region varies depending on the type of the map (topographic
or road map), and on the desired scale (local or regional
map). Vector representation is convenient for zooming as
the maps can be displayed in any resolution defined by the
user. The maps can be converted to raster images for data
transmission, distribution via web and visualization. Also
map images can exist in raster format.

Chain coding is a common approach for representing dif-
ferent shapes such as line-drawings, planar curves and con-
tours. We consider the compression of thin digital curves of
one-pixel width, which are extracted from the vector data.
The same time we consider the case when the contours in-
formation is obtained directly from the raster map.

* Corresponding author. Tel.: +358 46 810 8544; fax: +358 13251 7955.
E-mail addresses: akimov@cs.joensuu.fi (A. Akimov),
koles@cs.joensuu.fi (A. Kolesnikov), franti@cs.joensuu.fi (P. Frinti).

Previous works in literature consider different schemes
of encoding and chain code representation. The approaches,
introduced by authors, are distinguished into several groups.
Some of the works [1-4] consider the compression of chain
codes with Huffman or arithmetic coders. Another authors
used a context models of different orders: 1-order [5,6],
2-order [7,8], 3-order [9], 5-order [10] and up to 8 [11]. The
problem of encoding of chain codes by prediction by par-
tial matching (PPM) algorithm [12] has been considered in
Refs. [13,14].

In principle, context-based compression can be improved
by using of a larger number of neighboring symbols as a
context. However, the growth of the context depth leads to
the problem of context dilution, in which the statistics are
distributed over too many contexts, and thus, affects the
accuracy of the probability estimates. Context tree provides
a more flexible approach for modeling the contexts so that a
larger number of neighbor pixels can be taken into account
without the context dilution problem [15]. The context tree
algorithm was introduced in Ref. [16], and analyzed in Ref.
[17]. Practical solutions for the binary context tree based
compression algorithms for grayscale and bi-level images
have been described in Refs. [18,15] correspondingly.

0031-3203/$30.00 © 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.patcog.2006.08.005

http://www.elsevier.com/locate/pr
mailto:akimov@cs.joensuu.fi
mailto:koles@cs.joensuu.fi
mailto:franti@cs.joensuu.fi

A. Akimov et al. / Pattern Recognition 40 (2007) 944—952 945

Vector Beginning of chains Compressed
map Lengths of chains file
Extraction of Entropy
chain codes [coding n
|

v

sy A Creation of
Fart . N context tree

Raster Context
map tree

Fig. 1. Overall system diagram of the proposed method.

In this paper, we use the context tree approach for com-
pression of chain codes. We provide algorithm for optimal
n-ary incomplete context tree construction. The proposed al-
gorithm constructs a context tree up to a predefined depth,
and then prunes it according to the collected statistics in
order to minimize the cost of the tree. The tree structure
depends on the encoded data, and needs to be stored in the
encoded file. Arithmetic coding is used for entropy encoding
of the output data. We compare the proposed algorithm with
existing compression methods of chain codes. Finally, we
compare the compression of map contours encoded by the
context tree to the same rasterized contours when encoded
as bitmaps.

2. Overall system description

The overall scheme of the proposed compression method
is as follows:

Step 1: Extract the chain codes from a vector or raster
map. Store the information about the beginning of the chains
(BOC) and their lengths into the output file.

Step 2: Create an optimal context tree for the chain codes.
Store the context tree structure in the output file.

Step 3: Encode the chain codes using the resulting context
tree and an entropy coder.

This scheme is shown in Fig. 1. The procedure of BOC
storage is described below.

2.1. Chain code representation

Freeman [20] proposed chain codes for description of
digitized curves, contours and drawings. Chain codes rep-
resent the digital contour by a sequence of line segments
of specified length and direction, see Fig. 2. We consider
both four- and eight-connected chain coding schemes. The
four-connected chain coding scheme is restricted by four-
connectivity and needs more chain codes to represent a con-
tour (see Fig. 3).

