
UNIVERSITY OF JOENSUU
COMPUTER SCIENCE

DISSERTATIONS 1

MARJA KOPPONEN

CAI IN CS

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of
Science of the University of Joensuu, for public criticism in
Auditorium M4 of the University, Yliopistokatu 7,
Joensuu, on April 11, 1997, at 12 noon.

UNIVERSITY OF JOENSUU
1997

Julkaisija Joensuun yliopisto
Publisher University of Joensuu

Toimittaja Martti Penttonen
Editor

Vaihto Joensuun yliopiston kirjasto, vaihdot
PL 107, 80101 JOENSUU
Puh. 013-251 2672, telefax 013-251 2691

Exchange Joensuu University Library, exchange
P.O.Box 107, FIN-80101 JOENSUU
Telefax +358 13 251 2691

Myynti Joensuun yliopiston kirjasto, julkaisujen myynti
PL 107, 80101 JOENSUU
Puh. 013-251 2652, 251 2662, telefax 013-251 2691
Email: lavikainen@joyl.joensuu.fi

Sale Joensuu University Library, sale of publications
P.O.Box 107, FIN-80101 JOENSUU
Telefax +358 13 251 2691
Email: lavikainen@joyl.joensuu.fi

ISSN 1238-6944
ISBN 951-708-506-0
UDK 681.3
Computing Reviews (1991) Classification: K.3.1, K.3.2
Yliopistopaino
Joensuu 1997

CAI in CS

Marja Kopponen

Department of Computer Science
University of Joensuu
P.O.Box 111, FIN-80101 Joensuu, Finland
Marja.Kopponen@joensuu.fi

University of Joensuu. Computer Science, Dissertations 1
Joensuu, April 1997, 99 pages
ISSN 1238-6944, ISBN 951-708-506-0

Keywords: computer-aided instruction (CAI), use of CAI, evaluation of CAI, COSTOC

By computer-aided instruction (CAI) we mean the use of a computer application for
instructing a specific subject of a domain. The essential question is what CAI applications are
good and why. In order to be able to evaluate a CAI application it is necessary to fix the
domain. The domain of this work is computer science at the university level.

Evaluation of CAI applications is a complex process in which several perspectives have to
be considered. We developed evaluation criteria that consist of four parts, namely, domain-
based criteria, instructional criteria, user interface criteria, and pragmatic criteria. Our
domain-based criteria focus on evaluating the course contents and their relevancy to the
instructional aims of the CAI course. We examined several human learning theories in order
to find the most appropriate one to be the basis of our instructional criteria, which
concentrate on evaluating the educational support. User interface criteria and pragmatic
criteria focus on evaluating the implementation of the user interface and the practical matters,
such as hardware, software and human resources, respectively.

We designed an analysis method based on our criteria for testing the evaluation criteria in
practice. The analysis method was applied to a collection of CAI courses on computer
science, called COSTOC (COmputer Supported Teaching Of Computer science).

The analysis indicated that our criteria worked properly. The main results were that the
contents of a CAI course have to be designed by an expert of the domain and that the
instructional support should be based on human learning. Further, authoring tools should
support CAI authors by offering instructional advice. In addition, authoring CAI courses on
computer science requires some special properties of the authoring tool, such as possibilities
to speak mathematical language, to animate abstract structures, and to write and execute
pseudo or programming code.

v

Preface

This thesis is the result of research carried out in the Department of Computer Science at the

University of Joensuu during the years 1994-1996, and in the Laboratory for Computer

Aided Learning, Swiss Federal Institute of Technology during the academic year 1994-1995.

I am deeply grateful to my supervisor, Professor Martti Penttonen, for his invaluable

advice and comments. His endless encouragement gave me strength to pass the difficult

moments and his delightful linguistic jokes cheered me up.

To my other supervisor, Associate Professor Jorma Enkenberg, I express my sincere

thanks for tirelessly guiding me in the world of Educational Sciences.

I wish to thank Associate Professor Jorma Sajaniemi and Assistant Markku Tukiainen for

providing their valuable help and knowledge concerning user interfaces. I especially want to

thank Markku for all those discussions we have had during these years. I also want to thank

the whole staff of the Department of Computer Science at the University of Joensuu for

support and empathy during this work.

I earlier worked and studied in the Department of Computer Science and Applied

Mathematics at the University of Kuopio. I express my special thanks to the staff of that

department, especially Acting Associate Professor Seppo Lammi. To my dear friend,

Ph.Lic. Virpi Kasurinen, I express my warmest thanks for the moments we have shared

during our friendship.

I want to express my warmest thanks to Professor Frédéric de Coulon for the opportunity

to work in his laboratory during my stay in Switzerland. I also want to thank Dr. Eddy Forte

for his valuable advice and B.Sc. Guy Delafontaine for all the care during my visit.

To my official referees, Professor Erno Lehtinen and Docent Matti Linna, I am greatly

indebted for their careful review of the manuscript and valuable comments on it.

Special thanks are due to my colleague M.Sc. Stephen Eriksson-Bique for revising the

language of this manuscript.

The financial support of the Centre for International Mobility, the Department of

Computer Science at the University of Joensuu, the East Finland Graduate School in

Computer Science and Engineering, the Emil Aaltonen Foundation, the Finnish Cultural

Foundation, the Finnish Konkordia Foundation, and the Swiss Confederation is gratefully

acknowledged.

Finally, I owe my dearest thanks with a hug to my sweetheart Markku for his love and

support. Without him my thesis might never have become completed.

vi

Abbreviations

Abbreviation Description Chapter or
section where
defined or
first time
referred to

ACM Association for Computing Machinery 2.3

ACT* Adaptive Control of Thought*, * belongs to the name 3.1.2

AIDA Advanced Instructional Design Associate 3.2.1

CAD Computer Aided Design 4.2

CAI Computer-Aided/Assisted Instruction 1

CAL Computer-Aided/Assisted Learning 1

CBE Computer-Based Education 1

CBI Computer-Based Instruction 1

CBT Computer-Based Training 1

CDT Component Design/Display Theory 3.1.4

CMI Computer-Managed Instruction 1

COSTOC COmputer Supported Teaching Of Computer science 1, 5.2

CRI Criterion Referenced Instruction 3.1.3

CTGV Cognition & Technology Group at Vanderbilt 3.1.3

DDL Data Description Language 5.7.3

DML Data Manipulation Language 5.7.3

GAIDA Guided Approach to Instructional Design Advising 3.2, 3.2.1

GOMS Goals, Operators, Methods and Selection rules 3.1.2

GPS General Problem Solver 3.1.2

PLATO Programmed Logic for Automatic Teaching Operations 1

TICCIT Timeshared Interactive Computer-Controlled
Information Television

1

CONTENTS

vii

1 Introduction 1
1.1 The goals of this work .. 4

2 CAI authoring tools and their applications in computer science 6
2.1 CAI authoring tool types.. 6

2.1.1 High level programming languages.. 6
2.1.2 Authoring languages... 7
2.1.3 Authoring systems ... 7
2.1.4 Authoring shells.. 8

2.2 On CAI authoring tools used for courses on computer science 8
2.3 Overview on computer-aided courses on computer science 10

3 Human learning theories 13
3.1 Introduction to learning theories relevant to CAI ... 13

3.1.1 Historical theories... 14
3.1.2 “Chunking theories” .. 15
3.1.3 Learner-centered theories... 16
3.1.4 Separate learning theories .. 18
3.1.5 Summary of the theories ... 19

3.2 Four learning theories of current interest .. 21
3.2.1 Conditions of learning theory and GAIDA... 21
3.2.2 ACT* and the Geometry Tutor .. 23
3.2.3 Cognitive flexibility theory and hypertext applications 25
3.2.4 Situated learning and the Adventures of Jasper Woodbury 28

4 Criteria for evaluation of CAI courses in computer science 31
4.1 Background for the selection of the criteria.. 32
4.2 Criteria based on subject... 33
4.3 Instructional criteria .. 37
4.4 Criteria for user interface .. 39

4.4.1 Interactivity .. 39
4.4.2 Display elements .. 41

4.5 Pragmatic criteria ... 44

5 Test case: COSTOC 46
5.1 Analysis method .. 46

5.1.1 Analysis of course contents.. 47
5.1.2 Analysis of instructional support.. 48
5.1.3 Analysis of user interface .. 50
5.1.4 Analysis of pragmatic matters ... 52

5.2 Background information of the analysis ... 52
5.3 On COSTOC courses selected to analysis ... 53

5.3.1 General information about COSTOC courses 53
5.4 General results of the analysis of COSTOC... 57

5.4.1 Results of the course contents analysis... 57
5.4.2 Results of the instructional support analysis....................................... 57
5.4.3 Results of the user interface analysis ... 59
5.4.4 Results of the pragmatic matters analysis .. 62

5.5 Computation and Automata: Description and results of the analysis 62
5.5.1 Course description .. 62
5.5.2 Numerical results.. 64
5.5.3 Verbal results and conclusions on Computation and Automata.................. 66

Contents

viii

5.6 Cryptography and Data Security: Description and results of the analysis.............. 67
5.6.1 Course description .. 67
5.6.2 Numerical results.. 68
5.6.3 Verbal results and conclusions on Cryptography and Data Security............ 70

5.7 Introduction to Database Systems and the Relational Data Model: Description and
results of the analysis ... 72
5.7.1 Course description .. 72
5.7.2 Numerical results.. 73
5.7.3 Verbal results and conclusions on Introduction to Database Systems and the

Relational Data Model ... 74
5.8 Sorting Techniques: Description and results of the analysis............................. 76

5.8.1 Course description .. 76
5.8.2 Numerical results.. 77
5.8.3 Verbal results and conclusions on Sorting Techniques........................... 78

5.9 Systematic Programming: Description and results of the analysis...................... 80
5.9.1 Course description .. 80
5.9.2 Numerical results.. 81
5.9.3 Verbal results and conclusions on Systematic Programming 82

5.10 Summary of the results... 84
5.11 Conclusions on the results ... 85

6 Conclusions 87

References 91

CHAPTER I

1

1 Introduction

Introduction

Since 1920’s researchers have been looking for different ways to utilise teaching machines,

auto-instructors and, later on, computers in instruction. Despite that, computers are only

seldom used systematically in teaching. There exist many reasons for that, such as

unawareness of human learning, the complexity of the design process of computer-aided

instruction (CAI) applications, and the fast development of computer technology, which has

caused problems since CAI materials designed for certain computer configurations become

obsolete in a few years. In the early days of computer-aided instruction there was a dream

that human teachers will someday be replaced by computers. This dream is nowadays

rejected because it has become clear that computers are not capable to take care of the role of

a human teacher since, firstly, human contact is very important and, secondly, human-like

features, such as heuristical problem solving and concluding, should progress extremely

within computers, which hardly happens in near future. Therefore, human teachers will keep

on teaching, maybe not the way they have always taught but using computers as tools.

Computer-aided instruction can be defined concisely as a teaching method in which a

student interacts with a specialised computer application designed to instruct certain skills and

knowledge. A more extensive definition includes the use of computers in all study tasks,

such as students using computer applications as tools (e.g., text processors, spreadsheet

calculators), teachers preparing lesson materials (e.g., lecture notes, presentation materials,

software demonstrations, CAI applications), or school administration personnel organising

educational administration on computers (e.g., curriculum design, student files). Depending

on the situation, several abbreviations can be used, such as CAI (computer-aided/assisted

instruction), CAL (computer-aided/assisted learning), CBE (computer-based education), CBI

(computer-based instruction), CBT (computer-based training), and CMI (computer-managed

instruction). These abbreviations have different shades of meaning, though they all refer to

1. Introduction2

use of computers in education. This study concentrates on CAI in its concise meaning, that

is, the use of computer applications in instruction.

CAI is considered to be based on Pressey’s teaching machines dating back to the 1920’s.

According to Sloffer (1996), these teaching machines presented questions or problems to

students who had to respond by writing an answer or pressing a certain button. Students

were informed about the correctness of the answer and occasionally given the explanation

why it was right or wrong. An account of responses was often kept. In the 1950’s Skinner

introduced his version of a teaching machine and programmed instruction which were based

on his theory of operant conditioning. According to Li (1996), programmed instruction had

important long-term effects on the evolution of educational technology; namely, it had a

strong influence on the development of systems approach, and it introduced the early ideas of

individualisation of instruction. A decade later teaching machines were considered to be

obsolete since reseachers perceived that as a teaching tool the machines are not as important

as the programs. The concept of CAI was introduced in the 1960’s.

Two important projects in the history of CAI are PLATO (Programmed Logic for

Automatic Teaching Operations) and TICCIT (Timeshared Interactive Computer-Controlled

Information Television). These two projects were competing with each other to become the

national automated instruction system in United States of America. Even though both of them

were based on mainframe computers, the rest of the technical solutions differed a lot from

each other. Neither of them became predominant since the expected fall in installation and

utilisation costs did not happen. Nevertheless, both of them served as a basis for other

instructional systems.

The built-in educational properties are the essence of CAI applications. These properties

include clearly stated learning aims, methods to reach these aims, and testing whether these

aims are achieved. In addition, CAI applications support and guide students’ proceeding in a

CAI application. These properties separate CAI applications from other computer

applications, such as multi- and hypermedia applications and expert systems, which all have

been used for instructional purposes. Since the educational properties are usually missing

from these other applications, the instructional use of them differs noticeable from the use of

CAI applications. Thus, CAI applications can be used as tutors, while the other computer

applications can be considered as tools.

Traditionally teaching has been a situation in which a teacher talks in front of students.

Teaching this way is strongly teacher-centered but many times it has been the only

possibility. Reasons for that could have been the lack of teaching materials, teachers,

classrooms, etc. Also the earlier learning theories assumed that students are like empty

baskets and teacher’s task is to fill them with information. These kind of theories are not

valid anymore because research has revealed that human learning is more complicated. This

observation has affected the teacher’s role in instruction.

1. Introduction 3

Researchers of human learning have presented lists of educational or instructional tasks,

which should provide the necessary conditions for learning. These tasks are good to

remember while designing instruction and selecting appropriate media. As an example,

Gagné and Briggs (1974) have presented the following nine instructional events:

1. Gaining attention means that students’ interests in teaching subject are awakened.
This can be done, for example, with questions or demonstrations.

2. Informing the learner of the objective gives students the learning aim. This phase
is not necessary if the aim is obvious.

3. Stimulating recall of prerequisite learned capabilities helps students to combine
their prior knowledge to new information. Stimulation can be done asking recall
questions.

4. Presenting the stimulus material is closely connected to the learning aim. It is
necessary that stimuli must support students to reach the aim.

5. Providing learning guidance is an event in which students are guided to the
direction of the correct answer or performance. The form of learning guidance
can be, for example, questions or hints proposed during instruction.

6. Eliciting the performance means that students show what they know or are able
to demonstrate their skills.

7. Providing feedback is telling students the correctness of their performance. In
some cases this is not necessary if there exists ‘automatic’ feedback, such as in
throwing darts the result is immediately clear.

8. Assessing performance focuses on the reliability and validity of students’
performance. A couple of appropriate questions that force students to apply their
new knowledge should convince the teacher that students’ performance is valid.

9. Enhancing retention and transfer means systematic reviews and practicing of
skills.

A teacher does not have to strictly follow these steps described above. A better result is often

achieved when these steps have been used to form a fluently proceeding, well-adjusted unity

in which these demands have been taken into account.

Within instruction, teachers are responsible of the totality. They decide what to teach and

how to teach, and they take care of the needed material. It is assumed that teachers apply

some learning theory while designing the lessons. This is something that computers cannot

do by themselves. Furthermore, teachers are human beings with their gestures, expressions

and intelligence. They are able to think, to make heuristic conclusions and use body

language. For example, students easily see if teachers are motivated and interested in topic

they are teaching. That is likely to increase students’ motivation and improve learning results.

Likewise, teachers are able to react to students’ behavior, for example, when they seem to be

confused or have problems.

Computers have no human properties which is the most important reason why they cannot

replace human teachers. Instead, computers should be used as tools in instruction because

they have many valuable properties, such as availability in a sense that they are cheap,

relatively high speed, tirelessness, large memory capacity, and ability to animate graphics. It

would be wise to use these properties whenever it is appropriate.

1. Introduction4

One of the strongest advantages of computers is their ability to present animated graphics.

According to Kiser (1987), this unique feature permits designing of computer lessons that

instruct in a way that static formats cannot. Richards and Fukuzawa (1989) have pointed out

that seeing shapes, forms, and symbols manipulated in a concrete way is more effective than

trying to visualise an abstract model in one’s mind. Baek and Layne (1988) have reported

that well-designed computer lessons with animation have improved student scores more than

presentations with graphics and text or text alone. Since animation is a strong effect it must

be used wisely. It overrules the main subject if it is used too much or in a wrong place.

Computers have a great memory capacity which can be used for storing large amounts of

information. They are also fast in certain tasks. Rapidity is useful, for example, when

searching information from diverse sources for writing an essay, or solving mathematical

problems containing time-consuming routines.

Tirelessness is valuable, for example, when practicing vocabulary or similar tasks.

Students can repeat difficult things as many times as needed. They are also able to study as

long as they like and continue at their own pace. In classroom usage, proceeding with

individual speed is valuable because students will not become frustrated studying at an

appropriate speed for them.

Computers treat students equally ignoring their sex, color and social class. There are no

bad days for computers, that is, instruction is not depending on feelings or other human

features. Furthermore, computers can be equipped with unusual peripherals, such as touch

screens or special keyboards, to enable the usage for disabled students. For many seriously

disabled persons a computer offers a possibility to communicate with other people and to

study.

1.1 The goals of this work

This work focuses on designing criteria for evaluating CAI applications. The study is based

on human learning theories and on analysis of some CAI applications on computer science;

consequently, the relations between learning theories and CAI applications are examined.

Many studies concerning the usage of CAI in teaching computer science have been

conducted. However, little attention has focused on how computer science should be

instructed. Therefore, the goals of this research are to find out what kind of CAI applications

are designed and should be designed for teaching computer science, how human learning

theories are applied and should be applied to these applications, and does there exist some

special properties that are required for designing CAI applications on computer science.

CAI authoring tools have a strong influence on CAI applications since their properties set

the limits on CAI application design process. Therefore, it is important to know what kind of

tools have been used for authoring CAI applications on computer science and how the

resulting applications look like. A short review on CAI authoring tools and their applications

1.1. The goals of this work 5

on computer science is presented in the second chapter. A more detailed examination of some

CAI applications on computer science is presented in the fifth chapter.

The design of CAI applications should be derived from students’ needs, rather than

technical aspects. Therefore, human learning theories should be the basis for the design

process. Learning theories related to CAI are shortly introduced in the third chapter. In

addition, there are presented descriptions of four human learning theories of current interest

in a form of a case study.

Based on the experiences from CAI authoring tools, existing CAI applications on

computer science and human learning theories novel evaluation criteria for CAI applications

will be developed. The criteria will include both educational requirements and requirements

of the subject domain and user interface design, as well as the pragmatic demands. The

fourth chapter presents these criteria for evaluation of CAI applications on computer science.

The description of the analysis method based on the criteria is presented in the fifth

chapter. CAI applications called COSTOC were chosen to a detailed analysis. These

COSTOC courses are introduced in the fifth chapter, as well as the results of their detailed

analysis.

CHAPTER II

6

2 CAI authoring tools and their applications in
computer science

CAI authoring tools and their applications in
computer science

Authoring tools have a significant role in authoring process, since their properties strongly

affect the result. Well-designed authoring tools provide a proper basis for both design and

implementation. This chapter gives background information of authoring tools and CAI

courses on computer science. It consists of an introduction to authoring tool types and a

short review on authoring tools used for preparing CAI courses on computer science. In

addition, some CAI courses on computer science are discussed briefly.

2.1 CAI authoring tool types

CAI authoring tools can be divided into four categories: (1) high level programming

languages, (2) authoring languages, (3) authoring systems, and (4) authoring shells (Young

and Knezek, 1989). The main difference between these categories is the level of readiness of

authoring, that is, how much effort an author must put into the implementing process of a

CAI course. CAI courses created using these tools may vary from simple textual or graphical

displays to very complex presentations that consist of graphics, pictures, and sound

produced by the peripherals.

2. 1. 1 High level programming languages

This type includes the high level programming languages, which are the most flexible tools

but which also require the most familiarity with programming. Production of teaching

applications by these tools is slowest but the use of a high level programming language is

justified if there exist some special requirements for the final application. High level

2.1. CAI authoring tool types 7

programming languages are especially useful when other authoring tools are inappropriate to

meet the demands that an application requires. A complex simulator is a good example of a

teaching program that would probably require a high level programming language.

When high level programming languages are used there is a risk that the quality of a

teaching application suffers a loss since the technical implementation requires plenty of

energy. Further, the experts of teaching subject domains, e.g., professors and lecturers, are

usually not able to use tools of this type. In such cases the transfer of knowledge from

experts to the designers may cause some loss of pedagogical quality. BASIC, C, Lisp,

Logo, and Pascal are examples of high level programming languages.

2. 1. 2 Authoring languages

To create a teaching program by using an authoring language is not as demanding as using a

high level programming language because there are predefined structure specific commands

for developing teaching programs in authoring languages. For example, in an authoring

language there might be a command 'QU' for a question to be asked a student, or a command

'R' for a response to be received. An advantage is that the usage of authoring languages

reduces the time required for a teacher/designer to create a CAI course. In addition, authoring

languages can be used for building the prototypes because these can be done quite fast.

Afterwards, if the prototype is promising, the final application can be implemented by using

a high level programming language to gain the fastest possible execution speed.

Coursewriter, NATAL, Pilot, and Tutor can be mentioned as examples of authoring

languages.

2. 1. 3 Authoring systems

An authoring system is usually a menu driven tool which eliminates or minimises the need

for computer programming skills (Young and Knezek, 1989). Thus, those CAI course

designers who are not experienced programmers are also able to produce technically

appropriate applications by using these tools. Previously authoring systems mainly followed

the behaviorist learning model when authors were only able to select the options the

authoring system provided and organise the instructions in such order that the authoring

system imposed. Modern authoring systems are more flexible than that. Nowadays it is

possible to select pre-designed modules and, if necessary, to join with them some parts

created by an authoring language. Some authoring systems include an authoring language of

their own while some other authoring systems permit the usage of external authoring

languages.

When using an authoring system the designer is able to guide a student in many ways. In

some segments of an application the student must proceed linearly while in some other

8 2. CAI authoring tools and their applications on computer science

segments he is provided branching opportunities. Branching gives the student liberty to

select the topics more important to him and skip the less important ones.

It is usually possible to integrate several peripheral devices with the applications created

by authoring systems. Thanks to these peripheral devices, which include video or laser disk

players, speech synthesizers, and touch sensitive screens, the applications can be built more

varying and thus more interesting. The touch sensitive screens are especially useful for

increasing the interaction between a student and an application. Examples of this type of tools

are PHOENIX, DECAL, IconTutor, InfoWindow, LS1, Course Builder, and Authorware.

2. 1. 4 Authoring shells

Authoring shells are the most restricted authoring tools but also the easiest ones to use. There

is typically a pre-designed program skeleton into which the designer fills the instructional

content. In a skeleton there are ready written routines, for example, for representing

questions and analysing answers. The advantage of authoring shells is that the designer does

not have to build everything from scratch. Further, the execution speed of these shells

written in a high level language is very high. Also, the original code of an authoring shell can

usually be changed thus it provides a designer with sufficient programming skills an

opportunity to make improvements.

Authoring shells are available for diverse tasks. The simplest ones perform only one

function, such as teaching vocabulary words or a single mathematical operation like adding

or subtracting. More complex authoring shells permit to include several functions in the final

application. In general, the more complex the authoring shell is the more difficult it is to

modify, although the authoring shell is usually delivered containing the instructions for

making modifications. Programming skills are useful though not necessary for modifying.

One example of authoring shells is the Shell Games.

2.2 On CAI authoring tools used for courses on computer science

This section presents shortly some examples of the use of CAI authoring tools in computer

science. Example courses are listed by authoring tool types in Table 2.1.

The dominating authoring tools in computer science applications seem to be high level

programming languages despite the fact they were not originally developed for that kind of

usage. This is a bit surprising since authoring with programming languages is time-

consuming, even though there exist toolboxes containing useful modules. The reason may be

that those familiar with high level programming languages prefer a tool they know in

advance, rather than learning to use a new tool. In addition, with high level programming

languages capable authors can create exactly what they want.

Hypertext and hypermedia tools, like high level programming languages, are not real CAI

authoring tools as they are usually missing educational support. These tools are probably

2.2. On CAI authoring tools used for courses on computer science 9

used since it is possible to create impressive presentations fairly easily. Unfortunately, the

educational support of such presentations remains minor. There is nothing wrong to use

these tools for creating CAI materials as long as the author remembers to implement the

educational properties.

CAI authoring languages and authoring systems are seldom used for creating courses on

computer science. This is odd because there exist authoring systems with versatile properties

that could be used fairly well. Authoring systems might be used more than they have been

used so far, if they would offer the same power of expression as programming languages

combined with flexibility, ease of use and the support for creating educational content.

Table 2.1: Some CAI applications on computer science by authoring tool types.

