
UNIVERSITY OF JOENSUU

COMPUTER SCIENCE

DISSERTATIONS 6

Stephen Eriksson-Bique

AN ALGEBRAIC THEORY OF MULTIDIMENSIONAL ARRAYS

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of

Science of the University of Joensuu, for public criticism

in Auditorium Louhela of the Carelian Science Park,

Länsikatu 15, Joensuu, on April 12th, 2002, at 12 noon.

UNIVERSITY OF JOENSUU

2002

Julkaisija Joensuun yliopisto

Publisher University of Joensuu

Toimittaja Jussi Parkkinen

Editor

Vaihdot Joensuun yliopiston kirjasto, vaihdot

PL 107, 80101 JOENSUU

puh. (013) 251 2677, fax (013) 251 2691

email: vaihdot@joensuu.fi

Exchanges Joensuu University Library, Exchanges

P.O. Box 107, FIN-80101 Joensuu, FINLAND

tel. +358 13 251 2677, fax +358 13 251 2691

email: vaihdot@joensuu.fi

Myynti Joensuun yliopiston kirjasto, julkaisujen myynti

PL 107, 80101 JOENSUU

puh. (013) 251 2652, fax (013) 251 2691

email: joepub@joensuu.fi

Sales Joensuu University Library, Sale of Publications

P.O. Box 107, FIN-80101 Joensuu, FINLAND

tel. +358 13 251 2652, fax +358 13 251 2691

email: joepub@joensuu.fi

ISSN 1238-6944

ISBN 952-458-108-6

UDK 519.682

Computing Reviews (1998) Classification: D.1.1, D.3.1, D.3.2, D.3.3, E.1

Yliopistopaino

Joensuu 2002

AN ALGEBRAIC THEORY OF MULTIDIMENSIONAL ARRAYS

Stephen Eriksson-Bique

Department of Computer Science

University of Joensuu

P.O. Box 111, FIN-80101 Joensuu, FINLAND

Stephen.Eriksson-Bique@Joensuu.FI

University of Joensuu, Computer Science, Dissertations 6

Joensuu, April 2002, 278 pages

ISSN 1238-6944, ISBN 952-458-108-6

Keywords: applicative programming, categorical data type, homomorphism, primitive

An algebra of programming for multidimensional arrays is presented. This new calculus

enhances software development as in the theory of lists and provides a complete theory for

the data type as in More’s Array Theory. An architecture-independent approach is taken

that allows program derivation and optimization. Multidimensional arrays have a single

type. Notation and terminology are introduced to facilitate reasoning about arrays. New

definitions help to simplify some of the definitions and proofs. A set of primitive operations

is defined. This set represents the data type as in abstract data types and includes new

functions that account for common program structures. Arrays are equipped with all of

their known properties and features, and with appropriate tools to take advantage of all of

their dimensions. Yet, the theory is concise. A sound methodology is prescribed to define

primitive operations instead of freely defining functions ad hoc. Mainly, operations are de-

fined in a structured way without using indices. A constructive theory is developed which

includes useful identities, properties and laws. The formulas lack many of the indices typ-

ically required. Array homomorphisms are explicitly classified. Generic programming

is possible using templates for different computations. Programming techniques are ex-

plained. Case studies are done which show that programs can be written at a low-level

using fine grain parallelism.

To Sirkka-Liisa, Anna-Maria, Sylvester and Linda

ACKNOWLEDGEMENTS

The Ph.D. candidate thanks Professor Elena Trichina for invaluable advice,

guidance and support as supervisor, Professor Roope Kaivola for serving as re-

viewer, ProfessorMartti Penttonen for supervising the study program and serving

as reviewer, Professor Jean-Luc Gaudiot for serving as opponent and Professor

Jussi Parkkinen for serving as custodian.

The candidate acknowledges the Department of Computer Science at the Uni-

versity of Joensuu for a scholarship and for teaching and research positions, East

Finland Graduate School in Computer Science and Engineering for a research

post, Computer Science Research Foundation (Tietotekniikan tutkimussäätiö) for

a grant, Professor Elena Trichina for providing full financial support to visit the

University of South Australia in Adelaide and McQuarry University in Sydney,

and the U.S. government for an American Fulbright Award.

vi

CONTENTS

1 INTRODUCTION 1

1.1 Conventions . 2

1.2 Data Types . 4

1.3 Mathematical Background . 5

1.4 A Review of Literature . 11

1.5 Approach and Goals . 26

1.6 Contributions of this Thesis . 28

1.7 Organization of the Text . 29

2 A SURVEY OF ARRAYS 30

2.1 How to Define Primitives . 30

2.2 Elementary Functions . 34

2.3 Representation . 39

2.4 Implementation . 40

2.5 Summary of Elementary Notation 42

3 A FOUNDATION FOR ARRAYS 43

3.1 Array Model . 43

3.2 Constructors . 56

3.3 Destructors . 61

3.4 Abstractors . 74

3.5 Macros . 90

3.6 Examples . 91

3.7 Review . 92

4 A CONSTRUCTIVE THEORY 95

4.1 Fundamental Identities . 95

4.2 Array Forms . 101

4.3 Homomorphisms . 107

4.4 Laws and Properties . 133

4.5 Expressiveness . 138

4.6 Summary . 139

CONTENTS vii

5 PROGRAMMING EXAMPLES 143

5.1 Destructors . 144

5.2 Pairing Operations . 148

5.3 Partitioning Operations . 151

5.4 Transformations . 153

5.5 Higher-Order Functions . 158

5.6 Array Products . 159

5.7 Summary . 164

6 NEAR HOMOMORPHISMS 166

6.1 Map and Reduce . 166

6.2 Parentheses Matching . 168

6.3 Pattern Matching . 174

6.4 Digit Serial Computations . 178

6.5 Summary . 194

7 FUTUREWORK 195

REFERENCES 205

APPENDIX 215

INDEX 268

1

CHAPTER 1

INTRODUCTION

U
seful models along with simple complete theories for array expressions are

important since array data structures are popular with numerous applica-

tions in biology, economics, engineering, image processing, physics, prob-

ability and statistics. Kenneth Iverson demonstrated successfully how mathematical

expressions for arrays, not simply expressions for variables as in FORTRAN, could be

built into a programming language. John Backus advocated an algebra of program-

ming. Trenchard More advocated developing complete and independent theories for

data types. Several attempts have been made during the past two decades to develop

suitable theories for arrays. T. More, J. Reynolds, L. Mullin, R. Bird, R. Miller, C.

Banger and D. Skillicorn propose different models, primitive operations, notation, and

terminology.

The main task is to construct a set of primitive operations for programming with

multidimensional arrays using mainly structured operations to achieve an algebra of

programming that permits the derivation and optimization of programs as in the theory

of lists (Bird, 1990, 1987, Skillicorn, 1990), which enhances software development

(Axford and Joy, 1993, Backus, 1978, Bird, 1989a, Manes and Arbib, 1986, More,

1979, Mou and Hudak, 1988, Skillicorn, 1990). Using a purely algebraic approach as

in category theory (Spivey, 1989) allows only a few primitive operations to construct

the data type. This work shows how to expand such a set of primitive operations in a

concise, coherent and practical framework.

A primitive model, concise notation and descriptive terminology are introduced to

facilitate reasoning about arrays. The data type is treated independently. The set of

primitive operations represents the data type as in abstract data types. Moreover, this

set includes new functions that account for common program structures. All features

and properties of arrays are readily available via suitable access functions. Yet, the

theory is concise. A sound methodology to define primitive operations is prescribed,

2 INTRODUCTION CHAPTER 1

instead of freely defining functions ad hoc. Numerous examples are incorporated into

the text.

This work balances abstraction and application. Such approaches are promising for

future work. The approach taken is based on intuitive notions of arrays. It was decided

to work with a familiar model rather than invent a new model of arrays. Although the

model is not new, the calculus is new. This calculus permits the concise expression

of mathematical algorithms for arrays as in APL. A concise constructive theory is

presented that includes useful templates for generic programming in an application

area. Formulas that lack many of the indices typically required are stated.

A collection of programs is written which exemplifies the applicability of the the-

ory in programming practice. Cole has proposed a methodology for applications that

are not genuine homomorphisms. Many more examples are needed to determine the

feasibility of this methodology. Case studies show that programs can be written at a

low-level using fine grain parallelism (Eriksson-Bique, 1998, Trichina and Eriksson-

Bique, 1999).

In this chapter, some conventions are stated and needed background material is pre-

sented. Some of the important theories on arrays and research on relevant and related

approaches, especially all influential literature, are reviewed. Further, the methodolgy,

goals and contributions are set forth. Lastly, the organization of the text is summarized.

1.1 CONVENTIONS

A conventional style of writing equations is used. Familiarity is beneficial as it

is not possible to understand a statement unless the notation is understood in the first

place. It is intended to avoid introducing notation. A goal is to promote the methodol-

ogy, not any particular style.

It is convenient to use natural numbers whenever ranking or referring to a po-

sition in a sequence. In particular, indices will always be numbered starting from

one. For example, the first item has index 1, the second item index 2 and so forth.