Another type of chain codes are crack codes [21,22],
which are used to describe boundaries of objects and bor-

1 3 2 1 1 3 2 1
3 5 6 7 -1 3 2 -

(a) (b) © ()]

Fig. 2. The four- and eight-connected chain codes (a), (b) and the differ-
ential chain codes (c), (d).

4
TP FEsii
T 1

<1,0,1,0,0,1,0, 1>

<2,1,0,1, 1>

Fig. 3. An example of four- and eight-dconnected chain codes for
four-connected (left) and eight-connected chains (right).

Y

Fig. 4. An example of crack codes for non-binary image. There are three
chains: (0), (3,3,3,2,3,1,1), (0,1,0,0,0).

* 07
Th V0

<0,0,0>

<0,0,0,0,3,2,2,2,2,1>

Fig. 5. An example of crack codes (left) and Freeman chain codes (right)
for a one-pixel width object.

ders between regions in color raster images. Crack codes
are defined in the same way as four-connected chain codes,
but the contour is formed by traversing along the cracks be-
tween adjacent pixels with different colors, see Fig. 4.

Crack codes are efficient in representing of the region
borders. The using of crack codes for color images solves
the problem of the border representation redundancy, which
arises when Freeman codes are in use [23,24]. Freeman
chain codes are more efficient for representation of one-pixel
width lines, see Fig. 5. Here, for description of four-pixels
shape we need ten crack codes, or three eight-connected
Freeman chain codes.

946 A. Akimov et al. / Pattern Recognition 40 (2007) 944—952

The more efficient way of the chain code representation is
the differential chain codes [25]. Each chain code is replaced
by its difference from the preceding chain code (see Fig. 2).
We denote a chain code by ¢; and the difference between the
codes by k; = ¢; — c¢j—1. The differential chain code x; for
four-connected and eight-connected schemes is calculated
by Egs. (1) and (2) correspondingly.

ki+4 ifki<—1,
X = ki—4 ifkl'>2, (1)
ki otherwise,

ki +8 ifk;<—3,
xi =13k —8 ifk; >4, 2)
ki otherwise.

2.2. Extraction of chain codes from vector and raster data

In case of vector maps, the chain codes could be extracted
directly from the vector data. The procedure consists of the
following steps:

Step 1: Transformation of map vertices coordinates: con-
vert the original vector coordinates into coordinates on raster.
The transformed coordinates represent the start and end
points of straight lines, which form contours and curves on
the raster.

Step 2: Chain codes construction: sequentially, calculate
the chain codes for each digital line segment using Bresen-
ham’s algorithm for digital line drawing [26] taking into ac-
count type of connectivity in use.

If the map is given as a raster image, we can extract the
chain codes from the raster data either by line tracing using
Freeman chain codes, or by border tracing using crack codes
for binary [21,22] and color images [23,24]. In the latter
case, crack code chains are traced and encoded from one
junction point to another one; here junction (or branching)
point is the point where the borders of three regions are met,
see Fig. 4.

The eight-connected chain codes for an object contour can
be constructed directly from the crack codes of the contour
as alternative for shape representation (see Fig. 6). The rules
described in Table 1 [27] perform the conversion of two
crack codes ¢; and c;_1. The null value in the table means
the impossible combination of two neighbor crack codes.
The empty cell means that this combination of crack codes
does not produce the eight-connected chain code.

7

% 7%,

<0,3,0,3,2,2,3,2,1,1,0,1>

A\

N

M
N\

<7,4,5,2,1>

Fig. 6. A crack code (left) and the corresponding Freeman chain code.

Table 1
Rules for converting four-connected crack codes to eight-connected chain
codes

Ci—1 0 1 2 3
0 0 1 Null
1 Null 2 3
2 Null 4 5
3 7 Null 6

3. Compression of chain codes
3.1. Finite context modeling

We consider the compression of the chain codes, where
the encoding is done according to their order in the input
data. We denote the ith input symbol by x;, and the string of
the m previous symbols x;_1, ..., xj_, by x'=™ In context-
based modeling, the probability of the current symbol x; is
conditioned on its context x'~™. The probabilities of dif-
ferent contexts, as well as the probabilities of the symbols
generated in a given context, are usually treated as being
independent [15]. Thus, a model becomes a collection of in-
dependent sources of random variables. By the assumption
of independence, it is simply to assign probabilities to each
new symbol. We denote the cardinality of the encoded data
alphabet by o and the counts of symbols generated under the

given context x'~ by ny(x'™™), ..., ny(x'~™). The con-
ditional probability of the event x; =k, k € [1,...,a] is
defined by

i ng(xi ™)
plxi =k|x'™") = (3)