Authoring tool
type

Name of the tool Name of the application Reference

High level Actor DBTool Lim and Hunter, 1992

programming Ada Portable Diners Feldman, 1992

languages C GATutor Prince et al., 1994

ISETL Baxter et al., 1990

Netsim Barnett, 1993

Trainset Brown, 1993

WATSON O’Neal and Kurtz, 1995

C++ DAPPLE Kotz, 1995

Cobol APPGEN* Osborne, 1992

Common Lisp FLAIR Ingargiola et al., 1994

HyperComments Linn, 1992

Portable AI Lab Rosner and Baj, 1993

Pascal AAPT Sanders and Gopal, 1991

APPGEN* Osborne, 1992

Arcade Laboratory* Cagnat et al., 1990

BALSA, GAIGS Schweitzer, 1992

KLYDE Berque et al., 1994

Prolog Intelligent Fortran Adviser Meehan et. al, 1991

NL interface Lees and Cowie, 1996

Sim++, ObjectStore HASE Coe et al., 1996

Tcl/Tk Gyacc Lovato and Kleyn, 1995

Hypertext and Guide CLEM Boyle et al., 1994

hypermedia HyperCard Arcade Laboratory* Cagnat et al., 1990

tools Digital World Fagin, 1994

Gateway labs Cowley et al., 1993

Pascal Template Library Linn, 1992

Visual simulator Barnett, 1995

SuperCard Lisp Template Library and
Lisp Perspective Library

Linn, 1992

10 2. CAI authoring tools and their applications on computer science

Toolbook UIDTutorial Barrett, 1993

Authoring NATAL -- Gee and McArthur, 1991

languages

Authoring Authorware MuPMoTT Marsden and O’Connell, 1996

systems AUTOOL COSTOC courses --

* Designed using several tools.

Authoring shells have not been used at all. The explanation might be that persons who

author courses for computer science feel that authoring shells do not fulfill their needs and,

since they are able to program, they prefer to use tools familiar to them, namely,

programming languages.

2.3 Overview on computer-aided courses on computer science

This section introduces briefly some CAI applications designed for teaching computer

science at the university level (see Table 2.2 and Table 2.3). Applications are divided into

nine groups by the ACM (Association for Computing Machinery) computing review

classification with slight modifications. This classification is useful, since it covers computer

science domain very well and, consequently, it provides a good review of CAI applications.

It must be remembered that this is only a small sample of all CAI applications and

experiments done within computer science.

Table 2.2: Some CAI applications on computer science of the 1990’s.

ACM Classification Domain of the application Name of the
application

Reference

Introductory and survey Introduction to computer ISETL Baxter et al., 1990

science Gateway
Laboratories

Cowley et al., 1993

Baldwin, 1996

WATSON O’Neal and Kurtz, 1995

Computer systems Computer architecture HASE Coe et al., 1996

organisation Computer networking VNET Tymann, 1991

Netsim Barnett, 1993

NetCp Finkel and Chandra, 1994

Software Introductory programming ITEM/IP Brusilovsky, 1992

MULE Barr and Smith King, 1995

ANNET Liffick and Aiken, 1996

AAPT Sanders and Gopal, 1991

Fortran programming -- Meehan et al., 1991

Machine and assembly
languages

Visual simulator Barnett, 1995

Modula-2 programming CLEM Boyle et al., 1994

Parallel programming Portable Diners Feldman, 1992

2.3. Overview on computer-aided courses on computer science 11

eText Rifkin, 1994

DAPPLE Kotz, 1995

Operating systems SR language Hartley, 1992

NL interface Lees and Cowie, 1996

Data Data structures (using Ada) -- Silver, 1991

File structures VDAM Foster and Hughes, 1991

Table 2.3: Some CAI applications on computer science of the 1990’s.

ACM Classification Domain of the
application

Name of the application Reference

Theory of computation Automata FLAP LoSacco and Rodger,
1993

NPDA Caugherty and Rodger,
1994

Algorithms Arcade laboratory Cagnat et al., 1990

KLYDE Berque et al., 1994

Genetic algorithms GATutor Prince et al., 1994

Grammars Gyacc Lovato and Kleyn, 1995

Neural networks Neuralis Khuri and Williams,
1996

Parsing LLparse, LRparse Blythe et al., 1994

Mathematics of
computing

Mathematical concepts of
computer science

Prologb Neff, 1993

Queueing theory (using
computer algebra
systems)

-- Fitzgerald and Place,
1995

Information systems Databases DBTool Lim and Hunter, 1992

Real-time and distributed
computing

Trainset Brown, 1993

User interface design UIDTutorial Barrett, 1993

Computing Artificial intelligence Portable AI Lab Rosner and Baj, 1993

methodologies FLAIR Ingargiola et al., 1994

Expert systems Automated Student
Advisor

Harlan, 1994

Computing milieux Technological literacy Digital World Fagin, 1994

Systems analysis and
design

APPGEN Osborne, 1992

Analysis techniques MuPMoTT Marsden and O’Connell,
1996

These sample applications indicate that almost all subdomains of computer science are

applicable in a computer format. Most of the applications listed above are considered as

educational tools, rather than traditional CAI courses. This means that those applications are

mainly intended to provide supplementary material for traditional classroom teaching. It

12 2. CAI authoring tools and their applications on computer science

would require a more detailed study to be able to decide the educational quality of these

applications.

CHAPTER III

13

3 Human learning theories

Human learning theories

The human learning process has been investigated for centuries. Despite various studies,

researchers have not been able to present a description for one universal learning process.

Since there exist many learning styles and learning theories, it is difficult to decide which

ones should be used in a CAI course design process. This chapter introduces human learning

theories that have been applied to CAI courses on computer science. Four of the represented

theories are discussed in more detail and a sample application of each is described. This

chapter will be used as a background information for the evaluation of CAI courses on

computer science.

3.1 Introduction to learning theories relevant to CAI

Dozens of learning theories have been presented in this century. These theories focus on

diverse topics, such as human learning, animal learning, neuropsychology, and learning

disabilities. Considering the topic of this study, the usage of computer-aided instruction

(CAI) in teaching computer science, the human learning theories are the most interesting

ones. These theories can be divided into three categories according to their relevancy to this

study. The first category consists of theories that have been applied to CAI in some domain.

The second category includes those human learning theories that have had a notable

significance on the theories of the first category. Those theories that do not belong to either

of the previous categories form the third category. From now on, the theories belonging to

the first category are discussed. Theories belonging to the second category are mentioned

only if they have had a significant impact on the development of the first group theories.

We examined up to 50 human learning theories and classified them according to their

relevancy to CAI. Nineteen theories were found that have been applied to CAI. A closer

14 3. Human learning theories

analysis revealed that these theories fall into three groups according to their relations to each

other, namely historical theories, “chunking theories” and learner-centered theories. Three

CAI theories were left outside of these three groups as they do not seem to have any

relationship to the others. These three theories form the fourth group named separate

theories.

3. 1. 1 Historical theories

The first group consists of two theories applied to CAI, namely operant conditioning

(Skinner, 1938) and mathematical learning theory (Atkinson, Bower and Crothers, 1965).

The operant conditioning theory of Skinner (1938) has a notable role in the history of CAI

because it was applied to instruction in a form of programmed instruction which can be

considered as the first real form of CAI. Knezek (1988) has represented the evolution of CAI

in which the teaching machine developed by Pressey in 1925 is considered as the first form

of CAI. Throughout the 1920s and the early 1930s, Pressey experimented with several

machines, but, as Sloffer (1996) puts it, their impact on educational technology at that time

was negligible, although Pressey "remained confident that automated instruction would

eventually generate an 'industrial revolution' in education" (Saettler, 1990). Skinner’s

programmed instruction had, however, long-term effects on the evolution of educational

technology. As Li (1996) points out, it had a strong influence on the development of the

systems approach, which emphasises the process of instruction rather than media. Further, it

formed the basis for individualised instruction and for the development of CAI.

Operant conditioning is based on behaviorism according to which learning means forming

associations between stimuli and responses and can be explained without referring to any

unobservable internal state. The nature and frequency of the stimulus-response (S-R)

pairings determine the strength or weakness of associations. Operant conditioning differs

from previous forms of behaviorism (e.g., Thorndike, 1913; Hull, 1940) in the sense that

the organism can respond instead of only eliciting response due to an external stimulus.

Mathematical learning theory of Atkinson, Bower and Crothers (1965) has several

predecessors among behaviorist theory, such as drive reduction theory (Hull, 1940) and

stimulus sampling theory (Estes, 1950), which have tried to describe and explain behavior in

quantitative terms. Atkinson et al. have been interested in optimising instruction, as the

principles of his theory indicate (Kearsley, 1996):

1. It is possible to develop an optimal instructional strategy for a given individual
provided that a detailed model of the learning process is available, and

2. Optimal learning performance can be achieved by giving each individual
sufficient time to learn.

Mathematical learning theory has been applied to computer-aided language learning.

These first group theories represent behaviorism that has been found to be too simple to

explain human learning. Therefore, CAI programs based on these theories are obsolescent.

3.1. Introduction to learning theories relevant to CAI 15

3. 1. 2 “Chunking theories”

The name of this group, “chunking theories,” is derived from the common idea of using

chunks to represent information in all theories of this group. The idea of chunking is that

short term memory can only hold five to nine chunks of information where a chunk is any

meaningful unit, such as digit, word, chess position, or people’s faces. These theories,

which are closely related to each other, are a General Problem Solver, GPS (Newell and

Simon, 1972), GOMS (Goals, Operators, Methods and Selection rules) (Card, Moran and

Newell, 1983), ACT* (Adaptive Control of Thought*, * belongs to the name) of Anderson

(1983), and Soar (Laird, Newell and Rosenbloom, 1987). These four theories have a

common background which is the information processing theory of Miller (1956). Miller has

presented two ideas, that is, chunking and the capacity of short term memory and TOTE

(Test-Operate-Test-Exit), which are essential to cognitive psychology and the information

processing framework. TOTE was intended to replace the stimulus-response as the basic unit

of behavior. The idea of a TOTE is that a goal is tested to see if it has been reached,

otherwise an operation is performed to reach the goal; this until it is finally reached or

abandoned.

General Problem Solver, GPS was an attempt to simulate human problem solving by

means of a computer simulation program (Ernst and Newell, 1969; Newell and Simon,

1972). In GPS, cognitive models were specified by using productions, which were later

used in other theories, such as ACT* (Anderson, 1983) and Soar (Laird et al., 1987). GPS

was supposed to be a general problem-solver using the principle of breaking a problem down

into subproblems and solving each of those. Unfortunately GPS failed. It was applicable

only to “well-defined” problems, such as proving theorems in logic or geometry, word

puzzles and chess.

GOMS model (Card, Moran and Newell, 1983) tries to explain those cognitive skills that

are needed in human-computer tasks. The cognitive structure applied within GOMS has four

components: (1) a set of goals, (2) a set of operators, (3) a set of methods for achieving the

goals, and (4) a set of selection rules for choosing among competing methods. The

interpretation of all cognitive activities is done in terms of searching a problem space, which

is essential in GOMS as well as in Soar (Laird et al., 1987). GOMS has provided a basis for

predicting the methods and operators users apply in the performance of computer-based

tasks, such as using text editors and graphics systems (Olson and Olson, 1990).

Furthermore, it has been used together with the minimalist model (Carroll, 1990) to develop

documentation in a computer format (Gong and Elkerton, 1990).

The ACT* (Adaptive Control of Thought*) theory (Anderson, 1983) is based on the

original ACT theory (Anderson, 1976) and the model of semantic memory called HAM

(Anderson and Bower, 1973). Anderson (1990) has criticised his theory and provided

(1993) the outline for a broader development of the theory. ACT* concentrates on memory

16 3. Human learning theories

processes and introduces three memory structures: declarative memory that links

propositions, images and sequences by association, procedural memory (also long-term

memory) that represents information in the form of productions, and working memory that is

the most highly activated part of long-term (procedural) memory. Anderson, Boyle, Farrell

and Reiser (1987) have used ACT* as the basis for intelligent tutors.

Soar learning theory (Laird, Newell and Rosenbloom, 1987) has been strongly influenced

by GPS and GOMS. Like both of them, Soar is built upon the idea that all cognitive acts are

some form of search task in a problem space. It uses productions for expressing the human

cognition and it has only one procedural memory. Soar, like Miller’s information processing

theory, applies chunking as the primary mechanism for learning. Soar has been used as the

basis for systems that configure computer systems and formulate algorithms in a seemingly

intelligent way.

Altogether “chunking theories” form a consistent research work. GPS was a very

ambitious attempt but unsuccessful for the reason of the difficulties to implement human

cognition in a computer format. Nevertheless, GPS, as well as information processing

theory, has given a good framework for GOMS and Soar theories, which can be considered

as continuations of the research started with GPS. Both GOMS and Soar have been applied

to varying computer tasks and the research still continues.

3. 1. 3 Learner-centered theories

All nine learning theories in this group emphasise that teaching should be learner-centered.

Learning theories of this group are conditions of learning theory (Gagné, 1965), andragogy

Theory (Knowles, 1975), criterion referenced instruction theory (Mager, 1975), functional

context theory (Sticht, 1975), symbol systems theory (Salomon, 1979), cognitive flexibility

theory (Spiro, Coulson, Feltovich and Anderson, 1988), anchored instruction theory

(Bransford and Cognition & Technology Group at Vanderbilt, 1990), minimalism theory

(Carroll, 1990), and situated learning theory (Lave and Wenger, 1991). Short descriptions of

each theory are presented.

The main idea of conditions of learning theory is that there exist different types or levels

of learning and each of them requires different types of instruction. Further, each type of

learning requires different internal and external conditions. Gagné and Briggs presented in

1974 a set of instructional events and corresponding cognitive processes which should

provide the necessary conditions for learning and serve as the basis for designing instruction

and selecting appropriate media. Gagné’s learning theory has been applied to the design of

instruction in several domains (Gagné and Driscoll, 1988), though the original formulation,

which the theory is based on, was applied to computer-based military training programs

(Gagné, 1962).

3.1. Introduction to learning theories relevant to CAI 17

Andragogy theory (Knowles, 1975) is an adult learning theory that pays attention to the

fact that adults are self-directed and expect to take responsibility for decisions. Andragogy

has been affected by experiential learning theory (Rogers, 1969) and, according to Knowles

(1984), it is applicable to the design of personal computer training.

Another theory that resembles experiential learning and andragogy is criterion referenced

instruction theory, CRI (Mager, 1975). It also shares some ideas of Gagné’s conditions of

learning theory, such as task hierarchies and objectives. CRI is meant for the design and

delivery of training programs involving a variety of different media, for example, videotapes

and computer-based instruction.

The functional context theory (Sticht, 1975) focuses on taking into account the experience

of learners and their work context when designing the learning environment for them. The

main idea is that learning of new information is easier if the learner is able to take advantage

of his knowledge and skills to assimilate the new information. Functional context theory has

been applied, for example, in a form of computer-based instruction in the U.S. Navy. It is

closely related to situated learning theory (Lave and Wenger, 1991) regarding the emphasis

on context during learning.

Salomon’s symbol systems theory (1979) focuses on investigating the effects of media on

learning. Salomon points out that symbol systems of media affect the knowledge acquisition

in many ways, such as highlighting different aspects of content, varying with respect to ease

of recoding, and differing with respect to the kinds of mental processes they call on for

recoding and elaboration. Symbol systems theory is similar to the aptitude-treatment

interaction theory (Cronbach and Snow, 1977). Salomon’s research has concentrated on film

and television, but recent work is on computers (e.g., Salomon, Perkins and Globerson,

1991).

The nature of learning in complex and ill-structured domains is the object of research in

cognitive flexibility theory (Spiro et al., 1988). Special interest is on the transfer of

knowledge and skills. Therefore, the research is focused on presenting information from

different perspectives and using several case studies that present various examples. Cognitive

flexibility theory has been influenced by other constructivist theories, such as genetic

epistemology (Piaget, 1936), subsumption theory (Ausubel, 1963) and constructivist theory

(Bruner, 1966), and it is related to symbol systems (Salomon, 1979). The scope of this

theory is to support the use of interactive technology.

Minimalism theory (Carroll, 1990) has its roots in four theories: genetic epistemology of

Piaget (1936), constructivist theory of Bruner (1966), experiential learning theory of Rogers

(1969), and andragogy theory of Knowles (1975). Carroll intended his theory especially for

the design of training materials for adult computer users. In minimalism, like in experiential

learning and andragogy, the learner’s experience plays an important role in learning.

18 3. Human learning theories

Anchored instruction theory of Bransford and Cognition & Technology Group at

Vanderbilt, CTGV (1990) is another theory that focuses on technology-based learning. It

was aimed at the development of interactive videodisk tools that encouraged students and

teachers to pose and solve complex, realistic problems. The concept of anchor is derived

from the function of video materials, which form the basis for all later learning and

instruction. Anchored instruction theory shares its emphasis on the use of technology-based

learning with cognitive flexibility theory (Spiro et al., 1988).

Situated learning theory (Lave and Wenger, 1991) emphasises that learning is a function

of the activity, context and culture in which it occurs. It also stresses the importance of social

interaction. Situated learning has been influenced by Gibson’s information pickup theory

(1966) and Vygotsky’s social development theory (1962). Cognition & Technology Group

at Vanderbilt (1993) has applied this theory in the context of technology-based learning

activities for schools that focus on problem-solving skills.

Most theories within this group emphasise experience, motivation, social interaction and

intelligence, and are focused on adult learning. Thus, the applications based on these theories

are mostly computer-based training programs or similar ones.

3. 1. 4 Separate learning theories

Three learning theories have been applied to CAI but we do not include them in any of the

three groups are discussed next. These three theories are considered as separate theories

since they have no clear connection to the other theories. The three theories are the script

theory of Schank and Abelson (1977), repair theory of Brown and VanLehn (1980), and

component design theory of Merrill (1994).

The main interest in script theory (Schank and Abelson, 1977) has been the structure of

knowledge. It is based on conceptual dependency theory (Schank, 1975) which focused on

the representation of meaning in sentences. Central concepts of script theory are scripts,

plans and themes, which are for handling story-level understanding. Script theory is aimed at

explaining language processing and higher thinking skills. It has been applied, for example,

to the development of intelligent tutors (Schank, 1991).

Within the framework of repair theory, Brown and VanLehn (1980) have examined how

people learn procedural skills. Their special interest has been how and why people make

mistakes. They propose that when an individual is heading for an impasse, i.e., a procedure

cannot be performed, he applies various strategies, or scripts, to overcome it. Repair theory

is based on the study of children solving arithmetic problems and it is implemented as a

computer model called Sierra (Kearsley, 1996).

The component design theory (Merrill, 1994) is strongly based on Merrill’s previous

theory called component display theory (Merrill, 1983). Component design theory

emphasises the course structure and instructional transactions rather than presentation forms,

3.1. Introduction to learning theories relevant to CAI 19

as Kearsley (1996) points out. Furthermore, the learner control strategies introduced in

component display theory are replaced by the advisor strategies in component design theory.

The old CDT theory has been used in the design of the lessons in the TICCIT (Timeshared

Interactive Computer-Controlled Information Television) computer-based learning system

(Merrill, 1980) and as the basis for the Instructional Quality Profile, which is a quality

control tool for instructional materials (Merrill, Riegeluth and Faust, 1979). The development

of the new CDT theory has been closely related to work on expert systems and authoring

tools for instructional design (e.g., Li and Merrill, 1991; Merrill, Li and Jones, 1991).

Theories gathered into this group have no special relation to each other. Instead, they have

typically been a result of the research work of one group over a long period, for example

Merrill has developed his CDT theory since the first half of 1980’s.

3. 1. 5 Summary of the theories

The learning theories behind CAI have been discussed shortly above. The goals of

instruction and typical features of the presented theories are collected in Table 3.1.

The review shows that the assortment of theories is very wide. Some of these learning

theories try to explain adult learning and, therefore, emphasise the importance of experience

and existing knowledge. Some other theories stress the social interaction as the essential part

of learning process. All these aspects are important for learning but it should be remembered

that people are individuals and learn in different ways. Therefore, what suits one person may

not be convenient for another.

Generally CAI theories concentrate on a certain age group (e.g., adults), a certain topic

(e.g., elementary reading, language processing), certain skills (e.g., mathematical skills,

higher thinking skills, problem solving skills), or a certain technology (e.g., film and

television, interactive technology, computer-based training materials). This indicates that the

complexity of human learning is a well-known problem and, thus, researchers do not try to

create general learning theories that would explain human learning in all ages and all

domains.

There exist some features that are common to most of the theories. These features include

the motivation of the learner, which is emphasised almost in every theory, and the idea that

learning is based on students’ existing knowledge and happens through adding, changing or

ruling out that knowledge. Motivation is necessary because if learners are not well-

motivated, learning may remain superficial, for example, students know things by heart

only, and real learning may not happen. In addition, it is common that knowledge and skills

are learned different ways and the age of the learner affects to the learning process.

20 3. Human learning theories

Table 3.1: The goals of instruction and typical features of some human
learning theories.

Category Name of the
theory

The main goal of instruction Typical features

Historical
theories

Mathematical
learning theory

Language learning in the context
of computer based instruction

Quantitative terms for describing and
explaining behavior

Operant
conditioning

Changes in behavior (stimulus-
response)

Programmed instruction and teaching
machines

“Chunking
theories”

ACT* Memory effects and higher order
skills (e.g., geometry proofs and
programming)

Productions, three memories
(declarative, procedural and working)

GOMS Cognitive skills involved in
human-computer tasks (e.g., text
editing)

Problem space, set of goals,
operators, methods, and selection
rules

GPS (General
Problem Solver)

Problem solving using
productions for specifying
cognitive models

Production rules, problem breaking
into subcomponents

Soar Architecture for human cognition
(e.g., verbal learning tasks,
reasoning)

Problem space, procedural memory
and productions

Learner-
centered
theories

Anchored
instruction

Problem solving (e.g., elementary
reading, mathematical skills)

Technology-based learning,
interactive videodisk tools using
anchors

Andragogy Problem-solving on topics of
immediate value (e.g.,
management development)

Adult learning: self-directed students
take responsibility for decisions

Cognitive
flexibility

Transfer of knowledge and skills
using different perspectives

Complex and ill-structured domains;
use of interactive technology

Conditions of
learning

Intellectual skills Different instruction for different
learning outcomes on specific internal
and external conditions of learning

Criterion
referenced
instruction

Mastery of learning objectives
(e.g., technical training including
troubleshooting)

Training programs using a variety of
media and a set of methods

Functional
context

Basic skills (e.g., reading), adult
technical and literacy training

Experience of learners

Minimalism Skills of computer users (e.g.,
word processing, programming)

Adult learning, minimisation of
passive forms of training

Situated learning Knowledge acquisition (e.g.,
problem solving skills)

Learning is a function of an activity,
context and culture.

Symbol systems Knowledge acquisition Effects of media on learning

Separate Component Cognitive skills Two dimensions of learning with four

3.2. Four learning theories of current interest 21

learning
theories

design theory primary and five secondary
presentation forms

Repair theory Procedural skills Repairs for impasses

Script theory Cognitive skills (e.g., language
processing, higher thinking skills)

Scripts, plans and themes to handle
story-level understanding

3.2 Four learning theories of current interest

In this section, four learning theories of current interest and some example applications based

on them are discussed more widely. We try to find at least one learning theory that could be

used as a basis for our instructional criteria and these four theories seem to be the most

promising candidates for our purpose.

These four theories represent thinking that considers teaching as a transformation of

knowledge, not as a transmission of it. The selected four theories are conditions of learning

theory, ACT*, cognitive flexibility theory, and situated learning theory, and the applications

based on them are GAIDA, Geometry Tutor, hypertext applications, and the Adventures of

Jasper Woodbury, respectively. A computer plays different roles within these theories. It is

used for presenting information in conditions of learning, in cognitive flexibility theory and

in situated learning theory, while ACT* tries to model human intelligence using a computer.

3. 2. 1 Conditions of learning theory and GAIDA

Conditions of learning theory (Gagné, 1965) emphasises that successful learning requires

certain internal and external conditions. Further, there exist different types of learning which

require different types of instruction. These types of learning, or outcomes that learning is

expected to have, as Gagné and Briggs (1974) put it, should be the starting-point for

designing of instruction. The categories of learning outcomes are:

• intellectual skills,
• cognitive strategies,
• verbal information,
• attitudes, and
• motor skills.

Intellectual skills involve ‘knowing how,’ rather than ‘knowing that.’ Intellectual skills make

the human individual competent and enable him to respond to conceptualisations of his

environment. Further, the learning tasks involved with intellectual skills can be divided into

hierarchical categories according to complexity:

• stimulus recognition,
• response generation,
• procedure following,
• use of terminology,
• discriminations,

22 3. Human learning theories

• concept formation,
• rule application, and
• problem solving.

The importance of this hierarchy is that it helps to recognise prerequisites that should be

completed to facilitate learning at each level. These prerequisites are found using a task

analysis of a learning task. The hierarchy also serves as a basis for the sequencing of

instruction.

Cognitive strategies are internally organised skills which govern learners’ own behavior.

They are used by learners to manage the processes of attending, learning, remembering, and

thinking. These processes, for their part, activate and modify other learning processes.

Verbal information consists of three kinds of learning situations, namely, learning of

labels or names, learning of isolated or single facts, and learning of organised information or

knowledge. Verbal information serves as a prerequisite for future learning.

Attitudes are divided into two classes which are, firstly, the attitudes that the student has

toward the school institution and things related to it, and secondly the attitudes that the school

aims to establish or change as the result of instruction. As attitudes function to affect

“approaching” or “avoiding,” as Gagné and Briggs (1974) put it, they influence a large set of

specific behaviors of the individual.

Motor skills make possible individuals’ precise, smooth, and accurately timed execution

of performances involving the use of muscles. A total performance can usually be divided

into part-skills that occur simultaneously or in a temporal order. In order to learn this total

performance, the integration of its parts, as well as the component part-skills themselves,

must be learned.

GAIDA

GAIDA (Guided Approach to Instructional Design Advising) is an on-line, case-based

system giving guidance for designing interactive courseware. It is strongly based on another

project called AIDA (Advanced Instructional Design Associate), which is aimed at providing

powerful on-line courseware authoring assistance. AIDA system (Armstrong Laboratory,

1996a) consists of lesson templates that guide the subject matter expert in developing

courseware, reusable instructional strategy templates, integrated text, graphics, and video

editors, an integrated simulation authoring capability, and an automatic test question

generator. The templates are pre-programmed with expert knowledge of instructional

strategies that are effective for such lesson objectives as identifying parts and functions of

devices, executing operating and maintenance procedures, and interpreting various diagnostic

procedures and information.

