
 i

UNIVERSITY OF JOENSUU

COMPUTER SCIENCE

DISSERTATIONS 8

PAVEL KOPYLOV

PROCESSING AND COMPRESSION OF RASTER MAP IMAGES

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of Science of
the University of Joensuu, for public criticism in Louhela
Auditorium of the Science Park, Länsikatu 15, Joensuu, on
October 20th, 2004, at 12 noon.

UNIVERSITY OF JOENSUU

2004

 ii

Supervisor Professor Pasi Fränti

 Department of Computer Science

 University of Joensuu

 Joensuu, Finland

Reviewers Professor Jukka Teuhola

 Department of Information Technology

 University of Turku

 Turku, Finland

 Professor Pekka Toivanen

 Department of Information Technology

Lappeenranta University of Technology

Lappeenranta, Finland

Opponent

 Professor Søren Forchhammer

 Research Center COM

 Technical University of Denmark

 Lyngby, Denmark

ISBN 952-458-519-7

ISSN 1238-6944

Computing Reviews (1998) Classification: E.4, I.4.1, I.4.2, I.4.3, H.2.8

Yliopistopaino

Joensuu 2004

 iii

Processing and compression of raster map images

Pavel Kopylov

Department of Computer Science

University of Joensuu

P.O.Box 111, FIN-80101 Joensuu FINLAND

Pavel.Kopylov@cs.joensuu.fi

University of Joensuu, Computer Science, Dissertations 8

Joensuu, 2004, 132 pages

ISBN 952-458-519-7, ISSN 1238-6944

Abstract

The thesis is dedicated to study methods for processing raster map images. All these

methods are aimed at reducing the total storage size of map images.

First we study the task of color quantization of map images distorted by scanning noise

or artifacts, caused by lossy compression such as JPEG. We have developed heuristic

methods for improving the visual quality of resulting map images and increasing

processing speed of the color quantization algorithm.

Secondly we consider the problem of filtering map images. We develop a method based

on context tree modeling. This is a two-pass method, where at the first pass we

accumulate statistical information about image spatial structure into the context tree,

and at the second pass the gathered statistical information is used in the selection of the

noise pixels.

Thirdly we develop a method for compression of map images by multi-layer context

tree modeling and arithmetic coding. We separate map images into binary layers by

color or semantic separation. We utilize inter-layer dependencies for solving optimal

 iv

ordering of the layers. We construct an inter-layer dependency graph and solve optimal

branching for this graph.

Finally, we develop a compact and flexible map image storage format, in which the

maps are stored as hierarchically separated logical layers. The proposed method allows

designing of a real-time map handling system for personal navigation systems.

 v

Acknowledgments

The work of the presented thesis has been carried out at the Computer Science

Department, University of Joensuu, Finland, during the years 2000-2004.

I owe many thanks to my supervisor Professor Pasi Fränti for his never-ending patience

and guidance throughout my research. I also thank Dr. Alexander Kolesnikov for his

comments and guidance. I am thankful to the Head of Department Professor Jussi

Parkkinen, to Dr. Simo Juvaste, and all my colleagues for the wonderful atmosphere

and working conditions.

I also thank Professor Jukka Teuhola and Professor Pekka Toivanen, the reviewers of

this thesis, for their helpful comments and recommendations.

In addition, I would like to express my sincere thanks to Gaetano La Russa for

providing Italian coffee, good moods and being involved in checking the language of

this thesis.

I owe my thanks to Merja Hyttinen for being always conversable, to Marja-Liisa

Makkonen, Viktor Veis, Alexander Akimov, Dr. Eugene Ageenko, Florian Berger, and

Sami Gröhn for their infinite support.

Finally, I would like to express my gratitude to East Finland Graduate School in

Computer Science (ECSE), Centre for International Mobility (CIMO), National

Technology Agency of Finland (TEKES), Kata-Electronics Oy, Oy Arbonaut Ltd.,

Benefon Oyj and Tikka Communications Oy for their financial support of my studies.

I owe my special thanks to my beloved wife Anja and son Daniel for their unlimited

emotional and psychological support.

Joensuu, August 2004

Pavel Kopylov

 vi

List of original publications

P1. E.I. Ageenko, P. Kopylov, P. Fränti, "On the size and shape of multi-level context

templates for compression of map images", IEEE International Conference on

Image Processing (ICIP'01), Thessaloniki, Greece, vol.3, pp. 458-461, October

2001.

P2. P. Kopylov, P. Fränti, "Context tree compression of multi-component map

images", IEEE Proceedings of Data Compression Conference (DCC’02),

Snowbird, Utah, USA, pp. 212-221, April 2002.

P3. P. Kopylov, P. Fränti, "Compression of map images by multi-layer context tree

modeling", IEEE Transactions on Image Processing, accepted for publication.

P4. P. Kopylov, P. Fränti, "Filtering of color map images by context tree modeling",

IEEE International Conference on Image Processing (ICIP'04), Singapore,

October 2004, (to appear).

P5. P. Kopylov, P. Fränti, "Color quantization of map images", Visualization,

Imaging, And Image Processing (VIIP 2004), Marbella, Spain, pp. 837-842,

September 2004.

P6. P. Fränti, E. Ageenko, P. Kopylov, S. Gröhn, F. Berger, “Compression of map

images for real-time applications”, Image and Vision Computing, accepted for

publication.

P7. P. Fränti, P. Kopylov, V. Veis, “Dynamic use of map images in mobile

environment”, IEEE International Conference on Image Processing (ICIP'02),

Rochester, New York, USA, vol. 3, pp. 917-920, September 2002.

 vii

Contents

1 Introduction .. 1

1.1 Map images .. 2

1.2 Motivation .. 3

1.3 Contribution of the thesis ... 5

1.4 Structure of the thesis ... 8

2 Color quantization of map images .. 9

2.1 Problem formulation... 9

2.2 Creating a palette .. 10

2.3 Color space ... 12

2.4 Distortion measure.. 13

2.5 Number of colors .. 13

2.6 Preprocessing methods ... 14

2.7 Summary... 15

3 Filtering of map images.. 16

3.1 Nonlinear filters.. 16

3.2 Color image filtering .. 19

3.3 Context tree filter.. 21

3.4 Summary... 23

4 Compression of map images .. 24

4.1 Lossless compression methods... 24

4.1.1 Statistical binary image compression ... 25

4.1.2 Statistical palette image compression... 27

4.1.3 Statistical compression with prediction based context model 28

4.1.4 Object oriented context modeling... 29

4.1.5 Multi-layer statistical compression... 29

4.2 Optimizing the context template .. 32

4.3 Context tree modeling .. 34

 viii

4.4 Multi-layer context tree .. 36

4.5 Optimal layer ordering ... 36

4.6 Summary... 37

5 Map handling .. 39

5.1 Existing mobile navigation systems ... 40

5.2 Map Image Storage System.. 40

5.2.1 Multi-scale representation .. 41

5.2.2 Different compression strategies .. 42

5.3 Dynamic map handling... 42

5.4 Detailed file structure ... 43

5.5 Client-server communication ... 46

5.6 Summary... 47

6 Conclusions ... 48

7 Comparison results of the presented methods ... 49

References ... 52

 1

1 Introduction

In this thesis we study methods for map image processing and storing, which allow

gaining compact storage size, as well as fast browsing and retrieving capabilities. Map

images are computer versions of physical maps. Map images are usually digitized,

processed and finally stored in databases, allowing users fast access and retrieval.

We consider the situation when map images are stored in a server side and users are

accessing the maps remotely using a portable communication device. This device can be

a laptop with wireless access, a PDA or even a cellular phone. The communication

system has the following characteristics:

• The server side has enough computational power, and high storage volume.

• The communicational channel has a narrow bandwidth, like in native GSM

network, where the bandwidth is limited by 9600 bps.

• The client device has reduced viewing capabilities, limited storage volume and

low computational power.

The outlook of the entire system is as follows: map images are processed and stored on

the server side. The client obtains the coordinates of its current location using global

positioning service (GPS) [Kap96] or mobile positioning service (MPS) [DB99] and

sends to the server the request for a map. The server receives the request, locates the

proper map and sends it to the client. Finally the client device receives the requested

map and displays it (see Fig. 1).

X, Y

Fig. 1: The illustration of the communication process between client and server

 2

1.1 Map images

Map images and their original hard-copies usually have a set of properties, which

remark to the observer a clear distinction between a map images and any other

electronic drawing diagram or photographic picture. These properties are:

• Map image usually consists of a limited set of colors.

• Each color used in a map image is used to represent some spatial property of the

map object. For example, blue color is usually used to represent water areas,

yellow color for fields, and so on.

The map image can be a scanned version of a map or manual digitalization obtained via

the use of a pointing device. However, during the map image lifecycle the original color

information can be distorted. This can happen because of the changing of the image

resolution or because a lossy compression method has been applied. In any case the

image can also include additional color artifacts, which can even be visually

indistinguishable but still increasing the storage size (see Fig. 2).

Fig. 2: The 64×64 fragment of a map image containing 4 colors (left), and its JPEG compressed version

with 1931 colors (right).

Hereinafter we address to the name JPEG as a synonym for the Sequential Baseline

System of ISO/ITU compression standard [Wal91].

 3

1.2 Motivation

In this thesis a system for handling the map images is described. In order to provide a

comprehensive solution, we propose that the system should have four major parts:

1. Color quantization to reduce the amount of colors for true-color map image to a

reasonable value.

2. Filtering to improve the visual quality and compression ability of the map image

by noise removal.

3. Compression to reduce the storage size.

4. Map handling: map images are stored and transmitted in compressed form so

that the system could be useful for mobile navigation applications.

2: Filtering

Quantized image (K colors)True color image (1931 color)
1: Color quantization

Quantization

Clustering Palette
K colors

Derermine
K colors

Compressed
image

3: Compression

Layers

Layer
separation

Context based
compression

Statistical
model

4: Map handling

Fig. 3: Illustration of the system diagram.

We consider the color quantization to be the first step of the system. We assume to deal

with the input of a distorted true color map image and want to produce, as the output, an

image with a reduced palette of colors. Most color quantization methods consider as

final palette the size of 256 colors. However, even if 256 color images can be

 4

successfully processed without losses by the existing compression methods, this amount

of colors is unacceptable for us because of the following reasons:

• Map images do not use so much color information, (usually there are no more

than 16 colors).

• We employ context-based filtering method in which memory requirements grow

exponentially with the number of used colors. This renders the use of high

number of colors unacceptable in terms of memory consumption.

• The proposed compression method operates with binary layers, therefore the

input map image must be first decomposed into binary layers. The use of a high

number of colors would cause this method to become unacceptable in terms of

processing time.

Filtering of the map image is the second step of the system. We assume that map images

originally can contain noise, and we also suppose that some fraction of the noise might

still remain after proceeding through the color quantization. Another cause of the image

noise is the color quantization method itself. The filtering is usually applied in order to

enhance the visual quality of the map image. There are a number of filtering methods

that can be applied to the color images, however, the map image filtering requires

additional requirements to be set:

• Preservation of the edge information on the map image.