Yoy’

We consider the encoding of the given statistical model by
an entropy encoder. The adaptive probability estimator of
coder operates by the following formula:

ng(x' =My + 6
Yoy oo

plxi =k|x'™™) = 4)

The parameter ¢ here depends on different arithmetic coders,
but it usually equals to 1/o [28,29].

3.2. Context tree algorithm revisited

Context tree is applied for the compression in the same
manner as the fixed size context, only the context selection
is different. The context selection is made by traversing the
context tree from the root to a terminal node, each time
selecting the branch according to the corresponding previous
symbol value. If the corresponding symbol points to a non-
existing branch or if the current node is a leaf, then we came
to a terminal node and stop descending. The terminal node
points to the statistical model that is to be used.

A. Akimov et al. / Pattern Recognition 40 (2007) 944—952 947

El

AA\
B WE EE e

= =H ==H

S0 = H N G = H

BEREE] fERER] BB RREEE

£ LY = I T L) = H

&
A
EE] @EE &e

MEUEH

Fig. 7. The construction of the context tree with maximum depth 4: an initially full tree, constructed along the traversing path (0, 1, 0, 0), and the pruned

incomplete one (right).

The context tree can be constructed beforehand (static ap-
proach) or optimized directly from the encoded data (semi-
adaptive approach). In the second case, the tree structure
must be stored in the compressed file.

The process of optimal tree construction consists of two
main phases: the initialization of the context tree, and the
pruning of the constructed tree [30], see Fig. 7. These phases
will be described below.

3.3. Construction of an initial context tree

To construct an initial context tree for the input data,
we need to process through the data to collect statistics for
all potential contexts. Each node stores information of the
counts of each code. The algorithm of the context tree con-
struction by processing every chain code as follows:

Step 1: Create the root of the tree.

Step 2: For each symbol x;, i € [1,...,n]:

e Traverse the tree along the path defined by the symbols
in context x! ="

e If some node, visited along the path, does not have
a consequent branch for transition to the next context
symbol, then create the necessary child node and pro-
cess it. Each new node has o counters, which are ini-
tially set to zero.

e In all visited nodes, increase the count of the current
symbol x; by 1.

This completes the construction of the context tree for all
possible contexts. The time complexity of the algorithm is
O(m - n), where n is the number symbols in the data.

3.4. Constructing of an optimal context tree

The initial context tree is pruned by comparing every par-
ent node against its children nodes for finding the optimal
combination of siblings. We denote the overall tree struc-
ture by 7 and the nodes of the tree by w € T. The number

Configuration vector: 0,0,00 (1,0,0) 0,1,0) 0,0,1)

R

Configuration vector: ©,1,1) (1,0,1) (1L,1,0) (1,1,1)

50508 8o

Fig. 8. Example of different configuration vectors.

Branches:

Branches:

of bits, required for description of each context tree node in
the compressed file, is the size of the alphabet a.

We denote the set of nodes of the tree T by S(7"). We
denote the count of the symbol i by n; (w), w € S(T'). By the
cost of node w here we understand the following expression
[15]:

CT(”ll('LU), n2(w)v e na(w))
[T ITE ™ G+ 0

= —log, .
1—[;0:((1)1))+n1(w)+~~-+nx(w)7l(j o)

(&)

By the cost of the context tree T, we will denote the following
expression:

L(T)=oa-|S(T)| + Z cr(ni(w), na(w), ..., ng(w)).
weS(T)

(6)

The first term gives the number of bits, needed to store the
tree, and the second term is an estimation of the compressed
file size. The goal of the tree pruning is to modify the context
tree structure in order to minimize (6).

