
UNIVERSITY OF JOENSUU

COMPUTERSCIENCE

DISSERTATIONS 3

SIMO JUVASTE

MODELING PARALLEL SHARED MEMORY COMPUTATIONS

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of
Science of the University of Joensuu, for public criticism
in Auditorium M1 of the University, Yliopistokatu 7,
Joensuu, on October 30th, 1998, at 12 noon.

UNIVERSITY OF JOENSUU

1998

Julkaisija Joensuun Yliopisto
Publisher University of Joensuu

Toimittaja Jorma Tarhio
Editor

Vaihto Joensuun yliopiston kirjasto / Vaihdot
PL 107, 80101 Joensuu
puh. 013-251 2677, fax. 013-251 2691
email: Riitta.Porkka@joensuu.fi

Exchanges Joensuu University Library / Exchanges
P.O.Box 107, FIN-80101 Joensuu, Finland
tel. +358-13-251 2677, fax. +358-13-251 2691
email: Riitta.Porkka@joensuu.fi

Myynti Joensuun yliopiston kirjasto / Julkaisujen myynti
PL 107, 80101 Joensuu
Puh. 013-251 2652, 013-251 2662, fax. 013-251 2691
email: Armi.Lavikainen@joensuu.fi

Sales Joensuu University Library / Sales of publications
P.O.Box 107, FIN-80101 Joensuu, Finland
tel. +358-13-251 2652 or +358-13-251 2677, fax. +358-13-251 2691
email: Armi.Lavikainen@joensuu.fi

ISSN 1238-6944
ISBN 951-708-693-8
UDK 681.3.02
Computing Reviews (1991) Classification: C.1.2, D.1.3, F.1.2
Yliopistopaino
Joensuu 1998

Modeling Parallel Shared Memory Computations

Simo Juvaste

Department of Computer Science
University of Joensuu
P.O.Box 111, FIN-80101 Joensuu, Finland
juvaste@cs.joensuu.fi

University of Joensuu, Computer Science, Dissertations 3
Joensuu, October 1998, 190 pages
ISSN 1238-6944, ISBN 951-708-693-8

Keywords: parallel computing, shared memory, modeling, F-PRAM

nterprocessor communication is the most difficult part of parallel com-
putation on current parallel computers. Programmers find it difficult to
correctly and reliably distribute and maintain the data of a parallel pro-
gram. Most efficiency problems are due to excessive or inefficient com-

munication. Parallel computer manufacturers find it difficult and expensive to
build interprocessor communication networks that would keep up with fast pro-
cessors.

In this thesis we shall present a new model of parallel computing, the
F-PRAM model. The model characterizes parallel computers with a set of param-
eters, most of which model the limitations of the shared memory access of the
processors, i.e., the communication. For the programmer, the new model offers a
convenient abstraction of shared memory, but charges duely the machine-depen-
dent costs of the use of the shared memory. For shared memory access, the model
presents a new prefetching primitive. By using the model the programmer can
avoid too expensive communication, and the parallel computer manufacturer can
choose the most important features to improve.

The new model was tested with a fully configurable emulator of an abstract
parallel computer. Using the emulator we implemented and analyzed a set of sam-
ple algorithms. These measurements revealed, e.g., the effects of insufficient
shared memory access capabilities. Different algorithms tolerated different levels
of scarcities such as insufficient bandwidth or high shared memory latency. We
also estimated the values of the parameters on some existing parallel computers.

Acknowledgments

This thesis is the result of the research carried out at the Department of Computer Science
at University of Joensuu at 1992-1998. I wish to thank professor Martti Penttonen for
introducing me to parallel computing and for supervising my research and this thesis.
Also, the rest of our parallelism research group, Ville Leppänen, Martti Forsell, Anssi
Kautonen, and Risto Honkanen have helped my research a lot via providing alternative
but related views to parallelism. Pasi Hämäläinen and Jukka Veräjäntausta implemented
parts of the emulator system. It was a pleasure to work with them, and I thank them for
providing me a stable platform to work with.

Dr. Jussi Rahola and professor Per Stenström kindly accepted the role of a reviewer.
I wish to thank for their efforts and for providing me valuable information on the details
of my work. Also, I specially thank my colleague Ph.Lic. Stephen Eriksson-Bique for
revising the language of the manuscript.

My work was financially supported by the Academy of Finland, Emil Aaltonen
Foundation, and the Department of Computer Science and the Faculty of Science at the
University of Joensuu.

The Department of Computer Science has been a pleasant environment to work at.
The discussions with the staff of the Department have been great breaks in the middle of
the work.

During the whole time of my study at the University, I have had dear friends with
whom I have relaxed outside the study and work. I especially want to thank Olli and Pasi
for all the fun time spent together. To this greatly enjoyable category of close friends, I
also count the Finnish and Scandinavian nature. In addition to relaxation, also most of the
best ideas for the work occurred to me while running or hiking somewhere out there.

My family provided the basis for my scientific career. I want to thank they especially
for encouraging the attitude of pursuing for explanations for all answers.

I warmly thank my wife Hannele for sharing her life with me (and for tolerating me
when I sometimes work late and go running even after that).

Life is fun!

vii

Contents

Chapter 1: Introduction ·1
1.1 Background ·1
1.2 Modeling parallel computation ·4

Chapter 2: Overview of the technological background · · · · · · · · · · · · · · ·7
2.1 The components of parallel computers ·8

2.1.1 Processors · ·8
2.1.2 Memory ·11
2.1.3 Communication media ·12
2.1.4 Input and output connections · ·16
2.1.5 Balance of the components of supercomputers · · · · · · · · · · · · ·18

2.2 Classifications of existing general purpose parallel and high-performance
computers· ·18

2.3 Special purpose computing and special purpose computers· · · · · · · · · ·22

Chapter 3: Existing parallel computation models · · · · · · · · · · · · · · · · ·23
3.1 Vector programming model · ·24
3.2 The PRAM model · ·25
3.3 Existing parameterized parallel computation models · · · · · · · · · · · · ·27
3.4 Message passing models· ·29
3.5 Dataflow model ·31

Chapter 4: A new model of parallel computing: the F-PRAM model · · · · · ·33
4.1 Introduction to the F-PRAM model ·34
4.2 Components of the F-PRAM model · ·35

4.2.1 A set of processing nodes · ·36
4.2.2 Shared memory ·38
4.2.3 Communication network with latency and bi-section bandwidth· · · · 39
4.2.4 Synchronization medium ·41
4.2.5 Input/output facilities · ·42

4.3 Cost models ·43
4.3.1 Definitions of the primary parameters· · · · · · · · · · · · · · · · · ·46
4.3.2 Secondary parameters · ·50
4.3.3 A sketch of the machine building cost · · · · · · · · · · · · · · · · ·58

4.4 Rationale of the choice of the parameters and the structure of the model· · · 63
4.4.1 Comparison with existing parameterized models· · · · · · · · · · · ·64
4.4.2 The structure of the F-PRAM model · · · · · · · · · · · · · · · · · ·65
4.4.3 The structure of the processing nodes· · · · · · · · · · · · · · · · · ·65
4.4.4 Implementation of futures· ·66

4.5 Efficient algorithm design and analysis methods for the F-PRAM model · · 67
4.6 Options and optional restrictions within the model · · · · · · · · · · · · · ·71

viii

4.6.1 Dynamic change of the parameters · · · · · · · · · · · · · · · · · · ·71
4.6.2 Combining network ·72
4.6.3 Vector operations ·73
4.6.4 Read-modify-write operation ·74
4.6.5 Guaranteed shared memory reference latencies · · · · · · · · · · · · ·75

4.7 Matching the F-PRAM model with the existing models· · · · · · · · · · · ·75
4.7.1 The PRAM model and the F-PRAM model · · · · · · · · · · · · · · ·75
4.7.2 Matching the F-PRAM model with other parameterized models of

parallel computing · ·76
4.7.3 Simulations of message passing models· · · · · · · · · · · · · · · · ·79

Chapter 5: A programming language for F-PRAM model · · · · · · · · · · · ·83
5.1 Basic paradigm · ·84
5.2 Parallelism structures· ·86

5.2.1 Management of parallelism ·86
5.2.2 Shared variables · ·88
5.2.3 Synchronization ·90
5.2.4 Read-only machine-characteristic variables · · · · · · · · · · · · · · ·91

5.3 Options for the programming model · ·93
5.3.1 Weighted par-do statements · ·93
5.3.2 Alternative shared variable primitives· · · · · · · · · · · · · · · · · ·95

Chapter 6: Experimental tools for testing the F-PRAM model · · · · · · · · · ·99
6.1 An F-PRAM emulator ·100

6.1.1 A theoretical machine model for the F-PRAM model· · · · · · · · ·100
6.1.2 An experimental implementation · · · · · · · · · · · · · · · · · · ·103

6.2 Implementation of an FPM compiler for the F-PRAM emulator · · · · · ·107
6.2.1 Parallelism handling · ·107

6.3 Automated measurement system for the F-PRAM emulator system· · · · ·113

Chapter 7: Example algorithm implementations· · · · · · · · · · · · · · · · ·117
7.1 Odd-even mergesort ·120
7.2 Matrix multiplication · ·132
7.3 A larger example: matrix inversion· ·138

7.3.1 The F-PRAM implementation · ·139
7.3.2 Measured performance· ·146

7.4 Maximum over processors · ·151
7.5 Software synchronization· ·159
7.6 Image smoothing · ·163

Chapter 8: Modeling the existing parallel computers with the F-PRAM model 169
8.1 Shared memory computers · ·170
8.2 Parallel virtual shared memory computers · · · · · · · · · · · · · · · · · ·172
8.3 Distributed memory parallel computers · · · · · · · · · · · · · · · · · · ·173
8.4 Networks of workstations ·174
8.5 A sketch of an experimental FPM implementation· · · · · · · · · · · · · ·176

Chapter 9: Conclusions, critique, and future research· · · · · · · · · · · · · ·179

References · ·183

1

Chapter 1

Intr oduction

n this thesis we shall present a new model of parallel computing, an experimental
testbed of the model, and a set of experimental data on the use of the model. Spe-
cifically, we model shared memory computation in computers with technology
similar to current parallel computers. The processors compute independently

using their local memories. The processors communicate via a limited asynchronous
access to an amount of shared memory. The modeling concentrates on a set of parameters
that describe the shared memory access limitations of the processors. The experimental
part of the work was done using a configurable emulator to study various combinations of
the different parameters.

In the following section we present the reasons to use a parallel approach for solving
problems. Then we briefly discuss the current limitations and problems of parallel com-
puting. Finally, we review the contents and the structure of this thesis.

1.1 Background

We program computers to accomplish different tasks. During the programming process,
we usually describe the problem solving algorithm using some high-level programming
language. Programming is usually easier if the structure of the algorithm corresponds in
a natural way to the structure of the problem or the solution. In order to keep the program-
ming efforts reasonable, the programming language being used should support structuring
the program to follow the structure of the problem or the solution. For example, if some
real world phenomena occurs concurrently, requiring the programmer to sequentialize the
operations is a possible source of mistakes. The other important requirement for any pro-
gramming system is that it must produce an efficiently executable program after compila-
tion. Moreover, it would be advantageous if the program would be portable to different
computers as easily as possible. These requirements can be somewhat conflicting, but in
sequential programming the current programming languages provide a rather good and
rather widely adopted compromise. These languages, nevertheless, produce sequential
programs, which is an unnecessary restriction. In parallel computing, a good compromise
for expressing parallelism remains to be found.

2 1. INTRODUCTION

Why parallelism?

To solve a problem we write an algorithm that evaluates the results using a set of simple
atomic operations. If the number of required operations is large, we either need a lot of
time to perform them, or a way to perform a lot of operations in a given time1. The time
is usually limited by human factors, or by the forecasting nature of the problem. Thus, in
some cases the operations need to be computed fast. The number of operations one pro-
cessor can perform in a time unit is limited by the technology of the era. Still, waiting and
buying faster and faster processors is currently the most popular way to speed up perfor-
mance of a system. Because of the vast amount of money used for the development of per-
sonal computers and high-performance workstations, the power of the fastest micropro-
cessors is doubling in less than every two years. Considering the requirement of a reason-
able amount of time to complete the task, waiting for a faster processor to be developed
is, however, out of the question as a general solution. A task that has to complete this week
cannot be postponed for two years in order to be able to complete it then twice as fast as
now. Furthermore, there will probably be, after all, some physical limits which will slow
down the speed of the development of the processors. Overall, the possibilities of the uni-
processor approach to speed up a computation are rather limited. Consequently, we must
use several processors together if we want more work to be done in a given amount of
time.

The use of parallelism

We use several processors to perform several operations simultaneously, i.e., in parallel.
To use several processors for solving a single problem faster than with one processor, we
can divide the problem to several subproblems, compute the subproblems in parallel, and
finally combine the results2. If the division is reasonable and balanced, and if the division
and combining will not use too much time, the resulting parallel algorithm will be faster
than the original serial algorithm, which was our first goal.

The increased speed does not come for free. A machine with more than one proces-
sor will cost more than a machine with only one processor. The parallelized version of the
algorithm should thus be significantly faster to justify the increased hardware costs. To be
fully cost effective, a parallel computer with 1000 processors should be 1000 times faster
than a sequential one. Using 1000 processors we can solve a problem at most one thou-
sand times faster than with one processor. In other words, using one thousand processors,
we can achieve at most 1000-fold speedup. If we could solve the problem more than one
thousand times faster, i.e., superlinearly faster, the parallel algorithm would give us a new,
faster serial algorithm. Any reports on superlinear speedups in some applications are due
to some machine-dependent anomalies, such as increased cache size. Even if the speedup
is constant, e.g., 1000, using any given parallel computer, the speedup still is greater than
what it is possible to achieve by other means.

1. A third way would be to improve the used algorithm or its implementation. These, how-
ever, cannot be improved infinitely. Improvements in reasonable implementations of
decent algorithms and matured compiler technology are seldom significant. Moreover,
these tunings tend to be very labor intensive, and, thus, eventually rather expensive.

2. There are also other ways to compose parallel algorithms thandivide-and-conquer.

1.1. Background 3

Since the maximum available speedup is limited by the number of processors used
in parallel, we must try to exploit the parallelism provided by the processors as efficiently
as possible. In other words, as little as possible of the power of the parallelism should be
wasted on other operations than the actual computing. The inefficiency induced by the
parallelization should be a constant, and preferably a small fraction of the number of pro-
cessors. An inefficiency that increases with the number of processors is generally not
acceptable unless we seek only absolute speed regardless of the costs. For example, a log-
arithmic inefficiency (log2P), i.e., a situation, where only 1/log2P of the work is useful,
would be 85% in a 100 processor computer, leaving us only the power of 15 processors.
The most common cause of slowdown in problem solving is the time used in communi-
cation between processors. To be able to compute anything in parallel, the processors need
to communicate in some way. The more we divide the task, i.e., provide more parallelism,
the more the processors need to communicate. In most cases the communication is the
most difficult part in the whole process of parallel programming. Also, the communica-
tion is the weakest point of most of the existing parallel computers. Consequently, the
interprocessor communication is one of our main subjects in this thesis.

Besides communication, the other difficulty induced by the parallelization is the
load balancing between the processors. Unless each processor has the same amount of
work to do, the idling of the waiting processors reduces the efficiency of the whole exe-
cution. The balancing of the work is especially difficult in case of irregular data, e.g., in
physical simulations. The load balancing problems are very problem dependent and they
form a separate field of research. Consequently, we shall mostly ignore the load balancing
issues within this thesis.

We concentrate on the speed and efficiency of computing since parallel computing
is meaningful only for the most time-consuming and time-critical tasks. The smaller tasks
can be accomplished using serial programming and serial computers. Many time-consum-
ing real-world applications have rather high time complexities, often in the range from
O(n2) to O(n4), wheren is the size of the problem3. The problems of linear time complex-
ity are rarely too time consuming to require parallel processing4. An exception is the time-
critical database operations, which include scanning, choosing, and gathering some infor-
mation quickly out of a big database. On the other end of the time complexity spectrum,
the NP-complete5 problems are not very interesting either, since we can solve only mar-
ginally larger problems even if we use an order of magnitude more processors.

Some applications require that certain operations are executed seemingly simulta-
neously. For example, a user interface should be able to respond to user actions even while
updating the display. Such a system is called concurrent, and it does not usually require
genuine parallel execution of the different tasks, hence it can be accomplished by time-
sharing a single processor. Concurrent programming has slightly different goals than par-
allel programming, and, thus, it is out of the scope of this thesis. We should note, however,

3. Informally, O(f(n)) stands for a growth rate ofat most order off(n) [63].

4. However, the less time-consuming problems may occur as intermediate stages of larger
problems. If a hard part of our program uses a lot of processors, then we should use the
same number of processors for all parts of the same program if possible. Consequently, the
parallel algorithms for linear time problems may still be useful.

5. Exponentially time consuming, according to the current knowledge.

4 1. INTRODUCTION

that concurrent programs can be executed with several processors, and therefore with gen-
uine parallelism.

1.2 Modeling parallel computation

The main topic of this thesis is the modeling of parallel computation. Most of the current
research on parallel computing is based either on plain theoretical models of computing,
or on some existing physical computer architectures. The theoretical models, e.g., the
PRAM model, provide a bit too abstract view of the parallelism. Therefore, the resulting
PRAM algorithms may not be efficiently executable on current parallel computers6. On
the other hand, application programming for existing parallel computers usually results in
rather unportable programs. Moreover, because of the lack of an applicable theoretical
algorithmic background, the programs are hard to write, and do not always make the best
use of the computers. Since parallel computing is vital especially for the most demanding
applications, we must optimize our algorithms for both speed and efficiency of the com-
putations. In other words, we should be able to design algorithms that yield the maximum
power from a given parallel computer, and preferably also from the other parallel comput-
ers. Furthermore, we should be able to find the most important and cost-effective features
of parallel computers to be able to develop cost-effective parallel computers in the future.

There have been several suggestions to fill the gap between the abstract algorithms
and the existing parallel computers. Some examples of the proposed models are BSP
[104], LogP [28], Y-PRAM [99], APRAM [23], and Phase PRAM [38]. Each of these
models provides a set of restrictions and other features that should make the model more
realistic. Most of these models still provide quite abstract views to parallelism, and the
resulting algorithms are still quite fine-grained since not all of these models emphasize all
the costs of the interprocessor communication. Moreover, we feel that the best possible
set of model features has not yet been found. Especially, we consider a fully asynchronous
shared memory model to be a good compromise between the ease of programming and
the ease of implementation. Consequently, we shall present a new model of parallel com-
puting, that models parallel computers more accurately, and includes a set of guidelines
on the use of the model to make it easier to use. The contribution of the new model is that
besides presenting a model of parallel computation, it also models parallel computers and
parallel programming. Since the model is designed to model both different parallel com-
puters and parallel algorithms, it supports the design of portable algorithms. In addition
to the model, we shall give a preliminary algorithmic base consisting of algorithm design
principles and sample algorithms.

Our main goals are efficient and realistic parallel computations. The realizability
goal requires the model to be implementable. At the machine level this means that we
should not make unreasonable assumptions on the technology and that we should take the
machine building costs into account. At the programming level the realizability means
reasonable programming efforts. Thus, one of the goals of this thesis is to find a good
compromise between the computation efficiency and the programming efficiency.

6. The purpose of the PRAM in not to achieve efficient algorithms for current parallel com-
puters. We shall discuss the nature of the PRAM model later in Chapter3.

1.2. Modeling parallel computation 5

The structure, scope, and novel proposals of this thesis

The rest of this thesis goes as follows. In Chapter 2 we shall discuss the technological
background of parallel computing, and the guidelines the technology sets for the possible
computation models. Chapter 3 presents some existing parallel computation models and
their shortcomings. These two chapters form an extended introduction to the main subject,
the new model of parallel computation.

As the main contribution of this thesis, we shall define the new parallel computation
model in Chapter 4. Compared to the existing parameterized models our new model pre-
sents a new set of parameters and a new shared memory access primitive7. Moreover, the
model allows more asynchrony and optionally dynamic change of the parameters. The
asynchrony of the shared memory references probably simplifies the structure of the pro-
cessing nodes. We shall not, e.g., separately model the use of caches. Also, the routing
machinery needs not to take care of the sequential consistency of the shared memory
accesses.

The model is an asynchronous parameterized shared memory model. Therefore,
these attributes can be considered as the main scope of this thesis. As we use shared mem-
ory, the processors communicate through it. Since the communication is the most difficult
aspect of parallelism, this thesis also focuses on the communication through shared mem-
ory, i.e., the access of the shared memory. Chapter 5 describes a programming model for
the new parallel computation model. An important idea is also a fully configurable emu-
lator system for the parameterized shared memory model. We shall present the emulator
system in Chapter 6. Using the emulator, we have been able to measure the impacts of the
different parameters accurately. We shall present the measurements and analyses of some
example algorithms in Chapter 7. The outcome of these measurements include the critical
requirements different algorithms set for the communication capabilities of parallel com-
puters. To link the model to real life, we shall compare some of the existing parallel com-
puters with the new model in Chapter 8. Finally, we shall make some conclusions and
sketch future research in Chapter 9. The conclusions also include a relational schema of
the main concepts of this thesis in Figure9-1.

7. The primitive has previously been used for creating new concurrent processes, not for
shared memory access.

6 1. INTRODUCTION

7

Chapter 2

Overview of the technological background

he progress of technology sets limits for the building of parallel computers.
Also, at least as important are the applications that are executed in parallel
computers. Both factors must be taken into account since the value of a paral-
lel computer is determined by the ratio of its power on a particular application

to the cost of building and programming the computer. Especially, investments in technol-
ogy are wasteful unless they lead to improved performance on applications. More gener-
ally, we should consider all technology costs against the benefit we gain from every fea-
ture. This price–gain relation will be one of the leading themes throughout this thesis.

To be able to model an existing parallel computer, we must have some knowledge
of the structure of the computer. To be able to design a model for different types of parallel
computers, we must have some knowledge of the basic building blocks of which comput-
ers are made. Since we cannot include all possible components and their features into any
model, we must be able to choose the set of the most important features that affect the per-
formance and the cost of computers.

In addition to modeling the existing parallel computers, we should be able to model
future parallel computers to be able to analyse which features would be important. In other
words, our research should not focus only on hardware created by parallel computer man-
ufacturers. By studying the importance of the different features, we can make suggestions
on future development directions for parallel computer manufacturers. Consequently, in
addition to the knowledge of performance-related factors, we must know what can, and
cannot be done with existing and forthcoming technology. Without this knowledge we
might include some unrealistic features in the model. Using an unrealistic model in algo-
rithm design can produce unrealistic algorithms. To put it literally, a computer that cannot
be built is of theoretical interest only8. Within this thesis, however, we concentrate on
computers that are not very different from current parallel computers. Especially, we shall
not count on, e.g., optical communication as a solution for the bandwidth problem.

In this chapter we shall discuss rather general aspects of high-performance comput-
ing. We shall use the terms parallel computer and supercomputer since the technological
problems in parallel multiprocessors and traditional vector supercomputers are mostly
similar. Furthermore, the traditional supercomputers are highly parallel, even if the pro-

8. Naturally, this theoretical interest can still be of great value, especially if it can guide the
future development of parallel computers.

8 2. OVERVIEW OF THE TECHNOLOGICAL BACKGROUND

gramming is serial, and the larger modern multiprocessor parallel computers definitely are
supercomputers. When we specially mean the traditional vector supercomputers, such as
the Cray Y-MP series, we shall state so.

In this chapter we shall discuss the technology of different parts of parallel comput-
ers. In Section 2.1 we shall present the basic hardware components and their relationships.
In Section 2.2 we shall briefly present different approaches used in existing computers to
achieve high performance via parallelism. We shall continue the analysis of the existing
parallel computers in Chapter 8 using the new model of parallel computing. In Section 2.3
we shall present some existing special purpose and special structured parallel computers.
In computing, software technology is at least as important as hardware technology, but we
shall discuss it in more depth in Chapter3.

2.1 The components of parallel computers

Each node of a parallel computer needs to contain, or have access to, the same parts as a
serial computer to be able to compute anything by itself. The standard components of the
serial computer are a processor, some amount of memory, and an I/O connection. In a par-
allel computer there are several nodes of this kind. To be able to work on a common prob-
lem, these nodes must additionally have a medium to communicate with each other. In the
four first subsections of this section we will briefly discuss each of the above components.
Balance of the components in any computer is important because in an unbalanced system
the most underpowered component forms a bottleneck of the computations. We shall dis-
cuss the balance of the components in the supercomputers in Subsection2.1.5.

2.1.1 Processors

In sequential computing, the only goal of a processor is to execute given instructions as
fast as possible. Other factors, such as programmability, are less important, especially if
we consider only selling the processor. In parallel computing the speed is still an impor-
tant factor, but the processors must also be able to communicate with the other processors
or the global memory without losing the speed. Later in this subsection we shall discuss
some tricks that can be used to allow the processor to tolerate the latencies of communi-
cation.

The means of designing faster and faster microprocessors have been the same ones
as we presented in the introduction, namely faster clock speed and more parallelism. Con-
cerning the clock speed, the current (early 1998) headlines of the computer magazines
refer to clock speeds at 300-1000 MHz. The other, less flashy but at least as important,
trend in the development of microprocessors is to exploit more and more parallelism in an
apparently serial processor. This is a natural development since the speed of the logic
gates cannot be increased very much anymore. Furthermore, as the cost of one gate
decreases as the integration degree increases, there are more gates available in a chip to
exploit the parallelism.

Even if both the increased clock speed and the increased parallelism seem to provide
more and more processing power, they also provide more problems. At clock cycles close
to 1 ns, the locality of all operations is vital. Even if light travels 30 cm in 1 ns, the signals

2.1. The components of parallel computers 9

on the semiconductor, aluminum, or copper interconnections cannot travel this fast. For
example, at 600 MHz the ALUs of the Digital 21262 cannot access a cache on the other
edge of the same silicon chip in one clock cycle. As we exploit more parallelism within
the chip, the parallel components of the processor also have to communicate more. And
the more there are parallel components, the slower the communication is. The decision
between a short clock cycle and large-scale parallelism is thus a compromise for the exe-
cution of a sequential instruction stream. The fastest clock cycles can be achieved with the
simplest processors, not necessarily achieving the fastest overall performance [93].

Here we shall present the two most common possibilities to introduce parallelism
within microprocessors. The modern pipelined reduced instruction set (RISC) micropro-
cessors are able to execute nearly all instructions apparently in just one clock cycle. The
word “apparently” stands for the fact that even if the instructions take longer than one
cycle, a new instruction is initiated in every cycle. As different execution stages of several
consecutive instructions are executed concurrently, the processors are said to bepipelined.
The fashionable marketing-term “ superpipelining” stands for using a deep, typically 6-9
stages, pipeline. The advantage of deep pipelines is that the clock cycles can be shorter
since the execution of the shorter stages of instructions is faster. Generally, the maximum
clock-rate of a processor is determined as the product of the gate-delay of the used tech-
nology and the longest path of gates in a single pipeline stage. The disadvantage of pipe-
lining is that the successive instructions often have dependencies, which prevent the exe-
cution of the latter instruction until the result of the former one is available. Furthermore,
the successor of a branch instruction is not known in advance, but has to be guessed some-
how. If the guess was wrong, the pipeline must be emptied from the wrongly started
instructions and the correct instructions have to be started from the beginning of the pipe-
line.

Since improving the processor instruction rates by increasing the clock-rates will be
more and more difficult, the processor designers have begun to exploit superscalar exe-
cution of the instructions. In a superscalar processor more than one instruction can be
issued at the same clock cycle9. Modern microprocessors have 5-10 independent execu-
tion units and can issue up to five instructions simultaneously. The disadvantage of the
superscalarity relates to the same problem as with pipelining, i.e., the instruction depen-
dencies. If the successive instructions are dependent, they cannot be issued concurrently.
The best method to circumvent this problem is to use an optimizing compiler that tries to
generate code which has less dependencies. Processor techniques for solving the problem
include reordering the instructions and using direct connections between the instructions
instead of using the registers.

As we noted above, the added parallelism, both superscalar and pipelining, compli-
cates the coordination of the execution of the instructions. An especially difficult goal is
to keep all the resources of the processors active. The optimizing compilers will have a
big responsibility in this regard in the future, otherwise processors will work with only a
fraction of the maximum possible power. The extreme development direction in parallel
processors are the very long instruction word (VLIW) processors. A VLIW-processor
executes instructions that consist of several, say 16, independent simple instructions.

9. The instruction stream generated by the compiler is, however, sequential. The processor
analyses the instructions and executes them in parallel if possible.

10 2. OVERVIEW OF THE TECHNOLOGICAL BACKGROUND

Unlike with the superscalar discussed above, the composition of the long instruction, i.e.,
the parallelization of independent instructions, is left as the responsibility of the compil-
ers. Another feature, which is left to the compiler is the minimization of the use of slow
memory. Since the processor clock-rates have speeded up faster than memories, the mod-
ern architectures support only register-to-register operations. All memory accesses must
be done using separate load and store instructions. Even if the first-level caches were fast
enough to provide the data in one clock cycle, the registers work better in delivering data
between consecutive instructions in pipelined processors. For current microprocessor sys-
tems, the optimization of the use of memory and caches is perhaps the most vital single
issue when pursuing for optimal or near optimal performance.

Perhaps the most notable trend in current microprocessor development has been the
extremely high development costs of new processors. In the near future, few companies
can afford the development of a new competitive processor even using an old instruction
set architecture (ISA) [85]. To distribute the high initial costs, the manufactures need to
be able to sell millions of the new processors. Consequently, the future parallel computers
will probably continue the current trend of using off-the-shelf workstation microproces-
sors. The problem with this trend is that the processors are poor communicators since they
were designed to be used in workstations with only single or few processors. As it is today,
there will probably be some slightly modified versions of microprocessors available in the
future, but as the initial costs of manufacturing grow, the special versions will be more
expensive. Moreover, the modified versions are usually of an older generation.

Most multitasking operating systems trigger a context switch in case of a I/O
request since the processor can execute at least tens of thousands of instructions during
the request, while a context switch takes only, e.g., a hundred clock cycles. In parallel
computers, a similar occasion arises during shared memory requests, which take a consid-
erably long time compared to the instruction execution time, typically hundreds of clock
cycles. The time required for a context switch just has to be cut down to a few clock
cycles. The current standard microprocessors cannot do this, but some research processors
can. In practice, the processor must be able to store multiple register sets within it. An
example of this approach is the Sparcle processor, which uses the register windows of a
Sparc processor as storage of the registers of the different contexts [1]. Tera computer
company is producing a commercial parallel computer based on this approach [8]. They
take the multithreading approach to the extreme by allowing the processors to change pro-
cess, or the execution thread, after every instruction. A big advantage of this approach is
that consecutive instructions are totally independent of each other, hence the processors
can have very deep pipelines [33]. Furthermore, the processors would not need caches to
local memory, since the local memory latency also gets hidden by the multithreading sys-
tem. The problem of this approach is, however, the amount of threads required to com-
pletely hide the time needed to reference the shared memory. Furthermore, the intercon-
nection network must be able to handle the memory references made by potentially all
threads.

Traditional supercomputers have used vector processors to improve the perfor-
mance on scientific computations. A vector processor is able to execute the same opera-
tions to the elements of one or more vectors at a rate of one element per clock cycle. The
execution is based on very deep pipelining and a set of vector registers, which typically
have space for 64 elements. The memory requests are pipelined over the vector so that the

2.1. The components of parallel computers 11

vector registers are filled and saved on background while the actual execution works on
other elements. A typical vector processor includes 2-6 vector pipelines, each of which is
able to issue a floating point operation, or a multiply-add operation, on each clock cycle.
Because of the deep pipelining and because the consecutive operations are independent,
the clock cycle can be very fast. To keep the pipelines filled, the processors need a very
high-capacity memory connection. A two-pipeline processor requires four words to be
loaded and two saved for every clock cycle. The speed of memory connection has been
the strength by which traditional supercomputers have often beaten the modern “killer
workstations.” Many of the earlier parallel computers have also had a couple of smaller
vector processors embedded to each processing node since the earlier off-the-shelf micro-
processors have had rather poor floating-point performance. The boosted processor nodes
have had quite good theoretical peak performances, but rarely have been very usable for
real applications because of the limited memory and communication bandwidths. Modern
RISC-microprocessors have good floating-point performance themselves, consequently
the separate floating-point processors are disappearing.

2.1.2 Memory

The available memory capacity per chip and per dollar10 is increasing nearly as fast as
processor speed. On the other hand, memory speed is increasing only slowly since the
manufacturers currently optimize the new DRAM memory chips for capacity, not for
speed. On the other hand, faster memory technologies, such as SRAM, will remain a cou-
ple of times more expensive than DRAM. Since the memory makes a considerable part
(tens of percents) of the price of a computer, the faster memory technologies can be
applied only to the most expensive computers, or to special purpose computers, which
might require only a small amount of the fast memory.

Because the performance gap between the microprocessors and reasonably priced
(DRAM) memory is still increasing, more and more sophisticated hierarchical local mem-
ory, i.e., caches, are needed. New microprocessors are designed to operate with 2- or
3-level caches to minimize the frequency of the accesses to the slow main memory and to
minimize the time required to fetch data from the most innermost cache. The bigger the
cache is, the bigger part of the memory requests it can serve. The natural problems of the
big caches are the cost and bigger physical size. A smaller cache can be built with faster
access times, with more access ports, and with more logic than a bigger one. Additionally
a smaller cache can be located physically very near to the processor, i.e., on the same chip.
The 2- or 3-level cache structures form combinations between these features.

The problem of all caches is that there are applications that frequently use more
memory locations than fast caches can provide. Or worse yet, there may be random refer-
ences to a large set of data locations, causing all memory references having to be served
from the main memory with a considerable latency. Aids for this latency are block fetch-
ing and prefetching. In other words, we can fetch a bigger block of main memory to the
cache than required by the single request. The fetching of the bigger block can be pipe-
lined to exploit burst transfer protocols. The advantage is that we can fetch the data of sev-

10. As opposed to other development in silicon industry, the memory prices, however,
decrease and rise quite irregularly.

12 2. OVERVIEW OF THE TECHNOLOGICAL BACKGROUND

eral requests with only one latency. Naturally this will not work for totally random
accesses to the main memory. Prefetching can be used if the processor is able to examine
instructions in advance and to issue the memory requests in advance. The problem is,
however, that the prefetching should be done tens of clock cycles before, and no processor
can predict reliably that far. The current microprocessors do not exploit the prefetching
well in comparison with the traditional vector supercomputers. The prefetching can, how-
ever, be implemented also by a separate entity independent of the processor. The process-
ing nodes of the Cray T3E have dedicated hardware for monitoring the memory refer-
ences11 made by the processor. If the processor accesses several memory locations
sequentially, the support circuitry starts a pipelined prefetching of the subsequent words
[26]. The general solution for accurate prefetching would be guiding via compiler and/or
programmer directives.

No matter how smart prefetching technique is used, the bandwidth in every stage
between the processor and the main memory must be big enough to provide data to the
processor fast enough. For example, the dot product of two vectors of 64-bit floating point
numbers requires 16 bytes to be transferred for each multiplication-addition pair. Since
the two operations can be executed in parallel (or pipelined with the next pair) in a modern
superscalar processor, we would need 4.8 GB/s memory bandwidth for a 300 MHz pro-
cessor. Because few current systems can do this, the real performance for these real appli-
cations is considerably poorer than the theoretical peak performance of the processors.

Like speed, the size of the memory affects real applications more than the bench-
marks. As we stated earlier, parallel computing is useful mostly for jobs that are so
demanding that sequential computing would be prohibitively slow. Such jobs tend to
demand not only a lot of processor time, but also a lot of memory. For example, in many
simulations the functions of time and space requirements grow equally fast as the accu-
racy improves. Consequently, relative to the processing power, parallel computers used
for such jobs should have at least as large memories as sequential computers have. In
many cases, the algorithms parallelize better the bigger problems are. That is, we can get
more GFLOPS out of the computer as we increase the memory. One example is the
LINPACK benchmark where the vector lengths can be scaled up to get the maximum
power [29]. Having enough memory is especially important in parallel computers to keep
the processes from encountering unexpectedly long delays because of page-faults, and,
thus, causing severe interprocess synchrony problems. Actually, any paging to and from
a magnetic mass storage is too slow for high-performance computation.

With a lot of memory in each processing node, we can hide some communication
and input/output -bottlenecks by having several concurrently executing jobs and by
switching to another task in a case of a pagefault or other delay. This naturally causes even
more severe interprocess synchrony problems, but may be acceptable in some tasks hav-
ing less tight synchrony.

2.1.3 Communication media

One of the fundamental reasons why parallel computing has been so underestimated is
that communication capabilities of the parallel computers have not kept in pace with the

11. More accurately, memory references that cannot be fulfilled from the caches.

2.1. The components of parallel computers 13

processors. As the communication capacities are poorer than the computation capacities,
naively parallelized programs rarely achieve reasonable performance. Meanwhile, the
communication media of the traditional vector supercomputers have been developed
along with the processors. Consequently, many users have held to vector computers or
switched to cheaper workstations.

The task of the communication medium is to deliver messages between the proces-
sors with low latency and large bandwidth12. In theory, this could be best accomplished
using all-to-all connections, i.e., a complete graph, between the processors, but the num-
ber of connections in a complete-graph network is nearly the square of the number of pro-
cessors. Furthermore, the degree of each processor would be linear to the number of pro-
cessors. Electronic devices cannot have unlimited fan-ins or fan-outs. Thus, each bigger-
degree node would have to have intermediate stages between the network connections and
the processing node. The crossbar-switch topology solves the fan-out and fan-in prob-
lems, but it requires a quadratic number of routing switches, and makes queueing of con-
current messages more difficult.

Since all-to-all networks are too expensive for large scale parallelism, we have to
settle for networks with lower degree and nonconstant diameter13. The physical wires and
switches are configured by some fixed topology, i.e., they form a fixed graph where the
wires are the edges and the switches are the vertices. There are plenty of possible topolo-
gies available to be chosen from when building a parallel computer. The interconnection
networks are usually divided in two classes, single stage and multistage networks [92]. A
single stage network connects the adjacent processors directly together with no adjacent
stages. On the other hand, a multistage network has intermediate, routing-only nodes
between the processing nodes. The advantage of the single stage networks is that they do
not require any additional nodes besides the processing nodes. The processing nodes nat-
urally need to have the routing logic which routes the messages. The nodes and the inter-
connections need to route also messages not belonging to them. A typical multistage net-
work, such as the butterfly, has a logarithmic number of stages, and hencePlogP interme-
diate nodes forP processing nodes.

The most usual single stage networks are meshes, as used, e.g., in the DOE ASCI
Red [90], tori, e.g., Cray T3E [25], and hypercubes, e.g., NCUBE [44]. The SGI Origin
[67] uses a complex combination of SMP nodes, crossbars, and hypercubes. The most
usual multistage networks are butterflies, omega networks, and fat trees, as used e.g., in
the Thinking Machines CM-5 [98]. Some instances of these networks are shown in
Figure2-1. Many popular graph topologies have a very small logarithmic diameter. In a
real parallel computer, the network must be embedded to the three dimensions. Any graph
can be embedded in three dimensions [43], but we consider the physical sizes of the ver-
tices and edges. Consequently, the volume of any machine is linear and the diameter is

 in a three dimensional space14. Furthermore, some of the edges also must have
 length [107]. Another physical problem of some attractive networks, especially

the hypercube, is that the degree of the network increases, usually logarithmically, as the

12. In a shared memory system the messages are delivered between the processors and the
shared memory.

13. The maximum number of routing steps to deliver a message between any two nodes.

14. Informally, Ω(f(n)) stands for a growth rate ofat least order off(n) [63].

Ω P3()
Ω P3()

14 2. OVERVIEW OF THE TECHNOLOGICAL BACKGROUND

number of nodes increases. Because the fan-out of any circuitry is limited, the high-degree
nodes need to have some intermediate stages that may slow down the connection.

A compromise between the single- and multistage networks are the sparse net-
works. A sparse network consists of a large single stage network, most of whose nodes do
not have a processor but only a routing switch. For example, aP-processor Tera computer
system has aP3/2 -node interconnection network where the processors, memory modules,
and the I/O-nodes are located evenly on some of the nodes [8]. A coated network consists
of a single stage network, such as a 3D mesh, but the processing nodes are located only at
the outer nodes of the network, and the inner nodes are dedicated to the routing of the mes-
sages. Another type of the “hybrid” network topologies are the meshes of buses (MOB).
A d dimensional MOB with P = pd nodes resembles ad dimensional mesh, but the node-
to-node connections are replaced with buses of length p in each dimension. The MOB has
thus dpd-1 buses. The diameter of the MOB is extremely low, only d, which usually is 2
or 3. The problem is that the buses will get crowded as p increases. The capacity of the
bus can be increased using several, or even p, channels on the bus using, e.g., optical con-
nections and wavelength multiplexing, but that naturally also increases the cost. An inter-
esting feature of MOBs is that most of the conventional networks can be efficiently
embedded in MOBs, which, however, naturally have to have enough channels to support
the degree of the network [70, 88].

The above considerations are valid for traditional electronic connections. Optical
connections between the components can make a substantial difference compared to the
electronic ones. The main advantage of using light instead of electric current is that the
overlapping beams of light do not interfere each other. Consequently we can place several
signals in the same fiber using different wavelengths. Moreover, light can be used to com-
municate through free space without any intermediate medium. The crossing beams will
not disturb each other even if they used the same wave-length. Furthermore, the advances
in the development of tunable transmitters can make it possible to have a moderately sized
all-to-all connections in a single bus. In addition to the concurrency advantage, it is pos-
sible to modulate more data to a beam of light than to an electronic connection. The dif-
ference is big especially on long distances. The disadvantages of using optical connec-
tions are the problems in the connections between the electronic and optical components
and the rather high price of the components. The optical technology is, nevertheless,

Figure 2-1: A 64-node 3D mesh, a 32-node binary hypercube, and an
80-node butterfly (with 16 input/output nodes).

2.1. The components of parallel computers 15

improving rather rapidly. Thus, the optical communication may be a very good choice for
the interprocessor communication in the future. Within this thesis, however, we concen-
trate on the approximately current level of technology. Consequently, we usually assume
traditional electronic connections.

A real network consists of not only the physical wires and switches, but also a rout-
ing algorithm and a protocol to route all packets to their destinations. The routing algo-
rithm defines the route, or the method to choose the route, to be used for delivering a
packet to the destination. Usually the routing algorithm is realized in the communication
nodes of the interconnection network. An oblivious algorithm uses only the destination
information of each packet to choose the route. An off-line algorithm can use the informa-
tion of all packets to be delivered to choose the routes. Off-line algorithms generally give
better results, but they cannot be used in a general purpose parallel computer since it
would require central or global control or knowledge of the routing task. The protocol also
defines the routines for possible conflicts, for example, what to do when two packets
should be sent to the same channel simultaneously.

Synchronization network

The processors of modern parallel computers operate asynchronously. To be able to coop-
erate they need to be able to synchronize during the computation. The cooperation is real-
ized by communication, which requires some synchrony between the processors. Mes-
sage passing programs synchronize through the messages, but shared memory programs
must have a separate synchronization facility. Synchronization can be accomplished
either using the communication network, or a dedicated fast synchronization network.
Some existing parallel computers have a dedicated synchronization network tightly con-
nected to the processing nodes.

The explicit synchronization can be defined to be performed among two, several, or
all of the processors. Pairwise synchronization is used in message passing computation,
and it is easily defined by the fact that both processors know the other. In a shared memory
model we, however, concentrate on the data, not on the processors or the messages. Syn-
chronizing a dynamically determined set of processors is the most powerful synchroniza-
tion primitive, especially if we are allowed to perform several disjoint synchronizations
concurrently. Defining the synchronizations of arbitrary sets of processors is, however,
rather difficult. In a reasonably small computer we could have a synchronization processor
that processes the sets and broadcasts the synchronization signals to the slave processors.
This approach is not very scalable, particularly when the number of sets increases. Alter-
natively, the processors could issue tagged synchronization operations, and then get syn-
chronized according to the sets defined by the tags. This would also require central pro-
cessing of the sets. Without the central processing capability, the processors should gather
the shared or distributed knowledge of the synchronization sets, process the knowledge,
and distribute the knowledge. The synchronization would require either efficient shared
memory or a lot of pairwise messages. Furthermore, it might require the processors to be
polled on whether they are going to participate in the synchronization or not. If the sets of
the mutually synchronizing processors would be more regular, for example, hierarchical
in powers of two, the partial synchronizations would be easier, especially if the machine
had a divisible synchronization network of similar structure. This was suggested in the

16 2. OVERVIEW OF THE TECHNOLOGICAL BACKGROUND

YPRAM model [46]. The power of two sets do not, however, provide general sets for gen-
eral computations.

In most data-parallel programs all processors perform the same computation on dif-
ferent data. During, or possibly between, the local computations, the processors use the
shared memory to communicate and possibly to do I/O. The computation proceeds in
phases that correspond to the algorithm and the decomposition of the data. Unless we use
the SIMD-paradigm, the processors work asynchronously within each phase. Between the
phases the processors have to synchronize to ensure the correct order of the executions of
the different phases on different processors. Since all processors are working on the same
problem, and presumably consume approximately the same time15, we can synchronize
all processors at once instead of trying to determine the minimum required set of proces-
sors to be synchronized.

2.1.4 Input and output connections

The input and output of the data for parallel computers is rather much ignored by most
algorithm researchers on parallel computing and by parallel computer salesmen. The
salesmen of the parallel computers ignore it because they concentrate on the more impres-
sive figures, notably on the peak processing power of the computers. The researchers
probably ignore it because different parallel computers have rather different approaches
for input/output, and because the theoretical models do not model I/O at all. Besides load-
ing the input and saving the results, the I/O possibly includes more local operations such
as paging of virtual memory and swapping stopped tasks to and from disks.

Input/output data

When considering the loading of data and saving the results, there are usually several
stages of data transfers. Usually the input data comes from a single source. Thus, the
whole system has a serial bottleneck even if the computer has parallel I/O capabilities. In
a typical arrangement the user of the supercomputer transfers his or her data to a mass
storage of the computing centre using either tapes or a slower network connection. Before
the task is going to be executed the data gets transferred to the disks of the parallel com-
puter, and from there to the memory of the computer at the beginning of the computation.
The saving of the results gets done the opposite way. Supercomputers usually have an
autonomous I/O system to transfer the data from the outside network connection or tape
device to the local disks. Consequently, that phase does not disturb the processors of the
computer. Thus, its speed is not important as long as the throughput is big enough to load
enough tasks to keep the computer utilized. Because the transfer from the local disks to
the memory of the computer can also be autonomous, the computer can pipeline saving a
completed task, computing another task and loading the next task as long as the memory
is big enough. We can conclude that among the autonomous I/O stages there exists a
point16 of the smallest width of the I/O system, which determines the maximum data rate
to the computer. This data rate determines how much data we can transfer in a given time,

15. Assuming the parallelization is reasonable.

16. Or, more accurately, a “horizontal bisection.”

2.1. The components of parallel computers 17

which determines what kind mix of I/O intensive and less I/O intensive jobs we can exe-
cute without having the computer wait for the I/O.

In dedicated-use computers the I/O could be arranged with direct parallel links from
the data source to the processors and from there to the data consumer. This approach is
probably most useful in digital signal processing (DSP) systems, where a lot of data is
analysed in real time. Typically the signal from a digital (video) camera is processed and
analysed by an array of processors. In such a case each of the processors could have a con-
nection to the corresponding segment of the CCD element of the camera.

Local mass storage input/output

Besides the actual I/O before and after the tasks, also some input and output during the
tasks is required if the physical memory of the computer is not big enough to hold all the
intermediate results of all of the ongoing tasks. This can be accomplished either using a
virtual memory system or explicitly saving the intermediate results to the mass storage.
Traditional vector supercomputers do not usually have virtual memory since it would
cause extra complexity to the memory system, and, thus, slow it down. Moreover, the
stalls induced by random page faults would corrupt the synchrony and load balance
between the processors and probably ruin the efficiency.

The access times of the rotating magnetic disks are about a million instructions,
which is an unacceptable time to wait. Therefore, a disk access causes usually a context
switch, which also takes some time, especially in the vector processors. Traditional expen-
sive supercomputers exploit solid state disks (SSD) in addition to the magnetic ones. The
access time of SSDs is much more acceptable compared to the magnetic disks, which
helps to avoid context switches. Even if SSD is much more expensive than magnetic disks,
it is cheaper than high-performance memory because of the slower speed and lower band-
width access ports.

Modern hard disks are rather cheap, small, and low power-consuming devices.
Hence, there can be a local disk in each processing node of a parallel computer for the
local operations such as swapping and paging. An existing example of this practice is the
IBM SP/2 parallel computer, whose processor cards have one or two embedded hard disks
[2]. The advantage of the local disks is that the I/O bandwidth scales up automatically as
the number of processors increases without using expensive high-performance central
mass storages. Furthermore, the I/O to the local disks does not consume global commu-
nication bandwidth.

Even if the processing nodes had their own local disks, the computer needs also a
central mass storage. Most parallel computers rely solely on one (or few) high-perfor-
mance disk arrays. To improve both bandwidth and capacity simultaneously, the disk
arrays distribute (stripe) the data to several disks. The drawback of this arrangement is that
concurrent distinct mass storage requests will be sequentialized anyway. For example, the
references to the local temporary data of each processor will be slower than in a distrib-
uted disk system.

18 2. OVERVIEW OF THE TECHNOLOGICAL BACKGROUND

2.1.5 Balance of the components of supercomputers

Case and Amdahl have proposed rules of thumb on the requirements on the relative
requirements on the different subsystems of computers [45]. The combined rule states that
a balanced computer system has one megabyte of memory and one megabit/s of I/O band-
width for each MIPS of processing power. The rules were valid at the time they were pro-
posed and on machines having power on approximately that class. The rules appear to be
scalable. In fact they propose linear requirements on the memory and the I/O capacity.
Most of the supercomputer-class problems, however, have superlinear time complexities
and only linear memory complexities. Consequently, the problems have sublinear mem-
ory and I/O requirements compared to the processing power requirement. Hence, instead
of using the above traditional rule, we should examine more accurately the memory and
I/O requirements of the problems when building or choosing a parallel computer. Later in
this thesis we shall make such estimations using the new model of parallel computing. The
development of changing the balance has been going on already for some time since the
memory and I/O bandwidth prices have not decreased as fast as the processor prices. Con-
sequently, the use of the above rule would cause modern supercomputers to have
extremely expensive memories. For special purpose computers the ratios can be calcu-
lated based on the problem in question. For example, the DOE ASCI Red computer [74]
has 585 GB of memory, 32 GB/s of I/O speed and 1.8 TFLOPS peak processing power,
resulting in a MFLOPS:MB:MB/s ratio of 56:18:1, respectively. The I/O speed of the
ASCI Red is probably not very important as the computer is mainly targeted towards very
demanding and long-lasting tasks.

2.2 Classifications of existing general purpose parallel and
high-performance computers

Parallel computers are designed and built according to some specifications and some pur-
pose in mind, not according to any classification. For referencing purposes, however, we
have to classify them. In addition to the architectural differences, the following classifica-
tion can be considered as a classification according to the degree of the parallelism.