Usually it is desired to list more than just a couple items to indicate a pattern, e.g.,

2,3,5,7,11,13,17,. However, such a general requirement is waived as fre-

quently items are listed in consecutive order and it suffices to list only the first and last

ones. For instance, a sequence

ip,.,iq

implies the sequence

ip,ip+1,ip+2,ip+3,ip+4,.,iq.

SECTION 1.1 CONVENTIONS 3

To simplify definitions, a simple “implied” policy is adopted. Often it is desired to

formulate a definition that is a function of a particular component of a list, say the kth

component. Such a definition is always implicitly understood to hold for all possible

values of k for which the definition makes sense. As an example, it is preferable to

write one statement

f(i1,.,ik−1,ik+1,.,in) = g(k)

in which the values for k are implicitly understood as opposed to writing three state-

ments

f(i1,.,ik−1,ik+1,.,in) = g(k) for 2≤ k≤ n−1,

f(i2,.,in) = g(1) ,

and

f(i1,.,in−1) = g(n) .

In general, the initial, e.g., i1,.,ik−1, or the tail part, e.g., ik+1,.,in, of a

sequence may be ignored whenever it is possible to interpret the definition accordingly.

In the preceding example, a particular kind of sequence which is missing the kth

component was specified using a specific function on subscripts. Any such function

may be employed. For instance, if

f(i1,.,ik−1,ik+1,.,in) = g(p),

where

p= s(k)≥ k,

is given (e.g., p= k+3), then the function f is defined in particular for

p= s(1) .

Any set of elements may be denoted by {x |S}, which reads “the set of all elements

x such that the statements (one or more) S hold.” The empty set, denoted by ∅, is

the set { } without any elements. Recall a few familiar sets of integers are

N= {1,2,3,4,.} ,

N0 = {0}∪N,

and

Z= {.,−3,−2,−1,0,1,2,3,.} .

4 INTRODUCTION CHAPTER 1

Mostly capital letters by convention denote the names of collections of objects (such as

a set S) and lower case letters the names of functions (f), elements (a), and variables

(x). A variable is sometimes considered a zero-dimensional array. The terms vector

and matrix refer to familiar one-dimensional arrays and rectangular arrays with rows

and columns, respectively. For example, a row vector, a column vector and a matrix

are typically written in the following forms (with possibly different delimiters):

[a1 a2 ··· an]︸ ︷︷ ︸
row vector

,


a1

a2

...
an




︸ ︷︷ ︸
column vector

, and

[
a11 ··· a1n

...
. . .

...
am1 ··· amn

]
︸ ︷︷ ︸

matrix

.

1.2 DATA TYPES

Data types are a central theme in functional programming, which deals with func-

tions from one data type to another. A rigorous treatment of data types is beyond the

scope of this work. In general, an algebraic theory may be developed for an arbitrary

data type.

A data type is a set of values and operations on them. A constant, an expression,

a function or a variable, may assume any value from a data type. A (generic) type

variable matches any valid data value. It is possible to define a data type in various

ways. For example, by enumeration of the elements, by specifying the types of all

elements, by giving a partial listing of elements and specifying generating functions or

relations that constructively generate all other elements. An abstract data type is a

collection of values that are defined mathematically in terms of operations.

Many familiar types and their properties may be taken for granted. For example,

natural numbers possess many well-known properties. However, no attempt shall be

made to define natural numbers axiomatically or to derive their properties. The main

focus is on large collections of objects and operations on data aggregates. In particular,

the base types or primitive types, i.e., the types of individual elements, are presumed

to be known. Moreover, there are suitable (defined or built-in) operations for handling

the (data) values.

Functions may be defined on data types using pattern matching by associating

a prescribed value with each possible pattern of the argument. Consider the classical

Fibonacci function fib. An argument may match a constant pattern:

fib(0) = 1,

fib(1) = 1.

SECTION 1.3 MATHEMATICAL BACKGROUND 5

An argument may also match a variable pattern:

fib(n) = fib(n−1)+fib (n−2) for all n> 1.

For other functions, a pattern may involve a constructor. A list is defined using such

a compound pattern later in Section 1.4.3.

1.3 MATHEMATICAL BACKGROUND

Recall the essential notion of function (see for example Spindler, 1994, p.701-708),

which is an underlying theme in this work. Functions may be defined formally using set

theoretic notions. Instead, another usual notion of function is adopted. A function f,

(loosely synonymously) operation ormapping, is a rule that assigns to every element

in a set X �= ∅, which is the domain, a unique value. Thus, if f is a function with

domain X and x ∈ X with

f(x) = y and f(x) = z,

then

y= z.

Notice only the domain is specified. If S is any subset of the domain, then any function

with that domain is said to be defined on S. If f is a function with domain X �=∅,

then the set

R= {f(x) |x ∈ X}

is called the range (or codomain). A function f with domain X and range R is

usually denoted by

f : X−→ Y,

provided

R⊆ Y.

The precise specification of the range is often omitted. Frequently, it suffices to specify

only the types of the objects. A function with domain ∅ is ambiguous since there are

no elements in ∅ . Therefore, every function f :∅→Y meets the stated requirements.

For consistency, a function with domain ∅ is allowed provided that the range R is

explicitly announced. For definiteness, there is exactly one function with domain ∅

and range R. A function is well-defined if every element has exactly one image. This

means that if an element has more than one representation then the image is the same

for all of the representations.

6 INTRODUCTION CHAPTER 1

Sometimes the precise specification of the domain is not beneficial. In order to

indicate the domain without specifying it exactly, employ a partial function f : X−→

Y, which is a function f : S−→ Y, provided S� X. Mainly, a partial function is used

to indicate the types of the arguments. A function f is one-to-one or injective if

f(x) = f(y) if and only if x= y. Any injective function has an inverse.

Functions may be defined on sets of values and on tuples in other less formal

ways. It is convenient to define functions on tuples in a familiar style. A tuple allows

components with different types (cf. Mou, 1990a, p. 452). Choose n ∈N and let Ak

be any nonempty set for every k ∈ ι n. The Cartesian product

A1×A2×· · ·×An

is the set of n-dimensional tuples with n components:

{(a1,a2,.,an) | ak ∈ Ak for 1≤ k≤ n} .

An important property of tuples is that the components are ordered within the tu-

ples. The concept of tuple is a generalization of ordered pairs. Evidently two tuples

(a1,a2,.,an) and (b1,b2,.,bm) are equal if and only if n = m and ak = bk

for all k with 1≤ k≤ n.

Any function f(p1,p2,.,pn−1,pn) defined on tuples of length n may be

expressed as a function with up to n−1 parameters, which are also called arguments.

The term parameter refers to an item which is not the main argument of the function.

For example, in

f p1 p2 · · · pn−1 x= f(p1,p2,.,pn−1,x) ,

the parameters are p1,p2,.,pn−1 and the argument is x. It is sometimes conve-

nient to write the first parameter as a subscript or a superscript:

fp1 p2 · · · pn−1 x= f(p1,p2,.,pn−1,x)

or

fp1 p2 · · · pn−1 x= f(p1,p2,.,pn−1,x) .

A function on an object that is not a tuple is called an unary function. A function

on pairs is called a binary function. It is sometimes convenient to rewrite binary

operations which are usually written in infix form a⊕b in either prefix form or as

unary operations:

⊕(a,b) = a⊕b= (a⊕)b= (⊕b)a.

SECTION 1.3 MATHEMATICAL BACKGROUND 7

Using two pairing functions

(� x)y= (x,y)

and

(� x)y= (y,x) ,

it is possible to define

(a⊕)b=⊕◦ (� a)b

and

(⊕a)b=⊕◦ (� a)b.

By convention, commas and parentheses may be omitted to simplify the appearance

of an expression. For example, f(1,2) may be written instead of f((1,2)) even

though the latter expression is technically correct. For a given function such as

f :A×B×C→ Y,

the expression f A B C may be written instead of f(A,B,C). Notwithstanding,

parentheses will be used liberally, preferring clarity over conciseness.

A higher-order function takes a function as one of its parameters. A related func-

tion apply, denoted by @, applies a given function to a given argument and is defined

next.

DEFINITION 1.1 For any function f and any valid argument x of f,

@ f x= f(x) .

EXAMPLE 1.1 @(+2,3) = 5.

A principal operation applies a pair of functions (f,g) to a pair of objects (x,y)

as indicated by the following diagram

X �
pr1

X×Y
pr2

� Y

f(X)

f

�

�

pr1
f(X)×g(Y)

(f,g)

�

pr2

� g(Y)

g

�

where the functions pr1 : X×Y→ X and pr2 : X×Y→ Y, which map (x,y) to x and

y, respectively, are the usual projections. In particular, (f,g)(x,y) = (f(x),g(y)).

8 INTRODUCTION CHAPTER 1

The history of algebra dates back to ancient times when the Babylonians and Egyp-

tians solved linear and quadratic equations. The word algebra in common usage con-

notes elementary or high school algebra. Actually in this sense algebra is much too

complicated a notion, being a mixture of numbers, linear and polynomial equations,

variables, arithmetic rules and so forth. More formally, linear, modern, higher, ab-

stract or universal algebra connotes the study of simple algebraic models and struc-

tures using general methods to discover properties not unlike usual addition and mul-

tiplication.

