
UNIVERSITY OF JOENSUU
DEPARTMENT OF COMPUTER SCIENCE
Report Series A

Roles of Variables From the Perspective of
Computer Science Educators

Mordechai Ben-Ari and Jorma Sajaniemi

Report A-2003-6

ACM K.3.2, H.1.2
ISSN 0789-7316
ISBN 952-458-407-7



EDUCATORS AND THE ROLES OF VARIABLES 1

Roles of Variables From the Perspective of
Computer Science Educators

Mordechai Ben-Ari and Jorma Sajaniemi

Abstract— Roles can be assigned to occurrences of variables in
programs according to a small number of patterns of use that are
both language- and algorithm-independent. Preliminary studies
on explicitly teaching roles of variables to novice students have
shown that roles are an excellent pedagogical tool for clarifying
the structure and meaning of programs. This paper describes the
results of an investigation designed to test the understandability
and acceptability of the role concept and of the individual roles, as
seen by computer science educators. The investigation consisted
of a short tutorial on roles, a brief training session on assigning
roles to variables, a test evaluating the subjects’ ability to assign
roles, and a set of open questions concerning their opinions
of roles. The responses of 51 computer science educators were
analyzed. Roles were identified by 85 % accuracy, and in typical
uses of variables by 93 % accuracy. Subjects’ comments on the
role concept in general were mostly positive, and they believed
that roles could contribute to understanding programs. The
role set used in the investigation turned out to be suitable for
describing variable usage in novice-level programs.

I. I NTRODUCTION

T EACHING programming involves more than just teach-
ing the syntax and semantics of a programming language.

The student must learn how the constructs of the language
work together to implement the solution of a problem. This
requires knowledge of algorithms, as well as knowledge of
programming techniques and paradigms. The primary method
of teaching programming is to present examples so that the
students can generalize from the examples to general princi-
ples of problem solving, and it is often worthwhile to formalize
this process of generalization, and to explicitly teach program
design techniques.

The concept of roles of variables can be considered
as another pedagogical technique within this tradition. In
programming, variables are not used in an ad-hoc way;
instead, there are afew patterns that can describe almost
all the uses of variables. Variable roles are a concept that
is different from the algorithmic patterns that are frequently
used as pedagogical aids, because the concept of roles focuses
on the data flow through single variables that is relatively
independent of the algorithm, as well as independent of
the programming language, though possibly not of the
programming paradigm. For example, in the long list of
patterns given in [1], we find Pattern D1 (The Counter Pattern
Using a Loop) with the following structure (in C++):

Mordechai Ben-Ari is with Department of Science Teaching of the Weiz-
mann Institute of Science. Email: moti.ben-ari@weizmann.ac.il.

Jorma Sajaniemi is with Department of Computer Science of the University
of Joensuu, Finland. Email: jorma.sajaniemi@joensuu.fi

while (cost != 0) {
loopCount++;
...

}

and Pattern F1 (Performing an Action on Each Element of an
Array) with the following totally different structure:

for (int index = 0;
index < MAX_ELEMENTS;
index++) { ... }

In terms of roles of variables, however, bothloopCount
and index take on a predictable sequence of values and
are assigned the same role (stepper); it is easy to make this
assignment just by examining the data flow. Since modern
program design focuses on the importance of data and data
flow, as opposed to control flow, we believe that classroom
discussions based upon roles of variables can contribute tothe
ability of novice students to understand and write programs.

The concept of roles of variables is based upon earlier
work on variable use. Ehrlich and Soloway [2] and Rist [3]
were interested in the mental representations of variables,
while Green and Cornah [4] wanted to help maintenance
programmers by providing a tool that would explain the
behavior of variables. Our approach to the role concept is to
find a comprehensive, yet small, set of characterizations for
variables primarily for use in teaching. In fact, some roles
are typically taught in programming courses. For example,
many textbooks introduce the rolecounter and its special
case loop counter, and in a high-school textbook [5], two
roles, calledcounter and accumulator, are explicitly taught
and used in examples and exercises. Somewhat related to roles
is the Hungarian notation [6], which is a convention to encode
information into a variable name about its type, quantity, and
quality. Several convention schemes exist and they are usedin
professional programming.

Roles of variables were identified by Sajaniemi [7] who an-
alyzed programs in several introductory Pascal textbooks.He
found nine roles that covered 99 % of variables in novice-level
programs—a small enough set to be covered in programming
teaching. Later, Kuittinen and Sajaniemi [8] conducted an
experiment during an introductory programming course, which
compared traditional teaching with teaching that used roles and
role-based animation. The results of this experiment indicated
that the introduction of roles improves program comprehension
and program writing skills.