Networks of workstations (NOW)

The easiest way to create a parallel computer is to connect a group of stand-alone sequen-
tial computers with some communication medium. There exists a continuous spectrum of
different degrees of tightnesses of this connection. At one end, the computers are con-
nected to a shared memory using a crossbar switch, as it was done in the CMU C.mmp
parallel research computer [109]. At the other end are the Ethernet or Internet connected
distributed computing systems, called networks of workstations (NOW). The communi-
cation between the computers is often programmed using some of the portable program-
ming libraries, such as MPI, which we shall briefly present in Section 3.4. These libraries
present a common factor between the NOW and the distributed memory massively paral-
lel computers.

2.2. Classifications of existing general purpose parallel and 19

The wide variety of the distributed computing systems makes their classification
difficult, but in general their characteristics and usability depend mostly on the ratio of the
communication and computation capabilities. Moreover, the applications that are imple-
mentable on the NOWs are differ in their nature.

Shared memory multiprocessors (SMP)

The easiest way to introduce parallelism into a single computer has been to connect sev-
eral identical processors via a common bus to the same (banked) shared memory. This
approach is called symmetric multiprocessing (SMP), see example in Figure2-2. The bot-
tlenecks of a SMP computer are naturally the single bus and the shared memory. As the
processors speed up and require more memory bandwidth, the bus cannot serve very many
processors fast enough. The traditional method to overcome the problem has been large
local caches on each of the parallel processors to reduce bus traffic. The cache systems
monitor the bus to be able to detect the possible updates made by other processors to mem-
ory locations they contain. This maintenance of cache coherence also consumes some of
the available bus bandwidth. In spite of the big caches, the SMP computers will run out
of memory bandwidth if the applications exceed the cache sizes. Nowadays most of the
workstation and server manufactures provide multiprocessor versions of their top-of-line
products. Typical configurations contain 2-8 processors and 1-4 memory modules on the
same bus. As an improvement over the bus, newer SMP machines, e.g., the Sun Ultraser-
vers, have more advanced topologies, e.g., a crossbar switch as in Figure2-3, instead of

Figure 2-2: Bus-based SMP computer.

proc.

cache

proc.

cache

proc.

cache

proc.

cache
memory I/Omemory

central system bus

proc.

cache

proc.

cache

proc.

cache

proc.

cache

memory

I/O

memory

Figure 2-3: Crossbar-based SMP computer.

20 2. OVERVIEW OF THE TECHNOLOGICAL BACKGROUND

the single bus between the processors and the other devices. This type of configuration
makes the SMP architecture approach the classic supercomputers.

The SMP approach is usually used to increase the throughput of the computer
instead of introducing real parallelism for the applications. Typically an SMP system is
used to serve several interactive users and possibly a more computation intensive task con-
currently without a severe slowdown. Because of the sequential nature of the small-scale
SMP computers we shall not consider those much in this thesis. Moreover, a bit different
types of models suite better for these computers.

Parallel applications for the SMP machines have been written either providing com-
piler directives and using a parallelizing compiler, or using a proprietary SMP library for
each machine and operating system or using the portable message passing libraries. This
lack of portable tools for parallel shared memory programming has probably been the rea-
son for the slow development of SMP parallel applications. Recently, an industry group
suggested a shared memory standard named OpenMP [83] as a cure for this problem.

Throughout the history of the SMP computers there have been clusters of SMP com-
puters to elude the limitations of the SMP approach. The members of the SMP clusters
share, e.g., the mass storages and the operating environment. The nodes are connected via
a high-performance local area network (LAN) or via a specialized switch. Using a proper
(message passing) programming environment the cluster can be used to solve larger tasks,
but most often the clusters are used for solving separate tasks simultaneously. Because of
the diversity of the SMP clusters, we shall not discuss them much within this thesis.

Vector supercomputers

Traditional supercomputers have used vector processors, which we presented briefly in
Subsection 2.1.1. Additional parallelism on supercomputers is similar to the SMP
approach, i.e., a couple of processors are connected to the same memory. The difference
has been that on supercomputers the memory connection has not been implemented using
slow buses, but extremely fast multistage switches which are able to serve all the proces-
sors even if they all make a lot of memory references. Consequently, the processors have
be used also in parallel for one task. Still, a large portion of the use of the several proces-
sors has been to improve throughput. Hence, we shall not consider the vector supercom-
puters much in this thesis either. The Fujitsu VPP700 supercomputer, like its predeces-
sors, is a hybrid of the traditional supercomputers and multiprocessor parallel computers
[102]. It can have up to 256 processing units connected with a crossbar interconnection
network. The largest VPP700s built so far has, however, contained less than a hundred
processors17. The vector supercomputing nature of the VPP700 lies within the processing
nodes. Each of the processing units can have up to 16 concurrent vector pipelines and
2.2GFLOPS peak processing power.

17. Not counting the unique 166-processor NAL NWT 2 computer, which uses mostly the
same components but is tailored to a dedicated use [79].

2.2. Classifications of existing general purpose parallel and 21

Massively parallel computers (MPP)

To distinguish from the previous classes of computers, the large-scale parallel computers
are usually called massively parallel processing (MPP) computers. The MPP computers
can be divided into two classes. The first class includes computers with tens of thousands
of very simple processors. The second class includes computers with tens to a thousand
of high-performance microprocessors. The other traditional classification is the division
to single instruction, multiple data stream (SIMD) and multiple instruction, multiple data
stream (MIMD) computers proposed by Flynn [30]. The two classifications produce sim-
ilar divisions of the existing parallel computers.

The commercial SIMD computers, such as the Connection Machine [50], typically
have several very simple processors integrated in a single chip and connected with hyper-
cube or mesh structured connections. The single processor usually computes with only
one or a few bits, but using several processors together, also longer words can be used.
Connecting together several of these single chip18 modules of a few processors, comput-
ers having tens of thousands processors can be made with reasonable expenses. The pro-
cessors are coordinated using a central control processor, which resolves the stream of
instructions and broadcasts the same instruction for each of the processors. The proces-
sors have a set of special registers by which they decide whether to execute the given
instruction or not. The advantage of the SIMD approach is that the processors can be
extremely simple since they need no logic for branching and other program flow opera-
tions, and no memory for the program. Furthermore the processors are automatically syn-
chronized by the single instruction stream. The disadvantage of the SIMD approach is that
since the processors cannot branch, part of the processors have to wait idle during the con-
ditional branches of the program. Furthermore, the floating point performance of the sin-
gle-bit processors have been rather poor. Also the global broadcasting of the instructions
limits the clock speeds, which is probably the reason why the massively parallel SIMD
computers are disappearing. The best applications for the SIMD have been massively par-
allel databases, text searches, and expert systems.

The literal difference between the SIMD and MIMD approaches is that each of the
processors of a MIMD parallel computer executes its own program independently. In
practice, they execute local copies of the same program. Because the processors do not
usually have a common clock either, they execute asynchronously. Hence, they need to
synchronize from time to time to be able to cooperate. Since the processors work indepen-
dently, they need to be able to operate as stand-alone random access machines (RAM). As
we noted earlier in Subsection 2.1.1, the mass produced microprocessors are currently the
most cost-effective choices for the processing nodes to achieve high per-node perfor-
mance. Consequently, each of the processing nodes resembles a stand-alone workstation
with a substantial amount of memory, communication capabilities, and possibly a local
mass storage. Considering the cost of a node, the savings include packaging and the user
interface devices, notably the display, which in total form roughly half of the costs. Since
the processing nodes make roughly half of the costs of a parallel computer, we can esti-
mate that the cost of a typical MIMD parallel computer is the number of processors mul-

18. Even if the processors are located in the single chip, most of their memory and possibly the
communicators are usually located on a different chip. Furthermore, for each multiproces-
sor chip there may be a separate floating point processor as in the CM-2 computer [100].

22 2. OVERVIEW OF THE TECHNOLOGICAL BACKGROUND

tiplied by the cost of a corresponding workstation. The prices of different of mid-cost
computers have remained relatively constant over time, while the power of them has
increased19. Since the typical workstations cost about $5,000-20,000 and supercomputers
cost $500,000-30,000,000, we can estimate that MIMD parallel supercomputers have
approximately 50-2000 nodes. These estimations are naturally very inaccurate, but they
have held well this far, and there are no apparent reasons why they would not be of the
correct order also in the near future. A good example of the class of modern MIMD par-
allel supercomputers is the Cray T3E [25], which includes 32 to 2048 Digital 21164
(Alpha) processors connected together via a three-dimensional torus.

2.3 Special purpose computing and special purpose computers

Minimizing the costs of general purpose computers is hard because of the different needs
of different applications. If we are designing a computer for a single application, we can
choose the optimal solution for every component of the computer. The chosen optimal
solution is often much cheaper or better than a general purpose solution. The optimization
possibilities include choosing or designing a processor with an appropriate instruction set,
including only the minimum amount of memory, choosing suitable memory bandwidth,
choosing interconnection network with structure similar to the communication pattern of
the algorithm, using precomputed routing to avoid hot spots, and designing a dedicated
I/O system from the original data source. The drawback of the special purpose computers
is that since they are usually unique, the initial design costs add up totally to the cost of
the single computer. An example of a unique special purpose computer is the NAL NWT
2/166 (Numerical Wind Tunnel II) [79]. The NWT 2/166 consists of two control proces-
sors and 166 vector processing elements similar to Fujitsu VP400 connected together by
a crossbar network.

Because the main focus of this thesis is general purpose computing, we shall not dis-
cuss the existing special purpose computers in more depth. One of the goals of our new
model is, however, to be able to answer to questions such as “what type of computer
should we acquire for this particular application?” or “what feature of this computer
should be changed to improve the performance of our application?” The answers to these
questions clearly support the design of special purpose parallel computers. The answers
are, however, in terms of the new model, and are not necessarily generalizable for different
architectures than the shared memory approach. For example, the new model probably
cannot guide us to design an efficient hardware based DSP system for image processing
applications.

19. We shall not count the top-of-the line workstations since they include, e.g., very expensive
graphical display adapters. Furthermore, no MPP computer has yet used the newest pro-
cessors due to the development delays and the added expenses.

23

Chapter 3

Existing parallel computation models

here are at least two main reasons for computational models. Firstly, any pro-
gramming effort on physical computers involves many details that are irrele-
vant for an algorithm designer. As the models ignore the details, the algorithm
designer has less things to remember and do. Secondly, the diversity of phys-

ical computers is so large that the only possibility to design portable algorithms is to use
a higher level model which can be executed by all of the machines.

In this chapter we shall briefly present some existing models and paradigms of par-
allel computing. In Section 3.1 we shall present the traditional more implicit method of
expressing parallelism, the vector operations. In Section 3.2 we shall present the most
popular theoretical model of parallel computation, Parallel Random Access Machine
(PRAM). In Section 3.3, we shall present some parameterized cost models of parallel
computing. Our new model, which we shall present in Chapter 4, also belongs to this
class. In Section 3.4 we shall present the message passing paradigm in parallel computing.
Finally, in Section 3.5, we shall present the dataflow model of parallelism. The grouping
of the existing models is not necessarily generally recognized. We chose the grouping
based on the goal of the model and the point of view of the parallelism. For example, the
models on the parameterized group all try to characterize the communication capabilities
of the parallel machines. Before discussing the models of parallel computations and
machines, we present a model-independent classification of parallel algorithms.

A classification of parallel algorithms

According to Kruskal et. al. [66], the concept of efficiency of algorithms should be inde-
pendent of the model used, hence they present a classification of parallelism efficiencies.
Because the models of parallel computing are very different, the intention of this goal is
not very clear. We shall present the classification here because we use some of the termi-
nology later on when presenting the models and sample algorithms. The classification is
based on two factors, the efficiency and the parallel running time. The efficiency is defined
as the extra work compared to the work done by the best sequential algorithm. The effi-
ciency classes are:

24 3. EXISTING PARALLEL COMPUTATION MODELS

E Efficient, constant inefficiency,
A Almost efficient, polylogarithmic inefficiency, and
S Semi efficient, polynomial inefficiency.

The efficient algorithms are naturally the most desirable. The parallel running time is clas-
sified to two classes:

NC polylogarithmic running time, and
P polynomial reduction in running time.

The Nick’s Class (NC) aims for very fast parallel algorithms using as many processors as
needed. The class P aims for more practical reduction of time, if we have a polynomial
number of processors20. Note that these classes are not distinct, e.g., many parallel sorting
algorithms are in both classes. When pursuing towards the NC algorithms, we have to
remember, however, the physical communication latencies in three-dimensional space.

By combining the above classes of parallel algorithms we get six classes of parallel
algorithms, ENC, ANC, SNC, EP, AP, and SP. The EP class, efficient, polynomial reduc-
tions in execution time, is the most interesting one according to most research. The EP
class specifies that we achieve reduction by factor p in execution time using p processors.
More accurate complexity classes can be found in [108].

3.1 Vector programming model

Scientific computations21 consist mostly of vector and matrix operations. The operations
are performed either independently on every element of the vector, or as a vector opera-
tion, such as convolution. In either case, the operations can be accurately expressed as
whole vector operations without having to express the iteration over all elements of the
vector. In Fortran 90 [78] syntax, instead of the iteration

DO I=1,100 (3-1)
X(I) = 2 * X(I)

END DO

we can do the doubling with the vector assignment

X(1:100) = X(1:100) * 2 (3-2)

or, if we apply doubling to all elements of the arrayX, just

X = X * 2 (3-3)

20. Although the requirement of a polynomial number of processors is not necessarily practi-
cal.

21. Such as simulations of behavior of particles or matter according to the laws of physics and
chemistry.

3.2. The PRAM model 25

The vector operations have some advantages over the scalar operations. The most obvious
advantages are the easiness of programming and more inherent parallelism. We can easily
see that using statements such as (3-3) is much easier and less error-prone than using iter-
ations such as (3-1). Furthermore, the phenomena we are modeling rarely have an iterative
nature at the innermost level. Thus, the addition of the iteration is unnatural. On the imple-
mentation side, vector operations provide safe parallelization for the compiler. The itera-
tive loops are much harder to parallelize since they may or may not include dependencies
between the iterations. Since typical vectors of the inner loops of scientific computations
have thousands of elements, they provide enough parallelism for most parallel and vector
computers. Currently, and in the near future, the Fortran 90 programming language is
probably the most widely used vector programming environment. The APL language [56]
is very much based on vector operations. Consequently, it would provide good possibili-
ties for vector based parallelism. Later, we shall use vectors in transferring large blocks of
data between local and shared memories.

3.2 The PRAM model

Parallel Random Access Machine (PRAM) is a rather straightforward generalization of
the Random Access Machine (RAM) model of sequential computation. Instead of one
processor and one memory of the RAM, a PRAM has several processors and one memory.
Besides this basic fact, the different definitions of the PRAM model vary from one to
another. Because of the apparent obviousness of the model, several researchers have inde-
pendently “ invented” the model, and yet more researchers have defined their own versions
of the model. One of the first definitions was given by Fortune and Wyllie [34]. Figure3-1
presents the conceptual structure of the PRAM model. The processors are almost standard
RAMs with or without private memory. If the RAMs have private memory, they have also
separate instructions for shared and private memory references. Additionally, each of the
RAMs has a distinct Processor-Id number which distinguishes it from the other proces-
sors. The processors execute under a common clock. The choices, whether the processors
execute a common program, private identical programs, or different programs, and

Figure 3-1: The structure of the PRAM model.

P1 P2 P3 P4 PP

. . .

. . .
P processors

Common clock

Word-wise accessible shared memory

Read/write operations from/to shared memory

26 3. EXISTING PARALLEL COMPUTATION MODELS

whether the processors are allowed to branch differently or not, differ according to the
definer.

The most important variations of the PRAM model relate to the handling of concur-
rent shared memory references to a single shared memory location. In most cases concur-
rent reads and concurrent writes are handled separately, and a read and a write during the
same cycle get serialized to a read and a write22. Using different policies for read (R) and
write (W), we get abbreviations of the form XRYW-PRAM, whereX and Y are policies for
handling concurrent reads and concurrent writes, respectively. The most used policies are
Exclusive (E), no concurrency allowed, Concurrent (C), full concurrency allowed, and
Owner (O), only owner of the location allowed. For example, CREW-PRAM stands for
concurrent read, exclusive write PRAM. If we allow concurrent writes, we have to define
also the method of handling the conflicting writes, or forbid conflicting writes. As with
other forbidden operations, in case of forbidden writes, either the results are undefined, or
the PRAM halts, again depending on the definer. The most often referenced concurrent
write policies are Weak/Common (concurrent writing of zeros / the same value allowed),
Tolerant/Collision (nothing / a collision tag is written), Arbitrary/Priority (arbitrary value
/ the value from the processor with lowest PID is written), and Strong (combination of all
writes). The names of the policies may vary depending on the definer. All but the Strong
model are rather straightforward generalizations of the CREW model, even if the concur-
rent write possibility allows us to write unnaturally fast algorithms. For example, a Weak
CRCW PRAM can compute the maximum of N elements in O(1) time using N2 proces-
sors. The Strong CRCW model is even more powerful, as we shall see in the constant time
sorting Algorithm3-1.

The PRAM model has been criticized of being too theoretical, too strong, and
impossible to implement. These arguments are mostly valid, but the PRAM has not been
intended for modeling existing parallel computers. Instead, it is intended to be a tool for
studying parallelism at a more abstract level. Since the PRAM model is rather strong, and
since it can simulate most of the other parallel models efficiently, it can be used for
answering questions such as “how many processors we can use efficiently for our task?”
or “what is the minimum time required for this task if we are allowed to use as many pro-
cessors as needed?” The pursuit of the fastest possible algorithms has resulted in even
unnaturally fast algorithms. Algorithm 3-1 presents sorting of an array of N elements in
unit time by aN2-processor Strong CRCW-PRAM. The algorithm has been used by both
the supporters of the PRAM to demonstrate the goodness of the PRAM model, and the
opponents of the PRAM to demonstrate the meaninglessness of the model.

Since the PRAM algorithms are abstract and free of implementation-specific
details, the PRAM has been the most popular model of parallel algorithm research. Sur-
veys of the algorithms can be found in [57, 62]. Strong support is the biggest advantage
of the model since the other models do not have this rather mature algorithmic base [106].
Besides the algorithms, the algorithmic base includes knowledge of lower and upper com-
plexity bounds on groups of algorithms, and knowledge of parallel computability. What
it lacks, however, is the knowledge of more accurate efficiency of the execution of the
algorithms on real parallel machines, and, naturally, a working example of the PRAM.

22. Read before write is probably the more common definition. Some versions, however, use
the opposite order.

3.3. Existing parameterized parallel computation models 27

The standard programming approach for the PRAM is the sequential algorithm
notation augmented with the for-pardo construct to introduce parallelism. The view pre-
sented by the programming model is the view of a control processor, which executes the
serial code, and launches and controls the parallel executions on the parallel processors.
Since the PRAM model provides as many (virtual) processors as needed, the program-
ming model does not determine the way of distributing the subtasks to the physical pro-
cessors.

Besides being a theoretical model of computation, there has been research to imple-
ment PRAM using distributed23 memory machines (DMMs). In several cases, an
O(dP)-processor PRAM can be simulated asymptotically efficiently by a P-processor
DMM with a network of diameter d if the network has capacity O(dP) [87]. The needed
extra factor of d processors is called slackness. The problem with these simulations is the
usually unknown constants and the requirements on the capacity of the interconnection
network. Some of the constants of the algorithm can be estimated using simulations, but
the constants induced by the hardware are much harder to estimate. Similarly, the cost of
the interconnection network is highly dependent on the technology. Thereby, the costs are
hard to estimate. In any case, we have to count the cost of the components of the intercon-
nection network, especially if the network has asymptotically more components than the
number of processors. For example, a butterfly network usesPlogP queueing and routing
capable intermediate nodes forP processors.

3.3 Existing parameterized parallel computation models

Since the inaccuracy of the PRAM model has been recognized, and since no generally
accepted more accurate parallel computation model has appeared, several researchers
have presented their own “more realistic models of parallel computation.” In this section
we shall describe some of them. In addition to the ones we present here, more or less sim-

23. Or modularized memory machines.

proc sort1(A :array [1..N]) : array [1..N]; 1

var B, C : array [1..N]; 2

begin 3

for i ∈ 1..Npardo 4

B[i] := 1; 5

for i ∈ 1..Npardo 6

for j ∈ 1..Npardo 7

if A[j] < A[i] then 8

B[i] := B[i] + 1; 9

for i ∈ 1..Npardo 10

C[B[i]] := A[i]; 11

return C; 12

end; 13

Algor ithm 3-1: The O(1) time sorting algorithm for a N2-processor Strong
CRCW-PRAM.

28 3. EXISTING PARALLEL COMPUTATION MODELS

ilar models have been suggested in, e.g., [3, 12, 17, 23, 38, 39, 40, 46, 58, 71, 72, 75, 82,
84]. Surveys and comparisons of the models are made in, e.g., [14, 39, 59, 71, 95]. After
we have presented our own model, we shall compare it with the other models in
Section4.7.

Bulk-Synchronous Parallel (BSP) model

Valiant [104] presented the Bulk-Synchronous Parallel (BSP) model as a new bridging
model for parallel computation. The term “bridging model” means that instead of being
an accurate computation and programming model, the BSP model should be considered
an intermediate model between the machines and the programs. The instances of the BSP
model consist of a number of processor-memory nodes, the interconnection network, and
a synchronization facility that synchronizes the processing nodes at regular intervals of
length L. Besides being a bridging model, the instances of the BSP model can be consid-
ered as parallel programming models. XPRAM model presented by Valiant [103] is an
instance of the BSP model. The XPRAM model divides the computation in supersteps of
length c×L, where L is periodicity of the computer. During each superstep, a processor i
executes ai local operations, bi sends, and ci receives. The sends and receives are called
global operations. Even if the model refers to messages, it can be used to model the dis-
tributed shared memory. The time ri , which is related to the global operations to execute
the superstep by processor i, is , where g ≥ 1 is the cost, in steps per
word, of one global operation. Theg is calculated as

. (3-4)

We shall denote the maximum time over the processors by . The
time to execute the superstep by the whole machine is thus . After the comple-
tion of the superstep the processors are barrier synchronized.

The BSP model has recently gained more support than the other parameterized
models. One possible reason for this is that the model does not emphasize the use of the
parameter as heavily as some other models. Also, there exists a portable implementation
of the BSP model, called BSPlib [49].

LogP model

Culler et. al. [28] presented the LogP to model current and forthcoming multiprocessor
supercomputers. The LogP abstracts the properties of the message passing network to a
set of parameters that describe the machine. The parameters of the LogP model are

L an upper bound on thelatency of communicating a word,
o theoverhead time used in a processor for sending or receiving a message,
g the gap required between successive communications made by the same

processor, i.e., the reciprocal of the bandwidth available for single pro-
cessor, and

P the number of processor/memory modules.

r i ai g⁄ bi ci+ +=

g total number of local operations by all processors per second
number of words delivered by the communications system persecond
--=

t max r i i 1 p,[]∈{ }=
t L⁄ Lg

3.4. Message passing models 29

Furthermore, at most messages may be in transit to or from a processor at any
given time. The processing nodes and the messages are asynchronous, and the processors
synchronize through the messages. The asynchrony of the messages means that the order
of the messages is not guaranteed. LogGP model [6] is an extension for the LogP model.
The additional parameter isG, gap per byte for long messages.

Y-PRAM model

Y-PRAM presented by de la Torre and Kruskal [99] is a recursively decomposable syn-
chronous model of parallel computing. The number of processors in aY-PRAM isP = 2p.
Any submachine may block itself from the rest of the machine and operate independently
from the rest of the machine. The processors of a submachine executeperiods of compu-
tation and period of memory accesses. The memory accesses are allowed only to the
memory owned by the processors of the submachine. The time required for total M mem-
ory accesses within a submachine of sizeS is

, (3-5)

where24

δ(S) is the latency of references within submachine of sizeS,
m is the maximum number of references made by any processor, and
β(S) is the bandwidth inefficiency within submachine of sizeS.

As concurrent memory accesses to a single memory location are not allowed, each sub-
machine resembles an EREW PRAM.

3.4 Message passing models

Traditionally the opposite of shared memory based parallelism has been message passing
based parallelism. Instead of writing and reading the shared memory the processors, or
processes, of a message passing system communicate directly by sending and receiving
messages. Unless special multi- or broadcast operations are available, the messages are
delivered only between two processors, which differs from the shared memory approach,
allowing any shared memory location to be read by any processor. The message passing
models differ from each other mostly in two ways, whether a processor can directly reach
every other processor or only a subset of the other processors, and whether the communi-
cating processors need to synchronize during the communication, or not.

The distributed computing systems also use the message passing approach. The
research in distributed systems has, however, been rather apart from the message passing
based parallelism research. We shall not present the models used by the researchers of the
distributed systems, but we must remember that the boundary is not clear, and that the
problems are similar.

24. Informally, Θ(f(n)) stands for a growth rate ofexactly order off(n) [63].

L g⁄

Θ δ S() m Mβ S() S⁄+ +()

30 3. EXISTING PARALLEL COMPUTATION MODELS

The definition of the sender and the receiver of the messages varies depending on
the model, and especially on the level of the programming models. Because the nodes of
the physical computers have limited degrees, they can communicate only with their neigh-
bors. Direct all-to-all communications are possible only using either the P2-edged com-
plete graph or the bus, which are poorly scalable25. In a non-complete network, the mes-
sages to the distant nodes must be routed through other nodes. In other words, the routing
of a global message has to be decomposed to routing one or more neighbor-to-neighbor
messages. A programming model may provide all-to-all connections for the programmer
by letting the runtime system take care of the routing of the messages. Using the virtual
all-to-all communication, the programmer needs only to specify the processor-id numbers
for a virtually direct communication.

The sender of a message naturally needs to specify the receiver of the message, but
the receiver does not necessarily need to know the sender of the message. One of the most
important features of the message passing models is the receiver’s ability to select one of
the many potential senders of messages. The selection criteria vary depending on the
model, but most models include possibilities of choosing the oldest ready message or a
random one of several ready messages. More sophisticated possibilities include prioritiz-
ing depending on the sender and even on the contents of the message [9].

The synchrony of communication is the other important factor of the message pass-
ing models. Synchronous communication, e.g., the rendezvous model used in Ada [10],
requires the sending and the receiving processes to synchronize during the communica-
tion. If either of the processes is not ready for the communication, the other has to wait
until both are ready. Within a synchronous model, any asynchrony and buffering of mes-
sages must be done using additional buffering processes. An asynchronous communica-
tion model allows the sender of a message to proceed with its own computation indepen-
dently of the receiving process. Synchrony between the processes of an asynchronous sys-
tem can be achieved using acknowledgment messages.

Communicating Sequential Processes (CSP) model [52]26 and the derived occam
language [54] use channels of communication instead of defining the sender and the
receiver. Using channels allows the programmer to write more abstract processes, which
do not refer to other processes, but to channels, which the processes receive as their
parameters. Using the abstract channels, the CSP processes should appear like pure func-
tions of functional programming.

Message Passing Interface (MPI) [76] and Parallel Virtual Machine (PVM) [37] are
the most used implementations for practical portable message passing programming.
Both are implemented as a portable set of libraries to be used in C or Fortran source code
level to parallelize, or actually to distribute, applications. Both define the library calls for
the basic operations such as creating processes27, sending and receiving data, and syn-
chronizing the processes. More recently, also the BSPlib [49] library have been used in

25. Using intermediate routing-only nodes, the processors may have virtual all-to-all connec-
tions, but the physical structure of the network remains neighbor-to-neighbor.

26. The original, and more referenced, model in [51] did not, however, use the channel con-
cept.

27. The original MPI 1.x version does not allow dynamic process creation, but the new MPI
2.0 version [77] fixes this inconvenience.

3.5. Dataflow model 31

place of the older libraries. The libraries present the programmer the all-to-all communi-
cation model. In other words, they hide the physical communication network for the sake
of portability. In addition to point-to-point messages, the MPI library provides collective
communication routines, such as broadcast and gather. All MPI routines allow for sending
more than one element of data with one call. In practice, sending larger blocks is vital for
the efficiency since the initial costs of the routines are quite large in many implementa-
tions.

One of the shortcomings of the MPI and PVM models is that even if they allow us
to write portable programs, they do not make possible to portably optimize the perfor-
mance of the program. As the previously presented parameterized models, these message
passing models should include primitives to provide some information of the used
machine to the programmer. As we shall see in Chapter 5, it is possible to include these
features in the programming model.

We can argue which of the message passing or the shared memory approach is more
natural for an average programmer, but it is definitely possible to write efficiently execut-
able message passing algorithms and programs. The problem with these algorithms is that
they exploit either all-to-all communication or a specific communication pattern. The
algorithms with a specific communication pattern may not be easily portable to other
machines with different interprocessor connection architecture. We can simulate different
types of communicating graphs by embedding the graph of the algorithms to the graph of
the machine. Unless the embedding is very good, the embedding often leads to inefficient
use of the resources [69]. Consequently, the programmer may not assume any intercon-
nection topology for a portable message passing program, since wrong assumptions will
decrease the performance considerably. For example, an algorithm using a 3D mesh
decomposition will be inefficient in a parallel computer using a fat tree topology. Simi-
larly, using standard binary tree algorithms is not efficient if the programs will be executed
in mesh-structured computers. Thus, a portable message passing model should support
all-to-all connections. Furthermore, we should charge some costs on the using of the con-
nections, which would return us to the parameterized models of Section3.3.

3.5 Dataflow model

Dataflow model of parallel programming is based on the intuition that the maximum
amount of parallelism can be extracted from a problem by examining the operations per-
formed on a piece of data. The flow of data constitutes a directed acyclic graph (DAG) of
data movements between operations. The DAG directly defines the dependencies between
operations. The maximum width of the DAG is the maximum amount of parallelism
usable to perform the algorithms, and depth of the DAG is the minimum time required to
perform the algorithm if we had parallel enough computer. The input of the algorithm is
given as the first, i.e., in-degree zero, nodes, and the output is given as the last, i.e., out-
degree zero, nodes. The operation of a node can be performed as soon as all of the inputs
are available. After the operation has been performed, the output of the node is available
for the consecutive nodes of the DAG.

There have been efforts to build computers which are capable of executing dataflow
algorithms [11]. To improve the efficiency of the execution of the dataflow graphs, most

32 3. EXISTING PARALLEL COMPUTATION MODELS

of the dataflow computers, and the programming models, have included some exceptions
from the pure dataflow approach. The most notable ones are the once-writable I-struc-
tures. Usually the dataflow computers are programmed using functional programming
languages since they share the same paradigm. On the other hand, dataflow programs can
be derived from slightly restricted procedural language [36], but it might be generally too
difficult and inefficient.

33

Chapter 4

A new model of parallel computing:
the F-PRAM model

s a summary of the previous chapters, we can state that there is a gap between
current, and probably forthcoming, parallel computers, and the current, and
probably forthcoming, parallel algorithm design and programming conven-
tions. Parallel computers probably cannot have low latency, linear band-

width28, and linear cost random access shared memory. On the other hand, the algorithm
designers and application programmers tend to think in terms of data, i.e., shared vari-
ables. To fill that gap, we shall present a new29 model of parallel computing that presents
a shared memory model for the programmer, but it should also be realizable on distributed
memory message passing computers.

In this chapter we shall define the F-PRAM model and give the rationale for the
design choices. To begin with, in the introductionary Section 4.1 we shall discuss the
background and the purpose of the model. In Section 4.2 we shall present the components
of the model (or, more accurately, the components of the virtual computer modeled by the
F-PRAM model). The communication mechanism is probably the most important com-
ponent in any parallel computing model or system. In Section 4.3 we shall define the most
important aspect of the model, namely the cost model, which includes both the computa-
tion cost model and the machine building cost model. The rest of the chapter essentially
specifies the rationale of the model. In Section 4.4 we shall discuss the rationale of the
structure of the model and the number of parameters. In Section 4.5 we shall discuss the
methods of designing and analysing efficient and portable F-PRAM algorithms while still
trying to keep the design effort reasonable. Additionally, in Section 4.6, we shall discuss
the possible optional parameters and restrictions for the model. In Section 4.7 we shall
relate the new model with the existing models by giving simulation algorithms by the new
model and for the new model. Throughout this chapter we shall also list the rejected fea-
tures for the model. This discussion must be considered as rationale for the chosen fea-
tures.

28. Linear with respect to the number of processors.

29. Or, as Vishkin [106] stated, yet another realistic parallel computation model.

34 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

4.1 Intr oduction to the F-PRAM model

The models we examined in Section 3.3 are valid proposals to fill the gap, but at the time
we designed our new model we felt that none of the models include all the features that
are required for a general purpose model. Especially, the existing models are rather
abstract, which makes it difficult to examine the programming of the models and the exe-
cution possibilities of the algorithms written for the models. The more concrete nature of
our new model may restrict its use on some occasions, but allows more accurate analysis
of parallel computation. Furthermore, we shall prioritize the features to provide different
levels of accuracy depending upon the needs and possibilities in different types of analysis
situations. In addition to the model, we shall present a concrete programming model for
the computation model in Chapter 5, and an experimental emulator implementation of the
model in Chapter 6. Besides the definition of the model, the other important goal of any
model is to establish an efficient approach for parallel algorithm design. We shall present
the approach, as well as some sample algorithms, in Chapter 7. In addition to the classic
analysis of the algorithms, we present the measured performance of implementations of
the algorithms. The measurements have been done using a configurable emulator system.

With the new model we shall concentrate on trying to design algorithms that execute
nearly P times faster using P processors instead of one processor. Since we do not know
the value of P in advance, we should try to make algorithms that can adapt to different
values of P, i.e., use efficiently as many processors as possible. This resembles the goal of
the traditional parallel algorithm research, which often seeks algorithms that can effi-
ciently use asymptotically as many processors as possible to achieve the fastest possible
algorithm. Our primary goal is not, however, the maximum asymptotic parallelism with
infinite inputs since we have either a parallel machine with a finite number of processors,
or a finite amount of money, which can be used to buy a finite number of processors. Fur-
thermore, we do not use infinitely big inputs, but usually as big inputs as we can handle
with our machine.

As filling the gap between computers and programmers, it is important to fill the gap
between different machines. Filling the gap between to computers enables a possibility to
write efficiently portable programs. The new model abstracts the features of parallel com-
puters to a set of parameters that can be used to write programs that adapt to different types
of parallel machines. The full set of parameters is rather large, but most of the parameters,
called secondary parameters, are only analysis aids and for completeness. In most occa-
sions we need only a few primary parameters for making a program that can adapt to the
used computer. The secondary parameters can be used for reality checks to prevent using
the possible loopholes left by the primary parameters.

The third important function of the new model is to make it possible to model the
importances of the different components of the parallel computers. Using the model we
can estimate how the performance of a program will change if we change some features
of the computer. We can then answer questions such as “what requirements this particular
application has for the parallel machine to be able to be executed efficiently?” or “how
efficiently this algorithm can be executed on an Ethernet-connected workstation net-
work?” Besides the model of computation, we should have some information on the rel-
ative prices of different components. Then we could answer questions such as “should we
buy more processors or a faster interconnection network?” , “should we buy wider or faster

4.2. Components of the F-PRAM model 35

interconnection network?” , “what is the best way to improve the performance of our algo-
rithm?”, or “what components we could weaken without decreasing the performance of
our algorithm?”

The name of the model, F-PRAM, comes from term Future PRAM, since the model
uses structures similar to the futures of Halstead’s Multilisp [42] for shared memory ref-
erences. Within Multilisp, futures are a more aggressive way of lazy evaluation. Lazy
evaluation stands for “evaluation only when needed,” and futures stand for “start evalua-
tion immediately at background, i.e., in parallel.” In addition to Multilisp, we are aware
of two more recent languages that use futures for process creation [20, 21]. As opposed
to these languages, the F-PRAM model uses the futures only for shared memory access.
For presenting parallelism, we exploit the traditional par-do notation and a constant num-
ber of processors.

We shall refer to the whole model, including the conceptual structure of the model
and the cost model, as the F-PRAM model, or, when there is no possibility of confusion,
only as the F-PRAM. On the other hand, we shall call a machine modeled with the
F-PRAM model an instance of F-PRAM, or, when there is no possibility of confusion,
only an F-PRAM.

4.2 Components of the F-PRAM model

Components of any parallel computer include processors, memory, a communication
facility, and I/O facilities. F-PRAM naturally includes these, and actually little else. There
is a limited, machine dependent, number of processor nodes, each of which has some pri-
vate memory. We shall describe the nodes in more detail in Subsection 4.2.1. Besides the
private memories, the F-PRAM model includes some amount of (possibly virtual) shared
memory which we shall define in Subsection 4.2.2. The shared memory is the facility that
the processors use to communicate with. Processors access the shared memory via an
interconnection network that, together with the shared memory, determines the commu-
nication facilities of an instance of the F-PRAM model. Throughout this thesis we shall
use the general term communication for the processors communicating indirectly by
means of accessing the shared memory. The argument for this slight inaccuracy is that the
shared memory is the sole medium of communication for the processors. We shall
describe the properties of the interconnection network in Subsection 4.2.3. We shall
define an important part of the communication, namely synchronization, separately in
Subsection 4.2.4. Finally, in Subsection 4.2.5, we shall discuss the I/O possibilities of an
F-PRAM. In par with the definition of the components, we shall discuss some background
information to justify the chosen features of the components. Figure 4-1 presents the con-
ceptual structure of the F-PRAM model, and the conceptual structure of an instance of the
F-PRAM model. Even if the components of the F-PRAM model work together, each of
the components has its own view of the model. The view consists of the functionality and
the responsibilities of the component itself and a view of the other components that the
components communicate with. In the following subsections, in addition to the details of
the components, we shall describe the relations of the components to the other compo-
nents.

36 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

The separation of the different components of the F-PRAM model emphasizes the
independence of the operations the components perform. In other words, the components
work asynchronously unless explicitly synchronized of they have a need to interact. For
example, communication and computation are performed concurrently and independently
by the interconnection network and the processing nodes, respectively.

4.2.1 A set of processing nodes

The main part of a processing node is an ordinary sequential random access machine
(RAM). The RAM has it’s own private memory for program and local data. The exact
architecture of the processor is not relevant in the model. For example, there will probably
be one or more levels of caches between the processor and the local memory, but it does
not have on effect on the model. We may use any architecture as the basis of the model
since the model does not expect any special processor structures, such as special registers,
multithreading, fast context switching, or special fast interrupts. This is because each of
the processors works independently sequentially until it needs to interact with another part
of the machine. The local memory subsystem must, however, allow the network interface
to able to update the private memory. This is not as special as it seems to be. In most cur-
rent computers there is a special direct memory access (DMA) protocol for the I/O
devices, such as disk drive controller, to write the data directly to the main memory.

The number of processing nodes is a constant, machine-dependent number. Thus,
we can refer to it as a regular variable without, for example, necessity to use any functions
of the size of the input. The important advantage of this simplification is that also the other
measures that depend on the number of processors can be referenced as regular variables
that can be evaluated on compilation or load time.

PN0 PN1 PN2 PN3

ProcessingNodeP-1

. . .
P processing nodes

Interconnection network with

Processor

Local memory

Network interface

(optionally modularized)

. . .
M memory channels

Barrier synchronization network

Input/Output connection

latency and limited bandwidth

Shared memory

Figure 4-1: The structure of the F-PRAM model.

4.2. Components of the F-PRAM model 37

Shared memory references

In addition to the normal RAM operations, the processor is able to issue shared memory
references to the network interface. Here a shared reference stands for either a request to
write a local value to a shared memory location or a request to obtain a value of shared
memory location to the local memory. The processor delegates a shared memory write to
the network interface, that delivers it through the interconnection network to the shared
memory. From the viewpoint of the processor, the write only takes a constant time. A
shared memory read results in a future. A future is a temporarily tagged piece30 of local
memory. The tag tells us whether the future has been resolved or not. In practice, each
word of memory can contain either a normal value or the tag as a future marker.

Issuing a future takes a constant amount of processor time. While a future is being
resolved (i.e., served) by the shared memory and interconnection network, the processor
is able to continue its execution. It also may issue more futures. The value of an issued
future is unusable until the future has been resolved. The processor can check the state of
a future by inspecting the tag of the future. Figure 4-2 presents the route of one future
request from the processor to the network interface, and via the network to the shared
memory, and back to the local memory. We shall present the functions of the shared mem-
ory and the interconnection network in the next two subsections.

When the network interface receives the value of a previously issued future, it places
the value to the memory location of the future and clears the tag to show that the value has
arrived. The processor is not disturbed by message receiving. The next time the processor
inspects the future, it gets the value. There is no need for any acknowledgment signals
from the network interface to the processor. If the processor has nothing useful to do, i.e.,
it needs the value from the shared memory, then it needs to wait for the future to be
resolved. Because the waiting is not useful work for a processor, the F-PRAM model
advocates that the algorithm provides useful work for the processor to do before it tries to
read the value of the future. This way we can ensure that no useless waiting occurs.

30. Implemented, for example, as a special not-yet-available value within a single word, or as
either two words of memory, one of which is the tag, the other is the data.

Interconnection network

ProcessingNode

Processor

Local memory

Network interface

Input/Output connection

Shared memory

Figure 4-2: A route of a future request.

Future packet

Sh.Mem. addr.

Return addr.

Return packet

Sh.Mem. value

Return addr.

1

2

38 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

As opposed to the current SMP computers, the F-PRAM processing nodes do not
cache the shared memory. The future protocol makes the caching unnecessary. If a process
needs a value from the shared memory, it requests it beforehand using a future. Thereafter,
the value is kept in the local memory as long as the process changes it or rejects it. Con-
sequently, the local memory works as a cache of the shared memory, except that the shared
memory values are not updated automatically.

4.2.2 Shared memory

The shared memory is probably the most difficult component in parallel machines to
model well while maintaining a reasonable simplicity. The most straightforward and pow-
erful definition would be that we have an M-port monolithic shared memory that can han-
dle M nonconflicting memory requests simultaneously, i.e., on every clock cycle. Non-
conflicting means that there may not be two writes, nor a write and a read, to the same
memory location during the same clock cycle. The “one write and one or more reads” case
could be settled by defining that all writes take place before all reads, or vice versa. This,
however, might take twice the time than the plain nonconflicting solution. Implementing
a true multiport memory with independent access possibilities to every memory cell in
spite of all other references is probably rather expensive [32]. There should be an inde-
pendent path from every port to every memory cell, which would result quadratic costs in
the VLSI area.

A more realistic shared memory model is the model of M memory modules, each
capable of handling one request at every memory cycle. The memory locations of the log-
ical monolithic shared memory are distributed among the M memory modules. We shall
assume that each of the shared memory locations exists as a single copy, i.e., we use no
redundant memory. The complex thing in distributing the memory locations to several
modules is choosing the method of distribution. Some popular ones are the randomized,
block and cyclic distributions. With any given distribution, it may happen that on some
occasions several concurrent references have the same destination. Using a good random-
ized distribution, it is possible to prove that out of P random requests to P modules, on
average O(log2P) requests will be addressed to a single module with high probability.
Using other distributions, such as cyclic or block, there can be occasions when all requests
are destined to a single module, which totally serializes the requests. Those types of prob-
lems can be solved by allowing the programmer to guide the data distribution to avoid the
bad reference sequences in the program. This has been proposed, albeit partly for slightly
different reasons, in the High Performance Fortran (HPF) standard [47]. The approach has
the limitation of being mostly suitable for vector operations and making the programmer’s
work more complex. We shall discuss the possible distribution directives for the program-
ming model of the F-PRAM model in Section5.3.

The basic paradigm of the whole F-PRAM model is to have a rather plain basic
model and a set of possible refinements for more accurate inspections. Consequently, the
basic conceptual shared memory model of the F-PRAM is the monolithic M-port memory
system that can serve at most M nonconflicting memory requests on each clock cycle. The
attribute “at most” means that, unless we include additional restrictions in the model, we
can assume the M requests to be served on each cycle. The restrictions can include
restricting simultaneous reads from a single location and simultaneous references to a sin-

4.2. Components of the F-PRAM model 39

gle memory module. Furthermore, the latter refinement requires us to specify the data dis-
tribution method as well. A further possible restriction would be the size of the shared
memory, but it is probably useless with most parallel applications and with most parallel
computers. We shall discuss the costs of using modularized shared memory model in
more depth in Subsection 4.3.2. As a general assumption to achieve enough bandwidth,
the machines should have at least P memory modules. To compensate the impact of slow
memory and to reduce hot spots, we should have M > P in a high performance machine.
Vector supercomputers haveM:P ratios in the range 32-256 [17].

If we assume that the memory system is constructed of M modules that handle at
most one request on every cycle, the requirement of no conflicting references is fulfilled
automatically. All requests to a single memory location will be serialized since the module
handles the requests one by one. The fact that the requests might have been issued simul-
taneously does not affect the functionality of the memory module since the interconnec-
tion network and the network–memory module connection will serialize the requests. An
advantage of the F-PRAM model is that the order of the handling of the concurrent refer-
ences does not matter.

4.2.3 Communication network with latency and bi-section bandwidth

The task of the interconnection network is to deliver shared memory reference packets
from the processing nodes to the shared memory modules and back. The interconnection
network defines the minimum time needed for a shared memory reference. In addition to
bi-directional communication, also the time needed for the shared memory to respond to
the arrived request must be taken into account. The access times of the memory modules
can be considerably longer than the clock cycles of the processors, but is often low com-
pared to the interconnection network latency31.

We briefly discussed the properties of some possible network topologies in
Subsection 2.1.3, but in a model that tries to cover all parallel computers, we cannot
choose the topology of the network. Instead, we have to select a set of features that char-
acterize the properties of the network accurately enough. It is natural that the faster the
network delivers the requests from processor to the shared memory and back to the pro-
cessor, the better. In other words, the latency of the network should be small. Another
important feature of a network, perhaps even more important, is the capability to deliver
as many messages as possible between arbitrary nodes of the network. Because a big part
of the packets are routed across the network, the network should have a high bi-section
bandwidth. Furthermore, a good network has a big capacity to be able to hold as many
messages simultaneously as possible. The reason for the capacity is to simplify the struc-
ture of the processing nodes. If the network can hold additional messages, the processing
nodes need not to queue the messages.

The latency of a network has no generally accepted definition. A plain definition
would be to measure the time needed to deliver a message, but the problem is that the
times vary from message to message. Proposed definitions include minimum time, aver-
age time, average worst time, and absolutely worst possible time. Additionally we can
measure the times either on empty, partially loaded, fully loaded, or overloaded network.

31. In SMP machines, however, the memory latency may surpass the network latency.

40 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

The information of minimum possible time on an empty network is of little use, since it
is a practically nonexisting phenomenon in practical computations. The average time is a
better measure, but not all messages are delivered within the average time. Especially the
slowest messages never get delivered within the average time. Since all messages proba-
bly are important, we would not have any knowledge of how long we have to wait to
receive all messages. The average worst time tells us the expected time after which all
messages have been delivered. This is usually the most important latency measure we
need to know when designing parallel algorithms. The absolute possible worst time is
hopefully rare enough to be neglected in modeling.

When we discuss a read request across the network, the latency has to be multiplied
by two. In addition to the packet delivery time, the latency appearing for the processor can
include some packet constructing, queueing, and acknowledgment times. The impact of
the load of the network on the latency is rather hard to model properly. A good network
with a good routing protocol should be as insensitive as possible to the changes in the load
of the network. In other words, the latency should remain constant, or grow only moder-
ately, until the network really is overloaded. A good routing algorithm should also be able
to handle overloads with sustained throughput.

The bi-section width of a graph is defined as the minimum number of edges that
have to be removed to split the graph in two halves of an equal number of nodes. The
bi-section bandwidth of an interconnection network is often defined as bytes/second
across the bi-section of the network. In a parallel computation model, a better measure is
words/processor/instruction, i.e., the number of words each processor can send on each
clock cycle without saturating the network. Since we do not use nearness concepts, all the
packets have to be assumed to be global. Because of the globality, this measure combines
both the bandwidth and the capacity measures of the network. In a good machine the
words/processor/instruction should be a small constant, in practice at most one, unless we
use shared memory-to-memory operations, which would require two. A less efficient
machine would have a bandwidth that follows a function of the number of processors.
Since the measure is usually less than or equal to 1, we shall use the reciprocal of the
words/processor/instruction measure, called communication inefficiency. It determines
how often, in clock cycles, a processor can communicate without saturating the network.
The network saturation is not likely to happen with a very small number of successive
messages, e.g., two references in successive cycles should not saturate the network what-
ever is the communication inefficiency. Thus, we shall assume that the inefficiency restric-
tion is measured as an average load within a longer period. A reasonably long time would
probably be the latency time of the network.

In a normal situation, the capacity of the network should be the number of proces-
sors multiplied by the latency divided by the communication inefficiency. This shows that
communication inefficiency actually abstracts bandwidth and capacity to a single mea-
sure. Furthermore, the measure is processor-oriented rather than network-oriented. This
is an advantage because the source of the messages, i.e., the processors, should be able to
regulate the frequency of the messages.

Single standard messages in the F-PRAM are short, consisting of only two words,
as we shall see in Section 4.4. The length of the messages depends on the ratio of the word
length to the width of the edges of the interconnection network. In any case, however, the
length is a rather small constant. Hence, using any of the popular advanced protocols, such

4.2. Components of the F-PRAM model 41

as wormhole routing, makes little difference in the F-PRAM interconnection network, and
we shall not expect any specific protocol. The longer messages of the block references can
be handled via constant length packets.

4.2.4 Synchronization medium

Since the F-PRAM processing nodes work independently without any global control, they
need some synchronization mechanism to be able to work together on the same task. Since
the interprocessor communication is provided via shared memory references, the commu-
nication does not ensure synchrony as the message passing mechanism does. On the con-
trary, the shared memory communication method requires separate synchronization to
ensure correct data is delivered. A read before a delayed write would cause an old or unde-
fined value to be transmitted instead of the correct one. The synchronization can be done
using purely shared memory references via locks and/or counters. These, however, are
quite inefficient methods. Therefore, we shall define the synchronization facilities sepa-
rately from the shared memory facilities.

In Subsection 2.1.3 we discussed the difficulties of defining an arbitrary synchroni-
zation set. To keep the model reasonably uncomplicated, the only synchronization primi-
tive of the F-PRAM model is thus the barrier synchronization of all processors. In the glo-
bal synchronization all processors are supposed to execute a synchronization instruction,
or a procedure call, which is completed after all processors have called it. If some of the
processors fail to execute the synchronization instruction, the other processors have to
wait forever. Consequently, the programmer and the compiler have the responsibility to
make sure that all processors execute the synchronization. The delay between the moment
when the last processor executes the instruction, and the moment when the processors pro-
ceed with the computation is calledsynchronization delay. It is a machine-dependent mea-
sure, and usually a sublinear32 function of the number of processors. Because of an unbal-
anced algorithm, part of the processors may naturally encounter additional delays before
the synchronization. These delays, however, have nothing to do with the machine-depen-
dent synchronization delay.