GAIDA (Armstrong Laboratory, 1996b) is both an authoring advisor and an interactive

courseware collection, since it has two modes called guidance and lesson. These modes are

3.2. Four learning theories of current interest 23

used side by side, since the user is provided with an explanation of using the nine

instructional events of Gagné effectively to create interactive courseware, and this

explanation is tied to the GAIDA database of cases allowing the user to jump from guidance

mode to lesson mode as desired. The lesson database of cases contains computer-based

instruction for a range of learning objectives and presentation techniques, including various

multimedia applications.

The target user group of GAIDA is novice courseware developers for whom it provides

automated instructional design guidance. According to Armstrong Laboratory (1996b),

GAIDA elaborates the nine events of instruction in the context of specific instructional goals

such as identification, classification, checklist procedure, and memory procedure. These

events of instruction are gain attention, indicate goal, recall prior knowledge, present

material, provide learning guidance, elicit performance, provide informative feedback, assess

performance, and enhance retention and transfer. In addition, GAIDA presents specific

advice concerning the effective use of multimedia.

3. 2. 2 ACT* and the Geometry Tutor

Anderson has attempted to relate theoretical principles to acquisition of proceduralised skills

in his ACT* theory (1983, 1987). For modeling cognitive skills he has used hierarchically

arranged productions which he regards as the key element of skill acquisition. The problem

solving is organised using both cognitive units formed by productions and the hierarchical

goal structure specified by productions. Current active knowledge is referred as the working

memory, in which a new, externally set goal gets active. In production memory, if there

exists an established production for solving the given type of problem, then that production

will be generated for the problem. In a case that there does not exist a known solution, a

search for a solution must begin. According to Polson (1993), it is assumed that to solve

novel problems people apply weak-problem solving to the declarative memory that they have

about this domain. Newell and Simon (1972) have stated that this weak-problem solving

solution comprises analogy, means-ends analysis, working backward, hill climbing, and

forward search.

These general weak-problem solving rules are used for generating a solution to the

problem. The existing declarative knowledge about the domain determines which weak

method will be applied. A successfully solved problem produces a route consisting of the

hierarchically organised productions. The route is found by a search through declarative

memory for the necessary conditions. The next step is to transform this route to some

efficient domain specific productions by compilation. The first phase of compilation is

proceduralisation in which the route of productions is generated in the production memory.

This relieves working memory since there is no longer any need to search declarative

memory for the conditions that can be removed from the working memory. On the second

24 3. Human learning theories

phase, the productions belonging to the route are compiled into a production that carries

through the same task. The advantage of compilation is that it speeds up solving the future

problems of this nature.

Geometry tutor

Geometry Tutor is an intelligent tutor for geometry problem solving instructing traditional

Euclidean proof skills. According to Anderson (1993), geometry expertise is managing a

difficult search task by means of heuristics. The goal of the Geometry Tutor is to teach

students approximately 100 rules of inference that they can use for proving various geometry

problems. It is important that students learn to recognise which rules are plausible ones

among all applicable rules.

The intelligence of the Geometry Tutor is based on an expert model that knows when to

apply various rules of inference. There exist various contextually bounded rules that

recognise the situation in which a certain geometry inference is likely to be useful. In

addition, there exist backward-inference rules for setting particular subgoals when it is

considered reasonable. In order to follow students’ moves there exist low-rated versions of

legal rules of inference, which are much weaker and, therefore, they are not preferred if any

higher rated rules are applicable. Each production rule has a rating that is a one-dimensional

quantity associated with that rule. This rating should be considered as a mixture of cost and

probability of success and it indicates how likely a production is to fire. Anderson (1993)

states that this expert model is able to find proofs quite efficiently and it represents the kind

of expertise that was building up in successful students as a function of their experience with

different problems.

The user interface of the Geometry Tutor consists of three parts: the statement the student

is trying to prove, the givens of the problem, and the problem diagram. The student uses a

mouse to select a set of statements and enters a rule of geometric inference that takes these

statements as premises. After that the student is asked to type in the conclusion that follows

from the rule. For entering the conclusion the student is provided with a menu, which

contains the relations and the symbols of geometry. Thus, one step of inference consists of

the sequence of premises, rule of inference, and conclusion. The system updates the screen

after each step. At the end the tutor shows a completed proof which consists of a graph

structure connecting givens to the to-be-proven statement. This completed proof graph is

enlightening in two ways, namely, students see how inferences combine to yield a proof,

and the search inherent in proof generation is explicitly represented.

If the student has many difficulties with the proof the tutor points him to the key step in

solving the problem. In addition, the tutor gives advice what to do and, if needed, shows

how the specific conclusion can be proved. The student is able to use both reasoning forward

from the givens and reasoning backward from the conclusions.

3.2. Four learning theories of current interest 25

According to Anderson (1993), the proof graph makes concrete two abstract features of

problem solving in geometry, namely, the logical relationships among the premises and

conclusions, and the search process by which one hunts for a correct proof. He states that

students have a great deal of difficulty with both of those constructs. The proof graph

facilitates instruction on these abstract concepts by creating an external referent.

3. 2. 3 Cognitive flexibility theory and hypertext applications

Cognitive flexibility theory (Spiro, Coulson, Feltovich and Anderson, 1988; Spiro, Vispoel,

Schmitz, Samarapungavan and Boerger, 1987) is a general theoretical orientation to

knowledge acquisition and application in complex and ill-structured content domains. It is

based upon cognitive learning theory and serves as a conceptual model for designing learning

environments. According to Jonassen (1992), the major principles of cognitive flexibility

theory include the following:

• avoids oversimplifying instruction,
• provides multiple representations of contents,
• emphasises case-based instruction,
• context dependent knowledge,
• knowledge construction, not transmission, and
• supports complexity.

Instructional materials should avoid oversimplifying the content domain. This principle is

based on that if students are provided with oversimplified tasks they later on fail to

understand their field at a more advanced level. Therefore, instruction should reflect the

complexity that normally faces the practitioners.

Multiple perspectives or interpretations of the instructional content are represented when

cognitive flexibility theory is applied. The reason for this is that in order to understand the

complexity of the world individuals must perceive and reconcile its different interpretations.

According to Gick and Holyoak (1983), the instructional use of multiple analogies facilitate

the understanding of multiple mental representations. This understanding is needed for the

transfer of acquired knowledge to novel situations, that is, in problem solving.

The advantage of the case-based instruction is that the more varied cases are used to

illustrate the content domain, the broader the conceptual bases that they are likely to support,

as Jonassen (1992) puts it. Multiple perspectives or themes that are inherent in many cases

are the best ways to illustrate the ill-structuredness of any knowledge domain.

It is important to present knowledge in a situation that is representative of its normal use

since, according to Brown, Collins and Duguid (1989), knowledge is best acquired in

relevant situations that are likely to be encountered by the student as a practitioner. This is

based on the notion that the same entity or objects may appear or function quite differently in

different contexts (Jonassen, 1992).

26 3. Human learning theories

Cognitive flexibility theory emphasises that students should be responsible for

constructing their own knowledge representations in order to adapt and use it in novel

situations. The reason for this is that when an individual integrates knowledge into his own

knowledge structure it becomes more transferable to different problem domains.

Complexity of the instructed knowledge is supported since it is important that students

recognise the inconsistencies in that knowledge and acquire it in a non-compartmentalised

form. A method for supporting complexity is to present multiple representations of the same

information and different thematic perspectives on the information. Students construct useful

knowledge structures by comparing and contrasting the similarities and differences between

these cases.

Hypertext applications

The usage of hypertext as an instructional application has been studied for several years.

Jonassen (1992) argues that cognitive flexibility theory implemented in hypertext provides an

effective model for designing and developing computer-based instruction to support

advanced knowledge acquisition which is required by professionals to solve real-world

problems. Jonassen (1991) has presented reasons that make hypertext a powerful

environment in which to design, develop, and deliver most computer-based learning. The

first of the reasons is the flexibility of hypertext which is based on its associative structure.

Another reason is that hypertext and instructional systems share the same theoretical

framework. In addition, a variety of instructional designs can be mapped directly onto

hypertext, that is, it can well be used both as a design and development environment. Lastly,

the differences between designers and users become less obvious, as hypertext systems

become more collaborative.

Jonassen (1992) also states that for conveying or delivering traditional instruction

hypertext is an inappropriate environment. He emphasises that students can learn from

hypertext only if they have a useful, relevant, and constructive purpose for accessing

information in the hypertext.

Hypertexts based on cognitive flexibility theory are discussed, for example, in Jacobson

(1990), Spiro and Jehng (1990) and Jonassen (1992). One hypertext is presenting an

overview of transfusion medicine by describing problems in blood transfusion from multiple

perspectives. This knowledge domain is very wide and complex since it includes all

disciplines in medicine which are involved with handling blood, and it entails both several

basic sciences and clinical areas. According to Jonassen (1992), the hypertext concentrates

on assessing risks, differential diagnosis, and prescriptive treatment of the range of

transfusion problems to donors and recipients. Since transfusion medicine has grown more

complex, additional learning has become necessary. Furthermore, the area of blood banking

and hemotherapy has been incomplete and plagued with misinformation and opinions. These

3.2. Four learning theories of current interest 27

are the reasons why the transfusion medicine hypertext, which is aimed to enhance the

education of medical students, residents and practicing physicians, has been developed.

The transfusion hypertext operations are based on a database whose declarative

knowledge is generated and structured using matrix analysis (Jonassen, Hannum and

Tessmer, 1989). This database contains information of various kinds of transfusion events,

causes of which may produce several possible symptoms or require several optional medical

interventions. These transfusion events interact with the purpose of the transfusion, the

physiology of the patient and many other factors that causes the ill-structuredness of

indicators. As a result, no single case is able to represent all of the possible transfusion

effects.

In addition to the knowledge base, other parts of the transfusion hypertext include a

glossary, seven practice cases for training, three test cases, a set of 24 mini-cases related to

the practice cases, and a library of handlers. The seven practice cases, also known as primary

practice cases, are employed for orientating the program. Students start practicing using these

cases and through them they have access to any needed information or actions, such as a

transfusion medicine textbook, query important operatives in the case, order tests, or

compare the current case to similar cases. Thus, students are provided with several points of

views. In addition, the program presents analytic feedback specific to the student’s selection

when an action is taken.

Jonassen (1992) has evaluated flexibility theory to this transfusion hypertext. He reports

that transfusion medicine is a complex knowledge domain which must be made clear to

students by the instruction. Therefore, the tenet of flexibility theory stating that instruction

should not be oversimplified supports the usage of the hypertext format. Similarly, hypertext

format provides multiple representations of content which is another tenet of flexibility

theory. Students using the transfusion hypertext may consult several people, such as the

patient, resident, or attending physician, or they can seek information from a textbook. All

these sources give students information from different perspectives. Further, the transfusion

hypertext containing the seven cases and 24 related cases support case-based instruction,

which is emphasised in cognitive flexibility theory. Furthermore, the cases provided in this

hypertext are real transfusion cases, which is very important since students acquire

knowledge best in relevant situations that are likely to be encountered by them as

practitioners (Brown, Collins and Duguid, 1989). One of the tenets of flexibility theory

states that learners must construct meaningful knowledge representations in order to adapt

and use the information in novel situations. This demand is fulfilled in transfusion hypertext

since students have to access and associate information in relevant, practical situations.

Students have to build complex schemata consisting of procedural data in order to solve

cases. Lastly, the transfusion hypertext supports both complexity of the domain by offering

multiple perspectives on each case and related cases for students to compare and contrast

28 3. Human learning theories

them. Similarly, the hypertext supports students acquiring non-compartmentalised

knowledge.

3. 2. 4 Situated learning and the Adventures of Jasper Woodbury

Situated learning theory (Lave, 1988; Lave and Wenger, 1991) emphasises two principles.

The first one states that knowledge needs to be presented and learned in an authentic context,

that is, settings and applications that would normally involve that knowledge. The second

principle says that learning requires social interaction and collaboration. Especially the first

principle contrasts with the traditional classroom learning activities that involve knowledge

which is often presented in an abstract form and out of context. Lave and Wenger state that

learning is situated both in space, time and relation to social practice and, thus, learning is

legitimate peripheral participation in a community of practice. This community of practice,

which is a broad characterisation comprising all social relations, represents, to quote Heaney

(1996), “a negotiated set of relations among persons, their actions, and the world over time

and in relation to other tangential and overlapping communities of practice.” The complex

identity of each person consists of relationships within multiple communities of practice.

Individuals’ possibilities for learning are defined and limited by the structures of

communities in which each individual participates. These structures also set terms for

individuals’ legitimate participation. Therefore, learning is an ongoing negotiation with

communities of practice.

Further, learning is participation which means absorbing and being absorbed in the culture

of practice. It can be centripetal or centrifugal, i.e., moving an individual inward toward

more intensive participation, which is empowering, or moving an individual outward,

keeping him on the periphery and preventing him from participating more fully, which is

disempowering, respectively.

The theory of situated learning has been developed further by other researchers. As an

example, Brown, Collins and Duguid (1989) emphasise the idea of cognitive apprenticeship:

Cognitive apprenticeship supports learning in a domain by enabling students to
acquire, develop and use cognitive tools in authentic domain activity. Learning,
both outside and inside school, advances through collaborative social interaction
and the social construction of knowledge.

The Adventures of Jasper Woodbury

The Adventures of Jasper Woodbury is a program focused on mathematical problem solving

with links to science, history, social studies and literature. Its theoretical basis is the theory

of anchored instruction (Bransford and CTGV, 1990) which is a specialised form of the

situated learning theory. The idea of the anchored instruction is to anchor instruction in

meaningful problem solving environments that allow teachers to simulate in the classroom

some of the advantages of “in-context” apprenticeship training (Brown et al., 1989).

3.2. Four learning theories of current interest 29

According to CTGV (1994), the special emphasis is on contexts that help novices move from

a general understanding of a complex problem to one in which they learn to generate and

define the distinct subgoals necessary to achieve an overall goal. The creation of these

instructional materials that produce generative learning activities has been guided by seven

basic design principles:

• video-based format (teacher and budget friendly),
• narrative with realistic problems (rather than a lecture on video),
• generative format (students must generate the subproblems to be solved at the

end of each story),
• embedded data design (all the data needed to solve the problems are in the video),
• problem complexity (each adventure involves a problem of at least 14 steps),
• pairs of related adventures (discussions of similarities and differences help

students focus on general characteristics), and
• links across the curriculum (to supplement the standard mathematics curricula in

a way that motivates students to explore mathematics in more detail).

The Adventures of Jasper Woodbury are video-based series for learning problem posing,

problem solving, reasoning, and effective communication. At the end of each 15-20 minutes

adventure, the major character or group of characters of the movie have a problem to be

solved. The students in the classroom must solve that challenge before they are allowed to

see how the movie characters solved it.

The adventures of Jasper Woodbury, like the other applications of anchored instruction

created by CTGV, has several goals, such as, highlight the uses of knowledge, help students

develop representations of their experiences that set the stage for positive transfer, promote

collaborative learning, and help students improve their abilities to accomplish goals that are

more holistic than typical tests of student achievement. These goals are fulfilled using various

methods. Anchors be used to help students see the need for new learning and set important

learning goals. According the CTGV (1993), it appears that the experience of identifying

learning goals and then setting out to accomplish them is a very important aspect of

adaptation in everyday life. Secondly, students learn to represent multiple solution paths, to

summarise data, and to discuss characteristics of various types when using the Jasper series.

Furthermore, collaboration is necessary since the problems depicted in anchors are complex

and, thus, any individual student is unlikely able to solve them completely. Lastly, the

holistic goals, such as, beginning with a general indication of a problem, generating the

subgoals to solve it, and then doing so, are more important than producing higher scores on

student achievement tests. In addition, students are encouraged to present their ideas and

arguments to others and criticise others arguments.

The CTGV (1993) reports their experiences during the anchored instruction research

project. For example, it is a big challenge to change the culture in classrooms, that is, the

change of the role of teachers from tellers to coaches and fellow learners. Further, it is better

to start with simple, familiar tools, such as a videodisk player and introduce more

30 3. Human learning theories

sophisticated computer technologies later. In addition, they stress the importance of the

school-wide and community-wide support for new projects. For this reason they have

attempted to provide additional support by creating some key assessment instruments that

would allow teachers to show others what the students have learned.

CHAPTER IV

31

4 Criteria for evaluation of CAI courses in computer
science

Criteria for evaluation of CAI courses in computer
science

Several points of view must be considered when designing and evaluating a CAI course,

such as domain-based demands, instructional demands, user interface demands, and

pragmatic demands. These requirements are discussed in a case of computer science and a

set of criteria is elicited. Since there exist factors that are related to several demands, such as

interactivity and feedback, which both are related to instructional demands and user interface

demands, they are discussed in both sections.

These evaluation criteria can be considered as the embodiments of different evaluation

perspectives to CAI courses (see Figure 4.1). These perspectives concentrate on different

properties of a CAI course, thus, together they form a consistent view of the examined

course.

Figure 4.1: Evaluation perspectives to a CAI course.

The criteria can be modified for designing and evaluating CAI courses in other domains by

defining the criteria based on the desired domain and replacing the criteria based on computer

science with them.

CAI course

Domain-based demands

Instructional demands

Pragmatic demands

User interface demands

32 4. Criteria for evaluation of CAI courses on computer science

4.1 Background for the selection of the criteria

Domain-based criteria

When defining the domain-based criteria, it is necessary to know the domain properly. In

addition, it is important that the concepts and methods of that domain are generally approved

within the domain, otherwise the criteria will not be applicable throughout the domain. If the

domain is disputed, it is better to concentrate on subdomains and state clearly the limits of it,

rather than try to create criteria on the whole domain.

Our criteria for the domain of computer science are based on the report of Denning et al.

(1989) which has been condensed from the Report of the ACM Task Force on the Core of

Computer Science. This report presents a framework for the discipline of computing and a

basis for computing curricula. The task-force was given three general charges (Denning et

al., 1989):

1. Present a description of computer science that emphasises fundamental questions
and significant accomplishments. The definition should recognise that the field is
constantly changing and that what is said is merely a snap-shot of an ongoing
process of growth.

2. Propose a teaching paradigm for computer science that conforms to traditional
scientific standards, emphasises the development of competence in the field, and
harmoniously integrates theory, experimentation, and design.

3. Give a detailed example of an introductory course sequence in computer science
based on the curriculum model and the disciplinary description.

The paradigms stated for the discipline defined by the task-force provide the context for

fulfilling the charges described above. The task-force ended up to define computing as a

discipline and its division into subareas. These paradigms, the definition, and the subareas

are discussed in detail in section 4.2. The task-force emphasised that their description of

computing is “living," that is, it can be revised from time to time to reflect maturity and

change in the field.

Like in other domains, in computer science the goal of education is to develop competence

in the discipline. According to Denning et al. (1989), the educational process that leads to

competence has five steps: (1) motivate the domain; (2) demonstrate what can be

accomplished in the domain; (3) expose the distinctions of the domain; (4) ground the

distinctions in history; and (5) practice the distinctions. Computer science has two broad

areas of competence, namely, discipline-oriented thinking and tool use. The first, which

Denning et al. (1989) consider the primary goal for computing majors, is the ability to invent

new distinctions in the field, leading to new modes of action and new tools that make those

distinctions available for others to use. The latter is the ability to use the tools of the field for

effective action in other domains.

4.2. Criteria based on subject 33

Instructional criteria

The instructional criteria are based on instructional events of conditions of learning theory

(Gagné, 1965). Even though this theory does not represent the latest trends emphasised in

human learning (e.g., constructivism), it offers an appropriate basis for our evaluation

criteria. The reason is that the emphasis of this theory, that is, there exist different types of

learning (see Section 3.2.1), supports well our subject domain. By this we mean that

teaching computer science requires instruction on all learning types (i.e., intellectual skills,

cognitive strategies, verbal information, attitudes and motor skills) emphasised in conditions

of learning theory and the instructional events offer a proper framework for the criteria. It is

possible that our instructional criteria are not applicable to all domains but in our case they

work fine.

In Table 3.1 there are presented the goals of instruction and typical features of learning

theories applied to CAI. On comparison of the theories, we noticed that there does not exist

many theories that could have been used as the basis for our criteria. The historical theories

are out of question since they are obsolete. The “chunking theories” are promising but we

did not become convinced of their functionality.

The learner-centered theories form the most promising group of theories. However, most

of the theories of this group proved to be inappropriate for our needs. For example, some

theories emphasise the learning situation and the context of learning (e.g., anchored

instruction and situated learning) which are less important within computer science. Some

other theories stress learners’ experience (e.g., andragogy, functional context, and

minimalism) which is important but cannot be expected from young adults that computer

science students mostly are. We considered the conditions of learning theory the most

suitable learning theory for our purpose since it meets all our needs. Other theories that might

have been useful are criterion referenced instruction, which shares some ideas with the

conditions of learning theory (i.e., learning needs and outcomes), and cognitive flexibility

theory that could be applicable to CAI courses on computer science in advanced level..

The separate theories seem too unilateral for our purposes. Therefore they were

disregarded.

4.2 Criteria based on subject

Computer science and computer engineering, commonly called computing, are domains

which aim at solving problems using computers. Denning et al. (1989) have stated that these

two disciplines have three paradigms that are partly common to both of them. These

paradigms are theory, abstraction and design. Theory, which is based on mathematics,

consists of four steps:

1. characterise objects of study (definition);
2. hypothesise possible relationships among them (theorem);

34 4. Criteria for evaluation of CAI courses on computer science

3. determine whether the relationships are true (proof); and
4. interpret results.

Abstraction, which is based on the experimental scientific method, also consists of four steps

used for investigating a phenomenon:

1. form a hypothesis;
2. construct a model and make a prediction;
3. design an experiment and collect data; and
4. analyse results.

Design, which is based on engineering, consists of four steps that are used for constructing a

system to solve a given problem:

1. state requirements;
2. state specifications;
3. design and implement the system; and
4. test the system.

Computer science focuses on theory and abstraction, whereas computer engineering focuses

on abstraction and design, as Denning et al. (1989) have stated. From now on, computer

science and computer engineering will be combined under the name of computer science.

Different methods play an important role in computer science instruction, since students

are taught to recognise problems, find solutions to these problems, and finally, implement

these solutions in a computer format. Good knowledge of both mathematics and logic are

necessary for computer scientists since implementing complex computer systems requires

ability both to understand abstract problems and to draw conclusions. To quote Denning et

al. (1989):

The discipline of computing is the systematic study of algorithmic processes that
describe and transform information: their theory, analysis, design, efficiency,
implementation, and application. The fundamental question underlying all of
computing is, “What can be (efficiently) automated?”

At the university level, computer science education emphasises general abilities to solve

computer tasks and good general education on available computer tools and techniques,

rather than practical skills. Therefore, instruction of computer science mostly consists of

teaching abstract concepts and methods, though practical skills cannot be totally forgotten.

Computer science is a fast developing discipline, which causes great challenges to

educators. Changes both in hardware and software force frequent assesment of the computer

science curriculum. This means that the curriculum should be updated to cover new concepts

and methods. These changes reflect also to CAI courses on computer science that should be

flexible to update. Since changes within the discipline happen fast, updating is necessary in

order not to waste lots of design and implementation effort put into CAI courses on this

domain.

4.2. Criteria based on subject 35

The domain of computer science contains a wide range of diverse topics. It can be divided

roughly into the following subdomains (Denning et al., 1989):

• algorithms and data structures
• programming languages
• architecture
• numerical and symbolic computation
• operating systems
• software methodology and engineering
• databases and information retrieval
• artificial intelligence and robotics
• human-computer communication

This is not the only possible division but it describes the domain very well and is used for

different purposes, such as for classification of literature in Computing Reviews or for

designing computer science curricula. Each of these subdomains has its elements of theory,

abstraction and design that define the main features of it. The weights of theory, abstraction

and design differ within each subdomain, that is, some subdomains are considered more

practical than theoretical. As an example, algorithms and data structures, numerical and

symbolic computation, and software methodology and engineering have a theoretical nature,

whereas programming languages, architecture, and operating systems are aimed more at

practice. The next discussion of some of these subtopics is based on a report of Denning et

al. (1989).

Algorithms and data structures have a very strong theoretical background, which consists

of computability theory, computational complexity theory, time and space bounds, levels of

intractability, parallel computation, probabilistic algorithms, cryptography, and some

supporting areas (e.g., graph theory, combinatorics, calculus, and semantics). Computer

science students should be familiar with this theoretical background before they can fully

understand how and why algorithms are designed the way they are, and how algorithms

work. In addition, the theory of algorithms and data structures gives students fundamental

concepts and guidelines to abstract and design their own algorithms. Algorithms and data

structures form the basis for all computing, thus, students necessarily need to know them.

The theoretical basis of programming languages consists of formal languages and

automata, Turing machines, Post systems and λ-calculus, formal semantics, and supporting

areas, such as, predicate logic and temporal logic. This theoretical part often has a minor role

in a computer science curriculum that prefers to concentrate on introducing different

programming languages. This kind of attitude is harmful since without proper theoretical

knowledge students are unable to understand the fundamental questions of programming

language area, namely, what possible organisations presented by the language are, how

these abstractions are implemented on computers, and what notation can be used effectively

36 4. Criteria for evaluation of CAI courses on computer science

and efficiently to specify what the computer should do. Programming languages are useful

for giving substance to algorithms if the theoretical background is not forgotten.

The area of architecture aims at organising hardware into efficient, reliable systems, such

as hardware units for fast computation (e.g., arithmetic function units), efficient methods of

both storing and recording information and detecting and correcting errors, computer aided

design (CAD) systems, and supercomputers (e.g., Cray and Cyber machines). Theory

behind these aims is based on Boolean algebra, switching theory, coding theory, finite state

machine theory, and supporting areas, such as queuing, reliability theory, discrete

mathematics, and number theory. Architecture is easily misunderstood merely as pure

hardware. This misconception should be corrected by emphasising the fundamentals of

computer architecture in instruction.