EDUCATORS AND THE ROLES OF VARIABLES 2

TABLE I

DEFINITION OF THE ROLES IN THE INVESTIGATION

Fixed value A variable which is initialized without any calculation andwhose value does not change thereafter.

Stepper A variable stepping through a succession of values that can be predicted as soon as the succession starts.

Most-recent holder A variable holding the latest value encountered in going through a succession of values.

Most-wanted holder A variable holding the “best” value encountered so far in going through a succession of values. There are no
restrictions on how to measure the goodness of a value.

Gatherer A variable accumulating the effect of individual values in going through a succession of values.

Transformation A variable that always gets its new value from the same calculation from value(s) of other variable(s).

Follower A variable that gets its values by following another variable.

II. PURPOSE OFSTUDY

In this paper, we are interested in computer science (CS)
educators’ attitude to the role concept and individual roles:
if CS educators do not find the role concept intuitive and
easy to apply, it would be unrealistic to expect them to use
roles in teaching. To reveal how CS educators react to the
new concept, we conducted an investigation consisting of four
phases: (a) a short tutorial on roles, (b) a training session
on the assignment of roles to variables, (c) a test evaluating
subjects’ ability to assign roles, and (d) a set of open questions
concerning subjects’ opinions of roles. The investigationwas
designed to test the understandability and acceptability of
the role concept and of the individual roles, as seen by CS
educators. Furthermore, we wanted to see whether roles could
be taught to CS educators using only a short tutorial.

III. T HE ROLE CONCEPT

The role of a variable is defined according to the dynamic
character of a variable embodied by the succession of values
the variable obtains, and how the new values assigned to the
variable relate to other variables. For example, in the roleof
a stepper, a variable is assigned a succession of values that is
known in advance as soon as the succession starts. The role
concept doesnot concern the way a variable is used in the
program. Astepperis a stepperwhether it is used to index
elements in an array or simply to count the number of input
values.

program doubles;
var data, count, value: integer;

begin
repeat

write(’Enter count: ’); readln(data)
until data > 0;
count := data;
while count > 0 do begin

write(’Enter value: ’); readln(value);
writeln(’Two times ’, value, ’ is ’, 2*value);
count := count - 1

end
end.

Fig. 1. Simple Pascal program

For example, consider the Pascal program in Figure 1, which
contains three variables:data, count, andvalue. In the
first loop, the user is requested to enter the number of valuesto
be later processed in the second loop. The number is requested
repeatedly until the user gives a positive value, and the variable

data is used to store the last input read. The variablevalue
is used similarly in the second loop: it stores the last input.
There is no possibility for the programmer to guess what
values the user will enter. Since these variables always hold
the latest in a sequence of values, we will say that their role
is that ofmost-recent holders. The variablecount, however,
behaves very differently. Unlike the other variables for which
there is no known relation between the successive values, once
count has been initialized, its future values will be known
exactly: it will step downwards one by one until it reaches its
limiting value of zero. The role of this variable is that of a
stepper.

The definitions of the roles as used in this research is
given in Table I. TheRoles of Variables Home Pageat
http://cs.joensuu.fi/˜saja/var roles/ contains fuller explana-
tions and examples.

The original definition given in [7] contained nine roles, as
well as a roleothers, for a few cases that could not be fit
into the other categories. The list of roles was obtained by
analyzing all the programs in three introductory textbooks.
Later, as a by-product of the present study, a new role
(transformation) was identified and added to the role set.

The concept of roles of variables is concerned with thedeep
structure[9] of the program: Does the variable hold a prede-
termined sequence of values, for example, the values of the
index of a for-loop? Or does it hold the best value encountered
so far, for example, when searching for the largest value in
an array? Thesurface structureof the program, primarily its
syntactic structure, is much less relevant to the concept of
roles. The name of the variable, the places where it occurs
within an expression and the relation between the expression
and the enclosing assignment and control statements are not
important in assigning roles.

Even though roles have technical definitions, they are a
cognitive concept. For example, consider a variable that takes
on the values of the Fibonacci sequence by adding up pairs of
previous values in the sequence. A mathematician can predict
the sequence as clearly as a novice can predict the sequence
of values of the index of a simple for-loop, so she may assign
the role ofstepper, because the values “can be predicted as
soon as the succession starts.” On the other hand, a novice who
has never seen the Fibonacci sequence before may assign the
role ofgatherer, because the variable accumulates the previous
values.