• The filter should not introduce additional colors to the image, because in the

compression stage we separate the color image into binary layers. Additional

color information might also destroy existing correlations between the layers.

Additionally, removal of the noisy pixels from the image might also improve further the

compression ratio.

The third step is compression. Efficient compression has always been an issue for

storing and transmission of data. Here we consider a map image as composite image

consisting of several binary layers representing semantic or color information about the

 5

map image. The number of efficient lossless image coding methods could be applied for

the binary image layers. However, the independent layer consideration will lose the

correlation between the information layers; an example of correlation is that water areas

on a map are always outlined by ground. Another issue is that most of the existing

methods do not take into account the optimal order of binary layers, which should be

considered in order to achieve the good compression ratio.

Map handling is the final issue of the proposed system. It can be considered as a part of

a compression method where we construct the final storage for the map images.

However, the storage system in order to be used in mobile communication environment

must comply with specific requirements, such as:

• Compact storage size. This option is crucial for the mobile devices, which have

only limited memory resources.

• Direct access. Necessary both for server and for client-side applications in order

to speed-up the locating of information without complete search though a

database.

• Fast transmission and decompression time.

• Dynamic map handling. The system should have flexible storage structure that

allows addition of new information without complete rebuilding of the storage

structure.

1.3 Contribution of the thesis

In the first paper (P1) we study a method for estimating optimal context templates,

which are used for conditioning the pixel probabilities in context-based image

compression. We present an algorithm for estimating an optimal context template for

map images containing four binary layers: basic, contours, fields and water. The context

templates are trained on map image containing most common spatial properties. The

algorithm was applied to estimate the multi-layer context templates. The optimized

template improves the compression of field layers by about 12% on average. On the

 6

other hand, the use of multi-layer context template improves the compression for fields

and water layers up to 50%.

In the second paper (P2) we extent the idea proposed in P1 by applying context tree

modeling instead of static context template. We optimize the context tree for the

individual binary layers, and then apply statistical modeling with the optimized context

tree, and arithmetic coding. For estimating inter-layer dependencies we construct the

multi-layer context tree, in which the context pixels are located in the current layer, and

in the previous layer that has been already coded. The obtained inter-layer dependency

information is used to create an ordered compression sequence of the layers. The

proposed technique achieves improvements of about 25% over a static context template

as in P1 and 15% over similar single-level context tree.

In the third paper (P3) we propose a method for solving the optimal layer order for the

method presented in P2. The inter-layer dependencies are acquired by optimizing the

context tree for every pair of layers, and put the corresponding file sizes into a cost

matrix, which is considered as a graph. The problem of solving the optimal order of the

layers is the Minimum Spanning Tree problem for directed graph. We apply Edmond’s

algorithm [Edm67] for solving optimal branching. We achieve the improvement of 50%

over a static context template as in P1, and 25% over single-level context tree.

In the fourth paper (P4) we focus on the filtering of the map images. The filtering

should eliminate noise without destroying map image crucial information. We present a

filtering method based on context tree modeling. This is a two-pass method, where at

the first pass filter accumulates the spatial information about the image into a context

tree, and at the second pass this information is used for conditioning pixel probabilities

to decide whether the pixel is noise or not. The proposed context tree filter outperforms

vector median filter until about 12% noisy pixels and until about 20% noisy pixels for

multi-iteration variant of the context tree filter.

In the fifth paper (P5) we address the problem of color quantization of map images.

We consider the map images that have color information distorted by false contouring

 7

or by color artifacts. To approximate the number of colors originally used in the image

we employ variance ratio F-Test. We also present methods for increasing the

quantization quality and processing speed, which can be used with color quantization

for map images.

In the sixth paper (P6) we propose a compact and flexible storage system for the raster

map images. It supports partial decomposition of the image, and smooth transitions

between various scales. The storage format is constructed as hierarchical tree structure

out of logically separated layers, representing the structure of the map image, allowing

fast access to the various map image information.

In the seventh paper (P7) we propose a method for handling huge map images on

mobile devices having limited memory capacity, small computational power and narrow

connection channel. The map images are constructed out of non-intersecting rectangular

blocks and stored as compressed rasters in the server, using the system proposed in P6,

and requested by the client device by demand only. This means that without storing the

whole map image in the client device at once, only those blocks that are actually needed

and their neighboring blocks are stored. For compression we use the method proposed

in P1. The result reports that this method is useable for real-time map imaging

application for portable devices.

In papers P1-P3, the author has developed and implemented algorithms for optimizing

the context templates, constructing and optimizing the context tree, and implemented

the algorithms for optimal branching in P3. In papers P2 and P3 the author is the

principal author. In papers P4-P5 the author has developed and implemented algorithms

and also is the principal author of the papers. In paper P6 the author participated in

developing the application, performing the tests and was involved in preparing the

publication. In paper P7 the author, cooperatively with V.Veis, redesigned and

developed the system proposed in P6, was responsible for performing the tests and was

involved in preparing the publication.

 8

1.4 Structure of the thesis

In Chapter 2 we study the problem of color quantization of map images. We consider

the situation when the number of colors in the image is unknown, or the image color

information has already been distorted. We determine the amount of colors in the image

and, as well, we present methods for improving the quality and speed of existing color

quantization algorithms.

In Chapter 3 we consider the problem of filtering map images. An essential property of

the filter is that it should prevent corrupting the edges by smoothing, and try to retain

edge information untouched as much as possible. In the chapter we introduce a context

tree filter, which constructs the statistical information about the image and uses this

information during the filtering, determining pixel probabilities.

Chapter 4 is dedicated to the problem of compression of map images. We consider map

images as compound of several binary layers, representing the separate color or map

image semantic information. The method utilizes the inter-layer dependencies, and

solves optimal ordering of layers by an algorithm for finding optimal branching.

In Chapter 5 we introduce hierarchical image storage system based on compressed

raster format. This system is designed for real-time handling of map images on portable

devices with low memory resources and small computational power.

In Chapter 6 we present the conclusions.

Finally, in Chapter 7 we show summary of the results collected in papers P1-P4.

 9

2 Color quantization of map images

True color images might consist of 16 million (224) colors using 24 bits to represent

each color sample, or one byte for each of the primary colors: red, green and blue. It is

enough to display such images on the CRT displays. However, the amount of memory

used for storing and transmitting these images is very high. It is also known, that the

human eye can only distinguish about 300.000 different colors [MM01]. Moreover

mobile devices like PDA or mobile phones are often having displays which can show

only a limited set of the colors (256 or 65535) at the same time.

2.1 Problem formulation

Color quantization is the process of representing true color images with smaller set of

colors while at the same time aiming at maintaining the quality of the image. In general,

color quantization algorithms consist of two phases:

1 Creating a color palette (colormap) in which the best possible set of color

representatives for an image is selected. This consists of:

• Selecting the clustering algorithm.

• Selecting the color space.

• Selecting the distortion measure.

2 Mapping the original colors to the closest representative from the palette.

The color quantization technique is a special case of a more general class of clustering

techniques. Clustering is considered as combinatorial optimization problem, aimed at

partitioning a set of data objects into groups, where the objects with similar features

should be grouped together and objects with different features placed in separate

groups.

In color imaging, the information about color data point is usually represented as three-

component vector, each vector component contains a value of according color primary.

 10

Thus, given three-dimensional data there is no efficient solutions known for k-means

problem, since it is proven to be NP-hard [Bru77].

The clustering problem is defined as follows: Given a set of N data objects (xi), partition

the data set into K disjoint subsets Sk, called clusters, where similar objects are grouped

together and objects with different features belong to different groups, so that the total

distortion measure function E will be minimized. Usually, as the total distortion

function the MSE function is used.

 �
=

=
N

i
ipi cx

N
E

1

2

)(,
1

,

where xi is the one of image colors, ck is the representative or palette color and ()ip

denotes the partition, or the mapping function P={p1, …, pN}, which maps original code

vectors into constructed clusters. In other words, cluster Sa is defined as the set of data

vectors that belong to the same partition a.

 { }apxS iia ==

2.2 Creating a palette

Hierarchical methods

Bottom-up approach is known as Pairwise Neighbor Search (PNN) or Agglomerative

clustering [Equ89], [War63], [VFK01], [XJ94]. The idea here is as follows: in the

beginning, every data-vector represents a single cluster by its own. Then clusters are

merged together according to the selected criteria, until the desired number of clusters is

reached. The merged clusters are chosen on the basis of inter-cluster distances. The

main advantage of these methods is that they are conceptually simple and provide

relatively good results [VFK01].

In the top-down approach the idea is as follows: In the beginning all data vectors are

placed into a single cluster, which is recursively split until the desired number of

clusters is obtained. The clusters are split using specified heuristic rules to minimize the

 11

distortion measure. This process creates a binary tree representing the splitting. Each

split is done along a splitting plane separating the cluster into two subclusters. The axis

orthogonal to this plane is called splitting axis.

The key issues of top-down clustering approaches are to:

• Select next cluster to split.

• Select the splitting axis.

• Determine the position of the splitting plane along the splitting axis.

The median-cut method by Heckbert [Hec82] recursively splits the RGB color space

into subsets of equal color population along the longest axis. The tree-structured color

quantizer by Orchard and Bouman [OB91] determines nodes to split in an attempt to

minimize the total distortion measure. The method reported by Wu and Zhang [WZ91]

selects the cluster with greatest total variance and perform the split along the greatest

variance axis, minimizing the total distortion measure. The sequential scalar quantizer

method by Balasubramanian, Bouman and Allebach [BBA94] performs the quantization

separately on each principle axis. The method by Wu [Wu92] performs the cuts by the

halfplanes normal to the principal axis of the data and proceeds with the constrained

global optimization of the cutting halfplanes.

Iterative optimization methods

The k-means algorithm [McQ67] also known as generalized Lloyd algorithm (GLA)

[Llo82] or Linde-Buzo-Gray (LBG) algorithm [LBG80] starts with an initial solution

and iteratively improves it until a local minimum is reached. The Randomized Local

Search (RLS) [FK00] method is a trial-and-error approach constructed over the k-

means. Tabu search (TS) method [FKN98] is a variant of traditional local search, which

prevents an algorithm from getting stuck in local minima by making modifications into

a current solution. Genetic algorithms (GA) are based on stochastic search, which

simulates the biological model of evolution [Gol89]. At each iteration the algorithm

generates a set of new solutions by genetic operations such as crossover and mutation.

 12

Other methods

Methods based on Self Organizing Maps [Koh95], [Dek94], [PAS02] usually aim to

represent an input dataset as some kind of an ordered entity, such as two-dimensional

array, where similar data-vectors are close to each other. This is achieved by

competitive learning. Greedy algorithms [Har75] might be used for creating the initial

solution for optimization methods, because greedy algorithms itself tend to produce

rather weak solutions. In [PAS02], spatial characteristics of the image are utilized in the

clustering in addition to the color values.