Students often complain about the amount of mathematics included in computer science

curriculum. It should be explained why they need such skills and knowledge. Numerical and

symbolic computation focus on solving several problems, such as how we can accurately

approximate continuous or infinite processes by finite discrete processes, how rapidly a

given class of equations can be solved for a given level of accuracy, and how symbolic

manipulations on equations (e.g., integration, differentiation, and reduction to minimal

terms) can be carried out. The theories needed for understanding the meaning of and

reaching these aims are number theory, linear algebra, numerical analysis, nonlinear

dynamics, and as supporting areas calculus, real analysis, complex analysis, and algebra.

Students need to learn at least the basics of these theories in order to be able to understand,

design and implement algorithms solving mathematical problems. To quote Repo (1996), “a

deep conceptual understanding is important in the process of learning algorithmic skills.”

Database and information retrieval systems emphasise several topics, such as choosing

appropriate modeling concepts to represent data elements and their relationships, combining

basic operations into effective transactions, translating high-level queries into high-

performance programs, protecting data against unauthorised access, disclosure, or

destruction, and indexing and classifying text for efficient retrieval. The theoretical basis of

this subdomain is also very extensive including relational algebra and relational calculus,

dependency theory, concurrence theory, statistical inference, sorting and searching,

performance analysis, and, as supporting theory, cryptography. Database and information

retrieval systems are needed more and more in everyday life. Therefore, computer science

students have to know this area well if they want to design and implement even better

systems in future.

Computer science is a versatile domain that cannot be taught using solely one method.

Some subdomains are clearly theoretical, others practical or mathematical, though all these

aspects can be found in every subdomain. Therefore, a mixture of these different aspects

needs to be considered when designing computer science curricula.

4.3. Instructional criteria 37

4.3 Instructional criteria

Computer-aided instruction should be student-centered and based on student’s needs.

Consequently, CAI courses should be interactive and controlled together by a student and

computer. These demands, when they are fulfilled, promote student’s motivation, whose

importance as a part of successful instruction is strongly emphasised in many human

learning theories. Another thing to remember is that instruction should be based on students’

previous knowledge. This is important because then students are able to connect new

information to their existing knowledge which strengthens their learning.

At first it should be confirmed the general view and basic concepts of the instructed

domain are familiar to students. Together these two facilitate students’ learning by offering

them an appropriate knowledge base on which they are able to combine novel information.

When students have a good general view of the domain they have better possibilities to

recognise the connections between the domain and the novel information. As a result, every

CAI course should clearly announce the prerequisites needed to understand the contents of

the course. As an example, an introductory CAI course on the domain could give the

required general view on the domain and its concepts, and no prerequisites on this domain

should be necessary for understanding this course. Other CAI courses on subtopics of that

domain could announce that the introductory course, or knowledge equivalent to it, and

possibly some other prerequisites are needed to understand the contents.

The desired learning outcomes of the course should be clearly stated. In addition, students

should be told how to recognise that the expected learning has happened. For example,

students are informed that they have to pass an exam based on the presented CAI course

material.

Another important thing would be to give a good general view of the content structure of

the CAI course itself. This kind of content-dependent guidance assists teachers to choose

appropriate CAI material. Students should be provided with an explanation of the

connections to other subtopics of the domain and a summary of the contents of the course.

Explaining the connections facilitates students to locate the novel information on a right place

in their minds. The summary of the contents prepares students to receive the forth-coming

information. Students should also be provided with technical guidance to use the course, for

example, in a form of a guided tour.

Contents of a CAI course should be highly relevant to the instructional aims the course is

having. Since it is wise to simplify the display content, as Chabay and Sherwood (1992)

have stated, it is necessary to present only the most important things. However,

oversimplifying must be avoided in order that the contents are not divided into irrelevant

pieces.

Interaction between students and the course contents increases students’ motivation

because they get the feeling that they control the course flow. One possibility to increase

38 4. Criteria for evaluation of CAI courses on computer science

interaction in a CAI course, as Borsook and Higginbotham-Wheat (1991) point out, is to ask

students questions, whenever it is possible, instead of telling them facts. While using

questions one must avoid dead ends, where students are stuck if they do not know the

correct answer. Students must be provided with either the correct solution after a few tries,

or hints to find the correct solution, or possibility to back out the question. Interaction is

discussed also in the user interface criteria section.

Feedback, which plays an important role in a CAI course, can be divided into two

categories: instructional feedback and technical feedback. In principle, feedback should be

given as a response to each action or performance of students, and it should be given

immediately. Instructional feedback contains all feedback related to the subject domain and

the contents of teaching material. Technical feedback, which is discussed in more detail in

the user interface criteria section, is a response to practical matters, such as problems with

the computer environment. The type of instructional feedback depends on the situation it is

given. Different situations are, for example, students answering questions or students asking

for instructional help. Appropriate feedback to students’ answers are to tell the correctness of

answers, give hints or instructions if the answers are incorrect, or give the right answer if

students have failed too many times. Feedback to the instructional help request should

provide assistance for correct performance. Implementation of instructional feedback is

technically an extremely difficult task, since there exist several alternative possibilities how to

response. Implementing of all possible responses is impossible, and choosing the most

appropriate responses is difficult, as well.

Repetition is necessary for learning. Therefore, a summary at the end of lesson assists

students to remember the essentials, or references to previously learned concepts or methods

clarifies relations between these objects. Repetition should be used for strengthening

students’ learning. Recall is useful when connecting new concepts to students’ existing

knowledge by creating associations between them.

Students should have a possibility to practice their new knowledge and skills.

Independent questions that have responses, may not yield the expected result, since students

can easily guess the answers. If students are expected to give answers longer than just a few

words, checking the answers becomes difficult, since the tools used for interpreting free-

form answers are relatively restricted and not very efficient. More complicated means of

practicing are problem solving tasks which force students to combine several pieces of

knowledge and skills in order to be successful. Other expedient means are simulations and

demonstrations in which students are able to try different combinations of parameters and

observe consequences. When using these latter means, students should be given a well-

specified target or a task to be fulfilled in order to avoid experimenting fortuitously.

Evaluation of students’ learning outcomes gives information not only to students

themselves and teachers but also to the authors of CAI courses. Evaluation information

4.4. Criteria for user interface 39

should indicate to students the new level of their knowledge and skills so that they are able to

compare with their previous capabilities. Teachers should use evaluation information to find

possible defects in students’ learning outcomes, and provide students with supplementary

material if it is necessary. The authors of CAI courses should be informed if students

systematically fail to obtain expected learning outcomes, since that indicates that some very

fundamental things are wrong within the CAI course. A typical form of evaluation is an

examination, which can be conducted either using traditional means or a computer.

4.4 Criteria for user interface

User interface is a very important part in a CAI course, since it is the only means for students

to communicate with the computer. On one hand, the user interface should provide all

necessary information for students at any time, but on the other hand it should be kept simple

in order that students do not lose the essential information.

These interface criteria are influenced by ideas of Chabay and Sherwood (1992) and

Ravden and Johnson (1989), who give guidelines for creation of educational applications

and evaluation of human-computer interfaces, respectively. The advice presented by Chabay

and Sherwood (1992) is based on several years of their experience designing CAI materials

for various domains, and include guidelines for user interface design. Ravden and Johnson’s

(1989) practical method for evaluating usability of human-computer interfaces consists of

nine criteria, which are visual clarity, consistency, compatibility, informative feedback,

explicitness, appropriate functionality, flexibility and control, error prevention and

correction, and user guidance and support. Some of the ideas of Chabay and Sherwood, and

Ravden and Johnson are used with slight modifications in our criteria.

Interactivity plays an important role in an efficient user interface. It is discussed in more

detail in the following section. Text, color, graphics, and animation are elements of which

user interfaces are built. These elements are discussed later in this section.

4. 4. 1 Interactivity

Selnow (1988) has characterised interactivity as an interpersonal communication in which

messages must be receiver-specific, message exchanges must be response-contingent, and

the channel must provide for a two-way flow of information to accommodate feedback.

Human-to-human models introduced by Berlo (1960) and Shannon and Weaver (1949) can

be regarded as the theory underlying interactivity. More important is how interactivity can be

used in CAI courses. Borsook and Higginbotham-Wheat (1991) have listed the following

variables that they consider as the key ingredients of interactivity:

• immediacy of response (e.g., face-to-face conversation vs. mail),
• non-sequential access of information (e.g., presentation paying attention to needs

of the audience vs. presentation without any breaks for questions etc.),

40 4. Criteria for evaluation of CAI courses on computer science

• adaptability (e.g., talking to a doctor or talking to a child),
• feedback (e.g., driving a car with open eyes instead of blindfolded),
• options (e.g., natural conversation between two people vs. conversation

permitting the use of only few words),
• bi-directional communication (e.g., a normal telephone connection vs. a

telephone connection for one-way conversation), and
• grain-size (e.g., possibility to interrupt an action vs. no responsive action before

a certain state).

These variables should be applied in a reasonable mixture in a CAI course. The amount of

each variable depends on the subject domain and the type of CAI course. As an example,

adaptive systems and simulations use these ingredients of interactivity much more than CAI

courses of other types.

The amount of interactivity reflects how the control over a CAI course flow is divided.

Borsook and Higginbotham-Wheat (1991) claim that the optimal interactivity occurs when

there is a balance of control between the student and the computer. A course is highly

interactive if the student and the computer control the flow of it together. If either of them

controls remarkably more than the other the amount of interactivity decreases. Therefore, a

CAI course controlled solely by either a student or a computer has the lowest possible

interactivity.

There exist several practical ways to enhance interaction, such as ask instead of tell,

prompt direct manipulation, avoid typing, avoid mixing input modes, wait for students,

provide instructions, and explain the interface (Chabay and Sherwood, 1992). Asking

instead of telling forces students to give up their passive role and participate actively in the

learning process. Direct manipulation enhances students’ own thinking about the task.

Typing should be avoided if there are available other more appropriate methods, such as

pointing. Most students are not skilled with typing, which is harder than pointing. A mouse

is the most usual pointing device, but not the only one. A keyboard can also be used as a

pointing device, for example, by using arrow keys or the spacebar. Mixing different input

actions for the same input should be avoided since moving by compulsion rapidly between

input devices can be annoying. Waiting for students means that they should be given time to

proceed on their own pace. Timed pauses should be used only when they are necessary,

such as in animation. Instructions should be terse and fill a portion of a display for a task. In

addition, it is better to show how to do than tell what to do. Thus students need not translate

written instructions in one context into actions in a different context. Teaching the interface

actions improves students ability to communicate with the computer. If these actions are

taught properly at the beginning of the course, students attention can be concentrated on the

teaching domain solely.

4.4. Criteria for user interface 41

All feedback given to students should be highly informative since the display size is

limited and, consequently, displaying unnecessary information should be avoided. Students

should be aware of the following things:

• where students are in the application,
• what actions they have taken,
• whether these actions have been successful, and
• what actions should be taken next.

An evaluator should examine how these matters have been considered. In addition,

availability of all necessary options and the quality of system feedback should be

investigated.

Flexibility is an important feature of an application. Students should be able to undo and

redo actions, look through a sequence of displays in either direction, move to different parts

of application as needed, and name and organise information that may need to be recalled at a

later stage. Availability of all these actions should be checked. Further, study of

implementation of error prevention and correction should consist of checking how to correct

errors in inputs before they are processed as well as after they have been processed, and

checking the quality of the diagnostic information that application offers in an error situation.

User guidance and support should be informative, easy to use and relevant. It should be

available both on the computer and as a paper document. Evaluated things include examining

availability of help, clarity of help information, and relevancy of help information.

4. 4. 2 Display elements

Attention should be paid to several elements when designing a user interface. These elements

include not only text, pictures and animation but also the connections between these display

elements, usage of colors and highlighting, and how displays appear to students. Good

general rules in display design are to keep things simple and leave blank space around

elements.

Text

Authors of CAI courses should never use text lay out similar to books, since it is not an

effective way to present things in a computer format. Instead of that, computers, as dynamic

tools, offer new possibilities for presenting and making use of text, as Chabay and

Sherwood (1992) put it. They have listed the following suggestions how to utilise text in a

most effective way in a CAI course:

• Text should be used wisely for presenting basic information, clarifying and
explaining pictures and diagrams, and providing both general and specific
instructions.

• Instead of usual paragraphs, there should be used words and phrases with plenty
of white space.

42 4. Criteria for evaluation of CAI courses on computer science

• Text and pictures should be mixed by inserting a few well-placed words, such as
labels for the axes of graphs and important components of diagrams.

• One should strive for clarity to minimise chances of misunderstanding.

Visual elements

There exist several reasons why communication between the user and computer can rely on

visual elements, such as pictures, animation and diagrams, rather than textual information.

Bergin et al. (1996) have presented a collection of ten motivating factors for instructional use

of visualisation tools as follows:

• Complex concepts can be clarified through the use of pictures: using only verbal
expressions to teach complex concepts often requires a formalism that intimidates
students.

• Visualisation is an alternative presentation model: students learn certain concepts
better by thinking visually about them.

• Visualisation is a hook which can be used for grabbing students’ attention: it has
similarities with popular forms of entertainment.

• Instructors are able to cover more material in less time by using visualisation
tools: demonstrations and examples presented in lectures can be automated by
using the combination of visualisation tools and large-screen projection devices.

• Students’ understanding can be increased by using good visualisations: an
interactive visualisation gives feedback on correctness, lets students to proceed at
their own pace, shows changes pictorially in an algorithm, and shows the
outcomes when different data sets are input to an algorithm.

• Visualisation encourages modes of learning that instructors want to see in
students: the use of highly interactive simulation software packages that support
visualisation, stimulates and clarifies most of the concepts for students.

• Visualisation can be used for handling students with different backgrounds:
including optional problems in assignments gives challenges to the more
advanced students.

• Visual debugging: simplifies debugging process and removes some of the
frustrations, thus rendering the whole process more tractable.

• Visualisation allows teachers to capture effective manual classroom techniques:
automated illustration of procedures involving two or higher dimensional
structures saves time, reduces errors and increases the clarity of classroom
presentations.

• Visualisation can be broadened to perceptualisation: it is by no means limited to
‘visual images.’

Visual presentations are worth using almost in every instructional situation, for example, in

teaching concepts and algorithms of computer science. According to Bergin et al. (1996), the

type of visual presentation used depends on the topic and cost effectiveness. Pictures are

useful for both small amounts of data and very simple data structures. In addition, pictures

should be used when the relationship of objects is important, but movement is not needed.

Animation should be used for presenting large amounts of data, complex data structures,

or showing how the relationships between objects change over time. The cost benefit of

developing a picture determines the type of created picture or animation, that is, is the picture

4.4. Criteria for user interface 43

hand drawn or computer generated. Bergin et al. (1996) state that non-technical animations

can be effective, may involve less time in their creation, and may involve the class with more

interaction.

Animation can be used in instruction not only for presenting but also for doing things, for

example, students learn by writing programs with animation. For creating animations there

exist several animation tools, such as Aladdin (Helttula et al., 1989 and 1990), BALSA

(Brown, 1988), DYNALAB (Boroni et al., 1996), Eliot (Lamminjoki et al., 1995; Lahtinen

et al., 1996), GAIGS, Tango (Stasko, 1990), XTANGO (Stasko, 1992), and Zeus (Brown,

1992).

Connections between display elements

Organisation of different types of information affects the visual clarity of an application,

since text and visual elements support each other when their connections are carefully

designed. According to Chabay and Sherwood (1992), authors should connect both text

with graphics and graphics with text. The first means that authors should avoid describing

things that are better shown via graphics, including tying together pieces of text. Pointing

graphically to the relevant words in a cited passage is better than attempting to describe their

location verbally. The latter, connecting graphics with text means that authors make

connections among the visual elements using text and sequencing (e.g., labeling axes of a

graph). This facilitates understanding the relations between display elements. However,

authors should remember to keep schemes and pictures clear.

Colors

Authors should be very careful when choosing and combining colors to CAI applications,

since depending on authors’ abilities to apply them, colors can help or hinder a design.

Colors based on authors’ personal preferences should not be used unless authors understand

how to apply them to problem solving, since, to quote Shubin et al. (1996), “color can

appear to advance or recede, make boundaries vibrate or blend, emphasise or blur shapes,

and cause other colors to change.” Visual clarity of an application suffers from careless use

of colors.

Highlighting

Highlighting, like colors, affects the visual clarity of an application. Since highlighting is a

useful tool in interface design, authors should remember several things in order to be

successful in a design process. As Chabay and Sherwood (1992) point out, highlighting

should be used for providing a focus on the most important things. Possible ways to achieve

this result include:

• using italics,

44 4. Criteria for evaluation of CAI courses on computer science

• blinking text, arrow, etc.,
• using borders around a major item of text,
• pointing at something,
• using “inverse video,” and
• using distinctive colors.

In addition, highlighting should be used sparingly, since if everything is highlighted,

nothing is important. The use of too many colors or too many text styles in one display can

be very disturbing and diminish readability of information.

Important display elements should be made big enough and be placed at the center of the

display. Less important things should be left to the periphery or behind menus from where

they can be invoked if needed. Irrelevant elements, that are no longer needed, should be

removed.

Display-building

There exist several ways how a display can appear to students. The basic rule is that new

information should be near the most recently displayed information. This adjacency

facilitates students to find new information on the display and makes a complex display

understandable. Authors should remember the following considerations when building up a

display a little at time (Chabay and Sherwood, 1992):

• Displays should be built up piece by piece to give students time to identify and
comprehend the components of a display.

• At the same time authors should both maintain visual context and avoid disorder.
Finding a balance between these needs is a necessary, though difficult task.

• Authors should use both single and multiple “pages,” since they serve different
purposes. Single page applications have a strong contextual framework visible at
all times, whereas multiple pages provide a more flexible framework, for
example, an optional extended discussion.

• Long texts should be broken down, since building, for example, a list piece by
piece maintains emphasis on the most recent item. At the same time it also
maintains the context, since the previous items are still visible.

It is also good if students are able to choose the rate at which the display is built up.

4.5 Pragmatic criteria

There exist several points of view to be considered when CAI courses are intended to be

used as a part of instruction. These considerations include hardware, software and human

resources, and both teachers’ and students’ attitudes and readiness to use computers.

Availability and compatibility of hardware are important things to consider. Computer

resources should be adequate for proper use, that is, there should permanently exist enough

computers in proportion to the number of students. Any special arrangements (e.g.,

transporting one or more computers from one classroom to another each time they are needed

4.5. Pragmatic criteria 45

in instruction) should be avoided, since such activities take too much time and effort in the

long run and, consequently, they may reduce teachers’ willingness to use computers.

Compatibility of hardware should be checked when running a CAI application requires use

of external equipment, since there do not exist standards for all peripherals. Such external

equipment must be compatible with the intended instruction computer.

Like hardware requirements, software requirements of a CAI application also need to be

considered. As an example, a CAI application may run only in a computer with a certain

operating system, or it may need a specific external application (e.g., text processor or

spreadsheet calculator) to function properly. In addition, properties of an application may be

adjusted to properties of a certain processor, mainly its speed of execution. In such cases,

the application may function in a different way than it was intended, for example, animation

may be executed so fast that it is impossible to follow it. Therefore, the computing

environment requirements of a CAI course should be announced clearly in course

documentation, which should inform users of all technical information related to installing

and running the CAI course.

Human resources concern both teachers and other staff involved with CAI. Teachers must

be available since students need guidance not only with the subject domain but also for

becoming familiar with the CAI application and the computer. Other staff consists of persons

who are responsible for the maintenance of computers and applications. Such personnel is

needed since all teachers may not be able to install applications or solve problems occurring

in computers.

Teachers’ and students’ attitudes and readiness to use CAI affect instructional computer

use. Attitudes to computers should be positive both among teachers and students, otherwise

the use of computers cannot be very efficient and effective. Readiness to use CAI means that

users have appropriate skills and knowledge to interact with computers. Lacking such skills

complicates the learning process, since users must concentrate on tools, rather than contents.

Therefore, teachers and students should be motivated by telling them why and how

computers can be useful in instruction, and they should be taught to use computers

effectively. Teachers should know well CAI applications used by students in order to be able

to assist students when they have problems. Furthermore, students should have a guided

tour to get familiar with the CAI course. This tour should cover the explanations of all

features and tools in the course. Students should also be able to try different features during

the tour to get used to them.

CHAPTER V

46

5 Test case: COSTOC

Test case: COSTOC

Some CAI courses on computer science were chosen to be analysed to obtain detailed

information about how computer science has been taught using computers. We also wanted

to test our criteria described in chapter 4. The results of the analysis may be useful when

designing new CAI courses on computer science and when designing properties of authoring

tools supporting special features of computer science.

This chapter describes how our evaluation criteria are applied into practice. An analysis

method based on the criteria is presented. Results of the analysis consist of the general

results and the results of each tested course which are presented in corresponding order.

Results of each COSTOC course are discussed separately because the main interest was to

study how each topic has been taught using computers rather than to compare different

courses to each other. The results of each tested course are presented in two groups: course

contents and instructional support.

5.1 Analysis method

The target of this analysis is to find out how computer science has been taught using

computers, measured by the criteria set in the fourth chapter. In addition, we want to

evaluate the quality of the selected CAI courses on computer science. Analysis consists of

investigation of internal structure (i.e., instructional support and topics related both to

contents and organisation of courses) and external structure (i.e., user interface) of tested

courses. Both internal and external structures need to be examined in order to get a balanced

view on each tested course and to be able to answer the research questions of this study.

The analysis method, which is designed by the author of this work, is strongly based on

counting different structures of tested courses. These structures can be frames and their

5.1. Analysis method 47

contents, like in tested courses, but they can be nodes as well, like in hypertext applications,

or pages, like in multimedia applications. This analysis method can be applied in several CAI

applications of different types since it is enough that there exist some structures and their

contents that can be examined and counted. There are four major subjects of interest that are

examined:

1. course contents
• content types of information structures
• illustration of information structures

2. instructional support
• amounts of different structure types
• topics emphasized in instructional criteria

3. user interface
4. pragmatic matters

5. 1. 1 Analysis of course contents

Analysis of course contents is based on criteria for the subject. This part of the analysis aims

at finding out how each of the tested courses tries to teach the topics, and finding out the

relevancy of the course contents to the aims. The main analysis method is to examine the

contents and illustration of information frames.

Contents of information structures

A detailed analysis of the contents in information structures must be done in order to find

answers to three questions; namely, what kinds of things they are teaching, how these things

are taught, and why these things are taught that way. The contents of each information

structure are examined and different content types are counted.

Each information structure may consist of several types of contents. Due the fact that

computer science is a mathematical science, it is expected that information structures will

consist of definitions, equations, formulas, and proofs. Furthermore, programming code

and pseudo code are expected since programming is an essential part of computer science,

and the tested courses should represent evenly the domain of computer science. In addition

to these content types, some other types are likely to appear.

Illustration of information structures

The illustration of information structures is examined because illustration helps students to

understand new concepts and phenomena. The common illustration types, namely,

examples, pictures and animation, are expected to be found. The importance of examples is

based on their ability to illustrate new concepts by connecting them to old ones by using, for

example, comparisons. Some concepts and phenomena are easier to understand in a visual

48 5. Test case: COSTOC

form than in a textual form. Pictures and animation are excellent for presenting material in a

visual form. Examples, pictures and animations are counted.

Relevancy of the course contents to the aims

After examining the tested course completely, relevancy of its contents to the instructional

aims is evaluated. This is done by comparing the aims to the contents.

5. 1. 2 Analysis of instructional support

A CAI application is supposed to instruct something and, thus, there must support for

human learning. A natural place for instructional support is in information structures.

Analysis of instructional support consists of examining how courses fulfill the instructional

criteria presented earlier in this chapter by counting the number of different structure types,

by studying what kind of learning support is provided, and by comparing how structures are

illustrated. The applied analysis methods are described in groups emphasised in the

instructional criteria:

• motivation,
• general view of the course contents,
• prerequisites,
• informing of the learning aims,
• structure of the course,
• guidance to use the course,
• interaction,
• instructional feedback,
• repetition and recall,
• practicing new skills or knowledge, and
• evaluation of learning outcomes.

Motivation

Means of motivation are examined and the amount of motivation in information structures is

measured. It is expected that motivation is found evenly throughout the lessons.

General view of the course contents

It is examined how the general view of the course contents is described. This description is

expected to be found both in the documentation and the on-line help.

Prerequisites

The appearance and clarity of prerequisites are investigated. Prerequisites should be found

both in paper documents and the on-line documents.

5.1. Analysis method 49

Informing of the learning aims

Appearance of information on the learning aims is studied. Such information is expected to

be found in the beginning of each lesson.

Structure of the course

The structure of the tested course is measured by counting the number of different structure

types. Each tested course is expected to contain at least three different structure types:

navigation, information, and question structures. The numbers of structure types are counted

in order to find out the proportions of each type. These proportions indicate the general

organization of a course and the importance of different structures within the course. The

presented percentages and ratios, which are based on opinions of the author (see Table 5.1),

are normative, since the extent of contents of information structures vary from course to

another and the differences can be very big. These percentages are our approximations for a

balanced CAI course. As far as we know there does not exist percentages for this kind of

purpose. Thus, we make one suggestion based mainly on our own experience. The

percentages are discussed in detail below. The percentage of question structures does not tell

the whole truth since one question structure may contain several questions, or there may

exist several question structures for one question. Therefore, there are no percentages for

question structures presented.

Navigation is an important feature in a CAI course of any domain because it gives

students the control, that is, freedom to choose what to study. If the percentage of navigation

structures is low, that is, under 10%, it is possible that the course is too strongly controlled

by the computer, that is, students are forced to follow a certain route through the course

material with only minor choices. On the other hand, if the percentage of navigation

structures is high, that is, over 25%, there exists a risk that the course is fragmented and,

thus, students have difficulties to follow the flow of the course.