EDUCATORS AND THE ROLES OF VARIABLES 3

TABLE II

OCCURRENCES OF THE ROLES IN THE TRAINING PROGRAMS

Role Program Total
1 2 3 4 5 6

Fixed value 1 1 1 3
Stepper 2 1 1 4
Most-recent holder 1 2 1 1 1 6
Most-wanted holder 1 1 2 4
Gatherer 2 2
Transformation 1 2 3
Follower 2 2

IV. M ETHODOLOGY

The investigation was conducted on the Internet. The re-
search materials consisted of web pages divided into three
phases. Thetutorial phaseintroduced the concept of roles of
variables, followed by a section for each role containing: (a)
the definition of the role (as given in Table I), (b) a full sample
program demonstrating the role, (c) additional examples of
the use of the role, and (d) a list of additional properties that
can assist in applying the role. The programs were written in
Pascal, but the concept of roles of variables is not language-
dependent (though it may be paradigm-dependent), so other
imperative languages like C or Java could have been used.
For brevity, full technical definitions of the roles were omitted;
instead, the presentation was closer to the way roles could be
introduced to novices learning to program.

For the purposes of this investigation, several simplifications
were made in the overall concept, as well as in the details of
the role definitions. Variables were limited to scalar and array
types, though the roles can be applied to more complex types
such as pointers and records, and parameters were not used
in the example programs. All programs were also designed so
that role changes, where the same variable takes on multiple
roles in succession, did not occur. Three roles (one-way flag,
temporaryand organizer) accounting for only 5.2 % of all
variables in the analysis in [7] were not included in the tutorial
in order to simplify and shorten it; the new roletransformation
was added as noted above.

With these simplifications, the tutorial consisted of a single
web page yielding 8 pages when printed, as the subjects were
encouraged to do to improve readability.

Following the tutorial, subjects were presented with a
training phase: this consisted of a sequence of six programs
containing 24 variables taking on all of the roles describedin
the tutorial. The subjects were required to assign roles using
radio buttons; to reduce the demands on short-term memory
and to ensure accuracy in the use of the roles, each button label
was linked to the corresponding role definition. After assigning
roles to each variable in a program, the subject was given
feedback on a separate page; his or her assignment of a role
to each variable was compared with our canonical assignment.
After studying the feedback, the subject could click on the link
to the next program. Table II shows how many times each role
occurred in the training programs.

The analysis phasewas similar in format to the training
phase; subjects were again presented with six programs con-
taining 24 variables, but this time in a single web page. Upon

TABLE III

OCCURRENCES OF THE ROLES IN THE ANALYSIS PHASE PROGRAMS

Role Program Total
1 2 3 4 5 6

Fixed value 1 2 1 1 5
Stepper 2 1 2 1 6
Most-recent holder 1 1 2
Most-wanted holder 1 2 3
Gatherer 1 1 2
Transformation 2 1 3
Follower 2 2
One-way flag 1 1

assigning all of the roles, the results were sent by email to
the authors. Subjects were also given the option to invent a
new role by themselves or to indicate that they did not know
which role to select, although they were encouraged not to
do so. They also had the opportunity to append comments to
their choices. If roles were not selected for all variables,a list
of these variables was provided, and the subject could return
to the original page to finish the task. Table III summarizes
occurrences of roles in the analysis programs.

program saw;
const last = 7;
type ArrayType = array [1..last] of integer;
var value: ArrayType; { Values to be checked }

i: integer; { Index of array }
up: boolean; { Current direction is up? }
ok: boolean; { Does saw property still hold? }

begin
writeln(’Enter ’, last, ’ values:’);
for i:=1 to last do read(value[i]);
up := value[1] < value[2];
ok := value[1] <> value[2];
i := 2;
while ok and (i < last) do begin

ok := (up and (value[i] > value[i+1])) or
(not up and (value[i] < value[i+1]));

up := not up;
i := i + 1

end;
write(’Values ’); if not ok then write(’do not ’);
writeln(’form a saw.’)

end.