The relevant model is a semigroup and especially a monoid, which are among sev-

eral classifications of algebraic models. Closely related models include groups, which

impose additional requirements, and vector spaces (see for example Noble and Daniel,

1992, p. 181-186), which have not only additional requirements but also extra ele-

ments. Loosely, the word algebra in this work is synonymous with monoid.

A semigroup is a model, which is denoted by (S,⊕), where S �= ∅ is any

nonempty set and ⊕ is any associative binary operator that satisfies

(a⊕b)⊕c= a⊕ (b⊕c)

whenever a,b,c ∈ S. By definition, whenever a binary operator combines two ele-

ments from a set, the result is always an element of that set. The key issue is to be able

to determine when two distinct semigroups (S,⊕) and (T,⊗) look alike in the fol-

lowing sense: a binary operation in one semigroup corresponds to a binary operation

in the other semigroup in such a way that there is an equivalence via some unary oper-

ation. In particular, any function h : S→ T that preserves the structure by distributing

over one of the operators

h(a⊕b) = h(a)⊗h(b)

is called a homomorphism. If h is also one-to-one, it is an isomorphism (S and T

are isomorphic).

A monoid is a semigroup (S,⊕) equipped with an identity or neutral element,

which is denoted by e, that satisfies

e⊕a= a⊕e= a

for all a∈ S. An identity element is unique as, if e and ê are identities, then plainly

e= e⊕ ê= ê.

Denote such a monoid by (S,⊕ ,e). An onto homomorphism h between two

monoids (S,⊕,e) and (T,⊗,f) must preserve identity elements

h(e) = f.

SECTION 1.3 MATHEMATICAL BACKGROUND 9

This is evident as for any g ∈ S,

h(e)⊗h(g) = h(e⊕g) since h is a homomorphism

= h(g) since e is an identity element.

A group is a monoid (S,⊕,e) for which every element has a unique inverse, i.e.,

for s ∈ S there exists s−1 such that

s−1⊕s= s⊕s−1 = e.

EXAMPLE 1.2 Consider the two monoids (S,⊕,e) and (T,⊗,f). The constant
function Kf : S→ T given by Kf (s) = f satisfies

Kf (e) = f,

and

Kf(a⊕b) = f= f⊗f= Kf (a)⊗Kf (b)

whence Kf is a homomorphism. In this example, an identity element is denoted by

f, which is usually reserved for functions. A popular abstraction characterizes the

elements as functions.

Consider next composition of functions. If

f : X→ Y and g : W→ X

are functions, then a composition of f and g is

f◦g : W→ Y

where

(f◦g)(w) = f(g(w)) .

Composition is an associative operation. If h : V→ W, then

(f◦g)◦h= f◦ (g◦h)

since

((f◦g)◦h)(v) = (f◦g)(h(v))

= f(g(h(v)))

= f◦ (g◦h)(v) .

10 INTRODUCTION CHAPTER 1

An important observation is that the composition of two homomorphisms is a ho-

momorphism. Suppose f : X→ Y and g : W→ X are homomorphisms such that

f(x1⊕x2) = f(x1)�f(x2)

and

g(w1⊗w2) = g(w1)⊕g(w2) .

Then

(f◦g)(w1⊗w2) = f(g(w1)⊕g(w2))

= f(g(w1))�f(g(w2))

= (f◦g)(w1)� (f◦g)(w2) ,

which shows that f◦g is also a homomorphism.

EXAMPLE 1.3 Letting SX= {f |f : X→ X is any function}, (SX,◦) is a semigroup.

EXAMPLE 1.4 In fact, (SX,◦,idX) is a monoid as there is always an identity

mapping

idX : X→ X

given by

idX (x) = x for all x ∈ X.

Trivially, idSX is a homomorphism from (SX,◦,idX) as

idSX (f◦g) = f◦g= idSX (f)◦idSX (g) .

EXAMPLE 1.5 Letting φ
X
= {f |f : X→ X is any one-to-one onto function},

(φX,◦,idX)

is a group as every one-to-one onto function has an inverse.

A semigroup (S,⊕) is said to be closed or to have the closure property, which

simply means a⊕b ∈ S whenever a,b ∈ S. More loosely, an algebra consisting of

a set of operations on types is said to be closed if no operation will produce an object

that does not have the correct type. In particular, a function defined from one type to

another is never ambiguous in a closed algebra.

SECTION 1.4 A REVIEW OF LITERATURE 11

1.4 A REVIEW OF LITERATURE

Kenneth Iverson demonstrated successfully how mathematical expressions for ar-

rays, not simply expressions for variables as in FORTRAN, could be handled in a pro-

gramming language. The idea to develop an algebra of programming was proposed

by John Backus (1978). The idea to develop a complete theory for data types was

proposed by Trenchard More (1979). More’s eight principles of data organization are

reviewed. It has been established that transformational programming based on struc-

tured higher-order functions such as homomorphisms enhances software development.

Homomorphisms provide practical models for parallel implementation.

Many theories based on arrays have been proposed (Banger, 1994, Bird, 1989b,

Jenkins et al., 1986, Miller, 1993, More, 1979, Mou, 1990a, Mullin, 1988, Reynolds,

1979, Tu, 1986). Existing theories employ different approaches, concepts and notation.

Differences can be partly explained by different objectives, e.g., to develop a particular

programming language (see for example Jenkins et al., 1986, Mou, 1990a, Tu, 1986)

or to develop a programming approach (see for instance Bird, 1989b, Miller, 1993).

Early work, such as More’s Array Theory, was done before some methods were widely

known. Some approaches have not gained wide acceptance probably because they were

not well understood or shown to be sufficiently developed for general applications.

1.4.1 CALCULATOR LANGUAGES

An important landmark in the history of programming languages in connection

with work on arrays was the introduction of APL (a programming language), which

was the first array language (Iverson, 1962). In 1980, the American mathematician

Kenneth Iverson received the Turing Award for his work. Definitions in APL did

not depend on a technique known as the λ-calculus (lambda calculus) introduced by

Alonzo Church in 1951 to abstract notions of functions.

By the time APL was implemented, it was possible to concisely express mathemati-

cal algorithms for homogeneous arrays, which could not be done in any other language.

For example, arrays could be combined as in linear algebra, properties of arrays could

be obtained, and arrays could be restructured without using control structures such as

loops to process all of the elements. Many lines of code in nonsymbolic languages are

often replaced by a couple symbols in APL.

Although APL has functional features, it has imperative features as well, e.g., in-

dexed assignment. In some sense, APL might be regarded as a calculator for arrays.

APL did not permit user-defined functions or even support them inside built-in oper-

ations. APL is commonly described as elegant and compact, which is not surprising

12 INTRODUCTION CHAPTER 1

since the language was developed by a mathematician. The German writer Johann

Wolfgang von Goethe [1749-1832] wrote:

Mathematicians are like Frenchmen: whatever you say to them they trans-

late into their own language and forthwith it is something entirely differ-

ent.

An important landmark in the history of programming languages is relational data-

bases that involve a set of tables and operations on (entire) tables (Codd, 1970). Tables,

rows and columns are called relations, tuples and attributes, respectively. Such tables

and operations are relevant for arrays. For instance, if the attributes consist of real

numbers then they may be added to obtain the column sums.

Tu described a functional APL language called FAC (functional array calculator

language) that was designed to calculate expressions and to be integrated with other

functional languages (1986). Tu introduced functional semantics using the λ-calculus

to allow abstract operations, partitioning operations and infinite arrays. FAC objects

include arrays, functions, and operators. An array is a function that maps natural num-

bers to values. Tu also introduces ragged arrays, which are arrays of arrays that have

the same dimension but not necessarily the same shape.

EXAMPLE 1.6 A three-dimensional ragged array may consist of two arrays. The first

array may have two rows:
1 2 3

4 5
.

However, the second array may have more columns and one row:

6 7 8 9.

Lin and Snyder (1993) describe ZPL, an array sublanguage suitable for the MIMD

programming model. Many array operations that may be applied to conformable arrays

such as addition of two arrays in APL are available in ZPL. Functions can easily be

promoted or mapped to the values of the array. Total reductions (e.g., \) and scans

(e.g., +\\) are included as common operators. Partial reductions and scans may be

computed using “dimensions.” Arrays may be declared and operations may be applied

using specified “regions,” a representation of index sets which makes it possible to

avoid explicit array indexing. Chamberlain et al. (1999) discuss the semantics and

benefits of regions in the context of an idealized array language called RL. “Directions”

are used to access array values and to define new regions. Chamberlain et al. (1998)

explain the benefits for portability and performance provided by ZPL.

SECTION 1.4 A REVIEW OF LITERATURE 13

Restifo Mullin’s dissertation, A theory of arrays (1988), is based on the notions

of shape, dimensionality, and an indexing operation for arrays. The theory allows

expressions and substitutions. The notation closely resembles APL. Hains and Mullin

(1991) also present an architecture-independent theory for multidimensional arrays.

Mullin and Jenkins (1991) compare this calculus of arrays and Array Theory, which is

discussed next.

1.4.2 ARRAY THEORY

Array Theory was developed by Trenchard More (1973, 1979, 1986a, 1986b).