3.5. Bottom-up algorithm

We use a bottom-up algorithm [31] to solve the problem
of the optimal context tree pruning. The main principle of
this algorithm is that the optimal tree consists of optimal
sub-trees.

948 A. Akimov et al. / Pattern Recognition 40 (2007) 944—952

Before pruning

[B]=s595

[4]=178
=0
Mg

L(T) = 1326

=it B Eetelr] PR

After pruning

=501
=168

[]=0
A7 =110
I(T) =1031
—

[>]=382 [2]=119 Pl=o
[*]=116 =52 t]=0
[]=0 =0 =0
[T]=97 =13 Y=o
L(D) =795 1(T) =234 M =0

] =94 [>]=94
=10 [1]=10

=0

=82 =82
I(T) =246 L(T) =246

Fig. 9. Example of a single node pruning: resulted configuration is (0, 0, 0, 1).

For any node w € T, we denote its child nodes by w;.
We denote the vector that describes the structure of node
branches as the node configuration vector. The vector v =
(v1,...,vy) v; € {0, 1} defines which of the branches will
be pruned out after optimization: if v; =0, then the ith branch
is pruned. An example of different configuration vectors is
shown in Fig. 8.

The optimal cost L,y (T) for any given tree T can be
expressed by the recursive equations (7) and (8):

cr(n(w)) +o if T is leaf,
Lopi(T) = {mvin{Lv(T, v)} otherwise, 7
where
L,(T,v)=cr (n(w) —vo (Z n(wﬂ))

+ Y i Lopi(T)) + o ®)

The tree 7; is a sub-tree of 7, starting from the node w;.

The calculation of the cost of the optimal context tree T
is done according to:

Step 1: If T has no child nodes, then return the accumulated
code length of its root according to formula (7).

Step 2: For all sub-trees 7; C T, starting from the child
nodes of T root, calculate their optimal costs Ly (T;).

Step 3: According to the found L, (T;), the vectors of
counts n(w), n(wy), ..., n(wy), find the optimal configura-
tion vector vy, = argmin{L, (7T, v)}.

Step 4: Prune out the children sub-trees according the
VECtor Vy,ip-

Step 5: Return the value L (T, vyin).

The algorithm recursively prunes out all unnecessary sub-
trees, and finally gets the optimal structure of the context
tree, see Fig. 9. The optimal configuration vector for each
node is found by full search algorithm.

4. Encoding of BOC

The description of contours consists of chain codes and
the coordinates of the chain beginnings. In case of open

chains we need to encode the lengths and start positions.
In case of closed ones we encode only coordinates of chain
beginnings.

We encode BOCs by one of the following methods. Ac-
cording to the first method we directly store the coordinates
of BOCs in the compressed file. According to the second
method we represent all BOCs by black points on a white
background and encode the resulting image as a binary one.
We choose that method which produces better compression.

The description of BOCs of crack codes, extracted from
non-binary images, also includes two numbers, which define
the colors of cracked regions.

5. Experiments

We tested the proposed algorithm for different types of
data as shown in Fig. 10. The first five images from the
test set are the vector data, transformed into chain codes.
The vector images #1—4 are used after data precision reduc-
tion in order to fit the data for the image with dimensions
5000 x 5000 pixels. The vector image #5 was taken as it
is. These images are contours of geographical objects and
elevation lines. The next six maps are raster images. The
images #6-8 represent schemes of fields and forest stands:
image #6 is binary and images #7 and 8 are grayscales
with 256 colors. The last three binary images are semantic
layers of different maps from NLS [31]: water, elevation
lines and administrative information. Properties of the test
images and statistics of extracted chain codes are shown in
Table 2.

We have provided two series of experiments. The first
series illustrates the efficiency of the optimal context tree
encoding of the chain codes. The second one studies the
ability of the chain encoding to increase the compression
performance of the map image compression in general. The
used entropy coder is a range-coder [29].