Even if the processors formally synchronize the phases of their instruction streams,
the main reason of the synchronization is the synchronization of communications, i.e., the
shared memory references. The natural interpretation of the synchronization is that it will
ensure the order of the references of different phases. To put it exactly, all references to a
single memory location that are issued before the synchronization, will be completed
before any of the references that are issued to the single memory location after the syn-
chronization. Otherwise the synchronization would be meaningless. The definition that
ensures the correctness on the level of each memory location is the minimum that is
needed, but it may be hard to implement efficiently, especially on computers having a sin-
gle stage network and a dedicated synchronization network. For simplicity we have to
assume that all shared memory references that are issued before the synchronization, will
be completed before any of the references that are issued after the synchronization. This
implies that the synchronization takes at least as long as a shared memory reference, but

32. If we have a bus-based interconnection network without broadcasting capability, the syn-
chronization time is linear with respect toP.

42 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

this is not a severe restriction since the processors synchronize for the sake of communi-
cation.

Even if we define the synchronization network as a separate entity in the F-PRAM
model, we must note, however, that the synchronization primitive can be implemented
using the interconnection network that is mainly devoted to the connections of the shared
memory. It can be even implemented using the shared memory itself. The only aspect we
need to know about is the time required to synchronize the processors.

In addition to the whole machine synchronization primitive, the compiler, or the
programmer may provide some submachine synchronization possibilities. For example,
we can synchronize the processors using a counter when accessing a certain variable.
Alternatively, we can use the Algorithm 4-1 (page 80) for synchronous message passing
between two or more processors. For synchronizing the execution of a small set of pro-
cessors on a computer with high synchronization cost, we can use the Algorithm 7-9 (page
160).

4.2.5 Input/output facilities

Most of the existing parallel computing models totally ignore the I/O facilities of parallel
computers. Similarly, some parallel computers have inadequate I/O facilities for some
problems involving big data sets. In this subsection we shall model the I/O facilities of the
F-PRAM model. We must note, however, that the I/O facilities are not the most important
part of the model. We include the I/O facilities to the model mostly for completeness. For
example, the parameter concerning the I/O speed can be used to check that the I/O possi-
bilities of the parallel computer are adequate for the given purpose. Improving the I/O can
sometimes be the easiest way to improve the performance of a system in a particular appli-
cation.

The parallel I/O is not an uncomplicated concept. The P parallel I/O lines coming
from the P parallel processors have P other ends that have to be connected somewhere.
We can think the I/O consists of several very different levels. It is rather easy to implement
parallel disk I/O by having a disk in every node [2], but a massively parallel Internet con-
nection will certainly get narrower somewhere not too far away from the machine. We
must remember the source of the data and the destination of the results to be able to decide
the boundaries of the I/O system. If we consider a single batch job, for example, a crash
test simulation, the data comes to the computer via a network, or on a computer tape, seri-
ally, is then computed, and finally returned using the same medium. If the volume of the
data is big compared to the needed computation, or the I/O connection slow, the I/O will
be a bottleneck rather easily unless the data can be kept on local storage for longer times.
If we consider, e.g., a large database, the biggest amount of data is rather permanently
within the computer, probably distributed among the local disks33 or memory. Because
the request is usually rather small, it usually takes insignificant I/O time. The result can
be, however, rather large.

A system that is dedicated to a single task always gets its input from the same
source, and saves the data to the same destination. For such a system we can build a ded-

33. If the disks are central, the I/O bandwidth between the database data and the processors will
probably be a problem.

4.3. Cost models 43

icated I/O from the source and to the destination to ensure a smooth continuous operation.
A general purpose system, however, has to have a fast enough general purpose I/O to be
able to gather the required data. The problem with the parallel general purpose I/O is that
few sources can do parallel I/O. Consequently, a parallel I/O system should be used to par-
allelize several I/O streams from different sources and to different destinations. Addition-
ally we should be able to perform other computations concurrent with the I/O.

Since the I/O is such a diverse subject, we only include the speed of loading/saving
data to/from the machine as a parameter of the F-PRAM model. This can be used mostly
to detect bottlenecks of parallel computers or parallel computations. Each of the nodes of
the F-PRAM model has its own I/O facilities. The input, or the result, does not have to go
through the shared memory since the I/O facilities are a part of the processing node. This
is a difference between the formal PRAM model and the F-PRAM model. Most PRAM
algorithms presume that the input of the algorithm is located in the shared memory when
the computation begins, and the output of the algorithm is left to the shared memory after
the computation terminates. We can argue whether this is a reasonable assumption or not.
Definitely, there has to be some I/O system if we want to do some useful computation. A
sequential I/O system to fill and exploit the contents of the shared memory would add an
O(N) I/O time for every algorithm. The linear addition destroys the efficiency of many
parallel algorithms. On the other hand, if we want to research only parallel algorithms
without any I/O, or other real world aspects, then ignoring I/O of the shared memory is a
convenient abstraction. Within the F-PRAM model we could not ignore the I/O because
we implemented the model experimentally, and the experimental implementation needed
some type of I/O.

4.3 Cost models

The main purpose of the F-PRAM model is to model the costs of executing algorithms on
parallel computers. We shall consider the costs from two viewpoints: the costs of building
a parallel machine and the costs of executing algorithms on a given machine. By combin-
ing these two viewpoints, we can also estimate the costs of executing an algorithm on a
given machine. Since the technologies used in different parallel computers vary so much
and change so quickly, we cannot model exactly, say in dollars, the costs of building a
machine according to a given set of specifications. Consequently, we shall leave the count-
ing of the dollars to future research. Instead, we try to keep in our mind things such as
“doubling the number of processing nodes doubles the costs” or “ increasing the number
of wires in the communication network will cost some amount of money.”

To begin with, we have to model the machine with the parameters of the F-PRAM
model. As the result of that analysis, we have a cost for each operation that is used in an
algorithm. Using the costs we can count the time needed to execute the algorithm using
rather normal algorithm analysis methods. Furthermore, the used machine may pose some
restrictions that have to be verified with the analysis. The difference from the traditional
parallel algorithm analysis is that we charge different costs for different operations and on
different machines. Thus, expressions of the form “optimal algorithm” change to form
“optimal algorithm on the machines that have such and such properties.”

44 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

The execution cost model, i.e., the parameters, have three purposes. Firstly, they
help us to write programs that tolerate imperfect properties of the parallel machine, i.e.,
programs that are more portable. Secondly, they help us to determine which types of par-
allel computers are best for the given algorithm, and vice versa. Thirdly, given an algo-
rithm and a parallel computer, we can estimate the running time of the algorithm more
accurately than with more a general model.

In the first two subsections of this section we shall define the parameters of the
F-PRAM model that define the behavior of algorithms and the costs of executing the algo-
rithms. Different parameters have slightly different roles in the model. Some of the param-
eters simply define the time needed to accomplish an operation on a given machine. The
rest of the parameters are of a restrictive nature, e.g., they define how many operations we
can perform within a given time on a given machine. We shall divide the parameters to
two classes, primary and secondary parameters. Primary parameters model the most
important features, and have to be considered always when writing or analysing an algo-
rithm or a program. We shall define the primary parameters in Subsection 4.3.1. The sec-
ondary parameters exist for checking afterwards that the written program is executable
and efficient on a given machine. We shall define the secondary parameters in
Subsection 4.3.2. Table4-1 presents a summary of the parameters with some approxima-
tions of typical values of the parameters. In the first definition of the model [61] the
parameter synchronization delay was included in the primary parameters. In Chapter 8 we
shall estimate the actual values of the parameters for some real parallel computers.

Ultimately, the execution cost of a given algorithm is the product of the time needed
to execute the algorithm and the cost of the machine divided by the lifetime of the
machine. The problem of this approach is that since the technologies vary and develop so
much, we cannot model exactly, say in dollars, the costs of building a machine according
a given set of specifications. Therefore, we have to settle on comparing relative costs of
different features. We shall discuss such costs in Subsection4.3.3.

Table 4-1: The parameters of the F-PRAM model.

Primary parameters Typical/default
values

P The number of processors
L The latency of shared memory references L0 + 2×Øa

B The bandwidth inefficiency O(1) ...O(P)

Secondary parameters
BP The shared memory reference overhead O(1)
BB The block reference bandwidth inefficiency ≤ B
BV The single variable bandwidth 1
BM The single memory module bandwidth 1
M The number of shared memory modules P
BIO The input/output bandwidth inefficiency 1
S The synchronization delay ≥ L

a the diameter of the network

4.3. Cost models 45

Choice of the unit of the parameters

Most of the parameters characterize the time needed for an operation in a parallel com-
puter. In a model of computation the obvious candidates for time unit are “step,” “opera-
tion,” “clock cycle,” and “second.” The purpose of the unit is to be able to compare and
add different costs induced by different operations. In other words, we should be able to
express everything in the chosen time unit. This rules out most of the candidates. We can-
not tell that “as the computation takes X steps and memory reference Y steps, the whole
thing takes max(X, Y) steps” since the steps of the computation and the communication
are not identical nor comparable. Similarly placing “operations,” “seconds,” or “nanosec-
onds” into the previous sentence would sound less than perfect. Consequently we have to
settle for “clock cycle” since we can at least approximate (or measure/count) the number
of clock cycles needed for an operation. Furthermore, we have implemented an emulator
system to test the model, and within the emulator the clock cycles are very natural units
compared to, e.g., seconds.

We shall define most of the cost parameters as average costs since defining the costs
of a single operation accurately in every situation would be far too difficult and lead to far
too complex set of cost parameters. Besides average over successive operations, the aver-
age is also taken over different processors. This is because we shall assume that all pro-
cessors are executing the same task. Hence the processors probably execute similar oper-
ations simultaneously. We are usually interested in the cost that is likely to be needed to
complete all computations. Hence the average cost parameters do not mean literally the
average cost of the operations, but the average expected worst case cost over the proces-
sors.

Since we measure the properties in clock cycles, we have to assume that an average
local operation can be performed in one clock cycle to be able to compare the costs. The
problem in the use of a clock cycle as a measure is that even if we are given the costs of
some parallel operations in clock cycles, we do not know the costs of the basic local oper-
ations, such as an assignment or evaluating an expression, in clock cycles accurately. The
costs are machine dependent, and to be accurate, we would have to have parameters also
on the costs of the local RAM operations. The structure of those would be very architec-
ture dependent, e.g., depending on the local memory bandwidth. To hide the units from
the programmer, we shall provide programming model primitives to determine the costs
of sequential basic blocks of our algorithms. These values are counted by the compiler and
provided as read-only variables.

Since we are describing a model of computation, not a real parallel computer, we
have the liberty to abstract the local operations as well as the parallel operations. For
example, if a constant length body of an iteration takes a time, and one synchronization
takesb×log2P time then log2P iterations of the loop take as long as one synchronization.
For simplicity we shall sometimes use the term “operation” and the O-notation, which
ignores all the constants. Consequently, we shall state that the body of the iteration takes
O(1) time and the synchronization takes O(log2P) time. Furthermore, we shall state that
O(log2P) iterations of the previous loop take as long as one synchronization, even if it is
not very accurate. We must note, however, that for slowly increasing functions, such as
the log2P, the O-notation may hide constants that are larger than any practical value of

b
a

46 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

log2P. Hence, we shall be more careful with constants when using O-notation with sub-
linear functions.

If we want to estimate the execution costs with constants instead of only O-notation,
we have to have some approximations on the costs of the local operations. The simpler
these approximations are, the more feasible is the analysis of the algorithms. We can, for
example, assume that each assignment, arithmetic operation, comparison, and so on, take
one cycle, and adjust the parallelism structure costs to this measure. In any case, to be fair
with the constants, we have to count all operations, not, for example, only comparisons of
a sorting algorithm, or only multiplications of a matrix multiplication. In practical algo-
rithm analysis this results using one or more constants along the parameters and input size
in the time complexity expressions. Accurate estimations can be done only using the real
F-PRAM compiler and the emulator, which we shall present in Chapter6.

4.3.1 Definitions of the primary parameters

The primary parameters characterize the most important parallelism features of a given
parallel machine. They are presented as machine-dependent variables that are available
for the programmer, and are assigned with the machine-dependent values on compile or
loading time. All of the parameters have two purposes. Firstly, we can use them in the
algorithm to write a program that behaves according to the features of the target machine.
Secondly, the parameters tell us the costs that are used in the analysis of the algorithms.

The number or processing nodesP

Most existing parallel computation models allow us to use as many processors as we need.
The number of processors that an algorithm designer uses is usually a function of the size
of the input. When executing such an algorithm, either the compiler, or the runtime system
have to map the requested virtual processors to the real processors. Even if we still present
this same abstraction for the programmer in F-PRAM, while executing or analysing an
algorithm, we have only a limited number of processors available.

Definition 4.1: The parameterP stands for thenumber of processors the algorithm
can use during the computation. Each of the processors has a unique number,
processor-id (PID), ranging fromP0 to PP–1.

The “availability of P processors” means that we can use a parameter P and a set of P pro-
cessors named from P0 to PP–1 to execute the algorithm. The value of P is not available
for us until we fix a machine with the algorithm. When writing an algorithm, we can still
present more virtual parallelism than the parameter P would allow. The compiler should
then be able to map the work to the P processor, but it will not create any virtual proces-
sors. Particularly, the compiler will not apply for any more physical processors even if the
algorithm used more than P parallel threads of execution. Consequently, when analysing
an algorithm, we have to express the parallelism in terms speedup X with P processors.
We shall discuss the practices of analysis in more depth in Section 4.5, and the distribution
of the work among the processors in Chapters 5 and 6 with our programming model and
compiler for the F-PRAM model.

4.3. Cost models 47

Latency L of shared memory references

After a processing node has issued a future or a shared memory write request, it continues
its execution immediately at the next instructions. The impact of the request, i.e., the write
or the resolving of the future, will happen independently after some time. To fill that time
we should write algorithms that allocate some useful work for the processor before it will
try to use the value of the future. Since there is no signaling from the network interface or
the memory to the processor when the result of the future arrives, we need to know the
approximate time when the result is expected to arrive. More accurately, we are interested
in the time within which all the futures have arrived with high probability.

Definition 4.2: The parameter L, the latency of shared memory references, stands
for the expected worst time needed for a shared memory reference to be
completed.

Figure4-3 presents a possible distribution of the latencies of the shared memory reference
and the proper value for L within the distribution. As with the parameter P, also the param-
eter L is available for us as a variable until we fix a machine with the algorithm, when it
becomes a constant. The definition of latency is useful mostly in future requests, since in
case of shared memory write requests, the processor that issued the reference probably is
not interested in reading the new value and other processors have no knowledge at the
moment of the issue. Furthermore, since the processors are asynchronous, there should
always be a synchronization between a write to a memory location and a read from the
same location. Hence, the latency of a shared memory write is rarely used, and we define
it only for completeness.

A typical use of the parameter L in an algorithm is to issueL futures before starting
to use their values. If we do some other operations in addition to issuing the futures within
the same loop, we need to iterate the loop only L/x times, wherex is the number operations
within the iteration. The value of x in clock cycles has to be provided by the compiler as
the programmer probably has difficulties in determining it. More easily, we can choose
between a fast routine and a latency tolerating routine according to L. An example of this
approach is presented in parallel compare-exchange in Algorithm 7-3 (page 125).

Figure4-4 presents a timing diagram of the communication (diagonal arrows)
between the participating components (horizontal arrows) of the future requests. The pro-
cessor does local computation between the future references and only later uses the value
it requested to be transferred from the shared memory to the local memory. The task of

Figure 4-3: A possible latency distribution.

L0 L0
time

fr
eq

ue
nc

y

48 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

the interconnection network is to deliver the references between the processing nodes and
the shared memory. We shall use similar timing diagrams throughout this chapter when
defining the parameters.

The F-PRAM model does not require the futures or the shared memory writes to
complete in the same order they were issued. Only a synchronization ensures the order of
references. This asynchrony is quite different from some other models. The reason for this
relaxation is that few algorithms actually need the sequential consistency of the shared
memory references. We believe that this relaxation could simplify the implementation of
the processing nodes and the shared memory. For example, if we use randomized hashing
of the shared memory locations and packet-based network protocol, maintaining the order
of the references would require extra work.

Bandwidth inefficiency B

Few parallel computers have such a good communication network that could deliver all
the messages the processors are able to issue without saturating the network. Conse-
quently, we have to know how many references we can issue within a given time without
saturating the interconnection network. On the other hand, when analysing an algorithm,
we need to know how long it takes to transfer a given volume of data. Since the processors
work independently and the time is measured in clock cycles, a natural measure would be
references/clock cycle/processor. Because this measure would be less than or equal to one
in most cases, we shall use the reciprocal of the previous measure.

Definition 4.3: The parameter B, thebandwidth inefficiency, stands for the recipro-
cal of the maximum shared memory referencing capacity available for each
processor, in cycles/reference.

In other words, B is the minimum number of clock cycles between successive shared
memory references issued by a processor to ensure that the interconnection network is not
saturated. The restriction of the minimum number of clock cycles between successive
shared memory references is not strict, but should be understood only as a guideline. More
informally, we defineB as the minimum average number of clock cycles between succes-
sive shared memory references over time L on an average processor to avoid saturating
the interconnection network. More accurate restrictions are defined with secondary

Figure 4-4: A diagram of the latency of the shared memory references.

Processor

Shared
memory

time

Local
memory

future issues
a write issue future completions

use of local
future result

l at ency

4.3. Cost models 49

parameters in the next subsection. These allow us to check restrictions with each proces-
sor beyond the accuracy of the averages over time and processors.

Figure4-5 presents an example timing diagram of the impact of bandwidth ineffi-
ciency. If a processors issue futures too often, the network saturates, and the delivery of
the later futures get delayed. The processors, however, do not notice the delay unless they
try to use the results of the futures. The figure also reveals that our parameter B resembles
the parameter gap (g) of the LogP model [28]. Instead of using the existing term, we use
the “bandwidth inefficiency” to emphasize that B slows down the communication but
does not force the processors to wait between communications.

The above definition referring to an average processor includes a possible loophole
for situations where only part of the processors communicate. Using a naive average, we
could state that each of thep < P communicating processors would apparently have band-
width inefficiency

B’ = , (4-1)

which would naturally be unrealistic if B ≠ O(1/P) and p << P. On the other hand, the for-
mula is valid, e.g., for bus-based communication networks. The secondary parameter BP
does restrict the bandwidth of a processor, but cannot take into account the hot spots of
the interconnection network. Consequently, we cannot guarantee the average-derived
bandwidth of Formula(4-1) for unrealistic values.

A typical use of the parameter B is to compare the cost of the volumes of the com-
munication with the cost of the computation of a given algorithm. If the bandwidth inef-
ficiency of the parallel computer is large and if the algorithm communicates much more
than it computes, it might use asymptotically more time communicating than computing,
which is not efficient. An extreme example of a high-B parallel computer is a network of
workstations, NOW for short. A typical NOW might have 15 workstations of 50 MIPS
each connected with only a 10 Mb/sec Ethernet network. Such a system would haveB val-
ues around tens of thousands. When using such a system we have to be very careful to
make sure that the communication volume is considerably smaller than the amount of
computation.

Figure 4-5: A diagram of the impact of bandwidth inefficiency.

Processor

Shared
memory

time

Local
memory

sparse enough future issues network saturation,

bandwi dt h

too dense
future issues delayed delivery

i nef fi ci ency (gap)

B
P
p
----×

50 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

The above definition “without saturating the interconnection network” is not very
accurate. Alternatively we could define an option to force the restriction on the commu-
nication volume. We could define that a shared memory reference takes max(1, B–Y)
time34, where Y is the time used by the operations performed after the previous shared
memory reference. The disadvantage of this definition is that it prevents nonuniform use
of the bandwidth. Consequently, we shall leave also this aspect of the bandwidth open, but
since this definition provides a solid worst case method, we shall use it later in some anal-
yses.

4.3.2 Secondary parameters

The role of the following secondary parameters is to enable a more refined analysis of our
algorithms. For example, we can use the secondary parameters to ensure that our algo-
rithm is efficiently executable on a given machine even if we take the I/O into account.
Alternatively, we can attach some requirements on the features of the computer to the
algorithms. Furthermore, we can check, how much an algorithm would speed up if we
would use some strong feature of a special parallel computer architecture. The other
important task of the secondary parameters is to fill the possible loopholes left by the pri-
mary parameters. In other words to prevent using any “smart tricks” that improve the the-
oretical performance of the algorithm, but are not realistic on real parallel computers.

We do not bind the set of the secondary parameters tightly. We can later add more
features to be modeled with the secondary parameters if needed. We must remember,
however, that the algorithms that use some new exotic features are less portable and harder
to analyse that the algorithms written with only the basic features. Therefore, we should
design the basic algorithms without the use of the secondary parameters. Implicitly, the
design without the secondary parameters corresponds to the use of the secondary param-
eters with their default values. Unlike the primary ones, the secondary parameters have
rather apparent default values.

Shared memory reference overheadBP of the processors

The processors of some parallel computers do not have as good network interface copro-
cessors as we assume within the basic F-PRAM model. In such a system the processors
have to participate in communication. In practice, at least constructing the future packet
and injecting it to the network might be a responsibility of the processors. Also receiving
a message would possibly raise an interrupt for the processor to execute the message
receiving handler. Besides receiving its own messages, a processor might have to serve
other processors’s requests for the part of the shared memory it maintains. If the proces-
sors are located at the inner nodes of the interconnection network, they may have to par-
ticipate in routing of the messages in the worst case.

Since there are several factors affecting the processor time needed in different
phases of future references, we shall not try to model them separately. Instead we use an
estimated average cost induced by a communication operation. Since the total processor

34. More accurately max(BP , B–Y) time, but we shall define the parameter BP later in
Subsection4.3.2.

4.3. Cost models 51

cost of one future request (or write request) might get distributed to several processors, we
shall assume that all processors communicate simultaneously.

Definition 4.4: The parameter BP, the shared memory reference overhead of the
processors, shortly overhead, stands for the time spent by a processor for
accomplishing one shared memory reference in a situation where all (or
most) processors are issuing references simultaneously (or nearly simulta-
neously).

Since it is likely that the initiating processor encounters most of the costs, we can use this
measure also in the case when not all processors issue references simultaneously. The
overhead is bounded by bandwidth inefficiency,

BP ≤ B (4-2)

because if BP > B, we could not communicate at frequency B. Note, that B is principally
induced by the network properties, and BP is principally induced by the processing node
properties. Furthermore, the overhead is bounded by the latency,

BP ≤ L (4-3)

because if BP > L, the processor time for issuing the reference would be longer than the
duration of communication, which is impossible in a situation where all processors com-
municate.

In reality, the costs of handling the messages distribute over a longer time, espe-
cially if the processors of the intermediate nodes have to participate in the communication.
Modeling the distribution of the cost would be, however, too difficult. Consequently, we
shall assume that the cost, i.e., delay, occurs entirely by the issue of the shared memory
reference. This reasonable assumption does not affect the accuracy of the model since the
model is asynchronous and the moment when a cost is charged makes no difference.
Figure4-6 presents the timing diagram of two possible future issues. The difference is due
the work the processor has to do after the actual future request has left from the processor.
In practice, however, the impact of the two situations is negligible, unlessBP ≈ L.

Figure 4-6: A diagram of the impact of overheadBP .

Processor

Shared
memory

time

Local
memory

the time processor uses the actual moment of the reference

shar ed memor y r ef er ence

may vary depending on the architecturefor issuing the future

over head of t he pr ocessor s

52 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

Because of the relation of Formula (4-2) and because of the same unit, the overhead
is used similarly as the basic bandwidth inefficiency B parameter. If an algorithm does not
interleave the communication and the computation, we only need to use parameter B to
compute the time needed for one communication. The difference occurs if the processors
issue the shared memory references interleaved with the computations. In such a case the
overhead slows down the computation independently of the bandwidth inefficiency.
Hence, for each communication we need to add BP to the computation time. In practice,
we do not have to issue as many concurrent shared memory references as in caseBP = 1.
We shall discuss these algorithm design and analysis issues in more depth in Chapter7.

Block reference bandwidth inefficiency BB

Using plain futures described above, the shared memory references transfer only one
word. In some parallel computing systems, especially in circuit-switched systems, the
starting time of each communication is considerable compared to the actual communica-
tion and its latency. Also, the initialization of the communication may reserve the whole
bus. Further, in some packet-based systems, e.g., in the asynchronous transfer mode
(ATM) interconnections, the packet size is fixed. Hence, the basic future packets would
not result in full packets. Even the required one word header of the one word packet of the
abstract F-PRAM future request results in only 50 % payload. Consequently, we should
perhaps provide some possibilities to exploit the available bandwidth with better payload
efficiency. A natural approach to improve the efficiency of shared memory requests is to
allow block transfers between the shared memory and the private memories.

Definition 4.5: A block future of length k issues a future request to retrieve k con-
secutive words from shared memory to the local memory. Analogically, a
block write request copies k consecutive words from private memory to
shared memory.

The issuing of a block reference of lengthk takes

BP or k × BP (4-4)

time steps on the issuing processor depending on whether the interconnection network
interface operates autonomously and is connected to the private memory. The cost of
Formula (4-4) is similar to the cost of the overheadBP, which we defined to be the average
cost over all referencing processors. In other words, even if the issuing takes only unit
time, the later handling of the packets may take some time for the processor.

Definition 4.6: The parameter BB, the block reference bandwidth inefficiency
stands for the reciprocal of the average speed in words/cycle with which each
long message proceeds through the interconnection network.

More accurately, the last elements of the vector of the future block of lengthk are expected
to be written to the local memory in time

4.3. Cost models 53

O(L + k × BB). (4-5)

Figure4-7 presents an example of two standard futures and a block future of length 6. The
parameter BB impacts only in one direction for each request. The maximum frequency at
which the processing nodes can issue block requests is rather difficult to define since the
initialization time may or may not depend on the length of the message. To keep things
reasonably clear, we shall state that the processors can issue ordinary and block shared
memory requests with intervals

B + k × BB (4-6)

without saturating the communication network. To keep the rule consistent with the ear-
lier definitions, we shall state that k = 0 in cases of ordinary requests. The additional
1 × BB in a block reference of length 1 compared to an ordinary reference can be justified
with the required additional word containing the length of the block reference.

Single variable bandwidth BV

A basic assumption of the F-PRAM model is that a single variable can be referenced once
on every clock cycle. If the used parallel computer has a network that is able to combine
the concurrent references to the same location [41], or multicast-capable memory mod-
ules, the single variable could be referenced by several, or all, processing nodes simulta-
neously without any additional delay, or with only a small additional delay. The definition
of concurrent single variable accesses resembles the definition of the synchronization of
sets of processors. We can easily model, and possibly implement, an all processor broad-
cast and a multicast to a single set of processors, but multiple distinct and concurrent mul-
ticasts to random sets of processors is more difficult to model. As opposed to the definition
of the synchronization sets, we can define the referencing sets easily. The processors that
make a reference to a given variable form a referencing set. The value of the variable is
then multicast to the processors of the set. It is more difficult to define the cost of several
sets of processors referencing simultaneously to several shared variables. The definition

Figure 4-7: A diagram of the block future request and the parameter block
reference bandwidth inefficiency BB.

Processor

Shared
memory

time

Local
memory

separate future issues

B

block future
issue

return ofk words
with gapBB

bl ock r ef er ence
bandwi dt h i nef fi ci ency

54 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

of this cost model would require inclusion of some knowledge of the structure of the inter-
connection network. That would make memory references too difficult to analyse in a
general purpose and network-independent model. Consequently, we shall assume by
default that a shared memory location can be referenced by only one processor on a clock
cycle. We shall, however, retain a possibility for modeling machines which have more effi-
cient shared memory by defining a secondary parameter for the purpose.

Definition 4.7: The parameter BV, the single variable bandwidth, stands for the
maximum number of references a shared memory location is able to serve in
each clock cycle.

By default, the value of the parameter BV is one. If the shared memory of a machine can
serve more references, the single variable bandwidth can be a larger constant, or a func-
tion of P, and in a very good machine it can be equal to P. In a not-so-good machine the
parameter can also be less than one35.

In addition to the maximum number of concurrent references, we have to state
whether there can be several different access sets active concurrently, or not. In other
words, is the multiple-accesses-to-a-single-variable facility implemented via a single
broadcasting network, or not. By default we assume that the number of reference sets is
not restricted. The multiple accesses may only consist of read references. A write and a
read, or several concurrent writes to the same shared variable yield an undetermined
result.

Synchronization delayS

The synchronization of the F-PRAM model is defined as a synchronization of the all pro-
cessors in the machine. In other words, all processors are expected to execute the synchro-
nization operation. After all processors have executed the operation, and after the knowl-
edge of the synchronization has been propagated to all processors, the processors continue
their executions.

Definition 4.8: The parameter S, the synchronization delay, stands for the time
needed to propagate the knowledge of the synchronization completion to all
processors, i.e., the time from the moment when the last processor executes
the synchronization operation to the moment when all processors have begun
to continue their executions.

Since the processors continue their executions independently, we do not require that the
processors continue simultaneously. In other words, some processors may proceed very
soon after the last processor has executed the synchronization operation, some others only
after theS delay. Figure4-8 visualizes an example of the synchronization process.

The semantics of the synchronization emphasize that the synchronization is per-
formed to ensure correct communication using shared memory references. Since the syn-
chronization requires all shared memory references to be completed during the synchro-
nization, the synchronization parameter S cannot be smaller than the latency parameter L.

35. Actually, this is perhaps true for practically all current parallel machines.

4.3. Cost models 55

If a parallel computer has a dedicated synchronization network, we can assume that the
synchronization can be accomplished quickly as long as we can ensure that the references
get completed. In other words, in those cases we can assume that S = Θ(L), or even that
S ≈ L. If the parallel computer does not have any synchronization facilities, we can use
Algorithm 7-9 to accomplish the synchronization in time . The algo-
rithm can also be used for submachine synchronization. If a parallel machine has a dedi-
cated synchronization network, or executes synchronously, and it ensures the correct
order of the shared memory references, we could allow S < L, but it would require an
alternative definition ofS.

A typical use of the synchronization delay parameter is to ensure that we do not use
too much time doing synchronizations in a machine that does not have a dedicated syn-
chronization network. It is not, however, as important and frequently used parameter as
the latency parameter L in the algorithm design phase. In most cases we can either assume
S = Θ(L), or use max(L,S) in place of both of the parameters. The bigger role of the syn-
chronization delay parameter is during the phase when we are estimating the execution
time of an algorithm on a given machine.

Single memory module bandwidth BM, the number of memory modulesM, and the
data distribution scheme

The basic memory model of the F-PRAM model is the single monolithic shared memory
model. The single multiport memory is, however, hard to build, and all current parallel
computers use modularized shared memory or distributed memory. Therefore, we must
remember that in most cases the shared memory will eventually be modularized. The use
and the analysis of the modular memory structure is, however, so much more difficult, that
we shall include it only as an option and with secondary parameters. By default we
assume that the parametersL and B describe the memory module bandwidths accurately
enough.

In a modularized memory system, all memory locations of thevirtual shared mem-
ory are distributed among the memory modules. In a straightforward distribution scheme
each location is mapped to exactly one module and all modules include an approximately
equal number of memory locations. More complex schemes use, e.g., redundant copies of
the memory locations in different modules, but we shall not discuss those methods here.

Program execution

Synchronization

Program execution

Synchronization
delayS

The execution threads of the processors

Figure 4-8: Synchronization delay of a set of 8 processors.

tim
e

O L P Llog⁄log()

56 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

Along the memory locations, also all the shared memory references get distributed among
the memory modules. The main problem of the modularity is that several independent
shared memory references fall on the same memory module simultaneously. We shall call
such a situation, and such a module, a hot spot. An ordinary memory module is capable
of serving only one reference on each clock cycle. As with the capabilities of a single loca-
tion, we shall retain the possibility for modeling better memory modules by defining a pair
of secondary parameters.

Definition 4.9: The parameter BM, the single memory module bandwidth, stands
for the maximum number of references a shared memory module is able to
serve in each clock cycle.

As with the single variable bandwidth, the parameter BM is one by default. Depending on
the machine it can be also a constant larger or smaller than one, or a function of P. The
measure BM is not useful unless we also know the number of shared memory modules.
Consequently, we shall define another secondary parameter to model the structure of the
shared memory.

Definition 4.10: The parameter M, the number of shared memory modules, stands
for the number of distinct memory modules, each of which can serve theBM
shared memory references on each clock cycle.

If we consider the modularity of the shared memory at all, we shall assume by default that
M = Θ(P). The parametersB and M have a special relation in the sense that we can adjust
the probability of hot spots in memory modules by choosing them properly. Increasing
either one will reduce the probability of congestion, but increasing B reduces also perfor-
mance, whereas increasing M raises costs. Table4-2 presents some combinations of the
parameters and intuitive estimations on the probability of congestion. The estimations
assume constant issuing of references and random distribution of the references. We shall
leave a more accurate analysis of the optimal relations of the parametersB, BM, and M to
future research.

Data distribution guidance

The use and analysis of the modularized shared memory is hard unless we also have some
knowledge of the mapping scheme of the shared memory locations to the memory mod-
ules. The mapping can be done either automatically by the runtime system in the parallel

Table 4-2: Some possible combinations of parameters B and M, and the
expected effects to the probability of the module congestion.

M = P M = C×P M = P logP
B = 1 congestion less congestion no congestionb

B = Ca less congestion little congestion no congestionb

B = logP no congestion no congestion waste of resources

a C stands for small constant, e.g.,M = 2 or 4, ifBM > 1, then, e.g.,M = 2×BM
b unless poor hashing

4.3. Cost models 57

computer, or guided by the programmer. An automatic mapping can be done either with
some deterministic mapping, e.g., in cycles or blocks, or with randomized mapping. In
either case, the occurrence of hot spots is dependent on the usage pattern of the shared
memory. A deterministic mapping may result in some good cases without hot spots, but
will probably result in some extremely bad cases, in some applications, e.g., all processors
might reference to the same module simultaneously. We can analyse a deterministic map-
ping only if we know both the mapping and the exact algorithm. The randomized map-
pings do not result in the optimal mappings, but they rarely result in the worst cases. If the
randomization is good enough, we can use the expected values to achieve an analysis,
which is reliable with a high probability. The drawback of the randomized (and cyclic)
mappings is that they prohibit the use of the block references.

If we want to avoid the hot spots reliably and optimally, we have to define the data
mapping ourselves within the algorithm. When choosing the mapping of a data structure
of an algorithm, we have to know the usage pattern of the data structure within the algo-
rithm. For optimal performance we have to choose such a mapping that avoids the hot
spots. The programming model has to include directives that allow the programmer to
guide the mapping of each data structure. In most cases it suffices if each dimension of
each array can be specified to be distributed either cyclically, in blocks, or cyclically in
blocks. The High Performance Fortran (HPF) standard proposal presents an example of
the array distribution directives [47]. In the HPF, all vectors can be aligned according to,
i.e., distributed according to, another array or a template, or an empty array. The arrays
and templates are then aligned according to the abstract processors, which are finally
aligned according to the physical processors by the compiler and the runtime system. We
shall define distribution directives for the programming model of the F-PRAM model in
Subsection5.3.2.

I/O bandwidth inefficiency BIO

Some applications, such as digital video processing, require great amounts of data to be
loaded and saved during the computation. Also some batch jobs might require a big input,
or produce a big output. To ensure that the data of our tasks can be transferred to and from
the parallel computer fast enough, we define a secondary parameter to model the I/O-band-
width.

Definition 4.11: The parameter BIO , the input/output bandwidth inefficiency,
stands for the reciprocal of the I/O speed available for each processor. In
other words, it tells us the frequency on which the processors can input or
output data. By default,BIO = 1.

Since the I/O bandwidth available for each processor at every clock cycle is typically very
small, we defined the measure as the reciprocal, i.e., as inefficiency. Furthermore, the def-
inition is more consistent with the other parameters. The value of the measure is likely to
be a rather large constant, or a smaller constant multiplied by the number of processors in
case of central I/O. The use of the parameter is to check how much the I/O time affects
the execution of the whole program.

58 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

4.3.3 A sketch of the machine building cost

As we are considering a parallel computation model of real parallel computers, we have
to remember that only a limited amount of resources are available. Besides the fact that
our machine is not infinite, the limited resources usually show up in a form of less than
perfect properties of the parallel machine. We discussed in Subsections 4.3.1 and 4.3.2 the
methods of modeling such imperfections. In this subsection we shall discuss the reasons
why such imperfections occur, and what we can gain by allowing such imperfections. The
first-level gain is naturally money, since building a perfect36 parallel computer would be
prohibitively expensive, if not impossible. Building a less than perfect parallel computer
can be much cheaper, and possibly the cheaper computer would be nearly as powerful as
the perfect one of comparable size. Consequently, the secondary gain is that we can pos-
sibly build a larger but less perfect machine with the same money, and possibly get more
computing power out of it. Our main subject in this subsection is developing some esti-
mation techniques to be able to answer which features of parallel machines are worth their
building costs in different situations.

As we have stated previously, estimating the cost of building a parallel computer in
dollars is impossible, unless we bind accurately the type of the computer we are building.
Moreover, the history of parallel computers has shown us that the estimation is difficult
even with accurate plans [7]. Since so many different technologies are used in parallel
computers, we cannot make even rough estimations on the costs of given components
within our parallel computation model. Furthermore, we cannot reliably determine the
relative costs of different parts of a parallel computer even if we knew their features. We
can, however, make rough estimations of the costs or savings of improving or weakening
a part of a parallel computer. Most importantly, we have to remember that there are no free
components in a parallel computer. Even if the estimations are hard to make, we shall
sketch here some candidates for the machine cost functions.

Processing nodes

Concerning the processing nodes of an F-PRAM, the cost of the processors is the easiest
cost to estimate, P processors cost approximately CPr×P dollars, whereCPr is the cost of
one processor37. The private memory of the processing nodes has also a rather fixed cost
MP×CMW×P, where MP is the number of words of private memory per processing node,
and CMW is the cost of a word of memory. The cost of the input/output facility of the pro-
cessing nodes depends on their capacity. We shall only state for completeness that the cost
of the I/O facilities per processing node is CI/O. Consequently, the cost of the processing
nodes can be presented with formula

36. The definition of perfect naturally varies depending on the needs. Here we consider a com-
puter perfect if it does not have any bottlenecks other than the processors, i.e.,
L = B = S = BIO = BP = 1, andBV = P.

37. More accurately, the cost can be sublinear because of the relative reduction in design and
factory founding costs. The difference is, however, usually irrelevant unless we design a
custom processor for a unique parallel computer.

4.3. Cost models 59

CP = P ×(CPr + MP×CMW + CI/O). (4-7)

The cost of the interconnection network interface it is not included in the formula because
shall count it to be a part of the cost of the network.

Inter connection network

The cost of the interconnection network is harder to estimate than the cost of the process-
ing nodes because of the variety of different usable technologies. Here we shall ignore,
e.g., optical interconnection networks and settle for fixed electric networks. An electric
network consists of nodes and interconnections consisting of one or more parallel wires.
The cost of the interconnections is probably nearly insignificant compared to the cost of
the nodes. The cost depending of the length of the interconnections is probably unimpor-
tant38, and we shall assume that the relative costs of the interconnections depend mostly
on the width of the interconnections. Moreover, the width of the interconnections affects
strongly the cost of the nodes of the network, and the length affects the speed and the
speed-dependent costs of the nodes. Consequently, we shall consolidate the cost of the
network to the cost of the nodes. Depending on the chosen topology, the interconnection
network may include routing-only intermediate nodes and shared memory module nodes
in addition to the processor nodes. The multistage networks with routing-only inner nodes
usually have the processing nodes and the possible separate memory modules in the outer
nodes of the network. Hence, the processing nodes and memory modules might, for exam-
ple, have lower degree than the inner nodes. Because the differences are, however, hard to
estimate, we shall count the number of network nodes as the sum of the processing nodes,
memory modules and the inner nodes, and charge the same cost for the all types of nodes.
The clear cost parameters of the interconnection network are the number of nodes and the
width and the degree of the nodes. The more difficult cost parameters are the speed, i.e.,
latency and the queuing facilities of the nodes. A possible cost function of the intercon-
nection network would be

CN = NN × CNW× CND × CNL × CNQ, (4-8)

where

NN is the number of interconnection network nodes,
CNW is the width cost of the nodes,
CND is the degree cost of the nodes,
CNL is the latency (speed) cost of the nodes, and
CNQ is the queue costs of the nodes.

The costs are multiplied together because every property affects the others. The cost of
the width of the nodes is a multiplicative factor since every component of the network
must have the same width. Every addition in the degree of the nodes also requires its own
set of components. The cost of the speed of the node is a multiplicative factor since every
component of the network must be able to keep up with the others. The cost of the queues

38. The length affects, however, the maximum possible frequency on the wire.

60 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

is multiplicative since the queues of the required width and length must exist in every
direction of the interconnection network. Figure4-9 presents an example of a routing
node of, e.g., a 2-dimensional mesh. We can see that if we increase the degree of the node
or the width of the links, the node will be more complex.

The linearity of the costs of the queues is valid for the real queues implemented
directly, but less so for the queues implemented using memory and some logic. Therefore,
we need to apply the next Formula (4-9) with different factor ACNQ depending which
queue implementation the nodes use. Similarly for each cost, the doubling of a property
will not probably double the costs of the property. Hence, each of the network costs is of
the form

CX = CX0
 + XN × ACX, (4-9)

where

CX0
is the base cost of the propertyX,

XN is the quantity of the property in the node, and
ACX is the cost of one additional unit of the property.

The cost of the synchronization network of the F-PRAM is probably insignificant com-
pared to the other costs. We can assume that the cost is dependent on the speed of the net-
work and the number of processors. For completeness, we shall define the cost of the syn-
chronization network asCS. The cost is zero if the machine does not have a dedicated syn-
chronization network.

Shared memory

The cost of the shared memory depends heavily on the method it is implemented with. If
the shared memory is distributed to the private memories of the processing nodes, it does
not necessarily induce other costs than the increased size of the required private memory
modules, and the increased demand of the bandwidth to the node. We must note, however,
that using private memories for implementing the shared memory is probably less effi-

Figure 4-9: An example of a routing node of an interconnection network.

One-directional link of

Routing switch of

width w

A queue of
in-degree d and
linkwidth w

out-degreed and
linkwidth w

4.3. Cost models 61

cient than using dedicated shared memory modules. If the dedicated shared memory is
implemented by modules andBM = BV = 1, we shall model the cost of the shared memory
with formula

CM = M × (CMM + NM × CMW), (4-10)

where

M is the number of memory modules,
CMM is the basic cost of a memory module,
NM is the number of words in a memory module, and
CMW is the cost of a word of memory.

With the above basic assumptions, the cost of the shared memory is not directly dependent
on the number of processors. Indirectly, however, the more processors we have, the more
memory bandwidth and memory volume we need. Furthermore, the requirements for the
properties of the shared memory are highly algorithm dependent, and the costs of an insuf-
ficient shared memory bandwidth occur within algorithm execution costs.

If BM > 1 or BV > 1 the costs are more complicated. The higher bandwidth to a
memory module has to be implemented either by increasing the speed of the memory,
which is usually unrealistic, by further dividing the modules to submodules, or by increas-
ing the number of ports to the memory cells. The subdivision can be handled as an
increase in the number of memory modules. The increase in the number of the ports to the
memory cells increases also the parameter BV. As estimated by Forsell [32], the additional
cost of an implementation of the multiport memories is proportional to the square of the
number of ports. Therefore, Formula(4-10) changes to the form

CM = M × (CMM + NM × CMW × BV
2), (4-11)

which implicitly allows also BM = BV. If the single variable bandwidth is improved by
using a combining interconnection network39, the cost of the shared memory is
unchanged, but the cost of the interconnection network grows. We shall not try to estimate
those costs in the form of a formula. Instead, we notice that the nodes of a combining
interconnection network need to have fast comparison facilities and enough memory to be
able to store the information of the combined messages. Furthermore, the combining net-
work does not increase the single memory module bandwidth unless all references are
destined to the same location.

Total machine cost and algorithm execution cost

We defined in Section 4.2 that the components of the F-PRAM work independently unless
they have a reason to interact. Consequently, the building cost of an F-PRAM is the sum
of the costs of its components, i.e.,

39. We shall present the combining interconnection networks briefly in Subsection4.6.2.

62 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

Cbuild = CP + CN + CM + CS. (4-12)

For completeness we also take into account the maintenance costs of a machine during its
lifetime. Hence, the lifetime costs are

C = Cbuild + Cmaint (4-13)

which, however, does not provide us any new viewpoints to parallel computing. We
defined the total cost because we need to be able to state the cost of a parallel computer to
be able to properly examine the execution costs of the algorithms. Using the algorithm
cost model with experimental constants we can approximate the time used by an execu-
tion. Even without the constants we can compare the running times of two or more algo-
rithms. By combining the algorithm costs and the machine costs, we get the cost of the
execution of the algorithm in dollars.

Definition 4.12:Theultimate execution cost of a parallel algorithmA is

, (4-14)

where

TA is the execution time of the algorithmA,
C is the lifetime cost of the parallel computer, and
TC is the lifetime of the parallel computer.

Using Formula (4-14), we could try to minimize the ultimate cost of executing an algo-
rithm. Naturally, we are not able to state the exact cost of the execution in dollars, unless
we had extremely accurate information on the cost of the components of parallel comput-
ers and a very detailed plan of the parallel computer. Likewise, we seldom can estimate
the lifetime of a parallel computer. Furthermore, the formula does not take the execution
time requirements into account. Hence, the resulting optimal machine might be the cheap-
est home computer sold at the time. We could count the execution time also and using the
above definitions, we could define a cost optimal architecture for a given algorithm by
finding the optimal cost-performance combination of all properties and the time require-
ment of the task. Because the optimal combination would, however, probably be too dif-
ficult to find, we shall not even try to suggest it. Moreover, there is little value in finding
a cost optimal architecture for a single task.

Instead of trying to use the formulas directly, we can check the properties one by
one, by inspecting which changes of the properties were worth their cost. We have to settle
for comparing the proportional costs of changes. The analysis of F-PRAM algorithms
often yield complexities which depend directly on one parameter, for example, bandwidth
inefficiency. These bottleneck properties are the ones we should first check for possible
cheap improvements. For example, if halving the bandwidth inefficiency B40 would speed
up the computation nearly twice, but cost only 10 % more, the improvement would be

40. That is, doubling the bandwidth.

CA

TA

TC
------- C×=

4.4. Rationale of the choice of the parameters and the structure of the model 63

very profitable. Besides the improvements of the machine, we can check the algorithms
also against weakening of the machine. For example, if the multiport shared memory costs
one third of the cost of a parallel computer, but we could write nearly as efficient algo-
rithms without it, we could give up the multiport memory, possibly in favor of, e.g., more
overall bandwidth, or more processors.

To formalize the use of a single parameter at a time, we shall define a desirable fea-
ture of parallel algorithms, namely the scalability with respect to the properties.

Definition 4.13: If the ultimate execution cost (4-14) of an algorithm does not
increase when we change a parameter of a parallel machine, we shall state
that the algorithm iscost scalable with respect to that parameter.

For example, when doubling the number of processors, and other dependent properties,
the execution time should drop to half since the cost of the computer doubles. This con-
cept of scalability with respect to a single property at a time is probably the best we can
do without deeper knowledge of the costs of building parallel computers. We shall later
briefly discuss the use of scalability, but mostly we shall leave it to future research.

As a summary of this subsection, we can state that the route of finding a cost optimal
architecture is probably difficult and that the results are valid for one task only. Therefore,
we should find a architecture that is a reasonable compromise between the cost and the
desired properties. The requirements for the properties can be found, e.g., using the
F-PRAM analysis and/or the F-PRAM emulator system presented in Chapter 6. On the
other hand, the F-PRAM analysis helps us to find suitable algorithms for the current exist-
ing parallel computers.

4.4 Rationale of the choice of the parameters and the structure
of the model

In this section we shall give the reasons for the F-PRAM model to exist. To begin with,
we shall conclude the facts that led to the chosen level of accuracy of the definition of the
model. Then we shall describe the features in more detail. As we noted earlier, we chose
the shared memory model for both programming easiness and portability. The message
passing model on a fixed noncomplete graph network would not have been portable and
easily programmable in the general case. The complete network message passing model
is more portable, but nearly as hard to implement as shared memory. One can argue on the
comparative programming easiness of shared memory and message passing models, but
we feel that the message passing model is the more process-oriented model and the shared
memory model is the more data-oriented model. Since our problems usually involve
mostly processing of a lot of data, we chose the data parallel shared memory approach.

We defined the F-PRAM model rather accurately with a rather large set of parame-
ters. The main reason for the accuracy is not to restrict the computation, but to provide a
versatile model for different types of parallel computers. The number of the parameters
prevents using any loopholes while designing algorithms. Consequently, the algorithms
should really be efficiently executable. Furthermore, the secondary parameters allow us to
exploit the possible extra features of some parallel computers.

64 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

We gave the reasons for most of the features of the F-PRAM model along with their
definition, but in this section we shall make some more refined notes on them. In
Subsection 4.4.1 we shall compare the F-PRAM model with other similar models, and tell
the reasons why a new model is required. The rest of this section includes more technical
rationale of the model. Especially we shall discuss how parallel computers can implement
the F-PRAM, or, vice versa, how we model parallel computers with the F-PRAM41. We
shall consider the implementation of an F-PRAM machine, the implementation of the pro-
cessing nodes, and the implementation of the futures in Subsections 4.4.2, 4.4.3, and
4.4.4, respectively.

4.4.1 Comparison with existing parameterized models

We presented some of the existing parameterized parallel computation models in
Section 3.3. More exact simulation comparisons between the existing models and the
F-PRAM model will be given in Subsection 4.7.2. In this subsection we shall emphasize
the reasons for the differences and the features which make the F-PRAM model preferable
compared to the earlier models.

The most obvious feature of parameterized parallelism models is naturally the set
of parameters on each of the models. The problem of finding an optimal number of param-
eters has been recognized by several researchers. The bigger and more accurate the set of
parameters is, the more difficult is the analysis of algorithms if we take all of the param-
eters into account. The favorite parameters of the previous models have been the number
of processors, the communication latency, the processor communication overhead, and
the network bandwidth. The F-PRAM model and the LogP model [28] include these four
parameters in one form or another. Most of the other models include a subset of these
parameters. The F-PRAM model also includes several other parameters. Later in this
chapter, Table4-3 in Section 4.7 presents a quick comparison between the F-PRAM
model and a few other parameterized models. As the set of parameters is large, the anal-
ysis of F-PRAM algorithms may be rather difficult. While this is not entirely false, the
division of the parameters in two groups, and the guidelines to use one parameter at a time
definitely help the use of the model, as we shall see in Chapter7.

The F-PRAM is a rather concrete model compared to the other models. Especially
the programming model for the F-PRAM, which we shall present in the next chapter, is a
complete programming language. Consequently, the F-PRAM models both the machines
and the programming. An advantage of the accuracy of the model is that we have been
able to implement an emulator of the model. The advantage of the emulator is that we
were able to gather measured information on the real executability of the algorithms. Fur-
thermore, the values of the parameters can be more accurately determined as we have
more detailed information on their semantics of the model. For example, the fact that the
packets are two words long and are delivered between the processors and the shared mem-
ory tell us more than the usual statement “ the processes communicate.” A disadvantage of
the concreteness of the model is that it might bind more features than necessary. Espe-
cially this applies to the concrete programming model to be defined in Chapter 5, but we

41. We must remember that we defined the F-PRAM model to model existing and forthcoming
parallel computers, not to be an example of parallel computers.