More (1973) presented an axiomatization of nested arrays which generalizes the data

structure used in APL. More (1979) described an organizational model for nested ar-

rays. Both properties of arrays and operations on them are discussed in detail. More

observed that it is equally plausible to develop a complete theory for arrays as any

other theory may be developed such as a theory for sets or a theory of linear algebra.

More developed a “one-sorted, standard, closed theory of arrays” which basically

means there is only one kind of array, i.e., a single array type. The type of elements

(monotypic versus polytypic) is also considered. An empty array is “typical,” which

means that an array inherits its type. More looks at operations that map arrays into

arrays as well as operations that transform one operation into another one. Operations

are defined “freely” with numerous references to APL. In particular, operations need

not be defined in terms of certain primitive operations. More observed that an array

may be viewed as

... a function that maps an index set of primitive addresses onto an indexed

set that contains the items of the array (1979, p. 61).

In 1979, Reynolds also presents the view of arrays as functions:

...that an array of real numbers is a variable whose value is a function from

subscripts into real numbers (1979, p. 292).

Reynolds discusses mostly one-dimensional arrays. The multidimensional case is men-

tioned via the Cartesian product.

What does the notion of data structure incorporate? The data structure reveals

how the data is organized. More’s eight principles of data organization (1979, p. 57)

are:

14 INTRODUCTION CHAPTER 1

• aggregation

• nesting

• well-ordering

• repetition

• smoothness

• valency

• arrangement

• orientation

Next each of these concepts is interpreted. Loosely, an array is a collection of elements.

This description adheres to More’s principle of aggregation:

The aggregation of objects into a collection is described by saying that the

collection holds the objects as items (1979, p. 57).

An array has a fixed number of axes. This requirement is More’s principle of

valency:

The number of axes for an array is an intrinsic property that is called the

axis valency, or simply the valency (1979, p. 58).

Along any particular axis, there are a fixed number of elements. This fundamental

law is More’s principle of smoothness:

...all rows (in the general sense) that are parallel to the same axis have

the same extent. For example, when boxes of the same shape are stacked

evenly on a loading pallet so that the sides and top of the stack are smooth,

the result is an array having three axes (1979, p.58).

In addition, elements are located at all possible nodes where axes intersect in the

regular network of axes. This fundamental law is More’s principle of arrangement:

The same system of distinct, directed axes is perceived at every location in

an array....There is no coordinate system of separate axes existing outside

the arrangement of items.

The valency of an array is discovered by counting the axes at any location

in the array. A location is determined by a position on each axis. Each

item of an array occurs in as many different rows as there axes for the

array (1979, p. 58).

SECTION 1.4 A REVIEW OF LITERATURE 15

Identical objects may be stored at different locations in an array. Therefore, it is

not merely the value but also the placement that comprises an item of an array. Such

useful duplication is characterized by More’s principle of repetition.

Axes are ordered, i.e., the axes are ordered by assignment of a unique ordinal num-

ber to each axis. Thus, it is possible to look at the array from different viewpoints or

orientations. This rule is More’s principle of orientation.

In addition, locations along an axis are ordered sequentially. It follows that all

locations may be ordered using both the location and the ordinal number assigned to the

axis. Furthermore, the elements themselves may be ordered using the order imposed

on the locations. Moreover, after removing some “rows,” the remaining elements are

still ordered. This basic law is More’s principle of well-ordering:

The kinds of collections that are most often used to organize objects are

well-ordered in the sense that every nonempty subcollection has, accord-

ing to some sort of convention, a first item. This principle of well-ordering

prevents a collection from being dense or continuous. The process of strik-

ing or deleting zero or more items from a well-ordered collection and then

closing up the gaps without reordering the remaining items results in a

subcollection that is well-ordered (1979, p. 57).

Arrays may be nested, which is More’s principle of nesting:

A collection is an object just as its items are objects. Hence the items of a

collection may themselves be collections (1979, p. 57).

Array Theory was used to develop NIAL, a high-level programming language based on

nested arrays. NIAL supports several programming paradigms (Jenkins et al., 1986).

Mou and Hudak (1990b, 1988) proposed an algebraic model and notation, which

included higher-order functions, for divide-and-conquer algorithms. Mou (1990a) pre-

sented DIVACON, a functional language for parallel computation based on divide-and-

conquer. Mou described a binary division of arrays along each dimension.

VEC is a functional language of nested arrays. A sublanguage called SIZE requires

that all operations are shapely, i.e., the shape of the input determines the shape of the

result (Jay et al., 1997). This work attempts to recast the theory of arrays using both

the syntax of lists and shape analysis. A cost algebra, which explains how to combine

execution costs, is used to construct a compositional cost calculus.

16 INTRODUCTION CHAPTER 1

1.4.3 ALGEBRA OF PROGRAMMING

In his 1977 ACM Turing Award Lecture, John Backus (1978, 1981) advocated a

functional programming style over traditional languages. Although the paper has led

to more evolutionary than revolutionary changes, one of the fathers of “von Neumann

languages” certainly had an impact on the scientific community with this visionary

paper. Backus headed the group that produced FORTRAN, undoubtedly a highly suc-

cessful precursor of imperative programming languages. Backus proposed to separate

the data and program structures from the von Neumann machine (Campbell, 1997) for

which everything had to be translated into words that would have to pass through the

“bottleneck.” In von Neumann computers, not only the data but also the commands to

access and process the data had to go through the central processing unit (CPU) of the

computer a “word at a time.”

Like APL, Backus’ FP (functional programming) systems were based on functional

forms that mapped entire objects into entire objects. These FP systems did not depend

on lambda expressions or substitution rules for variables. Backus used sequences,

which may be thought of as arrays with only one axis. The algebra of programs that

Backus proposed advanced the applicative (functional) programming style over con-

ventional languages that rely on state transitions. Algebraic approaches have been

applied to other programming paradigms including object and logic paradigms as well

as to composite software systems (Malcolm, 1997).

John McCarthy demonstrated the importance of recursion and the close connection

between the program structures and the data structure of lists in LISP (list process-

ing language). An applicative style of programming using recursion is presented in

(Wadler, 1981). Transformational programming and applications were discussed in

(Paige, 1983). Strategies in transformational programming to manipulate algorithmic

expressions in order to rewrite them in a more efficient form starting from a suitable

specification of a problem are discussed in (Bird, 1984, 1986). A functional approach

based on recursive equations and sequences, which are like lists (or one-dimensional

arrays), was employed (Bird, 1984). All functions were defined in terms of a (se-

quence) relation. In particular, definitions were not made freely as in Array Theory.

The theory of lists is a calculus for lists (Bird, 1988, 1990, Bird and Meertens,

1987, Bird, 1987, 1989a,b, Meertens, 1986, Skillicorn, 1990, Spivey, 1989). Parallel

programs are sometimes “optimized” into sequential programs (see for example Bird,

1989a). The theory relies heavily on homomorphisms. Next a summary of some of the

main constituents of the theory is given. What is germane is the calculus, not the style

SECTION 1.4 A REVIEW OF LITERATURE 17

or the notation which is slightly modified in this review.

Let α be any data type. The theory adds the new data type [α]. It is the data type

for lists of elements of homogeneous type, i.e., all elements have the same type α. In

other words, a list has type [α] if all elements in the list have type α.

Given two lists of the same type, “concatenate” or join them together via a type

constructor, which is denoted by ++. For example,

[a1,.,an]++ [b1,.,bm] = [a1,.,an,b1,.,bm] .

An empty list [] has no elements. For any list A,

[]++A= A++ [] = A.

Evidently the empty list [] is the identity element for the binary operator ++. More-

over, the binary operator ++ is associative. Hence, ([α],++,[]) is a monoid.

An important higher-order function (HOF) for lists is map which is denoted (in

this Chapter) by ∗ . The function map applies a given (parameter) function

f : α→ β

to every element of a given list [a1,.,an] whose elements have type α:

�f([a1,.,an]) = [f(a1),.,f(an)].

Thus, � takes a function f defined on the data type α and produces a new function

�f

which is defined on the new data type [α]. It is a polymorphic function as it is defined

for a list of elements of any homogeneous type.

Parametric polymorphism concerns functions that are defined for various types.

Studying such functions makes it possible to study laws and properties that hold more

generally. Bird (1987) defines � via the equations

�f([]) = [] ,

�f(X++Y) = (�fX)++(�fY) .

The higher-order function �f takes the monoid

([α],++, []) to the monoid ([β],++, []) .

An important identity ismap distributivity:

�(f◦g) = (�f)◦ (�g) .

18 INTRODUCTION CHAPTER 1

Another important polymorphic function is reduce which is denoted by / and

which inserts a given associative binary operator ⊕ between all of the elements in a

given list [a1,.,an] whose elements have type α :

/⊕ [a1,.,an] = a1⊕· · ·⊕an.

If ⊕ has an identity element e then (α,⊕,e) is a monoid. In this case,

/⊕e [] = e,

/⊕e [a] = a,

and

/⊕e(X++Y) = (/⊕e X)⊕ (/⊕e Y).

The function / lifts ⊕ from the monoid

(α,⊕,e) to the monoid ([α] ,++, []) .