Fig. 2. Pascal program with controversial variables

While the roles in the training phase were straightforward,
some of the variables in the analysis phase were “controver-
sial,” i.e., borderline cases. Such programs would not normally
be shown to novices, but these variable usages were included
in order to validate the definitions of the roles. One such
program was an iterative program for constructing elements
of the Fibonacci sequence discussed in Section III. Another
(Figure 2) checks if a sequence of values forms a “saw,” in
which the direction of change of the values alternates. The
controversial variables areup andok. The former is ostensibly
a stepper, because we can predict that its values alternate
betweentrue andfalse, though others roles are plausible
since the initial value of the variable is computed from the
values of other variables. The variableok is aone-way flag—
one of the three roles not included in the tutorial. Aone-way
flag is the role assigned to a variable that may change its value
only once; this role is frequently used for a variable of type
boolean used as a “flag.” We wanted to see if the absence of
this role would be missed by the subjects and what choices



EDUCATORS AND THE ROLES OF VARIABLES 4

TABLE IV

SUBJECTS’ SELECTIONS FOR THE ROLES(PERCENT)

Role n Role selected Total
FIX STP MRH MWH GTH TRN FOL OTH DNK

FIX 5 91 7 2 100
STP 6 91 2 1 4 2 100
MRH 2 7 1 92 100
MWH 3 1 1 79 3 3 10 1 3 100
GTH 2 1 1 10 1 60 26 1 100
TRN 3 9 1 7 3 1 75 4 1 100
FOL 2 2 96 2 100
OWF 1 8 10 10 61 6 6 100

they would make.
The first version of the material was pretested by using

five CS educators as subjects. They used materials containing
eight programs intended to form the analysis phase. The time
needed to complete the task varied from 28 to 90 minutes
with mode being 60 minutes. In order to create a task that the
subjects would not find burdensome, the number of analysis
phase programs was reduced to six so that the estimated time
to complete the task would be less than one hour. We left
out programs that posed no problems to the subjects, which
resulted in a higher proportion of controversial variablesin the
remaining programs. Thus the final set has more occurrences
of controversial roles than normally occur while teaching intro-
ductory programming. The results of the pretest also enabled
us to clarify the explanations and examples. The final materials
can be found athttp://cs.joensuu.fi/˜saja/role survey/.

Subjects were recruited by publicizing the URL containing
the research material among CS educators in the authors’
countries, as well as on mailing lists belonging to the special
interest groups in computer science education and psychology
of programming. Subjects worked remotely on the web-based
material at their own pace. They were instructed to start with
the tutorial and training phase, and only then to perform the
analysis phase. The initial page contained direct links to the
various phases, so that there was no need to complete the
whole task in a single session.

After assigning roles, subjects were asked for general com-
ments on the role concept or specific roles. Moreover, they
were asked to indicate their length of experience teaching
introductory programming and/or advanced CS courses in
high school and/or college or university. We asked for names
and email addresses so that we could send them copies of
the research results, though subjects were allowed to remain
anonymous if they so wished. Subjects were also allowed to
click on a “quit” link following the tutorial and the training
phase; one subject used this form but did not leave any
comments as to his or her reasons for quitting.

V. SAMPLE DEMOGRAPHICS

Fifty-three computer science educators volunteered to par-
ticipate in the investigation. One subject selected a quit option
while working on the material; another’s result was discarded
as apparently consisting of randomly selected answers. The
results of the remaining 51 subjects were used in the analysis.

Subjects represented both high-school teachers (n = 8) and
university or college teachers (n = 38). Some subjects had

Introductory /Introductory /
High schoolHigh school

Advanced /Advanced /
High schoolHigh school

Introductory /Introductory /

Advanced /Advanced /

UniversityUniversity

UniversityUniversity

0%0% 20%20% 40%40% 60%60% 80%80% 100%100%

Over 6 yearsOver 6 years
4−6 years4−6 years
1−3 years1−3 years
NoneNone

Fig. 3. Subjects’ teaching background

been worked at both levels (n = 6) while some did not report
teaching at either level (n = 11). Figure 3 summarizes sub-
jects’ experience in teaching either introductory programming
or advanced CS courses in either high-school or at higher level.

VI. RESULTS

Table IV displays the selections made by the subjects for
each role in the analysis phase. For each of the roles in the
analysis programs, there is a row in the table labelled by
that role, together withn, the number of variables having
that role. The columns are labelled with the possible roles
that could have been assigned. Therefore, an entry(r1, r2)
in the table gives the percentage of the occurrences when
role r2 was assigned to a variable whose correct role was
r1. The diagonal, the percentage of correct assignments, is
emphasized. For example, the first row describes subjects’
selection for the fivefixed valuesin the analysis programs.
In 91 % of cases, subjects’ selections were correct, while in
7 % of casesmost-recent holderand in 2 % of casesgatherer
was selected.OTH means that a subject thought the variable
to have someother role not listed in the tutorial, whileDNK

means that a subjectdid not knowwhich role should be used.
OWF is the roleone-way flag, discussed below.