4.4. Rationale of the choice of the parameters and the structure of the model 65

must remember that the F-PRAM model does not imply any particular programming
model. The rather large set of parameters of the F-PRAM model still allows fair versatility
within the model, and especially on the parallel machines which can be modeled using the
model. We must retain to use only those parameters that are needed in the analysis.

4.4.2 The structure of the F-PRAM model

We defined the conceptual structure of the F-PRAM model and the F-PRAM machine in
Section 4.2, more accurately in Figure4-1 (page 36). The conceptual structure does not
restrict the implementation of the F-PRAM model in any way. In other words, we can
model different types of parallel computers with the F-PRAM model, which is naturally
a requirement for a general purpose model. Of the conceptual components of the F-PRAM
model, the dedicated synchronization network is the easiest one to omit. The barrier syn-
chronization can be performed using either a library routine, or Algorithm 7-9 (page 160).
Furthermore, the shared memory can be, or more often, will be, implemented by distrib-
uting the memory elements among the processing nodes. Either the processing nodes have
a separate memory bank dedicated to the shared memory, or the shared memory slice is
included in the private memories of the processing nodes. Figure 4-10 presents the struc-
ture of the F-PRAM without the synchronization network, shared memory, and parallel
I/O. The machine of the figure resembles the structure of most of the current parallel com-
puters, but we feel that the model of Figure4-1 is better since it can be used also to model
computers with dedicated synchronization network and shared memory.

4.4.3 The structure of the processing nodes

The block diagram of Figure4-1 only tells us the list of the components of the processing
nodes of the F-PRAM model. Each of the components has its own function within the
node and each of the components needs to cooperate with one or more other components
within or outside the node. Figure4-11 shows a coarse block diagram of the components
and connections of a possible implementation of an F-PRAM node. The optional (gray
arrow) network interface–private memory connection is needed if the shared memory is
implemented by distributing it into local memories of the processing nodes or if we want

P0 P1 P2 P3
PP–1

. . .
P processing nodes

Interconnection network

Processor

Local memory

Network interface

Figure 4-10: A possible implementation of an F-PRAM. The shared memory
is implemented within the local memories. I/O is centralized.

I/O

66 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

to implement block futures efficiently. The I/O facility–private memory connection is
needed for possible direct memory access (DMA) input/output, but it is irrelevant with
respect to the F-PRAM model. As the processing node probably has a cache for the private
memory, the network interface can return the results of the resolved futures directly to the
cache since it is very probable that the processor will need the result rather soon. We do
not need a local cache for the values of the shared memory since all shared memory reads
will be performed using futures42. The actual value is a read from the result of the future,
which resides in the private memory.

If we implement the shared memory by distributing it among the local memories,
then the load of the local memories increases with some amount. For each future request,
there will be four local memory references: a write of the place-holder to the local mem-
ory, a read at the remote “shared” memory location from where the value is read, a write
at the local memory where to the value of the future is written, and finally the actual read
made by the processor. The amount of shared memory requests can be estimated to be a
fraction of all memory requests, or to be a fraction of all instructions. The fraction is
highly application dependent and input size dependent, but is likely to be rather small in
most cases, e.g., either in the range 1-10% of all instructions, or in the range 1-50% of all
memory references.

4.4.4 Implementation of futur es

A packet used to resolve a future needs to include the local address of the future, i.e., the
private memory location where the value is to be returned. Additionally, while the packet
is on its way to the memory module containing the requested value, the packet needs to
contain the address of the requested memory location. While the packet is returning to the
requesting processor, the address is not needed anymore, but the requested value naturally
is. Thus, a future-resolving packet consists of two words, each of which must be able to

42. Nevertheless, the local caching of the shared memory would be rather easy since the
F-PRAM model does not guarantee the consistency of the results of the shared memory ref-
erences unless the machine is synchronized.

Processor

Private memory

Network interface

Figure 4-11: A possible implementation of an F-PRAM node, and the route
(1-4) and the content of a future request.

Cache + controller

I/O facility

SM addr
ret addr

SM value
ret addr

SM value
ret addr

1

3

2

4

4

4.5. Efficient algorithm design and analysis methods for the F-PRAM model 67

contain the address of any memory location in the system, the other must also be capable
to include a word of data. Similarly, a write-request packet to the shared memory requires
two words, the destination address and the value. Consequently, all packets that are being
delivered are two words long. Additionally, a bit or two might be required to distinguish
the different types of packets from each other. It should be, however, possible to encode
these bits to the address field of the packet unless the word length is equal to the logarithm
of the address space. If the addresses take the whole word, we would need a third word
consisting of the bits and possibly the number of the destination processor.

Keeping the local work of the processors minimal should not be difficult since the
complexity of the future issue should not be much harder than issuing a local memory
request. The only difference is the inclusion of the local memory address to the request.
Currently, a processor of the Cray T3E can issue a shared memory write in 19 clock cycles
and continue its execution long before the actual write occurs hundreds of clock cycles
later [26]. By reducing the synchrony of the communication between the processor and
the support circuitry, the initiation of the short messages could probably be even faster.
Even if there is no apparent reason for it, the current hardware of the T3E does not, how-
ever, support the asynchronous shared memory reads. The reason of this design choice has
probably been to reduce the risk of inconsistency between the local memory, caches, and
the stream buffers.

4.5 Efficient algorithm design and analysis methods for the
F-PRAM model

Even sequential programming is considered sometimes difficult. Parallel programming
even for the plain PRAM model is more difficult. Hence, one could argue that the
F-PRAM model is too difficult to be programmed well. In this section we shall discuss the
methods which clarify the programming and algorithm design process. In other words, we
shall discuss not only efficient use of the processors, but also efficient use of design time.

While designing algorithms, we cannot usually analyse them on the fly, but still we
should keep the forthcoming analysis in our minds. This will be useful especially when
designing optimal and portable algorithms. In practice, this means first analysing the
problem, and then programming using those F-PRAM parameters that are the most
important for the problem. While analysing the problem we should not think in terms of
any particular solving method since that would possibly give us a wrong idea of the com-
plexity of the problem. This distinction of the fundamental properties of the problem and
the properties of algorithms is, however, difficult. The most essential task in the analysis
of the problem is the analysis of data movements during the process of resolution of the
problem. Besides the data movements, we naturally have to analyse the operations to be
done. Compared to more traditional parallel algorithm design, in the F-PRAM algorithm
design, the data movement analysis is more important since the model charges higher cost
for the shared memory references. Naturally, when designing optimal algorithms, we have
to take both computation and communication into account, and, based on the analysis,
decide which one is the more important one to minimize on each stage of the algorithm.
Furthermore, when designing portable algorithms, we have to guess the possible combi-

68 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

nations of machine properties. Then we can build in the algorithm some logic to minimize
the most important costs on run time.

From problem analysis to algorithm analysis

The analysis of a problem has two phases. Firstly, as in sequential algorithm design, we
have to clarify the operations required to deterministically achieve the result from the
inputs. Secondly, we have to check which of the operations can be executed in parallel,
and plan the best method of parallelizing them. If we have enough processors available,
the execution time of the algorithm is the number of consecutive stages in the parallelized
code. If we do not have enough processors available at some stage, the existing processors
need also to work for the missing processors, which usually prolongs the execution.
Depending on our goal and the resources available, we try to minimize the execution time
using a given number of processors, the execution time using as many processors as
needed, to maximize the efficiency of the algorithm, or usually to fill both the first and the
third goal. These goals are the same as the goals when designing algorithms for the uni-
fied-cost parallel computation models, e.g., the PRAM model. We presented a classifica-
tion of the speedups of the algorithms in Chapter 3. The difference is that the nonconstant
costs of some operations make the counting of the execution time more difficult. For the
algorithm designer this means that there are more choices and optimization possibilities
to be taken into consideration. If some operations are very expensive, we may have to cir-
cumvent their use by using cheaper operations. If the parallelization of a relatively small
problem or subproblem is very expensive, we should possibly perform the task sequen-
tially. Especially, when considering the efficiency of the execution of the relatively small
tasks we should consider the sequential option. On the other hand, we may have a fixed
number of processors fully assigned to the task, for which cases we only should optimize
for execution time.

Optimizing data movement

As we stated earlier, the analysis of the data movements is rather important when design-
ing algorithms for the F-PRAM model. Also, most of the F-PRAM parameters are related
with the costs of the data movement in relation to the cost of atomic local operations. Con-
cerning data movements, our goals are usually to minimize the data movements, distribute
the data movements evenly enough to avoid congestions, and make the data movements
concurrent with the computation. These goals concern especially the bandwidth ineffi-
ciency parameter B, which dictates the minimum interval between the shared memory ref-
erences. If the time spent for the shared memory references is short even with the extra
waits caused by the bandwidth inefficiency, we usually can accept it. If the time is long,
or if we want optimal solutions, we have to try to find some useful local operations to be
done between the shared memory references. Similar situation occurs with the latency
parameter L, i.e., we should find something useful to do for the processors while the future
is being resolved. The latency is, however, easier to hide since, in addition to local oper-
ations, the processor can also issue other shared memory references while waiting for a
future to be resolved. We must remember, however, that the parameters L and B both
affect simultaneously, i.e., we cannot issue several shared memory references to hide the

4.5. Efficient algorithm design and analysis methods for the F-PRAM model 69

latency unless we have enough bandwidth available to do so. Since in some bus-based
computers the latency is smaller than the bandwidth inefficiency, we cannot use the sev-
eral concurrent shared memory references issued by a single processor for latency hiding
in those cases.

Concerning the secondary parameters of the F-PRAM model, perhaps the shared
memory reference overhead BP is the most important one. If the overhead BP is greater
than one, the processors have less time for local operations between the shared memory
references. The single variable bandwidth BV is at most one in practically all existing
computers43. Therefore, we probably should not use it when designing portable algo-
rithms. The parameters concerning modularity of the shared memory and blocked shared
memory references are important for final optimization of algorithms for particular com-
puters, but we shall leave the analysis of their use to future research. The same applies to
the parameter I/O bandwidthBIO.

In practice, when designing algorithms for most problems, we can adapt to a large
range of values of latency L and the number of processorsP without losing any of the opti-
mality. In other words, they can be hidden rather easily. On the other hand, the bandwidth
requirements are often inherent in the problems, and the possible restrictions in bandwidth
inefficiency B cannot be overcome easily. Thus, when designing an algorithm, we usually
first consider only parameters P and L, and only afterwards check the parameter B by
determining a requirement for it for the algorithm to be able to execute optimally. Addi-
tionally we shall determine its impact on the running time of the algorithm in a case when
it does not fulfill the requirement. If the impact is too large, we should perhaps try to find
an alternative algorithm which would possibly use less bandwidth, or distribute the band-
width usage more evenly over time. If this is not possible, we should consider either
allowing the algorithm to be less efficient, or try other possibilities such as using less pro-
cessors, which often helps for the bandwidth shortage. Similarly, we should check the rest
of the relevant parameters for possible conflicts against machine properties, and possibly
modify our algorithm correspondingly.

Asynchrony

A big difficulty in designing algorithms for the F-PRAM model is the asynchrony of the
processors and especially the shared memory references. For every communication, i.e.,
for every write-read pair of a single shared memory location, there should be some syn-
chronization to ensure that the order of the references will be correct. The easy solution is
to divide the computation into stages within which no location is both written and read44,
and to include an explicit barrier synchronization between every stage. The drawback of
this approach is that if the synchronization cost S is large and the synchronization is
needed often, the efficiency of the algorithm may decrease significantly. In those cases we
have to rethink the synchronization needs and synchronize only the communications
between the processors. In practice this can be done either using counters and/or locks

43. The known exception is the IBM RP3 research computer, which was modeled after the
NYU Ultracomputer project. The RP3 uses combining of messages for achieving a greater
bandwidth to a single variable [7].

44. Or written several times.

70 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

associated with the data, or using special not-yet-available values on the variables or pro-
cesses. The use of counters is a rather convenient method of ensuring that the processors
are in the same stage, but we have to be carefully ensure that all the processors that use
the counter update it correctly. In practice it is easy to maintain a dedicated counter for
each processor and allow other processors to read it. It is more difficult to set up several
processors to update the same counter or lock.

In some cases the difficulties induced by the asynchrony of the F-PRAM model can
be turned into advantage. Since the asynchrony induces undeterminism, the F-PRAM
model suits well for undeterministic randomized algorithms. We have to remember, how-
ever, that the fact that the order of the shared memory references is not guaranteed does
not induce true randomization but usually machine dependent and algorithm dependent
patterns of the order of the references.

Analysis of the F-PRAM algorithms

The basic analysis of F-PRAM algorithms begins similarly as the analysis of sequential
algorithms, by counting the operations. The difference is that the operation count must be
done for the worst case over the processors between each synchronization. Furthermore,
synchronizations are charged the cost of S operations, and the shared memory references
the cost of BP operations, which, however, is one by default. After the traditional opera-
tion counting, we also have to check the program for any additional delays caused by the
shared memory references with respect to the rest of the F-PRAM parameters. Consider-
ing the latency L, the time used between a future issue and the use of the value is
max(X, L), whereX is the time needed for the operations between the two points. If either
B, BV, or BM form a restriction for the communication, they appear to increase the latency
of the shared memory references. The estimation of the apparent increase of a random
latency is, however, difficult. Therefore, we have to analyse the number of references per
processor and shared variable within a given time, and check whether the machine is able
to serve the references or not. If the total bandwidth required by all references, or refer-
ences to a single variable, is too large, the running time has to be reanalysed according to
these requirements. The running time of a program block which issues and uses shared
memory references is thus

, (4-15)

where

T is the basic running time of the block,
Data is the total number of shared memory references,
DataV is the maximum number of references to a single variable, and
DataM is the maximum number of references to a single memory module.

The above analysis results in either a complex function of most of the parameters, or a
simpler function of fewer parameters and additional requirements on the rest of the
parameters. The function of all parameters is probably prohibitively complex for most

max T L max
Data B×

P

DataV

BV

DataM

BM
----------------, ,

 +,

4.6. Options and optional restrictions within the model 71

algorithms. Consequently, we should choose to the cost function only those parameters
which affect the performance most, and attach the rest of the parameters as restrictions to
the cost function. In practice, all the parameters which induce only a rather loose require-
ment of the property should not be included in the main cost function. Furthermore,
another good criterion for the choice is the resulting apparent complexity of the main cost
function.

As the above discussion on running times showed, the traditional analysis method
of adding costs of operations and multiplying with the number of iterations takes into
account only a part of the F-PRAM parameters. This method naturally forms the basis of
an analysis of an F-PRAM algorithm, but it is not sufficient. After the basic analysis, we
have to check the possible delays caused by the possible references to the results of the
futures before the results are available. We have to check the sufficiencies of the whole
machine, single variable, and I/O bandwidth within each phase of our algorithm, and pos-
sibly reevaluate the complexities on those phases, until we get a stable running time with
no violations of any of the F-PRAM restrictions.

A “change” in the complexity of a phase of an algorithm might lead to a change in
the tuning of the algorithm. For example, if we notice that a body of an outer iteration
takes more time due to the bandwidth requirement than we originally thought, we might
be able to reduce the number of iterations in the inner iteration that forms the body of the
outer iteration. We should use this feedback from the analysis to improve the flexibility of
the algorithm by inserting into it some logic to take into account the performance-related
machine property. This will complicate the algorithm, but should not be overly difficult
when done stepwise. Besides, we have already analysed the new feature.

4.6 Options and optional restrictions within the model

A good part of the interesting options for a model of parallel computation are included in
the secondary parameters of the F-PRAM model. Since we reasoned about the secondary
parameters earlier, we shall not discuss them here again. Instead, we shall discuss some
currently rejected features that might be interesting or useful in some applications. We
shall define the new features only informally, and discuss the reasons why they
should/should not be included in the model. The common problem of several of the fol-
lowing options is that they would require all processors to execute the operation synchro-
nously.

4.6.1 Dynamic change of the parameters

We defined the parameters of the F-PRAM model either as machine-dependent constants,
or as machine-dependent functions of P, and required that the values of the parameters are
constants during the execution. An interesting generalization of the parameters would be
to allow them to change during the execution of a program. If the parameters can change
during the execution, we can write algorithms that optimize themselves to the changes of
the machine during the execution. The algorithms will, as we shall define in Chapter 5, be
able to use the parameters to adapt to the machine. If the parameters would change, the
algorithms would change their adaptation during the execution.

72 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

Naturally, the physical properties of a parallel machine change rarely unless the
machine encounters a fault. Even if the fault tolerance is an important issue in some par-
allel applications, we shall mostly ignore it in this thesis. More frequent change than a
physical fault is the change in the load of the parallel computer. Because parallel comput-
ers are rarely dedicated to execute only one task at time, the load induced by the other pro-
grams may affect the execution of a single program. The accurate modeling of these
changes caused by other tasks is practically impossible. Consequently, we are bound to
rely on our existing set of parameters that model the features of a parallel computer. For
this reason, a change-over in the load of the computer causes the values of the parameters
to change as we were changing the whole computer to another one with slightly different
properties and parameters. If an algorithm is able to adapt to changes, it may choose to
change its behavior if the change in the machine is significant.

Since the parameters are used during the execution only by the algorithm to opti-
mize its own behavior, e.g., the lengths of iterations, the change of the parameters need
not to be continuous or immediate. Furthermore, all processors must have exactly the
same values of the parameters all the time. Otherwise the distributed use of the parameters
would be impossible. Since the changes are not needed often, and since they need to be
done synchronously, we could specify that the parameters get updated during the synchro-
nization of the whole machine. If an algorithm uses a value of a parameter beyond a syn-
chronization point, it needs to save the original value in an ordinary variable. Alternatively
we could require that the parameters will not change unless separately requested to be
updated. The request could be done by calling a library routine that evaluates the new val-
ues for the parameters using some gathered performance data.

4.6.2 Combining network

Broadcasting a single value to all processors is an important operation in many algo-
rithms. In the F-PRAM model the operation is realized by reading the value from the
shared memory by every processor. Reading a single variable is restricted with parameter
BV, single variable bandwidth, which by default is one. Thus, the broadcasting has to be
performed using a tree-like algorithm to avoid the serialization of the references. The seri-
alization of P references is a severe delay, unless . As we shall see in
Section7.5, broadcasting will take time

, (4-16)

which is asymptotically optimal, but has a rather large constant compared to the easiness
of the broadcast problem.

If the nodes of an interconnection network would have some logic, they could detect
the simultaneous45 future-requests of the same memory location, save the information of
one on them, and forward only the other one. Consequently, the memory module would
get only one request, which would be easy to serve. On the way back, when the packet

45. The requirement of simultaneity of the references makes the combining less useful in the
asynchronous F-PRAM model.

BV O P L⁄()=

O
L Plog
Llog Blog V+

4.6. Options and optional restrictions within the model 73

gets to a node where the original requests were combined, the packet gets duplicated to
two messages according to the information saved by the node. The combining-capable
interconnection facility is possible, although expensive, to build [7]. A straight advantage
of the combining system is that it is practically the only possible solution to achieve
BV = P. Furthermore, the combining reduces the total traffic in the interconnection net-
work, and especially hot spots around the memory module that includes the value to be
broadcast.

The message-combining system can operate independently of the processors, espe-
cially it can work independently of the possible asynchrony of the processors. Since it
makes the synchrony-requiring tree-like broadcasting algorithm unnecessary, it can con-
siderably reduce the number of synchronizations required in an asynchronous F-PRAM
algorithm. We shall not, however, include the option separately in the F-PRAM model,
since settingBV = P is a close enough approximation of the combining network.

4.6.3 Vector operations

Many scientific computations consist of mostly vector operations. These operations can
usually be implemented in different parallel computers rather efficiently. Because the
implementations are highly machine-dependent, they are not always easily portable. Fur-
thermore, the optimizations might be too difficult or even impossible to be done by an
application programmer with a high-level language. The solution has been to define sub-
routine libraries which can be used by the application programmers and which can be
implemented efficiently by the computer manufacturers. A good existing example of such
a library is the BLAS library for matrix and vector operations [68]. A general purpose par-
allel programming model should not include as large set as the BLAS does, but instead
only the most elementary operations.

The more primitive vector operations can be divided to three groups: reduction, dis-
tribution, and scan/prefix [16, 65] operations. The reduction operations return a property,
e.g., logical OR, sum, product, etc., of a vector. The distribution operation is the duplica-
tion of a value to every element of a vector. The scan/prefix operations perform a sequence
or read-op-write operations for a vector. All of these have been suggested as primitives of
parallel computations models. Moreover, the shared memory libraries of many parallel
computers include optimized versions of these operations [26]. Also, the MPI library of
message passing computation includes a set of these operations between the processors a
communication group.

The problem in the use of the vector operations in the F-PRAM model is that their
execution would require synchronization of the processors. The synchrony requirement is
natural, but it is inconsistent with the asynchronity of the F-PRAM model. The advantage
of the vector operations would be that even added with the synchronization cost, they
could be performed more efficiently using dedicated hardware than using the F-PRAM
model primitives. Especially the constants of the complexities would be probably consid-
erably lower. Furthermore, if a parallel machine has some dedicated hardware for vector
operations, we can assume that it also has dedicated hardware for synchronization, which
reduces the possible synchronization cost.

74 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

4.6.4 Read-modify-write operation

The latency and asynchrony of the shared memory references make secure updating of a
shared variable rather difficult if it is used by several processors. Even if a processor is the
only one that updates the variable, the processor has to read the old value using a future,
update it locally, and issue a write request to the shared memory. Things get much more
difficult if there are several processors that try to update the same variable, and all of the
updates must survive. Asynchronous readings, updates and writings by several processors
would cancel the effect of a part of the interleaved updates. The solution is to lock the vari-
able for the use of only one processor at a time. This would, however, need a rather com-
plicated and time-consuming protocol. The protocol includes attempting to lock, checking
the success of the attempt, read, update, verifying the completion of the update, and
releasing the lock. The whole process takes at least 6L time for each update, which is too
much if every processor wants to update the variable every now and then.

If we have a well defined set of processors that is performing the read-modify-write
operation simultaneously, we could also use a parallel algorithm to perform the resulting
prefix-operation in parallel. For example, if the processors are performing additive
updates, we can perform them in parallel with a prefix-sum operation. The problem is, as
we noticed in the previous subsection, that the parallel prefix-operations require rather
strict synchrony.

Since the performing of read-modify-write using the standard F-PRAM is hard, we
could add a primitive read-modify-write request to the F-PRAM model. The operation of
the read-modify-write request would be similar to a future request, except that the read-
modify-write request would have the updating function with it. The atomic read-modify-
write operation is slightly inconsistent with F-PRAM model because it conceptually
requires logic in the shared memory. If, however, we implement the shared memory by
distributing it into the private memories of the processing nodes, we could use the local
processors to actually perform the read-modify-write. Thus, we would not need any addi-
tional hardware for the operation. The network interface should be able to interrupt the
processor to do the update, though. This implementation will naturally affect the perfor-
mance of the processors, more accurately it should show up in the parameter BP.Besides
the use of the data synchronization and prefix operations, the read-modify-write operation
is not so vital within the basic algorithms that we would include it in the F-PRAM model.

Replace-future

If we cannot include the read-modify-write operation in the model because of the require-
ment of logic in the shared memory, we could alternatively exploit an almost equally use-
ful operation, the replace operation. The replace operation would be a combination of
future and write-request operations. A replace-future would include the value to be writ-
ten to the shared memory, and return the original value to the processing node that issued
the replace-future. The replace-future would be very useful in situations where exactly
one of several processors may receive a single value from a single memory location. As
opposed to the read-modify-write, the replace-future would not require the shared mem-
ory to be able to perform any calculations.

4.7. Matching the F-PRAM model with the existing models 75

The Cray T3E SHMEM library supports both an atomic swap and an atomic incre-
ment operations on a remote memory. As the get implementation of the SHMEM library,
also these operations are of a blocking nature, i.e., the processors have to wait until the
operation completes. There is not a clear reason for this as the processors are idling mean-
while.

4.6.5 Guaranteed shared memory reference latencies

We defined the semantics of the shared memory references so that the latencies are only
the expected worst latencies, not the worst possible latencies. Hence, the model does not
guarantee the completion order of different references made by even the same processor.
The completion of the future requests is naturally easy to detect, but the completion of the
write requests cannot be detected otherwise but by polling the location with future
requests until the written value is found from there. The problem occurs when another
processor writes a new value to the location meanwhile, and the original writer cannot dif-
fer whether the write-request is still in transit or not.

We considered guaranteeing a write and a read to the same location by the same pro-
cessor with gap L to take their effects in the original order. In other words, if a processor
writes a value, waitsL time units and issues a future to the location, it would not result in
the old value of the memory location. Finally, however, we never could have benefited
from this fact when writing the sample programs, thus, we left the guarantee out. More-
over, the guarantee might be difficult to maintain if the interconnection network saturates,
and several requests are queued to the intermediate nodes. This would be especially obvi-
ous if we used randomized routing.

4.7 Matching the F-PRAM model with the existing models

In this section we shall relate the new F-PRAM model to other existing parallel computa-
tion models. We shall relate models by comparing the cost models and by presenting some
simulation techniques and algorithms between the models. Since the F-PRAM is a model
of parallel computers, and also a model of parallel computations, the simulation of the
F-PRAM by another model is a slightly misleading concept. If the F-PRAM is able to
model a computer of another model, the simulation is not a simulation in a strict sense.
Referring to the F-PRAM is not accurate enough, we have to state also the parameters
before we can examine the ability of an instance of the F-PRAM model to simulate
another model of parallel computing. Consequently, we shall discuss in this section how
the F-PRAM is able to model other parallel computer models, and what types of
F-PRAMs are able to simulate different parallel computation models.

4.7.1 The PRAM model and the F-PRAM model

The PRAM model is the most researched theoretical shared memory model of parallel
computing. Since the F-PRAM model and the PRAM model have rather similar struc-
tures, as we can see by comparing Figures 3-1 and 4-1, the comparisons between the mod-
els are rather straightforward. We can characterize the PRAM trivially with F-PRAM

76 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

parameters L = 1, B = 1, BP = 1. The parameter P, the number of processors, is not as
clear since PRAM is usually defined to have as many processors as needed. Obviously a
P-processor PRAM is aP-processor F-PRAM. Furthermore, aP-processor F-PRAM can
simulate a PRAM having more than P processors, as we shall see in Subsection 5.2.1.
Also, the synchronization cost S is not clear. By usual definitions, the processors of a
PRAM execute instructions synchronously, but can branch to different instructions of the
same program. To some extent, the processors can be kept in synchrony by inserting
dummy instructions into the less time-consuming branches of the program [60]. This
approach, however, does have its limitations, and in some cases we have to use the explicit
barrier synchronization, which will take O(logP) time using Algorithm 7-9. Conse-
quently, we shall state that S = O(logP), even if we might be able to avoid a part of the
synchronizations. The parameter BV, the single variable bandwidth, depends on which
PRAM flavor we are discussing. Because the EREW-PRAM allows only one concurrent
read to each memory location, BV = 1. The CREW-PRAM does not restrict concurrent
reads to memory locations, thusBV = P in case of CREW.

The simulation of a PRAM requires the ability of referencing the shared memory on
every clock cycle, and synchronization after the execution of the local instructions. Con-
sequently, the simulation of one PRAM step takesO(L+S) F-PRAM steps, which is slow
and inefficient, unlessL = S = 1. To be able to perform work-optimal simulation, we have
to simulate a more-than-P -processor PRAM with a P-processor F-PRAM46. Using the
previous time needed for one step, we have to simulate aP×(L+S)-processor PRAM with
theP-processor F-PRAM. Therefore, each of the F-PRAM processors have to perform the
operations of L+S PRAM processors, which takesO(L+S) time. Furthermore, the shared
memory references get completed within time O(L). Finally, all processors have to syn-
chronize, which takes time S. In total, the simulation step takes O(L+S) time, which is
both time, and work optimal. As we remember from Subsection 4.3.2, usually S ≥ L, thus
O(L+S) = O(S). On the previous analysis we did not take into account the bandwidth
restrictions of the F-PRAM model. The PRAM simulation uses up toO(1) bandwidth/pro-
cessor/clock-step, since every operation can be a shared memory reference. Therefore, we
require an F-PRAM having B = O(1). In practice, the ratio of local operations and shared
memory references is either a constant, or a function of the size of the input, which often
is a function of the number of processors. Consequently, we can have algorithm-depen-
dent exceptions to the previous requirement on the bandwidth inefficiency. Finally, we
shall notice that simulating a CREW-PRAM requires BV = O(P), but for simulating an
EREW-PRAM it suffices BV = O(1). No F-PRAM can simulate efficiently a CRCW-
PRAM using any straightforward algorithm, since we explicitly forbid the simultaneous
writes to a shared memory location.

4.7.2 Matching the F-PRAM model with other parameter ized models of
parallel computing

As we stated earlier, the simulation of machine modeling techniques is a slightly contra-
dictory concept. Hence, in this subsection we shall rather compare the parameter sets and

46. The use of parallel slackness is an essential part of all latency hiding simulations [66, 104].

4.7. Matching the F-PRAM model with the existing models 77

other features of the models. We introduced these models earlier in Section 3.3. Within
each of the models, we shall consider matching in both directions. Firstly, we shall “sim-
ulate” the other model with the F-PRAM, i.e., characterize the other model, and its param-
eters, in F-PRAM parameters. Secondly, we shall present the opposite, i.e., model the
F-PRAM with the other model. Because the parameter sets are of different sizes, we have
to ignore some of the parameters. Consequently, we shall refer to these modelings aspro-
jections between the models. Some of the following models use originally message pass-
ing between the processors rather than shared memory. With respect to simulations
between the models, this subject is rather irrelevant. We shall discuss in Subsection 4.7.3
the simulation between the message passing models and the shared memory F-PRAM
model. In this subsection we only consider the parameters and the cost functions of the
models. Since the names of the parameters of the different models appear similar, we shall
include subscript tags in the text for some of the other than the F-PRAM parameters to
avoid possible mix-ups. Table4-3 presents a quick comparison between the F-PRAM
model and a few other parameterized models.

Table 4-3: A comparison of the F-PRAM model and a few other parameter-
ized parallel computation models. Unified parameter notation similar
to [39].

model co
m

m
un

ic
.

m
et

ho
db

sy
nc

hr
on

yc

nu
m

be
r

of
pr

oc
es

so
rs

ba
nd

w
id

th
re

st
ric

tio
nd

la
te

nc
y

m
ea

su
re

ov
er

he
ad

m
ea

su
re

bl
oc

k
tr

an
sf

er
s

ot
he

r
pa

ra
m

et
er

s

F-PRAM SM AB P B L BP BB BV,BM,M,S
BSP [104] MP BS P g L
LogP [28] MP AM P g L o
LogGP [6] MP AM P g L o G
QSM [39] SM BS P g
Y-PRAM [99] SM LS P B L
HPRAM [46] SM AB P L S
LPRAM [3] SM LS P L
Phase LPRAM [38] SM BS P L S
Interval modela [71] SM BS P I I I
BDM [58] SM BS P Bsze

PRAM [34] SM LS P

a A set of parameters given by Maggs, Matheson, and Tarjan.
b SM = shared memory, MP = message passing, DM= distributed memory.
c LS = lock-step/common clock, BS= bulk-synchrony, AB = asynchronous, barrier

synchronization at request, AM= asynchronous, synchronization via message
passing.

d B = bandwidth inefficiency (soft limit on issue rate, eventual effect on completion
of the communication),g = gap (hard limit on issuing rate)

e Bsz = block size of the communications

78 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

BSP/XPRAM model

We shall first express the XPRAM model [103] in F-PRAM parameters. The XPRAM
model is a realization of the more general BSP model. The XPRAM defines the number
of processors like the F-PRAM model does, thus P = pXPRAM. The latency L of shared
memory references equals the global operation time LXPRAM of the XPRAM model, thus
L = LXPRAM. The synchronization cost of the XPRAM model equals the latency cost, thus
S = LXPRAM. The time of global operations g in the XPRAM corresponds to the overhead
parameterBP of the F-PRAM model. As the XPRAM model does not take bandwidth of
the message router into account, we need to assume that B = BP. The rest of the features
defined by the secondary parameters of the F-PRAM are ignored by the XPRAM model.
Therefore, we have to assume the default values of the F-PRAM parameters.

A P-processor F-PRAM can also simulate ap-processor XPRAM. Since the param-
eter LXPRAM of the XPRAM model includes time for both latency and synchronization, we
have to choose LXPRAM = L+S. The global operation cost corresponds with the processor
communication overhead, thus g = max(B, BP.) The rest of the F-PRAM parameters are
ignored in the XPRAM model.

LogP and LogGP models

The LogP model [28] resembles the F-PRAM model more closely than any of the other
previously mentioned models. The conceptual difference is the message passing approach
of the LogP model. Also, the LogP model does not have a separate synchronization prim-
itive. The similarity is that every parameter of the LogP model is also included into the
F-PRAM model. Consequently, the latency parametersLLogP and L, the overhead of com-
munication oLogP and the processor communication overhead BP, the gap gLogP and the
bandwidth inefficiency B, and the number of processing nodes PLogP and P correspond
with each other, respectively. Since the LogP model does not have a dedicated synchroni-
zation mechanism, we have to use the synchronization Algorithm 7-9, which we shall
present in Section7.5. Hence,

, (4-17)

unlessgLogP ≥ LLogP, in which caseS = gLogP.
The LogGP model [6] adds to the gap per byte (G) parameter to the LogP model.

The parameter G corresponds to theBB parameter of the F-PRAM. The slight difference
is that LogGP does not account for transferring the length of the message. Therefore,
LogGP defines the length of a send to be (w×k–1)×G+o cycles instead of the k×BB+BP
cycles of the F-PRAM model. Thew stands for the width of a word in bytes.

Y-PRAM model

The Y-PRAM model [99] allows for the recursive division of the machine in independent
submachines. Since the F-PRAM model does not require division, a whole
PY-PRAM = 2p-processor Y-PRAM equals a P =PY-PRAM-processor F-PRAM. The latency

S
LLogP PLogPlog

LLogPlog
--------------------------------=

4.7. Matching the F-PRAM model with the existing models 79

δ(SY-PRAM) and bandwidth inefficiency β(SY-PRAM) parameters of theY-PRAM model corre-
spond to the respective parameters of the F-PRAM model. Using the whole machine of
size PY-PRAM, we get L = δ(PY-PRAM), and B = β(PY-PRAM). The synchronization cost of the
Y-PRAM model is based on the minimum length of the phases, thus S = δ(PY-PRAM). The
secondary parameters of the F-PRAM model have to be assumed to be their defaults since
theY-PRAM model does not include them.

When simulating theY-PRAM model with the F-PRAM model, the F-PRAM cannot
enforce the independency of the submachines, but checking can be done by the compiler.
Since the Y-PRAM computation proceeds in phases, after which the submachine is syn-
chronized, we have to include the explicit submachine synchronization in each phase.
Using Algorithm 7-9 we can synchronize the submachine of size SY-PRAM in time

. TheY-PRAM parameters are functions of the size of the subma-
chine, but they have to be projected to constants. Consequently, we get
δ(SY-PRAM) = andβ(SY-PRAM) = B for everySY-PRAM ∈ [1..P].

4.7.3 Simulations of message passing models

Even if the shared memory and the message passing approaches of parallel computing
appear very different they can simulate each other with reasonable effort. After all, unless
a separate monolithic memory is used, the shared memory must be implemented distrib-
uted. Hence, the references to the shared memory are implemented using messages
between the processors and the memory modules. In this subsection we shall informally
sketch the methods how an F-PRAM can simulate a message passing system, and vice
versa.

We shall present a protocol to simulate aP-processor message passing system with
a P-processor F-PRAM by using d×P shared memory locations as mailboxes. The d
stands for the in-degree of the nodes of the message passing system. Thus, a completely
connected system would requireP×(P–1) memory locations. We shall consider synchro-
nous communication, where a processor receives/sends from/to one named processor at a
time only. For each connection from processor a coming to a processor b, there exists a
shared memory location Ca,b which originally includes a special47 “not-receiving” value
InAct. When the processor b wants to receive a value from the processor a, it first checks
the completion of the possible previous communications by reading the memory location
and waiting until it contains the value InAct. After that, it writes a special “ ready to
receive” value Rec to the memory location Ca,b, and starts polling until the location con-
tains any other value than InAct or Rec, which will be the value to be received. After the
processor b has got the actual value, it writes yet another special valueGot to the location,
and continues its execution. The processor a, which wants to send the valueV to the pro-
cessor b first waits by polling the location Ca,b until it contains value Rec, and after then
writes the actual valueV to the location Ca,b. After writing the value, the processor a waits
to be sure that the processor b has read the value by polling the location Ca,b until it
becomes Got, after which the processor a writes the original value InAct to the location,
after which the communication is complete. Algorithm 4-1 presents the previous algo-

47. If no special values can be reserved for these purposes, we need to use two memory loca-
tions, first of which includes the tags and the second one the actual values.

O L SY-PRAM Llog⁄log()

O L SY-PRAM Llog⁄log()

80 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

rithm using the algorithm notation to be given in Chapter 5. The communication takes
O(L+B) time after both processors have started it. A more straightforward algorithm
using only one “ received” tag would not work since the F-PRAM model does not guaran-
tee the order of shared memory references. The problems would appear when the receiv-
ing processor would start to receive again before the sender has detected the earlier
receive. The above algorithm works well also for the situation where each processor is
communicating concurrently with several other processors. The different pollings of each
directions just should be interleaved. In practice, we should be extremely careful of mak-
ing sure that each of the concurrent communications would get completed before we leave
the communication phase of the program. Asynchronous communication with queues
would require a more complex structure with separate locking protocol for the queue-
pointers. As a summary of our sketch of simulating the message passing model with the
F-PRAM model we can state that the simulation would be much easier using the fair laten-
cies or the read-modify-write primitive, which we discussed in Subsections 4.6.5 and
4.6.4, respectively.

The simulation of F-PRAM using a message passing distributed memory model
resembles the simulation of any shared memory model by the message passing model. We
shall first consider an asynchronous message passing system with logical all-to-all con-
nections. Each of the processors of the message passing system simulates an F-PRAM
processor and is responsible on maintaining a slice of the shared memory. Since the
F-PRAM model allows asynchrony of the processors and memory references, the simula-
tion need not proceed in global phases. Consequently, the efficiency of the simulation
does not require overloading, i.e., none of the processors has to simulate more than one
processor. When a processor makes a shared memory reference, it computes the address
and the owner of the location using the hash function and the sends either the future
request or the write request to the processor which owns the location. After the send, the
processor proceeds its own computation. Among the execution of the local operations, the
processor is interrupted for incoming messages to serve them before executing the next
local operation. The processors receive three types of messages, write requests, future
requests and returning future results. The write requests are obviously written to the local
part of the shared memory. The results of the future requests are read from the local part
of the shared memory and sent to the processors that made the requests. The returning
future results are written to the private memory, and they are available when they are actu-

Algorithm 4-1: Message passing using futures.

proc send(dest, val) 1

t := 0; 2

while(t <> Rec) do 3

futur e t := C[dest,PID]; 4

fwrite C[dest,PID] := val; 5

while(t <>Got) do 6

futur e t := C[dest,PID]; 7

fwrite C[dest,PID] := InAct; 8

proc receive(src) : value 9

t := 0; 10

while(t <> InAct) do 11

futur e t := C[PID, src]; 12

fwrite C[PID, src] :=Rec; 13

while(t = Recor t = InAct) do 14

futur e t := C[PID, src]; 15

fwrite C[PID, src] :=Got 16

return t; 17

4.7. Matching the F-PRAM model with the existing models 81

ally needed. The communication-capability parameters of the F-PRAM can be adjusted
by setting the amount of communication each processor does between the local computa-
tions. If each of the processors serves at most x request per y clock cycles, we get
BM = x/y. The ratio is probably less than one, which means that the processor does not
serve requests on every cycle. The bandwidth inefficiency and the latency parameters
depend directly on the properties of the used communication network.

If the message passing system does not allow all-to-all (virtually) direct connec-
tions, the processors also have to perform the routing of the messages. We shall consider
a network with diameter l, and assume that the decision on where to send a packet going
to a given node can be done in unit time. When a processor has or receives a message that
is destined to another processor, it forwards it unless it has already sent a message to that
direction on the same cycle, in which case it queues it. Each of the packets gets handled
by O(l) nodes, consequently we get L = O(l) and BP = O(l), assuming that the other
F-PRAM parameters guarantee that the network does not saturate.

82 4. A NEW MODEL OF PARALLEL COMPUTING: THE F-PRAM MODEL

83

Chapter 5

A programming language for F-PRAM model

he serial random access machine (RAM) model of computation does not bind
the programming model accurately. Very different programming models and
languages, such as FORTRAN, Smalltalk, and Lisp, can be rather efficiently
compiled to the RAM model. Particularly, we can usually estimate the costs

of the programs rather easily and reliably, no matter which programming model we use.
Furthermore, the different programming models are efficiently portable to any machine
implementation of the RAM model even if the RAM implementations differ rather much.
The case of parallel computation is not that easy, as there is an additional nontrivial scope
to model.

The F-PRAM model is probably too complex to be used as a general purpose
“bridging model”48 between hardware and programming, but we still have similar goals.
The F-PRAM model tries to model different parallel computers, but it is also intended to
serve as a basis for different programming models. In other words, we can define several
programming models that can be compiled to parallel machines that are modeled with the
F-PRAM model. The F-PRAM model of parallel computation does not determine the
used programming model accurately. To be able to present and implement algorithms we
shall, however, present an example programming model. In addition to the plain algorithm
notation, we define a language to be able to write and run full programs for the F-PRAM
model. Additionally we shall give guidelines for analysing the algorithms. We shall call
this new programming model F-PRAM Programming Model (FPM). Another interpreta-
tion of the acronym could be Future Parallel Modula as the language is a subset of
Modula-2 with parallelism primitives and futures for shared memory access. In this chap-
ter we shall define the programming model, the algorithm notation and the language con-
currently. Our algorithm notation is only a compacted version of the full programming
language. The programming model only defines the available parallel programming prim-
itives.

A vital feature in any programming model or language is that the code should be
easily readable. An extremely compact presentation of programs, as seen in some func-
tional programming models, is not desirable if even the author of the program has diffi-
culties examining his or her own programs. A program written with a good programming

48. As named by Valiant [104].

84 5. A PROGRAMMING LANGUAGE FORF-PRAM MODEL

model should be readable even by a person with some knowledge of parallel program-
ming, but little or no knowledge of the particular model. Since we are interested in per-
formance of the programs, and since the performance cannot be estimated unless we are
able to examine the functionality, i.e., the execution, of the programs, we shall use an
imperative language presentation instead of a declarative one. For the same reasons we
shall rule out the functional languages, even if they have some additional values being of
higher level and safer.

As the F-PRAM model itself, also the FPM model has two levels of constructs. The
basic programming tools that are required to write parallel algorithms correspond to the
primary parameters of the F-PRAM model. The secondary parameters of the F-PRAM
model can be used during the analysis phase to check the details of the executability of
the algorithm. Some of the secondary parameters can be included in the programming
model to make programs that adapt to different computers even better than using only pri-
mary parameters. This is useful if we can model some exotic features of some parallel
computers with the secondary parameters, and if the use of a feature speeds up our algo-
rithm considerably. On the other hand, because the use of the secondary parameter usually
complicates the design of portable algorithms, we should first try to make the basic algo-
rithms, and only after that possibly try to modify them to make use of the secondary fea-
tures.

In this chapter we shall first describe the basic programming paradigm in
Section 5.1 and the basic parallelism structures in Section 5.2. As with the base model, we
shall give some alternatives for some parallelism structures of the basic programming
model in Section 5.3. We shall give the examples of the actual use of the programming
model in Chapter7.

5.1 Basic paradigm

The skeleton of the new FPM programming model is the traditional Pascal/Modula -like
algorithm notation that is used in many variations in most texts on serial and parallel algo-
rithms. We shall use a rather low level variant of the notation, for example, we shall use
explicit iterations with loop variables instead of referring to all members of a set. The
notation is strictly imperative, and relies on a small set of program composition con-
structs. The constructs include variables of different types, arrays, assignments, serial
composition, conditional structures, iteration and procedures. The FPM model adds only
the parallelism structures to the basic notation. One significant change induced by the par-
allelism structures is that the FPM model does not guarantee deterministic execution of
our programs. Otherwise the appearance, or the design and analysis methods, of parallel
FPM algorithms should not differ too much from the appearance of traditional serial algo-
rithms.

The execution of FPM model programs uses the so called “Single Program, Multi-
ple Data” (SPMD) approach. In other words, every processor executes exactly the same
program code. While executing it, they behave similarly and perform the same operations
by default. The difference between the processors is the unique processor-id of each of the
processors. Additionally, each of the processors has it own private memory, and possibly

5.1. Basic paradigm 85

private I/O facilities. The difference of the use of these features, however, is induced by
the use of the processor-ids.

The SPMD approach in the FPM programming model is slightly modified and
implicitly expressed. The program code appears to be serial by default. Within the serial
body of the program there are parallelism constructs that seemingly invoke the parallelism
for the parallel parts of the program. However, when we execute the parallel program,
even the serial parts of the program are executed by every processor. The processors have
distinct local copies of all private variables, and the processors make the local computa-
tions using the local variables. The exception to this seemingly contradictory rule of exe-
cuting the serial code in parallel is that the writes to the shared memory within the serial
part are executed by one processor only. The parallel sections of the program only renum-
ber the same processors. The renumbering mostly includes assigning each processor an
iteration variable that is used instead of the processor-id within the parallelized loop to dif-
fer the actions of the processors. We shall discuss this parallelism structure in more detail
in Subsection5.2.1.

The basic FPM programming model gives the programmer a tool to use the
F-PRAM model rather directly. Especially the programming model does not add restric-
tions on the use of the model. Thus, the programmer has the responsibility for the structure
and the correctness of the program. The programming model itself does not enforce any
methods for correct programming. Therefore, we recommend that a programmer either
uses some safe approach to ensure the correct behavior of the program, or tries to reason
accurately the correctness of the possible unsafe portions of the programs.

The main source of the undeterminism of the FPM programs is the asynchrony of
the processors and especially the asynchrony of the shared memory based communica-
tion. The FPM programming model does not guarantee the order of a write and a read to
and from the shared memory unless there is some synchronization between the references.
Similar undeterminism problems naturally occur if we make several writes to the same
shared memory location without ensuring the correct ordering. The synchronization to
ensure the correct order of the references can be done either using a barrier synchroniza-
tion of the whole machine, or by ensuring that the written value has arrived at its destina-
tion and then synchronizing the communicating processes pairwise. The latter more fine
grained synchronization can be used when only a small number of processes are commu-
nicating with each other, and the rest may execute independently of the local communica-
tion.

The model does not prevent the programmer from making any questionable pairs of
references. Only the programmer is responsible for including enough synchrony between
the processors to ensure that the communication, and the whole algorithm, is correct.
Unguaranteed memory references are not automatically disastrous for the correctness of
the program, but the result of every questionable reference has to be checked carefully
against errors. In some undeterministic randomized algorithms we can use the undeter-
minism of unsynchronized memory references to bring some more undeterminism to our
algorithm. Still we have to remember that we may not assume any truly random phenom-
ena from the system. For simplicity, we recommend that the processors, and the data they
have written, have to be synchronized before any communication through the shared
memory.

86 5. A PROGRAMMING LANGUAGE FORF-PRAM MODEL

When using well designed parallel computers, we can usually make some assump-
tions on reasonable fairness of communication. For example, we could assume that a ref-
erence that was made 10L2 cycles ago has been completed without ensuring it by synchro-
nizing the processors. The FPM programming model does not, however, give such guar-
antees, since it is definitely a bad programming habit to rely on such assumptions. In any
case, a synchronization of two processors, or a data exchange between two processors,
takes only O(L) time by using time-tagged variables, or the Algorithm 4-1. Therefore, the
asynchrony should not be too severe restriction.

5.2 Parallelism structures

In this section we shall define the parallelism structures that modify the standard algo-
rithm notation to the algorithm notation for the F-PRAM model. The necessary structures
include primitives for management of parallelism, for communication, and for synchroni-
zation. The parallelism management appears to create the parallelism to the algorithms,
but in reality it is only processor management. Our communication medium is the shared
memory, which we shall handle via shared variables. The basic synchronization structure
is the barrier synchronization. Additionally we shall sketch the pairwise synchronization
of processors and data. In addition to the basic parallelism structures, we shall define a set
of read-only variables that provide the parameters of the F-PRAM model for the algorithm
designer and for the algorithm. Here we shall give the parallelism structures of the FPM
language.

5.2.1 Management of parallelism

The FPM model requires that all processors execute the whole body of the program.
Hence, we would not necessarily need any special parallelism-creating constructs, other
than a processor-id (PID) for each processor. The processor-id is, however, too awkward
structure to be used for high-level programming. Since we usually use the processors to
parallelize iterative loops, it is useful to renumber the processors according to the loop
indices. In other words, to assign each processor a new number that corresponds to its task
within the parallelized loop. We shall express this new number easily with a loop variable.
The parallel loops will be initiated with apar-do statement that resembles the basic serial
for-do -structure, but has some restrictions and special features. We must note here again
that even if the par-do statement appears to invoke new processors, in reality it only
assigns a new value for the iteration variable of each of the processors. These distinct val-
ues of the iteration variables then differ the behavior of the processors within the par-do
statement. The syntax of the plainpar-do statement is

par iter_var := low to highdo (5-1)
statements;

end;

which means that each of the processors gets assigned distinct values of the local variable
iter_var within the range low..high, and each of the processors executes the body

5.2. Parallelism structures 87

statements of the parallel loop asynchronously. The processors executing the statements
with the same value of iter_var form a thread. Consequently, there will be high–low+1
threads. The boundary expressions low and high must be evaluable by every processor
independently, and they must produce the same values for every processor. In practice, the
boundary expressions must consist of only private copies of shared or common variables.
The independency requirement allows the processors to execute par-do statement asyn-
chronously. Some processors even might have completed the par-do statement before
some other processors begin it.

Since all of the processors execute the same program, we have to transform the
par-do statement to a serial structure to be executed by each processor. Each of the pro-
cessors evaluates the iteration variable iter_variable using its own PID and the boundary
expressions. The previous simplepar-do statement can be executed as

for iter_var := low+PID to highby P do (5-2)
statements;

end;

which automatically adapts the number of iterations to be executed by each of the proces-
sors to the total number of iterations to be executed. If theP < (high–low+1), each of the
processors execute or iterations of the
statements. Consequently, one or more processors get assigned two or more different val-
ues of iter_var. The same obvious parallelism statement implementation was used in pm2
language for the PRAM [60].