A fundamental theorem is the homomorphism lemma which states that every ho-

momorphism on a monoid ([α],++, []) is a composition of a map and a reduce

operation. In particular, any homomorphism may be computed by applying some re-

duce operation after applying a map. Another important fact is the unique extension

property which asserts that whenever the type constructor ++ is replaced by an asso-

ciative operator ⊕ with an identity element e, the operation is completely determined

up to some function on the elements. This means that a homomorphism h between

the monoids ([α],++, []) and (S,⊕,e) is completely specified whenever the op-

eration h is defined for all lists containing only one element. For example, if for all

elements a with type α,

h [a] = u(a) ,

where u is a well-defined function, then h is uniquely determined.

An important function is catamorphism, which is a unique homomorphism from

one data type to another that distributes through the type constructors. Programming

using catamorphisms is discussed in (Hughes, 1991). Functions may be defined in a

“standard way” as homomorphisms. Some examples from the theory of lists are given

next.

EXAMPLE 1.7 The number of elements in any list is given by the homomorphism

#= (/+)◦ (�K1) ,

where the constant function K1 (x) = 1.

SECTION 1.4 A REVIEW OF LITERATURE 19

EXAMPLE 1.8 The filter function � selectively filters out items and is given by

�p = (/++)◦ (�fp) .

where

fp (x) =

{
[x] if p(x)

[] otherwise
.

EXAMPLE 1.9 The function that reverses a list is given by

reverse= (/⊕)◦ (� [·])

where

a⊕b= b++a

and

[·] (a) = [a] .

Promotion theorems reveal important properties and laws of catamorphisms. The

following promotion laws hold:

(�f)◦ (/++) = (/++)◦ (�(�f)) ,

(�p)◦ (/++) = (/++)◦ (�(�p)),

(/⊕)◦ (/++) = (/⊕)◦ (�(/⊕)).

Next, look at a few polymorphic functions to get a sample of other functions from the

theory of lists. The function � is called a left reduce or foldl operation that groups

from left to right using a supplied binary operator ⊕ and element e :

�⊕e [a1,.,an] = (· · · ((e⊕a1)⊕a2)⊕a3 · · ·)⊕an.

The function � is called a right reduce or foldr operation which groups from right

to left using a furnished binary operator ⊕ with value e :

�⊕e [a1,.,an] = e⊕ (a1⊕ (· · ·an−2⊕ (an−1⊕an) · · ·)) .

Whenever ⊕ is associative,

�⊕e =�⊕e,

which is the first duality theorem. Two functions that compute segments of lists are

given by:

inits [a1,.,an] = [[], [a1], [a1,a2],.,[a1,.,an]] ,

20 INTRODUCTION CHAPTER 1

and

tails [a1,.,an]

= [[a1,.,an],[a2,.,an],., [an−1,an], [an], []] .

Principle uses of folds are discussed in (Hutton, 1999).

To compute prefix sums using a left reduce operation, use the following left accu-

mulate (or scanl) function:

//→⊕e [a1,.,an] = [e,e⊕a1,.,(· · · ((e⊕a1)⊕a2)⊕·· ·)⊕an] .

The following accumulation lemma is well-known:

//→⊕e = �(�⊕e)◦ inits.

Consider how to construct the data type [α] and classify operations in a more

complete way (Skillicorn, 1993, 1994a,b, 1992, Spivey, 1989). The constructor ++ by

itself cannot be used to build up all objects with type [α]. So add another generating

relation

[·] : α→ [α]

which builds singletons by enclosing the argument in brackets [·] (a) = [a].

The following list includes the generator [] which is the empty list and all other

constructors:

[] ,

[·] : α→ [α] ,

++ : [α]× [α]→ [α] .

Any list may be generated using only these constructors. It turns out that this “con-

struction” is sufficient to define homomorphisms on lists. In particular, an operation

h : [α]→ Y is a list homomorphism if it can be defined via the equations

h [] = e,

h◦ [·] = u,

h◦++=⊕◦ (h,h) ,

for some value e, unary function u : α→ Y and associative binary operator ⊕ :

Y×Y→ Y. The equations may be dispensed with to obtain the basic structure:

e,

u : α→ Y,

⊕ : Y×Y→ Y.

SECTION 1.4 A REVIEW OF LITERATURE 21

This structure has a similar form as the list of constructors.

To show that a map �f is a list homomorphism, present the structure thusly:

[] ,

[·]◦f : α→ [β] ,

++ : [β]× [β] → [β] ,

where f :α→ β is any function. Letting e be the identity element for the associative

binary operator ⊕, a reduction /⊕ is also a list homomorphism:

e,

id : α→ α,

⊕ : α×α→ α.

Bird (1989b) presented a calculus for various data types such as arrays, lists, and

trees. In this paper, two-dimensional arrays with elements in {0,1} are considered.

Bird employs a couple constructors which resemble the concatenation operator in the

sense that they function basically in the usual way of adjoining matrices. A particular

algebraic structure (binoid) is classified and the notion of homomorphism is “weak-

ened.” In addition, several operations and laws are developed. In Richard Miller’s

thesis A Constructive Theory of Multidimensional Arrays (1993), the “join operators”

are generalized for n-dimensions and the data type is defined using axioms.

1.4.4 ALGEBRAIC METHODS FOR DIFFERENT DATA TYPES

The terms “squiggol” and “Bird-Meertens Formalism” (BMF) have been used

to characterize programming paradigms based on type constructors and higher-order

functions, especially homomorphisms and catamorphisms (Gorlatch and Lenguaer,

1995, Hu et al., 1998b, Skillicorn, 1990, 1993, 1992). The Squiggolist (J. Jeuring,

editor), last published in 1991 by CWI Amsterdam, was a journal for works in “Con-

structive Algorithmics” or BMF. The abbreviation BMF may have originated in a joke

in April 1988 comparing BMF with BNF (Backhouse and Hoogendijk, 1993).

A BMF may be regarded as either a calculus in transformational programming for

a particular data type or a more general theory on structured data types which uses

basic concepts from category theory and universal algebra to unify sets of equations

for different data types (Campbell, 1997, Cole, 1993, Hu et al., 1994, Jansson, 2000,

Malcolm, 1989, Meertens, 1996). The algebraic approach was developed long ago

(Burstall and Landin, 1969, Fokkinga, 1996, Goguen, 1977, Hagino, 1987, Hughes,

22 INTRODUCTION CHAPTER 1

1991, Lambeck, 1968, Lehmann and Smyth, 1981, Malcolm, 1990a,b, Manes and

Arbib, 1986, Smith and Plotkin, 1982, Walters, 1991). The theory of lists has been

explored in the context of category theory (Spivey, 1989). Skillicorn provides an in-

troduction to categorical data types which are a generalization of abstract data types.

A general textbook describing an algebraic approach to programming appeared more

recently (Bird and de Moor, 1997).

Roland Backhouse showed that notation in a calculational theory on structured

data types is compact and expressive (Backhouse, 1989). He compared such notation

and the Einhoven quantifier notation, which are not equally expressive. He discussed

lists, trees, bags that are unordered lists, and sets that are bags without duplicates or

repetitions. He also considered a “lifting” mechanism to raise functions to higher-order

functions. A relational theory of data types appeared in (Backhouse and Hoogendijk,

1993).

Malcolm (1990a, 1990b) presented an algebraic theory of data types that consists

of a calculus for program transformations. Notation was introduced to define data

types via initial algebras and final coalgebras. Malcolm advocated both notation that

facilitates formal reasoning and a methodology to define functions on data structures.

Malcolm introduced notation for catamorphisms and discussed ideas related to poly-

typic functions, which are defined by induction on the structure of data types (Hinze,

1999, Jansson, 2000).

Many problems can be expressed without specifying a particular data type. A pol-

ymorphic calculational theory in a relational framework is discussed in (Backhouse

et al., 1991). Shape polymorphism and shapely types are presented in (Jay and Cock-

ett, 1994). Shapely types are data types that consist of separate data and shape parts.

Alexander et al. (1995) describe ADL, a polymorphic non-recursive language designed

for high-order operations on aggregate structures.

The notion of “monadic folds” for structuring programs using a system of data

types was proposed in (Meijer and Jeuring, 1995). The derivation of “generic” func-

tional programs for different data types is explored in Bird et al. (1996), which gen-

eralizes the theory of segments. Jansson introduced polytypic programming using a

functional language extension, PolyP, which includes a construct for user-defined data

types (Jansson, 2000).

Bird andMeertens (1998) discussed a reduction that can be applied to “nested” data

types and a semantics for them in a calculational theory. Hinze (1999) proposed an

alternative approach to extend polytypism to arbitrary data types. Okasaki (1998) used

nested data types to devise purely functional data structures. A method to construct

SECTION 1.4 A REVIEW OF LITERATURE 23

generalized folds for nested data types that satisfy certain properties was introduced in

(Bird and Paterson, 1999b) and de Bruijn notation for nested data types was considered

in (Bird and Paterson, 1999a).