The ideal percentage of information structures is between 60% and 70%. If it is less than

55%, the contents of the course is inadequate and students’ learning remains superficial.

Percentages over 75% dominate too much the course structure and students’ interest and

motivation may vanish.

Instead of the percentages of question structures, the amount of questions must be

considered. If the ratio between the amount of information structures and the amount of

questions is more than four, there are too few questions for testing students’ knowledge and

learning may remain inadequate. If the ratio is less than two, questions appear too frequently

and students are not able to concentrate on the essence.

50 5. Test case: COSTOC

Table 5.1: Limits of structure types in percentages.

Structure type Too low Ideal Too high

Navigation <10% 15%-20% >25%

Information <55% 60%-70% >75%

Guidance to use the course

It is checked whether there exists both content-dependent and technical guidance to use the

course and how it is implemented. Guidance is expected to be available in the beginning of

the course though it should be accessible as needed throughout the course.

Interaction

This is mainly described in the subsection dealing with the user interface analysis. Only the

instructional interaction is examined in this subsection.

Instructional feedback

The types of instructional feedback are examined and the quantity of each type is counted.

Instructional feedback, like motivation, is expected to be found evenly distributed throughout

the lessons.

Repetition and recall

The types of repetition and recall are investigated and the quantity of repetition and recall is

counted. Repetition is expected to be found at least in the end of each lesson. Recall is

expected to be found in situations where students are provided with new information that is

based on previously presented concepts or phenomena.

Practicing new skills or knowledge

The type and amount of practice are investigated. Practice should be found in every tested

course but not necessarily in every lesson.

Evaluation of learning outcomes

The appearance of the evaluation of learning outcomes is examined. It should be found at the

end of tested courses.

5. 1. 3 Analysis of user interface

The appearance of the user interface is studied to find out its effects on learning. This part of

the analysis is based on criteria for user interfaces. It is strengthened by the evaluation

method designed by Ravden and Johnson (1989), which is chosen because it states some

5.1. Analysis method 51

important notions on user interface evaluation. Tukiainen and Lempinen (1994) have adapted

Ravden and Johnson’s method to be suitable for evaluating the usability of software. This

latter method is also applied to the evaluation. Only the suitable parts of both methods are

used.

Analysis of interactivity

Implementation of interactivity is examined by checking types of interaction, feedback,

flexibility, error prevention and correction, and user guidance and support. The following

things are examined:

• how interaction is enhanced (e.g., asking vs. telling, prompting for direct
manipulation, avoiding mixing input modes),

• what kind of technical feedback does the application provide (e.g., what actions
students have taken),

• type and nature of messages and instructions,
• clarity of requirements to take a particular action,
• clarity of the type of information needed to be entered,
• whether it is possible to undo or redo actions,
• whether it is possible to look through a sequence of displays in either direction,
• whether it is possible to move to different parts of application as desired,
• whether the user is able to choose the rate at which information is presented,
• whether the user is able to name and organize information which may need to be

recalled at a later stage,
• whether it is easy to correct errors in inputs before they are processed,
• whether it is easy to correct errors after the inputs are processed,
• whether the system offers all necessary diagnostic information in an error

situation,
• whether help facility is easily available from any point in the application,
• whether the help information is context-sensitive and presented clearly,
• whether the paper document provides an in-depth, comprehensive description,

covering all aspects of the application, and
• whether the needed information is easy to find from the paper document.

Analysis of display elements

Analysis of display elements consists of examining implementation of text, visual elements,

connections between display elements, use of colors, highlighting, and display-building.

The following items are studied:

• how text is used (subject material, feedback, error messages, help),
• how visual elements are used (pictures, animation),
• what kind of connections there exist between display elements,
• how colors are used (text, background, highlighting, etc.),
• how highlighting is used (italics, blinking, borders, pointing, colors, etc.), and

52 5. Test case: COSTOC

• how displays are built-up.

5. 1. 4 Analysis of pragmatic matters

Pragmatic matters include checking the required hardware, software and human resources.

Teachers’ and students’ attitudes and readiness to use computers affect how successfully

computers can be used in instruction. Even though these attitudes and readiness are not

directly involved with any certain CAI application, they should also be examined. The

following pragmatic matters should be checked:

• what kind of hardware is available,
• whether the hardware is compatible with the intended CAI application,
• whether there exist some special software requirements with the intended CAI

application (e.g., certain operating system version, external applications, etc.),
• whether there exist appropriate documentation for installation,
• what human resources are available (teaching personnel, installation personnel),
• what kind of attitudes teachers and students have towards computers, and
• whether teachers’ and students’ readiness to use the application is considered

somehow (e.g., guided tour to use the application).

5.2 Background information of the analysis

In searching for test material, there were two problems. Firstly, it was difficult to find any

CAI applications on computer science that had been used systematically in instruction.

Secondly, most of the courses discussed in literature were laboratory experimentations and

not commercial products and, thus, they have not been used widely. Real usage would have

been important from the analysis point of view. COSTOC-courses were exceptions since

they had been available commercially and several universities have used them, for example,

University of Karlsruhe, University of Kuopio (Kopponen, Kasurinen and Linna, 1991),

and University of Texas at Dallas. Therefore, they were chosen as the test material.

The COSTOC (COmputer Supported Teaching Of Computer science) project forms a

special collection of teaching material because it has been one of the major attempts to

introduce computer aided instruction on a large scale to support teaching at university level,

mostly in the area of computer science. The COSTOC project started in 1985 in Technical

University of Graz, Austria, and lasted 6 years until 1990 under the leadership of professor

Maurer.

The idea of COSTOC project is unique because it gathered the knowledge of

internationally prominent experts in uniform courses on diverse topics in computer science.

There exist more than 20 courses for teaching computer science or related subjects. The

topics include, for example, operating system concepts, computation and automata, trees,

sorting techniques, systematic programming, computer networks, syntax-analysis, digital

5.3. On COSTOC courses selected to analysis 53

logic, database systems, cryptography and data security, and several courses on

programming languages (Ada, C, Lisp, Pascal and Prolog).

COSTOC courses were selected for this analysis because they are the result of an

extremely consistent project of designing CAI courses on computer science, they represent

various topics of computer science and they are considered to have high-quality contents.

The analysis concentrated on both the external and internal features, i.e., how the user

interface has been implemented (e.g., the lay-out of contents on the screen), what kind of

teaching strategies have been used (dialog, simulation etc.), how learning has been supported

(motivation, repetition, questions etc.). Furthermore, the analysis tried to find out the special

features of computer science (e.g., the mathematical nature with clauses and proofs,

programming code) and how they are taken into consideration within COSTOC courses.

5.3 On COSTOC courses selected to analysis

Five COSTOC courses, namely, Computation and Automata, Cryptography and Data

Security, Introduction to Database Systems and the Relational Data Model, Sorting

Techniques, and Systematic Programming, were selected for detailed analysis. These

courses were chosen because they represent fundamental topics in computer science. In

addition, we had difficulties to find such CAI courses on computer science that both instruct

and test students’ learning. The chosen courses that were selected from over twenty

COSTOC courses represent different domains of computer science. Each of the chosen

courses will be shortly described after the general description of COSTOC courses.

5. 3. 1 General information about COSTOC courses

COSTOC courses consist of lessons. A full course is composed of 11 lessons: one for

introduction and ten for instruction. A half course has six lessons. The introductory lesson

(lesson 0) usually consists of the following topics:

• aims of course,
• prerequisites,
• level of course,
• contents of course,
• structure of course,
• how to use the lessons,
• references, and
• samples of lesson fragments.

Lessons are divided into chunks of information which are called frames and identified by

frame numbers. Each frame may contain text, graphics, and animation. Within a frame there

may be pauses where nothing happens for a certain amount of time or until student interrupts

by clicking the mouse or by pressing any key. There are three types of frames: navigation

54 5. Test case: COSTOC

frames, information frames, and question frames. Navigation frames are only for choosing

where to go or what to do. Title frames and end frames are considered as navigation frames

though there are no choices in them. Information frames are used for representing teaching

materials. The contents of information frames are discussed more later in this chapter.

Question frames contain questions for students. All choices within the frames can be done

through the keyboard or the mouse. A flow of a typical COSTOC lesson is described in

Figure 5.1. Students start from frame 1 and are able to select any of the sections within the

lesson. Arrows between frames depict students possibilities to move forward and backward.

In addition, the navigation option via a button is available all the time.

Figure 5.1: A typical lesson flow of a COSTOC course.

All COSTOC courses have a similar user interface, which consists of two button bars, a

main window, an annotation window and the status information (see Figure 5.2). Button

C: Continue with questions
I: Information frame
N: Navigation frame
NP: Navigation point
NS: Next section
Q: Question frame
R: Repeat section

TOC: Table of contents
[num]: frame number

R

R

R

NS

NS

NS

NS

NS

NS

R
NS

R

NS

C

C

C

1: N (Title and
Table of contents)

28:I22:I11:I2:I

39:N
(END)

38:I+NP35:I

12:I

13:I

14:I

15:I

16:I

17:I

20:Q

18:I

19:I+NP

21:Q

3:I

4:I

5:I

6:I

7:I

8:I+NP

9:Q

10:Q

23:I

24:I

25:I+NP

26:Q

27:Q

29:I

30:I

31:I

32:I

33:I

34:I+NP

36:I

37:I+NP

NEW
LESSON

EXIT
COURSE

NS

R

TOC

TOC

TOC

TOC

TOC

TOC

TOC

5.3. On COSTOC courses selected to analysis 55

bars are designed for navigating, setting options, and controlling the course in general. The

main window is for representing the course material. The annotation window is for

displaying teachers’ comments on material or other information for students and for

recording and displaying students’ private notes. Status information tells the status of various

options.

Figure 5.2: The basic display of COSTOC courses.

The upper button bar, which is placed on the top of the screen, consists of seven buttons

labeled Help, Undo, Navigate, Speed, Annotate, Options and Lesson. Each

button may be invoked by clicking it or pressing the ALT key together with the capital letter

of the label. The functionality of each button is listed next:

Help button gives information of navigation and control features. It is context
dependent, i.e., it gives information depending on the situation in which it is
activated.

Undo button tells the status of undo function and advice how to activate it.

Navigate button offers three possibilities: goto frame, which asks where to
go; mark frame, which sets a bookmark on current frame and shows it in the
status information list; and jump to bookmark, which changes the marked
frame to current frame.

Speed button allows adjustment of animation speed.

Annotate button opens annotation window for writing students’ notes if
private notes are on. If private notes are off button gives instructions how to
change them on.

56 5. Test case: COSTOC

Options button has four options to toggle: pause, beep, undo, and
switch notes. Pause changes the proceeding control from student to
computer. Beep controls sounds which be used to alert students to particularly
important points in a lesson. Undo allows students to go back step by step, as
much as they want, through what they have seen before. Switch notes option
changes from expert notes to private notes and vice versa. The path of the note
file is asked in every change.

The button bar on the bottom of the screen is sensitive to the current frame. It changes

depending on the frame that is active. The possibilities are listed next:

When the current frame is a navigation frame, there are F1 Back button and a
set of numbered buttons for branching. F1 Back leads back to a frame that the
author of the lesson has considered the “logical predecessor,” which may not be
the last frame the student has seen. The number of buttons depends on the
amount of possible choices within the navigation frame.

When current frame is an information frame there are three buttons, F1 Back,
F2 Next, and F10 Repeat. F1 Back button functions as described above, F2
Next button leads directly to the next frame (ignoring potential material still
going to be presented on the current frame), and F10 Repeat button repeats the
current frame from the beginning (including the annotations).

When current frame is a question frame, there are the same three buttons as in
information frames. F2 Next and F10 Repeat function as described above,
but F1 Back, like F2 Next, skips the current question and enters the next
frame (question or information frame). In addition, on the right side of the screen
there are ESCape and Enter buttons for skipping and answering the questions,
respectively.

The main window, which is below the upper button bar, is for displaying the lesson

material. This is the area that the authors use for designing instruction. The size of the area is

24 rows and 40 characters on each row. Authors may compose their lessons to contain text,

graphics and animation as they wish. There are different text sizes and special characters

available.

The annotation window, which is placed below the main window, is for displaying notes.

Notes are frame-sensitive, that is, they change when the frame changes. It is possible to have

several expert and private notes for each frame since whenever a lecturer or a student starts to

make notes, they are asked to specify the file where the notes will be saved. In the mode

Private notes, if Expert notes are available, this is indicated on the right side of the screen.

The student can switch to Expert notes to read them, if desired.

The status information is placed on the right side of the screen. It identifies the current

lesson and the active frame, the status of pause, beep and undo, and the type of notes in

use (expert or private). It also shows if any frame is marked as a bookmark.

5.4. General results of the analysis of COSTOC 57

5.4 General results of the analysis of COSTOC

The general results of the analysis of COSTOC courses are divided into four groups,

namely, course contents, instructional support, user interface, and pragmatic criteria. The

results presented in this section describe properties that are common to all tested courses.

5. 4. 1 Results of the course contents analysis

First, the content types of information frames are presented followed by the description of

the illustration of information frames and the relevancy of the course contents to the learning

aims.

Content types of information frames

The three general content types of information frames in COSTOC courses are analysis,
definitions, and equations and formulas. In each course, analysis is considered as analysing
different properties or characteristics of the subject, for example, in Sorting Techniques course
explanations concerning space or time complexity of a sorting algorithm is considered as
analysis. Most often analysis is verbal, though in some cases pictures and animation are
utilised to illustrate it. Definitions explain new concepts and phenomena using both verbal and
visual expressions. Equations and formulas are classified into the same type since they both
consist of mathematical expressions.

In addition to the three general content types, other types exist. Computation and Automata
course contains productions, programming code and proofs. Introduction to Database Systems
and the Relational Data Model course contains programming code and relations. Systematic
Programming contains programming code. Sorting Techniques course contains programming
code and proofs. The proportions of content types are presented in percents in figures.

Illustration of information frames

The information frames are illustrated using examples, pictures, and animation. Examples are
textual, numerical or visual (i.e., pictures or animation). The real amount of examples is larger
than the stated amount in the numerical results of each tested course since many information
frames contain more than one example. Pictures are motionless whereas animation consists of
pictures that have moving elements.

Relevancy of the course contents to the aims

Course contents have a high relevancy to learning aims in all those tested courses in which the
learning aims were stated.

5. 4. 2 Results of the instructional support analysis

The results of instructional support analysis are presented in the same order as described in

the analysis method, that is, structure of the course, motivation, informing of the learning

aims, guidance to use the course, relevancy of the course contents to the aims, interaction,

feedback, repetition and recall, practicing new skills or knowledge, and evaluation of

learning outcomes.

58 5. Test case: COSTOC

Motivation

The learning support in information frames includes motivation, recall and repetition. In
addition, there exist thinking points which are discussed in the section concerning with
interaction.

In all tested courses, students are motivated by using explanations and both verbal and
visual examples. Motivation varies a lot within the separate lessons of the courses. There exist
lessons that have no motivation at all whereas some lessons have several motivating
explanations or examples.

General view of the course contents

Course contents are described well both in paper documents and in the introductory lesson of
each tested course.

Prerequisites

Prerequisites and the level of the course are stated clearly in paper documents and in the
introductory lesson in three out of five tested courses. In one tested course prerequisites are
stated only in the introductory lesson, and from one tested course prerequisites are totally
missing.

Informing of the learning aims

Aims of the courses are not given in all tested courses. If learning aims are given, they are
presented in the introductory lesson (lesson number 0) using dashed or similar lists.

Structure of the course

The structure type used is a frame. Each COSTOC course consists of three types of frames,
namely, navigation, information and question frames. All frames that have menus, including
the start and end frames, are considered as navigation frames. Furthermore, in some information
frames there are navigation points, that is, there is a possibility to choose what to do next
(e.g., skip the rest of an example).

The most common type of question is the multiple choice question. There are only few
other types of questions, such as verbal or numerical questions. A student has one or two tries
to answer a question depending on the course. Upon failure, the correct answer is shown.

Guidance to use the course

Content-dependent guidance is provided in four out of five tested courses, that is, introductory
lessons contain instructions how to use the lessons. Technical guidance is provided only in the
demonstration version of COSTOC courses in which it is implemented as a guided tour
through the menus and options.

Interaction

The forms of instructional interaction in tested courses are questions and thinking points. The
latter ones are places where students are actively asked to think the solution before proceeding.
The idea of thinking points is good since it actively reminds students that thinking is very
important and things are not always easy to understand.

Other results concerning interaction are presented within the results of user interface
analysis (see Section 5.4.3).

Instructional feedback

Instructional feedback is found only in question frames. Feedback to students’ answers is most
often short verbal feedback. For multiple choice questions, feedback is provided if the given
answer belongs to the group of displayed possible answers, that is, the answer is one of the
choices. If the answer is not within the choices, no feedback or notice is given. For other type
of answers feedback is given always.

5.4. General results of the analysis of COSTOC 59

Technical feedback is discussed in results of user interface analysis (see Section 5.4.3).

Repetition and recall

Repetition and recall are important methods for building the overview of a course. In many
cases, repetition is a summary of the most important concepts. Recall, when it is used, is a
reference to previously discussed topics or concepts.

Practicing new skills or knowledge

In each tested course, the only form of practice is via questions, which are most often multiple
choice questions. The other question types are textual and numerical questions. Multiple choice
questions are easy to implement, answer, and check the answer. The problem is that guessing is
very easy, especially when there are only two choices. In such cases, we recommend not to use
multiple choice questions. Verbal questions are also easy to create but answering and checking
verbal answers are complicated. Students need a model to answer, for example, whether upper
case and lower case are equal. Checking verbal answers is difficult since there might be typing
errors, synonyms, missing words, extra words, etc. which all should be handled. This type of
question is good since it forces students to think the answer more carefully than just choosing
one choice. Numerical answers are also easy to check if only the result is required. If students
have to explain how they got the result, checking becomes difficult. Nevertheless, that kind of
question should be available for practicing since numerical answers with explanations demand
students to use their problem solving skills.

Evaluation of learning outcomes

No attempt is made to consider evaluation of learning outcomes in any of the tested courses.

5. 4. 3 Results of the user interface analysis

These results consist of the results of interactivity analysis and the results of display elements

analysis. Since the user interface is common to all tested courses, all results related to user

interface analysis are presented here.

Results of the interactivity analysis

 Enhancing int eraction. Interaction is very simple in all tested courses. Students control moving
forward within a frame by pressing any key excluding some special keys that are used for
moving backward in a frame or moving between frames. No special methods have been used to
enhance interaction. Cursor can be moved around the screen using either a mouse or a keyboard.
Both methods are available always.

Information can be entered either using a keyboard or mouse. Both of them can be used
when answering questions, performing actions and changing options. Since questions are most
often multiple choice questions, the input information in those cases is simply one number.
Numerical answers are obvious and textual answers are very short consisting of up to three
words. A place for answer is showed by a blinking underline character. There is no special
prompt for answers, though on the right side of the screen there appear two buttons, ESCape
and Enter, when application is waiting for student’s answer.

 Technical feedback. There is some status information that tells students which lesson and
which frame in that lesson they are studying. Previous actions, whether these actions have been
successful or not, and what actions should be taken next cannot be seen anywhere. Feedback
provided by the system is scarce since there exist merely a few error messages and limited help
information. Feedback is only partly appropriate because in some places provided help is too
general or even missing.

 Messages and instructions. There exist only a few messages and instructions in COSTOC
courses. The messages are most often error messages informing about a missing special
character file. Instructions to perform a particular action are given in a short demonstration

60 5. Test case: COSTOC

program, which is the only place where they can be found. On the other hand, actions in
COSTOC courses are very simple and quick to learn.

One peculiarity is the message that appears when a student has been using the tested course
for quite a long time, telling that it is time to have a break. That is reasonable but the
following action is shocking: the system shuts itself down without giving the student any
chance to prevent it.

 Clarity of needs to take a particular action. Because of the simple structure of user interface
of COSTOC courses, all options are in sight of students during the lessons. This is good since
students are able to control the system easily. Nevertheless, the clarity of the meaning of
available options is not very good. For example, help option differs from the other options
on the same button bar in its functions since it is applicable together with other options. This
difference is not informed clearly.

The Undo function is useful but there exist some problems in its usage. When a student
wants to change undo from off to on the system asks a path without explaining what is
exactly wanted and why. In addition, if the confused student then wants to cancel this function
it is not possible even though there is an escape button available. A similar problem appears
when changing notes from expert to private and vice versa.

The Navigation function does not work properly. The problem is that when navigating
from one frame to another using goto frame option, a student has to know the target frame
number by heart since there is no list of frame numbers available. Another minor problem is
that there can exist only one bookmark simultaneously.

The option for adjusting speed is unclear since there is no mention how speed is changed.
Trying out the speed function reveals that it has something to do with the animation speed.
Still it is a confusing function because it is not explained whether the speed of animation is
changing, which would be the expected function, or the delay of the animation is changing,
which really happens.

The structure of the system is clear since it is very simple. There exists only one screen
which includes all possible buttons and options. Therefore, students should not have any
problem knowing where they are.

 Clarity of the type of information needed to be enter ed. Some questions to which textual
answers are expected should have an example answer format, since without it there is a good
chance for a misunderstanding. This is not a serious problem since most of the questions are
multiple choice questions.

 Possibility to undo and redo. Students are able to undo actions they have taken if they have
earlier switched undo option on. Undo is implemented so that when undo is on, all screen
images that a student goes through, are temporarily saved on hard disk until undo is switched
off. This method slows down execution speed of a course slightly.

 Possibility to look through a sequence of displays in either direction. It is possible to look
through a sequence of screens either backward or forward by using Back and Next buttons. In
addition, there exists a Repeat option which repeats the contents of the current frame.

 Possibility to move to different parts of application as needed. Moving to different parts in
a course means either moving within a lesson or between lessons. Moving within a lesson is
possible by using navigate function which has two choices, namely, going to a specified
frame or jumping to a bookmark. When a student wants to go to a specified frame, he has to
give the number of it. Jumping to a bookmark works when there exist a marked frame where to
jump. Moving between lessons is possible but a bit inconvenient. Students must be familiar
with the way how directories and files are organized in the operating system to understand how
to move to a new lesson. Some help is available on request.

 Possibility to choose the rate at which information is presented. The execution rate of
lessons can be controlled by the computer or by the student. It is always the student who
decides which of the two has control. In a normal situation, a student controls the execution
rate by using a keyboard or a mouse. In this case, frame contents are built piece by piece and
student may take his time to read the contents. The computer has control when a student
switches Pause option off. In this case, the execution rate is so fast that the student has no
time to read the text or look properly pictures and animation. Therefore, the computer should

5.4. General results of the analysis of COSTOC 61

have control only when a student is looking for something special and quickly wants to browse
already familiar material.

 Possibility to name and organize information for later use. Recalling information is
possible by using a bookmark. Drawbacks are that there can be only one frame marked at a
time and the only reference to that marked frame is its frame number, which does not tell
anything about its content. It is not possible to save a certain situation and continue later from
that situation.

 Correcting errors in inputs before and after processing. Errors may occur when students have
to choose what to do or when they enter their answers to questions. In a case of choosing,
invalid inputs are rejected and nothing happens. The situation is different when answering
questions. If the input is wrong it can be changed before processing, or otherwise it will be
judged incorrect.

 Diagnostic information in an error situation. The only real errors are occasionally appearing
system errors which are caused by missing special character files. The error message informs
that as a result of these missing files the screen appears incomplete. The name of the missing
file is also reported. It is odd that sometimes a frame using some special character file appears
complete and a few moments later, for example, when repeating the same frame, an error
message is presented and the frame is incomplete.

 Availability of the help facility. Help function is available almost everywhere in COSTOC
courses. It is partly context-sensitive, that is, it gives specified instructions in different
situations, for example, in adjusting the speed of animation, in changing undo option on or
off, in switching notes between expert and private, or in moving to a new lesson. In some
places it either presents one general instruction or no instruction at all. Help function is good
and works properly.

 Clarity and context-sensitivity of help information. Context-sensitive instructions, which
are clear but not very detailed, can be found using the help button.

 Quality and usefulness of paper documents. All novel users are supposed to go through the
demo version of COSTOC courses since it is the only place where the user interface and its
functions are described properly. Paper documents offer merely information concerning lesson
contents, not the user interface. This is an obvious defect.

Results of the display elements analysis

 Usage of text. A lot of text has been used to present the subject material in all tested courses.
Occasionally there is too much text in one display, that is, from the top of the display to the
bottom line (24 lines, 40 characters/line). Feedback text and text in error messages are usually
very brief. In some cases, there should be more explanations. Help texts are longer than the
other texts but not much.

 Usage of visual elements. Schemes and pictures are simple and easy to understand though
from time to time the system prints a message about a missing graphics file, which causes a
loss of some special characters. Pictures and animation are used often and in most cases they are
simple but effective.

 Connections between display elements. Different types of information have their own
places on the screen. There are buttons both on the top and the bottom of the screen. Status
information is placed on the right side of the screen. Main part of the display is reserved for
presenting teaching material. There is also an area reserved for expert or private notes. This
organization remains unchanged in all COSTOC courses. Text and visual elements used in the
main window are connected together with visual aids only seldom.

 Usage of colors. Usage of colors is not consistent in all courses, namely, in Sorting
Techniques and Systematic Programming courses both text and background colors in
information frames vary a lot, which makes these courses look tangled. In some places the
usage of colors is unsuccessful and makes reading difficult, for example, yellow letters on a red
background.

 Usage of highlighting. Information is highlighted using underlining, blinking and colors.
Underlining disturbs reading the text slightly in some cases where the line spacing is narrow.
Blinking is used for highlighting the cursor, which is an arrow, and for some animations. The
blinking cursor is disturbing. Colors are used for highlighting titles, new concepts, pictures and

62 5. Test case: COSTOC

animation. The usage of colors for highlighting is most of the time good but there are
occasionally too many colors on the screen at the same time and, therefore, it is difficult to
know what is the most important issue.