We divided the algorithms into two groups: encoding of
four-connected differential chain codes (CC4) and encod-
ing of eight-connected differential chain codes (CCS8). By
CC4 we understand four-connected Freeman chain codes re-
sulted from vector data and the crack codes, obtained from

A. Akimov et al. / Pattern Recognition 40 (2007) 944—952 949
Fig. 10. The test set of images; Images #4—6 and #9—11 are represented by fragments.
Table 2
Chain code statistics for the tested images
Type of the map Image dimensions Number of chains CC4 CC8

Image #1 Vector 5000 x 5000 1 37 888 27 306
Image #2 Vector 5000 x 5000 1 86 216 64 220
Image #3 Vector 5000 x 5000 142 208 205 160 749
Image #4 Vector 5000 x 5000 537 519 316 356 839
Image #5 Vector 4391 x 4053 2551 1708 522 1222 485
Image #6 Raster 5000 x 5000 341 149 546 106 762
Image #7 Raster 1024 x 1024 1859 83 199 58 069
Image #8 Raster 1024 x 1024 1893 85574 59 824
Image #9 Raster 5000 x 5000 3167 1 610 382 1 100 952
Image #10 Raster 5000 x 5000 18 498 2 565 670 1 786 825
Image #11 Raster 5000 x 5000 60 039 3970 510 3186 423
Table 3 Table 4
Comparison of bit rates for different algorithms operating with CC4 (bits Comparison of bit rates for different algorithms operating with CC8 (bits
per code) per code)

Estes and Algazi PPM4 CTC4 Liu and Zalik Lu and Dunham PPM8 CTC8
Image #1 0.761 0.726 0.729 Image #1 1.809 1.106 0.996 1.004
Image #2 1.052 1.032 1.012 Image #2 1.949 1.486 1.441 1.400
Image #3 1.524 1.567 1.494 Image #3 2.726 2.338 2.396 2.290
Image #4 0.597 0.586 0.565 Image #4 1.827 0.971 0.810 0.813
Image #5 0.704 0.690 0.670 Image #5 1.684 1.050 0.952 0.943
Image #6 0.851 0.825 0.824 Image #6 1.812 1.250 1.179 1.153
Image #7 1.066 1.068 1.025 Image #7 1.778 1.520 1.585 1.463
Image #8 1.098 1.094 1.054 Image #8 1.795 1.564 1.620 1.506
Image #9 0.613 0.615 0.574 Image #9 1.838 1.022 0.839 0.798
Image #10 0.868 0.851 0.815 Image #10 1.880 1.329 1.195 1.177
Image #11 0.732 0.730 0.688 Image #11 1.550 1.044 0.882 0.831
Average 0.897 0.889 0.859 Average 1.877 1.335 1.263 1.216

950

A. Akimov et al. / Pattern Recognition 40 (2007) 944—952

Table 5
Comparison of different compression schemes for raster images (bytes). Images #7, 8 are compressed by GIF; all other images are compressed by JBIG
JBIG/GIF Liu and Zalik Lu and Dunham Estes and Algazi PPM4 PPM8 CTC4 CTC8
Image #1 5719 6185 3784 3615 3450 3410 3467 3437
Image #2 16 027 15 680 11 947 11 348 11 131 11 596 10 910 11 263
Image #3 41789 55169 46 977 40 071 41183 48 545 39 291 46 416
Image #4 71 128 82 550 43 331 39 858 39 114 37 204 37 740 37 336
Image #5 181 065 270 870 174 078 163 893 160 935 159 051 156 583 148 531
Image #6 20 509 24 973 16 684 16 693 16 215 16 527 16 197 16 198
Image #7 99 304 18 454 16 575 16 633 16 653 17 051 16 175 16 156
Image #8 99 849 19 057 17 331 17 374 17 334 17 746 16 907 16 893
Image #9 117 436 258 878 140 715 129 493 129 797 121 461 121 570 115 826
Image #10 227 637 446 442 296 888 304 922 299 405 294 059 287 849 289 349
Image #11 252 740 674 051 415 958 419 744 418 888 407 882 397 986 387 626
Average 103 018 170 210 107 661 105 786 104 919 103 139 100 425 99 003
4-connected CC Table 6
0.92 The proportion of different parts in the compressed file
—o—Real bit rate
T 0.90 ‘\\ —e—Estimated bit rate BOC (%) CT (%) Chain codes (%)
,8; 0.88 \‘\\\ Image #1 0.3 1.5 98.2
g' 0.86 Image #2 0.1 0.6 99.3
H _\\o\ Image #3 1.0 0.2 98.8
g 0.84 — Image #4 2.8 0.7 96.4
b **\, Image #5 9.0 0.5 90.5
@ 082 Tmage #6 4.9 0.8 943
0.80 . i . . . Image #7 342 0.2 65.6
3 5 7 9 1 13 15 Image #8 333 0.1 66.6
Image #9 4.9 0.5 94.6
Context tree depth Image #10 9.2 0.6 90.2
Fig. 11. Dependency between average bit rate and context tree depth in Image #11 142 0.9 84.9
CTC4. Average 10.4 0.6 89.0