The implementation (5-2) does not work well if P > (high–low+1) and we have
nested par-do statements. A part of the processors would skip the whole statements and
the increased opportunity parallelism of the inner par-do statements would be wasted. If
the range high–low+ 1 of the outermost par-do statement is smaller than the number of
processorsP, we have to use several processors to execute each of thehigh–low+1 itera-
tions, and especially the possible innerpar-do statement. More accurately, we have

(5-3)

processors to be used for each “ iteration” of the new par-do statement. Thus, we can
rewrite the implementation of thepar-do statement in the form

for iter_var := low+PID/max(1, P/(high–low+1)) to highby P do (5-4)
statements;

end;

which assigns the same values of iter_var to the threads of Pnew processors. Each proces-
sor of each thread gets assigned a local new processor-id PIDnew, which ranges from 0 to
Pnew–1. The new PID is unique within the thread but not between the sets. The set of pro-
cessors within a thread should behave like the processors executing the serial part of the
whole program. In practice, each processor of the tread should perform all operations
except the writes to the shared memory. One processor must, however, perform even the
writes to the shared memory as in the serial part of the whole program.

high low– 1+() P⁄ high low– 1+() P⁄

Pnew max 1
Pold

high low– 1+
----------------------------------,

 =

88 5. A PROGRAMMING LANGUAGE FORF-PRAM MODEL

We shall denote the depth of nested par-do statements we are executing with vari-
able D, and the number of processors usable in level D with function P(D), and the PID
of a processor at level D with function PID(D). When a set of processors executing the
body of a par-do statement encounters an inner par-do statement, it will behave exactly
like the whole set of processors when it encountered the outermost par-do statement. The
difference is that there are only P(D) processors available, each having a local processor-
id PID(D) in the range 0..P(D)–1. For generality we shall also define that P = P(D) and
PID = PID(D), i.e., we refer to the available processors per thread. We shall give a more
accurate definition of the practical implementation of the nested par-do statements in
Section6.2.

The basic version of thepar-do statement (5-1) does not synchronize the processors
in any way. If we want the processors to be in synchrony after the par-do statement, we
have to add a synchronization statement after thepar-do statement. If we want to synchro-
nize the processors in the middle of a par-do statement, we either have to divide the
par-do statement into two parts and insert the synchronization there, or be sure that no
processor executes more than one iteration of thepar-do statement, and just insert the syn-
chronization into the middle of the par-do statement. Since the processors execute the
whole body of the par-do statement before the possible next iteration, a synchronization
in the middle of a body of the par-do statement which is iterated several times by each
processor does not work.

Local (pri vate) variables

The local variables of the FPM model can be more accurately called “private variables for
the P processors.” Hence, the private variables are not private for the iterations of the
par-do statements49. The same private variables of a processor are used at each iteration
of thepar-do statement the processor performs. Thus, when using a private variable across
several par-do statements or across synchronization, we cannot assume that the value of
the variable to be preserved unless we are using at most P parallel iterations. If we want
to preserve values across several par-do statements which have more than P parallel iter-
ations, we need to store the values in different elements of shared or private arrays. When
using only par-do statements within range 0..P–1, the private variables remain private to
the iterations of thepar-do statements.

5.2.2 Shared variables

The processors of the F-PRAM model communicate by writing and reading to and from
the shared memory. Our FPM programming model expresses shared memory in the form
of shared variables, and writing and reading to and from the shared memory by references
to the shared variables. We introduce the shared variables similarly as normal private vari-
ables, but with the keyword shared in front of the definition. The processors will create
their own copies of each of the private variables to their local memories, but the shared
variables will be stored in the shared memory only. Since the shared memory is mono-
lithic in the basic F-PRAM model, we do not initially have to know the method of storing

49. Which resemble parallel threads.

5.2. Parallelism structures 89

the variables in the shared memory. We shall describe the option of the modularized
shared memory in Section5.3.

The F-PRAM model states that the writes to the shared memory are asynchronous
and the reads from the shared memory are realized as future issues and local reads of val-
ues of the futures. The FPM programming model adapts this convention unchanged. The
writes to the shared variables appear similar to the writes of any variables, we just may
not assume anything about the completion time of the write request. The only way to read
shared variables is to issue a future, which loads the value of a shared variable to a local
variable. The syntax of a shared memory reference using futures is the modified assign-
ment statement

futur e local_variable := shared_variable; (5-5)

which assigns a special not-yet-available value50 to local_variable, and issues the future
that will resolve the value of shared_variable. Both the write issue and future issue take
constant time by default. If we consider the processor communication overhead BP, also
the references of the FPM model take timeBP. After a shared memory reference was
issued, we can expect that it will be completed in timeL. The processor does not receive
any notice of the completion of a shared memory write. The completion of a future causes
the not-yet-available value to be replaced by the value that was read from the shared mem-
ory, but does not affect the execution of the processor. After the resolving of a future is
completed, the local variable that was used as a placeholder, and that was assigned the
value of the shared variable, appears to the processor exactly as any local variable. If a
processor tries to use the local variable before the completion of the future, it stops until
the value of the future arrives. This blocking use of futures is adequate for our purposes
in most algorithms since we can use the value of L to ensure long enough iterations before
attempting to use the value.

Nonblocking future observation

The future mechanism makes a reference to an unresolved future to halt until the future is
resolved. In a practical implementation, the processor has to repeatedly check the future
until it becomes completed. We do not want, however, to disturb the programmer with the
danger of reading the unusable not-yet-available value. Instead, we shall require that the
nonblocking reference to a future can be used only within a special boolean checking
expression. The syntax of the checking expression is

fcheck(fut_variable) (5-6)

which returns the value true (i.e., future has been served) or false. In practice, the expres-
sion will be used as a part of a conditional if or while statement. For example, the state-
ment

50. The use of a special not-yet-available value instead of a separate tag reduces the number
of values that can be stored in a word by one, but allows us to use any variable as a place-
holder for a future without using any additional words to hold the tag information.

90 5. A PROGRAMMING LANGUAGE FORF-PRAM MODEL

futur e fut_variable := ... (5-7)
...
while(not fcheck(fut_variable)and something_useful_to_do)

do_something_useful;
use fut_variable;

waits for the future fut_variable by doing something less urgent meanwhile. In most algo-
rithms, however, the something_useful may be as urgent as the use of the fut_variable,
and, therefore, we could as well perform it fully before the use of thefut_variable.

Handling of concurrent references

Since the processors and the interconnection network of the F-PRAM model are asyn-
chronous, we cannot predict which of the shared memory references occur concurrently
at the shared memory modules. We cannot even predict which of the references were
issued simultaneously. Consequently, we shall not forbid concurrent references, but we
shall state that they will be serialized unlessBV > 1. The serialization of concurrent reads,
i.e., future requests, is easy to define and produces predictable results whether the order
of the references is preserved, or not. The serialization of the concurrent writes is also easy
to define by stating that the order of a concurrent write and another reference to the same
variable is random, unless they are separately synchronized. In other words, the effects of
the successive shared memory references may occur in any sequence, unless we ensure
the order via synchronization.

Block transfer operations

We defined the blocked shared memory references as an extension to the standard future
in Subsection 4.3.2. The incorporation of the block operations to the FPM programming
model is also rather straightforward. The differences to the ordinary future requests are
that the block requests have to be done for arrays and they require the specification of the
length of the array to be transferred. The syntax of the blocked future request is thus

futur e(k) local_array[L_index] := shared_array[S_index]; (5-8)

where local_array and shared_array have at least L_index+k +1 and S_index+k+1 ele-
ments, respectively. Analogously, the syntax of the blocked shared memory write request
is

fwrite (k) shared_array[S_index] := local_array[L_index]; (5-9)

with the same restrictions on the array lengths as with thebfuture-reference.

5.2.3 Synchronization

The most robust synchronization primitive of the FPM model is the synchronization of the
whole machine as defined in the F-PRAM model. The synchronization of the whole
machine requires every processor to participate in the synchronization, and provides us a

5.2. Parallelism structures 91

solid basis of synchrony for all processors and shared memory references. The strict
requirement of every processor having to participate is, however, the problem of this prim-
itive. If one of the processors does not participate, but skips the synchronization, all other
processors will wait forever waiting for the one that skipped the synchronization. The
requirement is not severe unless we need to design fault-tolerant algorithms. In case of a
processor fault, the synchronization would dead-lock. We have, however, left the fault-tol-
erance issues out of this thesis.

The syntax of the whole machine synchronization primitive of the FPM program-
ming model is simply a statement

synchronize; (5-10)

which calls the synchronization routine. The processors reach the statement indepen-
dently, depending on the synchrony of the execution. While executing the synchronization
routine, the processors wait until every processor has reached the synchronization, distrib-
ute the knowledge of that, and continue their executions from the next statement. Further-
more, the synchronization guarantees the synchrony of the shared memory references. In
other words, all shared memory writes that were issued before a synchronization will be
fulfilled before any references that are issued after the synchronization.

We shall not define any other synchronization primitives than the barrier synchroni-
zation. Instead, we shall discuss some programming facilities to synchronize a smaller set
of processors or data accesses without synchronizing all processors. Since we use the
SPMD approach, the processors are executing the same task in approximately the same
phase. Thus, the processors can maintain one or more counters in the shared memory
which represent the phase of computation they are executing at any given moment. If the
processors maintain equivalent counters, they can detect the phase of another processor
by reading its counter. Similarly, any data can be tagged with a counter, which then rep-
resents the stage it was last written. We have to be careful, however, to be sure that the
value and the counter get written by the same processor. Another possibility to synchro-
nize a pair of processors is to use the synchronizing message passing Algorithm 4-1. Arbi-
trary sets of processors can be also synchronized using Algorithm7-9 (page 160).

5.2.4 Read-only machine-characteristic variables

The use of the F-PRAM model is based on the use of machine-dependent parameters of
the computer that we are using. We use the parameters to write programs that adapt them-
selves to work efficiently on different types of parallel computers. The parameters must
be available for the algorithm designer in some form. The final values of the parameters
cannot be available to the designer since they are machine dependent and, thus, not known
at the stage of algorithm design. Hence, the FPM programming model includes a pre-
defined set of read-only machine-characteristic variables that correspond to the set of the
parameters of the F-PRAM model, and are available for the programmer. The machine-
characteristic variables are read-only local variables. The values of the variables must nat-
urally be equal in every processor since they are often used to evaluate the ranges of par-
allel loops. The values of the variables will be assigned only at load time of the program.

92 5. A PROGRAMMING LANGUAGE FORF-PRAM MODEL

Some of the more complex features will be presented as simple functions instead of vari-
ables.

The set of the machine-characteristic variables is divided in primary and secondary
variables exactly like the parameters of the F-PRAM model. The primary machine-char-
acteristic variables are the number of processors P, the shared memory reference latency
L, and the bandwidth inefficiency B. The definitions of the variables correspond to the
definitions of the corresponding parameters of the F-PRAM model. The unit of L and B
is “clock cycle.” The secondary machine-characteristic variables are the block reference
bandwidth inefficiency BB, the processor shared memory reference overhead BP, the sin-
gle variable bandwidth BV, and the synchronization cost S. The units of BV and BP are
“simultaneous references” and “simple atomic operations,” respectively. At this stage, we
ignore the rest of parameters of the F-PRAM model to keep the FPM programming model
reasonably uncomplicated. We shall discuss the modularized memory model with dedi-
cated variables in more depth in Section5.3.

The natural use of, e.g., the parameter L is to adjust the number of local operations
made before accessing the value of a future to ensure that the processor does not need to
wait an unresolved future. The problem of this type of adjustments is the clock cycle as a
time unit. If we trivially choose to make L iterations, the actual time will be C×L, where
C stands for the length of the body of the iteration in clock cycles. The goal was to use
only about L clock cycles. To avoid both unnecessarily long waits and unnecessarily long
iterations, the correct number of iterations would be L/C. The programmer cannot know
the lengthC of a program block in clock cycles, but the compiler is able to calculate it at
least if there is no inner iteration within the outer one. Thus, the FPM language includes
a read-only variable LBL (Loop Body Length) that is assigned the estimated length (in
clock cycles) of one iteration of the next for-do iteration. Then we can write iterations like

for i := 1 to L/LBL do (5-11)

to achieve a good balance between the latency and the computation time. In case of an
if-then-else statement within the iteration, the estimation is done according to the longest
branch of the conditional statement.

In addition to the above cost variables, the FPM model includes variable processor-
id PID, which is distinct for each processor. As we defined in Subsection 5.2.1, the vari-
ablesP and PID describe the available number of processors and the processor-ids in the
whole machine at the beginning of the execution. FunctionsP(d) and PID(d) describe the
available number of processors and the processors-ids within thedth nested par-do state-
ment. We shall represent the current depth of nested par-do statements with variable D.
Additionally, we shall define that P = P(D) and PID = PID(D). Therefore, the number of
processors in the whole machine is P(0), and the original processor-id of a processor is
PID(0).

The use of the machine-characteristic variables corresponds to the use of the param-
eters of the F-PRAM model. The primary variables may be used in any program. A typical
easy algorithm would use, e.g., P and L. More sophisticated algorithms can use also B,
BB, and S. We can use the secondary variables when optimizing an algorithm for a given
machine, or if they help us considerably to improve performance of a general purpose
algorithm.

5.3. Options for the programming model 93

5.3 Options for the programming model

The previously presented FPM programming model is not the only possible programming
model for the F-PRAM model of parallel computation. The FPM model is a nearly mini-
mal model that is expressive enough to serve as a testbed for the F-PRAM model, but
inadequate for real programming tasks. Consequently, in this section we shall discuss the
possible modifications and options for the FPM model that still fit within the F-PRAM
model. As these are only options, we shall not define the new features as accurately as the
features that we included to the FPM model. Instead, we mostly discuss the features, give
some rationale why we did not include them in the model, and give possibly some exam-
ple syntax for inclusion in the programming model. Some of the following modifications
replace some FPM primitives with alternative primitives that perform the same task. Oth-
ers correspond to the options and secondary parameters of the F-PRAM model. Naturally,
we could also define a totally new programming model if we wanted, but within this the-
sis, we shall hold to the FPM model. We shall first discuss some possible extensions and
alternatives to the parallelism creation primitives in Subsection 5.3.1. In Subsection 5.3.2
we shall discuss some alternatives to the shared variable primitives of the FPM model.

5.3.1 Weighted par-do statements

Using the nested and possibly recursivepar-do statements, we can present any parallelism
pattern. More important question is, whether the processing power and processing needs
are balanced in different parallel execution branches. The default definition of thepar-do
statement distributes the available processors evenly among the par-do statement range.
If the following inner par-do statements have unbalanced processor needs, the even dis-
tribution is not optimal. Figure5-1 presents examples of balanced and unbalanced nested
par-do statements. The number in each square presents the number of processors avail-
able for the concerned program block. The left-hand program block has symmetric struc-
ture, and the processors get distributed evenly to the innermost iterations. Each of the iter-
ations gets 0.5 processors. In other words, each of the processors gets 2 iterations to per-
form. The right-hand program has a slightly different inner parallel loop, the range of
which depends on the loop variable of the outer parallel loop. Consequently, the proces-
sors get distributed unevenly among the innermost statements. A processor will not get
anything to perform, three processors get one iteration each, two processors get 2 itera-
tions each, and two processors get 4 iterations each to perform. The problem will be still
worse in recursive parallel algorithms. In every level of a poorly designed recursive algo-
rithm, half of the remaining processors may get practically nothing to execute, and the
other half may get nearly everything. Finally, the last processor may get half of the work
to do.

Our plain FPM programming model does not provide any easy solutions to the
above problem. Using only the basic model, we need to flatten the nested par-do state-
ments to a wider par-do statement and a serial iteration, and perform the indexing by
hand. This approach will produce uglier programs because of the usually complex index
calculations, which simulate the effect of several nested par-do statements. Fortunately
we have not yet encountered a real-world problem of the above difficult nature.

94 5. A PROGRAMMING LANGUAGE FORF-PRAM MODEL

A truly random or data-dependent work distribution cannot be balanced using any
type of par-do statements, but the programmer should be able to characterize most usual
predictable asymmetries. Via characterizing the asymmetry which is to occur in the fol-
lowing nested par-do statements, we could guide the compiler to assign the correct num-
ber of processors to each iteration of a parallel loop. Using statement

par i := low to highdo with num_of_procs(i) (5-12)
...

we can assign each parallel iteration num_of_procs(i) processors. The value
num_of_procs(i) is an expression depending on the valuei. If the sum

PW = (5-13)

exceedsP, we shall run out of processors. The natural restriction PW ≤ P would solve the
problem, but it would restrict flexibility and portability against the spirit of the FPM
model. Our standard approach for running out of processors has been serializing the work
for several processors by transforming the par-do statement to a for..do statement. Such
an approach would require each processor to have knowledge of the PW and the inverse
function of num_of_procs(i), which can be difficult to arrange. Thus, we shall simply
scale down the num_of_procs(i) to the range where PW ≈ P. Consequently, the par-do-
with statement (5-12) is implemented as

par i := low to highdo with num_of_procs(i)*P/PW (5-14)
...

which scales down the number of required processors with reasonable accuracy. The
problem of the above definition is that it requires the sum PW to be available for the pro-
cessors. As the automatic computation of the sum would take too long, we have to require

8

2

0.5
0.5

0.5
0.5

2

0.5
0.5

0.5
0.5

2

0.5
0.5

0.5
0.5

2

0.5
0.5

0.5
0.5

8

2 2 2

0.5
0.5

2

0.252
0.25

0.25
0.25 0.25

0.25
0.25

0.25

1 1

Figure 5-1: Balanced and unbalanced nestedpar-do statements.

par i := 0 to 3 do 1

par j := 0 to 3 do 2

... 3

par i := 0 to 3 do 1

par j := 0 to 2i do 2

... 3

1

2

3

0.5
0.5

num_of _procs i()
i low=

high

∑

5.3. Options for the programming model 95

the programmer to include the sum in thepar-do..with statement. Therefore, the syntax of
thepar-do..with statement will finally be

par i := low to highdo with num_of_procs(i)of PW (5-15)
...

which is a slightly awkward form, which is the reason why we did not include it the basic
FPM model. If we do not have a convenient function for PW, we have to compute the value
before thepar-do..with statement. The summing will take some time, but usually it is not
needed at all. Our previous example of Figure5-1 can be balanced by writing it in form

par i := 0 to 3 do with 2i of 15 (5-16)
par j := 0 to 2i do

...

which would assign all subtasks the correct number of processors.

5.3.2 Alter native shared variable primiti ves

We defined the shared variables and the references to the shared variables of the FPM pro-
gramming model as straightforward as possible. The F-PRAM model does, however,
allow more sophisticated primitives for using the shared memory. Furthermore, the
options for the F-PRAM model defined in Section 4.6 allow more possibilities for the pro-
gramming model. In this subsection we shall discuss some possible options for the shared
variables of the FPM model.

Read-modify-write

We discussed the usefulness of an atomic read-modify-write operation in
Subsection 4.6.4. From the viewpoint of a processor, the behavior of the operation is close
to the behavior of a future. Consequently, we shall define the syntax of the operation sim-
ilarly as the future. The difference is that besides the name of the variable, we need also
to define the modifying function. To keep the reference straightforward, we shall allow
only the basic operations: addition and multiplication by a value. The syntax will be

modfutur e local_var := shared_varoper expr; (5-17)

whereoper is either an addition or a multiplication, and expr is a locally evaluable expres-
sion. At the execution of the statement, theexpr will be evaluated first locally, after which
it, the operation, the address of the shared_var, and the return address local_var are sent
to the shared memory. In the shared memory the value of the location shared_var is read
and sent back to the local_var of the requesting processor. Within the same atomic oper-
ation also the operation

shared_var := shared_varoper expr (5-18)

is executed by the shared memory. The original value of theshared_var will get assigned
to the local_var within expected time L. If necessary, we can naturally allow also other

96 5. A PROGRAMMING LANGUAGE FORF-PRAM MODEL

operations, possibly even our own functions. If we allow functions to be included, we have
to somehow charge the cost of the operation. Because the cost occurs at some other pro-
cessor51, we need to either amortize the costs, or define the data distribution, and charge
the cost from the known processor.

Replace future

In Subsection 4.6.4 we mentioned replace primitive as an easier-to-implement alternative
for the read-modify-write. In addition to the possibly easier implementation, the replace
is also easy to define. The informal definition is the combination of the fwrite and future
operations. The syntax would thus be, e.g.,

replacefuture local_var :=: shared_var; (5-19)

which differs from the future by the fact that the value of local_var will be written to
shared_var at the same indivisible operation when the value of the shared_var is read to
the return packet.

Data distribution dir ectives

Since multiport, independently word-wise accessible memories have not been built yet,
we have to expect that the shared memory is more or less modularized. In
Subsection 4.3.2 we defined the secondary parameters memory module bandwidth BM,
and the number of memory modules M for the F-PRAM model. Furthermore we stated
that we need to be able to define the data distribution scheme to be able to efficiently use
the modularized memory model. The parameters BM and M can be easily realized in the
FPM programming model by defining them as machine-characteristic variables. The data
distribution scheme is much more complex to define in a form which would be both
expressive and usable. The High Performance Fortran standard proposal has a rather good
system, which relies on virtual processors, templates and alignment of data according to
other data or templates [47]. We shall settle for a more simple model of only determining
the distribution scheme of each shared array separately.

The goal of the data distribution is to distribute both the data and especially the ref-
erences evenly among the memory modules. The distribution scheme of the shared scalar
variables is not very important since they are rarely used concurrently52. For example, we
can use random or cyclic distribution for the set of shared scalar variables. More important
is the distribution of arrays since the different elements of an array are usually referenced
concurrently by different processors. Our goal is to distribute the elements so that the con-
current references would fall on different modules of the shared memory. The pattern of
references is naturally very algorithm-dependent and possibly hard to detect from the
source code of the program. Furthermore, an array can be referenced by several different
patterns during the program execution. Hence, the compiler is not usually able to optimize

51. Complex read-modify-write operations can be accomplished only if the shared memory is
distributed among the processing nodes.

52. If scalar shared variables are used concurrently, they are bound to be hot spots.

5.3. Options for the programming model 97

the distribution without our help. Our help is the directives that guide the distribution of
each shared array of the program. Naturally, finding the optimal distribution can be diffi-
cult for us also. Especially difficult are the arrays which are used differently in different
parts of an algorithm. In such a case there might not be a solution which would avoid col-
lisions totally, but we need to find the distribution which minimizes the collisions in the
most time-critical parts of the program.

We shall define cyclic, block, and random distributions. The distribution directives
must be included in the array declarations, more accurately in the dimension indices of
the arrays. The syntax of an array declaration with distribution directives is

array_name :array [distr1 dim1,distr2 dim2, ...]of type; (5-20)

where type is the type of the elements and distr1 is the distribution scheme of the first
dimension of sizedim1. The distribution of each dimension can be defined independently.
The possible schemes are:

cyclic
Modulo distribution. Element k gets assigned to memory module
k modM.

cyclic(bl)
Blocked modulo distribution. bl successive elements get assigned to the
same module, the next bl successive elements to the next module, and
so on.cyclic(1) equals tocyclic.

block
Division distribution. The first elements get assigned to mod-
ule 0, the next to the module 1, and the last to the module min(N, M–1).
The directiveblock equals tocyclic()

block(blocks)
Division distribution to the firstblocks modules of the shared memory.

random
Distribution using some reasonably random and O(1) time computable
hash-function.

Even if the list contains some redundancy, it is more illustrative than the minimal two
primitives.

Since the F-PRAM model does not recognize any nearness or locality within the
shared memory, the distribution is only meant for avoidance of collisions. If the transfers
from the “ local” or “near” module of the shared memory were faster than from far mod-
ules, the optimal distribution would be still more important, and more difficult to find and
define. Also, the block transfers of successive data elements, require blocked data distri-
bution with correct boundaries to be able to provide optimal data transfer rates. Cyclic or
random distribution would make block transfers more difficult in a truly distributed shared
memory.

N M⁄

N M⁄

98 5. A PROGRAMMING LANGUAGE FORF-PRAM MODEL

99

Chapter 6

Exper imental tools for testing the F-PRAM model

he goal of the F-PRAM model and this thesis is to model and study the impacts
of different properties of parallel machines on different algorithms. The prob-
lem is that the set of parameters is large, and the range of each parameter is
even larger. We cannot test the impacts of all these parameters on existing par-

allel computers because there do not exist computers with all these properties. Using one
multimillion dollar parallel computer, we can study the impact of the number of proces-
sors, and compare different algorithms. Having two different parallel computers with dif-
ferent latencies, we could study the impact of latency, except that the computers would be
different also in dozens of other ways, so that the results would not be valid anyway. Using
a set of workstations, and testing the same algorithms with different Ethernet HUBs
and/or switches, we could get a bit more valuable information a bit cheaper. In general,
however, there is no economic way to separately measure the impact of different parallel
machine properties in real parallel computers.

We cannot measure the impacts of the parameters on real parallel computers.
Instead, we can measure them on a simulator. There are often demonstration/development
simulators of actual parallel computers provided by the manufacturers at the time of their
development. A more general machine simulator to simulate hardware using existing soft-
ware and operating systems is the SimOS made at Stanford [89]. Modeling and simulating
whole machines in unnecessarily complex for algorithm research. Instead, we prefer sim-
ulation of the models of parallel computations. We are aware of a few PRAM simula-
tors/emulators, e.g., [18, 53, 81] and a few general architecture simulators, e.g., [19, 73].
Additionally there are a lot of proprietary tools written to support a more accurate analysis
of algorithms. The only simulator of the newer parameterized abstract models that we are
aware of is the recent BSPlab developed at NTNU, Norway [101]. An emulator of a
parameterized model allows us to study the effects of the parameters, i.e., the parallel
machine properties. For this purpose we have constructed an emulator system to do the
measurements in a simplified model of parallel computers. Here we have to emphasize
that the system does not simulate any physical properties of any parallel computer.
Instead, it emulates a theoretical parallel computer. In other words, it executes a separately
defined machine language using some abstractions of different parallel machine compo-
nents. As the emulator is a software product, we can fully configure the features, i.e., the

100 6. EXPERIMENTAL TOOLS FOR TESTING THE F-PRAM MODEL

behavior, of the emulator. In particular, we can freely choose the values for parameters
P, B, L, etc. for each run of the emulator.

In addition to the total configurability, the benefits of an emulator include the
absence of implementation specific anomalies, such as superlinear speedups due to the
cache or memory increase, or inability to fit the whole execution in a single processor. A
shortage of the emulation approach is that we cannot use as large data sets as we would
using real hardware. In spite of the rather slow software emulation, we have, however,
been able to run big enough data sets to show up the characteristics of all algorithms we
have written this far.

In Section 6.1 we shall present the features and the implementation of our experi-
mental F-PRAM emulator. In Section 6.2 we shall present the implementation of the
experimental FPM compiler for the experimental F-PRAM emulator. Besides the actual
compiler and emulator system, in Section 6.3 we briefly present the measurement system
used to generate the graphs to be presented in Chapter7.

6.1 An F-PRAM emulator

Our concept of emulating the F-PRAM model consists of a definition of a theoretical
machine fulfilling the F-PRAM model requirements and an emulator program to execute
the programs written for the theoretical parallel machine. We separate the definition and
the implementation of this emulator to avoid a definition by an example, i.e., to be able to
simulate the theoretical machine model by later emulators or real parallel computers as
well. Even if the definition of the machine is similar to the definition of the whole
F-PRAM model, we shall give it here again because of the additional level of details
needed for a machine model to be emulated automatically. Also, we shall repeat some rea-
sonings about some features to support the decisions we have made in designing the emu-
lator system.

6.1.1 A theoretical machine model for the F-PRAM model

The skeleton of the definition of the emulated machine model is based on the definition of
the F-PRAM model itself. Especially the components of the parallel components are
equal to the components of the F-PRAM presented in Chapter 4. Here we shall define the
function of the components more accurately to form a “working parallel computer.”

Definition 6.1: A theoretical F-PRAM machine consists of

• P processing nodes (RAM, Random Access Machine), each having
• a sequential processor
• local memory accessed wordwise
• local copy of the program
• access to the interconnection network and to the synchronization net-

work
• an input and an output stream

• a shared memory accessed wordwise via the interconnection network

6.1. An F-PRAM emulator 101

• an interconnection network with a connection to every processor and to the
shared memory

• a synchronization network with a connection to every processor

RAMs in the F-PRAM

Each processing node of the F-PRAM is an extended version of a standard von Neumann
style random access machine (RAM) [91] found in most CS textbooks. The extensions
include the facilities to access the shared memory and the synchronization network. The
processor consists of

• an accumulator and a set of other general purpose registers
• a set of special read-only registers to hold the values of the F-PRAM param-

eters
• a program counter (PC)
• a processor index (PID)

The processor executes simple machine language (ML53) instructions one at a time
sequentially. The instruction set includes

• arithmetic instructions using accumulator and/or one other register as oper-
ands and storing the result to the accumulator

• read and write instructions for transferring data from/to the local memory
to/from the accumulator

• branch instructions (unconditional and conditional ones based on the accu-
mulator)

• future instruction for launching a future-request to transfer data from the
shared memory to the local memory

• fwrite instruction for initiating a transfer of data from the accumulator to the
shared memory

• synchronize instruction to participate in a global synchronization
• halt instruction to stop the execution

By default the execution of any standard instruction takes one clock cycle. The execution
of thesynchronize instruction takesS clock cycles after all processors have started to exe-
cute it. The execution offuture andfwrite instructions takeBP clock cycles54.

Shared memory

The shared memory of the F-PRAM machine is a continuous wordwise indexed random
access memory. The shared memory system handles the memory references issued by the
processors and delivered by the interconnection network. The order and the volume of the
references is determined by the interconnection network, i.e., the shared memory handles
all the references it gets. The fwrite references are obviously written to the correct mem-

53. In this thesis we do not refer to the functional language ML.

54. By default,BP = 1.

102 6. EXPERIMENTAL TOOLS FOR TESTING THE F-PRAM MODEL

ory location in the order they are received. The future references are filled by the value of
the correct memory location and sent back to the interconnection network.

The definition above declared that the shared memory is continuously indexed, but
does not require it to be continuous itself. In other words, the memory can consist of one
or more separate memory banks as long as global indexing of the memory locations is
continuous. In practice, the global memory locations are hashed to the several banks using
a properly chosen hash function. If the memory consists of several banks, the interconnec-
tion network must have separate connections to each of them. Moreover, the interconnec-
tion network has to be able to send a shared memory reference for the correct memory
bank. In practice, this can be implemented either in processing node or in the interconnec-
tion network. If the processing nodes transform the global address to the number of a bank
and the address within the bank, the interconnection network just delivers the request to
the correct bank. On the other hand, the routing nodes of the interconnection network may
be able to decide the correct destination using only the memory address. The latter
approach is efficient only if the decisions can be done in each routing node based on one
or few bits, or otherwise as easily. Examples of this are all hypercubic networks. If we use
proper hashing of the memory addresses, the unhashing should be done by the processing
node. Recalculating a strong randomizing hash function in every routing node would be a
waste of resources since it can be done in the network connection of the processing node,
and attached to the message.

Inter connection network

The interconnection network delivers the shared memory references from the processors
to the shared memory system, and, in case of future requests, returns the packets back to
the processing node. To keep the definition simple and portable, we do not require any
actual topology of the network. Instead, we use the parameters B and L of the F-PRAM
model to set the requirements on the network. In an unsaturated interconnection network,
a future request shall be server within L clock cycles with high probability. For example,
the times required by a set of future references could distribute mostly between L/2 and
L. Figure6-1 presents a possible graph of latency distribution in a non-collision network
with topology of a 3-dimensional mesh. Suppose that the latency of serving request i is of
the form

Figure 6-1: A possible latency distribution.

L0 L0
time

p
ro

b
a

b
il

it
y

6.1. An F-PRAM emulator 103

Li = L 0 + 2×C×distance(source node, destination node), (6-1)

whereL0 is a base latency, and C is the time used in one intermediate routing node55. The
base latency typically consists of the time used by the network connection of the process-
ing node, and the time used by the memory module. If the references distribute evenly
among all processing node within the cube, we get a bell curve of latencies as seen in
Figure6-1. Now we can set the parameter L to the point where we can assume all memory
references to be served, i.e.,L = L0+2C .

Synchronization network

In the theoretical machine model, we require the processors to have a separate instruction
synchronize, which causes them to freeze until the synchronization network releases them
to continue their execution. The synchronization network waits until all processors have
executed the synchronize instruction, and after that it sends the releasing signal to the pro-
cessors within S clock cycles. All processors need not to be released simultaneously. This
definition does not allow any submachine synchronizations or several concurrent pending
synchronization waves.

6.1.2 An experimental implementation

The above definition of a theoretical machine model is made to be easily implementable
using a software emulator system. In this section we shall present the experimental imple-
mentation used in the experiments described in Chapter 7. The current emulator system is
a result of several consecutive stages. The first implementation was a PRAM emulator
made by Pasi Hämäläinen in 1991-1992 [53]. When the F-PRAM was defined in 1995,
we also redefined the emulator, and Jukka Veräjäntausta implemented the F-PRAM emu-
lator in 1996 [105]. The current form was completed in 1997 when the author added the
floating point arithmetics and some new instructions to the emulator system. The next
stage in this branch of the research would be to rewrite the interconnection network and
shared memory modules of the emulator.

As the definition in the previous subsection stated, the emulator accepts an F-PRAM
assembler language program and executes it usingP processors. In order to be able to exe-
cute an assembler program to be executed efficiently, we first have to compile it to a
machine language program. In this stage the possible macros are expanded, labelled
jumps are interpreted to addresses, and the instructions are coded to be efficiently exe-
cuted.

In addition to the ML program, the emulator takes the values of the F-PRAM param-
eters, and a possible input file. The F-PRAM assembler can be written manually, but in
most cases we want to use a high level language and a compiler, which we present in the
next section. In Figure6-2 we can see the whole system, and the stages we need to execute
a program. The FPM source code, input data, and the F-PRAM parameters are given by
the programmer or user (or generated, as we shall see later in Section6.3).

55. More accurately, the delay (time) in one node plus the time in the previous wire.

P3

104 6. EXPERIMENTAL TOOLS FOR TESTING THE F-PRAM MODEL

Principle of operation

The emulator is designed to be executed in a sequential computer. The time unit of the
emulation is clock cycle as defined above. Consequently, the emulator accomplishes all
the operations needed to be done in one clock cycle in some order, and proceeds to the
next clock cycle. During each clock cycle all of the components of the F-PRAM machine
need some attention. For each processor the emulator executes one clock cycle. Usually
this means executing one instruction and increasing the program counter by one56. As
some instructions can take more than one clock cycle, the execution of the instruction may
be continued on the subsequent clock cycles. Within the interconnection network, all ref-
erences are forwarded one step. In the shared memory module, all references that arrived
are served and possibly sent back to the network. If there is a synchronization pending,
the emulator checks whether all processors have started to execute the synchronize
instruction. Algorithm6-1 presents the sequence of emulation more formally.

The cycle-by-cycle emulation of a simplified instruction set was chosen for porta-
bility and ease of analysis. This approach to emulation is, however, quite slow compared
to the speed of real microprocessors. The host computer executes hundreds of instructions
for each emulated instruction. The other shortcoming (and benefit in some cases) is the
lack of some real-world features, especially caches. Another approach for emulation
would be using a Unix thread for each processor, and having separate handlers to coordi-
nate the threads and the parallelism-related requests [19]. Compared to the cycle-by-cycle
emulation, the thread-based approach provides much better speed and the some of the
impacts of real processor features such as the caches and slow memory57. Moreover, we

56. Or setting the program counter to the destination of a branch instruction.

Figure 6-2: The stages of the F-PRAM emulator system.

par k := 0 to N-1 do
for j := 1 to k do

future t1:= a[i, k];
future t2 :=tvec[k];

FPM source code

LOCVAR (5)
STORE TMP12
LOAD TMP17
ADD TMP12

F-PRAM assembler

FPM
compiler

fasm
assembler

F-PRAM
emulator

00000067 40490FCE
0000001B 00000000
00000067 4229AE14
00000092 0000001C

F-PRAM ML

#1 0 -7.714200 7.592
#2 1 7.743651 9.2940
#3 2 -2.394315 -1.82
#4 3 2.331378 -1.778

input data

#11 10 3.995123 2.53
@CLOCK: 53223
#12 11 6.377223 8.37
@CLOCK: 53278

program output

-p 32
-b 4
-l 50
-s 20

F-PRAM parameters

6.1. An F-PRAM emulator 105

can use existing compilers to produce to sequential code. The disadvantages are that the
system would be less portable, and much more difficult to analyse.

Inter connection network

Within the emulator, the interconnection network models the possibly poor connection
between the processing nodes and the shared memory. A faithful implementation would
be to build a graph of routing nodes between the processing nodes and the shared mem-
ory58. During the emulation we would then simulate the routing of the packets in the net-
work cycle by cycle59. To study different networks, we would have to implement the sim-
ulation of all topologies. Using this implementation the exact meaning of parameters B
andL would have to be measured and analysed carefully for each network. Our initial goal
was, however, to be able to set the parameters accurately. To achieve this, we model the
interconnection network with a queue of width P/B. More formally, the width w of the
queue is

. (6-2)

When w < 1, the queue only includes one net load position at every th position of the
queue (clock cycle). Figure6-3 presents an example of both types of the queue. In the
opposite direction, i.e., from the shared memory to the processing node, there is also a
similar queue.

57. The desired effects of, e.g., caches in emulation do not, however, necessarily reflect the
effects in real parallel computers as all the threads exploit the same cache.

58. Or only between the processing node/shared memory block pairs, if we would emulate vir-
tual shared memory.

59. We could also model easily a slower or faster network by advancing the packet only every
nth clock cycle or by advancing the packets several steps on each clock cycle.

initialize emulator 1

while not all processors halteddo 2

for all processorsdo 3

read next instruction 4

execute instruction 5

advance the queue of the pending shared memory references 6

serve the memory references that reached the shared memory 7

advance the queue of the returning shared memory references 8

store the returned results of shared memory references to local memories 9

clock := clock + 1 10

print output streams 11

Algorithm 6-1: Emulation of the F-PRAM.

w
P B⁄ if P B≥

1
B P⁄

------------------- if P B<

=

1
w

106 6. EXPERIMENTAL TOOLS FOR TESTING THE F-PRAM MODEL

When inserting a new shared memory reference into the queue, the emulator models
latency L by locating the new packet of the memory reference at distancef(L) to the queue.
If the position f(L) is already full (by the rule of Formula (6-2)), the packet is assigned to
the next free position in the queue. If the network is severely overloaded, the length of the
queue grows long. The functionf can be chosen to be any function as long as

2× f(L) ≤ L with high probability, (6-3)

where the factor 2 comes from the fact that the memory references should also be routed
back to the referencing processing node within the L clock cycles. Of course, if the net-
work is saturated by too many references, the Inequality (6-3) does not hold. Our current
implementation provides a default random function with Gaussian distribution centered
at L with deviation σ = L. Although neither this function, nor the queuing model do
not represent any real network, the latency distribution has very similar properties with,
e.g., the distribution of a 3-dimensional mesh of Figure6-1.

Parallel input and output

In a theoretical computation model, such as the PRAM model, it is generally accepted that
we ignore the input and the output of an algorithm. Usually the input is assumed to reside
in the shared memory before the execution and the results are assumed to be left in the
shared memory after the execution. In our previous PRAM emulator [53] this was the
solution. It only supported separate sequential program segments to do the actual I/O
before and after the actual parallel computation. Within the F-PRAM model we want to
examine also the costs of the I/O. Since the linear time needed in sequential I/O can
destroy the efficiency of a fast parallel algorithm, we need parallel I/O. Furthermore, since

Figure 6-3: The interconnection network implementation of the current
emulator.

6

5

4

3

2

1

Shared memory

6

5

4

3

2

1

Shared memory

w = 5 w = 1/ 2

payload

link

distance distance

2
5
--- 1

5

6.2. Implementation of an FPM compiler for the F-PRAM emulator 107

some data might be needed by one processor only, we can reduce the possibly expensive
shared memory usage by inputting the data to the processing nodes directly. Similarly, the
final output generated by each processor needs not be transferred via the shared memory
at all.

The definition of the parallel I/O follows the earlier definition of the F-PRAM
model, i.e., each processor has an input and an output stream of its own. The instruction
set of the processors includes calls to external routines that either read a value from the
input stream to the accumulator, or write the value from the accumulator to the output
stream. There are separate versions of the routine for input and output of integers, real
numbers and characters (which are handled as integers in the emulator). In practice, the
streams are stored in files, where there is one or more lines of input values for each pro-
cessor. Each line is tagged with the corresponding processor-id.

Performance counters

The goal of the emulator system is to measure the performance of our algorithms in dif-
ferent machine configurations. The performance is measured as used time for a given
operation. In an emulator, there is no sense in concept wall clock time since the emulator
can be run in any environment, and it is always sequential no matter what set of parame-
ters we assign to it. Consequently, the only usable time unit is the clock cycle. The emu-
lator system maintains a global clock, and we need to access the values of the clock to
monitor the time usage of our algorithms. Within the F-PRAM assembler language, we
can insert a directive@CLOCK into any point of the code. During the execution, if a pro-
cessor executes an instruction with the directive, the emulator prints the value of the glo-
bal clock to the input stream of the processor. In addition to the @CLOCK directive, the
current implementation also includes the directive @LASTMEMINDEX to print the
amount of shared memory used within the computation.

6.2 Implementation of an FPM compiler for the F-PRAM
emulator

In Chapter 5 we defined a new programming model for the F-PRAM model. To be able to
exploit the programming model and the emulator system, we have implemented a com-
piler from the FPM programming model to the F-PRAM emulator. The compiler has been
developed together with the emulator. The first version of the compiler was a parallel
Modula-2 compiler for PRAM [60]. Later, we modified the language and the compiler to
support the F-PRAM model of shared memory access. In this section we shall present the
most important parallelism-related compilation techniques used in the FPM compiler.

6.2.1 Parallelism handling

As stated in the definition of the F-PRAM emulator, all processors execute the same pro-
gram code independently. From the programmer’s point of view, it might be a bit difficult.
Therefore the programming model presents a single parallel program, which is then com-
piled to a single program to be executed by every program. In other words, the compiler

108 6. EXPERIMENTAL TOOLS FOR TESTING THE F-PRAM MODEL

takes care of the branching of the processors. Consequently, we can claim our language
to be a Single Program Multiple Data (SPMD) model of programming, although the acro-
nym SPMD is often used in several different meanings.

Processor-IDs and the number of processors

The emulator system generates the processors at the initialization of the emulator, and
after that the system has a fixed amount of processors, as the model assumes. The proces-
sors have access to the parameter P. The emulator also assigns each processor a distinct
index, processor-ID (PID), within the range 1..P.

The compiler uses its own numbering for the processors to be able to more easily
and more dynamically assign each processor different threads60 of execution. During a
computation, each processor maintains independently the effective number of processors
in the same thread of execution (P) and its own effective index (range 0..P–1) within the
thread (PID). At the beginning of a computation, all processors form a single thread of
execution, and, thus, havePIDs in the range 0..P–1. Within each par-do statement, the sets
of processors are divided to a number of threads distinguished by the iteration variable.
The processors maintain a stack (actually a table) of thePIDs and Ps of the nested par-do
statements. Therefore, when exiting apar-do statement, the processors restore the earlier
PIDs and Ps. Moreover, the processors can reference the PIDs and Ps of outer levels of
par-do statements by using referencesPID(level) and P(level). Within the rest of this sec-
tion, P andPID refer to the effectiveP andPID, respectively.

Execution threads

Within an execution thread, all processors execute the same program to keep the values of
the local variables correct, usually identical. Only input/output statements and fwrite
statements are executed by only the processors having effectivePID 0. This is ensured by
an additional JPOS instruction before the statement. Using the explicit all directive in a
statement, the programmer can force all processors to do the operation.This can be used,
e.g., outside any par-do statements to write a local value to a position of a shared array

fwrite all max_array[PID] := local_max; (6-4)

as in maximum-finding routine of Algorithm7-8.

Par-do statement

The standard form of thepar-do statement is

par j := a to b do (6-5)
statements;

end;

60. We defined thread in Subsection 5.2.1 as the processors executing apar-do statement with
the same value of the iterations variable.

6.2. Implementation of an FPM compiler for the F-PRAM emulator 109

where j is the iteration variable and b–a+1 is therange of thepar-do statement. The state-
ments are executed once for each value of the range. If

P ≤ b – a + 1, (6-6)

i.e., there are no more processors than the width of the range of thepar-do statement, the
statement is executed as

for j := a + PIDto b by Pdo (6-7)
PID := 0; P := 1;
statements;

end;

that is, each processor executes the statements once for a value of the iteration variable.
Since each thread is executed by only one processor, each processor will have the new
PID 0, and the number of processors P will be 1 in every thread. This is a rather coarse
but very efficient method since the processors need not communicate with each other
before, during, or after the par-do statement. Concerning the coarseness, dividing the
work of 3 statements among 2 processors to be executed faster than sequentially executing
2 statements is difficult or impossible in the general case. Consequently the difference 1
is the best we can do in balancing the work between the processors.

The opposite case of Inequality (6-6), the case when the number of processors is
greater than the width of the range in thepar-do statement is a bit more difficult to handle.
Not all of the processors are required to execute the statements in parallel. Using the solu-
tion of (6-7), the extra processors would skip the wholepar-do statement. This would not
be a valid behavior if the statements include one or more inner par-do statements. Because
the inner par-do statements provide more parallelism, they are able to exploit more pro-
cessors. Consequently, all the processors must execute all the statements to be able to par-
ticipate in the possible inner par-do statements. Each of the processors will get assigned
a value of the iteration variable. The processors with the same value of the iteration vari-
able make up an execution thread. Thus, the number of threads will beb–a+1. Within an
execution thread, one processor will receive 0 as a new PID, and the possible other pro-
cessors will receive positive integers as their new PIDs. Within each thread, the new num-
ber of processors is evaluated independently. Especially, if the old number of processors
is not divisible by the width of the range, different threads will have different new numbers
of processors. The difference will be at most one. Figure6-4 presents an example of 8 pro-
cessors and two nested par-do statements. The first stage divides the processors into 3
threads, each having 3 or 2 processors. The second par-do statement further divides each
thread to 4 subthreads, each having only one processor, and some processors having to
execute two threads. Figure6-5 presents the changes in the local variables of the proces-
sors in the same situation. At the last row of the figure we notice that some of the proces-
sors execute the innermost statements for two different values of the iteration variablej.

As the figures suggest, we use blocked distribution of processors for the threads.
More exactly, for a new thread i we assign a set of processors having their old PIDs within
range

110 6. EXPERIMENTAL TOOLS FOR TESTING THE F-PRAM MODEL

i×(Pold/range) .. (i+1)×(Pold/range) – 1, (6-8)

i.e., a set of Pnew = Pold/range processors for each thread. Each processor will indepen-
dently calculate a new PID within the new thread using formula

PIDnew = PIDold – i×(Pold/range). (6-9)

Also, we have to consider also the probable remainder in the division Pold/range so that
all of the processors get used as evenly as possible. Combining and refining Formulas

...

synchronize;

par j := 1 to 4 do

Figure 6-4: Processor usage in two nestedpar-do statements.

par i := 1 to 3 do

Execution

Reorganization

Figure 6-5: The number of processors, PIDs, and iteration variables in nested
par-do statements.

PID 0
P = 8
i =
j =

PID 1
P = 8
i =
j =

PID 4
P = 8
i =
j =

PID 5
P = 8
i =
j =

PID 2
P = 8
i =
j =

PID 3
P = 8
i =
j =

PID 6
P = 8
i =
j =

PID 7
P = 8
i =
j =

PID 0
P = 3
i = 1
j =

PID 1
P = 3
i = 1
j =

PID 1
P = 3
i = 2
j =

PID 2
P = 3
i = 2
j =

PID 2
P = 3
i = 1
j =

PID 0
P = 3
i = 2
j =

PID 0
P = 2
i = 3
j =

PID 1
P = 2
i = 3
j =

PID 0
P = 1
i = 1
j = 1,4

PID 0
P = 1
i = 1
j = 2

PID 0
P = 1
i = 2
j = 2

PID 0
P = 1
i = 2
j = 3

PID 0
P = 1
i = 1
j = 3

PID 0
P = 1
i = 2
j = 1,4

PID 0
P = 1
i = 3
j = 1,3

PID 0
P = 1
i = 3
j = 2,4

par j := 1 to 4 do

par i := 1 to 3 do

6.2. Implementation of an FPM compiler for the F-PRAM emulator 111

(6-7), (6-8), and (6-9), we can express thepar-do statements as Algorithm 6-2. In the sit-
uation, where there are more processors than available parallelism (lines 6-15), the algo-
rithm handles the processors separately depending on whether they will belong to a thread
with Pold / range or Pold / range 61 processors. In the former case, the new P and PID
will be calculated with respect to the boundary of the two sets of processors. Implemen-
tation of the algorithm in machine language is rather straightforward, although the opti-
mized machine language execution requires some merging and rearranging of some of the
expressions. In addition to the presented algorithm, the processors also have to push the
old values of P and PID to the parallelism stack, and pop them back after the statements.
In a compiled program, starting and finishing a par-do statement takes about 45 clock
cycles if P < range, otherwise it takes approximately 65-80 clock cycles, depending on
which branch of the if statement of line 8 of Algorithm6-2 the processor takes.

The most notable feature of Algorithm 6-2 is that every processor independently
calculates the new values of P, PID, and the iteration variable using only the old values of
P and PID. Consequently, no interprocessor communication is needed during single nor
nested par-do statements. Furthermore, the statements can be executed fully asynchro-
nously. At the extreme, a processor can complete the statements before another processor
enters the statements.

Miscellaneous F-PRAM specific features

All the direct memory references made by the compiler are local. Following the F-PRAM
model, the language specification requires that all shared variable references are made by

61. The use of the floor and roof operations are avoided in practice using the knowledge of the
groups of the processors.

range := b - a + 1; 1

if range≥ P then 2

j := a + PID; 3

PID := 0; 4

P := 1; 5

else 6

bndr := (Pold mod range) *Pold / range ; 7

if PID ≥ bndrthen 8

P := Pold / range ; 9

j := (Pold - bndr) / P + Pold mod range + a; 10

PID := (PID - bndr)mod P; 11

else 12

P := Pold / range ; 13

j := PID / P + a; 14

PID := PIDmod P; 15

while j < Pdo 16

statements; 17

j := j + P; 18

Algorithm 6-2: Implementation of thepar-do statement (6-5).

112 6. EXPERIMENTAL TOOLS FOR TESTING THE F-PRAM MODEL

the future and fwrite statements. For each shared variable reference, the compiler gener-
ates both local and shared addresses (values) and issues the corresponding ML instruction
as the machine model requires.

Synchronization statement of the FPM language is the barrier synchronization of
the F-PRAM model. We have chosen to leave the responsibility to guarantee that every
processor takes part to the synchronization to the programmer. Consequently, the com-
piler does not need to take any care besides inserting the synchronize instruction at the
place of each synchronize statement.

One of the ideas of the F-PRAM is that the programmer can use the values of the
F-PRAM parameters in his/her program to make the program to adapt to the used parallel
computer. For each F-PRAM parameter there is a predefined read-only variable in the lan-
guage. The variables can be used to refer the properties of the computer. The references
of the variables are compiled to references of the corresponding virtual registers of the
processors of F-PRAM emulator.