2.3 Color space

The choice of distance measure ki cx , between two color samples xi and ck is critical

for a color quantization algorithm. It completely relies on the choice of the color space.

It is desirable for the color space to be perceptually uniform, in which 2110 ,, xxxx =

if x0 and x1 differ as much as x1 and x2 in visual sense.

The RGB color space is one of the most popular and widely used color spaces. Its

format is the most common for digital images and is compatible to computer devices. It

is also easy for computer users to understand and manipulate the primary color

components. The advantage of the RGB color space, that it allows the integer

calculations, which makes it useful for fast algorithm implementations. The major

drawback of the RGB color space and its linear derivates is that it is not perceptually

uniform [Equ89], [Hec82].

The YIQ model is used in U.S. commercial color television broadcasting and is a

recoding instead of RGB for transmission efficiency and for compatibility with black-

and-white television. This compatibility stays in the fact that black-and-white

televisions pay attention only to the Y-component of the transmission, which contains

relative luminance information. This component gets the majority of the bandwidth in

television broadcasting because the human visual system is more sensitive to changes in

 13

luminance than to changes in hue or saturation. However, YIQ is not uniform color

space [Wu96].

The CIE L*a*b* and CIE L*u*v* [CIE86] color spaces have been designed to represent

differences in color by the Euclidean metric in a psychophysically meaningful way. The

uniformity assumption for L*a*b* is based on color matching experiments conducted

with relatively large color patches and thus was only ensured for low spatial

frequencies. The L*a*b* and L*u*v* color spaces are only approximately uniform

because the human perception is also context sensitive and depends on the color values

of neighboring pixels. However, the L*a*b* and L*u*v* color spaces are not device-

dependent, in contradiction to the RGB and YIQ color spaces [OB91], [Wu92].

The artificially created color spaces are often used to improve quantization heuristics

[BB97].

2.4 Distortion measure

Usually the MSE function is used as a total distortion measure of clustering algorithms.

However, the weighted distortion measures are proposed to add a specific behavior to

the color quantization methods. The weighted distortion measures proposed in [OB91]

are tailored to perceive small intensity changes, and to identify the problematic regions

where the false contouring may appear. The distortion measure, introduced in [CTM94],

takes into account the higher sensitivity of the Human Visual System (HVS) to the

errors in low activity areas compared to errors in high activity areas. The activity-

weighted distortion measure based on the color visual sensitivity and absorbance of the

HVS according to each color component in the local region of color image was

proposed in [KLL96]. Simplified model of human perception, which incorporates

spatial and contextual information, was presented in [PHK00].

2.5 Number of colors

The number of quantized colors is a parameter of color quantization process, it can be a

value based on user observation, or value based on empirical data. In our research we

 14

rely on F-Test variance ratio, which is based on statistical ANOVA test procedure

[Ito80]. The F-Test variance ratio is useful in estimation of codebook size, which also

relies on the geometrical structure of the input data. It is calculated as the ratio of the

total within-groups variance against the total between-group variance.

() MSEX
MSEk

xcn

cxk
F

K

j
jj

N

i
ipi

−
⋅=

−

−⋅
=
�

�

=

=

σ
1

2

1

2

)(

,

where nj is the size of the cluster j, x is the mean vector of a training set, k is the size of

palette, and ()Xσ is defined as the total variance of the training set and can be

decomposed into the sum of within-group variance and between-groups variance as:

 () ��
==

−+−=
K

j
jj

N

i
ipi xcncxX

1

2

1

2

)(σ .

It was shown in [Xu04] that the F-Test variance function can be used in clustering as

the total distortion measure.

Thus we define an algorithm for estimating the number of clusters K as follows: We use

F-Test variance ratio as the total distortion measure in the clustering algorithm and look

for minimal value of evaluation function over all possible K. When the minimal value of

the evaluation function is found, the appropriate value of K, and resulting codebook C,

are reported.

2.6 Preprocessing methods

False contouring and blurring may cause situation, in which artifact colors are

concentrated around the original colors in the color space. Moreover, many color

quantization methods do not take into account the spatial and contextual information of

the processed image. Thus in P5 we construct two heuristic preprocessing methods

Color Filtering and Activity Thresholding for improving the quality of color

quantization and increasing processing speed:

 15

• In color filtering we address to the situation when in the color space the original

color is surrounded by artificial colors caused by false contouring and blurring.

We iteratively locate the color peaks and filter the color samples, which fall into

a Just Noticeable Difference (JND) [WS82] interval around the color peak.

• In the activity thresholding we make an attempt to utilize the image texture

information by calculating for every input pixel a color activity function as the

color difference between the input pixel color value and the mean color in

a local neighborhood. At the second step, when we are reading the image color

content, we exclude the pixels, whose color activity value falls into JND

interval. In other words, we exclude from the color palette those colors that are

different from the background but only by an amount that is not distinguishable

in terms of JND.

2.7 Summary

We have presented a method for color quantization of map images. The main set-up for

the method is that we do not have any knowledge about the number of real colors used

in the image. The method performs the quantization in Uniform CIE L*a*b* color

space. It uses F-Test variance ratio as a distortion measure to approximate the number

of real colors. We also use color filtering and activity thresholding to improve the

quality of the color quantization algorithm and speed-up the process.

 16

3 Filtering of map images

The quality of map images may degrade during the life cycle and digitization process,

since the noise introduces artificial unnecessary details to the images. Filtering is

usually applied to the image to improve the visual quality of the image or to outline the

specific features like edges. The filter is considered as an operator, which computes the

pixels for the output image as a function of several pixels in the original image, where

the location of these pixels is defined by some neighborhood area.

Traditionally the image filtering is done by linear filters [Jai89]. Linear filters are very

popular because of their mathematical simplicity and their efficiency in presence of

additive Gaussian noise. A mean filter is the optimal filter for the Gaussian noise in the

sense of mean square error. Linear filters, however, tend to blur sharp edges, destroy

lines and other fine details and perform poorly in presence of signal-dependent noise

[HK01].

3.1 Nonlinear filters

Morphological filters [Mat75], [Ser82] were introduced by Matheron. Morphological

filters perform a transformation of an image using a set, known as structuring element,

which acts as a probe sensitive to geometrical information. Geometrical structures of the

image that are similar in shape and size to the structuring element are preserved, while

other features are extracted or suppressed. Morphology has been used to perform noise

suppression, edge detection, shape analysis, skeletonization for applications in many

areas.

Median filter originally were introduced by Tukey [Tuk77]. It performs the filtering by

first sorting all the pixel values from a surrounding neighborhood into numerical order

and then replacing the pixel being considered with the middle pixel value. The median

filter has two distinctive properties: it efficiently suppress impulsive noise and preserve

the edges (see Fig. 4). The weighted median filter [Jus81] is a successor of a median

 17

filter. It assigns specific weights to each position in the window to give more flexibility

to the filter. Originally median filter performed on grayscale images.

Input

Output

Input

Output
Fig. 4 : Example of median filter behavior in presence of impulsive noise (left); Preservation of the edges

(right).

Stack filters were first introduced by Wendt et al. in [WCG86] to work on grayscale

images. The principle of the stack filter is first to separate the input signal into binary

layers using the threshold decomposition, this step is performed to divide the design the

filtering analysis into smaller and simpler parts. Second, the binary filtering is

performed on each binary layer separately, and finally the output is reconstructed back

from the binary layers after filtering.

Consider a vector ()Nxxxx ,...,, 21= , where { }1,...,1,0 −∈ Mxi . The threshold

decomposition of x is a set of M–1 binary vectors 121 ,...,, −Mxxx , according to the rule

()
�
�
�

==
,1
,0

nm
m
n xTx if xn<m,

otherwise

So, an element k
nx of a binary vector xk takes the value 1 whenever the element of the

input vector xn is greater than or equal to k. The original value can be reconstructed

from binary vectors according to the rule:

 �
−

=

=
1

1

M

m

m
nn xx

An example of the stack filter is given in the Fig. 5.

 18

x4 ... 0 0 0 0 1 0 0 0 0 1 0 1 0 0 ...
x3 ... 0 0 1 0 1 0 1 0 0 1 0 1 0 0 ...
x2 ... 0 0 1 0 1 0 1 1 0 1 0 1 0 0 ...
x1 ... 0 0 1 1 1 1 1 1 0 1 1 1 0 0 ...

Threshold
decomposition

... 0 0 0 0 0 0 0 0 0 1 0 0 ...

... 0 0 1 0 1 0 0 0 0 1 0 0 ...

... 0 0 1 0 1 1 1 1 0 1 0 0 ...

... 0 1 1 1 1 1 1 1 1 1 1 0 ...

Binary
addition

x ... 0 0 3 1 4 1 3 2 0 4 1 4 0 0 ... Stack filter ... 0 1 3 1 3 2 2 2 1 4 1 0 ...

bin. filter

bin. filter
bin. filter

bin. filter
Fig. 5: Illustration of stack filter performance.

Context-based filter and its derivatives [AF00] use context template to calculate the

probability of the pixel of being filtered according to its local neighborhood. The

principle of context-based filtering corresponds to the adaptive arithmetic coders

[LR81], which use context model to accurately estimate the probability of the upcoming

symbol. The combination of colors within a local neighborhood template uniquely

defines a context (see Fig. 6).

4

3 1

2

?

7

3

6

4

?

2

8

1

5

19 12 16

7 4 8

3 ? 1

6 2 5

14 10 17

20

9

13

15

11

18

Fig. 6: Context templates: 4 pixel clairvoyant template (left), 8 pixel clairvoyant template (center), and 20

pixel clairvoyant template (right).

The context filter takes two passes over the image. The first pass of filtering process is

counting the number of times each color appears in every context, and on the basis of

these counters conditional probabilities are estimated. As a result, we have an array of

the size equal to the number of all possible contexts filled with information of how

many times different colors appear in each context. In the example given in Fig. 7, Nb

and Nw are relative counters for appearance of black or white pixel in particular context

and Pb and Pw are accordingly their probabilities. Pc is the probability of the context to

appear. In practice, only counters Nb and Nw are needed, the other information can be

calculated on their base. The selected context on the image corresponds to the

highlighted row in the table. At the second pass, for every image pixel we set its

context, and if the conditional probability of the pixel is less than a predefined threshold

 19

level, then its color value is changed to the one in that particular context, which delivers

the maximum conditional probability.

 Context Nw Nb Pc Pw Pb Context Nw Nb Pc Pw Pb

1
4

1

2

3 ?

562 0 62.% 100% 0% 9

4

1

2

3 ?

18 0 2% 100% 0%

2
4

1

2

3 ?

25 3 3.1% 89.3% 10.7% 10

4

1

2

3 ?

5 6 1.2% 45.4% 54.6%

3
4

1

2

3 ?

19 0 2.1% 100% 0 11

4

1

2

3 ?

Not present

4
4

1

2

3 ?

18 20 4.2% 47.3% 52.7% 12

4

1

2

3 ?

0 22 2.4% 0% 100%

5
4

1

2

3 ?