8-connected CC
1.28
—o— Real bit rate
1.25 —e— Estimated bit rate
o
°
§ 1.22 T~
g. \L
£ 119 ~
z \
g 116 —*
R
1.10 T T T T T
3 5 7 9 11 13 15

Context tree depth

Fig. 12. Dependency between average bit rate and context tree depth in
CTCS8.

raster images. We compared the following algorithms of
CC4 compression:

e Estes and Algazi: Encoding by n-order context model
up to 10 [11];

e PPM4: PPM algorithm applied for CC4 compression
[12];

e CTC4: The proposed context tree encoding of CC4.

Table 7
Three most used context for Image #4 in CTC4

Context E |I| E m Total

BEREEREEG 0577 o 2 1943 12522
NSRS HEHE) 4 1355 7924 0 9283

QRPONERTIEG sos o 8 1910 7822

The compression of CC8 was compared on the following
algorithms:

e Liu and Zalik: Encoding by fixed Huffman codes [1];

e Lu and Dunham: Encoding by second-order context
model [8];

e PPMS8: PPM algorithm applied for CC8 compression
[12];

e CTCS: The proposed context tree encoding of CC8.

We used PPM with maximum depth of the context 8. The
usage of context of higher order in PPM algorithm leads to
the context dilution problem and, consequently, to decreas-
ing of the PPM compression performance.

A. Akimov et al. / Pattern Recognition 40 (2007) 944—952 951

Table 8

Three most used context for Image #4 in CTC8

Context E IIl IS' E Z] m Total
NINENG 2 0 1 0 3 560 6473 854 7893
EEEEE0) 0 0 6 681 4883 477 8 0 6055
AREREEG 45 2 0 0 0 0 4879 994 5920

The compression results for CC4 and CC8 are summa-
rized at the Tables 3 and 4; correspondingly. The results
for context tree encoding are calculated with maximum tree
depth 14. The proposed context tree encoding algorithm out-
performs all competitive methods in terms of compression
performance. The best competitive algorithm, PPM [12], has
quite close results, but it has a drawback. The efficiency of
the PPM algorithm (like any other fixed depth context-based
algorithm) strongly depends on correct choice of the con-
text depth. The using of too big depths for such algorithms
leads to context dilution problem. Due this, in some cases,
other competitive algorithms, which are using smaller con-
text depth, outperform the PPM (for instance, see results for
Image #7 in Table 4). The used context tree based approach
is not affected by the context dilution and, therefore, is able
to use bigger context depths and achieve better compression
results.

The Figs. 11 and 12 show the dependency between the
maximum context depth and the compression performance
in context tree compression of CC4 and CCS8 for estimated
and real bit rates. The estimated bit rate is obtained by
formula (7), and the real bit rate is resulted after entropy
encoding. We see that the compression performance only
increases with growth of the context tree depth. The differ-
ence between estimated and practical bit rates is negligible,
about 1-2%.