Banger and Skillicorn (1993) presented a foundation for “flat arrays,” which was

influential. There are two properties of flat arrays: (1) the shape and (2) the content as

an infinite sequence. In this theory, indexing is not considered to be a primitive opera-

tion. There are two generating relations: scalarize that builds “0-dimensional arrays”

and add_dimension that adds a dimension. Flat arrays were recast using a categorical

data type construction (Banger, 1992, 1994, Banger and Skillicorn, 1992). A category

is comprised of objects. For every pair of objects, there is a class of morphisms or

arrows (maps or transformations) (Pierce, 1991). Often the objects are taken to be

some mathematical model such as monoids. The arrows are usually required to meet

some natural conditions (or axioms). For instance, there is always an identity mapping

from any object to itself, compositions are defined and the associative law holds for

compositions. As the name suggests, interesting morphisms preserve the mathemati-

cal structure of the objects.

1.4.5 PARALLEL COMPUTATION

The sequential model based on the von Neumann machine has remained highly

successful. The diversity of popular parallel models has made it difficult to achieve the

same degree of success. For example, sequential programs are portable, whereas paral-

lel programs are not. Survey of models of parallel computation are given in (Campbell,

1997, Skillicorn and Talia, 1998). Skillicorn and Talia (1998) discuss the benefits of

“homomorphic skeletons.”

Formal methods have been shown to enhance software development. Parallel com-

putation based on structured higher-order functions has been studied extensively (see

for instance Banger and Skillicorn, 1993, Bratvold, 1994, 1992, Cole, 1995, Duff and

Harrison, 1996, Gorlatch, 1996a,b, Gorlatch and Lenguaer, 1995, Hu and Takeichi,

1999, Hu et al., 1998a, 1997, Jay et al., 1997, Kumar and Skillicorn, 1995, Skillicorn,

1990, 1993, 1994a,b,c, 1995, Skillicorn and Cai, 1994, 1995, Skillicorn, 1992). Skill-

icorn (1990) argued that a formalism which is based on homomorphisms permits an

architecture-independent complexity theory over four classes of parallel architectures,

namely SIMD (single instruction, multiple data), tightly coupled MIMD (multiple in-

struction, multiple data), hypercuboid and constant valence MIMD computers. He

showed that such a formalism addresses many problems that plague parallel comput-

ing. Programs have a longer life span and are portable.

24 INTRODUCTION CHAPTER 1

Bratvold (1994) showed how to develop a skeleton-based functional program from

a problem specification using the homomorphism lemma. Bratvold (1992) also out-

lined compilation stages for higher-order functions in functional languages. The func-

tional paradigm is well suited to parallel processing as there are no side effects. A

framework based on polytypic programming to develop efficient parallel programs was

given in (Hu et al., 1998b).

Arvind et al. (1989) and Barth et al. (1991) added programming constructs to ID

to make programs more “declarative,” parallel and storage efficient. ID is a functional

language which includes algebraic types and definitions. ID allows for the construction

of functional arrays using an “accumulator.”

1.4.6 CRITICAL ANALYSIS

It is evident from the literature that many questions on developing a theory of ar-

rays have remained unanswered. Many of the existing theories are based on solid

mathematical foundations. None of the theories that utilize algebraic structures seem

to provide a complete treatment for arrays as Trenchard More proposed or a general

programming language as John Backus advocated. When homomorphisms are em-

ployed, only a couple primitive operations are used no guidelines are provided on how

to extend the set of primitive operations in a coherent and concise framework.

More’s organizational model (1979) is sound. However, operations are defined

freely without employing algebraic structures. Mullin’s theory (1988) defines a prim-

itive indexing operation, which seems appropriate for arrays. Although Mullin’s the-

ory is based on a sound architecture-independent approach, operations should not be

defined in terms of an indexing operation. A more satisfactory theory incorporates

algebraic structures in an algebra of programming.

Banger and Skillicorn (1993) model arrays using an infinite sequence, which is not

always needed or beneficial. The operations (as they are programmed in Banger and

Skillicorn, 1993) do not seem to be characteristic of arrays. For instance, indexing an

array is not a primitive operation. Too few program structures are discussed. Reduc-

tions are defined via a single operation applied to each dimension recursively, which

is not surprising since homomorphisms are only defined in terms of add_dimension.

Other possible definitions of homomorphisms are not discussed. The set of primitive

operations provided does not seem to adequately represent the data type. The con-

struction of the set of primitives seems to be based solely on algebraic considerations

without regard to programming and how the data type is often used. It is not explained

how to extend the theory in order to develop a complete programming language that

SECTION 1.5 A REVIEW OF LITERATURE 25

provides adequate tools so that programming various operations on a specific model of

arrays is not too difficult. In essence, the algebra is more important than the data type.

Banger and Skillicorn (1992) state a theorem, a lemma and a couple properties.

Banger and Skillicorn (1993) describe the same model with nesting. These statements

reformulate existing and well understood theoretical results. The basis for the data

type construction and the programming methodology using catamorphisms and higher-

order functions, such as map and reduction, were already known (see for example

Malcolm, 1989, 1990a,b).

Banger and Skillicorn (1992) describe only a couple programs and basic operations

as in APL. These programs are presented without derivation or optimization, and do

not include complete definitions. The theory should provide more useful programming

templates to account for common program structures.

Bird (1989b) deals only with two-dimensional arrays with homogeneous elements.

Notation for handling multidimensional arrays is not presented. Only a couple primi-

tive operations are defined. All operations which are not needed to construct the date

type must be defined in terms of the constructors, including operations which help to

define the objects and which are usually regarded as primitive operations. For instance,

operations cannot be applied axially and instead must be applied to the planes of the

array, as if it were only constructed of a list of planes, which implies the data type is

inferior to lists. In practice, it is difficult or impossible to write all programs in terms of

a couple primitive operations, which is a serious shortcoming and justifies why a larger

set of primitive operations is needed. Bird’s work pertains mainly to list operations.

Since arrays can only be partitioned along rows or columns, operations can only be

applied to rows or columns.

Miller’s generalization (1993) of Bird’s theory for multidimensional arrays does

not seem to treat the set of constructors or the algebra in a fundamentally different way.

The algebraic treatment of the data type is sound. The scope of the work is nonetheless

narrow dealing mainly with a small set of definitions. Different data structures allow

for different program structures. Generalizations of other theories is not necessarily

sufficient to build up a completely independent data type.

Polytypic programming (discussed in Hinze, 1999, Jansson, 2000, Meertens, 1996,

Pfeifer and Rueá, 1999) attempts to answer different questions. Methods to install

different data types in general algorithms are not investigated. Instead, the approach

taken is to focus on a specific data type for particular applications.

26 INTRODUCTION CHAPTER 1

1.5 APPROACH AND GOALS

Data structures for arrays are popular with numerous applications; consequently,

useful models for multidimensional arrays along with simple complete theories for ar-

ray expressions are important. Software development is costly. Structured higher-order

functions and in particular homomorphisms have been shown to enhance software de-

velopment. Mathematical approaches that focus on essential details of computations

instead of specifying unnecessary implementation details foster optimization. The ben-

efits of algebraic approaches have been well established in the literature (see for exam-

ple Axford and Joy, 1993, Backus, 1978, Bird, 1989a, Manes and Arbib, 1986, More,

1979, Mou and Hudak, 1988, Skillicorn, 1990).

The main task is to construct a set of primitive operations for programming with

multidimensional arrays which does not depend on a particular architecture and which

fosters software development. Ideally, programs could be derived starting from a spec-

ification and could be optimized for a particular implementation. A specific model of

arrays should be given which is a primitive concept and operations should be defined

in a structured way without using indices as in Mullin’s theory of arrays. Notation

should be provided which makes it easier to develop the theory and guidelines on how

to define primitive operations should be stated (as advocated in Malcolm, 1990b). In

particular, definitions should not be made freely or ad hoc so that the language does not

become unwieldly. A sufficient number of primitive operations should be provided to

represent the data type as in abstract data types so that programming templates can be

reused to solve different problems in an application area. All parts of the theory should

be verified formally correct.

Constructors and higher-order functions should be utilized to achieve an algebra of

programming that permits the derivation and optimization of programs as in the theory

of lists. The theory should include useful homomorphisms, laws and properties. A

theory is sought which permits the concise expression of mathematical algorithms for

arrays as in APL. Formulas should be provided for doing basic computations. LISP and

recursion fit together due to uniformity in the data structure and the program structure.

Arrays have a special data structure and a goal is to reach for a similar uniformity in

the data structure for arrays and common program structures.

In functional programming, arrays have been treated as essentially complicated

lists. Arrays should be treated as an independent data type as More advocated. It is

not satisfactory to provide only a couple primitive operations and a couple definitions

of homomorphisms for every data type. While algebraic structures are important, the

data type is paramount. The theory should account for common program structures.

SECTION 1.5 APPROACH AND GOALS 27

The theory should not be limited to some minimal set of operations, regardless of the

completeness or elegance of the algebra; otherwise, programming is severely limited.

Arrays are so natural that it might seem new notation is not needed. After all, they

have been around long enough and are certainly quite popular data structures. There

are seemingly few if any absolutes and perhaps one of them has been provided by the

mathematician and philosopher Alfred North Whitehead [1861-1947]:

By relieving the brain of all unnecessary work, a good notation sets it free

to concentrate on more advanced problems, and, in effect, increases the

mental power of the race (Davis and Hersh, 1981).