The parameters of the F-PRAM are given in clock cycles, which is not the best unit
for the programmer. To be able to make, e.g., enough iterations to hideL, the programmer
needs to know the length of the iteration also in clock cycles. For this purpose the compiler
provides a read-only variableLBL (Loop Body Length) that is assigned an approximation
of the length of the body statements of the next for-do iteration.

Code generation

In an experimental compiler, the code of which is to be emulated, the optimized code gen-
eration is not the most important issue. It does, however, have a constant effect when com-
paring the results of the emulated system to a real parallel computer. For example, if the
body of an innermost iteration takes twice the clock cycles compared to a good compiler,
the resulting code will probably tolerate twice the latency having the same slowdown.

The instruction set of the F-PRAM emulator has only arithmetic instructions getting
input from the accumulator and/or another register and storing the result to the accumula-
tor. Consequently, all addresses of (local) memory references have to be first calculated in
the accumulator, and after that the value can be loaded into the accumulator. Only after
that, the actual computation can be made. Expressions involving several operations or
memory references require additional stores of every intermediate result to the spare reg-
isters or to the stack. Also, the stack push and pop can only be made through the accumu-
lator. This accumulator-based architecture requires more instructions by approximately
by factor of 2 compared to a more modern register-to-register or memory-register archi-
tecture. Moreover, most current microprocessors are 2-6-way superscalar, i.e., they can
execute (issue) more than one instruction every clock cycle. On the other hand, the local
memories are slow, and cache misses stall the processor for tens of clock cycles. These
variations make the definition of a common time unit more difficult.

The compiler does its best in producing a reasonably efficient machine code for the
accumulator-based architecture. Optionally the compiler produces optimized versions of
most of the important structures. Moreover, the compiler includes an assembler optimizer
that scans through the produced code, and combines and deletes instructions where pos-
sible. Part of the optimization responsibility has been left to the programmer. Especially,
the compiler does not locate the variables to registers automatically since the variables

6.3. Automated measurement system for the F-PRAM emulator system 113

may be used for futures, which work only with the local memory. Therefore, the program-
mer should tag the most important temporary variables with the keyword register.

As an example we study the innermost loop of matrix multiplication. The textbook
version of the iteration is

for i := 0 to N-1 do (6-10)
c := c + A[x, i] * B[i, y];

where isN, i, x, andy are local scalar variables, andA andB are matrices. On each iteration
elements of two different matrices are multiplied and added to a local sum (which is later
assigned to the result matrix). Additionally, the value of the iteration variable is increased
and the termination criterion is tested. In an optimized implementation the references to
the matrices are handled with pointers, both of which are increased at every iteration, and
the termination test is also done using one of the pointers. Using the current compiler, the
actual computation takes 8 clock cycles, increasing the pointers takes additional 2 clock
cycles, the termination test takes 4 clock cycles, and the branches take 2 clock cycles. In
total, each iteration takes 16 clock cycles. In Section 7.2 the measured cost of the whole
matrix multiplication procedure also approaches the value 16N3 clock cycles. By hand
optimization we could reduce the constant by 2 clock cycles by exploiting a more efficient
termination test. Anyway, the compiler produces reasonably efficient code for the chosen
architecture. In a more optimized architecture, the number of instructions would be
smaller. For example, the Gnu C compiler [31] produces an iteration of length 8 instruc-
tions out of a comparable C program for the SPARC architecture. Using superscalar exe-
cution, the instructions might be executed in 4-7 clock cycles, if the vectors were in first
level cache. In practice, however, the caches do not contain all the values, and, thus, at
least one reference within the loop is slower. Vectorized code in a vector supercomputer
should be able to execute the innermost loop at rate of 1 iteration per clock cycle, but these
machines are at least as much more expensive as they are more efficient.

The reason for this comparison of the generated code is to be able compare our main
time unit, clock cycle, in the emulator system and in the real parallel computers. In prac-
tice, it should suffice to see that the emulator needs two clock cycles to do the same work
as an average microprocessors does in one instruction. When comparing with highly effi-
cient systems, such as vector supercomputers, the factor is a bit larger. We need to find the
approximate factor for each architecture to be able to make any direct comparisons.

6.3 Automated measurement system for the F-PRAM
emulator system

The goal and purpose of the emulator system is to be able to study the impacts of different
variable aspects of the execution. In practice, we want to know, for example, how much
longer it takes to complete an algorithm in a computer with latency 1000 than in a com-
puter with latency 500. Moreover, we want to know how the execution time rises as the
latency rises from 1 to 10,000. Consequently, after we have checked that our algorithm
produces the correct results, the most interesting result is the total execution time (in clock
cycles) of the algorithm62. In this section we shall describe how we have used the tools

114 6. EXPERIMENTAL TOOLS FOR TESTING THE F-PRAM MODEL

presented in this chapter to test the model and to plot the graphs to be presented in
Chapter7.

The problem

The goal and purpose of the emulator system is to be able to study the impacts of different
variables of the execution. The obvious variables are the F-PRAM parameters such as P
or L. In addition to these, the possible variables also include input size, the number of reg-
isters, possible variations in the algorithm, and compiler options. In total there is usually
a set of approximately 10 variables to take into account when running a simulation. The
variables may have a very large domain of possible (and interesting) values. For example,
the latency may vary from 20 clock cycles (vector supercomputers) to 106 clock cycles
(LAN based network of workstations). Even if we used exponentially growing steps
between the experiments (e.g., L = 16, 32, 64, 128, ..., 218 instead of 10, 20, 30, ...), the
number of interesting sets of variables is vast. For example, if we have 5 variables with 5
interesting values each, and 5 variables with 20 interesting values, we would get 1010 dif-
ferent combinations of variables. Naturally, this is too many experiments to run. Besides,
we cannot visualize the impact of more than two or three variables simultaneously. Con-
sequently, in a rational set of tests, we vary 3 parameters with 10 values each, resulting
1000 distinct experiments. After the tests, we select two variables to be studied together,
pick a couple of representative values of the third variable, and plot a set of curves or a 3D
plane for each of the chosen values of the third variable.

In addition to the complexity induced by the sheer number of the test run to be made,
the slight complexity of the emulator system as seen in Figure6-2 makes the experiments
tedious to perform manually. If we change the algorithm, we also have to recompile and
reassemble it. If we use parallel I/O and change the number of processors, we may have
to regenerate the input file. Consequently, we have perform up to five commands to get
the execution running, and then extract the wanted results from the output of the execu-
tion.

The solution

As the base of our solution, we chosefiles of test sets. A test set is a set of all parameters.
In a file of test sets, each row contains one test set. We generate these files using a separate
awk script which accepts a test set definition. In a test set definition there is one parameter
per line, and after each parameter there is one or more values for the parameter. The test
set generator generates one test set for every combination of parameters. The files of test
sets are fed to another awk script, which generates a suitable sh script to run all the needed
stages of the emulation system to achieve the results of each test set of the file. This gen-
erated script includes (if needed) commands to regenerate the input, change the program
file, recompile and reassemble it, execute the emulator, and extract the time from the out-
put. When fed to sh, the commands produce a file, where each test set is appended with
the time required to execute it. If we wanted several distinct times of the algorithm, e.g.,

62. Alternatively, a set of execution times, if we want to analyse different stages of an algo-
rithm separately.

6.3. Automated measurement system for the F-PRAM emulator system 115

separate stages, we can append several times. We call the combination of the test set and
corresponding time a result set. These result sets are often useful as they are, but usually
we transform a file of result sets to a matrix of two parameters, which can be more easily
plotted using a proper visualizer. Figure6-6 presents these stages as a flow of transforma-
tions and operations from a test set definition to a drawn graph.

Figure 6-6: Automated measurement system for the F-PRAM emulator.

N 64
P 1 2 4 8 16 32 64
L 8 16 32 64 128 256
B 4 8 16 32 64 128 256

test set definition

N P L B S BP
64 1 8 4 50 1
64 1 16 4 50 1
64 1 32 4 50 1

test set

awk script
(test set gener.)

awk script
(sh generator)

F-PRAM
emulator

awk -f michange.awk
mgen 64 1 > mi.input
fpm mi.fpm mi.fel -R3
fpram -p 1 -reg 30 -l 8

generated sh script

#1 0 -7.714200 7.592
#2 1 7.743651 9.2940
#3 2 -2.394315 -1.82
#4 3 2.331378 -1.778

input data

#11 10 3.995123 2.53
@CLOCK: 53223
#12 11 6.377223 8.37
@CLOCK: 53278

program output

N P L B S BP TIME
64 1 8 4 50 1 53278
64 1 16 4 50 1 53632
64 1 32 4 50 1 55790

timing results

gnuplot
visualizer

awk script
(time extract)

timing graph

00000067 40490FCE
0000001B 00000000
00000067 4229AE14
00000092 0000001C

F-PRAM ML

random input
generator

par k := 0 to N-1 do
for j := 1 to k do

future t1:= a[i, k];
future t2 :=tvec[k];

FPM source code

awk script
result rearrange

L\B 4 8 16
8 1.000 1.012 1.024
16 1.009 1.028 1.039
32 1.020 1.045 1.080

plottable results

8 16 32 64 128 256 512

64

256

1024

4096

16384

65536

262144

bandwidth inefficiency

la
te

nc
y

ar ea of
sl owdown ≤ 2

P
 =

 8
P

 =
 4

P
 =

 2

P
 =

 1

P = 128
P = 64

P = 32

P = 16

P = 1024

P = 256
P = 512

116 6. EXPERIMENTAL TOOLS FOR TESTING THE F-PRAM MODEL

117

Chapter 7

Example algorithm implementations

new theoretical model of any kind is of little value unless it is followed by a
set of examples that demonstrate the usability of the new model. In this chap-
ter we shall present a set of sample algorithms for the F-PRAM model. We
shall present sorting, matrix multiplication, and matrix inversion programs,

in Sections 7.1, 7.2, and 7.3, respectively. For each of the algorithms, we present the
implementation on the F-PRAM model in form of the FPM language, analysis with the
F-PRAM parameters, and measured results of the emulated programs. The measured
results present the actual impact of the different F-PRAM parameters. Also, we compare
the analysis and the measured results to improve our analysis methods. The matrix inver-
sion is presented as a straightforward parallelization of an existing sequential program.
Additionally, we shall present finding the maximum, software synchronization, and image
smoothing in Sections 7.4, 7.5, and 7.6, respectively. We shall not give these simpler prob-
lems the same full treatment as for the first three ones. Instead we shall only point out the
most interesting properties of these algorithms.

The main contribution of this chapter is the information on the critical parameters
for each algorithm. For example, all algorithms tolerate bandwidth inefficiency or long
latency up to some level. Beyond this threshold the algorithms will usually encounter
severe performance penalty. The selected algorithms encounter quite different thresholds
of the parameters and penalties caused by the features. We try to analyse this threshold
behavior using applied analysis techniques, but the most evident results are achieved
using measured performance on the F-PRAM emulator.

Algorithmic notation used in the examples

The algorithms presented in this chapter have been implemented and executed as whole
working programs within the F-PRAM emulator system. Within this chapter we present
the algorithms first informally with a couple of words, and then as an accurately imple-
mented algorithm. The actual source code of the programs would not, however, be the
most readable version of the algorithms. Instead, we present here pretty-printed and com-
pacted versions of the original FPM programs. By compacting we mean omitting some
less important components of the program code. Especially we omit the variable declara-
tions, “end” parentheses, some of the less important program fractions, such as most input

118 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

and output routines, and temporary register variables used for intermediate results. Fur-
thermore, we compact the most obvious iterations to vector operations. For example, an
iteration

for i := 0 to N–1do (7-1)
fwrite y[i, j] := col[i];

end;

will be compacted to

fwrite y[0..N–1, j] := col[0..N–1]; (7-2)

which has to be understood as an iteration from 0 to N–1. In the later implementations the
iteration should be replaced with a block reference when they are available. The emulated
results use only iterations since the current emulator system does not support block refer-
ences. To fit the algorithms in fewer lines, we also place two simple statements on a line,
when possible. The resulting notation is a quite good compromise between the accuracy
and readability. It corresponds closely with most notations found in algorithm text books.
The notation is, however, directly obtained using a 1:1 mapping of the compileable source
code. When introducing some of the algorithms, we first present a more abstract algorithm
notation version to illustrate the algorithm.

Notes on the analyses

In the analysis of the following algorithms, the asynchronous accesses of the shared mem-
ory yield many time complexity terms of the form max(C×N, B×N, L). This stands for
the simultaneity of the computation (of length C×N) and communication. The use of the
constants is not a common practice in algorithm analysis. We use it to show, e.g., that the
algorithm tolerates some latency without performance penalty. We shall not give any anal-
ysed values for the constants. Instead, we shall discover the same effects using the emu-
lator system.

While analysing some F-PRAM algorithms, we shall use logarithms of nonconstant
base, and transform them to quotients of logarithms of constant base. The transforms
result in situations where the simplified formulas would give non-real values for real and
reasonable boundary values of the parameters. Thus, in those situations we shall give
some additional explanations on the usable domains of the formulas. Similar anomalies
occur with transformations of logarithms of quotients and products to differences and
sums of logarithms.

Notes on the experiments and the result graphs

Most of the curves of the graphs in this chapter represent the impact of one (or two in some
cases) parameter(s) on the execution time. All of the graphs include several curves for dif-
ferent values of another variable. Each of the curves is plotted separately based on some
base value. For parameter P, the base value is P = 1, for other parameters the base value
is small enough that it does not have any effect on the execution. The curves are plotted
as either speedup or slowdown curves with respect to the first test run with the base value.

7. EXAMPLE ALGORITHM IMPLEMENTATIONS 119

The speedups of P > 1 are calculated as ratios of the execution time of the case P = 1 to
the case of P > 1. The slowdowns are calculated as ratios of the execution time of the cur-
rent case to the case of the base value of the parameter.

Most of the measured graphs of the following algorithms feature a very large range
of parameters. For example, the impact of latency often ranges from 16 to 256,000. To
cover this large dynamics, we have to use logarithmic scales. The logarithmic scales
apparently reduce some phenomena and might make some results look better than they
really are. Therefore, we should carefully observe the scaling when examining the graphs.
We can justify the logarithmic scales by the fact that in the computer industry, the most
usual improvements are “doubling” or “halving” something, which results in exponential
or logarithmic development, seen, e.g., in the Moore’s law on microprocessors.

To draw the graphs with logarithmicx-axis, the experiments were run with exponen-
tial steps. In most cases the exponential step was 2. To draw the graphs with linear x-axis,
the experiments were generally run with constant step 1, i.e., once for every value in the
range. The few exceptions are mentioned in the text. In some cases we have omitted some
(e.g., every other) of the measured curves to improve the clarity of the graphs.

All graphs in this chapter are drawn based on one test run for each combination of
the parameters. The reasons for not drawing the graphs based on averages of several test
runs were the long time needed for the experiments and the fact that none of the final pro-
grams showed significant alternation in the execution times. Repeating every experiment
a significant number of times would have taken years of computer time. Instead, we tested
the stability of each program separately for a smaller set of variables. As matrix multipli-
cation, finding the maximum, and image smoothing algorithms are deterministic, all the
variation is due to the alternating access times of the shared memory. In practice, in an
unsaturated situation a processor will encounter (near) maximum latency. Consequently,
the algorithms consume nearly the worst time on every run. In a case of saturated (full)
interconnection network, the emulator delivers packets at full, thus deterministic, rate.
The execution times of the mergesort and matrix inversion depend slightly on the input,
but the variation due to the randomly generated input data was negligible. All the discov-
ered variation of the execution times of all these algorithms remained below 1 %. The
software synchronization routine was the only one which showed significant variation, as
seen in Figure7-26. The variation was, however, due to the randomly set presynchroniza-
tion delays used in the experiment. The processors entered the procedure randomly (and,
thus, the clocks were started randomly), but the execution time of the algorithm is a mul-
tiple of the time used by the inner synchronization iteration.

If the tests would have produced variable results, the graphs would contain irregu-
larities because the different points of the plots are taken from different test runs. The
graphs do not, however, have any significant irregularities that could not be explained sep-
arately. Consequently, we claim that all of the graphs in this chapter show fair results of
the emulations even if they are not averages of several tests. The random number genera-
tor used to generate inputs was taken from [86] and it is supposed to produce good random
numbers [64].

120 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

7.1 Odd-even mergesort

Sorting is probably the most used example problem in algorithmics. Also, in parallel com-
puting the odd-even mergesort by Batcher [13] is one of the oldest parallel algorithms.
Further, the pursuit of a work efficient optimal time algorithms was, and still is, quite a
challenge [5]. In practical parallel computation the sorting problem is probably not one of
the most important problems, but sorting is used, e.g., in database operations and deci-
sion-support systems. Also, the sorting makes an interesting example, which is why we
shall present it here.

The number of existing parallel sorting algorithms is rather large. We can divide the
algorithms in two classes, the classic comparison-based deterministic algorithms, and the
other counting and/or sampling based algorithms, which often are more or less random-
ized. For sorting very large data sets, as is relevant with parallel computers, different sam-
pling sort variants are currently quite popular, probably because they perform well when
N >> P. Because of the emulator system, we could not, however, measure sorting of bil-
lions of elements on hundreds or thousands of processors as, e.g., in [27]. Therefore, we
had to settle for the more traditional algorithms that work well even with smaller inputs.

Our example belongs to the class of classic comparison-based deterministic algo-
rithms since they parallelize well even with a smaller set of data. The optimal algorithms,
such as the AKS [4] sorting network and Cole’s parallel mergesort [22] sort N elements
in O(logN) time using O(N) processors, i.e., they are asymptotically optimal (ENC class)
for comparison based algorithms. We did not, however, choose any of these optimal algo-
rithms because they are not optimal with the existing sets of data, as was noted by Natvig
[80]. Instead, we chose the classic O(log2N) time odd-even parallel mergesort by Batcher
[13]. Because of the straightforwardness of the algorithm, the constants of the execution
are much lower than those of the asymptotically faster algorithms. Consequently, unless
the set of data is unimaginably large, the factor O(logP) impacts less than the huge con-
stants.

The odd-even mergesort algorithm

The idea of mergesort is obvious, divide the input in two subsequences, recursively sort
both of the subsequences, and merge the two sorted subsequences to achieve the whole
sorted sequence. The recursion continues until there is only one element in the input
sequence. Because one element is readily sorted, we can terminate the recursion. The
number of levels of the recursion is log2N. The running time of the algorithm is

T(N) = 2×T(N/2) + Tmerge(N), (7-3)

where Tmerge is the running time of merging of the two N/2 subsequences. Sequentially
the merging can be trivially done in linear time. Thus, on each level of the recursion there
is O(N) work, or more formally

T(N) = 2×T(N/2) + O(N) ⇒ (7-4)
T(N) = O(NlogN),

which is optimal for a comparison based algorithm.

7.1. Odd-even mergesort 121

The parallel versions of the mergesort trivially parallelize the recursive sorting of
the two subsequences. In this way we can easily exploit O(N) processors, but do not gain
much speedup since the sequential merging takes linear time63. Consequently, we have to
parallelize also the merging phase, which is the point where the different parallel merge-
sort algorithms diverge.

In the odd-even merge, the merging is also done recursively. More specifically,
given two sorted sequencesA and B, we firstly combine them to a sequenceAB. Secondly,
we recursively merge the halves of odd elements of theAB and the halves of the even ele-
ments of theAB. After that, each element is by at most one place out of its correct position.
Thus, thirdly, we can compare all (2i–1, 2i) pairs of the elements in parallel to complete
the merging. All these stages fit into a butterfly network, i.e., all data dividing and merging
is done normally64 along the connections of a binary butterfly.

In all stages we proceed sequentially as soon as we run out of processors.
Algorithm 7-1 presents the sorting pseudocode. The running time of the merging stage is

(7-5)

which can be solved to the form

63. Thus, in this version the whole sorting takes also linear time.

64. Using only one level of nodes and connections at a time.

procedure Odd-even_mergesort (A : array[1..N]); 1

if Processors = 1then 2

Sequential_mergesort(A); 3

else 4

par i = 1 to 2 do 5

Odd-even_mergesort(ith half of A); 6

Odd-even_merge(halves of A); 7

synchronize; 8

procedure Odd-even_merge (A : array[1..N]); 9

if Processors = 1then 10

Sequential_merge(A); 11

else 12

par i = 0 to 1 do 13

Odd-even_merge(halves of odd/even (2n+i) elements of A); 14

par i = 2 to N by 2 do 15

pipelined_compare-exchange (A[i], A[i+1]); 16

synchronize; 17

Algorithm 7-1: Odd-even mergesort.

ToemergeN P,()
ToemergeN 2⁄ P 2⁄,() N P⁄ if P 1>+

N if P 1=

=

122 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

Toemerge(N, P) = (logP+1)×N/P = O(NlogP/P) . (7-6)

The complexity of the sorting is the same as before,

(7-7)

which can be solved to the form

T(N, P) = logP×(logP+1)×N/P + (N/P)×log(N/P) (7-8)

when assigned the complexity of the odd-even mergesort. The asymptotic complexity is
thus

T(N, P) = O((N/P)×(log2P + logN/P)), (7-9)

which equals the familiar

T(N) = O(log2N) if P/2 ≥ N, (7-10)

i.e., we exploit the full parallelism of the algorithm. Compared with the optimal solution,
Formula (7-9) has one additional log2P term slowing down the speedup as the number of
processors increases. The term originates from the fact that the odd-even communication
within the processors goes back-and-forth along the butterfly during the recursive steps.
To keep the inefficiency moderate, e.g., at 50 %, we can balance the additive terms of
Formula(7-9) using inequality

log2P ≤ logN/P ⇔ (7-11)

logN ≥ logP + log2P ⇔

N ≥ ⇔

N ≥ ⇔

N ≥ , (7-12)

which is quite a strong requirement. For example, if P = 64, then N should be at least
4.4×1012, more than the number of all people who ever lived on the earth! In practice, we
can use more processors, since the constants of the different parts of the algorithm differ,
and the small variations on the constants impact exponentially in formulas such as (7-14).
As well as we solvedN from Inequality(7-11), we can solveP

T N P,()
T N 2⁄ P 2⁄,() Tmerge N P,() if P 1>+

N N iflog P 1 ,=

=

2
Plog P

2log+

P P
Plog×

P
Plog 1+

7.1. Odd-even mergesort 123

log2P ≤ logN/P ⇔ (7-13)
logP + log2P – logN ≤ 0 ⇔ | x := logP
x2 + x – logN ≤ 0 ⇔

⇔

,

sincex > 0. By assigningx back we get

⇔

(7-14)

, (7-15)

which is, however, a bit too complicated to be used in a program to decide a good number
of processors to be used. Figure7-1 presents the right side of Formula (7-14) plotted in
the practical application range up toN = 236.

F-PRAM implementation

The key points of the F-PRAM implementation are correct fetching of the elements of the
shared input array to the local memories, and the sharing of the intermediate results via

x
1– 1 4 Nlog+±

2
---≤

x
1– 1 4 Nlog++

2
---≤

Plog
1– 1 4 Nlog++

2
---≤

P 2
1– 1 4 Nlog++

2

≤

2
Nlog≤

Figure 7-1: Maximum efficiently useful P as a function of N as predicted by
Formula(7-14), odd-even mergesort, logarithmic x-axis.

1.04×10
6

1.67×10
7

2.68×10
8

4.29×10
9

6.87×10
10

5
10
15
20
25
30
35
40
45
50

16 64 2561024
4096

16384
65536

m
ax

im
um

 e
ffi

ci
en

t

input sizeN

nu
m

be
r

of
 p

ro
ce

ss
or

s

262144

124 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

the shared memory. Here we shall present the parallel mergesort and merge procedures,
but omit the sequential versions, as well as I/O. Since the procedures use index arithmetics
following the butterfly network, we do not use the vector reference notation, but present
all iterations explicitly.

The main mergesort procedure, shown as Algorithm7-2, is very short since it does
not need to care about, e.g., interprocessor communication. The procedure only checks
whether to use parallel or sequential mergesort. The rule is based on the length of the vec-
tor and the number of available processors. For a very refined solution, we could have
more choices, e.g., stop the recursion at Length ≤ 4, and use brute force if-elsif-else sort
for the short sequence. In practice, these tricks would not, however, improve performance
significantly.

The merging procedure, shown as Algorithm 7-3, is slightly more complicated than
main sorting procedure since it involves actual comparisons between elements. As in the
main sorting procedure, the merging procedure first checks the trivial cases (lines 2-8).
The main parallel merging starts with the parallel recursive call to merge the halves of odd
and even components of the vector (lines 10-11). The rest of the procedure implements
the parallel compare-exchange operation. The straightforward fetching of a pair of values,
comparing them, and possibly rewriting them (lines 24-30), works well unless the latency
is high. If the latency is high and each processor needs to do more than one compare-
exchange operation, we can do better. We first fetch all the values the processor needs
(lines 16-18), and after that do the comparisons locally, possibly rewriting the changed
pairs (lines 19-22). This way we can change the multiplicative factor L to an additive fac-
tor L, which is beneficial even with more complex logic if the latency is high. The bound-
aryL = 50 was chosen experimentally.

F-PRAM analysis with B and L

The complexity of Formula (7-9) holds if we do not take shared memory access costs into
account. Here we repeat the analysis with the most important parameters B and L. The
running time formula of the parallel mergesort main procedure

procedure msort (sharedvar S : array of word; First, Length : word); 1

if (Length > 2)and (P > 1)then 2

par i := 0 to 1 do 3

msort(S, First + i * Length/2, Length/2); 4

oemerge(S, First, Length, 1); 5

else 6

seqmsort(S, First, Length); 7

synchronize; 8

Algorithm 7-2: Parallel mergesort procedure.

7.1. Odd-even mergesort 125

(7-16)

does not change since the procedure does not use shared memory65. The running times of
the subroutines, however, have to be reanalysed. The basic O(NlogN) time of the sequen-
tial mergesort is increased by the cost of fetching the array to the local memory, and stor-
ing it back to the shared memory. Consequently,

65. It only delivers pointers to the shared memory for the subroutines.

procedure oemerge(sharedvar S : array of word; First, Length, Interl : word); 1

if P < 2then 2

seqmerge(S, First, Length, Interl); 3

else 4

if Length <= 2then 5

futur e a := S[First]; futur e b := S[First + Interl]; 6

if a > bthen 7

fwrite S[First] := b; fwrite S[First + Interl] := a; 8

else 9

par i := 0 to 1 do 10

oemerge(S, First + i * Interl, Length/2, Interl * 2); 11

if (P < Length/2)and (L > 50) then 12

Length2 := Length / P; 13

par i := 0 to P-1do 14

j := i * Length2 + 1; 15

for k := 0 to Length2 - 1do 16

if (j + k + 1) < Lengththen 17

futur e LocS[k] := S[First + ((j + k) * Interl)]; 18

for k := 0 to Length2 - 1by 2 do 19

if ((LocS[k]) > LocS[k+1]) and (j+k+1 < Length) then 20

fwrite S[First + ((j+k) * Interl)] := LocS[k+1]; 21

fwrite S[First + ((j+k+1) * Interl)] := LocS[k]; 22

else 23

par i := 1 to Length/2 - 1do 24

j := i * 2; 25

futur e a := S[First + (j - 1) * Interl]; 26

futur e b := S[First + j * Interl]; 27

if a > bthen 28

fwrite S[First + (j - 1) * Interl] := b; 29

fwrite S[First + j * Interl] := a; 30

synchronize; 31

Algorithm 7-3: Parallel odd-even merge procedure.

T N P,()
T N 2⁄ P 2⁄,() Tmerge N P,() if P 1>+

Tseqsort N() if P 1=

=

126 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

Tseqsort(N) = NlogN + 2×max(N×B, L). (7-17)

Similarly, the complexity of the sequential merging is now

Tseqmerge(N) = Csm×N + 2×max(N×B, L) (7-18)
= O(N×B + L),

where Csm is a local constant time needed for a merge step. Note, that the proportional
weight of the shared memory access is greater here than in sequential sorting.

The complexity of the parallel merge is slightly more complicated. The recursion
formula is

Toemerge(N, P) = Toemerge(N/2, P/2) + max(B×N/P, L) + (7-19)
max(Coem×N/P, L)

≤
Toemerge(N/2, P/2) + 2×max(B×N/P, Coem×N/P, L) if P > 1
Tseqmerge(N) if P = 1.

By solving the recursion we get

Toemerge(N, P) = 2×logP × max(B×N/P, Coem×N/P, L) + (7-20)
Csm×N/P + 2×max((N/P)×B, L)

≤ 2×(logP+1) × max(B×N/P, Coem×N/P, L)
= O(logP×(B×N/P + L)). (7-21)

Applying the new merging complexity to the sorting complexity, we get

T(N, P) =
T(N/2, P/2)+(logP+1)×max(B×N/P, Coem×N/P,L) if P>1, (7-22)
 NlogN + 2×max(N×B, L) if P = 1

= (logP)(logP+1)×max(B×N/P, Coem×N/P, L) + (N/P)log(N/P) +
2×max((N/P)×B, L)

≤ (logP+1)2 × max(B×N/P, Coem×N/P, L) + (N/P)log(N/P) (7-23)
= O(log2P (B×N/P + L) + (N/P)log(N/P)). (7-24)

Now we can see the expected fact that the shared memory access costs affect multiplica-
tively on the costs induced by the parallel sorting, but only additively on the cost of the
sequential sorting. Studying Formula (7-24), we could conclude that any latency or band-
width inefficiency would reduce the efficiency of the algorithm radically. This is not true,
as we can see from Formula (7-23). Up to some limit, the algorithm tolerates both latency
and bandwidth inefficiency while doing other operations. In other words, the O-notation
hides the constants of the previous formulas. These constants show us some important
properties of the algorithm, especially the tolerance of some latency and bandwidth inef-
ficiency. The measured results later in this section confirm these conclusions.

Measured performance on the emulator system

Since the algorithm switches to sequential mergesort as soon as it runs out of processors,
the speedup comparisons are made against the sequential mergesort. As opposed to quick-

7.1. Odd-even mergesort 127

sort, mergesort is a better counterpart in comparisons since it deterministically executes
in O(NlogN) time.

In the full working program, the input is read to the shared memory, and sorted in
place66. During the sequential stages, the data is read to the local memory, sorted/merged,
and written back to the shared memory. The measured times include only the sorting time,
not the trivially parallelizable input and output. The inputs for the program were sets of
random numbers. Sorting strings would make the compare-exchange phase slower, and,
thus, reducing the proportional impact of communication and thereby improving the over-
all parallelizability of the algorithm.

To begin with, we shall present the basic performance of the implementation in an
optimal (B = L = 1) parallel computer. Figure7-2 presents the speedup as a function of
the number of processors. Different lines present the speedup curves measured with dif-
ferent input sizes. The speedup is measured relative to the execution of the same algorithm
using only one processor. To ease the readability, the figure also includes lines for linear
speedup, i.e., 100 % efficiency in parallelization, 50 % efficiency, and 10 % efficiency. As
an example we can conclude that when sorting 264144 (218) elements, we have efficiency
at least 50 % if P ≤ 64. For P = 4096, the speedup is about 815, which stands for approx-
imately 20 % efficiency. These numbers differ a bit from the efficiency requirement given
in Formula(7-12) because these are measured with the actual constants involved.

The speedup curves here are compared with the P = 1 execution of the same pro-
gram. This version inputs the data to the shared memory, sorts it by copying it back to the

66. Without additional shared arrays.

Figure 7-2: Speedup of odd-even mergesort as a function of the number of
processors for different input sizes. Both scales are logarithmic.

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

sp
ee

d
u

p

number of processors

N = 262144

N = 16384

N = 4096

N = 1024

N = 256

50 %

10 %

N = 65536lin
ear

128 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

local memory, and writes it back to the shared memory. This can be viewed either as an
unfair trick to improve the speedups, or as a reasonable assumption for the sake of consis-
tency. The latter explanation is valid if we use the sorting as a subroutine of a larger pro-
gram, and try to decide whether to parallelize or not. The actual impact of the shared
memory access is not very large when we use only one processor. For example, when sort-
ing 16384 elements with one processor, the whole algorithm using the shared memory
takes 1.443×107 clock cycles. By excluding the shared memory access, i.e., only sorting
a local array, it takes 1.363×107 clock cycles. Consequently, we could adjust the speedup
numbers by 5.9 % if we would consider the comparisons unfair. For bigger sets of data
the relative difference is even smaller. Similarly, the impacts of B and L in case of P = 1
should be ignored if the sorting program would be used as stand-alone program.

The impact of latency and bandwidth inefficiency

Considering the impact of the shared memory access parameters, we ran the same 16384
(16k) element sorting task varying the parameters P, B, and L forming a 3-dimensional
domain of executions. The following graphs present the results of these experiments.
Figure7-3 presents the impact of bandwidth inefficiency B for different values of P with
low L. The bandwidth inefficiency starts to impact beyond B = 32, and impacts signifi-
cantly beyond 64. The volume of shared memory accesses increases as the number of
recursive parallel steps increases. On the other hand, also the total bandwidth of the com-
puter increases, which balances the impact of increased communication. Thus, the upper-
most lines representing P = 16..1024 behave quite similarly. As B and P are of the same
order, the modulo/rounding variation even changes the order of the lines.

Figure 7-3: Slowdown of the odd-even mergesort when the bandwidth ineffi-
ciency increases. The numbers of processors varies,N = 16384.

P
=

8

1

2

3

4

5

6

8 16 32 64 128 256 512

sl
o

w
d

o
w

n

bandwidth inefficiency

P
=

12
8

P
=

25
6

P
=

64
P

=
51

2
P

=
32

P
=

10
24

P
=

16

P = 1

P
=

4

P =
 2

7.1. Odd-even mergesort 129

Figure7-4 presents the impact of latency L for different values of P with low B. For
low values of P the latency does not impact performance significantly, as expected.
Because for larger values of P the number of recursive parallel steps increases, the longest
path of communications increases, and, thus, the latency tolerance decreases significantly.
The step between L = 32 and L = 64 for larger values of P is due to the more efficient but
non-latency-tolerating compare-exchange used if L ≤ 50. The sharpness of the step is due
to the measurements only at pointsL = 32 andL = 64.

Figure7-5 presents a conclusive version of the combined impact of B and L for the
same sorting using different numbers of processors. The graph presents a 2-dimensional
space of parametersB and L. For each P there is a line to present the boundary of efficient
execution compared to the optimal execution with the corresponding P. The sets of B and
L that are below and left of the line enable the algorithm to execute in at most twice the
time of the optimal execution for that P. The pairs of B and L that are above and right of
the line induce more than a 2-fold slowdown. The lines are drawn as slowdown = 2 con-
tour lines from 3-dimensional surfaces plotted from the data for eachP.

The graph of Figure7-5 does not take into account the slowdown induced by the
parallelization inefficiency. If we combine the results of Figures 7-2 and 7-5, we get the
requirements for the total 50 % efficiency. In other words, instead of comparing each exe-
cution time to the execution time of an optimal machine with the sameP, we compare each
work to the work of an optimal machine with P = 1. Figure7-6 presents this version with
the same data as Figure7-5. Now all the pairs of parametersB and L which are left/below
a line enable the algorithm possible to execute with at most twice the work than with a
machine with P = B = L = 1. Note that using P > 32, N = 16k, our implementation did not

Figure 7-4: Slowdown of the odd-even mergesort when the latency increases.
The numbers of processors varies,N = 16384.

P
 =

 6
4

P
 =

 3
2

P
=

8

1

2

3

4

5

6

16 32 64 128 256 512 102420484096
8192

16384
32768

65536
131072

262144

sl
o

w
d

o
w

n

latency

P
 =

 1
02

4

P
 =

 1
28

P
 =

 5
12

P
 =

 2
56

P
 =

 1
6

P = 4

P = 2
P = 1

130 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

meet the 50 % efficiency requirement at all. The slight local irregularity in the graph is
due to the different compare-exchange routine used ifL ≤ 50.

Figure 7-5: Acceptable (at most twice the time of the execution in an optimal
machine with the same P) latencies and bandwidth inefficiencies in
odd-even mergesort. The numbers of processors varies,N = 16384.

8 16 32 64 128 256 512

64

256

1024

4096

16384

65536

262144

bandwidth inefficiency

la
te

nc
y

ar ea of
sl owdown ≤ 2

P
 =

 8
P

 =
 4

P
 =

 2

P
 =

 1

P = 256
P = 128
P = 64
P = 32

P = 16

P = 512
P = 1024

Figure 7-6: Requirements on bandwidth inefficiency, latency, and number of
processors for efficient (at most twice the work of the sequential execu-
tion in an optimal machine) execution of odd-even mergesort,
N = 16384.

8 16 32 64 128 256 512

64

256

1024

4096

16384

65536

262144

P
 =

 1

P = 32 P
 =

 2

P
 =

 4

P
 =

 8

P
 =

 1
6

bandwidth inefficiency

la
te

nc
y

ar ea of t ot al
ef fi ci ency ≥ 50 %

7.1. Odd-even mergesort 131

The impact of overheadBP

The previous analyses and measurement results assumed default values of the secondary
parameters, such as the overhead BP. When considering the impact of BP, we have to
count the number of shared memory references made by each processor. In practice, the
processors communicate during the recursive stage of the merging and sorting. By exam-
ining Formula(7-23), we can directly insert the parameterBP into it. Thus, we get

T(N, P)=(logP+1)2×max(N×B/P,(Coem+BP)×N/P,L)+(N/P)×log(N/P),(7-25)

which reveals that unless B or L is large, the BP will eventually impact the parallel term
of the execution time multiplicatively.

Experimentally, we executed the odd-even mergesort with different overheads and
different numbers of processors. The measured results can be seen in Figure 7-7. The
graphs present the relative execution time, i.e., slowdown, compared to the BP = 1 situa-
tion. For each different P there is a curve as a function of BP. We can see that even for
moderate parallelism, such as P = 16, overhead BP as low as 64 is significant (100 %
increase in execution time). Compared to the impact of latency seen in Figure7-4, the
impact of overhead is very significant even in small values. In other words, the approach
of prefetching the shared memory references with the future primitive allows long laten-
cies compared to immediate waiting for the referenced values. Here again, the curve for
P = 1 can be considered futile.

When studying the values of F-PRAM parameters on current parallel computers, we
shall find that the current programming libraries do not perfectly support the future, i.e.,

Figure 7-7: Slowdown of the odd-even mergesort when the overhead
increases. The numbers of processors varies,N = 16384.

1

2

3

4

5

6

7

8

9

10

1 2 4 8 16 32 64 128 256 512 1024 2048

sl
o

w
d

o
w

n

overhead

P
 =

 2
56

P
 =

 6
4

P
 =

 1
6

P
 =

 4

P
=

1

132 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

the asynchronous shared memory get. According to the above comparison on the impacts
of latency and overhead, the parallel machine libraries should really support the asynchro-
nous shared memory get.

7.2 Matrix multiplication

Multiplication of two matrices is defined as follows:

C = A ⋅ B, , (7-26)

where N is the number of columns of the matrix A and the number of rows of the matrix
B67. For simplicity, we shall discuss here only square matrices, hence all of the matrices
A, B, and C areN×N matrices. Using the definition (7-26), we can trivially compute each
element of the result matrix C by N multiplications and N–1 additions. Consequently, we
need O(N3) multiplications and additions to compute the whole matrix C. Using more
sophisticated techniques, we could do the multiplication with only multiplica-
tions [96], or even faster. The asymptotically faster algorithms are not, however, practical
for small to moderate sized matrices [24]. Moreover, the naive algorithm has an easily
optimizable innermost iteration, whereas the more sophisticated ones are recursive and do
not necessarily provide as long inner iterations. In other words, not only the algorithmic
constants were larger, but also implementation constants would grow if we used the more
optimal algorithms.

The computation of Formula (7-26) parallelizes trivially up to N2 processors since
each element of the result C can be computed independently. Even the computation of
each result element could be parallelized more by using up to N processors to perform the
multiplications in parallel, and adding each cij using binary tree summing. Thus, the
whole algorithm would need N3 processors and execute in O(logN) time. This, however,
would be inefficient by factor O(logN). More efficiently, we could do the task in
O(N/logN) time using N2logN processors. On the other hand, we rarely have more than
N2 processors to use, and the faster algorithm would again have larger constants. More-
over, the resulting algorithm with binary trees to compute the final sums would have rather
severe B and L requirements for the interconnection network. Therefore, we restrict the
parallelization to the trivial N2 processors.

F-PRAM implementation

Implementing Formula (7-26) in FPM is straightforward. The key points are distributing
the computation of the result C to the participating processors, and fetching the correct
data for each processor. We chose the trivial (and optimal) distribution of assigning each
processor a square of the result matrix to be computed. To compute a block of the result,
each processor needs a set of rows from the matrix A, and a set of columns from the matrix
B. Figure7-8 presents the blocks of data needed by one processor to compute the black-

67. The common mathematical convention is to index the matrix rows and columns from 1 to
N. Here, however, we use the 0..N-1 indexing to maintain coherence with the program
code. The programs use the 0..N-1 for improved efficiency.

ci j aik bkj×
k 0=

N 1–

∑=

O Nlog27()

7.2. Matrix multiplication 133

ened block of the result matrix C. Each processor first issues the futures to fetch all the
data it needs, and then does the computation locally. The writing to the result matrix is
done as soon as a result is computed. Algorithm 7-4 presents the compacted source code
of the multiplication procedure. The innermost iteration (dot product) of the multiplica-
tion is coded using pointers to arrays. The question marks (?) stand for “address of,” and
the circumflexes (^) stand for “value in the address.” The ?-operator is a nonstandard but
useful extension to the Modula-2 language. To make the innermost iteration as efficient
as possible, the local copies (LocB) of the slices of the matrix B are stored transposed. This
way the successive elements of the columns are more efficiently accessed as they are
located in successive memory locations. The compiler stores the matrices row by row, i.e.,
the elementsX[i, j] andX[i+1, j] are stored in adjacent memory locations.

The local multiplication stage of the procedure (lines 11-17) takes

· =

A B C

Figure 7-8: Data requirements of each processor in matrix multiplication.

N

N

P

procedure matmul (sharedvar A, B, C : matrix); 1

sproc = sqrt(P); block = N / sproc; 2

par x := 0 to sproc - 1do 3

par y := 0 to sproc - 1do 4

for i := 0 to N-1 do // prefetch a slice of A 5

for j := 0 to block-1do 6

futur e locA[i, j] := A[i, y*block + j]; 7

for i := 0 to block-1do // prefetch a slice of B 8

for j := 0 to N-1 do 9

futur e locB[j, i] := B[x*block + i, j]; 10

for i := 0 to block-1do 11

for j := 0 to block-1do 12

ka := ?locA[0, j]; kb := ?locB[0, i]; 13

sum := 0; kf := ?locA[N - 1, i]; 14

while (ka <= kf) do 15

inc(sum, ka^ * kb^); 16

inc(ka); inc(kb); 17

fwrite C[x*block + i, y*block + j] := sum; 18

Algorithm 7-4: Matrix multiplication in FPM.

134 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

(7-27)

time, if P ≤ N2. During the prefetching stage (lines 5-10), each processor requests

(7-28)

words of data. The total execution time needed by the algorithm is thus

, (7-29)

whereCfe is the local constant of the prefetching iterations, Cmu is the constant of the dot
product. The last L and B of the second last term are due to writing the result elements to
the shared result matrix (line 18). By combining the maximum alternatives of
Formula(7-29) and applying theO-notation, we get a rather obvious complexity

. (7-30)

Assuming B = L = 1, we can balance the two remaining terms to achieve a 50:50 time
usage between the communication and the computation. To ensure 50 % asymptotic effi-
ciency, it suffices that P ≤ N2, which holds always since our algorithm does not exploit any
more parallelism. In our current implementation, however, the sum of the constants in the
two prefetching phases of the algorithm is larger than the constant of the dot product. Con-
sequently, using N2 processors yields less than 50 % efficiency. We could improve the
prefetching slightly by using similar pointer referencing as in the dot product, but signif-
icant improvements could be gained using block references. In a machine with small BB,
the improvement in the prefetch stage would be up to 26/BB -fold68.

Studying Formula (7-29), the bandwidth inefficiency B impacts the prefetching
phase when it is larger than a small constant. The effect is multiplicative for the prefetch-
ing stage, and will impact the performance of the whole algorithm significantly ifP or B
is large. Because the latency L impacts purely additively, it does not impact a lot, unless
P is close toN2, i.e., the execution time is small, and the latency is very large.

Measured performance on the emulator system

In measuring the performance of the matrix multiplication algorithm, we had the same
assumptions and test setup as we had with the sorting algorithm presented in Section 7.1.

68. The body of the inner for-do loop of the prefetching is 26 clock cycles long using the cur-
rent compiler and emulator system.

O
N

P

2
N×

 O
N

3

P

 =

2
N

P
------- N×× O

N
2

P

=

max 2
N

P
-------× N× max Cfe B(,)× L(,) max Cmu N× B(,)

N
2

P
------× L+ +

O
BN

2

P
---------- N

3

P
------ L+ +

7.2. Matrix multiplication 135

Figure7-9 presents the speedup as a function of the number of processors. Different lines
present the speedup curves measured with different input sizes. The input size N stands
for N×N matrices. The speedups are measured relative to the execution of the same algo-
rithm using only one processor. Note that the scales are logarithmic. The figure also
includes lines for 100 %, 50 %, and 10 % efficiency. We can conclude, e.g., that when
multiplying 256×256 matrices, we have efficiency at least 50 %, as long as P ≤ 4096, i.e.,
each processor has at least 16 elements of the result matrix to compute. For P = 16384 and
N = 512, the speedup is about 8330, which equals to 51% efficiency.

Considering the impact of the shared memory access parameters, we ran the same
64×64 matrix multiplication varying the parametersP, B, and L forming a 3-dimensional
domain of executions. The following graphs present the results of these experiments.
Figure7-10 presents the impact of bandwidth inefficiency B for different values of P with
low L. The bandwidth inefficiency starts to impact when B > 64. The impact is signifi-
cantly especially when P is large. Figure7-11 presents the impact of latency L for differ-
ent values of P with low B. We can see that even extremely long latencies, such as 218 will
not destroy the efficiency, unless the latency forms a significant part of the whole execu-
tion time, as it is case if P is large. Comparing the figures, we notice that even if theB is
more involved withP in Formula (7-30) thanL, the differences in impact of B for different
values of P are not as large as the differences in the impact of L. This is because the param-
eterB stands for the reciprocal of the bandwidth available foreach processor.

Figure7-12 presents a conclusive version of the combined impact of B and L for
matrix multiplication using different numbers of processors. The graph presents a
2-dimensional space of parameters B and L. For each P there is a line to present the
boundary of efficient execution compared to the optimal execution with the corresponding

Figure 7-9: Matrix multiplication speedup as a function of the number of pro-
cessors for different input sizes.

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

1 2 4 8 16 32 64 128 256 512 1024
2048

4096
8192

16384

sp
ee

d
u

p

number of processors

N = 512

N = 256

N = 64

N = 16

linear

50 % 10 %

136 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

Figure 7-10: Slowdown of matrix multiplication as a function of bandwidth
inefficiency for different numbers of processors,N = 64.

1

2

3

4

5

6

8 16 32 64 128 256 512 1024

sl
o

w
d

o
w

n

bandwidth inefficiency
P

=
10

24
P

=
25

6
P

=
64

P
=

16

P = 1P =
 4

Figure 7-11: Slowdown of matrix multiplication as a function of latency for
different numbers of processors,N = 64.

1

2

3

4

5

6

32 64 128 256 512 10242048
4096

16384
65536

131072
262144

sl
o

w
d

o
w

n

latency
8192

32768

P
 =

 1
02

4

P
=

64

P = 16

P = 4
P = 1

P
 =

 2
56

7.2. Matrix multiplication 137

P. The pairs of B and L that are below and left of the line enable execution in at most twice
the time of the optimal execution for that P. The pairs of B and L that are above and right
of the line induce more than 2-fold slowdown. The lines are drawn as slowdown = 2 con-
tour lines from 3-dimensional surfaces plotted from the data for eachP.

Figure 7-12: Acceptable (at most twice the time of the execution in an opti-
mal machine with the sameP) latencies and bandwidth inefficiencies in
matrix multiplication for different numbers of processors,N = 64.

8 16 32 64 128 256 512
bandwidth inefficiency

la
te

nc
y

32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

131072
262144

ar ea of
sl owdown ≤ 2

P
 =

 4

P
 =

 1
6

P
 =

 6
4

P
 =

 2
56

P
 =

 1
02

4

P
 =

 1

Figure 7-13: Requirements on bandwidth inefficiency, latency, and number of
processors for efficient (at most twice the work of the sequential execu-
tion in an optimal machine) execution of matrix multiplication, N = 64.

8 16 32 64 128 256 512
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

131072
262144

la
te

nc
y

bandwidth inefficiency

ar ea of t ot al
ef fi ci ency ≥ 50%

P
 =

 2
56

P
 =

 6
4

P
 =

 1
6

P
 =

 4
P

 =
 1

138 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

The graph of Figure7-12 does not take into account the slowdown induced by the
parallelization inefficiency. If we combine the results of Figures 7-9 and 7-12 we get the
requirements for the total 50 % efficiency. In other words, instead of comparing each time
to the time of an optimal machine with the sameP, we compare each work to the work of
an optimal machine with P = 1. Figure7-13 presents this version with the same data as
Figure7-12. Now all the pairs of parameters B and L which are left/below a line enable
us to execute to program with no more than twice the work than with a machine with
P = B = L = 1. Note that using P = 1024 for this small input size, our implementation did
not meet the 50% efficiency requirement at all.

7.3 A larger example: matrix inversion

The inverse of an N×N square matrix A is another N×N square matrix A–1 which satisfies
the equation

A ⋅ A–1 = I, (7-31)

where I is the identity matrix having 1s as diagonal elements and 0s as other elements.
One way to compute the inverseA–1 is to solve systems of linear algebraic equations

A ⋅ xj = bj, j = 1..N, (7-32)

where bj is an identity vector with 1 in the jth element and 0s as other elements, and xj is
the solution vector of the equation j. The resulting xj vectors are the columns of the inverse
A–1. For solving the systems of equations the most used methods are Gauss-Jordan elim-
ination, Gaussian elimination with backsubstitution, and LU decomposition with back-
substitution. All of these use O(N3) arithmetic operations. As was matrix multiplication,
also matrix inversion can be done with just arithmetic operations,
but the asymptotically faster methods include larger constants and are much harder to pro-
gram. The O(N3) algorithms are practical for many purposes. If the matrix is not dense,
i.e., it contains more zeros than nonzero elements, there are more efficient methods of
solving the systems of equations. Here, however, we assume that the matrix is dense.