Table 5 shows the overall compression of map images.
We compared different techniques of chain codes compres-
sion with raster image compression algorithm, JBIG [19]
for binary images and GIF for non-binary ones. The results
show that for the images with comparably low saturation of
graphics details the chain code compression is better then
the raster-based one. The JBIG algorithm obtained better re-
sults for the map images with large number of tiny graphical
objects. This can be explained by the fact that the images
include a lot of graphical patterns. For instance, the sands
are defined by areas of dots, swamps and melioration sys-
tems by areas of horizontal lines and etc. The attempt of
straightforward converting all of this small objects into chain
codes leads to enormous number of chains and makes the
map compression by chain codes less efficient then a sim-
ple raster-based compression. The chain codes are mostly
efficient for encoding of the region borders for planar sub-
division maps (Images #6-8).

Table 6 represents the structure of the compressed file in
CTC4 compression: the percentage of all three part of data

in the file: the BOC, structure of the context tree (CT) and
the encoded chain codes.

The most used contexts in Image #4 for CTC4 and CTC8
compression are shown in Tables 7 and 8. We show that the
best correlation have been achieved on chains, describing
straight lines.

6. Conclusions

We considered the problem the lossless compression of
the chain codes. We applied the context tree based approach
to the problem and provide optimal algorithm for n-ary in-
complete context tree construction.

The suggested approach showed the best performance for
chain codes compression. It outperforms the PPM algorithm
by 3-4%, 5-7% over Markov model-based methods and
about 40% over simple Huffman encoding of differential
chain codes. We showed the ability to use chain codes tech-
nique for compression of map images.

References

[11Y. Liu, B. Zalik, An efficient chain code with Huffman coding,
Pattern Recognition 38 (4) (2005) 553-557.

[2] B. Mealy, Region boundary generation and compression, Conference
Record of the 35th Asilomar Conference on Signals, Systems
Comput. 1 (2001) 205-209.

[3] R. Redondo, G. Cristobal, Lossless chain coder for gray edge
images, in: Proceedings of IEEE International Conference on Image
Processing, vol. 2, 2003, pp. 201-204.

[4] T. Pavlidis, Algorithms for Graphics and Image Processing, Computer
Science Press, Rockville, MD, 1982.

[5] J. Chung, J. Moon, Conditional differential chain coding for lossless
representation of object contours, Electr. Lett. 34 (1) (1998) 55-56.

[6] L. Labelle, D. Lauzon, J. Konrad, E. Dubois, Arithmetic coding of a
lossless contour-based representation of label images, International
Conference on Image Processing, vol. 1, 1998, pp. 261-265.

[7] T. Kaneko, M. Okudaira, Encoding of arbitrary curves based on chain
code representation, IEEE Trans. Commun. 33 (1985) 697-707.

[8] C. Lu, G. Dunham, Highly efficient coding schemes for contour lines
based on chain code representations, IEEE Trans. Commun. 39 (10)
(1991) 1511-1514.

[9] Y. Chan, W. Siu, Highly efficient coding schemes for contour line
drawings, in: Proceedings of IEEE International Conference on Image
Processing, vol. 3, 1995, pp. 424-427.

[10] M. Turner, N. Wiseman, Efficient lossless image contour coding,
Comput. Graphics Forum 15 (2) (1996) 107-118.

[11] R. Estes, R. Algazi, Efficient error free encoding of binary documents,
in: Proceedings of Data Compression Conference, 1995, pp.
122-131.

952 A. Akimov et al. / Pattern Recognition 40 (2007) 944—952

[12] J. Cleary, I. Witten, Data compression using adaptive coding and
partial string matching, IEEE Trans. Commun. 32 (4) (1984)
396-402.

[13] F. Bossen, T. Ebrahimi, Region shape coding, Technical Report
MO0318, ISO/IEC JTC1/SC29/WG11, 1995.

[14] O. Egger, F. Boseen, T. Ebrahimi, Region based coding scheme with
scalability features, in: Proceedings of the VIII European Signal
Processing Conference, vol. 2, 1996, pp. 747-750.

[15] B. Martins, S. Forchhammer, Tree coding of bi-level images, IEEE
Trans. Image Process. 7 (4) (1998) 517-528.