 Display-building. Information on the screen is mainly easy to see and read. Display is built-
up starting from the upper left corner of the main window and proceeding to right and down.
Display is built piece by piece under students’ control. Sometimes display-building takes a
long time if there is a complex picture to be presented. In such a case, students may try to
hasten the build-up process but that is not possible.

In a few places there is need to display more information than can be placed in one display.
In such cases the top part of the display is erased and the rest is lifted up to give space for new
information.

5. 4. 4 Results of the pragmatic matters analysis

Results of the pragmatic matters, which are common to all COSTOC courses, are presented

in four groups, namely, hardware requirements, software requirements, human resources,

and teachers’ and students’ attitudes and readiness. Since we did not organize an

experimentation with teachers and students, we were not able to investigate these pragmatic

matters in a real situation.

Hardware requirements

The hardware requirements are not described anywhere, neither in the demonstration lesson nor
in the paper documentation that was available for this study. This is a serious shortcoming.

Software requirements

The required software is not listed anywhere. Instructions for installation and running COSTOC
courses are delivered as a text file. With these short and simple instructions, installation and
execution will succeed.

Human resources

Human resources are needed for installing and introducing tested courses to students. In this
case, both can be done by teachers themselves since, as teachers of computer science, they are
used to handle computers.

Teachers’ and students’ attitudes and readiness

Based on our previous experiments (Kopponen et al., 1991), both teachers and students are
willing to use COSTOC courses as an extra material to support traditional instruction.
Readiness to use computers on computer science courses is not a problem. In any event, the
guided tour of COSTOC courses is necessary in order to get familiar with the user interface.

5.5 Computation and Automata: Description and results of the
analysis

5. 5. 1 Course description

Computation and Automata is a full course (i.e., it consists of 11 lessons: introductory

lesson 0 + 10 teaching lessons) which presents briefly some of the fundamental topics of

theoretical computer science, namely, automata, languages, computability, and complexity.

5.5. Computation and Automata: Description and results of the analysis 63

In addition, it discusses some special topics, such as L systems, Petri nets, and grammar

forms. The logical dependency of lessons is represented in Figure 5.3.

According to Salomaa and Maurer (1989), the basic question in the theory of computing

can be formulated in many ways: What is computable? For which problems can we construct

effective mechanical procedures that solve every instance of the problem? Which problems

possess algorithms for their solution? During the 1930’s the fundamental development in

mathematical logic showed the existence of unsolvable problems. No algorithm can possibly

exist for the solution of such problems. For establishing unsolvability, it is essential to have

a model of computation.

Figure 5.3: Logical dependency graph of Computation and Automata (Salomaa
and Maurer, 1989).

This course discusses both general models of computation, such as a Turing machine (see

Figure 5.4), grammars, and L systems, and specific models of computation, such as finite

automaton. As Salomaa and Maurer (1989) summarize, a good model represents a well-

balanced abstraction of a real practical situation - not too far from and not too close to the real

thing.

1. Formal languages

2. Automata I

3. Formal
languages II

6. Recursive functions
and decidability I

4. Automata II

5. L systems

7. Recursive functions
and decidability II

8. Complexity

9.Petri nets 10. Grammar
forms

64 5. Test case: COSTOC

Figure 5.4: Turing machine as an example of the contents of Computation and
Automata course.

5. 5. 2 Numerical results

By classifying frames into navigation, information and question frames and calculating their

ratio to the total amount of frames the structures of the tested courses may be depicted. A

more detailed classification of information frames into classes, in which frames have

properties, such as content types, illustration of information frames, motivation, repetition,

recall, and thinking points, forms the course profile. Note that an information frame may

include more than one classification property. Thus, the percentages of course profile

describe only the existence density of certain property in the information frames. The

sturcture and the course profile are presented for all tested courses.

The Computation and Automata course consists of 420 frames. The course profile is

presented in Figure 5.5 as a bar diagram and the general structure of this course is presented

in Figure 5.6 as a pie diagram.

5. 5. 2. 1 Course contents

Content types of information frames

Computation and Automata course contains 324 information frames that consist of analysis,
definitions, equations, productions, programming language code and proofs. Analysis is found
in 117 information frames (36%). There exist 133 information frames (41%) containing
definitions, which play an important role in this course. Equations are found in 89 information
frames (27%), that is, approximately one in every four frames. Productions are found in 104
information frames (32%). Programming language code occurs only in one information frame
(0.3%) that presents some examples of languages and alphabets. Proofs are found in 32
information frames (10%).

5.5. Computation and Automata: Description and results of the analysis 65

Illustration of information frames

The information frames are illustrated using examples, pictures and animation. There are 170
information frames (53%) that contain examples. Pictures are used approximately one in every
five information frames, that is, there are 63 pictures (20%). There are 83 animations (26%).

5. 5. 2. 2 Instructional support

Motivation, repetition, recall, and thinking points

Learning support of this course consists of motivation, recall and thinking points. Motivation
is used in 34 information frames (11%) and recall is used in 35 information frames (11%).
Thinking points are rare; there are only 4 information frames (1%) in which they are used.

0%

10%

20%

30%

40%

50%

60%

A
na

ly
si

s

D
ef

in
iti

on
s

E
qu

at
io

ns

P
ro

du
ct

io
ns

C
od

e

P
ro

of
s

E
xa

m
pl

es

P
ic

tu
re

s

A
ni

m
at

io
ns

M
ot

iv
at

io
n

R
ec

al
l

T
hi

nk
in

g
po

in
ts

32
%

1%

11
%

10
%

26
%

19
%

52
%

10
%

0,
3%

27
%

41
%

36
%

Figure 5.5: The course profile of Computation and Automata.

Structure of the course

Computation and Automata course consists of 420 frames out of which 23 frames
(23/420*100%≈5,5%) are navigation frames, 324 (77,1%) are information frames, and 73
(17,4%) are question frames. In addition to the navigation frames, there exist navigation points
in 48 information frames. Thus, there exist 71 frames with a possibility to navigate. The frame
percentages of Computation and Automata course are shown in Figure 5.6. From all question
frames there are 73 questions out of which 67 (92%) are multiple choice questions, 2 (3%)
numerical questions and 4 (5%) textual questions.

66 5. Test case: COSTOC

77,1%

5,5%
17,4%

Navigation frames

Information frames

Question frames

Figure 5.6: Frame percentages of Computation and Automata.

5. 5. 3 Verbal results and conclusions on Computation and Automata

Course contents

 Content types of information frames. The reason for the large amount of analysis is the need to
explain abstract phenomena that otherwise might be difficult to understand. The authors have
succeeded very well in this task.

The frequency of definitions, that is, two definitions per five information frames, indicates
that there are enough frames left to explain and demonstrate new concepts and phenomena.
Furthermore, analysis revealed that definitions are distributed to separate lessons quite evenly,
thus, students do not get too much new information at a time.

There are differences on frequencies of equations between lessons, that is, the relative
amounts vary between 7% and 55%. The lowest frequency is found in a lesson which introduced
how to model parallelism by Petri nets. The highest one is found in a lesson which widens and
deepens the lesson concerning recursive functions and decidability. Even though the topic is
mathematical, most of the equations are very simple. Therefore, students need just a little
knowledge of mathematics. This can be explained with the subjects that are discussed in each
lesson. Most of them concentrate on the fundamentals of computation theory in which
equations are required to a certain extent.

Productions or rewriting rules are the speciality of Computation and Automata course. They
are necessary for defining rewriting systems that be used to define languages, which are one of
the main topics in this course. The amount of programming code is quite small. This is natural
since code is not an essential part of this course.

The large amount of proofs can be explained with the theoretical nature of the course.
Within the tested courses, Computation and Automata is the only course in which proofs have
a significant role. Some of the proofs are informal, that is, the proofs are verbal and there are
examples illustrating them. This kind of style makes them easy to understand, though the
authors also give references to formal proofs.

 Illustration of information frames. The examples are both verbal and visual (i.e., pictures or
animation) and support understanding of the topic very well. Pictures vary from very simple
ones to complex graphics that illustrate well, for example, the functions of automata.
Animation is used more often than pictures. Animation, like pictures, vary from simple
blinking arrows to simulations presenting, for example, how Petri nets are applied in problem
solving.

 Relevancy of the course contents to the aims. Since the learning aims are not stated clearly,
it is difficult to say if the course contents are relevant to the aims. In any event, the quality of
the contents is high.

Instructional support

 Motivation. Most often motivation is verbal though there are a few motivating examples
implemented as animations (e.g., Sieve of Eratosthenes; lesson Compu8, frame 3). Typically,
motivation arises by explaining, for example, why something is more useful than something

5.6. Cryptography and Data Security: Description and results of the analysis 67

else. Appearance of motivation is uneven, that is, in a couple of lessons there exists only one
motivation point whereas the other lessons may have up to seven motivation points. The lack
of motivation points may diminish students’ interest in the course.

 General view of the course contents. Contents are described both in paper documents and in
the beginning of the introductory lesson (i.e., Compu0).

 Prerequisites. The introductory lesson of this course informs that no previous knowledge of
the subject is needed, though it is good to be ‘mathematically minded.’ In paper documents,
there is no mention about prerequisites.

 Informing of the learning aims. The documentation of this course does not state clearly the
learning aims.

 Structure of the course. The percentage of navigation frames (5,5%) is very low but since
there exist many navigation points the real percentage of navigation possibility (17%) is good.
Students have enough freedom to choose and not too much to loose the leading idea of the
course.

The proportional amount of information frames (77,1%) is very large. Nevertheless, this is
not a problem since about every seven information frames contain a navigation point that could
have been an independent navigation frame and, in such case, the relative amount of
information frames would have been lower (69%). This means that even though the amount of
information frames is high, students have enough possibilities to control what to do.

Students have two tries to answer a question and if they fail, the correct answer is shown.
The same question is asked until the correct answer is given. The frequency of questions is good
since there is one question after approximately four information frames. This means that
students’ learning is tested quite often and misunderstandings are noticed quickly.

 Guidance to u se the course. Content-dependent guidance is given both in paper documents
and in the introductory lesson, that is, the possible uses of the course are stated.

 Interaction. Questions are the only means of real interaction in this course. Thinking points
were not found which is a defect. At least some thinking points should have been used, since
use of them might enhance students’ learning process.

 Instructional feedback. Students are given instructional feedback only within question
frames. Technical feedback (help) is given when students ask for it.

 Re petition and re call . These can be found in every lesson evenly, which indicates that the
authors of this course are aware of their importance.

 Practicing new skills or knowledge. The only form of practice is questions.
 Evaluation of learning outcomes. There does not exist any evaluation of learning outcomes.

5.6 Cryptography and Data Security: Description and results of
the analysis

5. 6. 1 Course description

Cryptography and Data Security is the only half course in this analysis. It represents the

basics of cryptography leaving outside certain parts of the theory, such as information

theory, in order to avoid many complications, as Salomaa and Maurer (1988) put it.

Cryptography and Data Security course discusses security issues which belong to areas

where cryptography is a reasonably useful tool, such as digital signatures in electronic mail

messages and the secrecy of contents of messages. The logical dependency of lessons is

represented in Figure 5.7.

68 5. Test case: COSTOC

Figure 5.7: Logical dependency of Cryptography and Data Security.

Since the last three lessons are independent, any of them can be studied after lessons one and

two. A sample of lesson 1 of Cryptography and Data Security course is presented in Figure

5.8.

Figure 5.8: A snapshot from Cryptography and Data Security course.

5. 6. 2 Numerical results

Cryptography and Data Security course includes only 206 frames because it is a half course.

The classification of information frames leads to the course profile presented in Figure 5.9.

The structural appearance of this course is illustrated in Figure 5.10.

5. 6. 2. 1 Course contents

Content types of information frames

Cryptography and Data Security course is built using only the basic content types. It contains
134 information frames which consist of analysis, definitions and equations. Plenty of analysis
is used in this course since analysis is found in 22 information frames (16%). Like analysis,
definitions have an important role since there exist 58 information frames (43%) containing

3. Public-key
cryptosystems and RSA

1. Security, encryption and cryptanalysis

2. Classical cryptosystems

4. Knapsack systems 5. Protocols

5.6. Cryptography and Data Security: Description and results of the analysis 69

definitions. Equations are found in 52 information frames (39%), that is, approximately two in
every five frames.

Illustration of information frames

The information frames are illustrated using examples, pictures and animation. There are 92
information frames (69%) that contain examples. There are 28 pictures in 134 information
frames (21%); consequently, pictures are used approximately one in every five information
frames. Animation is used more often than pictures. There are 51 animations in information
frames (38%).

5. 6. 2. 2 Instructional support

Motivation, repetition, recall, and thinking points

Motivation, recall and thinking points are used for supporting the learning process. Motivation
is used in 22 information frames (16%). In this course, recall is used in 12 information frames
(9%) which is a reasonable amount. Thinking points are rare; there are only 6 information
frames (4%) in which thinking points are used.

0%

10%

20%

30%

40%

50%

60%

70%

A
na

ly
si

s

D
ef

in
iti

on
s

E
qu

at
io

ns

E
xa

m
pl

es

P
ic

tu
re

s

A
ni

m
at

io
ns

M
ot

iv
at

io
n

R
ec

al
l

T
hi

nk
in

g
po

in
ts

4%

9%

16
%

38
%

21
%

69
%

39
%43

%

16
%

Figure 5.9: The course profile of Cryptography and Data Security.

Structure of the course

Cryptography and Data Security course is a half course and consists of 207 frames out of which
47 (22,7%) are navigation frames, 134 (64,7%) are information frames, and 26 (12,6%) are
question frames. In addition to the navigation frames, there exist navigation points in 2
information frames, thus, there exists a possibility to navigate in 49 frames. The 24 question
frames contain 26 questions which are all multiple choice questions. The frame percentages of
Cryptography and Data Security course are shown in Figure 5.10.

70 5. Test case: COSTOC

64,7%

22,7%
12,6%

Navigation frames

Information frames

Question frames

Figure 5.10: Frame percentages in Cryptography and Data Security.

5. 6. 3 Verbal results and conclusions on Cryptography and Data Security

Course contents

 Content types of information frames. The amount of analysis is very good and it indicates that
authors have put considerable effort into explaining things in order to deepen students
knowledge on certain topics. In some cases, the analysis is illustrated using pictures or
animation.

Many definitions are needed because there exist several concepts and methods that are
required to understand the subject. The course starts with historical cryptosystems and ends with
the latest methods used for encryption and decryption. Thus, it provides students an extensive
presentation why cryptography is needed and how it has developed through centuries.

The relatively high amount of equations is natural since cryptography is strongly based on
mathematics. Students need to know the fundamentals of mathematics, for example, how to
multiply matrices.

 Illustration of information frames. The examples are both verbal and visual (i.e., pictures or
animation) and support understanding of the topic very well because examples are presented by
coordinating them with simple familiar things, such as a telephone directory.

Pictures, which are most often very simple, are used effectively to lighten from time to
time difficult concepts and phenomena.

Animation varies from simple blinking arrows to simulations presenting, for example, how
messages have been transported in the early days, or how public-key cryptosystems work. Due
to programming errors animation does not look like it is probably intended to look in several
places, which causes confusion.

 Relevancy of the course contents to the aims. Since the learning aims are not stated clearly,
it is difficult to say if the course contents are relevant to the aims. In any event, the quality of
the contents is high.

Instructional support

 Motivation. Most often motivation is verbal though there are a few motivating examples
implemented as animations (e.g., what kind of advantages public-key cryptography has; lesson
Crypto2, frame 7). The large amount of motivation is good since students are likely to be
content when they are explained the grounds and consequences of phenomena. Within this
course, motivation is found evenly in every lesson.

 General view of the course contents. Course contents are outlined well in the paper
documents. In the introductory lesson (i.e., Crypto0), contents are described very briefly.

 Prerequisites. Prerequisites are not stated clearly, neither in paper documents nor in the
introductory lesson. The level of the course in given in paper documents.

 Informing of the learning aims. The documentation of this course does not state clearly the
learning aims.

 Structure of the course. The proportional amount of navigation frames (22,7%) is quite
high but that does not violate the consistency of the course. The relatively high amount of

5.6. Cryptography and Data Security: Description and results of the analysis 71

navigation frames may explain that there exist only two navigation points within information
frames. Together these give students enough possibilities to choose what to study.

The percentage of information frames (64,7%) is good. The ratio between information and
navigation frames is balanced, that is, there exists one navigation frame per three information
frames. This means that information is presented in blocks of reasonable size.

The frequency of questions is fairly good since there is one question after approximately five
information frames. In this course, like in Computation and Automata, students have two tries
to answer and then the correct answer is shown. The same question is asked once more
regardless of whether the student gives the correct answer or not.

 Guidance to use the course. There is no content-dependent guidance given, neither in paper
documents nor in the introductory lesson.

 Interaction. Interaction with students is organised using questions and thinking points. A
good thing is that thinking points can be found in four out of five lessons, which indicates that
the authors have wanted to stimulate thinking of different topics.

 Instructional feedback. Students are given instructional feedback only within question
frames. Technical feedback (help) is given when students ask for it.

 Repetition and recall. The problem with recall is that it is used only to remind students of
the previously taught concepts or methods, and there is no summary at the end of any lesson.
Therefore, the overview of this course may remain obscure.

 Practicing new skills or knowledge. The only form of practice is questions.
 Evaluation of learning outcomes. There does not exist any evaluation of learning outcomes.

72 5. Test case: COSTOC

5.7 Introduction to Database Systems and the Relational Data
Model: Description and results of the analysis

5. 7. 1 Course description

According to Maurer (1990) the aims of this course are as follows:

1. To present the concepts, notations and languages of databases systems and the
relational model in a tutorial fashion,

2. To show the practical applications of the presented knowledge, and
3. To gather enough material to support lecturers teaching classes on database

systems and the relational data model.

This course exceptionally consists of twelve lessons (1 introductory and 11 normal lessons),

whose logical dependency graph is represented in Figure 5.11. A snapshot of this course

contents is represented in Figure 5.12.

Figure 5.11: Logical dependency graph of Introduction to Databases and the
Relational Data Model (Maurer, 1990).

3. Data updating
facilities

1. Introduction to Database Systems

2. Basic Relational Data Model

4. Normalisation 5. Relational
algebra (part 1)

7. Relational calculus (part 1)

9. Data sub-language SQL

10. Data sub-language QBE

6. Relational
algebra (part 2)

8. Relational calculus (part 2)

11. Architecture of
Database Systems

5.7. Introduction to Database Systems and the Relational Data Model: Description ... 73

Figure 5.12: A snapshot from Introduction to Databases and the Relational
Data Model.

5. 7. 2 Numerical results

Introduction to Databases and the Relational Data Model course consists of 447 frames. The

course profile based on classification of information frames is presented in Figure 5.13 as a

bar diagram and the general structure of this course is presented in Figure 5.14 as a pie

diagram.

5. 7. 2. 1 Course contents

Content types of information frames

Introduction to Database Systems and the Relational Data Model course contains 244
information frames which consist of analysis, definitions, equations, programming language
code, and relations. Analysis is rare because it is found only in 10 information frames (4%).
There are 141 information frames (58%) containing definitions. Equations are found in 30
information frames (12%) and programming code occurs in 95 information frames (39%).

Illustration of information frames

The information frames are illustrated using examples, pictures and animation. There are 170
information frames (70%) that contain examples. Pictures are found in 32 information frames
(13%), and there exist 126 animations in 244 information frames (52%).

5. 7. 2. 2 Instructional support

Motivation, repetition, recall, and thinking points

As a learning support, only motivation and recall are used in this course. Motivation is used in
13 information frames (5%), and recall is used in 2 information frames (1%).

74 5. Test case: COSTOC

0%

10%

20%

30%

40%

50%

60%

70%

A
na

ly
si

s

D
ef

in
iti

on
s

E
qu

at
io

ns

C
od

e

R
el

at
io

ns

E
xa

m
pl

es

P
ic

tu
re

s

A
ni

m
at

io
ns

M
ot

iv
at

io
n

R
ec

al
l

T
hi

nk
in

g
po

in
ts

5%

39
%

0%1%

52
%

13
%

70
%

44
%

12
%

58
%

4%

Figure 5.13: The course profile of Introduction to Database Systems and the
Relational Data Model.

Structure of the course

This course consists of 447 frames out of which 89 (19,9%) are navigation frames, 244
(54,6%) are information frames, and 114 (25,5%) are question frames. Within this course, there
do not exist any additional navigation points. The 114 question frames contain 57 questions (all
multiple choice questions) which means that there exist two question frames for each question.
The frame percentages of Introduction to Database Systems and the Relational Data Model
course are shown in Figure 5.14.

54,6%

19,9%
25,5%

Navigation frames

Information frames

Question frames

Figure 5.14: Frame percentages in Introduction to Database Systems and the
Relational Data Model.

5. 7. 3 Verbal results and conclusions on Introduction to Database Systems
and the Relational Data Model

Course contents

 Content types of information frames. The amount of analysis is very low which may cause
difficulties for students to understand the topic deeply. In most of the lesson there is no analysis
at all. This course is more practical than theoretical and that might be the explanation why
analysis is used only seldom.

5.7. Introduction to Database Systems and the Relational Data Model: Description ... 75

Definitions plainly have an important role in this course. They are found evenly throughout
the lessons which indicates that every lesson provides new information to students.

Formulas are not very typical for this topic, therefore, their amount is reasonable.
Equations concentrate on a few lessons which discuss mathematical topics, such as, relational
algebra and relational calculus.

Programming language code is an essential part of this course, since databases are processed
using special kind of programming languages, namely, Data Description Language (DDL) and
Data Manipulation Language (DML). Since the programming samples presented in this course
are very simple and the code differs from other programming languages a lot, it is not necessary
to know even the basics of programming beforehand.

 Illustration of information frames. The examples are mainly visual (i.e., pictures or
animation), though there are also verbal ones. Examples are used evenly throughout the lessons
and they support understanding of the topic very well.

Most of pictures are used as a part of a clarifying example of concepts or operations.
Pictures have a less important role than animation in this course.

Animation is used much more often than pictures. It varies from simple blinking arrows to
simulations presenting, for example, how databases are updated using DML. Like pictures,
animation is used as a part of examples to assist students to understand different operations.

 Relevancy of the course contents to the aims. The contents are of good quality and highly
relevant to the aims.

Instructional support

 Motivation. Most often motivation is verbal though there are few motivating examples
implemented as animations (e.g., why an information model must be dynamic; lesson Datab1,
frame 12). The amount of motivation is too low.

 General view of the course contents. Both paper documents and the introductory lesson (i.e.,
DATAB0) contain a detailed description of the course contents.

 Prerequisites. Prerequisites are presented very briefly both in paper documents and in the
introductory lesson. The level of the course is also given, that is, who the intended users are.

 Informing of the learning aims. The aims of this course are clearly stated both in paper
documents and in the introductory lesson.

 Structure of the c ourse. The relative amount of navigation frames (19,9%) is fairly large.
Anyway, since there does not exist any navigation points the amount is reasonable.

The proportional amount of information frames (54,6%) is under the lower bound of the
ideal proportion (60%). This indicates that either each information frame contains lots of
information and therefore a small amount of information frames are required, or the ratios
between navigation, information and questions frames are not balanced. In this case, the latter is
true since there exist two question frames per each question and that distorts the ratios. If there
were only one question frame per each question, as there usually is, the proportional amount of
information frames (63%) would be between the ideal bounds. Therefore, even though the
amount of information frames is low the course is in balance.

The amount of question frames differs from the other COSTOC courses noticeable. The
reason is that students are allowed to try to answer the question only once and if they fail, one
recall frame concerning the topic of the question will be immediately presented to them. These
recall frames joined to the questions are not counted in the amount of recall in information
frames. The frequency of questions is good since there is one question after approximately four
information frames.

 Guidance to use the course. Content-dependent guidance is given both in paper documents
and in the introductory lesson, that is, the possible uses of the course are stated.

 Interaction. Questions are in use but thinking points are missing from this course. It would
have been useful to have them since thinking pauses encourage students to reflect the subject
even though this topic is more practical than theoretical. This is an obvious defect.

 Instructional feedback. Students are given instructional feedback only within question
frames. Technical feedback (help) is given when students ask for it.

76 5. Test case: COSTOC

 Repetition and recall. The amount of recall is definitely inadequate. With such little recall
students may have difficulties to associate concepts to each other and, since the summaries of
each lesson are missing, to get the appropriate overview of the topic.

 Practicing new skills or knowledge. The only form of practice is questions.
 Evaluation of learning outcomes. There does not exist any evaluation of learning outcomes.

5.8 Sorting Techniques: Description and results of the analysis

5. 8. 1 Course description

This full course concentrates on presenting major sorting techniques including

implementation of the algorithms discussed, the analysis of space and time requirements, and

applications. In addition, it introduces the use of various data structures and program design

principles, as well as, the importance of efficient sorting techniques and efficient algorithms

in general by demonstrating how “a little thinking can save lots of time and effort,” as Maurer

(1988) puts it. The course also aims to provide enough material on sorting as dealt with in

most university classes on data structures and algorithms. The lessons logical dependency

graph is represented in Figure 5.15. A snapshot from Sorting Techniques is represented in

Figure 5.16.

Figure 5.15: Logical dependency graph of Sorting Techniques (Maurer,
1988).

1. Introduction and Elementary Sorting Techniques

2. Heapsort 3. Mergesort 6. Shellsort

4. Quicksort

5. Radixsort

7. Minimal Comparison Sorting

8. Sorting Presorted Files

9. Sorting with External Files

10. A General View

5.8. Sorting Techniques: Description and results of the analysis 77

Figure 5.16: A snapshot from Sorting Techniques.

5. 8. 2 Numerical results

Sorting Techniques course consists of 451 frames. The classification of information frames

leads to the course profile presented in Figure 5.17. The general structure of this course is

presented in Figure 5.18.