Most roles are identified by at least 90% accuracy. The
low identification ofmost-wanted holdersand gathererscan
be explained by controversial variables. In non-controversial
casesmost-wanted holderswere identified correctly in 91%
of the cases, andgatherersin 94% of the cases. Only 75%
recognizedtransformations, though even here, in a simple case
the role was recognized with 90% accuracy.



EDUCATORS AND THE ROLES OF VARIABLES 5

Figure 4 contains a frequency graph depicting the distribu-
tion of subjects’ error scores including the four controversial
variables. The assignments to the occurrence of theone-way
flag were not used in computing these error rates, because
the role had not been presented to the subjects in the tutorial.
There were an average of 3.4 errors in the classification of
the remaining 23 variables (i.e., average accuracy of 85 %),
and an average of 1.3 errors in the classification of the 19
non-controversial ones (i.e., average accuracy of 93 %),.

22

44

66

88

11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 1717 1818 1919 2020 2121 2222 232300

1010

1212

1414

Number of errorsNumber of errors

NumberNumber
ofof
subjectssubjects

Fig. 4. Frequencies of error scores

The mean error score for subjects having more teaching
experience in high-school than colleges or universities was
4.67 while it was 3.18 for subjects having more experience
in colleges or universities (two-tailedt test, t = 1.571, df =
38, p = .0175). Figure 5 shows teaching experience in colleges
or universities for the high performers (at most 1 error,n = 10)
and low performers (at least 5 errors,n = 12). High perform-

High performersHigh performers

0%0% 20%20% 40%40% 60%60% 80%80% 100%100%

Over 6 yearsOver 6 years
4−6 years4−6 years
1−3 years1−3 years
NoneNone

Introductory / UniversityIntroductory / University

Advanced / UniversityAdvanced / University

Low performersLow performers

Low performersLow performers

High performersHigh performers

Fig. 5. High and low performers’ university teaching background

ers are more experienced both in introductory programming
courses (two-tailedt test, t = 2.310, df, p = .0317) and in
advanced CS courses (t = 2.944, df, p = .0080). There is a
similar trend with regard to high-school teaching experience,
but this is not statistically significant.

We also looked at the distribution of error selections for
high and low performers. To obtain roughly the same amount
of errors for both groups, high performers were now defined to
be subjects with at most 3 errors (making a total of 60 errors)

and low performers were subjects having at least 6 errors (with
a total of 63 errors). We counted the number of erroneously
selected roles for each variable; for all variables (exceptthe
one-way flag) low performers selected a wider variety of
roles. The difference is statistically significant (pairedt test,
t = 3.943, df = 22, p = .0007). For the one-way flagthe
difference is opposite: high performers made a wider variety of
selections (5 different roles) than low performers (3 different
roles).

Results of the open questions will be discussed in Sec-
tion VIII.

VII. E RROR ANALYSIS

We begin with an analysis of the errors, distinguishing
between the high and low performers. The errors are analyzed
in terms of deep vs. surface structure, as well as of typical vs.
atypical use of the variables.

A. Surface vs. deep structure

Recall from Section I that roles of variables are used to
describe the deep, rather than the surface, structure of the
program. When analyzing errors this distinction is important:
for example, an error that confuses two roles with different
deep structures but similar surface structures reveals that the
subject has a weak understanding of the distinction between
two roles. This difference between surface and deep structures
was explicitly mentioned by one of the subjects who was
analyzing the role of the variablesecond that holds the
second largest value seen so far in a search for two largest
values:

At the code [i.e., surface] levelsecond seems to
have two roles “follower,” and “most-wanted”), but
semantically [i.e., at the deep level] it has just one:
“most-wanted.” It is the best choice for the criterion
“to be the 2nd largest.”

B. Atypical use of variables

Errors in the assignment of roles were frequently caused
by atypical use of the variables. For example,steppersare
typically used for sequences whose values increase or decrease
monotonically, often in an arithmetic progression. This typical
use is so dominant that it may be hard to recognize that other
successions, such as the alternating sequence of values{true,
false, true, false, . . .} assigned to the variableup,
are just as predictable and therefore this variable should also
be assigned the rolestepper. Many subjects erred, because
although the surface structure is typical (up:=not up is
syntactically similar to the typicali:=i+1), the deep structure
with its nonmonotonic sequence is not. Being misled by an
atypical use of a variable does not indicate that the role is
counterintuitive; instead, it is a pedagogical challenge to learn
to gloss over surface structure and analyze deep structure.The
controversial variables presented in the investigation involved
uses with both atypical surface and deep structures. Themost-
wanted holdersecond has an atypical surface structure,
while thestepperup has an atypical deep structure.