28 1 3.2% 96.5% 3.5% 13

4

1

2

3 ?

17 21 4.2% 44.7% 55.3%

6
4

1

2

3 ?

0 3 0.3% 0% 100% 14

4

1

2

3 ?

1 8 1% 11.1% 88.9%

7
4

1

2

3 ?

2 7 1% 22.2% 77.8% 15

4

1

2

3 ?

1 22 2.6% 4.3% 95.7%

8
4

1

2

3 ?

2 8 1.1% 20% 80% 16

4

1

2

3 ?

0 81 9% 0% 100%

Fig. 7: A context model for the “if” binary image.

3.2 Color image filtering

Mostly, map-images appear as color images, thus we have to consider the filtering

methods that can deal with color images. Many filtering methods that perform on

grayscale images could be easily transformed for color images, performing filtration on

each primary color channel separately. However, the information in color channels is

generally correlated, and if each component is processed separately, this correlation is

not utilized. In the example on the Fig. 8 we show the filtration process of the color

signal consisting of two channels, red and green separately, with median filter of length

 20

5. The impulse in the red component is removed, but this causes the edge to be moved

by one sample. This is known as edge jitter effect [AHN90].

median

median

red

green

edge

red

green

edge

Fig. 8: Example of performing median filter of length 5 for two color channels separately.

The edge jitter effect is unacceptable when filtering map-images, because it will lead to

destroy information on the map image. An alternative is to treat the color at each pixel

as a vector in three-dimensional space. The general issue of filtering of three-

dimensional data is to create the ordering scheme, according to which the values within

the filtering window can be sorted. Vector Median filter [AHN90] uses the norm of

vector in Euclidean space and Vector Directional filter [TV93] considers the angle

between vectors as ordering criterion. Rank-Conditioned Vector Median filter [Luk03]

uses specified threshold value to detect noisy pixels. It selects the resulting value from

the reduced set of vector ordered statistics. However, the filtering parameters, such as

the threshold and the length of reduced set, have to be optimized for every image before

the filtering.

The context filter, however, does not need to define the ordering criterion. It can simply

be adjusted to process the color images by increasing the array size, which is used for

storing the relative counters. The length of the array is defined as 1+= MKN , where K is

the number of colors used in the image and M is the size of the context template. In the

case of filtering binary image where the number of colors is 2, with context size of 4,

we will have 24=16 different contexts, plus for each context we have to allocate space

for storing the actual counters. To sum up, we till have two-dimensional array with

2×16 cells.

 21

3.3 Context tree filter

The context filter has one major drawback: it has to allocate memory for storing

conditional pixel counters for all possible contexts. But it could happen that the

particular context would not be present in the image because of the image spatial

properties. Considering the example in Fig. 7, we see that one context did not appear on

the image. Moreover if we use the 8-pixel context template from Fig. 6 for the same

image, we find that 187 out of 256 contexts are not used at all.

We have proposed to use the tree structure to store the information about filtering

statistics. We refer to this structure as context tree. It is constructed as follows:

• The information about contexts is stored in the leaves

• Every tree node has as many branches as there are colors in the image in that

particular context

• The children of a node correspond to their parent by adding one more pixel at

the position defined by context template (see Fig. 6)

• The context selection is made by traversing the context tree from root to leaf,

each time selecting the branch according to the value of the pixel in the

corresponding position within context template (see Fig. 9).

?

??

?

? ?

?

? ?

??

?

??

?

?

?

?

? ?

?

?

? ?

?

? ?? ???

Fig. 9: An example of a context tree with depth of 4.

Generally, the context tree filter differs from context filter only by the data structure

used to store the filtering statistics. Also the filtering process has two phases, as in

context filter. In the first phase we create the tree and populate it with statistics. In the

 22

second phase we proceed with actual filtering on the basis of the statistics of the context

in the same way as done in context filter, with the difference that the context selection is

made by traversing the context tree instead of straight-forward context mapping.

We consider two strategies for constructing the context tree: breadth-first and depth-

first. In the breadth-first strategy the one-more level of the tree is constructed and

filtering statistics for the new constructed level are calculated. Then the process is

repeated until the predefined depth of the tree, which is defined by the length of context

template, is reached (see left of Fig. 10). The drawback of this strategy is that it is quite

slow because at each construction level we have to make pass over the filtering image to

calculate the filtering statistics for the current tree level. Also, using this strategy it is

impossible to calculate the number of used contexts before the tree is constructed.

Considering for example a 16 color image, with a dimension of 1024×1024 pixels, and

using 20 pixel clairvoyant template, we expect to have 1620 contexts in the tree.

On the other hand, the physical dimensions of the image limit the number of available

contexts so that we can have at most 1024×1024 different contexts. Thus, in the depth-

first strategy the tree is constructed up to a depth defined by context template while

traversing the image in raster scan order. For every pixel in the image we select a

corresponding context and update its color counters, if during the selection process an

appropriate branch in the tree was not found, we create it (see right of Fig. 10).

?

? 1

2

? 1

2

?

2

1? 1

2

? 1? 1

?

1

2

? 1

2

? 1

2

?

2

1? 1

2

? 1? 1

3

...

Fig. 10: The example of breadth first (left) and depth first (right) tree construction strategy.

 23

The main disadvantage of the context tree filter is the extensive memory consumption

due to storing the filtering statistics and tree structure overhead. This problem is

especially noticeable when filtering color images, which have large dimensions.

However, the impact of this problem could be reduced when using pre-quantizing step,

so that each node, except the leaf nodes, will have some reduced amount of children

nodes. Also tree pruning methods could be involved to eliminate the nodes, which use

does not give us any difference considering the parent nodes.

3.4 Summary

Statistical filtering method based on context tree structure was presented. The method

has wide application area because without any modifications it can be applied to binary,

grayscale or color images. It is a two pass filter. At the first pass the image statistics are

calculated and stored in the tree structure and at the second pass the actual filtering is

performed on the basis of previously collected statistics.

 24

4 Compression of map images

Map images are considered here as discrete-tone images with a limited number of

colors, having large spatial dimensions. In discrete-tone images pixel intensities do not

vary smoothly as in continuous-tone images, but change within a small set of values.

We also consider map images as composite image consist of several binary layers

representing semantic or color information. Map images cannot be compressed well

using lossy color compression, such as JPEG [Wal91], because they are not suited for

them. Moreover, compressing a map image using JPEG to the same compression level

that is achieved with GIF we would have a barely readable picture see Fig. 11. for a

comparison.

Fig. 11: A comparison example of a map image fragment compressed with GIF (left), using 8055 bytes,

and JPEG (right), using 44160 bytes.

4.1 Lossless compression methods

Graphics Interchange Format (GIF) is lossless compression method suited for palette

images. It can hold multiple bitmaps of up to 256 colors each. For reducing the size of

compressed raster data it uses LZW dictionary compressor [Wel84]. GIF and 'Graphics

Interchange Format' are trademarks of CompuServe Inc and the format is publicly

available without royalties or licensing restrictions. However, the LZW compressor is

patented by Unisys Corporation.

 25

Portable Network Graphics (PNG) provides a patent-free replacement for the GIF. It is

based on deflate algorithm [Deu96], which is a combination of LZ77 dictionary

compression [LZ77] and Huffman coding.

CCITT Group 3 (G3) and Group 4 (G4) are the most common methods for binary image

compression and facsimile algorithms can be applied to the map image separated into

the binary layers. G3 has two realizations: G3-1D, which is a one dimensional algorithm

and where the scanline is encoded as a set of runs, representing a number of white or

black pixels. The runs further are encoded by the Huffman coding. G3-2D is a modified

READ algorithm [CCITT T.4]. G4 is known as modified-modified READ algorithm

[CCITT T.6].

4.1.1 Statistical binary image compression

Statistical image compression consists of two distinct phases: statistical modeling and

coding [RL81]. In the modeling phase the probability distribution of the symbols to be

compressed is estimated. The coding process assigns variable length code words to the

symbols according to the probability model so that shorter codes are assigned to more

probable symbols, and vice versa. The coding can be performed using arithmetic

coding, which provides optimal coding for the given probability model [RL79].

A binary image can be considered as a message generated by an information source.

The idea of statistical modeling is to describe the message symbols (pixels) according to

the probability distribution of the source alphabet. Shannon has shown in [Sha48] that

the information content of a single symbol (pixel) in the message (image) can be

measured by its entropy.

The pixels in an image form geometrical structures with appropriate spatial

dependencies that can be described by context-based statistical model [LR81]. The

probability of a pixel is conditioned on a context C, which is defined as the black-white

configuration of the neighboring pixels within a local template. The entropy of an N-

level context model is the weighted sum of entropies of individual contexts:

 26

 () ()�
=

⋅+⋅⋅−=
N

j

C
B

C
B

C
W

C
WjN

jjjj ppppCpH
1

22 loglog

where ()jCp is the probability of the context Cj; jC
Wp and jC

Bp are respectively the

probabilities of the white and black pixel in the context Cj.

JBIG is the ISO/ITU lossless binary image compression standard [ITU-T T.82]. It is

based on statistical context modeling and arithmetic coding. The QM-Coder [PM88]

used in the JBIG standard provides an approximate arithmetic coder and table-driven

technique for updating the probability estimate for each pixel’s context after the pixel is

coded. JBIG encodes the image in raster-scan order. For each coded pixel it locates its

context consisting of neighboring pixels, defined by a context template (see Fig. 12).

Then the number of the selected context and the pixel to be coded are sent to the QM-

coder.

?

2 4 83

15

69

7

10

 ?

2 4 83

15

69

7

10

Fig. 12: The default 10-pixel context template, which is used in JBIG (left). Example of context which

have unique number defined by the configuration of the pixels within the template:

“010101010101(bin)”=341(dec)

Although designed primarily as a method for compressing binary image data, JBIG is

capable of compressing color or grayscale images with a depth of up to 255 bits per

pixel. Such multi-bit pixel images are compressed by bitplane rather than by pixel. For

example, an 8-bit image compressed using JBIG would be encoded into eight separate

bitplanes.

It is recommended before separating the grayscale image into set of bitplanes, to

preprocess the grayscale image with a gray-coding algorithm to normalize the changes

between adjacent byte values in the image data. This process increases the efficiency of

the JBIG encoder.

JBIG images may be encoded sequentially or progressively. Sequentially encoded

images are stored in a single layer at full resolution and without other lower resolution

 27

images being stored in the same data stream. Progressively encoded images are started

with the lowest resolution image first and end with the highest (see Fig. 13). The high-

resolution image is stored in a separate layer and is then used to produce a lower

resolution image, also stored in its own layer.

1 2 1

2 4 2

1 2 1

-1

-3

-3

?

Fig. 13: The weight mask used for resolution reduction used in JBIG. Pixels from a new lower

resolution layer are shown with circles.

There is no limit to the number of resolution layers that may be encoded. For example, a

1200-dpi image can be encoded as one layer (1200 dpi), three layers (1200, 600, and

300 dpi) or five layers (1200, 600, 300, 150, and 75 dpi). The lowest resolution is

determined by whatever is considered useful.