In our example implementation we use the algorithm based on lower-upper triangu-
lar (LU) decomposition of the matrix. An LU decomposition of a matrix A is a pair of
matricesL andU, which satisfy the equation

L ⋅ U = A (7-33)

whereL is a lower triangular matrix and U is an upper triangular matrix. Here the diagonal
elements of the matrix L are 1s. These triangular components can be used in solving sys-
tems of linear algebraic equations by writing

A ⋅ x = (L ⋅ U) ⋅ x = L ⋅ (U ⋅ x) = b, (7-34)

and first solving vectory from equation

O Nlog27() O N2.807()≈

7.3. A larger example: matrix inversion 139

L ⋅ y = b, (7-35)

and then solving vectorx from equation

U ⋅ x = y (7-36)

to get the final result. As the matrices L and U are triangular, the equations (7-35) and
(7-36) can be easily computed by forward substitution and backsubstitution. The vector y
is computed using forward substitution by equations

(7-37)

and the vectorx can be computed using backsubstitution by equations

(7-38)

where lij and uij are elements of matrices L and U, respectively. To compute the L and U
components we use Crout’s algorithm with implicit pivoting [86] to form a matrix in
which the elements of both L and U are stored in the same matrix with permuted col-
umns69.

In Subsection 7.3.1 present the used algorithm in parts and analyse all parts sepa-
rately, and then estimate the performance using a couple of different methods. A part of
the algorithm, finding the maximum, is separately discussed in Section 7.4. In
Subsection 7.3.2 we shall present the measured performance of the algorithm in the
F-PRAM emulator system.

7.3.1 The F-PRAM implementation

A way to write parallel algorithms is to parallelize an existing sequential algorithm. In this
section we present an example of modifying a sequential algorithm to a parallel F-PRAM
algorithm. For this example, the sequential algorithm was taken from [86] in form of C
code and rewritten to parallel FPM code. Basically, we parallelized some of the for-do
loops of width N to reduce the execution time by factor O(P), P ≤ N. Even if some parts
of the algorithm could have been parallelized even more, a part of the algorithm would not
parallelize well enough beyond N processors. Consequently, we did not parallelize any
part of the algorithm beyond N processors. In addition to the insertion of par-do state-

69. The diagonal elements of the matrixL are not stored as they all are 1s.

y1

b1

l11
------ ,=

yi
1
l i i
---- bi ui j xj

j 1=

i 1–

∑–

= i 2..N ,=

xi
1
ui i
------ yi l i j x j

j i 1+=

N

∑–

= i N 1– ..1 ,=

xN

yN

uNN
--------- ,=

140 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

ments, we had to reorganize the memory references. We chose the approach of using the
shared memory for storing the matrix to be inverted to enable the communication between
the processors. This causes a lot of shared memory references even if the number of pro-
cessors is low, or even 1, but we feel that the algorithm would be different from the orig-
inal one if we would include intermediate possibilities of using local memories. An addi-
tional excuse could be that the local memories might not be big enough to store the whole
matrix at a time. To speed up the references to the arrays we have used arrays of range
[0..N–1] instead of the more traditional range [1..N].

Main inversion procedure

The main procedure of the inversion is very short, as it only uses the LU decomposition
and backsubstitution procedures. The LU decomposition is called only once, and it con-
tains the parallelism. The backsubstitution, however, is called N times to compute the N
columns of the A–1. Moreover, the evaluations of the columns are independent, and can
be computed in parallel. Algorithm 7-5 presents the inversion procedure in compacted
FPM. The running time of the inversion procedure is trivially

Tinv(N, P) = Tlud(N, P) + N/P×Tbcks(N), (7-39)

assuming that the few initialization and finishing statements are insignificant compared to
the two external procedures. We shall later express the complexity more explicitly as we
have analysed the termsTlud andTbcks.

LU decomposition

The F-PRAM implementation of Crout’s algorithm with implicit pivoting is presented as
Algorithm 7-6. The body of the procedure begins with finding maximum values from each
row and storing their inverses for later scaling use (lines 3-6). This first phase can be done
trivially in time

procedure inverse (sharedvar a, y : matrix); 1

par i := 0..N-1do 2

fwrite indx[i] := i; 3

synchronize; 4

LUdecomp(N, a, indx, d); 5

synchronize; 6

par j := 0..N-1do 7

col[0..N-1] := 0.0; col[j] := 1.0; 8

LUbcksub(N, a, indx, col); 9

fwrite y[0..N-1, j] := col[0..N-1]; 10

Algorithm 7-5: Matrix inversion

7.3. A larger example: matrix inversion 141

procedure LUdecomp (sharedvar a : matrix; indx : integervector; d : real); 1

fwrite d := 1.0; imax := 0; 2

par i := 0..N-1do 3

futur e T1[0..N-1] := a[i, 0..N-1]; 4

big := max(T1[0..N-1]); 5

fwrite vv[i] := 1.0 / big; 6

for j := 0..N-1do 7

fwrite tvect[0..j-1] := NotAvail; synchronize; 8

par i := 0..j-1do 9

futur e sum := a[i, j]; 10

for k := 0..i-1do 11

futur e t1 := a[i, k]; 12

repeat 13

futur e t2 := tvect[k]; 14

until t2 <> NotAvail; 15

sum := sum - t1 * t2; 16

fwrite tvect[i] := sum; 17

fwrite a[i, j] := sum; 18

synchronize; big := 0.0; 19

par i := j..N-1 do 20

futur e sum := a[i, j]; futur e dum := vv[i]; 21

futur e T1[0..j-1] := a[i, 0..j-1]; 22

futur e T2[0..j-1] := a[0..j-1, j]; 23

sum := sum - T1[0..j-1]⋅ T2[0..j-1]; 24

fwrite a[i, j] := sum; 25

dum := dum * abs(sum); 26

if dum * abs(sum) >= bigthen 27

big := dum * abs(sum); max := i; 28

sharemaxandindex(big, imax); 29

if j <> imaxthen 30

par k := 0..N-1do 31

futur e dum := a[imax, k]; futur e t1 := a[j, k]; 32

fwrite a[imax, k] := t1; fwrite a[j, k] := dum; 33

futur e t1 := vv[j]; futur e t2 := d; 34

fwrite vv[imax] := t1; fwrite d := -t2; 35

synchronize; fwrite indx[j] := imax; 36

if j <> N-1 then 37

futur eall t1 := a[j, j]; dum := 1.0 / t1; 38

par i := j+1..N-1do 39

futur e t1 := a[i, j]; 40

fwrite a[i, j] := dum * t1; 41

synchronize; 42

Algor ithm 7-6: LU decomposition, the expressions around line 15 are
explained in the text.

142 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

N/P×max(L, N×max(C1, B)), (7-40)

whereC1 is a local constant. This takesO(N2/P) time if B = L = 1.
The largest body of the procedure (lines 7-41) consists of an iteration over the col-

umns of the matrix. Within the iteration are several stages which are parallelized in differ-
ent ways. Most of the inner iterations have range 0..j–1 or j+1..N–1, where j is the current
column of the outer iteration. In the following analysis we shall use the variable j to denote
this.

The first part (lines 9-18) of the iteration is to find the elements ofU by equation

, (7-41)

which could be easily parallelized but unfortunately the expression uses the previous val-
ues of ukj to compute the new uij . This does not prevent parallelization but we have to care-
fully ensure that the new values of ukj are used in the computation. In other words, we
pipeline the execution to use the value of a new ukj as soon as it is computed. To accom-
plish this, we use a separate temporary shared array of the new values of ukj. Before this
stage, the array is filled with special not-yet-available (NotAvail) values, which are
replaced by the correct one as soon as a processor is able to compute one. Instead of ref-
erencing directly the matrix to obtain the ukj values, the processors use the temporary
array. If the reference to the temporary array returns theNotAvail value, the processor tries
again until it gets a valid value. If P = N, the pipelining doubles the time needed, but if
P < N, the impact is smaller, and if P = 1, there is no additional wait. More formally, the
time needed for this stage is

 j/P×(j + P)×max(L, max(B, C2))), (7-42)

which is not very good if the latency L of the shared memory access is large. In fact this
stage forms the longest communication path of the whole algorithm, and will be the slow-
est of the whole inversion for large values of L. This stage takesO(N2/P) time if B = L = 1.

The next stage (lines 19-29) of the iteration finds an element of the remaining matrix
to be chosen for the next pivot element. The finding the maximum is parallelized by mak-
ing all processors find the maximum independently from their own slices as in the sequen-
tial version, and afterwards find and distribute the maximum over all processors. The par-
allelized part takes time

 (N–j)/P× j×max(L, max(B, C3))). (7-43)

To share the found maximums among the processors, we use a separate routine
sharemaxandindex, which we shall describe and analyse separately in Section 7.4. Here
it suffices to state that the procedure to find the maximum and the corresponding index
overP processors takes time

ui j ai j l i kukj
k 0=

i 1–

∑–=

7.3. A larger example: matrix inversion 143

max(L, d×max(B, Cm))×(logdP + 2), (7-44)

where d is a variable assigned according to L and B. In any case, the maximum over the
processors is fast compared to the initial work done by the processors independently.
Using O-notation an iteration of the whole finding the maximum stage takes O(N2/P)
time.

The next stage (lines 30-36) of the iteration is to possibly interchange rows to get
the pivot element on the diagonal. This operation can be done in time

N/P×max(L, max(B, C4))) = O(N/P), if B = L = 1, (7-45)

i.e., this is a faster operation than the previous ones.
The final stage (lines 37-41) of the iteration is to do the division by the pivot element

in time

 (N–j)/P×max(L, max(B, C5))) = O(N/P), if B = L = 1. (7-46)

The time of the whole iteration j := 0 to N–1 contains the equations (7-42), (7-43), (7-44),
(7-45), and (7-46) over all values of j. The costs of equations (7-42), (7-43), and (7-46)
involve j, and are combined to a single sum

, (7-47)

whereClu is the maximum of the constantsC2, C3, and C5. By combining this to formulas
(7-44) and (7-45) we get

(7-48)

as the whole complexity of the LU decomposition.

Forward and backsubstitution

As we stated earlier, the procedure of forward and backsubstitution is called for all col-
umns in parallel. Therefore, within the computation of one column we proceed sequen-
tially. Algorithm 7-7 presents the stages given in equations (7-37) and (7-38) in FPM. For
each column, both forward and backsubstitution stages take at most time

. (7-49)

The whole procedure thus takes time

j
P
--- 2 j P 1+ +()×

j 0=

N 1–

∑

max L max B Clu(,)(,)×

Tlud
j
P
--- N P 1+ +()×

j 0=

N

∑

N Plog+

max L max B Clu(,)(,)×=

max L i max B Clufb(,)×(,)
i 0=

N 1–

∑

144 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

 = O(N2), if B = L = 1. (7-50)

Combined analysis of the whole matrix inversion

Combining the equations (7-39), (7-48), and (7-50) we get the running time of the matrix
inversion as follows

(7-51)

(7-52)

(7-53)

procedure LUbcksub (sharedvar a : matrix; sharedvar indx : ivector; 1

var b : vector); 2

ii := -1; 3

futur e IP[0..N-1] := indx[0..N-1]; 4

for i := 0..N-1do 5

ip := IP[i]; sum := b[ip]; b[ip] := b[i]; 6

if ii <> -1 then 7

futur e T1[ii..i-1] := a[i, ii..i-1]; 8

sum := b[ip] - T1[ii..i-1]⋅ b[ii..i-1]; 9

else 10

if sum <> 0.0then ii := i; 11

b[i] := sum; 12

for i := N-1..0by -1 do 13

futur e t1 := a[i, i]; 14

futur e T1[i+1..N-1] := a[i, i+1..N-1]; 15

sum := b[i] - T1[i+1..N-1]⋅ b[i+1..N-1]; 16

b[i] := sum / t1; 17

Algorithm 7-7: LU forward and backsubstitution.

Tbcks N max L N max B Clufb(,)×(,)×=

T
j
P
--- N P 1+ +()×

j 0=

N

∑

N Plog+

max L max B Clu(,)(,)×

N
P
---- N× max× L N max× B Clufb(,)(,)

+=

N
2
---- N

P
---- N P 1+ +()××

 N Plog+
 max L max B Clu(,)(,)×≤

N
P
---- N× max× L N max× B Clufb(,)(,)

+

N
2

P
------ N 2+ max L max B Clu(,)(,)×

max L N max B Clufb(,)×(,)

+×≤

7.3. A larger example: matrix inversion 145

(7-54)

which differs from the optimal time only by a constant factor 2 if B = L = 1. Examining
the earlier stages of the analysis, we note that for small values of P the efficiency is better
than if P is close to N. Especially values of P in rangeN/2+1 .. N–1 do not give much addi-
tional speedup. Using theO-notation, however, we get the desired time complexity

Tinv = , if P ≤ N andB = L = 1. (7-55)

The impacts of L and B, however are linear after some limit if P = N. Making even mod-
erately accurate estimations of the actual speedup performance of the algorithm is difficult
using any of the above formulas, though Figure7-14 includes a plot of Formula(7-51).

Another approach to speedup estimation

As we noticed above, the analysis of the potential speedup may be a bit difficult using the
traditional analysis techniques. Especially the meaning of the constants may be unclear.
As we have implemented the algorithm for a working emulator system, we can gather per-
formance information from an actual execution. For example, we can modify the program
to print the width of the range of every par-do statement it executes. Then for each possi-
ble P, we can compute the number of iterations a processor needs to do in each par-do
statement. For the matrix inversion program we get 4 occurrences70 of par-do statements
of width i, i ∈ 0..N–1, and N occurrences of par-do statements of width N. Moreover, the
procedure to find the maximum does not contain any par-do statement, yet it works in par-
allel. Consequently, the number ofpar-do body iterations would be

, (7-56)

but that formula does not take into account the fact that one of the width N par-do state-
ments includes an O(N2) body, whereas the other par-do statements include only O(N)
bodies. Further, two of the width i par-do statements and the finding the maximum itera-
tion include O(1) bodies, whereas the rest include O(N) bodies. Thus, we adjust
Formula(7-56) to form

, (7-57)

which can be converted to the total complexity of the inversion by multiplying it by the
complexity of the bodies of the par-do statements, i.e., N. The interesting fact of
Formula (7-57) is the strong impact of the roof operations, which was hidden in theO-anal-

70. One simplepar-do statement is not visible in the compacted algorithms.

2N
P

------- N 1+() max L max B N Clu×(,)(,)××≤

O
N

3

P

4
i
P
--- N

N
P
---- N Plog+ +

i 0=

N 1–

∑

2
i
P
--- 2N

N
P
---- Plog+ +

i 0=

N 1–

∑

146 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

ysis. Using the formula, we can plot the potential speedup of the matrix inversion.
Figure7-14 includes the plots of speedups computed using Formulas (7-57) and (7-51),
and the measured performance described in the next subsection. The par-do estimated
version does not take into account the fact that sequential execution of the par-do is a bit
more efficient than parallel execution due to the reduced impact of initialization costs. As
the estimates give too slow P = 1 estimate, they result in too good speedup figures. To cor-
rect this estimation error, the graph also includes a fitted (scaled by factor 0.75) version of
the speedup curve of Formula (7-51). This fitted version follows surprisingly close to the
actual measured graph. The stair-shape of the graphs is due to the parallelization tech-
nique used in backsubstitution phase. For example, 256 distinct backsubstitutions can be
done considerably faster with 64 processors than with 63 processors. Still, adding a 65th
processor does not help backsubstitution phase at all. It does, however, help the LU
decomposition phase.

7.3.2 Measured performance

Again we used mostly the same assumptions as before. However, the algorithm uses the
shared memory even if the machine had only one processor. This can be considered unfair,
especially as this algorithm uses quite a lot of shared memory. This algorithm was, how-
ever, an example of a straightforward parallelization of a sequential algorithm.
Figure7-15 presents the speedup as a function of the number of processors. Different
lines present the speedup curves measured with different input sizes. The input N stands
for inverting an N×N matrix. The speedups are measured relative to the execution of the

Figure 7-14: Speedups calculated from the measured execution of the matrix
inversion, analysed (7-51), par-do estimated (7-57), and scaled par-do
estimated times of the matrix inversion,N = 256.

16

32

48

64

80

96

112

128

144

160

32 64 96 128 160 192 224 256

sp
ee

d
u

p

number of processors

par-do estimated

measured

analysed
0.75×estimated

lin
ea

r

7.3. A larger example: matrix inversion 147

same algorithm using only one processor, except for N = 512, which could not be exe-
cuted withP ≤ 4 with our current emulator71. Consequently, for N = 512, the speedups are
based on the execution with P = 4, with the base speedup of P = 4 taken from the case
N = 256. Moreover, as opposed to the smaller input sizes, for N = 512, we did not run the
experiments for every value of P. The steps of the graphs show us the obvious fact that
even fractions ofN are the best values forP.

As we may guess from the analysis of Algorithm 7-5, the two stages of the inversion
are approximately equally time-consuming. The parallelization of the stages, is not, how-
ever, similar because the backsubstitution stage mostly includes only one width-N par-do
statement. Figure7-16 presents the relative speedups of the two stages of the inversion
algorithm. As we can see, the backsubstitution stage parallelizes better, but achieves the
best efficiencies at factors of N. As the LU decomposition mostly includes par-do state-
ments with range j, j ∈ 1..N, it gains from the added processors more evenly. The variation
on the curve of the backsubstitution is due the random variation on the input data.

The impact of latency and bandwidth inefficiency

Considering the impact of the shared memory access parameters, we ran the same 64×64
matrix inversion varying the parameters P, B, and L forming a 3-dimensional domain of
executions. The following graphs present the results of these experiments. Figure7-17
presents the impact of bandwidth inefficiency B for different values of P with low L. The
bandwidth inefficiency starts to impact beyond B = 32, and impacts significantly thereaf-

71. The number of clock cycles needed for the inversion was larger than the maxint 231.

Figure 7-15: Speedup of the matrix inversion as a function of the number of
processors for different input sizes.

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 256 512

sp
ee

d
u

p

number of processors

N=512

N = 32

N = 16

10 %

N = 64

N = 128

N = 256
lin

ear
50 %

148 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

Figure 7-16: Speedup of matrix inversion, LU decomposition, and LU back-
substitution as functions of the number of processors,N = 64.

8

16

24

32

40

48

56

64

8 16 24 32 40 48 56 64

sp
ee

d
u

p

number of processors

Inversion
LU decomp

Back-subst

linear

75 %

50 %

Figure 7-17: Slowdown of the matrix inversion as a function of bandwidth
inefficiency for different numbers of processors,N = 64.

1

2

3

4

5

6

4 8 16 32 64 128 256

sl
o

w
d

o
w

n

bandwidth inefficiency

P
 =

 1

P
=

2

P =
 64

P
=

32
P

=
8P
=

4

P
=

16

7.3. A larger example: matrix inversion 149

ter. Notice, that the smaller is P, the larger is the impact of B. This is the very opposite
effect compared to any other algorithm we have presented this far. The basic reason why
even an execution with low P does not tolerate muchB is because the matrix to be inverted
is kept all the time in the shared memory, and, thus, the processors need to access it con-
stantly. This does not explain the fact that a machine with smaller P would require a better
(lower) value of B than a machine with a high P. The volume of shared memory accesses
remains constant with respect to work done. Consequently, as the amount of shared mem-
ory bandwidth and the work done in a time unit increase at the same rate as the number
of processors increase, the requirement for B should remain constant. However, because
the relative efficiency decreases asP increases, the available shared memory access band-
width increases faster than the work done. Particularly, as some of the processors do not
do useful work, the rest of the processors may exploit the bandwidth of the idling proces-
sors. Later, in Figure7-20 we take this into account, and find that the bandwidth require-
ment really is constant with respect to the work done. Compared to matrix multiplication,
Figure7-10, the impact of B with small values of P is significant in the inversion algo-
rithm.

Figure7-18 presents the impact of latency L for different values of P with low B.
The latency impacts already with very low values. This is because the longest communi-
cation path of the LU decomposition is N2. Thus, the algorithm takes at least time N2L.
More specifically, on line 15 of Algorithm 7-6 the processors wait until the previous value
has arrived. As the processors are actively waiting for the value, even very low latencies
impact the performance. For a low P the impact is lower as the processors have other iter-
ations to complete before the waiting occurs. Compared to matrix multiplication (similar

Figure 7-18: Slowdown of the matrix inversion as a function of latency for
different numbers of processors,N = 64.

1

2

3

4

5

6

32 64 128 256 512 1024

sl
o

w
d

o
w

n

latency

P
=

64
P

=
32

P =
 1

6

P = 8

P = 4

P = 2

P = 1

150 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

graph in Figure7-11), the difference of latency toleration is a couple of orders of magni-
tude worse.

Figure7-19 presents a conclusive graph of the combined impact of B and L for the
matrix inversion using different numbers of processors. The graph presents a 2-dimen-
sional space of parameters B and L. For each P there is a line to present the boundary of
efficient execution compared to the optimal execution with the corresponding P. The pairs
of B and L that are below and left of the line enable execution in at most twice the time of
the optimal execution for that P. The pairs of B and L that are above and right of the line
induce more than 2-fold slowdown.

The graph of Figure7-19 does not take into account the slowdown induced by the
parallelization inefficiency. If we combine the results of Figures 7-16 and 7-19, we get the
requirements for the total 50 % efficiency. As before, instead of comparing each time to
the time of an optimal machine with the sameP, we compare each work to the work of an
optimal machine with P = 1. Figure7-20 presents this version with the same data as
Figure7-19. Now all the pairs of parametersB and L which are to the left and below of a
line enable us to execute the program with no more than twice the work than with a
machine with P = B = L = 1. Note that using P > 40, our implementation did not meet the
50 % efficiency requirement at all. As an interesting fact we can notice that most of the
lines of Figure7-20 meet at B ≈ 80, L ≤ 64. In other words, to be able to efficiently invert
a matrix using our implementation, we need a machine with B ≤ 64. We already discussed
the bandwidth requirements earlier within the measurements concerningB andP.

Figure 7-19: Acceptable (at most twice the time of the execution in an opti-
mal machine with the sameP) latencies and bandwidth inefficiencies in
matrix inversion for different numbers of processors,N = 64.

4 8 16 32 64 128 256
32

64

128

256

512

bandwidth inefficiency

la
te

nc
y

ar ea of
sl owdown ≤ 2

P
 =

 3
2

P
 =

 8
P

 =
 2

P
 =

 1

P
 =

 6
4

7.4. Maximum over processors 151

7.4 Maximum over processors

The LU decomposition procedure (Algorithm 7-6) finds the maximum of a vector of inner
product results and the corresponding index (lines 20-28) in parallel. The result is that
each processor has its own maximum and corresponding index over the range it pro-
cessed. To achieve a common maximum for all processors, we use a separate routine
sharemaxandindex (line 29). Here we shall study the routine separately as the finding the
maximum is generally considered as a distinct problem and algorithm.

The routine used by the LU decomposition takes two variable parameters, the value,
and the index. Both actual parameters must be local variables of the processors. At the exit
of the procedure, the parameter value of each of the processors will equal to the maximum
of the original values over all processors. The parameter index will equal to the corre-
sponding index.

The standard algorithm for finding a maximum of a vector, or the maximum of local
variables over a set of processors would be from a binary tree communication among the
processors. The execution would take O(L×log2P) time. To reduce the impact of the
latency, we can exploit a tree with a degree higher than 2 by finding a maximum of more
than 2 elements in each iteration. In general the height of the tree would be logdP , where
d is the degree of the tree. Thus, the execution time would beO(max(L, d)×logdP). As we
are using the exclusive read memory model, also the result of the maximum would have
to be distributed in ad-ary tree manner. Moreover, we have to find and distribute the index
of the maximum value, which might require a third stage of d-ary tree communication.

Figure 7-20: Requirements on bandwidth inefficiency, latency, and number of
processors for efficient (at most twice the work of the sequential execu-
tion in an optimal machine) execution of matrix inversion,N = 64.

4 8 16 32 64 128 256
32

64

128

256

512

bandwidth inefficiency

la
te

nc
y

ar ea of t ot al
ef fi ci ency ≥ 50 %

P = 32
P = 24

P = 8

P = 1

P = 4
P = 2

P = 16
P = 12

152 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

Figure7-21 presents the stages of communication between the processors using a 4-ary
tree. The factor 3 in the time requirement is rather significant in a frequently used routine
as the finding the maximum Moreover, most of the processors only do constant work, and
only one works all the time. Since we are discussing finding the maximum value over a
set of processors, we cannot improve the efficiency by blocking the original vector and
reducing the number of processors. Instead, we should exploit all processors as efficiently
as possible to gain the minimum possible total time.

To exploit all processors efficiently, and to get rid of the distribution stages, we vir-
tually form a binary tree for each processor, i.e., each processor acts like it would be the
root processor of a binary tree structure. If we draw this communication, we get the mid-
dle pattern of Figure7-22. If we interpret the pattern as a graph, we formalize it by stating

Figure 7-21: Three 4-ary trees required to find maximum and index using a
straightforward algorithm.

Find maximum

Distribute index

Find index

Distribute maximum

Butterfly
degree 2

Array of trees,
degree 4

Array of trees,
degree 2

Figure 7-22: A butterfly network of degree 2 and “arrays of trees” of degrees
2 and 4. Dashed lines represent wrap-around edges.

7.4. Maximum over processors 153

that it has log2N + 1 levels of N nodes each. We present each node by tuple <l, s>, where
l stands for the level and s stands for the node within the level. Nodes <l, s> and <l+1, t>,
where l ∈ 0..log2N and s,t ∈ 0..N–1, are connected if, and only if, t = s or
t = (s+2l) mod N. For P = 2n, the pattern is quite similar to an n-dimensional butterfly, as
in the topmost pattern of Figure7-22. The pattern is so obvious that it probably has a
proper name, but unfortunately we could not find a reference for it. Here we shall call it
anarray of trees.

In algorithm to find the maximum, each processor compares its own value with the
value of processor (PID+2i) mod P, where i ∈ 1..log2P is the iteration round. The
advantage of this approach is that the indexing works even if P is not a power of 2, and is
easier to index in a practical implementation. Using this communication pattern each pro-
cessor has the correct maximum value after log2P iterations. Moreover, because we can
distribute the index along the maximum, we can reduce the number of iterations to one72.
To further reduce the length of the longest communication path, we can exploit the trick
of using an array ofd-ary trees, as in the undermost pattern of Figure7-22.

The whole algorithm to find the maximum is presented as compacted source code
in Algorithm 7-8. The variabledeg in the algorithm stands for the degreed of the array of
trees. The whole execution time of the algorithm is

T(P) = max(L, Cm×d)×(logdP + 2), (7-58)

where Cm is a local constant, assuming that we have enough bandwidth. Taking B into
account, the time is

72. We could have used this technique also with the original tree-based algorithm, which
would had reduced the number of trees to two.

procedure maxandindex(var value : real; var index : word); 1

fwrite maxarray[PID(0)] := value; 2

fwrite maxindex[PID(0)] := index; 3

shift := 1; 4

synchronize; 5

while shift < P(0)do 6

futur e T1[1..deg-1] := maxarray[(shift * 1..deg-1 + PID(0))mod P(0)]; 7

futur e T2[1..deg-1] := maxindex[(shift * 1..deg-1 + PID(0))mod P(0)]; 8

for i := 1 to deg-1do 9

if (T1[i] > value)or ((T1[i] = value)and (T2[i] < index)) then 10

value := T1[i]; fwrite maxarray[PID(0)] := value; 11

index := T2[i]; fwrite maxindex[PID(0)] := index; 12

shift := shift * deg; 13

synchronize; 14

Algor ithm 7-8: Finding maximum and index over the processors using a
deg-ary array of trees.

154 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

T(P) = max(L, d×max(B, Cm))×(logdP + 2), (7-59)

whereCma is a local constant. The slower tree-based approach could be slightly better in
a machine with large B, as the volume of communication would be slightly reduced. On
iteration i, the version based on the array of trees uses on average words of
bandwidth, whereas the tree-based one uses only words of bandwidth.
The tree-based algorithm requires at least two 1..d iterations. Thus, the whole tree-based
algorithm requires

(7-60)

words of bandwidth. The array of trees algorithm requires

(7-61)

words of bandwidth. Consequently, the ratio of total bandwidth usage is

, (7-62)

which, e.g., when P = 1024 and d = 4 is 1.25. As a conclusion, we can state that the band-
width usages will not differ significantly unless theB and P are very large and L is small.

As a conclusion of Formula (7-59) we can tell that increasing d will reduce the
impact of L but it will also increase the impact of B. Using the formulas (7-58) and (7-59),
we should be able to decide a convenient formula for assigning the variable deg in
Algorithm 7-8, but unfortunately we cannot find an easy one which could be computed in
the program with a reasonable amount of work. At least the processors should do some-
thing useful duringL. In other words, we should try to set

, (7-63)

where the multiplier 2 is due to the possible rewriting to the shared memory. The formula
does not give the optimal value, but at least makes the processors to do something useful.
Table7-1 presents the computed values of d for some values of B andL whenP = 256 and
Cm = 67. As we ignored here the impact of term logdP in Formula (7-59), the values for
d given in the table are a bit too small. We can check this later on when comparing the
table to the values in the measured Table7-3. Further pursuing for the most appropriate
values of d, the most efficient values are those which form a set of full trees without per-
forming extra work. More formally, d should conform to equation

3 d× P×
3 d× d P i–dlog×

6 d× d
P i–dlog

12 d P××≤
i 1=

d

∑×

3 d× P× Pdlog×

3 P× d× Pdlog×
12 P× d×

Pdlog

4
--------------=

d L
max 2B Cm(,)
---------------------------------=

7.4. Maximum over processors 155

(7-64)

to achieve full efficiency. If P = 2p, then d should be of the form 2x, wherex is a factor of
p. For P = 256 the practical values are 2, 4, 16, and 256, which, as we can see later in
Figure7-25, cover the range of L rather well. The problem is that using Formula (7-64) in
an actual program can be easily done only using an if-elsif-...-else sequence, which is nei-
ther a general, nor an elegant solution.

Yet another way of studying the use of d would be to count the number of steps each
processor needs to compute. The number of comparison steps is about

, which can be rounded to since starting and finishing
each iteration takes time. Table7-2 presents the values for d = 2n, , and

. We can see that degrees such as 32, 64, and 128 are of little use for P = 256
since they do not reduce the number of iterations, i.e., the impact of L, but increase the
number of steps on each iteration.

Table 7-1: Estimated (using Formula7-63) best values of d in finding the
maximum for different values ofL andB, P = 256,Cm = 67.

Latency
L

Bandwidth inefficiency B
4 8 16 32 64 128 256

8 2 2 2 2 2 2 2
16 2 2 2 2 2 2 2
32 2 2 2 2 2 2 2
64 2 2 2 2 2 2 2

128 2 2 2 2 2 2 2
256 3 3 3 3 2 2 2
512 7 7 7 7 4 2 2

1024 15 15 15 15 8 4 2
2048 30 30 30 30 16 8 4
4096 61 61 61 61 32 16 8
8192 122 122 122 122 64 32 16

16384 244 244 244 244 128 64 32

Table 7-2: The number of steps in the finding the maximum for different val-
ues ofd, P = 256.

degreed (= steps/iteration) 2 4 8 16 32 64 128 256
number of iterations 8 4 3 2 2 2 2 1
number of total steps 16 16 24 32 64 128 256 256

d
logdP

P=

d 1–() Pdlog× d Pdlog×
Pdlog

d Pdlog×

156 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

Measured performance of the finding the maximum in the F-PRAM emulator

Since we are finding a maximum over processors, there is no such thing as speedup.
Instead we just measure how long it takes to find the needed maximum with the corre-
sponding index. Here in the first test we had the degreed as another parameter instead of
assigning it a parameter-dependent value as, e.g., in Equation (7-63). For actual use in the
LU decomposition we used the assignment

deg := min(P, max(2, L / max(2*B, 67))); (7-65)

to set the near optimal degree. Figure7-23 presents the time needed as a function of P for
different degrees. As expected, the functions have constant steps as logdP grows. The
non-vertical steps are due to plotting with interval 1 and the logarithmic scale. By inspect-
ing the measured data, we can rather accurately tell the constants of the execution. For
example, the degree-2 plot follows the function

105 + 74× log2P, (7-66)

and the degree-8 plot follows the function

105 +67×8× log8P. (7-67)

Even if the compacted version of the algorithm does not include it, we used an additional
if statement, which skips the for iteration if degree= 2. This way the constant of the algo-

Figure 7-23: Time needed for finding maximum and index over processors as
functions of P for different degrees of the array of trees. For P > 800,
only part of the cases were tested.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000

2 4 8 16 32 64 128 256 512 1024 2048 4096

ti
m

e
(c

lo
ck

 c
y

cl
es

)

number of processors

deg = 32

deg = 16

deg = 8

deg = 4

deg = 2

7.4. Maximum over processors 157

rithm is slightly lower for d = 2. Otherwise, the use of the degrees 3, 4, and 5 would have
been slightly faster than the use of the degree 2 for most values ofP.

Inspecting Figure7-23 we could conclude that normal binary array of trees would
be all we need to examine. But recalling Formula (7-58), we still have to study the impact
of latency. Figure7-24 presents the impact of latency in the finding the maximum for dif-
ferent degrees of the array of trees. By using d = 256 we went to the extreme with d as
high asP, i.e., each processor reads the all other values to find the maximum with a single
latency. This approach is the fastest one if L is very large. For small values of L or d,
Figure7-24 is too inaccurate. Magnifying the lower parts of the graph, Figure7-25 pre-
sents the same graph using logarithmic y-scale. Now we can see that even with not very
large latencies, the degree 4 version is faster than the degree 2 version.

We could not previously give a definitive expression of the optimal value of d in the
algorithm. Now as we have measured the performance of the algorithm for different val-
ues ofd, L, andB we can conclude the best value ofd for each combination ofL andB.
Table7-3 presents the best values of d for a set of values of B and L. Note, however, that
we tested only values of the form d = 2n, which are believed to be the best ones. The table
follows rather closely the predicted values of Table7-1 with the exception that the esti-
mated values were lower than necessary because of the simplified formula used. Table7-4
presents the ratios of the times measured by using the degrees given using expression
(7-65) to the times measured by using the best degrees. Notice that in most cases the dif-
ference is insignificant. In most cases the used degrees are the optimal ones, and the small
differences (20 clock cycles) is due to the cost of evaluating the new degree with expres-
sion (7-65). For some combinations of B and L, however, Formula (7-63) gives too low

Figure 7-24: Time used for finding the maximum as function of latency for
different degrees,P = 256, linear y-scale.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

16 32 64 128 256 512 1024 2048 4096 8192 16384

ti
m

e
(c

lo
ck

 c
y

cl
es

)

latency

deg = 256
deg = 128

deg = 64

deg = 32
deg = 16

de
g

=
 8

de
g

=
 4

de
g

=
 2

de
g

=
25

6

158 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

values. Thus, we should find a way to round up the values to conform with
Formula(7-64).

Table 7-3: Optimal (power of 2) values of d for different values of L and B,
finding the maximum,P = 256.

Latency
L

Bandwidth inefficiency B
4 8 16 32 64 128 256

8 2 2 2 2 2 2 2
16 2 2 2 2 2 2 2
32 2 2 2 2 2 2 2
64 4 4 4 4 2 2 2

128 4 4 4 4 4 2 2
256 8 8 8 4 4 4 2
512 16 16 16 8 4 4 4

1024 16 16 16 16 8 4 4
2048 16 16 16 16 16 8 4
4096 32 32 32 32 16 16 8
8192 256 256 256 256 16 16 16

16384 256 256 256 256 16 16 16

Figure 7-25: Time used for finding the maximum as function of latency for
different degrees,P = 256, logarithmic scales.

512

1024

2048

4096

8192

16384

32768

16 32 64 128 256 512 1024 2048 4096 8192 16384

ti
m

e
(c

lo
ck

 c
y

cl
es

)

latency

deg = 256
deg = 128

deg = 64

deg = 32

deg = 16
deg = 8

deg = 4

deg = 2

7.5. Software synchronization 159

7.5 Software synchronization

Every parallel program that uses shared memory needs synchronization to ensure that the
writes to and reads from the shared memory occur in correct order. The F-PRAM model
requires that each F-PRAM machine has a synchronization facility that can synchronize
all processors in time S. Some parallel machines, however, do not have a dedicated syn-
chronization facility. Therefore we have to implemented our own synchronization routine
to make sure that we can port the F-PRAM model to such parallel machines. Furthermore,
we can use our own algorithm for random submachine synchronization, which is not pos-
sible with the native synchronization facilities of typical parallel computers.

The synchronization of the processors consists of two stages. Firstly, we have to
ensure that all processors have started the synchronization. Secondly, the knowledge of
the completion of the first phase must be spread to all processors. This can be done using
a shared vector which has an element for each processor. The elements are initially zeroes.
As soon as a processor enters the synchronization procedure, it writes a 1 to its own syn-
chronization vector element. The detection of the arrival of the signals of the processors
can be done in a binary tree fashion. After one processor has ensured that all processor
signals have arrived, the knowledge is again spread using another binary tree. As with the
finding the maximum, also these synchronization trees can be combined to oned-ary array
of trees to reduce the impact of the latency. As a matter of fact, the synchronization algo-
rithm resembles the algorithm to find the maximum a lot. The differences are only the
operations within the innermost loops and the additional repeat-until waiting for the pos-
sibly missing predecessor73.

Table 7-4: The ratios of the execution times of finding the maximum with
estimated (as Formula7-63) values of d (Table7-1) to the optimal
degrees (Table7-3) for different values ofL andB, P = 256.

Latency
L

Bandwidth inefficiency B
4 8 16 32 64 128 256

8 1.028 1.028 1.026 1.018 1.011 1.006 1.003
16 1.028 1.027 1.025 1.018 1.011 1.006 1.003
32 1.024 1.023 1.022 1.017 1.011 1.006 1.003
64 1.017 1.017 1.028 1.055 1.010 1.006 1.003

128 1.379 1.379 1.377 1.251 1.034 1.005 1.003
256 1.408 1.408 1.411 1.301 1.249 1.010 1.003
512 1.086 1.086 1.093 1.009 1.005 1.238 1.008

1024 1.391 1.391 1.426 1.405 1.003 1.003 1.244
2048 1.045 1.045 1.083 1.129 1.002 1.002 1.001
4096 1.145 1.145 1.166 1.263 1.061 1.001 1.001
8192 1.455 1.444 1.457 1.345 1.202 1.128 1.001

16384 1.874 1.874 1.840 1.820 1.285 1.176 1.100

160 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

Algorithm 7-9 presents the code for the synchronization algorithm. This version
neither includes the initialization, nor the clearing of the array used for synchronization
detection. The initialization has to be done at the beginning of the whole program, i.e., in
the main program74. The clearing of the vector after each synchronization is more diffi-
cult. Simply assigning zero at the exit of the procedure will not do since some processors
may still need the value. The clearing at entry is even worse. Consequently the clearing
has to be done outside this low-latency procedure. The solution is to wrap this routine with
a procedure that recycles three different synchronization arrays and presents a clean one
for the main synchronization procedure each time it is called. Two arrays is not enough if
we have long latencies with very large variations, a change in the order of references, and
two synchronizations very close to each other.

The use of the software synchronization is similar to the default synchronization
primitive of the F-PRAM model, i.e., all processors need to enter the procedure, otherwise
the procedure deadlocks. The difference is that the software version does not officially
guarantee the finishing of all shared memory references. In practice, however, the proce-

73. Finding the maximum used the synchronization primitive to ensure the correct order of ref-
erences.

74. Or called separately from the main program.

procedure softsync(); 1

fwrite all syncarray[PID(0)] := 1; 2

sum := 1; 3

if deg > 2then // a vector version for deg > 2 (deg-ary trees) 4

while sum < P(0)do // repeat while not all processors have signalled 5

repeat // repeat until all predecessors have signalled6
for i := 1 to deg-1do 7

future all T1[i] := syncarray[(sum * i + PID(0)) mod P(0)];8

fail := false; 9

for i := 1 to deg-1do 10

if T1[i] < sumthen 11

fail := true; 12

until not fail; 13

sum := sum * deg; 14

fwrite all syncarray[PID(0)] := sum; 15

else // simpler version for deg = 2 (binary trees) 16

while sum < P(0)do // repeat while not all processors have signalled 17

repeat // repeat until the predecessor has signalled18

futur e all t1 := syncarray[(PID(0) + sum)mod P(0)]; 19

until t1 >= sum; 20

sum := sum * deg; 21

fwrite all syncarray[PID(0)] := sum; 22

Algor ithm 7-9: Software synchronization procedure to be executed by every
processor.

7.5. Software synchronization 161

dure takes at least (C+2logP)×L time to complete and it makes O(P logP) references
itself, and, thus, the earlier references should be completed if we can assume any fairness.
The advantage of the software version is that it can be used for submachine synchroniza-
tion easily by using P and PID instead of P(0) and PID(0). To concurrently synchronize
several submachines, the use of the shared vector should also be revised.

If the software synchronization algorithm resembles the algorithm of finding the
maximum a lot, the analysis of the two algorithms is even more similar. Especially the
analysis of the proper values of the degree of the array of trees (d) is the same, and, thus,
we shall not repeat it here. We only need to state that the synchronization algorithm takes
time

Ss = max(L, Cs×d)×(logdP + 2), (7-68)

whereCs is a local constant. For analysis purposes we can make an inaccurate assignment
d = O(L), after which we can state the asymptotic time complexity of

Ss = , (7-69)

which, however, is of little use because of its inaccuracy. The additional wrapper proce-
dure to coordinate the resetting of the arrays uses onlyO(1) time for each processor.

In addition to synchronization and finding the maximum, the same algorithm skel-
eton can be applied to, e.g., summing and broadcasting between the processors. Vectors
larger thanP have to be first locally summed, and then summed over the processors.

Measured performance of the software synchronization in the F-PRAM emulator

The definition of the delay of the synchronization is the time needed after the last proces-
sor starts to execute the procedure. After that, the procedure makes logdP iterations of
the main while loop. Consequently, neither the order of the arrivals of the processors, nor
the variation of the arrival times impact the number of the main iterations. On the other
hand, the waiting iterations within each main iteration may occur randomly one or more
times depending on the arrival times. Especially, the times are multiples of the inner iter-
ation times, which are quite large if d is large. Consequently, the time required for the syn-
chronization varies a bit from run to run depending on the arrival times.

In the following measurements, the time is taken for each processor before and after
the procedure call. The time used in the graphs is the difference of the last arrival time and
the last exit time. Before the synchronization call each processor was made to do random
work. Thus, the processors entered the procedure in random order. Figure7-26 presents
the basic performance of the procedure for different values of d and P. The bounds of the
random variation are clearly visible. The few spikes above the standard levels are proba-
bly due to unexpectedly long latencies or temporary network saturation. Within the most
interesting domain P = 16-2048, we can conclude that Ss = 256-512, if the latency is low.
Figure7-27 presents the impact of latency for the synchronization for a fixed P. The
results are very similar to those of the finding the maximum, i.e., for P = 256, the useful
values for degree are 2, 4, 16, and 256, depending on the latency.

O L() O× PLlog() O
L Plog

Llog

 =

162 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

Figure 7-26: Time needed by software synchronization as a function of the
number of processors for different degrees.

64

128

256

512

1024

2048

4096

8192

2 4 8 16 32 64 128 256 512 1024 2048 4096

ti
m

e
(c

lo
ck

 c
y

cl
es

)

number of processors

deg = 32

deg = 16

deg = 8

deg = 4

deg = 2

Figure 7-27: Time needed by software synchronization as a function of
latency for different degrees,P = 256.

256

512

1024

2048

4096

8192

16384

32768

65536

131072

4 8 16 32 64 128 256 512 1024 2048 4096 819216384

ti
m

e
(c

lo
ck

 c
y

cl
es

)

latency

deg = 256

deg = 256

deg = 64

deg = 32

deg = 16

deg = 8

deg = 4

deg = 2

deg = 128

7.6. Image smoothing 163

As we saw with the analysis of the finding the maximum, the evaluation of the cor-
rect degree of spreading is not a trivial task. Especially for a simple atomic frequent oper-
ation such as synchronization it seems to be a bit too difficult. In practice, however, the
optimal d has to be decided for each machine just once, and used thereafter. We can test
beforehand all candidates from 1 to P, and use the best within our synchronization routine.
Especially if P is not a power of two, we can use a degree that is not a power of two. For
example, if P = 24, the synchronization is faster with d = 5 than with d = 4. Moreover, if
L > 50 it is also faster than withd = 2.

7.6 Image smoothing

Many signal processing problems are often characterized as easily parallelizable prob-
lems. As an example of a digital signal processing problem we present an image smooth-
ing algorithm. The input is anN×N pixel grayscale image presented as one integer for each
pixel. In the result image each pixel is computed as a weighted average of the correspond-
ing original pixel and the surrounding pixels of the original image. The weights are given
in a template of sizeM×M, whereM is odd, and the original pixel is matched with the cen-
ter weight of the template. Typical values for M are 3, 5, and 7. These types of filters are
typically used for reducing transmission and digitalization noises. Figure7-28 presents a
magnified fraction of a grayscale image, a smoothing template of size3×3, and the corre-
sponding smoothed image fraction. The smoothed image of the example remains still
quite pixelized because of the magnification (low resolution) and the low number of dis-
tinct grayscales. Note, that this smoothing does not increase resolution or color depth.
However, the same algorithm can be used to improve the apparent image quality by divid-
ing each pixel into four pixels, and/or doubling the number of grayscales of the original
image before smoothing.

F-PRAM implementation

Since the computation of each pixel depends only on the values of theM×M neighboring
pixels in the original image, the smoothing can be easily parallelized. We divide the image
to square blocks of size

Figure 7-28: Image smoothing example with 32×32 pixel original image
(20 levels of gray), 3×3 template of weights and the smoothed image.

3×3 template

Original image Smoothed image

of weights

12 33
31 1

31 1

P P×

164 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

(7-70)

each. For simplicity we shall assume that , i.e., the image can be divided to
blocks of equal size. The division of the result image among the processors equal the divi-
sion of the matrix multiplication in Section 7.2. The difference is the amount of input data
each processor needs. In matrix multiplication each processor needed slices of both input
matrices (see Figure7-8) totalling input data volume of . In image smoothing
each processor needs only its own block and a few neighboring values immediately out-
side the block. The outside pixels are needed for the average calculation of the outer pixels
of the block. More accurately, for template of sizeM×M, each processor needs l = (M-1)/2
rows and columns around its own block. Figure7-29 represents a diagram of the data
requirements for each processor. The difficulties arise for those processor that have their
block on the edge of the image. On the edges of the whole image the templates need to be
cut according to the image edges to avoid corruption of the outer pixels. Therefore, the
processors need to check in all stages whether there are neighboring pixels or not. Unless
P is very small (e.g., 4), the impact of the outside borders is negligible on the analysis as
there are always processors having their block in the middle of the image. Moreover, han-
dling the exceptions on the outside borders take some time, which balances the differ-
ences.

The practical implementation of the smoothing algorithm is very straightforward
with the exception of the handling of the outside edges. In fact half of the actual code is
if-then-else sequences to handle these exceptions. Algorithm 7-10 presents the body of the
program without the most complex exceptions. Especially the fetching of the neighboring

b b× N

P
-------------- N

P
--------------×=

N b P×=

2 P b
2×

Figure 7-29: Examples of the variables in the image smoothing, 5×5 tem-
plate,7×7 pixel block for each processor.

The whole image
(N×N pixels).

The pixel in process.

The area covered by the
template (M×M pixels).

The responsibility
block of this processor
(b×b pixels).

The input data required
by this processor
((b+2l)×(b+2l) pixels).

l

b+2l

M
b

7.6. Image smoothing 165

pixels would add another page of code if displayed fully here. Additionally, in our full ver-
sion, if P = 1, the processor skips all the parts concerning the borders, which improves the
efficiency a bit. Even if the shared array borders covers the whole image, the processors
assign to it only the values that are needed by other processors. The innards of each block
are input locally, used only locally, and output locally, i.e., they never reach the shared
memory.

Note that this presented algorithm does not need any par-do statements as the input
is already divided to P blocks and each processor reads all needed values with the input.
As there are no par-do statements, all processors execute the same code. We could have
included two nested par-do statements for x and y, but the program would not have used
them, i.e., it can do without them as well.

program smooth; 1

var own : array [0..b+M-2, 0..b+M-2]of word; 2

newown : array [0..b-1, 0..b-1]of word; 3

template :array [-l..l, -l..l] of word; 4

sharedvar borders :array [0..N-1, 0..N-1]of word; 5

input template; 6

read all(x); read all(y); // left-upper corner point of the block 7

for i := 0 to b-1do // input own block of image 8

for j := 0 to b-1do 9

read(own[i+l, j+l]); 10

if within_the_inside_borders then 11

fwrite all borders[x+i, y+j] := own[i+l, j+l]; 12

synchronize; 13

fetch neighbouring pixels fromborders to the edges ofown 14

up, left, right, bottom; l*(b+l) pixels each (if needed) 15

temsup :=sum(template); 16

for i := 0 to b-1do // for each 17

for j := 0 to b-1do // pixel of the block 18

localtemsum := temsum;sum := 0; 19

for ii := -l to l do // for the 20

for jj := -l to l do // whole template 21

if within_the_image then 22

inc(sum, own[i+ii, j+jj]*template[ii, jj]); 23

else 24

dec(localtemsum, template[ii, jj]); 25

newown[i-l, j-l] := round(real(sum) / localtemsum); 26

output newown; 27

Algorithm 7-10: Image smoothing algorithm,N, M, b, l as in the text.

166 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

Analysis

The work (and sequential time complexity) of the smoothing is N2M2 steps for image of
sizeN×N and smoothing template of sizeM×M75. In Algorithm 7-10 the actual smoothing
(lines 17-26) is trivial to parallelize optimally. Thus, the smoothing executes in

Tsm= , (7-71)

steps as long asP ≤ N2. Similarly the input and outputs, which sequentially takeN2 steps
each, parallelize fully, and we shall amortize these to the smoothing cost (7-71). Using
sequential I/O would destroy the efficiency if P > M2. Moreover, the distribution of the
data via the shared memory would take much more time and require more bandwidth.

The main cost of the parallelization is the need to exchange the borders before the
actual smoothing. The writing of the borders to the shared memory is done during the
input and it does not take additional iterations or much additional time. The fetching of
the borders is a bit more difficult. If the block of a processor is not on the edge of the
image, the processor needs to fetch l = (M-1)/2 rows and columns around its own block
as seen in Figure7-29. The number of border pixels to fetch, and, thus, the number of
steps required, is

Tbofe= 4×l×(b+l) <
2×b×M = 2× ×M if b ≥ , i.e.,P ≤ (7-72)

2×M2 otherwise.

The latter case is rare because it assumes a very large number of processors. Thus, the
whole program takes

T = Tsm+Tbofe= +2× ×M = if P ≤ N2, (7-73)

i.e., it is asymptotically work optimal. The number of steps in the block fetching stage also
determines the number of shared memory operations, i.e., the bandwidth needed. There-
fore, we can rewrite the execution time (7-73) to form

T = Csm× +max(L, max(Cbf ,B)×2× ×M), (7-74)

if we want to take the F-PRAM parameters into account. The practical requirements on B
and especially onL are very loose unlessP is close toN2.