EDUCATORS AND THE ROLES OF VARIABLES 6

C. Errors made by high performers on non-controversial
variables

Errors made by high performers on non-controversial vari-
ables are potential indicators that the entire concept is not
viable. There were only two error types of this kind.

Some subjects had difficulty in assigning roles to variables
that are arrays. Forewarned on this issue by the pretest, we
emphasized this point in the tutorial:

[N]ormally all elements of an array have the same
role, e.g., an array offixed valuesor an array ofmost-
wanted holders; in this case the role of the array
is that of its elements, i.e., the array as a whole is
considered to be afixed valueor most-wanted holder,
respectively.

Nevertheless, several subjects assignedmost-recent holderto
an array offixed values, because, considered as a sequence of
individual variables, each component of the array holds the
latest value read from the input. The error was less frequent
on the subsequent occurrence of an array in a program, so
we believe that with more experience, subjects would cease
to make the error; furthermore, exercises in assigning roles to
array variables should also reduce the frequency of this error.

The second error concerned the role oftransformation
which identifies cases where a variable has no independent
existence, but merely serves to contain a value obtained by
computation, for example, a unit conversion from a number
to a percentage, or from degrees to radians, or a split of
a number into its quotient and remainder upon division by
another number. The difference between atransformationand
the role of the original variable, or between atransformation
and some other role having the same surface structure, was
not always apparent to the subjects. For example, the variable
factor is a transformation computed aspercent/100,
but thereafter not modified. Clearly subjects were justifiedin
assigning the rolefixed-valueto that variable.

D. Errors made by high performers on controversial variables

There were also two types of errors made by high perform-
ers when assigning roles to controversial variables.

The first type appeared in three cases when an atypical
surface structure misled some subjects to select the role whose
typical surface structure matched the variable in question.
For example, if the variable was assigned different values
in the two alternatives of an if-statement, some subjects did
not recognize that the variable was still assigned a value
only once and thus should be assigned the rolefixed-value.
In another case,fibN—the “current” number in the Fi-
bonacci sequence—was assignedmost-recent holderwhich
corresponds to its surface structure rather thangathererwhich
corresponds to its deep structure.

The second error type (one case) was caused when an
atypical deep structure triggered a large variety in the roles
suggested by the high performers. In this case (the variable
up discussed above), the subjects searched for roles with a
more appropriate deep structure. Since the roles are designed
to characterize distinct deep structures, there were no others

that were appropriate for this case resulting in a variety of
answers.

E. Errors made by low performers

In general, low performers made the same types of errors
for both controversial and non-controversial variables asdid
high performers and made them more often. Other errors
that they made can be explained by a tendency to make
decisions based on surface structure only. The rolemost-
wanted holderwas assigned even when no possible “measure
of the goodness of the value” existed;gathererwas assigned
when no “accumulation” was being carried out;follower was
assigned when it did not contain values of the variable being
followed, etc.

An interesting exception to the similarity of errors is the
case of the controversial variable with atypical deep structure
(the variableup): high performers spread their errors evenly
among many roles, while low performers concentrated their
errors on a single roletransformation, the one with closest
surface structure. The same behavior was seen in the case
of the one-way flag, which was the role that was missing
from the tutorial. High performers assigned a larger variety
of roles than did the low performers. When confronted with
a variable where none of the roles seems to appropriate, low
performers tend to look at the surface structures. In this case,
the structure of the expression matched a few roles only, so
the low performers made their selection among these. On the
other hand, high performers look at the deep structures, and, as
discussed above, found the other roles equally inappropriate.

F. Other errors

The rolesmost-recent holderandtransformationwere most
often assigned in case of doubt, presumably, because their
definitions are the least specific. Any variable holds the
most recent value of some calculation, even thoughmost-
recent holderis reserved for “raw” data such as input values.
Similarly, many variables are the result of computation from
other variables, even thoughtransformationis intended to be
used in specific cases like scaling values.

Some subjects detected spurious role changes. Since the web
form was designed with radio buttons so that each variable
could only be assigned a single role, these difficulties were
indicated in the comments. Two types of reasons can be
recognized for these errors:

• Role definitions are not meant to be applied too literally.
For example, some subjects assigned a role to an atypical
initialization of a variable, followed by a role change for
the use of the variable.

• A variable may be used after it has ceased to change,
so some subjects believed this to be a role change to a
fixed value, in particular, if the variable was used within
a loop.

VIII. D ISCUSSION

We will now discuss the findings and subjects’ answers to
open questions as regards to the purpose of this study: Do CS



EDUCATORS AND THE ROLES OF VARIABLES 7

educators find the role concept intuitive? Are the individual
roles understandable and easy to recognize? Can roles be
taught to CS educator using only a short tutorial.