5. 8. 2. 1 Course contents

Content types of information frames

Sorting Techniques course contains 337 information frames which consist of analysis,
definitions, equations, programming language code, and proofs. Analysis is found in 125
information frames (37%). There are 56 information frames (17%) containing definitions.
Equations are found in 146 information frames (43%). Programming code occurs in 70
information frames (21%) and proofs are found in 11 information frames (3%).

Illustration of information frames

The information frames are illustrated using examples, pictures and animation. There are 163
information frames (48%) that contain examples. Pictures are found in 32 information frames
(9%), and there exist 124 animations in 337 information frames (37%).

5. 8. 2. 2 Instructional support

Motivation, repetition, recall, and thinking points

All three forms of learning support are used in this course. Motivation is used in 18
information frames (5%), and recall is used in 30 information frames (9%). Thinking points are
rare as there exist only 6 information frames (2%) in which they are used.

78 5. Test case: COSTOC

0%

10%

20%

30%

40%

50%

A
na

ly
si

s

D
ef

in
iti

on
s

E
qu

at
io

ns

C
od

e

P
ro

of
s

E
xa

m
pl

es

P
ic

tu
re

s

A
ni

m
at

io
ns

M
ot

iv
at

io
n

R
ec

al
l

T
hi

nk
in

g
po

in
ts

5%

21
%

2%

9%

37
%

9%

48
%

3%

43
%

17
%

37
%

Figure 5.17: The course profile of Sorting Techniques.

Structure of the course

This course consists of 451 frames out of which 71 (15,7%) are navigation frames, 337
(74,7%) are information frames, and 43 (9,5%) are question frames. In addition to the
navigation frames, there exist navigation points in 70 information frames. Thus, there exists a
possibility to navigate in 141 frames. The 43 question frames include 60 questions out of
which 29 (48%) are multiple choice questions, 12 (20%) numerical questions and 19 (32%)
textual questions. The frame percentages of Sorting Techniques course are shown in Figure
5.18.

74,7%

15,7%9,5%

Navigation frames

Information frames

Question frames

Figure 5.18: Frame percentages in Sorting Techniques.

5. 8. 3 Verbal results and conclusions on Sorting Techniques

Course contents

 Content types of information frames. The exceptionally large amount of analysis is the result
of the time and space analysis of sorting algorithms, that is, how much a certain algorithm
needs time to finish the task and how much memory is needed. In addition, there are verbal
explanations.

The amount of definitions is low since different sorting techniques share the same general
concepts, which need to be defined only once. Therefore, even though this course introduces six
different sorting algorithms the amount of definitions remains small.

5.8. Sorting Techniques: Description and results of the analysis 79

Equations are typical for this topic, therefore, their large amount is reasonable. Equations
are essential since sorting algorithms are based on comparisons. In addition, some mathematics
is needed when analysing the complexity of different algorithms.

Programming language code is an important part of this course, since sorting algorithms
are presented using either programming code or pseudo code, which is a mixture of
programming code and natural language. Therefore, students need to know the basics of
programming as the prerequisites of this course.

There exist short, less than one frame long proofs (e.g., what is the average time
requirement of Quicksort; lesson Sort4, frame 44) and long, multi-frame proofs (e.g., A-sort is
not RUNS-optimal; lesson Sort8, frames 31-33). Students need to know mathematics in order
to understand proofs though the more detailed proofs are mentioned to be found in the literature.

 Illustration of information frames. The examples are mainly visual (i.e., pictures or
animation), though there are also verbal ones. Examples support understanding of the topic
very well. The small number of pictures, which are compensated for by the large usage of
animations, does not impair the effectiveness of the course, though.

Animation is used much more often than pictures. Most of the animation is used to present
how a sorting algorithm works (e.g., Radix exchange sort; lesson Sort5, frames 10-12, or Shell
sort; lesson Sort6, frames 13-19). In addition, animation is used, for example, to illustrate the
comparison of the complexity of different algorithms (lesson Sort6, frames 24-29). Animation,
which are found in every lesson evenly, liven this course a lot and help students to understand
algorithms that otherwise would be difficult to demonstrate.

 Relevancy of the course contents to the aims. The contents are of good quality and highly
relevant to the aims.

Instructional support

 Motivation. There could be more motivation than there exists because in many lessons there is
only one motivating phrase or not even that. Within this course motivation is always presented
verbally. This is easy to understand since it would be difficult to invent, for example,
motivating animation on this topic.

 General view of the course contents. Course contents are described in detail in paper
documents. Description in introductory lesson (i.e., SORT0) is less detailed.

 Prerequisites. Prerequisites are stated clearly both in paper documents and in the introductory
lesson. Also the level of intended users is informed.

 Informing of the learning aims. The aims of this course are clearly stated both in the paper
documents and in the introductory lesson.

 Structure of the course. The proportional amount of navigation frames (15,7%) is
appropriate and students have enough possibilities to control the course flow.

The percentage of information frames (74,7%) exceeds the upper bound of the ideal
percentage (70%). This indicates that there are either too many information frames or too few
question frames considering that the amount of navigation frames is ideal. Since it is supposed
that this amount of information frames is required to present all information wanted, it is
obvious that there are too few question frames. There exists one question frame per eight
information frames which is far too little. If the amount of questions is used for counting, the
ratio is one question per six information frames which is better but not good enough.
Therefore, there should be more questions in order to test students learning properly.

Students are able to try to answer a question twice. If they fail, the correct answer is usually
shown but no confirmation is demanded. Questions include multiple choice questions that may
have more than one correct choice. In such cases all correct answers are given to students.

 Guidance t o use the course. Content-dependent guidance is given both in paper documents
and in the introductory lesson, that is, the possible uses of the course are stated.

 Interaction. In addition to questions, there exist some thinking points. Unfortunately, they
are rare and accumulated into four lessons leaving six lesson without any thinking points which
is not recommendable. There should be more thinking points to remind students of the
importance of their own thinking.

 Instructional feedback. Students are given instructional feedback only within question
frames. Technical feedback (help) is given when students ask for it.

80 5. Test case: COSTOC

 Repetition and recall. Recall is distributed evenly in lessons and it assists students to
connect previous concepts and methods to new ones. At the end of each lesson there is a
summary of contents. This is an appropriate way to repeat most important things of each
lesson. The last lesson gives a really valuable overview of the whole course.

 Practicing new skills or knowledge. The only form of practice is questions.
 Evaluation of learning outcomes. There does not exist any evaluation of learning outcomes.

5.9 Systematic Programming: Description and results of the
analysis

5. 9. 1 Course description

This course focuses on teaching students to program in a systematic way. It introduces the

basic constructs of a higher programming language, their syntax, their use and their

verification. In addition, the main data types are discussed as well as when to use which data

structure and why to use it. Finally, the course represents a program development method, a

testing method and the rules of verification. The lessons logical dependency graph is

presented in Figure 5.19. The lessons are recommended to study in numerical order with the

exception that lessons three and four may change their places. Figure 5.20 represents a

snapshot from Systematic Programming.

Figure 5.19: Logical dependency graph of Systematic Programming.

1. Basic Terms

2. Introductory Examples

3. Simple Constructs

4. Data Types

5. Program Structure

6. Program Structure: Example

7. Recursion

8. Program Development and Testing

9. Example 1

10. Example 2

5.9. Systematic Programming: Description and results of the analysis 81

Figure 5.20: A snapshot from Systematic Programming.

5. 9. 2 Numerical results

Systematic Programming course consists of 475 frames. The classification of information

frames leads to the course profile presented in Figure 5.21. The general structure of this

course is presented in Figure 5.22.

5. 9. 2. 1 Course contents

Content types of information frames

Systematic Programming course contains 322 information frames which consist of analysis,
definitions, equations, and programming language code. Analysis is found in 13 information
frames (4%). There are 69 information frames (21%) containing definitions. Equations are found
in 91 information frames (28%) and programming code occurs in 173 information frames
(54%).

Illustration of information frames

The information frames are illustrated using examples, pictures and animation. There are 269
information frames (84%) that contain examples. Pictures are found in 49 information frames
(15%), and there exist 124 animations in 322 information frames (39%).

5. 9. 2. 2 Instructional support

Motivation, repetition, recall, and thinking points

Motivation, recall and thinking points are used for supporting learning in this course.
Motivation is used in 40 information frames (12%), whereas recall is found in 21 information
frames (7%). There exist only 3 information frames (1%) in which thinking points are used.

82 5. Test case: COSTOC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

A
na

ly
si

s

D
ef

in
iti

on
s

E
qu

at
io

ns

C
od

e

E
xa

m
pl

es

P
ic

tu
re

s

A
ni

m
at

io
ns

M
ot

iv
at

io
n

R
ec

al
l

T
hi

nk
in

g
po

in
ts

7%

54
%

1%

12
%

39
%

15
%

84
%

28
%

21
%

4%

Figure 5.21: The course profile of Systematic Programming.

Structure of the course

Systematic Programming course consists of 474 frames out of which 104 (21,9%) are
navigation frames, 322 (67,9%) are information frames, and 48 (10,1%) are question frames. In
addition to the navigation frames, there exist navigation points in 21 information frames. Thus,
there exists a possibility to navigate in 125 frames. The 48 question frames contain 59
questions out of which 26 (44%) are multiple choice questions, 12 (20%) numerical questions
and 21 (36%) textual questions. The frame percentages of Systematic Programming course are
shown in Figure 5.22.

67,9%

21,9%
10,1%

Navigation frames

Information frames

Question frames

Figure 5.22: Frame percentages in Systematic Programming.

5. 9. 3 Verbal results and conclusions on Systematic Programming

Course contents

 Content types of information frames. The amount of analysis is very low in this course. In six
lessons analysis is totally missing which raises suspicions that the contents of those lessons
may remain superficial for the students.

The amount of definitions is reasonable because the topic is concise and the number of
concepts is limited. Definitions are distributed equally to each lesson. Thus, students get new
information in proper portions.

5.9. Systematic Programming: Description and results of the analysis 83

The amount of equations is relatively high because it includes even the simplest equations.
Students need to have some mathematical skills since the examples are most often more or less
mathematical (e.g., how to develop a program counting x raised to the power y; lesson2,
frames 7-29).

Programming language code is an essential part of this course. Students do not need any
previous knowledge concerning programming or computers since the course starts from the
basics of programming.

 Illustration of information frames. There exist two types of examples, namely, short
supporting examples and large introductory examples. The first ones are illustrating definitions
and are mostly verbal. The large ones consist of multiple frames and contain both text and
pictures or animation (e.g., how many bits to represent x; lesson2, frames 31-48). Examples
support understanding of the topic very well.

Pictures are used to illustrate, for example, the basic facts about computers or the principles
of program verification rules. Pictures are distributed evenly to lessons and they clarify and
liven the subject well.

Animation is used effectively to help students to understand how computer programs
function. Changing background and text colors and colored arrows highlight the current
important statement at the time.

 Relevancy of the course contents to the aims. The contents are of good quality and highly
relevant to the aims.

Instructional support

 Motivation. Most often motivation is verbal though there are few motivating examples
implemented as animations (e.g., Fibonacci-numbers; lesson1, frames 3-8). Motivation is
found in every lesson through the course. This is good since students learn better when they are
motivated.

 General view of the course contents. Both paper documents and the introductory lesson (i.e.,
LESSON0) describe the course contents clearly and in detail.

 Prerequisites. Prerequisites are stated both in paper documents and in the introductory
lesson. The level of the course is also given, that is, the intended users of the course.

 Informing of the learning aims. The aims of this course are clearly stated both in the paper
documents and in the introductory lesson.

 Structure of the course. The percentage of navigation frames (21,9%) is high. Students have
a possibility to navigate in approximately every three information frames when all navigation
points are included. This is a quite good ratio because there will not be too much information
presented to students at any time.

The relative amount of information frames (67,9%) is appropriate. Like Sorting techniques,
this course contains too few question frames and questions since there exists only one question
per five information frames. It is not reasonable to expect that testing so much information can
be done with so few questions.

Students may try to answer a question once or twice. In seven lessons out of ten the
questions are collected in one chapter at the end of the lessons. This kind of lesson structure
differs from the other COSTOC courses in which possible questions are placed at the end of
each chapter. The frequency of questions is fairly good since there is one question after
approximately five information frames.

 Guidance to use the course. Content-dependent guidance is given both in paper documents
and in the introductory lesson, that is, the possible uses of the course are stated.

 Interaction. Both questions and thinking points are used in this course. Thinking points are
rare, consequently, their positive effects on learning outcomes remain minor.

 Instructional feedback. Students are given instructional feedback only within question
frames. Technical feedback (help) is given when students ask for it.

 Repetition and recall . At the end of each lesson there is a summary. That is good since
students get an overview of the contents of every lesson. If there were recalls between lessons
students would receive a better overview of the whole course.

 Practicing new skills or knowledge. The only form of practice is questions.
 Evaluation of learning outcomes. There does not exist any evaluation of learning outcomes.

84 5. Test case: COSTOC

5.10 Summary of the results

It is natural that COSTOC-courses resemble each other since they are the result of one

project. Nevertheless, there exist differences in implementation between these courses. The

quality of contents varies between the courses.

 Course contents are of high-quality in all tested courses. The three general content types

of information frames, namely, analysis, definitions, and equations, are common to all tested

COSTOC-courses. The relative amounts of these types vary remarkably which can mainly be

explained by the nature of each topic, that is, the amounts of definitions and equations

depend on the topic and no strict limits can be given. The amount of analysis, however, is

not depending on the topic so clearly. Therefore, there should be more analysis in some of

the tested courses. As a consequence of too little analysis, students’ learning may remain

superficial.

Special content types are needed to characterise the differences between the topics. Four

out of five courses contain some of these special content types. If there had been tested

courses on other subtopics of computer science, presumably there would have been more

special content types.

Illustration of the contents is implemented well. In all examined COSTOC-courses,

examples, pictures and animation are used in information frames. Examples, which are used

most often, are well-chosen and facilitate understanding the current concept or phenomenon.

Examples are taken from everyday life if possible. Animation is used more often than

pictures. That is natural in CAI courses since animation is the grand advantage of computers

in comparison with the other teaching equipment. In tested courses, animation is often a very

simple presentation though there exist a few more complex presentations. Graphics used in

animation is not very sophisticated but it is capable to express the essential things.

Relevancy of the contents to stated learning aims is good in three tested courses. In two

tested courses the aims were not stated and therefore relevancy could not be evaluated.

 Instructional support is inadequate. Amount of motivation is not appropriate in most of the

tested courses. Information concerning prerequisites, the level of the course and learning

aims is partly defective. Interaction, instructional feedback, repetition, recall, and practice of

new skills and knowledge are inadequate in all tested courses. In addition, evaluation of

learning outcomes is totally missing from all tested courses.

The general view of the course contents is described well in all tested courses. Structure

of the tested courses as well as the guidance to use the tested courses are well described in

most of them. Frame types are similar in all COSTOC-courses but the proportions of each

frame type vary between the courses. These slight differences are not significant since all

proportions are between the acceptable limits. Therefore, the general structure of COSTOC-

courses is well-designed and offers a proper environment for learning.

5.11. Conclusions on the results 85

 User interface of the tested courses suffers from inadequate interactivity. There is often

too much text on the display. Even though visual elements are used fairly often, there could

have been more of them. Connections between text and visual elements are mostly clear. Use

of colors and highlighting vary a lot between the tested courses. Display building is well

implemented.

 Pragmatic matters are partly in order. Paper documents are incomplete since all technical

guidance is missing. Guidance to install and use the tested courses is given only in a

computer format, that is, instructions are found from the demonstration course.

5.11 Conclusions on the results

Authors of COSTOC-courses have had several good ideas to offer and organize learning

support, such as, motivating examples, summaries, questions, annotation and thinking

points. The problem is that the implementation of these ideas is not successful in all cases.

For example, annotation gets forgotten easily since there does not exist any place where

students are encouraged to make notes. That property might be used more efficiently if there

were expert notes made by a teacher in which, for example, students were given a problem to

solve.

Good motivation of students is necessary for learning. Therefore, the amount of

motivation in some of these courses was not appropriate. There should exist a short

motivating introduction at the beginning of each lesson. A couple of sentences or well-posed

examples would be enough.

One deficiently used property is thinking points which seem to be used fortuitously. The

idea of thinking points could be improved by using annotate function. Students should be

asked to write down their answers or thoughts about the subject they were told to think.

Their answers could later be checked either by students themselves or by the teacher. Well-

stated questions would direct students’ attention to essential things and improve learning

results.

Recall is used less than it is advisable in most of the courses. There should exist short

resumes within a lesson time to time. In addition, there should be a summary at the end of

each lesson and the whole course to combine the essential parts of the lesson and the course,

respectively.

In addition to questions, there should be offered more practicing possibilities. Some kind

of evaluation of learning outcomes should also be available.

From the technical point of view, the strongest advantage of COSTOC-courses is the user

interface whose structure is similar in every course. It is simple and easy to learn and, later

on, when studying another COSTOC-course, it is already familiar. Nevertheless, some

minor problems may rise if courses are still used in instruction since nowadays students are

used to hypertext and hypermedia applications in which links are highlighted using different

86 5. Test case: COSTOC

colors. In COSTOC-courses colors are used only for highlighting important concepts and

there do not exist any links behind them.

One problem with the user interface is its minor interactivity. In addition, there should be

less text and more visual elements, and the connections between these display elements

should be clearer. Another problem with the user interface is the usage of colors. Colors are

fixed elsewhere but not in the main window in which each author may decide what colors are

used. As a result, two out of five tested courses are strongly multicolored, that is, colors are

used quite carelessly. It would had been better to choose a couple of colors for background

and text and make sure that they do not contradict with each other. Highlighting, like use of

colors, should be designed with care.

Documentation should be prepared better. Paper documents describe the contents of the

tested courses excellently but the technical aspects are totally forgotten.

On the whole, the idea behind COSTOC-courses is excellent. Most of the topics of these

courses are still valid though they are implemented nearly ten years ago. The problems are

that the user interface functions are not self-evident and that the computer technology for

which COSTOC-courses are designed is almost obsolete. If the contents of COSTOC-

courses could be transferred to a more modern computer environment they would be good

teaching material.

CHAPTER VI

87

6 Conclusions

Conclusions

A review of scientific journals concerning computers in education revealed that there exist

many CAI courses teaching computer science. Roughly one third of the CAI courses that

were found from the literature were designed for teaching topics involved with software,

especially programming (see Table 2.2 and Table 2.3). The reason for this could be that

computer programming is a well-defined, limited domain which is fairly easy to represent in

a computer format. Another reason might be that programming languages are useful tools

that offer access to the distinctions of computer science.

A sixth part of the CAI applications found in the literature were designed for teaching the

theory of computation, which is a positive surprise since there was an expectation that there

would exist only few, if any, of such applications. It seems that even though the theory of

computation is a very theoretical subject, it is appropriate to be taught using computers.

Another reason could be that there exists a need to represent abstract concepts and

phenomena in an efficient and illustrative way, for which computers offer good possibilities

for skilled CAI authors.

The other topics within computer science seemed to be less popular. However, there exist

CAI applications on several subdomains of computer science. Our opinion is that all

subdomains of computer science are applicable in a form of CAI as long as the instructional

aspects and domain-based aspects are considered.

The collection of human learning theories is vast and, therefore, it was difficult to find out

the theories that have been applied to computer-aided instruction. The TIP database (Theory

Into Practice; Kearsley, 1996) provided a good basis for further investigations. We found

approximately 20 human learning theories, which have been applied or designed for

computer-aided instruction or technology-based instruction (see Chapter 3). Four learning

theories were taken into closer examination in the form of a case study. As a result, we found

 88 6. Conclusions

out that both the theories and their applications differ from each other a lot, consequently,

there exist different learning theories that are applicable to different domains. Therefore, CAI

course authors can choose from a wide collection of human learning theories, the most

appropriate ones to be used as a design basis for CAI courses. For this reason, there should

exist a CAI authoring tool that would support authors by recommending a certain learning

theory, or authors could select their favorite theories from a collection of learning theories.

Designing such a collection would require an expert of educational sciences, and it could be

implemented as a toolbox to existing authoring tools.

We created criteria in order to evaluate the quality of CAI courses. Our criteria consider

domain-based, instructional, user interface, and pragmatic demands (see Chapter 4). As far

as we know, this is a unique combination for evaluating CAI courses. Domain-based criteria

emphasize the quality of the contents of a CAI course and their relevancy to the learning

aims. Instructional criteria emphasize stimulating students’ motivation; presenting the general

view of the course contents, prerequisites, learning aims, and structure of a course to

students; offering guidance to use the course and appropriate interaction including

instructional feedback, repetition and recall; and supporting students to practice their new

skills or knowledge and to evaluate their learning outcomes. User interface criteria focus on

interaction, display elements and connections between them, usage of colors and

highlighting, and display-building. Pragmatic criteria concentrate on hardware, software and

human resources, and users’ attitudes and readiness to use computers.

In order to test our criteria, we modified an analysis method based on them. In addition,

we wanted to obtain information of CAI courses on computer science. The analysis method

uses two means for evaluating a CAI course, namely, structure counting and verbal

evaluation. We have presented checklists for both counting and verbal evaluation (see

Section 5.1). This analysis method was used for analysing five CAI courses in the domain

of computer science (see Chapter 5). These five courses belong to a collection of CAI

courses called COSTOC.

The analysis of COSTOC courses revealed that our criteria work well. It indicated that in

tested courses there exist both some shortcomings and benefits. The most serious problem

was the inadequate instructional support, though the authors of COSTOC courses have had

teaching experience which they have applied while designing these courses. However, no

usage of any learning theory was recognized. The most valuable feature was the high quality

of the contents in all tested courses.

The analysis was carried out by the author. We believe that the results of the analysis

would be mostly the same if the analysis were carried out by some other person. The results

of the course contents analysis, the user interface analysis and the pragmatic matters analysis

would be the same, whereas there might be differencies in the results of the instructional

support analysis. The reason is that other persons might consider, for example, motivational

6. Conclusions 89

or analytical sentences in a different way than the author has done. However, we believe that

the differences would be minor.

Our criteria should be considered as an example of how to design evaluation criteria,

rather than an optimal solution for an evaluation process. The criteria have to be flexible for

changes in all perspectives; consequently, criteria must be revised from time to time. In the

case of our criteria, revisions are fairly easy to do thanks to the checking lists of each

perspective. More work is required if the learning theory behind the instructional criteria is

decided to be changed. In such a case, the whole instructional criteria must be updated

according to the emphasis of the chosen learning theory.

The importance of the analysis is in its results, which give us information on designing

high quality CAI courses on computer science. Conclusions on the results are partly domain-

independent and, thus, applicable to other domains. These applicable conclusions include

conclusions on the results of the instructional analysis, the user interface analysis, and the

pragmatic matters analysis.

First of all, the analysis indicated that the experts of the domain are the best designers of

the course contents. The reason is that an expert, who knows the domain well, is the most

capable to decide what to include in a CAI course. However, the contents should be

implemented by a group of persons who represent diverse perspectives, such as the subject

domain, educational sciences, and graphical design. Computer science domain has a strong

theoretical basis. Therefore, theory of computer science cannot be forgotten when CAI

courses are designed. Theory is necessary for understanding abstract concepts and methods

of computer science in depth. Further, these concepts and methods are essential for the

design process, that is, when developing new computer applications and equipment. Another

important thing to remember is the role of mathematics in the computer science domain.

Mathematics is a necessary part in computer science education.

Secondly, we found out that an appropriate learning theory should be applied when

designing CAI courses, since the instructional support is likely to be better than it would be

when designing without using any learning theory. The next question is which learning

theory or theories are appropriate, since both theories and people are very different. One

solution might be to combine several learning theories using their most suitable parts while

designing CAI courses but that requires expertice of education.

Further, CAI authors should put extra effort into designing appropriate instructional and

technical interaction, which play important roles within a CAI course. Carelessly

implemented interaction can ruin the whole CAI application.

One possibility to enhance instructional support in CAI courses could be an efficient usage

of questions. Questions could be interactive tasks which would guide students to apply their

new skills and knowledge. Implementing this kind of questions would demand very

sophisticated authoring tools with special properties. When computer science is involved,

 90 6. Conclusions

these properties include, for example, interpreting both free-form answers and pseudo or

programming code, or possibility to write equations, proofs or other mathematical text.

There is no need to design a new authoring tool since these special properties could be

combined into a toolbox that already existing authoring tools could use as an additional

package. Designing the contents of such toolbox requires more research work to be done in

future.

Additionally, we found out that CAI authors should pay a lot of attention to the

appearance of the user interface. Especially the usage of colors should be considered

carefully since poorly chosen colors may distract users’ attention to irrelevant things. If the

user interface is well-designed, users can forget it and concentrate on the essentials.

Finally, we discovered that pragmatic matters should not be forgotten. It is important to

provide users with a proper documentation containing requirements for hardware and

software, as well as instructions for implementation and usage.

In recent years possibilities to use computers in everyday life have increased remarkably.

Internet and World Wide Web (WWW) are available for almost everyone who is interested in

them. Schools are already using these new media for several purposes, such as distance

education and information exchange, and it seems that in the future the usage of computers in

instruction will increase further. Computers are becoming the basic tools of instruction along

with books and other equipment in many domains.

Our opinion is that the best usage of computers is when they are considered similar to

other tools used in instruction. Teachers are responsible for designing and organizing

lessons. If computers are helpful for these tasks they should be used. Students’ motivation is

a prerequisite for learning. Therefore, teachers should make sure that students become

motivated. This may happen through teachers or through computers. Since computers are

restricted with their expressions, it is quite difficult to use them effectively for motivating

students. The best combination is teachers guiding students to use diverse tools for learning.

These tools include both traditional books and books on a hypertext format, computers and

other possible materials, such as experimental equipments.

REFERENCES

91

References

Anderson, J. Language, Memory and Thought. Lawrence Erlbaum Associates, Hillsdale,
New Jersey, 1976.