75. If we used uniform (nonweighted) template, the asymptotic work could be reduced by at
least a factor ofM.

N
2
M

2

P

N

P
-------- M

2
----- 4

N
2

M
2

N
2
M

2

P
--------------- N

P
-------- O

N
2
M

2

P

N
2
M

2

P
--------------- N

P

7.6. Image smoothing 167

Measured performance on the emulator system

The smoothing program executes deterministically, independently of the input data. For
the measurements we used random images. As the above analysis suggests, the image
smoothing is an embarrassingly parallel problem. We shall not give it the full treatment as
we gave to the other problems. Instead, we shall only present the vast potential parallelism
of the image smoothing. Figure7-30 presents the basic speedup of the algorithms for
M = 5. The algorithm parallelizes so well that is a bit difficult to plot properly. It suffices
to state that the efficiency remains above 75 % unless P = N2. At the extreme, for
N = 1024, P = 16348 (8×8 blocks), the speedup was 15290, translating to 93 % efficiency.

The impact of the template size M to parallelization is quite small. Even if the
amount of border data increases linearly76 with M, the work of smoothing increases qua-
dratically with M. The asymptotic difference does not show up severely since M ≤ 7 in
practice. The measurement data show that the speedup for M = 7 is the best one, for M = 5
the speedups are 2-3 % lower, and for M = 3, 7-12 % lower. Plotting these curves for this
large range of P is useless since the differences are barely visible on the logarithmic scale
required for large range up to 214 processors.

The impact of L to the image smoothing is similar to the matrix multiplication, i.e.,
no significant effect unless the single latency dominates the execution time. Also the
impact of B is not very severe unless P ≥ N2/M2, i.e., the whole image needs to be trans-
ferred at least once. Figure7-31 presents the impact of B for different values of P. Even
with N = 256, P = 1024 (8×8 blocks), only bandwidth inefficiencies beyond 1000 impact

76. Quadratically, ifP = N2

Figure 7-30: Speedup of the image smoothing as a function of the number of
processors for different input sizes,M = 5.

1

4

16

64

256

1024

4096

16384

1 4 16 64 256 1024 4096 16384

sp
ee

d
u

p

number of processors

N = 1024

N = 256

N = 64

N = 16

linear

75 %

168 7. EXAMPLE ALGORITHM IMPLEMENTATIONS

the performance significantly. As suggested by Formula (7-74), even if the increase on
template size increases total communication volume, it increases total work even more,
unless P ≥ N2/M2. Figure7-31 presents also the impact of M for P = 1024 and P = 256.
Note that the y-scale of the graph is very magnified compared to the earlier graphs. The
differences on the curves are actually very small. For P ≤ 64 the lines for different values
of M were too close each other to be clearly plottable even on this scale.

Figure 7-31: Slowdown of the image smoothing as a function of bandwidth
inefficiency for different numbers of processors and template sizes,
N = 256, magnified y-axis.

1.0

1.2

1.4

1.6

1.8

2.0

64 128 256 512 1024 2048

sl
o

w
d

o
w

n

bandwidth inefficiency

P = 16,M = 5

P = 4,M = 5
P

=
10

24
,M

 =
 3

P
=

10
24

,M
 =

 5

P
=

10
24

,M
 =

 7
P

=
25

6,
M

 =
 3

P
=

25
6,

M
 =

 5

P
=

25
6,

M
 =

 7

P = 64,M = 5

169

Chapter 8

Modeling the existing parallel computers with the
F-PRAM model

e introduced the F-PRAM to model both parallel computations and parallel
computers. In this chapter we shall use the F-PRAM to model some of the
existing parallel computers. More accurately, we shall present some estima-
tions on the values of the F-PRAM parameters for some of the existing par-

allel computers. These estimations are not very accurate, but it is interesting to compare
these values to the graphs of the Chapter7.

Even if the classification is not very clear, or even unambiguous, we shall divide the
parallel computers in four classes based on the implementation of the shared memory. In
Sections 8.1, 8.2, 8.3, and 8.4 we shall discuss shared memory parallel computers, virtual
shared memory computers, distributed memory computers, and networks of workstations,
respectively. As we have noted earlier, the F-PRAM model does not dictate the method of
the implementation of the shared memory. In fact, each of the parallel computers to be
presented in this chapter has a more or less unique solution for the interprocessor commu-
nication. Furthermore, we discussed the efficient simulation of the F-PRAM with message
passing system in Subsection 4.7.3. Consequently, we shall express the communication in
F-PRAM terms, no matter whether the machines have shared memory, virtual shared
memory, or distributed memory.

The only accurate way to estimate the values of the parameters of the F-PRAM
model for real parallel computers would be to implement the model primitives somehow
and measure the values. Moreover, the implementation of the model should be close to
optimal to provide valid information on the machine. Since so extensive measurements
were not possible within this work, we have to restrict ourselves to estimations mostly
based on the information provided by the parallel computer manufactures. The marketing
information naturally does not provide very accurate information for all F-PRAM param-
eters. Especially the scalability of the information is questionable. Consequently, we shall
only make rough estimations on the most important parameters based on the available
information. In most cases we use the maximum peak performance of the hardware. Even
if the maximum speed is unattainable in real software, it is less dependent on the measur-
ing method than different end user throughputs and latencies. Because the estimations are
based on different sources, we avoid accurate comparisons of the different computers.
Especially, we did not want to put the values of the different computers side by side to a

170 8. MODELING THE EXISTING PARALLEL COMPUTERSWITH THE F-PRAM

single table, even if it would make the comparison easier. Examples of such tables can be
seen in [27, 48]. Hopefully we can make more reliable estimations on the subject in future
research.

In Section 8.5 we shall sketch a shortcut implementation of the F-PRAM model for
the Cray T3E computer. This version would have been used for real world measurements
if the T3E libraries had supported asynchronous gets from the memory of another process-
ing node.

8.1 Shared memory computers

In this section we shall present computers that have a separate shared memory, to which
the processors are connected. The shared memory can be implemented either as a single
memory bank, or more scalably as a set of memory banks operating in parallel. The con-
nections between the processors and the memories can also be implemented using differ-
ent types of networks. The simplest one is a bus to which the processors are connected.
More scalable computers usually exploit different types of multistage networks.

Vector supercomputers

As an example of the traditional vector supercomputers, we use the Cray Y-MP T90
series. This system can have up to 32 processors, which are connected via a multistage
network to the shared memory consisting of several memory banks. On each cycle every
processor is able to do two arithmetic operations with the vector unit and a memory con-
nection through all of the four memory channels. Consequently, we can estimate that
B ≈ 0.5. Normally the latency is hidden in vector computer by pipelining the vector oper-
ations. Because this approach can also be used when simulating the F-PRAM model, we
getL ≤ 64.

Tera MTA

Tera computer system is a very ambitious project to produce parallel computers based on
multithreading processors [8]. Because currently (early 1998) only one working processor
has been installed, the actual parallel machines have not yet been built. Hence, we can dis-
cuss only the projected performance. The system uses a sparse 3D-torus network with
separate nodes for the memory modules and the processing nodes. The number p of pro-
cessing nodes will vary between 16 and 256. The communication network is a sparse
3-dimensional torus containing p3/2 nodes. The network is not a full 3D mesh, since alter-
nating x and y connections are omitted depending on the parity of the z connection. In
other words, each of the nodes has been divided to two in the z dimension. In addition to
the processing nodes, the network includes 2p or 4p memory nodes and 2p I/O nodes. The
processors and the network nodes operate at 3 ns clock cycle with 64-bit words. Each of
the processors includes 128 contexts, or threads77, and is able to change its context after
every instruction without any additional delays. We shall first consider the system without

77. Thus the name Multi Threaded Architecture, MTA.

8.1. Shared memory computers 171

the multithreading operation. Each of the p3/2 nodes is able to deliver one word with
addresses in all four directions in every cycle. Since the average bi-directional distance for
each packet is about 2p1/2, the interconnection system has capacity of at most
4p3/2/2p1/2 = 2p new words per clock cycle, i.e., 2 words per processing node per cycle.
Since the processors are able to issue one reference per clock cycle, we get the excellent
valueB = 1. The worst case latency of a bi-directional packet is 9p1/2 cycles, which trans-
lates to 144 cycles on a 256 processor machine without taking the memory latency into
account. Since the system uses DRAMs, we can estimate that in total L ≈ 160. If we
exploit the multithreading facility of the MTA architecture, the latency as seen by one
thread drops to 2. Machines with fewer than 256 processors have latency one for the 128
threads. The algorithm-dependent question is whether the latency or the number of pro-
cessor is easier to handle without loss of efficiency. For example, we can use either a
machine with P = 256, L = 160, or a machine with P = 32768, L = 2 having 128 times
slower processors. The data of our experiments suggests that the large increase in P often
impacts more on efficiency than the not-too-largeL = 160.

Silicon Graphics Power Challenge

As an example of the classic bus-based symmetric multiprocessor (SMP) systems we
introduce the Silicon Graphics Power Challenge system [94]. The system has up to 18
processors of type MIPS R8000 connected to a shared memory via a common bus. The
processors are superscalar and have up to 300 MFLOPS power at 75 MHz clock speed.
Here we use a more modest 150 MFLOPS processing power. The memory reference
latency to the shared memory, i.e., not to the caches, is 53 cycles. With the two instructions
per clock cycle, this translates to L = 106. The system bus and the memory are able to
serve up to 9.5 million transactions, i.e., cache fills, per second, which translates to
B ≈ 284. Each of the cache fills consists of 128 bytes, which is unnecessarily large for the
basic 16-byte future references. By using the block transfers we can improve the perfor-
mance considerably. Since the 128 bytes are transferred in a single block, we achieve
BB ≈ 36 for packets having proper sizes. Generally, the multilevel cache subsystems of all
SMP computers complicate the estimation of the shared memory performance. Especially
the marketing information given by the manufacturers relies heavily on the cache usage.
The memory transaction rate should be, however, a quite good and reliable measure, and
we feel that it could be a useful general measure of the memory performance.

Sun HPC 10000

As an example on how the architectures of the workstation-based servers and the more
traditional supercomputers converge to the same direction, we present the Sun HPC 10000
(aka the Starfire) high-performance computing server [97]. The computer can be config-
ured to have up to 64 333 MHz Ultrasparc processors. As earlier, we use a more modest
300 MFLOPS power instead of the advertised 500 MFLOPS peak. Instead of using a sin-
gle very fast bus between the processors and the memory, the processors are connected
with a crossbar switch. The switch provides 200 MB/s bandwidth for each processor,
which stands for B = 24, which provides much better communication facilities than the
bus-based approach for this largeP.

172 8. MODELING THE EXISTING PARALLEL COMPUTERSWITH THE F-PRAM

8.2 Parallel virtual shar ed memory computers

In this class the memory is distributed to the processing nodes, but the messages induced
by the shared memory references are handled with dedicated hardware. Most importantly,
the hardware of the interconnection network is optimized for messages induced by the
shared memory references, i.e., it can handle small packets and has a reasonably low
latency.

Thinking Machines CM-5

The CM-5 parallel computer manufactured by Thinking Machines Corporation [98] was
one of the first massively parallel MIMD computers. The architecture supports up to
16,384 nodes78, but the largest one built has only 1,024 nodes. The nodes of the CM-5 are
connected by a fat-tree interconnection network, i.e., a tree that has several parallel links
and nodes on higher levels of the tree. The processing nodes are located on the leafs of the
tree. Since the number of upper branches of the fat tree grows with the number of nodes
below, the bandwidth remains constant 5 MB/s (≈ 0.6 MW/s) per processor. Each of the
processing nodes consists of a RISC processor for scalar operations, up to four vector
units and up to four memory banks. Each of the nodes has about 128 MFLOPS (or
128 MOPS) of peak processing power, and, thus, we get B ≈ 200. Besides the main inter-
connection network, the CM-5 also has a control network for barrier synchronization and
a network for parallel prefix (and suffix) operations on simple operations. Because of the
dedicated synchronization network, we can state that S is a small constant. According to
[27], the unidirectional hardware latency between the processors can be as low as 246.
Consequently, we can approximateL ≈ 500 for the shared memory access.

Cray T3E

The T3E parallel computer [25] manufactured by Cray Research is currently one of the
most sold MPP computers available. The T3E can contain up to 2,048 nodes, each of
which includes a Digital Alpha (21164 or 21164A) microprocessor. The processor speeds
range from 300 MHz to 600 MHz depending on the model. The newest one is the
T3E-1200 having theoretical 1200 MFLOPS peak processing power. A more realistic esti-
mation of the speed is 600 MFLOPS. The nodes are connected with a 3-dimensional torus
network with each of the links having 480 MB/s maximum bandwidth to both directions.
The communication subsystem is able to route references to the other nodes autono-
mously, resulting in 2.88 GB/s = 180 Mpackets/s per node. Here we shall consider a
1,024-processor T3E. The diameter of the network is 16, and an average packet goes
through 16 links on a two-way route. Consequently, the system can route at most
180/16 = 11.25 million global packets per second per node. Using the processing power
600 MFLOPS, we get a lower limit B = 54 for the bandwidth inefficiency. The latency of
a shared memory read using the SHMEM library is reported to be L = 450 for the older
generation (375 MHz version) [26].

78. In theory, the architecture supports up to 262,144 nodes, but the wire lengths of the net-
work would be too long.

8.3. Distributed memory parallel computers 173

Fujitsu VPP700E

The Fujitsu VPP700E [35] is a hybrid of the vector supercomputers and the MPP comput-
ers. Each processing node of the VPP700E is a vector supercomputer with 2.2 GFLOPS
of processing power. The machine can have up to 256 processing nodes connected
through a crossbar network. The network has 615 MB/s bandwidth for each processor.
Using 16 bytes/packet, we get B = 57, which is close to the Cray T3E value, but is more
scalable and better guaranteed because of the crossbar topology. Also the latency should
be much less because of the unit diameter.

8.3 Distrib uted memory parallel computers

As the last class of the actual parallel computers, we shall present some message passing
computers. In this class of computers the processors communicate by exchanging mes-
sages instead of being able to reference the memory located in other processing nodes. In
some cases the processing nodes participate in the routing of the packets destined to other
nodes. Typically, the best performance on communication between the nodes can be
achieved using rather long messages.

IBM SP/2

As an example of a classic79 message passing parallel computer we look at the
IBM 9071 SP/2 parallel computer [2]. The nodes of the SP/2 are based on the IBM
RS/6000 workstations. The wide nodes consist of a 66 MHz Power2 RISC processor, an
amount of local memory and one to four local hard discs. The maximum power of the pro-
cessor is 133 MOPS or 266 MFLOPS. The interconnection network is a multistage omega
network made of 8 × 8 crossbar switches. The maximum per processor bandwidth of the
network is 40 MB/s and the reported application-to-application bandwidth is 10 MB/s.
The application-to-application latency is reported to be about 40 µs for a full configura-
tion. Using the more modest 133 MOPS performance estimation and bi-directional com-
munication, we get B ≈ 400, and L ≈ 10,000. We must remember, however, that the above
performance figures are for application-to-application performance measured probably
for the PVM system as opposed to the figures of the other machines, which are the hard-
ware performance figures.

Intel ASCI Red

Intel ASCI Red is a unique parallel computer ordered by the US Department of Energy
for the Sandia National Laboratories, e.g., for simulating the storage of nuclear weapons
[90, 74]. The computer has about 9,000 Pentium Pro microprocessors connected by a two
dimensional mesh similar to the Intel Paragon parallel computer [55] it is based on. The
computer consists of 4,536 processing nodes, each with 2 pieces of 200 MHz processors

79. The current versions (RS/6000 SP models) are about two to three times as fast as the earlier
models.

174 8. MODELING THE EXISTING PARALLEL COMPUTERSWITH THE F-PRAM

totalling 400 MFLOPS of processing power per node. The processing nodes are con-
nected to a three-dimensional mesh having 400 MB/s capacity per link per direction. The
total bisection bandwidth of the machine is 25.8 GB/s per direction. With the previous
assumptions we get

25.8×109 GB/s/ 16B/pckt/ 9072 nodes = 0.178 Mpackets/s, (8-1)

which translates to B ≈ 2,250 even if the network would reach its at peak performance
delivering short messages. The announced topology of the network is an 38×32×2 mesh.
The multiplication results in 2432, and, thus, stands for 4 processors (or 2 processing
nodes) for each network node80. Therefore the diameter of this network is at least 70, and
the total latency L something of the form c1+c2×140, i.e., hundreds in practice. Especially
the bandwidth does not promise good performance if we compare the value 2,250 to the
values of the measurements in Chapter 7. This is because the mesh network does not have
good enough bandwidth to support global communication. Instead, these types of com-
puters have to be programmed by embedding the point-to-point communication pattern to
the topology of the network. Moreover, the ASCI Red is a special purpose computer build
according to the requirements of the specific problem.

8.4 Networks of workstations

In this section we shall consider using networks of workstations (NOW) for parallel com-
puting and especially modeling such computing with the F-PRAM model. The worksta-
tions are designed to be used on the console by a single user, and, thus, have good user
interface capabilities, especially graphics. The development of powerful microprocessors
and the use of workstations for 3D-visualization and other power-demanding tasks have
lead to a situation, where the different workstation manufacturers compete with the float-
ing point processing power of their top-of-the-line workstations. Since the processing
power of a single-user computer is rarely in full use even at daytime, let alone at night, the
workstations form a good unused resource of processing capabilities. By using a large
cluster of workstations in parallel to solve a problem, we can get supercomputer-class the-
oretical performance essentially free81. Recently, the workstation networks have been
used in several very large-scale number theoretical problems. Thousands of volunteers
over the Internet have provided the computing power of their workstations for distributed
cryptoanalysis. The reason for the success of these attempts has been the publicity and
awards for the breaking of the well known cryptosystems. These examples show that some
problems can be efficiently parallelized even with only few kbits of bandwidth and latency
of several seconds.

80. Some network nodes are occupied by the I/O and service nodes.

81. Naturally, the workstations are not free, but the unused power of the existing workstations
is.

8.4. Networks of workstations 175

Workstations

Typical current workstations have 50 to 500 MFLOPS of processing power, 64-512 MBs
of memory, and several MB/s I/O speed. These features, and the graphical display, are
required for their use as stand-alone workstations. When used as nodes of a parallel com-
puter, their weak points are the communication capabilities. Typical workstation networks
are connected with the 10 Mb/s Ethernet networks. The speed is good enough for loading
programs from a remote disk or for remotely using another computer. More advanced net-
works may use a faster 100 Mb/s or 1 Gb/s version of Ethernet, a 100 Mb/s FDDI, or an
ATM network. These speeds are good enough also for transferring accurate still pictures
or even motion pictures in real time if the intermediate routers or collisions do not slow
down the network. The networks are not, however, very good compared to the real parallel
computers. Thus, we have to carefully choose the applications and the algorithms to be
executed in the NOWs.

Networks

The ordinary bus-structured Ethernet connection provides at most 10 Mb/s bandwidth
between two computers. For two word packets of net length of 128 bits and headers of 64
bits, this would translate to 40,000 packets/s. In practice, however, each of the packets
reserves the channel for a longer time, and the real bandwidth would be less than 1,000
packets/s. In F-PRAM terms, this means B = P × W/1000, where W is the processing
power of the workstation in operations/second. For example, using P = 20 and
W = 100 MOPS, we get B = 2,000,000, which means that for every communication we
have to perform two million local operations to maintain full efficiency. The faster Ether-
nets and FDDI networks are at most one order better, which is not very good either. Espe-
cially, the number of short messages in a second is not much larger. The fundamental
problem of these networks is that since they are bus-based, only one node can communi-
cate at a time. Furthermore, the high initialization cost and the rather high minimum
packet size of the FDDI network reduce the throughput using small packets. Via using a
star connection and an Ethernet switch, the computers can communicate concurrently as
long as the connections are point-to-point and distinct. In theory, the 20 workstations
could exploit 10 connections simultaneously. In practice, however, the collisions occur,
and we could hope for 5-fold increase in total bandwidth in theP = 20 system.

The Asynchronous Transfer Mode (ATM) network is not bus-based, but switch con-
nected [15]. The switches on the lowest level connect the workstations together and to the
upper level switches. The switches ensure uniform bandwidth for each workstation by
using usually crossbar switches, which, however, restricts typical maximum switch-sizes
to a dozen or two. Because of the crossbar, each of the nodes can communicate concur-
rently. Furthermore, the ATM network is optimized to deliver rather small packets with
rather short delay. Each ATM packet is of fixed size and consists of 48 bytes of data and
5 bytes of headers, which is only about four times bigger than a standard F-PRAM packet.
Consequently, the switched ATM networks fit much better for implementing the shared
memory F-PRAM model than the bus-based networks. The speed and latency of the ATM
networks depend on the implementation of the switches. A typical speed between the
switch and a single workstation is 25 Mb/s, and between the switches 155-625 Mb/s. If

176 8. MODELING THE EXISTING PARALLEL COMPUTERSWITH THE F-PRAM

the network is planned to be used for F-PRAM parallel computing, the upper-level switch
should have enough bandwidth to deliver nearly all messages from the lower switches. We
shall consider a 8 × 7 = 56-processor network consisting of clusters of 7 processors con-
nected via a 25 Mb/s link to each of the 8 lower level switches, which are connected via
a 155 Mb/s link to an upper level switch. On average, 7/8 of the messages of each of the
7 connected processors go to the upper level switch when emulating shared memory.
From each of the lower levels to the upper level goes thus 7 × 7/8 × 25 Mb/s = 153 Mb/s,
which fits to the 155 Mb/s per connection bandwidth of the upper switch. Consequently,
each of the processing nodes sees the 25 Mb/s ≈ 59 kpackets/s global bandwidth. For the
100 MOPS workstation, we get B ≈ 1700, which is not much larger than the B of the
weakest parallel computers we presented in the previous sections. The latency of the ATM
networks depend heavily on the implementation of the switches and the ATM interface
cards of the workstations. Furthermore, the F-PRAM parameters depend on the shared
memory emulation software used in each of the nodes. Consequently we shall not give
here any values for the latency, or any other parameters.

Block references

Since delivering the standard 2-word long F-PRAM packets in workstation networks is
not very efficient, the block references, which we defined in Subsection 4.3.2, are very
useful for the parallel computations in the workstation networks. The block communica-
tion delay L+k × BB models, e.g., the Ethernet network rather well. Using previous values
with 64-bit words, we get BB = 12,800, which is much better than the earlier
B = 2,000,000. In practice, using packets having about a hundred words, we can exploit
nearly the full bandwidth of the Ethernet. The hundred word requirement is not very
restricting since most computationally intensive data parallel applications include rather
long vectors. In an ATM network the advantage of the blocking of the references is not
equally essential, but it helps. Using the 64-bit words, we get BB = B/5 since we can
deliver five words in each packet at cost of one word. For the ATM network of the above
example, we getBB ≈ 340.

8.5 A sketch of an experimental FPM implementation

To make more accurate estimations on the values of the F-PRAM parameters in different
parallel computers, we should measure them. To gain the full performance of each parallel
computer, we would need to optimize each program separately for the architecture. This
approach is not our goal. Instead, we are interested in testing how well the current parallel
computers would execute our F-PRAM programs. This can be answered by evaluating the
F-PRAM parameters for the computers using the F-PRAM primitives instead of the native
primitives of the computers. Of course, the F-PRAM primitives have to be implemented
using the native primitives, but in any case we want to know the costs of the F-PRAM
primitives.

To be comparable with our previous experiments, the implementation of the
F-PRAM model should use futures for shared memory access and par-do statements for
parallelism presentation. The actual language is not as important. The value of the FPM

8.5. A sketch of an experimental FPM implementation 177

language and compiler presented in the previous section was that we could emulate the
execution easily using the F-PRAM emulator. Efficient and optimized compilation for real
parallel machines would, however, require a much more complex compiler. Consequently,
instead of trying to beat the existing state-of-the-art compilers, we should use them. More
accurately, we could cross-compile the FPM source code to the native efficiently com-
pileable language of the target machine. If the F-PRAM primitives can be efficiently
expressed in terms of the efficient native primitives, the resulting implementation should
be reasonably efficient.

Matching of FPM to C with SHMEM libraries of the Cray T3E

As an example of the cross-compilation we sketch the compilation from FPM to the C
with SHMEM (Shared memory routines) libraries of the Cray T3E. Compiling a proce-
dural language to another is relatively easy. Especially compiling from Modula-2 to C
seems to be very straightforward.

The SHMEM library of the Cray T3E includes put and get primitives to write and
read data to and from the memory of another processing node. These can be used for
implementing the fwrite and future statements of the FPM. Especially block references
should result in efficient exploitation of the interconnection network [26]. The only miss-
ing feature is the asynchronous get. Due a design choice of the T3E processing nodes the
processors wait idle the time while the network connection hardware takes care of the
transferring the data from the remote memory to the local memory. In F-PRAM terms this
would meanBP = L in case of futures. Theput works asynchronously as the fwrite should.
Remembering the difference in the impacts of latency and overhead in Section 7.1, the
BP = L = 450 is not very good. L = 450 does not impact the performance of the sorting a
lot, but BP = 450 affects an order of magnitude in execution time. The solution for this
problem is to use larger block references to reduce the impact of long idling of the pro-
cessor. The solution would not, however, be in par with the F-PRAM ideology. The lack
of the asynchronous get was the reason why we abandoned our plans to do an experimen-
tal implementation in this thesis.

The SHMEM library does not provide a flat memory structure to exploit. Conse-
quently, we have to implement the shared memory abstraction on top of the local memory
systems. At the begin of the computation, each processor allocates a block of local mem-
ory to be used as a block of the shared memory. Each shared memory reference, more
accurately address, is then transformed to a processing node number, local address pair
using a suitable hash function. The choice of the hash function is probably the most
important issue in an efficient implementation.

The parallelism handling method of our existing FPM implementation can be
directly used in the C version. Each par-do statement of the FPM code can be imple-
mented as a C version of Algorithm 6-2. As with the current implementation, we just have
to maintain a stack of the values of Ps and PIDs. Similarly, we have to introduce a pre-
defined variable for each of the F-PRAM parameters. The variables are assigned at the ini-
tialization stage of the execution.

178 8. MODELING THE EXISTING PARALLEL COMPUTERSWITH THE F-PRAM

Another alternative

A more portable translation would be to use the direct remote memory access (DRMA)
routines of the BSPlib [49]. The BSPlib includes routinesbsp_hpget and bsp_hpput sim-
ilar to the Cray SHMEM routines. Unfortunately, we feel that the goal of asynchronous,
low overhead shared memory read, i.e., the future, cannot easily implemented with these
routines either.

179

Chapter 9

Conclusions, critique, and future research

n the previous chapters we motivated and defined the new model of parallel com-
putation called F-PRAM. In this chapter we draw conclusions about the results
and especially sketch the future development of the F-PRAM model.

Contrib utions

We have defined yet another parameterized computation model. The most important
parameters do not differ much from the other existing models, such as the BSP and LogP.
Compared to the existing parameterized models, however, we present some new features
and a new combination of the existing features. The distinct features are

• data-oriented communication through the shared memory,
• use of the asynchronous futures for shared memory references,
• full asynchrony of the components (including the processors and the shared

memory) of the computer, and a separate synchronization primitive, and
• a rather large set of secondary parameters for more accurate analysis.

We believe that these features provide a usable compromise especially for the program-
mer of parallel computers. Efficient concurrency of the computation and communication
is very important for optimal performance. The shared memory based communication
makes the data-oriented algorithms easier to write than using the process-oriented mes-
sage passing models. The futures present a clean primitive for prefetching of the needed
data. Compared to the other latency hiding methods, the futures require less processor
employment and require no additional processor logic. Especially the asynchronous
return of the future requests makes, e.g., tables of pending references needless within the
processor. Also, as we do not require sequential consistency of shared memory references,
the interconnection network may be easier to implement.

To support the computation model, we have defined a programming model and
implemented it experimentally. This allowed us to write explicit executable programs for
the F-PRAM model. The programming model supports the primitives of the computation
models and aids the programmer to write portable programs.

To be able to study the impacts of the different parameters, we have designed and
implemented a fully configurable emulator system of an abstract F-PRAM computer. By

180 9. CONCLUSIONS, CRITIQUE, AND FUTURE RESEARCH

using different configurations of the emulator system, we can study the impacts of the
F-PRAM parameters without implementing the algorithm for different real parallel com-
puter architectures. Especially we can study how much non-optimal features different par-
allel algorithms can tolerate without significant slowdown. The formal analysis on these
constants of minimum requirements would be quite difficult.

Using the FPM language and our emulator system, we have implemented and anal-
ysed a set of example algorithms. Each of these examples has a distinct nature, and the
results are thus different. In all cases we have been able to study the efficiency of parallel-
ization in a form of speedup, and the impacts of the F-PRAM parameters. We have been
able to present the limits of efficient execution in terms of the primary parameters P, B,
andL.

To relate our model and the results of the measurements to the real world, we have
studied some parallel computers in F-PRAM terms. Any accurate statements of parallel
computers would require actual implementations, which would require access to the com-
puters and significant programming efforts. Instead we made some estimations of the val-
ues of the F-PRAM parameters in some parallel computers in Chapter8.

As a conclusion of this thesis, Figure9-1 presents the relational schema of the key
concepts and relations of the F-PRAM model. As the model itself, also the schema
requires some streamlining to appear more appealing.

ch
ar

ac
te

riz
es

algorithm

parallel computer

FPM programming
F-PRAM model model

F-PRAM
emulator system

gu
id

es
 th

e
de

si
gn

 o
f

is analysed
using

is implemented with

models atheoretical

is
 e

xe
cu

te
d

us
in

g

is a testbed

im
plem

entation of

implements the
primitives of

is programmed
using

Figure 9-1: Relations of the key concepts of the F-PRAM model. Read in
direction of the arrows.

9. CONCLUSIONS, CRITIQUE, AND FUTURE RESEARCH 181

Futur e research

As we have stated several times, all the current, and probably forthcoming, parallel com-
puters have physically modularized shared memories. The current collection of measured
results lack the data concerning the modularized shared memory and the simulated inter-
connection network. These are due to the shortage of these features in our experimental
emulator system. We have not analytically studied the routing and congestion problems
since they form another extensively studied complex problem. Consequently, our imme-
diate future research should include rewriting of the emulation of the shared memory.

On the programming side we need more refined analysis of the use of the parameters
BM and M to avoid the congestions. Another important aspect of the shared memory per-
formance is the fact that for most of the current computers the parametersBV andBM have
values less than one, i.e., a single memory module or location cannot serve even one ref-
erence in one processor clock cycle. Consequently, to achieve good shared memory band-
width, the parallel machine has to have more than P memory modules. More formally, we
need to analyse the optimal ratios of the values of the parametersB, BM andM. Moreover,
the use of the parameter BB, block transfer inefficiency, would have a considerable impact
on the requirements of the number and the structure of the shared memory modules.

An interesting and useful research subject would be the usage of the F-PRAM cost
model for the analysis of message passing algorithms. The cost model would need only
minor changes, mostly on the secondary parameters. Furthermore, the message passing
cost model would require a computation model which would define, for example, the mes-
sage passing protocol. A practical implementation would consist of the inclusion of the
F-PRAM parameters in the MPI message passing library.

182 9. CONCLUSIONS, CRITIQUE, AND FUTURE RESEARCH

183

References

All URL addresses were valid at September 30th 1998.

[1] Agarwal A., Kubiatowicz J., Kranz D., Lim B.-H., Yeung D., D’Souza G., Parking
M. 1993: Sparcle: An Evolutionary Processor Design for Large-Scale Multiproces-
sors.IEEE Micro, 13,3, pages 48-61.

[2] Agerwala T., Martin J. L., Mirza J. H., Sadler D. C., Dias D. M., Snir M. 1995: SP/2
System Architecture.IBM Systems Journal, 34,2, pages 152-184.

[3] Aggarwal A., Chandra A. K., Snir M. 1989: On Communication Latency in PRAM
Computations. In Proceedings of 1st ACM Symposium on Parallel Algorithms and
Architectures, pages 11-21. ACM Press, New York, NY.

[4] Ajtai M., Komlós J., Szmerédi E. 1983: An O(n log n) Sorting Network. Combina-
torica, 3,1, pages 1-19.

[5] Akl S. G. 1985:Parallel Sorting Algorithms. Academic Press, San Diego, CA

[6] Alexandrov A., Ionescu M. F., Schauser K. E., Scheiman C. 1995: LogGP: Incor-
porating Long Messages into LogP Model. Proceedings of 7th ACM Symposium on
Parallel Algorithms and Architectures, pages 95-105. ACM Press, New York, NY.

[7] Almasi G. S., Gottlieb A. 1994: Highly Parallel Computing, 2nd ed. Benja-
min/Cummings, Redwood City, CA.

[8] Alverson R., Callahan D., Cummings D., Koblenz B., Porterfield A., Smith B.
1990: The Tera Computer System. In Proceedings of 1990 International Confer-
ence on Supercomputing, pages 1-6. IEEE CS Press, Los Alamitos, CA.

[9] Andrews G. R., Olsson R. A. 1993: The SR Programming Language: Concurrency
in Practice. Benjamin/Cummings, Redwood City, CA.

[10] ANSI 1983: Reference Manual for the Ada Programming Language. ANSI/MIL-
STD-1815A-1983. Castle House, Turnbridge Wells.

184 REFERENCES

[11] Arvind, Nikhil R. S. 1990: Executing a Program on the MIT Tagged-Token Data-
flow Architecture.IEEE Transactions on Computers, 39,3, pages 300-318.

[12] Bar-Noy A., Kipnis S. 1992: Designing Broadcasting Algorithms in the Postal
Model for Message-Passing Systems. Proceedings of 4th ACM Symposium on Par-
allel Algorithms and Architectures, pages 13-22. ACM Press, New York, NY.

[13] Batcher K.E. 1968: Sorting Networks and their Applications. Proceedings of the
AFIPS Spring Joint Computer Conference, pages 307-314.

[14] Bilardi G., Herley T. K., Pietracapina A., Pucci G., Spirakis P. 1996: BSP vs. LogP.
Proceedings of 8th ACM Symposium on Parallel Algorithms and Architectures,
pages 25-32. ACM Press, New York, NY.

[15] le Boudee J.-Y. 1992: The Asynchronous Transfer Mode: a tutorial. Computer Net-
works and ISDN Systems, 24,4, pages 279-309.

[16] Blelloch G. E. 1989: Scans as Primitive Parallel Operations. IEEE Transactions on
Computers, 38,11, pages 1526-1538.

[17] Blelloch G. E., Gibbons P. B., Matias Y., Zagha M. 1997: Accounting for Memory
Bank Contention and Delay in High-Bandwidth Multiprocessors. IEEE Transac-
tions on Parallel and Distributed Computing, 8,9, pages 943-958.

[18] Bosch M., Franziskus S. 1994: SB-PRAM simulator. Universität des Saarlandes,
Computer Science Department.
(http://www-wjp.cs.uni-sb.de/projects/sbpram/software.html).

[19] Brewer E. A., Dellarocas C. N., Colbrook A., Weihl W. E. 1991: Proteus: A High-
Performance Parallel-Architecture Simulator. Technical Report MIT/LCS/TR-516.
Massachusetts Institute of Technology.

[20] Callahan D., Smith B: A Future-based Parallel Language for a General-purpose
Highly-parallel computer. Manuscript. (http://www.tera.com/).

[21] Chandra R., Gupta A., Hennessy J. L. 1994: COOL: An Object-Based Language
for Parallel Programming.IEEE Computer, 27,8, pages 14-26.

[22] Cole R. 1986: Parallel Merge Sort. SIAM Journal of Computing, 17,4, pages 770-
785.

[23] Cole R., Zajicek O. 1989: The APRAM: Incorporating Asynchrony into the PRAM
Model. In Proceedings of 1st ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 169-178. ACM Press, New York, NY.

[24] Cormen T. H., Leiserson C. E., Rivest R. L. 1990: Introduction to Algorithms. MIT
Press, Cambridge, MA.

[25] Cray Research 1995:T3E Product Information. (http://www.cray.com/).

REFERENCES 185

[26] Cray Research 1997: Cray T3E Optimization, TR-T3EOPT (D). Cray Research,
Eagan, MN.

[27] Culler D. E., Dusseau A. C., Martin R. P., Schauser K. E. 1993: Fast Parallel Sort-
ing Under LogP: From Theory to Practice. In Portability and Performance for Par-
allel Processing, pages 71-98. Wiley, New York, NY.

[28] Culler D., Karp R., Patterson D., Sahay A., Schauser K., Santos E., Subramonian
R., von Eicken T. 1993: LogP: Towards a Realistic Model of Parallel Computation.
In Proceedings of 4th ACM Conference on Principles & Practices of Parallel Pro-
gramming, pages 1-12. ACM Press, New York, NY.

[29] Dongarra J. J. 1998: Performance of Various Computers Using Standard Linear
Equations Software. Technical Report, University of Tennessee.

[30] Flynn M. J. 1972: Some Computer Organizations and their Effectiveness. IEEE
Transactions on Computers, 21,9, pages 948-960.

[31] Free Software Foundation 1998: GCC - The GNU C Compiler (version 2.8.0).
(http://www.gnu.org/).

[32] Forsell, M. 1994: Are Multiport Memories Physically Feasible? Computer Archi-
tecture News, 22,4, pages 47-54.

[33] Forsell, M. 1997: MTAC—A Multithreaded VLIW Architecture for PRAM Simu-
lation.Journal of Universal Computer Science, 3,9, pages 1037-1055.

[34] Fortune S., Wyllie J. 1978: Parallelism in Random Access Machines. In Proceed-
ings of the 10th ACM Symposium on Theory of Computing, pages 114-118. ACM
Press, New York, NY.

[35] Fujitsu Ltd 1998:VPP700E Product Information. (http://www.fujitsu.co.jp/).

[36] Gajski D. D., Padua D. A., Kuck D. J. 1982: A Second Opinion on Data Flow
Machines and Languages.Computer, 15,2, pages 58-69.

[37] Geist A., Beguelin A., Dongarra J., Jiang W., Manchek R., Sunderam V. 1993:
PVM 3.0 User’s Guide and Reference Manual. Oak Ridge National Laboratory,
Report TM-12187.

[38] Gibbons P. B. 1989: A More Practical PRAM Model. In Proceedings of 1st ACM
Symposium on Parallel Algorithms and Architectures, pages 158-168. ACM Press,
New York, NY.

[39] Gibbons P. B. 1996: What Good are Shared-Memory Models? 1996 International
Conference on Parallel Processing, Workshop on Challenges in Parallel Process-
ing, pages 103-114.

186 REFERENCES

[40] Gibbons P. B., Matias Y., Ramachandran V. 1994: Efficient Low-Contention Paral-
lel Algorithms. In Proceedings of 6th ACM Symposium on Parallel Algorithms and
Architectures, pages 236-247. ACM Press, New York, NY.

[41] Gottlieb A., Grishman R., Kruskal C. P., McAuliffe K. P., Rudolph L., Snir, M.
1983: The NYU Ultracomputer – Designing an MIMD Shared Memory Parallel
Computer. IEEE Transactions on Computers, 32,2, pages 175-189.

[42] Halstead R. H. 1985: Multilisp: A Language for Concurrent Symbolic Computa-
tion. ACM Transactions on Programming Languages and Systems, 7,4, pages 501-
538.

[43] Harary F. 1972:Graph theory. Addison-Wesley, Reading, MA.

[44] Hayes J. P., Mudge T. N., Stout Q. F., Colley S., Palmer J. 1986: Architecture of a
Hypercube Supercomputer. In Proceedings of the International Conference in Par-
allel Processing, pages 653-660.

[45] Hennessy J. L., Patterson D. A. 1990: Computer Architecture: a quantitative
approach. Morgan Kaufmann, San Mateo, CA.

[46] Heywood T., Ranka S. 1992: A Practical Hierarchical Model of Parallel Computa-
tion. Journal of Parallel and Distributed Computing, 16,3, pages 212-232.

[47] High Performance Fortran Forum 1993: High Performance Fortran Language
Specification. Version 1.0.Fortran Forum, 12,4, Special Issue.

[48] Hill J. M. D. 1997: BSP Cost Parameters, Sorted by Megaflof/s Rate, for the Oxford
BSP Toolset. Oxford University Computing Laboratory.
(http://www.bsp-worldwide.org/).

[49] Hill J. M. D., McColl W. F., Stefanescu D. C., Goudreau M. W., Lang K., Rao S.
B., Suel T., Tsantilas T., Bisseling R. 1997: BSPlib: The BSP Programming
Library. Technical report PRG-TR-29-9, Oxford University Computing Labora-
tory.

[50] Hillis D. W. 1985:The Connection Machine. MIT Press, Cambridge, MA.

[51] Hoare C. A. R. 1978: Communicating Sequential Processes. Communications of
the ACM, 21,8, pages 666-677.

[52] Hoare C. A. R. 1985: Communicating Sequential Processes. Prentice-Hall, New
York, NY.

[53] Hämäläinen P. 1992: An PRAM Emulator. University of Joensuu, Department of
Computer Science, Report B-1992-1.

[54] INMOS Limited 1988:occam 2 Reference Manual. Prentice-Hall, New York, NY.

REFERENCES 187

[55] Intel Corporation 1991: Intel Paragon Product Information. (http://www.intel.com/).

[56] Iverson K. E. 1962:A Programming Language. Wiley, New York, NY.

[57] Jájá J. 1992: An Introduction to Parallel Algorithms. Addison-Wesley, Reading,
MA.

[58] Jájá J., Ryu K. W. 1996: The Block Distributed Memory Model. IEEE Transactions
on Parallel and Distributed Systems, 8,7, pages 830-840.

[59] Juurlink B. H. H., Wijshoff H. A. G. 1996: A Quantitative Comparison of Parallel
Computation Models. Proceedings of 8th ACM Symposium on Parallel Algorithms
and Architectures, pages 13-24. ACM Press, New York, NY.

[60] Juvaste S. 1992: An Implementation of the Programming Language pm2 for PRAM.
University of Joensuu, Department of Computer Science, Report A-1992-1.

[61] Juvaste S. 1996: Reasoning of a Parallel Computation Model. Licentiate Thesis,
University of Joensuu, Department of Computer Science.

[62] Karp R., Ramachandran V. 1988: A survey of parallel algorithms for shared-mem-
ory machines. In Handbook of Theoretical Computer Science. Elsevier, Amster-
dam.

[63] Knuth D. E. 1997: The Art of Computer Programming, Volume 1: Fundamental
Algoritms, 3rd ed. Addison-Wesley, Reading, MA.

[64] Knuth D. E. 1997: The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, 3rd ed. Addison-Wesley, Reading, MA.

[65] Kruskal C. P., Rudolph L., Snir M. 1985: The Power of Parallel Prefix. In Proceed-
ings of the 1985 International Conference on Parallel Processing, pages 180-185.
IEEE CS Press, Washington.

[66] Kruskal C. P., Rudolph L., Snir M. 1990: A Complexity Theory of Efficient Parallel
Algorithms.Theoretical Computer Science, 71,1, pages 95-132.

[67] Laudon J., Lenoski D. 1997: The SGI Origin: A ccNUMA Highly Scalable Server.
In Proceedings of the 24th Annual International Symposium. on Computer Archi-
tecture, pages 241-251. ACM Press, New York, NY.

[68] Lawson C., Hanson R., Kincaid D., Krogh F. 1979: Basic Linear Algebra Subpro-
grams for Fortran Usage. ACM Transactions on Mathematical Software, 5,3, pages
308-371.

[69] Leighton T. F. 1992: Introduction to Parallel Algorithms: Arrays, Trees, Hyper-
cubes. Morgan Kaufmann, San Mateo, CA.

188 REFERENCES

[70] Leppänen V. 1996: Studies on the Realization of PRAM. Ph.D. Theses, TUCS Dis-
sertations No 3, Turku Centre for Computer Science.

[71] Maggs B. M., Matheson L. R., Tarjan R. E. 1995: Models of parallel computation:
a survey and synthesis. Proceedings of the 28th Hawaii International Conference
on System Sciences, vol. 2, pages 61-70.

[72] Martel C., Raghunathan A. J. 1994: Asynchronous PRAMs with Memory Latency.
Journal of Parallel and Distributed Computing, 23,1, pages 10-26.

[73] Mascarenhas E., Knop F., Rego V. 1995: ParaSol: a Multithreaded System for Par-
allel Simulation Based on Mobile Threads. Proceedings of the 1995 Winter Simu-
lation Conference, pages 690-697. ACM Press, New York, NY.

[74] Mattson T., Henry G. 1998: An Overview of the Intel TFLOPS Supercomputer.
Intel Technology Journal, Q1/1998.

[75] Melhorn K, Vishkin U. 1985: Randomized and Deterministic Simulations of
PRAMs by Parallel Machines with Restricted Granularity of Parallel Memories.
Acta Informatica, 21, pages 339-374.

[76] Message Passing Interface Forum 1995: MPI: A Message-Passing Interface Stan-
dard, version 1.1. (http://www.mpi-forum.org/).

[77] Message Passing Interface Forum 1997: MPI-2: Extensions to the Message-Pass-
ing Interface. (http://www.mpi-forum.org/).

[78] Metcalf M., Reid J. 1992: Fortran 90 Explained. Oxford University Press, Oxford.

[79] Miyoshi H. et. al. 1994: Development and Achievement of NAL Numerical Wind
Tunnel (NWT) for CFD computations. In Proceedings of Supercomputing ‘94,
pages 685-692. IEEE CS Press, Los Alamitos, CA.

[80] Natvig L. 1990: Logarithmic Time Cost Optimal Parallel Sorting is not yet Fast in
Practice! In Proceedings of Supercomputing ‘90, pages 486-494. IEEE CS Press,
Los Alamitos, CA.

[81] Natvig L. 1991: Evaluating Parallel Algorithms, Theoretical and Practical
Aspects. Ph.D. Thesis, Norwegian Institute of Technology. NTH-Trygg, Trond-
heim.

[82] Nishimura N. 1990: Asynchronous Shared Memory Parallel Computation. In Pro-
ceedings of 1st ACM Symposium on Parallel Algorithms and Architectures, pages
76-84. ACM Press, New York, NY.

[83] OpenMP Architecture Review Board 1997: OpenMP Fortran Application Program
Interface 1.0. (http://www.openmp.org/).

REFERENCES 189

[84] Papadimitriou C., Yannakis M. 1988: Towards an Architecture-Independent Anal-
ysis of Parallel Algorithms. Proceedings of 20th ACM Symposium on Theory of
Computing, pages 510-513. ACM Press, New York, NY.

[85] Papadopoulos G. 1995: Taking sides on the SMP/MPP/Cluseter Debate. Keynote
speech in the 1st International EURO-PAR Conference, LNCS 966, page 3,
Springer-Verlag, Berlin.

[86] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. 1988: Numerical Rec-
ipes in C: The Art of Scientific Computing. Cambridge University Press, Cam-
bridge.

[87] Ranade A. 1991: How to Emulate Shared Memory. Journal of Computer System
Sciences, 42,3, pages 307-327.

[88] Rao S. B. 1992: Properties of an Interconnection Architecture based on Wavelength
Division Multiplexing. Technical Report TR-92-009-3-0054-2, NEC Research
Institute, Princeton.

[89] Rosenblum M., Bugnion E., Devine S., Herrod S. A. 1997: Using SimOS Machine
Simulator to Study Complex Computer Systems. ACM Transactions on Modeling
and Computer Simulation, 7,1, pages 78-103.

[90] Rowell J. 1995: Intel Captures $46M TeraFLOP Supercomputer Development
Contract.HPCwire, 4,36.

[91] Shepherdson J. C., Sturgis H. E. 1963: Computability of Recursive Functions.
Journal of the ACM, 10,2, pages 217-255.

[92] Siegel H. J. 1990: Interconnection Networks for Large-scale Parallel Processing,
Theory and Case Studies, 2nd Ed. McGraw-Hill, New York, NY.

[93] Silberman J. et. al. 1998: A 1.0 GHz Single-Issue 64b PowerPC Integer Processor.
1998 IEEE International Solid State Circuit Conference.

[94] Silicon Graphics Inc. 1995:Power Challenge Technical Report.
(http://www.sgi.com/).

[95] Skillicorn D. B. 1991: Models for Practical Parallel Computation. International
Journal of Parallel Programming, 20,2, pages 133-158.

[96] Strassen V. 1969: Gaussian Elimination is not Optimal. Numerische Matematic,
14,3, pages 354-356.

[97] Sun Microsystems:Sun HPC 10000 Product Information. (http://www.sun.com/).

[98] Thinking Machines Corporation 1991: The Connection Machine CM-5 Technical
Summary.

190 REFERENCES

[99] de la Torre P., Kruskal C. 1991: Towards a Single Model of Efficient Computation
in Peal Parallel Machines. In Proceedings of Parallel Languages, Europe, LNCS
505, pages6-24, Springer-Verlag, Berlin.

[100] Tucker L. W., Robertson G. G. 1988: Architecture and Applications of the Connec-
tion Machine.Computer, 21,88, pages 26-38.

[101] Uthus I., Dybdahl H. 1997: Simulation of the BSP Model on Different Computer
Architectures. Manuscript. Norwegian University of Science and Technology,
Department of Computer Science.

[102] Utsumi T., Ikeda M., Takamura M. 1994: Architecture of the VPP500 parallel
supercomputer. In Proceedings of Supercomputing ‘94, pages 478-487. IEEE CS
Press, Los Alamitos, CA.

[103] Valiant L. G. 1990: General Purpose Parallel Architectures. In Handbook of Theo-
retical Computer Science, pages 943-971. Elsevier, Amsterdam.

[104] Valiant L. G. 1990: A Bridging Model for Parallel Computation. Communications
of the ACM, 33,8, pages 103-111.

[105] Veräjäntausta J. 1998: An F-PRAM Emulator. University of Joensuu, Department
of Computer Science, Report B-1998-2. (ftp://cs.joensuu.fi/).

[106] Vishkin U. 1992: A Case for the PRAM As a Standard Programmer’s Model. In
Proceedings of Parallel Architectures and Their Efficient Use, pages 11-19.

[107] Vitányi P. M. B. 1988: Locality, Communication, and Interconnection Length in
Multicomputers.SIAM Journal of Computing, 17,4, pages 659-672.

[108] Vitter J. S., Simons R. A. 1986: New classes for parallel complexity: a study of uni-
fication and other complete problems for P. IEEE Transactions on Computers, 35,5,
pages 403-418.

[109] Wulf W. A., Levin R., Harbison S. P. 1981: Hydra/C.mmp: An Experimental Com-
puter System. McGraw-Hill, New York, NY.

Dissertations at the Department of Computer Science

Rask, Raimo. Automating Estimation of Software Size During the Requirements Speci-

fication Phase - Application of Albrecht’s Function Point Analysis Within Structured

Methods. Joensuun yliopiston luonnontieteellisiä julkaisuja, 28 – University of Joensuu.

Publications in Sciences, 28. 128 p. Joensuu, 1992.

Ahonen, Jarmo. Modelling Physical Domains for Knowledge Based Systems. Joensuun

yliopiston luonnontiteellisiä julkaisuja, 33 – University of Joensuu. Publications in Sci-

ences, 33. 127 p. Joensuu, 1995.

Kopponen, Mar ja. CAI in CS. University of Joensuu, Computer Science,

Dissertations1. 97 p. Joensuu, 1997.

Forsell, Mar tti. Implementation of Instruction-Level and Thread-Level Parallelism in

Computers, University of Joensuu, Computer Science, Dissertations 2. 121 p. Joensuu,

1997.

Juvaste, Simo. Modeling Parallel Shared Memory Computations, University of Joensuu,

Computer Science, Dissertations3. 190 p. Joensuu, 1998.