A. Learnability and acceptability

We did not ask the subjects to report the amount of time
spent on the task, but based on the pretest, we believe that this
should be less than one hour. The fact that subjects agreed with
our assignment of the roles after such a short introduction
is encouraging; in more than 90% of the cases for non-
controversial variables for every role excepttransformation.
The results make it clear that increased teaching experience
improves performance, and they indicate that experts have
little problem with the role concept, supporting the assumption
that roles represent tacit expert knowledge. Roles are not hard
for non-experienced teachers either, since for the 19 non-
controversial variables, 86% of the subjects made at most two
errors.

Many subjects stated in their comments that they had had
problems in remembering the definitions of the roles or that
the definitions were ambiguous, but the same subjects scored
between zero to two errors on non-controversial variables,
indicating that they understood, perhaps subconsciously,the
deep structure of variables represented by the roles. Subjects’
comments on the role concept in general were mostly positive,
and they believed that roles could contribute to understanding
programs. Some subjects, even among the high performers,
were skeptical about the importance of roles in teaching.
One subject was uncertain about the interaction of roles with
data flow and invariants, while another raised the possibility
that they may interfere with learning other programming
paradigms.

B. Suitability of the role set

In general, the role set used in the investigation seems to be
suitable for its purpose. The naturalness of the roles is further
supported by the decrease in the number of errors with increas-
ing experience. Even when unsure, subjects’ assignments of
roles was quite good.

The one-way flagrole that was not included in the tutorial
garnered the largest number of alternative suggestions for
other roles. This provides evidence that theone-way flagis
a distinct role, not subsumed or similar to the others. New
roles suggested by the subjects, includingchecker, guardian,
stateand latch, are consistent with our definition of the role.
Furthermore, the dearth of suggestions for new roles for the
other variables supports our claim that the role set is sufficient
for the analysis of variables in novice-level programs.

The only role that caused frequent confusion wastransfor-
mation. As discussed above, it is intended to identify cases
where a variable has no independent existence, but merely
serves to contain a value obtained by computation. In a
sense, this role “usurps” the role or roles assigned to the
variables from which the transformation is computed. In the
case offactor:=percent/100, the transformationrole
usurps thefixed-valuerole that would normally be assigned to
factor. The definition of this role has to be clarified.

Variables become controversial if either the surface structure
or the deep structure is atypical. The ability to recognize and
go beyond an atypical surface structure is gained by increased
expertise and developing this ability is the task of the teacher.
Variability in surface structures is so large that it makes no
sense to add or modify roles to take surface structure into
account. On the other hand, atypical deep structure is a sign
that a new role might be needed. This claim is justified by
the similarity in the subjects’ approach to the atypical deep
structure and to the missing role. Since we want to keep the
number of roles small so that they can be used in introductory
teaching, we prefer that new roles that rarely occur should be
embedded within the existing roles.

C. Tutorial and training materials

The tutorial and training materials were deliberating kept
short to encourage compliance by our subjects. Obviously,
the number of examples should be much greater in order to
explore the ramifications of the definitions of the roles in
a wider selection of programs. This will not be a problem
in an educational setting, where the roles can be introduced
gradually during an introductory course and reinforced in all
the examples and exercises. On the other hand, subjects made
errors in many cases explicitly covered in the tutorial. Thus, we
should not expect that improving the tutorial would automati-
cally yield a better performance. It is therefore importantthat
the subjects find the roles easily understandable and natural.

Subjects made only a few comments on the tutorial and
training programs, mostly concerned with details of the mate-
rial, or with issues like role changes that were deliberately left
out. There were, however, some suggestions for the inclusion
of role interactions and conflicts, and additional guidancefor
role usage to construct clear programs.

The error analysis suggested some improvements for the
tutorial. First, the tutorial should stress that roles concern the
deep structure of variables, even though roles can often be
identified from typical surface structures (for example, the
index of a for-loop is almost certainly astepper). Second, the
tutorial has to give criteria for distinguishingtransformations
andgatherersfrom other “computationless” roles. Third, role
changes—that were skipped in the investigation—must be
introduced in a way clearly allowing “extra” steps in the
initialization of variables. Finally, the application of roles to
structured data types must be covered thoroughly.

IX. CONCLUSION

The concept of roles of variables can be used as a pedagog-
ical technique to teach how the constructs of a programming
language work together to implement the solution of a prob-
lem. Preliminary results of using roles in teaching elementary
programming indicate that the introduction of roles improves
program comprehension and program writing skills. In this
paper, we were interested to find out how computer science
educators react to this new concept and to the individual roles.
The outcome of the investigation is encouraging, because CS
educators accepted the concept of roles as intuitive and findit
easy to assign roles consistently.