Existing notation for arrays is not entirely satisfactory. It is frequently tedious

to write formulas and especially prove properties and laws using existing notation.

Everyone has an intuitive understanding of arrays. Yet, there does not seem to be a

universally accepted notational system for working with multidimensional arrays that

does not require reading and writing numerous indices. It seems that in many cases,

many more indices are used than are actually needed.

EXAMPLE 1.10 Consider a n×n×n×n×n matrix. It is possible to write formulas

and programs using several indices (i1,i2,i3,i4,i5). Proving the program is

correct using so many indices is tiresome and even if someone would successfully

undertake the task, it would require considerable stamina to verify the proof itself is

correct, which diminishes the accomplishment. There are many well-known problems

dealing with so many indices. While many indices may be needed to define general

operations, to define a particular operation, often much less information is needed. For

instance, applying a row operation involves only elements in a row and so only one

index is changing.

An obstacle is the encumbrance due to the number of indices. This obstacle can

be overcome since only a relatively small number of indices are actually needed to

define operations. This fact follows since common operations possess a highly regular

structure.

A satisfactory solution does not eliminate the indices or treat arrays as an inferior

data type. The indices are useful and give purpose to the data type. A typical treatment

of arrays reduces them to essentially complicated lists with some extraneous features.

Regrettably, this solution reduces the effectiveness of the data type. Even when the

objects are constructed so that they resemble arrays, the operations do not seem to be

characteristic of arrays.

28 INTRODUCTION CHAPTER 1

Dissatisfaction arises partly due to the adaptation of the data type to fit into a theory

instead of developing a theory to suit the data type. A goal is to raise arrays to their

full potential by taking advantage of all of the indices without having to handle them

excessively. To this end, new notation is presented.

A formalism is sought which is a basis to develop theory and applications. The

theory should be adequate at least to develop an application. At the highest level of

achievement, a theory is a calculus which expounds an independent data type.

1.6 CONTRIBUTIONS OF THIS THESIS

The data type is treated in an architecture-independent way for portability and op-

timization. A set of primitive operations is constructed and a methodology to con-

struct such a set is prescribed. New definitions that simplify the theory (definitions

and proofs) and novel primitive operations that account for common program struc-

tures are introduced. A constructive theory is developed which provides programming

templates for generic programming. Explicit formulas are given that lack many of

the indices typically required. The applicability of the theory to programming is il-

lustrated by examples. Practical programming techniques are explained. The use of

homomorphisms as programming templates is demonstrated. In summary, a concise

and coherent architecture-independent theory of multidimensional arrays is presented

which

• defines the data type independently,

• prescribes a methodology to define all primitive operations,

• furnishes a calculus for defining operations,

• classifies “array” homomorphisms,

• states concise formulas for common mathematical algorithms,

• explains practical programming techniques, and

• permits the derivation and optimization of programs.

This work balances abstraction and application. The calculus is useful for both

research and programming. It is not necessary to translate an algorithm from a theory

into a programming language and to prove the translation is correct. A goal is to

enhance not only software development but also research. This goal is reached by

providing a calculus, which makes it easier to reason about the data type, focuses on

essential details and properties of computations and aids in programming.

SECTION 1.7 ORGANIZATION OF THE TEXT 29

1.7 ORGANIZATION OF THE TEXT

In the sequel a fairly complete and concise theory for the data type is developed.

First, notation and terminology are introduced to define and reason about the data type.

Second, a set of primitive operations is constructed to represent the objects and to

recognize common program structures. Third, homomorphisms are classified and laws,

properties, identities and sets of equations are stated. Fourth, the applicability in pro-

gramming practice is demonstrated.

In Chapter 1, relevant literature is reviewed and the task is explained. In Chapter 2,

elementary concepts and informal notions of arrays are introduced and a methodology

to define primitive operations is prescribed. In Chapter 3, the foundation is established

by presenting formal concepts of arrays and defining all primitive operations. In Chap-

ter 4, the consequences of the definitions are formally investigated and a constructive

theory of arrays is developed. In Chapter 5, programs are written to confirm the ap-

plicability of the theory in practice. In Chapter 6, case studies are done to demonstrate

the usefulness of programming templates. Finally, in Chapter 7, a new programming

template is presented and future research is discussed.

30

CHAPTER 2

A SURVEY OF ARRAYS

S
ome basic concepts, functions and symbols which are used in the sequel are in-

troduced. Elementary functions help to simplify formal definitions and proofs.

A methodology to define primitive operations is prescribed. In addition, the

following topics are discussed informally: type and representations of an array, im-

plementation and feasibility. According to Webster’s dictionary, an array is a regular

arrangement, or an orderly listing, or a number of mathematical elements arranged in

rows and columns. In conventional programming, arrays are collections of homoge-

neous items, i.e., elements with the same type, which are differentiated via indices. It

seems arrays are natural objects even if they are devices of humans as Leopold Kro-

necker [1823-1891] wrote:

The whole numbers has the Dear God made; all else is man’s work.

2.1 HOW TO DEFINE PRIMITIVES

Consider the notion of data structure for multidimensional arrays. What is data? It

is something known or assumed. For example, real numbers may be assumed to exist

by axiom and represented by some useful means. Data would be useless if it could not

be processed in some way (without some functions defined on that data). However,

do not consider such functions or such data. Instead, focus on large data aggregates

consisting of data and possessing some peculiar structure, which is the data structure.

Is there a set of basic operations on such data aggregates? Objects are partly defined

by the operations that can be performed on them, much like abstract data types (see

for example Aho, 1982). Values like Booleans simply cannot be properly interpreted

without operations such as logical functions. Defining an object without operations is

like finding a marvelous tool without knowing how to use it.

SECTION 2.1 HOW TO DEFINE PRIMITIVES 31

What primitive operations can be performed on arrays? It should be possible to

access any item of an array directly. Such an indexing operation sets arrays apart from

other models such as lists, sets, and trees. Especially it is not necessary to process an

array starting from some node and proceeding in some systematic fashion, which is

appropriate for lists, sets and trees.

It should be possible to extract blocks such as rows or columns as they are used

often in programs. Fundamental properties of an array should be readily available

via suitable access functions. It should not be a programming exercise to obtain such

information as the number of axes, the number of elements, or the extent of an axis. In

short, it should be possible to access any information about data organization.

It seems easy to see how to extend operations like addition but it is less clear how

to extend operations like multiplication. Should multiplication for matrices be defined

in terms of an inner product? It is a reasonable question since every element in the

resulting array is obtained via an inner product. Anyway, multiplication is a special

application. A key observation is that typical operations are defined axially.

Presumptively, operations are defined for the types of elements in an array, e.g., if

elements are integers then presumably there are usual operations defined (built-in) on

integers. It should be possible to say, for example, perform this given operation along

this axis. For instance, sum the columns or rows of an array.

It is also possible to think about arrays as objects that may be manipulated as in

elementary algebra. Any array is a single value that can be manipulated like other fa-

miliar values such as integers or reals, although the operations may be less intuitive or

more complicated. For example, operations might resemble those of a vector space,

e.g., addition of “vectors” is both commutative and associative, there is a zero element,

multiplication of vectors by scalars is defined and there are distributive laws. Neverthe-

less, the algebra is closed in the sense that operations on objects always yield objects

of an explicit type in the algebra.

Much is known about matrices. This knowledge is applicable to higher dimensions.

To give an analogy, in real analysis (a branch of mathematics), R is like R
n in

the sense that important concepts have counterparts in both spaces, e.g., open sets,

convergence, differentiation, For example, it seems evident that it is possible to

perform operations along any axis, not just rows.

Primitive operations should not be freely defined as in Array Theory. A number

of constraints are placed on the primitives. It is proposed to develop a theory for

particular applications so that the number of primitive operations can be kept small. It

is recommended to arrange three classes of primitive operations:

32 A SURVEY OF ARRAYS CHAPTER 2

• One class of functions, namely the constructors (creation), build up the data

type. The purpose of the constructors is to induce algebra into programming.

• Another class of functions is the destructors (selection). These functions com-

plement the constructors in order to define all other features provided by the data

type. Together, the constructors and destructors replace any representation of the

data type, i.e., form the access functions.

• An important class is the abstractors, which are abstract operations. These

functions are defining operations for the data type. They give a purpose for the

data type and explain the data structure. Abstractors include important higher-

order functions and partitioning operations. These primitives are essential tools

to build up the theory. They facilitate programming by introducing recognizable

patterns of computations.

The intention is to replace the model by primitive operations (see for example Mou,

1990a, p. 452). The model is needed not only to specify the objects but also to define

the primitive operations. A primitive operation is intrinsically related to the data struc-

ture. A primitive operation is defined for all objects and does not depend on the data

values. A primitive operation does not perform some specific computation on the data,

although abstractors, which are higher-order functions, may apply given operations in

ways that are special for the data structure. Any parameters to primitive operations

must either correspond directly with the data structure or be the parameters of higher-

order functions. Primitive operations are

useful and powerful primitive functions rather than weak ones that could

then be used to define useful ones (Backus, 1978, p.620).