Progressive encoding does not add much more data to a JBIG data stream than does

sequential encoding but it does have greater memory requirements. Because a lower

resolution image is encoded from data of the next higher resolution image (and vice

versa when decoding), a frame buffer must be used to store image data that is being

used as a reference.

4.1.2 Statistical palette image compression

Prediction by Partial Matching (PPM) data compression scheme [CW84] uses adaptive

context determination scheme. At each coding step the longest previously encountered

context is used to predict the next character. If the symbol is novel to that context and

cannot be modeled by that context, an escape symbol is transmitted and context is

shortened by dropping one symbol. This process of transmitting an escape code and

then shortening the context will continue until the symbol is successfully transmitted. If

the current symbol is novel even to the zero order context then a final escape will be

transmitted and the symbol will be encoded as is. The adaptive model can then add the

current symbol to all applicable contexts. The actual coding of a symbol, given its

 28

predicted probability, is performed by arithmetic coding. The PPM compression scheme

has also been adapted to the compression of map images [FS02].

4.1.3 Statistical compression with prediction based context model

In principle, better probability estimation can be achieved using a larger context

template. The use of large template, however, does not always result in compression

improvement. The number of contexts grows exponentially with the size of template;

adding one more pixel to the template doubles the size of the model. This leads also to

the context dilution problem, in which the statistics are distributed over too many

contexts, and thus affecting the accuracy of the probability estimates. The methods

considered here use the combination of prediction techniques with context modeling in

order to decrease the size of context model.

JPEG-LS is a lossless/near lossless compression standard [ITU-T T.87] for continuous-

tone images based on LOCO-I algorithm (Low Complexity Lossless Compression for

Images) [WSS00]. The algorithm uses non-linear predictor with simple edge-detector,

able to predict horizontal, vertical and -45° edge orientations. The context model is

determined from four local gradient calculations and further quantized according to

their distance from the current pixel to reduce the number of free parameters. Coding is

done by Golomb-Rice codes with adaptively estimating the skewness parameter. In

uniform image regions the compressor operates in run-length mode. The compressor

also has near-lossless mode, where the compression level depends on a specified

maximum reconstruction error. The main advantage of JPEG-LS compression method is

that its performance is comparable to the compression schemes based on arithmetic

coding, with only a fraction of their complexity.

Context-Based, Adaptive, Lossless Image Coding (CALIC) [WM97] is operating in two

different modes: binary and continuous tone. The binary mode is used in situations

where the input pixel and its neighborhood, specified by a template, have no more than

two distinct intensity levels. Context-based adaptive arithmetic coder is used to code

three symbols: 0, 1 or an escape symbol, which is used to escape the binary mode. In

 29

continuous-tone mode the system operates as follows: first, the so-called Gradient-

Adjusted Prediction (GAP) is calculated. It is a simple, adaptive, nonlinear prediction

used to detect the magnitude and orientation of edges in the image. Second, the context

error modeling of this initial prediction is used to further update the prediction via one

step delay feedback, using the error energy estimator (∆). This ∆ is further quantized

into 8 levels. Third, the local spatial context is determined and quantized into an eight

bit integer. The quantized error energy and quantized texture context form a compound

context, which is finally used to select the statistical model for coding the prediction

errors by arithmetic coding.

4.1.4 Object oriented context modeling

Piecewise Constant Model (PWC) [AUS00] is a technique designed for lossless

compression of palette images. It is a two pass method. At the first pass the method uses

special classification to establish the boundaries between constant color pieces in the

image, which consists of four following classes:

Q1: Whether the pixel color equals to its left neighbor, and top neighbor.

Q2: Whether the pixel color equals to its top-left neighbor, and top-right neighbor.

Q3:
Is the pixel color equals to a value that occurred previously in the same context.
This classification is repeated until a guess is correct or the guesses are
exhausted.

Q4: Report the current pixel color.

At the second pass the decisions are coded by binary arithmetic coder. The method

takes also advantage of the uniform regions, where the same context appears repeatedly.

For uniform regions an extra class is reserved, so when a uniform region is encountered,

its length is determined and a decision is coded as to whether or not it can be skipped

entirely.

4.1.5 Multi-layer statistical compression

Two-dimensional context modeling is capable of capturing spatial dependencies in the

image. On the other hand, map images often originate from the data as separated to

 30

binary layers such as roads, text, buildings and water areas. Most of the compression

methods simply ignore the fact, that the water areas on the map image are usually

outlined by the border. Thus, for the compression method suitable for map images it is

essential to capture the existing inter-layer dependencies. This idea of utilizing inter-

layer dependencies is used in the described following methods.

JBIG2 [HKM98] is a compression standard [ITU-T T.88] for binary images which can

also be used for compressing grayscale images in the same way as it was implemented

in JBIG. JBIG2 extends JBIG by incorporating two pattern matching strategies: Pattern

Matching and Substitution (PM&S) and Soft Pattern Matching (SPM). These strategies

differ from each other in the way how they encode pixel blocks. In PM&S, the image

first is segmented into pixel blocks. Second, the dictionary is searched in order to locate

the previously coded block that matches the current pixel block. If an acceptable match

is found, the associated dictionary index and position offset are encoded. If there is no

acceptable match, the current pixel block is encoded, and its index appended to the

dictionary. This strategy allows high lossy compression level.

SPM differs from PM&S in the fact that, in addition to the dictionary index and position

offset, the current pixel block, called refinement data, is losslessly encoded using two-

layer coder, making use of previously coded pixels from the matched block employing

the two-layer context template, (see Fig. 14). Since these blocks match to each other,

high similarities between them allow compressing the current block very efficiently.

Including refinement data allows reconstruction of the original pixel blocks, which

allows lossless decompression.

?4

1 2 3

 7

5

6 8

9 10 11
Fig. 14: The context template used for encoding the pixel block. The context pixels in the current pixel

block are chosen using 4-pixel template (left), the pixels from the matched pixel block are chosen using

7-pixel template (right). The positions shown in gray are aligned.

DjVu compression technique [BHH98] is tailored for compression of high-resolution,

high-quality images of scanned documents in color. It proceeds as follows: first, the

 31

image is separated into three image components using color clustering technique based

on LBG [LBG80] clustering algorithm: the foreground image that contains the color of

the text and line drawings, the background image, and the mask image, which indicates

whether the corresponding pixel in the image is chosen to be foreground or background.

This component contains usually the text and the high contrast drawings. Second, the

foreground and background images are downscaled to 100 dpi using an assumption that

this resolution is sufficient to display pictures and enough to preserve the readability of

the color document, except for the tiniest lines and fonts. Third, the foreground and

background images are encoded using a wavelet-based compression algorithm. The

mask image is coded at 300 dpi using a variation of JBIG2 compressor.

Embedded Image-Domain Adaptive Compression of Simple Images (EIDAC) method

[YKO98] is tailored for compression of grayscale images. The image is separated into

bitplanes, and each bitplane is compressed separately from the most significant bitplane

to the least significant bit plane using three dimensional context modeling. Four context

pixels are selected from the current bitplane, and one from each previous bitplanes that

have been already processed (see Fig. 15). The encoding is performed by the binary

arithmetic coder.

Current bitplane

Most significant bitplane

Least significant bitplane
Fig. 15: The context template used by the EIDAC method.

SKIP pixel coding [FJ02] is a lossless context-based method for compressing limited

bits/pixel images such as maps. It starts by color separation of the original image into

binary layers and process them separately. However, it involves a simple modeling rule:

if a given pixel in a particular layer has already been coded in a layer of a higher

priority, it does not need to be coded again in the current layer or in any of the lower

layers (see Fig. 16). Thus the coding of a large amount of redundant information around

 32

blank areas can be “skipped”. The encoding component of this method is the binary

arithmetic coder.

5 colors

Fig. 16: The example of the SKIP modeling rule. The black pixels at each binary layer represent the

pixels set with this color. The pixels marked with cross will be “skipped”.

4.2 Optimizing the context template

The location of the template pixels, if properly designed, may greatly improve the

accuracy of the context model. It is therefore desirable to optimize the location of the

template pixels for the compressed images. Usually the template pixels are distributed

in the neighborhood using the principle of minimal distance to the current pixel.

Standard 1-norm or 2-norm distance functions define two different templates shown in

Fig. 17. These templates are well suited for mixed type of images. However, they are

not necessary the best choices for map images. The map images consist of several

binary layers with different semantic content. Each layer consists of geometrical

structures that do not necessarily match to the structures of another layer.

?

24

15

8 1573

13

16

61012 1911920

1418 17

 ?

25

13

9 1484

713

61117

20

1610

15

1219 18

Fig. 17: The standard 1-norm (left) and 2-norm (right) context templates.

In P1 we present a method for optimizing the context template for a given image. The

method optimizes the location of the template pixels within a limited neighborhood area

shown in Fig. 18 (left) and produces the ordered template as a result.

The optimal context template could be solved for a given template size k by

compressing the image using all possible templates, and then selecting the one with the

 33

best compression performance. However, this is computationally not possible as there is

a huge number of different template configurations to be tested. Therefore, we take a

more practical approach and construct the template stepwise similarly as in [DAN99],

optimizing the location of one pixel at a time.

To optimize multi-layer context templates we modify the base algorithm in such a way

that we consider context pixel locations within the combined neighborhood area of 77

pixels shown in Fig. 18. The current layer pixels are selected within 40-pixel

neighborhood area, and in the reference layer pixels are selected from 37-pixel

neighborhood area. An example of optimized context templates is shown in Fig. 19.

The optimized template can be used with JBIG-alike compressor. However, the

template must be known both by encoder and decoder, and thus must be sent with

compressed image. Another option would be to use static approach and train the

template using a representative training image. This is possible because of the similarity

of the context templates for images of similar type.

? x

Fig. 18: The neighborhood area for optimizing the location of the template pixels: for the current layer

(left) and for the reference layer (right).

2

5

?

1 6 3 7

151113

14

16

12 10 48

9

2

12

?

1 13 3 10

5

7 11

9

8

6

4 X

Fig. 19: An example of optimized templates for the field layer. Optimized 1-layer template (left) and

optimized 2-layer template (right), where basic layer is chosen as reference layer.

 34

4.3 Context tree modeling

Context tree provides a more flexible approach for modeling the contexts so that a

larger number of neighbor pixels can be taken into account without the context dilution

problem [MF98]. The contexts are represented by a binary tree, in which the context is

constructed pixel by pixel. The context selection is deterministic and only the leaves of

the tree are used. The location of the next neighbor pixels and the depth of the

individual branches of the tree depend on the combination of the already coded

neighbor pixel values. Once the tree has been created, it is fully static and can be used in

the compression as any other fixed-size template.

Context tree is applied in the compression in a similar manner as the fixed-size context

templates; only the context selection is different. The context selection is made by

traversing the context tree from the root to leaf, each time selecting the branch

according to the corresponding neighbor pixel value. The leaf has a pointer (index) to

the statistical model that is to be used. Each node in the tree represents a single context.