EDUCATORS AND THE ROLES OF VARIABLES 8

Even in those cases where assignment is controversial,
the debate itself can be an excellent pedagogical tool for
clarifying the structure of programs in introductory courses.
It is important to emphasize that we do not regard roles as an
end in themselves and we do not think that students should
be graded on their ability to assign roles. Roles of variables
are design rules and pedagogical aids intended to help novices
over the hurdle of learning programming.

Roles of variables can also change the way that program
visualization and animation are carried out [10]. Traditional
systems such as Jeliot [11] provide visualizations that operate
on the programming language level; therefore, the represen-
tation and animation of variables is uniform reflecting the
surface structure of the program, not its deep structure. Role-
specific representation of variables and role-specific animation
for operations should result in visualizations on a higher level
that will be more informative to students.

The error analysis revealed the importance of making the
distinction between surface and deep structures of the roles.
Typical uses of the roles were recognized easily, but the
error behavior was different depending on the level of the
atypical features. In particular, the effect of atypical deep
structures was similar to the effect of the missing role. This
suggests a method for extending the concept of roles to
other programming paradigms, for example, to object-oriented
programming: analysis of atypical deep structures of variables
in real programs would indicate the need for additional or
modified roles. Since atypical surface structures were found
to be problematic for low performers, learning materials must
explicitly address this issue.

Future research on roles will include: (a) cognitive studies
to investigate if roles are truly part of the knowledge structure
of experts, though even if the answer is negative, it would not
rule out their pedagogical use; (b) further empirical research
in classrooms in order to determine if roles are pedagogically
useful; (c) further development and evaluation of program
animation for visualization of roles; (d) extension of the role
set to cover other programming paradigms and other expertise
levels.

ACKNOWLEDGMENTS

We would like to thank all those who volunteered to
participate in the study, and especially Noa Ragonis for her
extensive comments on the first version of the tutorial and on
a draft of this paper.

REFERENCES

[1] C. Sollohub, “C++ in Hypertext,” 2001,
http://cs.nmhu.edu/personal/curtis/cs1htmlfiles/Cs1text.htm.

[2] K. Ehrlich and E. Soloway, “An empirical investigation ofthe tacit plan
knowledge in programming,” inHuman Factors in Computer Systems,
J. C. Thomas and M. L. Schneider, Eds. Norwood, NJ: Ablex Publishing
Co, 1984, pp. 113–133.

[3] R. S. Rist, “Knowledge creation and retrieval in programdesign: A
comparison of novice and intermediate student programmers,”Human-
Computer Interaction, vol. 6, pp. 1–46, 1991.

[4] T. R. G. Green and A. J. Cornah, “The programmer’s torch,” in
Human-Computer Interaction—INTERACT’84. IFIP, Elsevier Science
Publishers (North-Holland), 1985, pp. 397–402.

[5] D. Ginat, Foundations of Computer Science 1. Rehovot, Israel:
Weizmann Institute of Science, 1999, (in Hebrew).

[6] C. Simonyi, “Hungarian notation,” 1999,
http://msdn.microsoft.com/library/en-us/dnvsgen/html/hunganotat.asp.

[7] J. Sajaniemi, “An empirical analysis of roles of variablesin novice-level
procedural programs,” inProceedings of IEEE 2002 Symposia on Human
Centric Computing Languages and Environments (HCC’02). IEEE
Computer Society, 2002, pp. 37–39.

[8] M. Kuittinen and J. Sajaniemi, “First results of an experiment on using
roles of variables in teaching,” inEASE and PPIG 2003, Papers from
the Joint Conference at Keele University, 2003, pp. 347–357.

[9] F. Détienne,Software Design – Cognitive Aspects. London: Springer
Verlag, 2002.

[10] J. Sajaniemi, “Visualizing roles of variables to noviceprogrammers,” in
Proceedings of the Fourteenth Annual Workshop of the Psychology of
Programming Interest Group (PPIG 2002), J. Kuljis, L. Baldwin, and
R. Scoble, Eds., 2002, pp. 111–127.

[11] M. Ben-Ari, N. Myller, E. Sutinen, and J. Tarhio, “Perspectives on
program animation with Jeliot,” inSoftware Visualization: International
Seminar, ser. Lecture Notes in Computer Science 2269, Dagstuhl Castle,
Germany, 2002, pp. 31–45.