[16] J. Rissanen, A universal data compression system, IEEE Trans. Inf.
Theory 29 (5) (1983) 656-664.

[17] M. Weinberger, J. Rissanen, A universal finite memory source, IEEE
Trans. Inf. Theory 41 (3) (1995) 643-652.

[18] M. Weinberger, J. Rissanen, R. Arps, Application of universal context
modeling to lossless compression of grey-scale images, IEEE Trans.
Image Process. 5 (1996) 575-586.

[19] JBIG, Progressive bi-level image compression, ISO/IEC International
Standard 11544, 1993.

[20] H. Freeman, Computer processing of line drawing images, ACM
Comput. Surveys 6 (1974) 57-59.

[21] L. Cederberg, Chain-link coding and segmentation for raster
scan devices, Comput. Graphics Image Process. 10 (1979)
224-234.

[22] G. Wilson, B. Batchelor, Algorithm for forming relations between
objects in a scene, IEE Proc. Comput. Digital Tech. 137 (2) (1990)
151-153.

[23] S. Blackburn, Extraction of color region boundaries, IAPR Workshop
on Machine Vision Applications, 1992, pp. 63—-66.

[24] P. Zingaretti, M. Gasparroni, L. Vecci, Fast chain coding of region
boundaries, IEEE Trans. Pattern Anal. Mach. Intell. 20 (4) (1998)
407-415.

[25] H. Freeman, Application of the generalized chain coding scheme to
map data processing, in: Proceedings of IEEE Pattern Recognition
and Image Processing, 1978, pp. 220-226.

[26] J. Bresenham, Algorithm for computer control of a digital plotter,
IBM Systems J. 4 (1) (1965) 25-30.

[27] G. Wilson, Properties of contour codes, IEE Proc. Vision Image
Signal Process. 144 (3) (1997) 145-149.

[28] P. Howard, J. Vitter, Analyses of arithmetic coding for data
compression, in: Proceedings of the Data Compression Conference,
1991, pp. 3-12.

[29] G. Martin, An algorithm for removing redundancy from a digitized
message, Presented at: Video and Data Recording Conference, 1979.

[30] R. Norhe, Topics in descriptive complexity, Ph.D. Thesis, University
of Lingkoping, Sweden, 1994.

[31] National Land Survey of Finland, Opastinsilta 12 C, P.O. Box 84,
00521 Helsinki, Finland (http://www.nls.fi/index_e.html).

About the author—ALEXANDER AKIMOV received the M.Sc. degree in Applied Mathematics in 2000 from the Saint Petersburg State University,
Russia, and another M.Sc. degree in Computer Science in 2001 from the University of Joensuu, Finland. Currently he is a Ph.D. Student in Department
of Computer Science of University of Joensuu. His main research areas are the compression of raster and vector map images.

About the author—ALEXANDER KOLESNIKOV received the M.Sc. degree in Physics in 1976 from the Novosibirsk State University, USSR, and the
Ph.D. degree in Computer Science in 2003 from the University of Joensuu, Finland. From 1976 to 2003 he was a Senior Research Fellow with the
Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia. In 2003, he joined the Department of Computer Science
at the University of Joensuu, Joensuu, Finland. His main research areas are in signal and image processing, vector map processing and compression.

About the author—PASI FRANTI received his M.Sc. and Ph.D. degrees in Computer Science in 1991 and 1994, respectively, from the University of
Turku, Finland. From 1996 to 1999 he was a postdoctoral researcher of the Academy of Finland. Since 2000, he has been a professor in the University
of Joensuu, Finland. His primary research interests are in image compression, clusterization and speech technology.

http://www.nls.fi/indexprotect LY1	extunderscore e.html

	Lossless compression of map contours by context tree modeling ofchain codes
	Introduction
	Overall system description
	Chain code representation
	Extraction of chain codes from vector and raster data

	Compression of chain codes
	Finite context modeling
	Context tree algorithm revisited
	Construction of an initial context tree
	Constructing of an optimal context tree
	Bottom-up algorithm

	Encoding of BOC
	Experiments
	Conclusions
	References