The two children of a context correspond to the parent context increased by one more

pixel. The position of this pixel can be fixed in a predefined order, or optimized within a

limited search area, relative to the compressed pixel position.

The tree can be optimized beforehand using a training image (static approach) [FA99],

or optimized directly to the image to be compressed (semi-adaptive approach) [MF98].

In the latter case an additional pass over the image is required to collect the statistics,

and the tree must also be stored in the compressed file. The cost of storing the tree

structure is one bit per node. The static approach is possible because of the similarity of

the trees with images of the same type. On the negative side: the resulting tree would be

more dependent on the choice of the training image.

To construct a context tree, the image must be processed and statistics should be

calculated for potential contexts in the tree including the internal nodes. The tree must

then be pruned by comparing the parent node and its two sub trees at every level. If

compression gain is not achieved by using the two sub trees instead of the parent node,

 35

the sub trees should be removed and the parent node would be a leaf node. The

compression gain is calculated as:

 () SplitCostClClClCGain rightleft −−−=)()()((1)

where C is the parent node, and Cleft and Cright are the two sub trees, see Fig. 20 for an

example. The code length l denotes the total number of output bits from the pixels

coded using the context in the particular node. The cost of storing the tree is integrated

into the SplitCost. The code length can be calculated by summing up the self-entropies

of the pixels as they occur in the image:

 �−=
t

t CpCl)(log)(2 (2)

where)(Cp t is the probability of upcoming symbol within context C at time moment t.

The probability of the pixel is calculated on the basis of the observed frequencies using

a Bayesian sequential estimator:

�
�

�
�

�

−=
++

+=
=

blacktCpCp

whitet
CnCn

Cn
Cp

Cp
t
W

t
B

t
B

t
W

t
Wt

Wt

 is pixel if),(1)(

 is pixel if,
2)()(

)(
)(

)(
th

th

δ
δ

where t
Wn and t

Bn are time-dependent frequencies, and t
Wp and t

Bp are respectively the

probabilities for white and black colors, and δ = 0.45, as in JBIG.

nw = 27076
nb = 200
l(C) = 1698.9

nw = 211
nb = 0
l(C) = 3.4

nw = 26865
nb = 200
l(C) = 1696.7

2

?

4

6

15

?

6

nw = 25808
nb = 127
l(C) = 1150.5

nw = 1057
nb = 73
l(C) = 392.7

?

?

6

?

6

Gain = -1.2

Gain = 153.5

Fig. 20: Example of tree pruning with local pruning criterion. The code length is adaptively calculated

according to Eq. (2).

 36

4.4 Multi-layer context tree

In P2 we construct the multi-layer context tree in order to utilize the existing inter-layer

dependencies between the map image layers as follows. The tree starts from scratch and

the branches are expanded one pixel at a time. The location of the template pixels are

optimized and fixed beforehand and then applied for every branch. Another approach is

to optimize the location of the context pixels separately for every branch (Free Tree

approach). The context pixels are selected from the same joint 77 pixels neighborhood

as in the method for optimizing multi-layer context template.

4.5 Optimal layer ordering

The captured inter-layer dependencies show us the correlation between the information

content of the map image. Like in case of the NLS map images [NLS] there are strong

correlation between basic layer and the two other layers (fields and water), whereas

some layers do not seem to have any particular correlation to any other layers.

52.49%
(118705 bytes)

35.67%
(345061 bytes)

57
.7

9%
(1

54
21

 b
yt

es
)

Fig. 21: The arrows show the inter-layer dependencies and the number of saved bits when compressing

the second layer using the first one as a reference.

 37

We can see in Fig. 21 that it is impossible to utilize all the existing dependencies as the

order of processing restricts which layers can be used as the reference layer.

In general, we can select any predefined order on the basis of known or assumed

dependencies, which can hold for the map images of the same type. However, if the

source of map images is unknown we can still optimize the order in which the layers

should be processed. The selected order must also be known by the decoder, so it must

be sent with the compressed image as well.

In P3 we consider the layer ordering optimization problem as a problem of solving

directed Minimum Spanning Tree (MST) [CL90]. We consider an example of inter-

layer dependencies given in Fig. 21 as a graph where layers are the nodes and the

arrows represent the edges. The entering edges have weights in the graph, which show

independent layer compression. The weights in the graph represent the saving of the

bytes. We employ an algorithm of solving directed MST [Edm67] to maximize the

utilization of inter-layer dependencies and thus improve the compression ratio.

In the case of color separated layers we can improve the compression by completely

removing one of the layers and considering it as the background color. The background

color is usually white but this is not necessarily always the case. In fact, we can set any

layer as the background color. The advantage is that the compression of the chosen

layer is avoided.

4.6 Summary

Two different techniques for optimizing the modeling phase in statistical compression

methods were presented.

The first one optimizes the position of the context pixel within the neighborhood

template. This technique allows more precise model to be constructed, which gives an

improvement in the compression ratio. The technique can be extended to gather inter-

layer dependencies between image layers.

 38

The second one uses the context tree to construct the statistical model. This technique is

also useful for obtaining inter-layer dependencies, which take place in the map images.

On the basis of captured inter-layer dependencies we are able to solve the optimal layer

ordering. This provides us the sequence in which the layers must be processed in order

to maximize the utilization of the inter-layer correlation providing the best possible

result.

 39

5 Map handling

Digital maps are usually obtained from spatial databases where they are stored in vector

format [Sam89]. With vector format is possible to reproduce the view of a map at any

zooming factor maintaining the finest details and quality. However, due to physical

restrictions, this format is not handy for mobile devices. Most mobile devices, except

for portable PC’s, have very limited display capabilities and low storage size. For

example, taking into account an average PDA device: the screen resolution has 240×320

pixel display and the memory is capacity is of 64 Mb RAM, which is shared between

running programs and personal storage. The basic map operations like scrolling and

zooming requires that the whole vector map must be stored in the client device, and a

raster image, representing visual outlook, generated. Depending on the complexity of a

map, its physical size might be large. However, vector map can be used to generate and

transfer the part of the original vector map, which matches the requirements of the client

device. But in this case a heavy computation on the server side is required, so the actual

transfer might be delayed.

Another alternative is to generate a raster image representing the outlook of a map, store

it in a server side and transfer it to the client device in compressed form. One of the

compression standards, like GIF or JPEG, can be used. They are the de facto the

standards used by millions of Internet users around the world for compressing images

on the Web. However, to perform scrolling operations on map, the whole raster image

must be transmitted to the client device. Moreover, to have an ability to perform

zooming operations, we need to have separate raster images for different zoom factors

because in the re-scaling the raster image might degrade the image quality. It is also

impossible to generate part of an image without completely decompressing the whole

image. It is also impossible to see only specific particular information of a map, like

roads, without having the complete image generated for this purpose. However, the

compression/decompression process itself can be made very fast.

 40

5.1 Existing mobile navigation systems

The existing mobile navigation systems can be categorized into two different classes:

• Online systems, which use online internet connection to acquire the map for the

desired location.

• Offline systems, which use maps existing in the navigational device by default.

Online systems are tailored for devices, which have online connections to the internet,

such as portable PC’s, PDA and SmartPhones. Nowadays this kind of systems have

become more popular and it is quite easy to use such systems to retrieve maps of city’s

central areas or any major towns. Online systems, in general, have a set of very detailed

vector maps of fixed regions and provide to users the outlook of desired areas in a raster

form on demand, according to position, scale and detail level.

Most of the offline systems are provided by manufacturers of GPS devices such as

Garmin (Garmin International Inc.) or Magellan (Thales Navigation Inc.). In general

they have one thing in common: some sets of maps are already stored in the device

memory; this can be the case of the general maps of Europe, USA or Russia. However,

to get a new map into a device the user needs to have a subscription with the

manufacturer or with the side companies that provide map solutions, such as MapInfo

(MapInfo Corporation). For the offline navigation systems the maps are usually

provided on CD in encrypted compressed raster images.

5.2 Map Image Storage System

Map Image Storage System (MISS) format, developed in P6, is based on compressed

raster format. For client-server applications the maps are stored in MISS format in the

server-side database. Spatial views are generated for the client-side and sent without

decompression over connecting channels to the client. The system does not depend on

any particular database or vector format as digitized raster maps can be easily generated

and reproduced from any source format, including paper maps. Another advantage of

 41

this system is that it requires only a modest memory and computing resources in order

to be operational in a real-time environment.

5.2.1 Multi-scale representation

One positive feature of vector maps is that views of any zooming factor can be

generated without having any problem. With vector maps it is also easy to control the

amount of shown details: changing the view resolution from the smallest detail to the

more general, where some information on the map can be omitted. With raster maps it is

impossible to maintain the quality of zoomed images with factors that are not a multiple

or dividend of 2 (in/out). The interpolation schemes, such as bilinear interpolation, can

also be employed with zooming-in operation for increasing visual quality of the zoomed

image. However, we do not use them because they tend to blur the image content and

thus produce artificial colors. Instead, we simply copy the original pixel.

Therefore, for convenient zooming operations we propose to store the different scales of

the same location, as the different pages of the same map image. The intermediate

scales with the same detail level can be generated on fly by magnifying or stretching the

page image by the factor of 2. However, the images with scales different from the origin

by a factor different than 2 are put into MISS as different page (see Fig. 22).

1:100 000

1:40 000

1:20 000

The intermediate scale, generated out
from the page with higher resolution.

The maps with different scales and detail level.
They are stored in separate pages

Fig. 22: Representation of the map as a collection of map images (1:100 000 and 1:20 000). The

intermediate scales are generated by zooming

 42

5.2.2 Different compression strategies

In the chapter 3 we have overviewed different compression methods: JPEG-LS [ITU-T

T.82], CALIC [WM97], PWC [Aus00] and DjVu [BHHSBL98]. These methods have

one thing in common: they may behave differently according to the type of information

they compress.

We propose to construct the page out of different layers. The layers are compressed

separately and represent different types of information on the page. Binary layers could

be used for representing color or semantic information and grayscale layers for pictures

with smooth color transitions. Binary layers can be successfully compressed with

compression technique based on arithmetic coding. However, this compression

technique might not be the best for grayscale layers. Thus we propose that each layer

might have separate compression technique in use. Moreover, we do not restrict the

application to use only a specific compression technique. For this motive we reserve in

the MISS structure the space where the compressor might store the information required

to proceed with the decompression.

5.3 Dynamic map handling

One of the purposes of the personal navigation devices is to track the current position of

an observer on a map. In order to speed-up the map displaying process, map images

must be stored in the memory of a client device. Usually, the whole map image is stored

in different files according to the scale, type and covering region. The map images are

updated from the remote server on user request, according to the subscription details.

The decision to delete map images is entirely dependent on the user. We refer to this

map handling scenario as static map handling.

In dynamic map handling the user has no direct control on the maps P7. The idea is that

map images just appear when needed. The current user location is determined in the

proper map found in the device memory, decompressed and displayed. In case that the

map would not be found in the memory it would be automatically requested from the

 43

server. The deletion of maps could be done automatically, depending on the set of

relevance preferences such as time of the last access, or also manually on user decision.