Anderson, J. The Architecture of Cognition. Harvard University Press, Cambridge,
Massachusetts, 1983.

Andersson, J. “Skill Acquisition: Compilation of Weak-Method Problem Solutions.”
Psychological Review, 94(2):192-210, 1987.

Anderson, J. The Adaptive Character of Thought. Lawrence Erlbaum Associates, Hillsdale,
New Jersey, 1990.

Anderson, J. Rules of the Mind. Lawrence Erlbaum Associates, Hillsdale, New Jersey,
1993.

Anderson, J. and Bower, G. Human Associative Memory. Winston, Washington, DC,
1973.

Anderson, J., Boyle, C., Farrell, R. and Reiser, B. “Cognitive Principles in the Design of
Computer Tutors.” In P. Morris (Ed.), Modeling Cognition. John Wiley & Sons,
New York, 1987.

Armstrong Laboratory 1996a. Advanced Instructional Design Associate. Internet WWW
page, at URL: http://www.brooks.af.mil/AL/HR/HRT/HRTD/aida.htm (version
current at 18 October 1996).

Armstrong Laboratory 1996b. Intelligent Performance Support for Instructional Design.
Internet WWW page, at URL:
http://www.brooks.af.mil/AL/HR/HRT/HRTD/gaida.htm (version current at 18
October 1996).

Atkinson, R.C., Bower, G. and Crothers, E.J. An Introduction to Mathematical learning
theory. John Wiley & Sons, New York, 1965.

Ausubel, D. The Psychology of Meaningful Verbal Learning. Grune & Stratton, New York,
1963.

Baek, Y.K. and Layne, B.H. “Color, Graphics and Animation in a Computer-Assisted
Learning Tutorial Lesson.” Journal of Computer-Based Instruction, 15(4):131-
135, 1988.

Baldwin, D. “Three Years’ Experience with Gateway Labs.” SIGCSE Bulletin, 28:6-7,
1996.

92 References

Barnett, B.L. III “An Ethernet Performance Simulator for Undergraduate Networking.”
SIGCSE Bulletin, 25(1):145-150, 1993.

Barnett, B.L. III “A Visual Simulator for a Simple Machine and Assembly Language.”
SIGCSE Bulletin, 27(1):233-237, 1995.

Barr, J. and Smith King, L.A. “An Environment for Interpreter-Based Programming
Language Projects.” SIGCSE Bulletin, 27(1):159-162, 1995.

Barrett, M.L. “A Hypertext Module for Teaching User Interface Design.” SIGCSE Bulletin,
25(4):107-111, 1993.

Baxter, N., Hastings, D., Hill, J., Martin, P. and Paul, R. “Introduction to Computer
Science: An Interactive Approach Using ISETL.” SIGCSE Bulletin, 22(1):31-33,
1990.

Bergin, J., Brodlie, K., Goldweber, M., Jiménez-Peris, R., Khuri, S., Patiño-Martínez,
M., McNally, M., Naps, T., Rodger, S. and Wilson, J. “An Overview of
Visualization: Its Use and Design.” In G. Davies (Ed.), Proceedings of the First
SIGCSE/SIGCUE Conference on Integrating Technology into Computer Science
Education, Barcelona, Spain, June 2-6, 1996. SIGCSE Bulletin, Special Issue,
28:192-200, 1996.

Berlo, D. The Process of Communication: An Introduction to Theory and Practice. Holt,
Rinehart and Winston, New York, 1960.

Berque, D., Bogda, J., Fisher, B., Harrison, T. and Rahn, N. “The KLYDE Workbench
for Studying Experimental Algorithm Analysis.” SIGCSE Bulletin, 26(1):83-87,
1994.

Blythe, S., James, M. and Rodger, S. “LLparse and LRparse: Visual and Interactive Tools
for Parsing.” In Proceedings of the Twenty-fifth SIGCSE Technical Symposium on
Computer Science Education, 208-212, 1994.

Boroni, C.M., Eneboe, T.J., Goosey, F.W., Ross, J.A. and Ross, R.J. “Dancing with
DYNALAB: Endearing the Science of Computing to Students.” In Proceedings of
the Twenty-Seventh SIGCSE Technical Syposium on Computer Science Education,
135-139, 1996.

Borsook, T.K. and Higginbotham-Wheat, N. “Interactivity: What Is It and What It Can Do
for Computer-Based Instruction?.” Educational Technology, 31(10):11-17, 1991.

Boyle, T., Gray, J., Wendl, B. and Davies, M. “Taking the Plunge with CLEM: The Design
and Evaluation of a Large Scale CAL System.” Computers and Education, 22(1-
2):19-26, 1994.

Bransford, J.D. and Cognition and Technology Group at Vanderbilt. “Anchored instruction:
Why We Need It and How Technology Can Help.” In D. Nix and R. Spiro (Eds.),
Cognition, education and multimedia. Lawrence Erlbaum Associates, Hillsdale,
New Jersey, 1990.

Brown, J.S., Collins, A. and Duguid, P. “Situated Cognition and the Culture of Learning.”
Educational Researcher, 18(1):32-41, 1989.

Brown, J.S. and VanLehn, K. “Repair theory: A Generative Theory of Bugs in Procedural
Skills.” Cognitive Science, 4:379-426, 1980.

References 93

Brown, M.H. Algorithm Animation, MIT Press, Cambridge, MA, 1988.

Brown, M.H. Zeus: A System for Algorithm Animation and Multi-view Editing. Digital
SRC Research Report 75, 1992.

Brown, R.A. “A Software Testbed for Advanced Projects in Real-time and Distributed
Computing.” SIGCSE Bulletin, 25(4):247-250, 1993.

Bruner, J. (1966). Toward a Theory of Instruction. Cambridge, Massachusetts: Harvard
University Press.

Brusilovsky, P.L. “Intelligent Tutor, Environment and Manual for Introductory
Programming.” Educational and Training Technology International, 29(1):26-34,
1992.

Cagnat, J.M., Gueraud, V. and Peyrin, J.P. “The Arcade Laboratory: An Environment to
Help Teach Algorithms.” SIGCSE Bulletin, 22(4):37-41, 1990.

Card, S., Moran, T. and Newell, A. The Psychology of Human-Computer Interaction.
Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1983.

Carroll, J.M. The Nurnberg Funnel. MIT Press, Cambridge, Massachusetts, 1990.

Caugherty, D. and Rodger, S. “NPDA: A Tool for Visualizing and Simulating
Nondeterministic Pushdown Automata.” In N. Dean and G.E. Shannon (Eds.),
Proceedings of the DIMACS Workshop on Computational Support for Discrete
Mathematics, 365-377, Rutgers University, Piscataway, New Jersey, March 12-
14, 1994.

Chabay, R.W. and Sherwood, B.A. “A Practical Guide for the Creation of Educational
Software.” In J.H. Larkin and R.W. Chabay (Eds.), Computer-Assisted
Instruction and Intelligent Tutoring Systems: Shared Goals and Complementary
Approaches, (pp. 151-186). Lawrence Erlbaum Associates, Hillsdale, New Jersey,
1992.

Coe, P.S., Williams, L.M. and Ibbett, R.N. “An Interactive Environment for the Teaching
of Computer Architecture.” SIGCSE Bulletin, 28:33-35, 1996.

Cognition and Technology Group at Vanderbilt. “Anchored instruction and Situated
Cognition Revisted.” Educational Technology, 33(3):52-70, 1993.

Cognition and Technology Group at Vanderbilt. “Multimedia environments for enhancing
student learning in mathematics.” In S. Vosniadou, E. De Corte and H. Mandl
(Eds.), Technology-Based Learning Environments: Psychological and Educational
Foundations, (pp. 167-173). NATO ASI Series, Series F: Computer and Systems
Sciences, 137, Springer-Verlag, Berlin, 1994.

Cowley, B., Scragg, G. and Baldwin, D. “Gateway Laboratories: Integrated, Interactive
Learning Modules.” SIGCSE Bulletin, 25(1):180-184, 1993.

Cronbach, L. and Snow, R. Aptitudes and Instructional Methods: A Handbook for Research
on Interactions. Irvington, New York, 1977.

Denning, P.J., Comer, D.E., Gries, D., Mulder, M.C., Tucker, A., Turner, A.J. and
Young, P.R. “Computing as a Discipline.” Communications of the ACM, 32(1):9-
23, 1989.

94 References

Ernst, G. and Newell, A. GPS: A Case Study in Generality and Problem Solving. Academic
Press, New York, 1969.

Estes, W.K. “Toward a Statistical Theory of Learning.” Psychological Review, 57:94-107,
1950.

Fagin, B. “Two Years of ‘The Digital World’: Portable Courseware for Technological
Literacy.” SIGCSE Bulletin, 26(1):97-101, 1994.

Feldman, M.B. “The Portable Dining Philosophers: A Movable Feast of Concurrency and
Software Engineering.” SIGCSE Bulletin, 24(1):276-280, 1992.

Finkel, D. and Chandra, S. “NetCp - A Project Environment for an Undergraduate
Computer Networks Course.” SIGCSE Bulletin, 26(1):174-177, 1994.

Fitzgerald, S. and Place, J. “Teaching Elementary Queueing Theory with a Computer
Algebra System.” SIGCSE Bulletin, 27(1):350-354, 1995.

Foster, L.A. and Hughes, N.L. “Making Files Real with a Virtual Disk.” SIGCSE Bulletin,
23(1):199-204, 1991.

Gagné, R.M. “Military Training and Principles of Learning.” American Psychologist,
17:263-276, 1962.

Gagné, R.M. The Conditions of learning. Holt, Rinehart and Winston, New York, 1965.

Gagné, R.M. and Briggs, L.J. Principles of Instructional Design. Holt, Rinehart and
Winston, New York, 1974.

Gagné, R.M. and Driscoll, M. Essentials of Learning for Instruction (2nd Ed.). Prentice-
Hall, Englewood Cliffs, New Jersey, 1988.

Gee, R. and McArthur, R. “Some Experiences with CAI and NATAL.” SIGCSE Bulletin,
23(4):61-64, 1991.

Gibson, J.J. The Senses Considered as Perceptual Systems. Houghton Mifflin, Boston,
1966.

Gick, M.L. and Holyoak, K.J. “Schema Induction and Analogical Transfer.” Cognitive
Psychology, 12:306-365, 1983.

Gong, R. and Elkerton, J. “Designing Minimal Documentation Using the GOMS Model: A
Usability Evaluation of an Engineering Approach.” CHI 90 Proceedings.
Association for Computing Machinery, New York, 1990.

Harlan, R.M. “The Automated Student Advisor: A Large Project for Expert Systems
Courses.” SIGCSE Bulletin, 26(1):31-35, 1994.

Hartley, S.J. “Experience with the Language SR in an Undergraduate Operating Systems
Course.” SIGCSE Bulletin, 24(1):176-180, 1992.

Heaney, T. Learning to Control Democratically: Ethical Questions in Situated Adult
Education. Internet WWW page, at URL:
http://nlu.nl.edu/ace/Resources/Documents/AERC95.html (version current at 7
October 1996).

References 95

Helttula, E., Hyrskykari, A. and Räihä, K.-J. “Graphical specification of algorithm
animations with ALADDIN.” In Proceedings of the Twenty-Second Annual Hawaii
International Conference on System Sciences, 892-901, Kailua-Kona, Hawaii,
January 1989.

Helttula, E., Hyrskykari, A. and Räihä, K.-J. “Principles of ALADDIN and other algorithm
animation systems.” In T. Ichikawa, E. Jungert and R.F. Korfhage (Eds.),Visual
Languages and Applications, 175-187, Plenum Press, New York, 1990.

Hull, C. et al. Mathematico-Deductive Theory of Rote Learning. Yale University Press, New
Haven, New Jersey, 1940.

Ingargiola, G., Hoskin, N., Aiken, R., Dubey, R., Wilson, J., Papalaskari, M.-A.,
Christensen, M. and Webster, R. “A Repository that Supports Teaching and
Cooperation in the Introductory AI Course.” SIGCSE Bulletin, 26(1):36-40, 1994.

Jacobson, M.J. Knowledge Acquisition, Cognitive Flexibility, and the Instructional
Applications of Hypertext: A Comparison of Contrasting Designs for Computer-
Enhanced Learning Environments. Doctoral dissertation. University of Illinois,
Champaign, Illinois, 1990.

Jonassen, D.H. “Hypertext as Instructional Design.” Educational Technology, Research and
Development, 39(3):5-14, 1991.

Jonassen, D.H. “Cognitive Flexibility Theory and Its Implications for Designing CBI.” In S.
Dijkstra, H.P.M. Krammer and J.J.G. van Merriënboer (Eds.), Instructional
Models in Computer-Based Learning Environments, (pp. 385-403). NATO ASI
Series, Series F: Computer and Systems Sciences, 104, Springer-Verlag, Berlin,
1992.

Jonassen, D.H., Hannum, W.H. and Tessmer, M. A Handbook of Task Analysis
Procedures. Prager, New York, 1989.

Kearsley, G. Explorations in Learning and Instruction: The Theory Into Practice Database.
Internet WWW page, at URL: http://gwis2.circ.gwu.edu/~kearsley/ (version current
at 31 January 1996).

Khuri, S. and Williams, J. “Neuralis: An Artificial Neural Network Package.” SIGCSE
Bulletin, 28:25-27, 1996.

Kiser, L. “Spatial-visual Ability: Can Computer Visualization Facilitate Achievement?”
Educational Technology, 27(5):36-40, 1987.

Knowles, M. Self-Directed Learning. Follet, Chicago, 1975.

Knowles, M. Andragogy in action. Jossey-Bass, San Francisco, 1984.

Kopponen, M., Kasurinen, V. and Linna, M. “Experimentation of COSTOC-programs.” In
Proceedings of the Nordic Conference on Computer Aided Higher Education, 246-
253, Helsinki University of Technology, Otaniemi, Finland, August 21-23, 1991.

Kotz, D. “A Data-Parallel Programming Library for Education (DAPPLE).” SIGCSE
Bulletin, 27(1):76-81, 1995.

Lahtinen, S.-P., Lamminjoki, T., Sutinen, E., Tarhio, J. and Tuovinen, A.-P. “Towards
Automated Animation of Algorithms.” In N. Thalmann and V. Skala (Eds.),
Proceedings of Fourth International Conference in Central Europe on Computer

96 References

Graphics and Visualization 96, 150-161, University of West Bohemia, Department
of Computer Science, 1996.

Laird, J.E., Newell, A. and P.S. Rosenbloom. “Soar: An Architecture for General
Intelligence.” Artificial Intelligence, 33:1-64, 1987.

Lamminjoki, T., Lilja, S. and Ollikainen, V. Eliot (in Finnish). Report C-1995-68,
University of Helsinki, Department of Computer Science, 1995.

Lave, J. Cognition in Practice: Mind, Mathematics, and Culture in Everyday Life.
Cambridge University Press, Cambridge, UK, 1988.

Lave, J. and Wenger, E. Situated learning: Legitimate Peripheral Participation. Cambridge
University Press, Cambridge, UK, 1991.

Lees, B. and Cowie J. “Applying Natural Language Technology to the Learning of
Operating Systems Functions.” SIGCSE Bulletin, 28:11-13, 1996.

Li, S. R511 Instructional Technology Foundations: Historical Timeline Project: Programmed
Instruction. Internet WWW page, at URL:
http://copper.ucs.indiana.edu/~shali/page1.html (version current at May 2 1996).

Li, Z. and Merrill, M.D. “ID Expert 2.0: Design Theory and Process.” Educational
Technology Research and Development, 39(2):53-69, 1991.

Liffick, B.W. and Aiken, R. “A Novice Programmer’s Support Environment.” SIGCSE
Bulletin, 28:49-51, 1996.

Lim, B.B.L. and Hunter, R. “DBTool: A Graphical Database Design Tool for an
Introductory Database Course.” SIGCSE Bulletin, 24(1):24-27, 1992.

Linn, M.C. “How Can Hypermedia Tools Help Teach Programming?.” Learning and
Instruction, 2(2):119-139, 1992.

LoSacco, M. and Rodger, S. “FLAP: A Tool for Drawing and Simulating Automata.” In
ED-MEDIA 93, Proceeding of World Conference on Educational Multimedia and
Hypermedia, 310-317, Orlando, Florida, June 23-26, 1993.

Lovato, M.E. and Kleyn, M.F. “Parser Visualizations for Developing Grammars with
Yacc.” SIGCSE Bulletin, 27(1):345-349, 1995.

Mager, R. Preparing Instructional Objectives (2nd Edition). Lake Publishing Co, Belmont,
CA, 1975.

Marsden, P. and O’Connell, M. “MuPMoTT - A Multimedia Based Tool Supporting the
Teaching of Process Modelling within a Framework of Structured Systems
Analysis.” SIGCSE Bulletin, 24:116-118, 1996.

Maurer, H. Sorting Techniques. COSTOC Course 7, Course documentation, 1988.

Maurer, H. Introduction to Database Systems and the Relational Data Model. COSTOC
Course 28, Course documentation, 1990.

Meehan, D., Leonard, J. and Schonfelder, L. “An Intelligent Fortran Adviser for
Postgraduates and Reseachers.” In Proceedings of CALISCE 91, International
conference on computer aided learning and instruction in science and engineering,
EPFL, Lausanne, Switzerland, September 9-11, 1991.

References 97

Merrill, M.D. “Learner Control in Computer Based Learning.” Computers and Education,
4:77-95, 1980.

Merrill, M.D. “Component Display Theory.” In C. Reigeluth (Ed.), Instructional Design
Theories and Models. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1983.

Merrill, M.D. Instructional Design Theory. Educational Technology Publications,
Englewood Cliffs, New Jersey, 1994.

Merrill, M.D., Li, Z. and Jones, M. “Instructional Transaction Theory: An Introduction.”
Educational Technology, 31(6):7-12, 1991.

Merrill, M.D., Riegeluth, C. and Faust, G. “The Instructional Quality Profile: Curriculum
Evaluation and Design Tool.” In H. O'Neil (Ed.), Procedures for Instructional
Systems Development. Academic Press, New York, 1979.

Miller, G.A. “The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information.” Psychological Review, 63:81-97, 1956.

Neff, N. “A Logic Programming Environment for Teaching Mathematical Concepts of
Computer Science.” SIGCSE Bulletin, 25(1):20-24, 1993.

Newell, A. and Simon, H. Human Problem Solving. Prentice-Hall, Englewood Cliffs, New
Jersey, 1972.

Olson, J.R. and Olson, G.M. “The Growth of Cognitive Modeling in Human Computer
Interaction Since GOMS.” Human Computer Interaction, 5:221-265, 1990.

O’Neal, M.B. and Kurtz, B.L. “WATSON: A Modular Software Environment for
Introductory Computer Science Education.” SIGCSE Bulletin, 27(1):87-91, 1995.

Osborne, M. “APPGEN: A Tool for Teaching Systems Analysis and Design.” SIGCSE
Bulletin, 24(1):259-263, 1992.

Piaget, J. La Naissance de l'Intelligence Chez l'Enfant. Delachaux & Niestlé, Neuchâtel,
1936.

Polson, M.C. “Cognitive Theory as a Basis for Instructional Design.” In J. Spector, M.C.
Polson and D. Muraida (Eds.), Automating Instructional Design: Concepts and
Issues, 5-22. Englewood Cliffs, New Jersey: Educational Technology
Publications, 1993.

Prince, C., Wainwright, R.L., Schoenefeld, D.A. and Tull, T. “GATutor: A Graphical
Tutorial System for Genetic Algorithms.” SIGCSE Bulletin, 26(1):203-207, 1994.

Ravden, S. and Johnson, G. Evaluating Usability of Human-Computer Interfaces: A
Practical Method. Ellis Horwood Limited, Chichester, 1989.

Repo, S. Mathematics in the Computer Environment. Constructing the Concept of Derivative
by Means of the Computer Algebra Program (in Finnish). Doctoral thesis,
Publications in education, N:o 33, University of Joensuu, 1996.

Richards, T.C. and Fukuzawa, J. “A Checklist for Evaluation of Courseware Authoring
Systems.” Educational Technology, 29(10):24-29, 1989.

98 References

Rifkin, A. “eText: An Environment for Learning Parallel Programming.” SIGCSE Bulletin,
26(1):281-285, 1994.

Rogers, C.R. Freedom to Learn. Columbus, OH: Merrill, 1969.

Rosner, M. and Baj, F. “Portable AI Lab for Teaching Artificial Intelligence.” Education and
Computing, 8:347-355, 1993.

Saettler, P. The Evolution of American Educational Technology. Libraries Unlimited,
Englewood, CO, 1990.

Salomaa, A. and Maurer, H. Cryptography and Data Security. COSTOC Course 32, Course
documentation, 1988.

Salomaa, A. and Maurer, H. Computation and Automata. COSTOC Course 5, Course
documentation, 1989.

Salomon, G. Interaction of Media, Cognition, and Learning. Jossey-Bass, San Francisco,
1979.

Salomon, G., Perkins, D. and Globerson, T. “Partners in Cognition: Extending Human
Intelligence With Intelligent Technologies.” Educational Researcher, 20(4):2-9,
1991.

Sanders, I. and Gopal, H. “AAPT: Algorithm Animator and Programming Toolbox.”
SIGCSE Bulletin, 23(4):41-47, 50, 1991.

Schank, R.C. Conceptual Information Processing. Elsevier, New York, 1975.

Schank, R.C. Tell Me a Story: A New Look at Real and Artificial Intelligence. Simon &
Schuster, New York, 1991.

Schank, R.C. and Abelson, R. Scripts, Plans, Goals, and Understanding. Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1977.

Schweitzer, D. “Designing Interactive Visualization Tools for the Graphics Classroom.”
SIGCSE Bulletin, 24(1):299-303, 1992.

Selnow, G.W. “Using Interactive Computer to Communicate Scientific Information.”
Americal Behavioral Scientist, 32(2):124-135, 1988.

Shannon, C. and Weaver, W. The Mathematical Theory of Communication. University of
Illinois Press, Champaign, Illinois, 1949.

Shubin, H., Falck, D. and Johansen, A.G. “Exploring Color in Interface Design.”
Interactions: New Visions of Human-Computer Interaction, 3(4):36-48, July +
August, 1996.

Silver, J.L. “Using Ada to Specify and Evaluate Projects in a Data Structures Course.”
SIGCSE Bulletin, 23(1):337-340, 1991.

Skinner, B.F. The Behavior of Organisms: An Experimental Analysis. Appleton-Century-
Crofts, New York, 1938.

Sloffer, S. R511 Instructional Technology Foundations: Historical Timeline Project:
Teaching Machines. Internet WWW page, at URL:
http://copper.ucs.indiana.edu/~ssloffer/page1.html (version current at May 2 1996).

References 99

Spiro, R.J., Coulson, R.L., Feltovich, P.J. and Anderson, D. “Cognitive Flexibility
Theory: Advanced Knowledge Acquisition in Ill-structured Domains.” In V. Patel
(Ed.), Proceedings of the 10th Annual Conference of the Cognitive Science
Society, (pp. 375-383). Lawrence Erlbaum Associates, Hillsdale, New Jersey,
1988.

Spiro, R.J. and Jehng, J.C. “Cognitive flexibility and hypertext: Theory and technology for
the nonlinear and multidimensional traversal of complex subject matter.” In D. Nix
and R.J. Spiro (Eds.), Cognition, education, and multimedia: Explorations in High
Technology, (pp. 163-205). Lawrence Erlbaum Associates, Hillsdale, New Jersey,
1990.

Spiro, R.J., Vispoel, W., Schmitz, J., Samarapungavan, A. and Boerger, A. “Knowledge
Acquisition for Application: Cognitive Flexibility and Transfer in Complex Content
Domains.” In B.C. Britton (Ed.), Executive Control Processes, (pp. 177-199).
Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1987.

Stasko, J.T. “Tango: A Framework and System for Algorithm Animation.” IEEE Computer,
23(9):27-39, 1990.

Stasko, J.T. “Animating Algorithms with XTANGO.” SIGACT News, 23(2):67-71, Spring
1992.

Sticht, T.G. “Applications of the Audread Model to Reading Evaluation and Instruction.” In
L. Resnick and P. Weaver (Eds.), Theory and Practice of Early Reading. Volume
1. Lawrence Erlbaum, Hillsdale, New Jersey, 1975.

Thorndike, E. Educational Psychology: The Psychology of Learning. Teachers College
Press, New York, 1913.

Tukiainen, M. and Lempinen, R. Muokattu Ravdenin ja Johnsonin menetelmä ohjelmiston
käytettävyyden arviointiin. (In Finnish). Report B-1994-1. Department of
Computer Science, University of Joensuu, 1994.

Tymann, P. “VNET: A Tool for Teaching Computer Networking to Undergraduate.”
SIGCSE Bulletin, 23(1):21-24, 1991.

Vygotsky, L.S. Thought and Language. MIT Press, Cambridge, Massachusetts, 1962.

Wertheimer, M. Productive Thinking (Enlarged Ed.). Harper & Row, New York, 1959.

Young, J.I. and Knezek, G.A. “Authoring Tools.” Computers in Schools, 6(3):165-173,
1989.

Dissertations at the Department of Computer Science

RASK, RAIMO. Automating Estimation of Software Size During the Requirements
Specification Phase - Application of Albrecht’s Function Point Analysis Within Structured
Methods. Joensuun yliopiston luonnontieteellisiä julkaisuja 28 - University of Joensuu.
Publications in Sciences, 28. 128 p. + appendix. Joensuu, 1992.

AHONEN, JARMO. Modeling Physical Domains for Knowledge Based Systems. Joensuun
yliopiston luonnontieteellisiä julkaisuja 33 - University of Joensuu. Publications in Sciences,
33. 127 p. Joensuu, 1995.

KOPPONEN, MARJA. CAI in CS. University of Joensuu, Computer Science, Dissertations
1. 99 p. Joensuu, 1997.