It might happen that even if a whole map is stored in the memory, some particular

places of this map will never be visited even once. Also, the display capabilities of most

mobile devices, like PDA, GPS, and mobile phones, do not exceed dimensions of

240×320 pixels. Thus for reducing the storage size in the client device and the cost of

transmitting the map image over the communication channel, we propose to split the

original map image in the server side into rectangular non-overlapping blocks, compress

them separately and send on demand in compressed form to the client (see Fig. 23).

Every time before performing scrolling or zooming operations, the application checks

the blocks that are in the current view, determines those that must be changed, perform

the operation and check for changed blocks in the device memory, and if the desired

information is not located then it is requested from the remote server.

Fig. 23: Example of a map image constructed in the client device using dynamic map handling.

5.4 Detailed file structure

The developed MISS structure is compatible with dynamic map handling as it has the

following properties:

 44

• The map image is stored as one file, representing the fixed area on a map.

• The file has hierarchical structure, allowing direct access to the specific features

without complete search over the file, and multi-scale representation (see Fig.

24).

• The map image is a set of digital maps (pages). Pages can be used to represent

maps of the same area with different scales, or just different maps of the same

area.

• The page is constructed out of binary or grayscale layers, representing the

semantic or color information about the image.

• The layers are separated to non-overlapping rectangular blocks, which are

compressed independently.

• As a compression part, we use the JBIG based compressor. However the system

supports embedding of any suitable compression technique, like GIF or PNG. It

is also possible to employ different compression techniques to compress

different layers. For example, to compress grayscale and binary layers with

different compressors, with the only restriction that both compressor and

decompressor must be capable of handling the commonly treated data.

Map

Page 1 Page 2 ... Page P

Layer 1 Layer 2 Layer L...

Block 1 Block 2 Block B...
Fig. 24: The hierarchical structure of MISS file.

On the one hand, dynamic map handling also means fast and simple addition of image

elements such as page, layer or block without complete reordering of the storage file.

 45

This could be done by adding the elements at the end of the file. However, to access an

element we will have to perform complete search over the file structure.

The access to the map image elements should remain direct. This could be done by an

index table at the parent level, directing to the positions of the children. However, it

means that at the moment of creating of a new page we need to know the number of

layers. On the client device this information is often not available. Moreover, we cannot

change the size of the index table in order to add more children.

To overcome these difficulties we use a Continuous Index Table (CIT) [Vei01] (see Fig.

25). CIT is a special index table with the possibility of varying the number of bytes

reserved for each index and continuing the table by appending the new table at the end

of file. Each index is an offset in the file to the location where the children data are

stored.

Bytes per index
(1 byte)

Number of indexes
(2 bytes) Index 1 Offset to the next CIT

(4 bytes)Index 2 ... Index N
Fig. 25: The structure of CIT.

The first parameter is used to specify the number of bytes used for the addressing index.

Varying this parameter, we can modify the addressing length. The second parameter

represents the number of indexes available in the current CIT block. Last four bytes of

each CIT block are reserved for offset to the next CIT block.

CIT 1

Data

CIT 2

1 13 1 2
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Data

3

Fig. 26: Example of the use of CIT.

For example, using CIT in Fig. 26 and wanting to add one more data block to the file,

the program must do the following steps:

1. Check the number of occupied blocks with a predefined value in CIT 1.

2. Go to the CIT 2, using the link at the end of CIT1.

3. Check the number of occupied blocks with a predefined value in CIT 2.

 46

4. Go to the first unoccupied cell.

5. Write data at the end of file.

6. Put the corresponding address into a cell.

The CIT is used in MISS for indexing pages, layers and blocks, so that the structure of

file, page and block headers will be as it shown in Fig. 27.
File header

File Code

Version Code

Number of Pages

Pages CIT

(2)

(2)

(2)

Page header

Number of Layers

Page Bitmap Width

Page Bitmap Height

Page Scale (m/pix)

(2)

(2)

(2)

Page Geo Left

Page Geo Top

Page Geo Right

Page Geo Bottom

Page Rotation

Page Background (R,G,B)

Layers CIT

(2)

(4)

(4)

(4)

(4)

(4)

Layer header

Layer File Name

Layer Color (R,G,B)

Layer X Shift

Layer Y Shift

(40)

(4)

Block Width

Block Height

Layer Data Length

Layer Data

Blocks CIT

(4)

(4)

(4)

(4)

Block header

Block Data Length

Block Data

(4)

Fig. 27: The structure of the File, Page, Layer and Block headers.

5.5 Client-server communication

Using the proposed storage structure, the client-server communication dialog could be

formed on the basis of four different request-response pairs:

• Map request is used in a situation when a map with particular coordinates is not

found in the client memory. In Map response the server sends to the client the

MISS File header. Automatically the set of ‘Page requests’ is generated for all

existing pages in this Map.

• Page request is used to acquire from the server a Page with specific scale. In

Page response the server sends to the client appropriate MISS Page header.

Recursively the set of ‘Layer requests’ is generated and sent to the server to get

the headers of all layers of this Page.

• Layer request is used for forming the layer data and determining the

compression strategy for the layer. In Layer Response the server sends to the

client appropriate MISS Layer header.

• Block request is used for acquiring from the server the actual data that will be

displayed. Block Request if formed in the case when the appropriate block is not

 47

found in the MISS file in the client memory. In Block Response the server sends

to the client the actual block data.

5.6 Summary

We have introduced a new Map Image Storage System (MISS), which was developed

for real-time applications in portable devices with low memory and computing

resources. The system architecture is designed to minimize the storage size,

transmission time and memory requirements for the client device. The MISS file can

have several different maps stored in the same file. Different compression techniques

could be involved. The MISS format allows direct access to the data and at the same

time permits a flexible file structure. The detailed structure of the MISS format was

outlined.

 48

6 Conclusions

We have proposed a method for color quantization of map images where the number of

output colors is unknown. We consider map images to have artificial colors caused by

blurring and by compression using lossy techniques such as JPEG. To approximate the

number of output colors we use F-Test variance ratio. We perform the color

quantization in uniform L*a*b* color space as well as in standard RGB color space.

Empirical results show that the proposed method can be useful to automatically

determine the number of colors for the map images.

We have proposed a novel method for filtering raster map images by context tree

modeling. The main advantage of the filter is that it does not destroy the object borders.

It outperforms Vector Median filter until a level of 25% of corrupted pixels, which can

be considered as severe noise.

We have proposed a method for compressing map images by multi-layer context tree

modeling and by optimizing the order of the processing of the binary layers. Solutions

are given for the context modeling, utilization of the multi-layer dependencies and for

the optimal ordering of the layers. The optimal order of processing the layers was

considered as directed spanning tree problem and solved with an algorithm based on the

Edmond’s algorithm for optimum branching and by the optimal selection and removal

of the background color. The proposed method gives 50% better results than JBIG, and

25% better than a single layer context tree modeling.

We have developed a storage system for the map images which is tailored for real-time

applications that use portable devices with low memory and computing resources. The

system supports compact storage size, decompression of partial image, smooth

transitions between various scales and small transmission time. This minimizes the

transmission time and the memory requirements in the user device are minimized.

 49

7 Comparison results of the presented methods

In this chapter, we have collected results from the experiments on the compression

methods presented in P1, P2 and P3, and also the performance comparison of the

filtering methods presented in P4.

Firstly, we show the comparison between compression methods presented in P1, P2 and

P3. Following abbreviations are used:

• JBIG: baseline JBIG with 10-pixel context template.

• OSL: Optimized single layer context template. (introduced in P1)

• CT: Single layer context tree modeling.

• OTL: Optimized two-layer context template. (introduced in P1)

• MCT: Multi-layer context tree modeling (P2) and optimizing the order of layers.

(introduced in P3)

Table 1: Comparison of the results presented in P1, P2 and P3. The compressed file sizes are given in

kilobytes

 JBIG OSL CT OTL MCT
Image #1 159 136 130 126 106
Image #2 846 644 611 620 528
Image #3 315 262 246 239 223
Image #4 662 564 544 459 443

Total 1982 1606 1531 1444 1300

Secondly, we show the comparison of filtering methods presented in P4, (see Fig. 28,

Fig. 29, and Fig. 30). Rank-conditioned vector median filter [Luk03] is added for

comparison. Following abbreviations are used:

• VM: Vector median filter.

• RCVM: Rank-conditioned vector median filter.

• CT: Context tree filter.

 50

Fig. 28: The comparison of VM, RCVM and CT filters on images distorted with content-dependent noise

for image #1 (left).

Fig. 29: The comparison of VM, RCVM and CT filters on images distorted with content-dependent noise

for image #1. (right)

 51

Original image CT Filter VM Filter RCVM Filter

20% impulsive noise

40% content-dependent noise

Fig. 30: Visual comparison of VM, RCVM and CT Filters on 64×64 pixel fragment of image #1

 52

References

[AF00] E. Ageenko, P. Fränti, “Context-based filtering of document images”, in

Pattern Recognition Letters 21, pp. 483-491, 2000.

 [AHN90] J. Astola, P. Haavisto, Y. Neuvo, “Vector median filters”, Proceedings of

IEEE, 78(4), pp. 678-689, 1990.

[Aus00] P. Ausbeck, “The piecewise-constant image model”, Proceedings of the

IEEE, 88 (11), pp. 1779-1789, 2000.

[BB97] J. P. Braquelarie and L. Brun, “Comparison and optimization of methods

of color image quantization”, IEEE Transactions on Image Processing,

6(7), pp. 1048-1052, 1997.

[BBA94] R. Balasubramanian, C. Bouman, and J. Allebach, “Sequential scalar

quantization of color images”, Journal of Electronic Imaging, 3(1), pp.

45-59, 1994.

[BHH98] L. Bottou, P. Haffner, P. Howard, P. Simard, Y. Bengio, Y. LeCun,

“High quality document image compression with “DjVu””, Journal of

Electronic Imaging, 7(3), pp.410-425, 1998.

[Bru77] P. Brucker, “On the complexity of clustering problems”, in: R. Henn, B.

Korte and W. Oettli (Edts.), Optimizations and Operations Research,

Springer, pp. 45-54, 1977.

[CCITT T.4] CCITT Recommendation T.4, standardization of group 3 facsimile

apparatus for document transmission, 1980.

[CCITT T.6] CCITT Recommendation T.6, Facsimile coding schemes and coding

control functions for group 4 facsimile apparatus, 1984.

 53

[CIE86] CIE, Colorimetry, CIE Pub. No. 15.2, Central Bureau CIE, Vienna,

Austria, 1986.

[CL90] T. Cormen, C. Leiserson, R. Rivest, Introduction to algorithms, MIT

Press, Cambridge, Massachusetts, 1990.

[CTM94] N. Chaddha, W. Tan, T. Meng, “Color quantization of images based on

human vision perception”, Proceedings of IEEE International

Conference on Acoustics, Speech and Signal Processing, Adelaide,

South Australia, 5, 89-92, 1994.

[CW84] J. Cleary, I. Witten, “Data compression using adaptive coding and partial

string matching”, IEEE Transactions on Communications, 32(4), pp.

396-402, 1984.

[DB99] S. Dye, S. Buckingham, Mobile Positioning, Mobile Lifestreams, 1999.

[Dek94] A. Dekker, “Kohonen neural networks for optimal color quantization”,

Network: Computation in Neural Systems 5, pp.351–367, 1994.

[DAN99] K. Denecker, S. Assche, P. Neve, I. Lemahieu, “Context-based lossless

halftone image compression”, Journal of Electronic Imaging, 8(4),

pp.404-414, 1999.

[Deu96] P. Deutsch, “DEFLATE compressed data format specification,” rfc1951,

http://www.cis.ohio-state.edu/htbin/rfc/rfc1951.html, May 1996.

[Edm67] J. Edmonds, “Optimum branchings”, Journal of Research of the National

Bureau of Standards, 71B: 133-240, 1967.

[Equ89] W. Equitz, “A new vector quantization clustering algorithm”, IEEE

Transactions on Acoustics, Speech, and Signal Processing, 37(10), 1568-

1575, 1989.

 54

[FA99] P. Fränti and E.I. Ageenko, “On the use of context tree for binary image

compression”, Proceedings of IEEE International Conference on Image

Processing (ICIP’99), Kobe, Japan, vol. 3, pp. 752-756, 1999.

[FJ02] S. Forchhammer and O.R. Jensen, “Content layer progressive coding of

digital maps”, IEEE Transactions on Image Processing 11(12): 1349-

1356, 2002.

[FK00] P. Fränti and J. Kivijärvi, "Randomized local search algorithm for the

clustering problem", Pattern Analysis and Applications, 3(4), pp. 358-

369, 2000.

[FKN98] P. Fränti, J. Kivijärvi and O. Nevalainen: "Tabu search algorithm for

codebook generation in VQ", Pattern Recognition, 31(8), pp. 1139-1148,

1998.

[FS02] S. Forchhammer and J.M. Salinas, “Progressive coding of palette images

and digital maps”, IEEE Proceedings Data Compression Conference,

Snowbird, Utah, USA, pp. 362-371, 2002.

[Gol89] D. Goldberg, “Genetic algorithms in search”, Optimization and Machine

Learning, Addison-Wesley, Reading, MA, 1989.

[Har75] J. A. Hartigan, Clustering Algorithms, John Wiley & Sons, New York,

USA, 1975.

[Hec82] P. Heckbert, “Color quantization for color displays”, Proceedings of the

SIGGRAPH’82, Boston, MA, pp. 297-307, 1982.

[HK01] A. Hamza, H. Krim, “Image Denoising: A nonlinear robust statistical

approach”, IEEE Transactions on Signal Processing, 49(12), pp. 3045-

3054, 2001.

 55

[HKMF98] P. Howard, F. Kossentini, B. Martins, S. Forchhammer, W. Rucklidge,

“The emerging JBIG2 standard”, IEEE Transactions on Circuits and

Systems for Video Technology, 8(7), pp. 838-848, 1998.

[Ito80] P. Ito “Robustness of ANOVA and MANOVA test procedures”, in:

Krishnaiah PR (Ed.), Handbook of Statistics 1: Analysis of Variance.

North-Holland Publishing Company, pp. 199-236, 1980.

[ITU-T T.82] ITU-T Recommendation T.82, “Information technology – coded

representation of picture and audio information – progressive bi-level

image compression”, 1993.

[ITU-T T.87] ISO/IEC 14495-1, ITU Recommendation T.87, “Information technology

– lossless and near-lossless compression of continuous-tone still

images”, 1999.

[ITU-T T.88] ITU-T Recommendation T.88, “Information technology - coded

representation of picture and audio information - lossy/lossless coding of

bi-level images”, 2000.

[Jai89] K. Jain, Fundamentals of digital image processing, Englewood Cliffs,

NJ: Prentice-Hall, 1989.

[Jus81] B. Justusson, “Median filtering: statistical properties”, in Two

Dimensional Digital Signal Processing II (T. Huang, Ed.). Berlin:

Springer-Verlag, 1981.

[Kap96] E. Kaplan (ed.), “Understanding GPS: principles and applications”,

Artech House Telecommunication Library, March, 1996.

[KLL96] K. Kim, C. Lee, E. Lee, Y. Ha, “Color image quantization using

weighted distortion measure of HVS color activity”, IEEE International

Conference on Image Processing (ICIP'96), Lausanne, Switzerland, vol.

3, 1035-1039, 1996.

 56

[Koh95] T. Kohonen, Self-organizing maps, Springer-Verlag, Berlin, Germany,

1995.

[LBG80] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer

design”, IEEE Transactions on Communications, 28(1), pp. 84-95, 1980.

[Llo82] S. Lloyd, “Least squares quantization in PCM”, Memorandum, Bell

Laboratories, Murray Hill, USA, 1957; published in IEEE Transactions

on Information Theory, 28(2), 129-137, 1982.

[LR81] G. Langdon, J. Rissanen, “Compression of black-white images with

arithmetic coding”, IEEE Transactions on Communications 29(6), pp.

858-867, 1981.

[Luk03] R. Lukac, “Adaptive vector median filtering”, in Pattern Recognition

Letters 24, pp. 1889-1899, 2003.

[LZ77] A. Lempel, J. Ziv, “A universal algorithm for sequential data

compression,” IEEE Transactions on Information Theory, 23(3), pp.

337-343, May 1977.

[Mat75] G. Matheron, Random sets and integral geometry, Wiley, New York,

1975.

[McQ67] J. B. McQueen, “Some methods of classification and analysis of

multivariate observations”, Proceedings of the 5th Berkeley Symposium

on Mathematical Statistics and Probability, Berkeley, USA, 281-297,

1967.

[MF98] B. Martins, S. Forchhammer, “Tree coding of bilevel images”, IEEE

Transactions on Image Processing 7(4), pp. 517-528, 1998.

[MM01] C. Morris, A. Maisto, “Psycology: an introduction”, Prentice Hall, 2001.

[NLS] National Land Survey of Finland, Opastinsilta 12 C, P.O.Box 84, 00521

Helsinki, Finland. (http://www.nls.fi/index_e.html)

 57

[OB91] M. T. Orchard, C. A. Bouman, “Color quantization of images”, IEEE

Transactions on Signal Processing, 39(12), pp. 2677-2690, 1991.

[PAS02] N. Papamarkos, A. E. Atsalakis, and C. P. Strouthopoulos, “Adaptive

color reduction”, IEEE Transactions on Systems, Man, and Cybernetics-

Part B: Cybernetics, 32(1), pp.44-56, 2002.

[PHK00] J. Puzicha, M. Held, J. Ketterer, J. Buchmann, and D. W. Feller, “On

spatial quantization of color images”, IEEE Transactions on Image

Processing, 9(4), pp. 666-682, 2000.

[PM88] W. Pennebaker, J. Mitchell, “Probability estimation for the Q-coder”,

IBM Journal of Research, Development 32(6), pp.737-759, 1988.

[RL79] J. Rissanen, G. Langdon, “Arithmetic coding”, IBM Journal of Research,

Development 23: 146-162, 1979.

[RL81] J. Rissanen, G. Langdon, “Universal modeling and coding”, IEEE

Transactions on Information Theory IT 27: pp. 12-23, 1981.

[Sam89] H. Samet, “Applications of spatial data structures”, Computer Graphics,

Image Processing, GIS. MA: Addison-Wesley, Reading, 1989.

[Sha48] C. Shanon, “A mathematical theory of communication”, Bell Systems

Technology Journal 27: pp. 398-403, 1948.

[Ser82] J. Serra, “Image analysis and mathematical morphology”, London:

Academic Press, 1982.

[Tat97] S. Tate, “Band ordering in lossless compression of multispectral

images”, IEEE Transactions on Computers, 46(4), pp. 477-483, April

1997.

[Tuk77] J. Tukey, Exploratory Data Analysis, Meno Park, CA: Addison-Wesley,

1971, 1977.

 58

[TV93] P. Trahanias, A. Venetsanopulos, “Vector directional filters – a new

class of multichannel image processing filters”, IEEE Transactions on

Image Processing 2, pp. 528-534, 1993.

[Vei01] V. Veis, “Representation of digital maps”, MSc Thesis, University of

Joensuu, Finland, 2001.

[VFK01] O. Virmajoki, P. Fränti, T. Kaukoranta, “Practical methods for speeding-

up the pairwise nearest neighbor method”, Optical Engineering, 40(11),

pp. 2495-2504, 2001.

[Wal91] G. Wallace, "The JPEG still picture compression standard",

Communications of the ACM, 34(4), pp. 40-44, 1991.

[War63] J. Ward, “Hierarchical grouping to optimize an objective function”,

Journal of the American Statistical Association, 58(301), pp. 236-244,

1963.

[WCG86] P.Wendt, E. Coyle, N. Gallanger, “Stack filters”, IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. ASSP-34, pp. 898-911,

1986.

[Wel84] T. Welch, “A technique for high-performance data compression”,

Computer, 17(6), pp. 8-19, June 1984.

 [WSS00] M. Weinberger, G. Seroussi, G. Shapiro, “The LOCO-I lossless image

compression algorithm: Principles and standardization into JPEG-LS”,

IEEE Transaction on Image Processing, 9(8), pp. 1309-1324, 2000.

[WS82] G. Wyszecki, W. Stiles, Color science: concepts and methods,

quantitative data and formulae, John Wiley & Sons, New York, 1982.

[WM97] X. Wu, N. Memon, “Context-based, adaptive, lossless image coding”,

IEEE Transactions on Communications, 45(4), pp. 437-444, 1997.

[Wu92] X. Wu, “Color quantization by dynamic programming and principal

analysis”, ACM Transactions on Graphics, 11(4), pp. 348-372, 1992.

 59

[Wu96] X. Wu, “YIQ vector quantization in a new color palette architecture”,

IEEE Transactions on Image Processing, 5(2), pp. 321-329, 1996.

[WZ91] X. Wu, K. Zang, “A better tree-structures vector quantizer”, In

Proceedings of the IEEE Data Compression Conference, Snowbird,

Utah, USA, pp. 392-401, 1991.

[XJ94] Z. Xiang, G. Joy, “Color image quantization by agglomerative

clustering”, IEEE Computer Graphics Applications, 14(3), pp. 44-48,

1994.

[Xu04] M. Xu, "Delta-MSE dissimilarity in GLA-based vector quantization",

IEEE International Conference on Acoustics, Speech, and Signal

Processing, (ICASSP'04), Montreal, Canada. 2004. (to appear)

[YKO98] Y. Yoo, Y. Kwon and A. Ortega, “Embedded image-domain adaptive

compression of simple images,” 32nd Asilomar Conference on Signals,

Systems and Computers, 1998.