The primitive operations should complement each other. A general rule of thumb:

define a set of “orthogonal” functions, which means redundancy is kept to a minimum

and the number of primitives is kept small. An operation should not be included unless

it is a common one or builds up the theory algebraically.

The constructors generate new data types from base types or build-up larger data

aggregates from smaller ones. The constructors form a major part of the foundation

upon which an algebra is constructed. There should be an adequate number of con-

structors to capture all of the essential ways the objects are used in the theory, espe-

cially in the sense of partitioning both operations and objects. In addition, there should

be sufficiently many of them so that it is possible to generate all objects.

There should be an adequate number of destructors to handle all of the various

parts which comprise the objects. Mainly it should be possible to select fundamental

SECTION 2.1 HOW TO DEFINE PRIMITIVES 33

properties and the components that are the essential “building units,” i.e., not arbi-

trary subcollections but distinct, entire and useful parts. In addition, there should be

enough destructors for common selections so that programming is not too difficult and

optimization could take into account frequently used operations. The destructors com-

plement the constructors in order to define all other features of the objects in terms

of the data structure. Together, the constructors and destructors totally replace any

representation of the objects.

The abstractors are essential parts of equations that arise in theory. They are closely

interwoven with the data structure. It is because of these operations that the data struc-

ture (object) is used. The purpose of abstractors is to take advantage of the known data

structure, to increase the usefulness of the data type and to raise expectations of the

theory in general.

Definitions pose challenges as there are frequently choices and it is not always clear

which choices are best. Enough primitives are needed so that programming is not too

difficult. Try to capture all of the essential aspects of the model. In particular, focus on

common operations. On the other hand, do not endeavor to define every conceivable

operation that may be useful.

Algebraic notions should be used to define operations. For instance, there are often

many ways to define a function but not so many ways to define a left inverse of a given

function. Just as programs are composed in terms of the primitives, the primitives may

be defined in terms of more elementary functions.

It is recommended that all primitive operations be defined independently so that

subsequent revisions will require a minimal amount of effort. This means that the

primitives should not be defined in terms of each other. Any operation that is not

primitive may be defined in terms of any of the primitive operations. In particular, it

is not required to define any operation in terms of only the constructors, although such

definitions are preferred.

A theory should list some rules that prescribe how objects may be specified as

arguments and parameters of functions. Although operations are defined in terms of

primitives, parameters and arguments in general may be defined using any model or

specification guidelines. There should be specific and simple ways to specify objects.

It is not necessary to try to program everything in terms of primitive operations,

starting from the specification of a problem. Otherwise, the program constructions

become unwieldy. In particular, some pre-processing and post-processing is allowed.

Such processing could be in the form of assignment statements. Parallel programming

constructs (such as SEQ and PAR) could be utilized so that only essential details of

34 A SURVEY OF ARRAYS CHAPTER 2

computations are prescribed, which is a unifying theme.

It is not essential to focus only on homomorphisms or to try to classify precisely

every algebraic structure in every circumstance. The idea is to espouse algebra but

not to attempt to subsume programming as an application of any particular algebraic

model. It is enough to be able to say precisely how an operation may be performed in

a particular instance.

When constructing a set of primitive operations, focus on the programming par-

adigm. Using available programs, known laws and identities, attempt to compose a

solution to a given task starting from the specification of a problem. If a solution can-

not be obtained using existing tools, then begin to write only those subprograms which

are needed and which combined with existing software will yield a satisfactory so-

lution. If possible, employ only the constructors. If necessary, other primitives may

be employed. Any programming paradigm such as recursion may be used to define

needed basic operations. It may be required to add some additional control structures

but such structures should be limited in number. In principle, by building up the the-

ory using as much as possible algebraic models, mainly constructors, an algebra of

programming can be achieved. Next, useful notation and functions on sequences and

tuples are presented in order to formally define primitive operations on arrays.

2.2 ELEMENTARY FUNCTIONS

Often it is useful to refer to sets of the form

{1,2,3,4,.,n}

where n ∈N. In order to abbreviate the notation for such sets, the index generator ι

is defined next.

DEFINITION 2.1 (ι)

For n ∈N, let ι n= {1,2,.,n}.

DEFINITION 2.2 A sequence is any function with domain i n or N where n ∈N.
If t is a sequence then the kth component is denoted

tk = t(k) .

Two sequences s and t are equal on domain D, i.e., s= t, if and only if

sk = tk for all k ∈ D.

SECTION 2.2 ELEMENTARY FUNCTIONS 35

Recall, for any set S and n ∈N,

S
n = S×S×·· ·×S︸ ︷︷ ︸

n factors

.

DEFINITION 2.3 (nnn− tuple)

T ∈ Sn is a n-dimensional tuple for S or simply a n-tuple for S.

DEFINITION 2.4 For any set S, the family of all n-tuples with n≥ k is

F
k

S =
∞⋃
n=k

S
n.

If T is a n-tuple for N then T is a n-tuple for Z. For convenience, adopt the

symbols

N
k= Fk

N
and Z

k= Fk
Z
.

In particular, N=N1 and Z= Z1 are the families of all tuples for N and Z,

respectively. If T ∈ Sn and n> 1 then T is a n-tuple for S and for k ∈ ι n there

exists

tk ∈ S

such that

T= (t1,.,tn) .

To abbreviate a n-tuple, an additional representation for a n-tuple is given next.

DEFINITION 2.5 If an object T admits the form

T= (t : n)

then necessarily n ∈N, t is a sequence with domain ι n and (t1,.,tn) ∈ S
n for

some set S.

It is useful to find techniques to avoid handling indices excessively. Vectors and

matrices utilize positions instead of indices.

EXAMPLE 2.1 Consider multiplying a 3×1 matrix and a 1×3 matrix:


 5

7

11


[1 2 3

]
=


 5 10 15

7 14 21

11 22 33


 .

36 A SURVEY OF ARRAYS CHAPTER 2

Large multidimensional arrays cannot be displayed in such a way. Instead, a new

function is employed to produce the index set, which is the set of all indices deter-

mined by a given n-tuple for N. Given such an n-tuple, the indices are implicitly

understood.

DEFINITION 2.6 (P)

For (t : n) ∈Nn, the function P with domain N is given by

P(t : n) = (ι t1)×· · ·× (ι tn) ,

which is the sequential product of (t : n).

EXAMPLE 2.2 The smallest nonempty index set is P(1) = {1}.

EXAMPLE 2.3 A “2D” index set is

P(2,3) = {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)} .

To further simplify the specification of n-tuples, the tau shift function is intro-

duced. It turns out that primitive operations on multidimensional arrays can be defined

in terms of this function.

DEFINITION 2.7 (τ)

The tau shift

τ : N×Z×Z→ Z

obeys

τk (m)(t : n) =

{
(t1,.,tk−1,tk+m−1,tk+1,.,tn) if k ∈ ι n

(t : n) otherwise
.

EXAMPLE 2.4 Suppose

T= (3,1,2,3,2,1,1,2,3,3) .

To change the sixth component to three (3), calculate

τ6 (3)T= (3,1,2,3,2,3,1,2,3,3) .

Occasionally, it is convenient to drop a subscript which is one, e.g., τ = τ1. Note

that the tau shift function is also defined on N.

SECTION 2.2 ELEMENTARY FUNCTIONS 37

EXAMPLE 2.5 Shift from position one to three: τ (3)(1) = 3.

EXAMPLE 2.6 Shift the second component: τ2 (5)(1,1) = (1,5).

EXAMPLE 2.7 Notice τk (tk)(t1,.,tk−1,1,tk+1,.,tn) = (t : n).

A condition may be attached (after a semicolon) which places additional require-

ments on the sequence. A special case is defined next.

DEFINITION 2.8 A conditional n-tuple has either the form

(t : n;tk = m) or (T;tk = m)

and denotes the n-tuple

(t : n;tk = m) = τk (m+1−tk)(t : n)

= (t1,.,tk−1,m,tk+1,.,tn) ,

provided T= (t : n) is a n-tuple for Z and m ∈ Z.

EXAMPLE 2.8 Observe

(i : n;ik = 1) = τk (1+1−ik)(i : n)

= (i1,.,ik−1,ik+1−ik,ik+1,.,in)

= (i1,.,ik−1,1,ik+1,.,in) .

Another tuple function, which simplifies notation, inserts an element into a given

n-tuple.

DEFINITION 2.9 (�)

The function move right

�: N×S×FS→ F
2

S

inserts a given element of S into a n-tuple for S:

�k s (t : n) =

{
(t1,.,tk−1,s,tk,tk+1,.,tn) if k ∈ ι n

(t1,.,tn,s) otherwise
.

EXAMPLE 2.9 Insert five: � 5 3= (5,3).

Another useful tuple function deletes a component of a given n-tuple.

38 A SURVEY OF ARRAYS CHAPTER 2

DEFINITION 2.10 (�)

The function delete

�:N×F2S→ FS

deletes the specified component of a given n-tuple as follows

�k (t : n) =

{
(t1,.,tk−1,tk+1,.,tn) if k ∈ ι n

(t : n) otherwise
.

EXAMPLE 2.10 Delete the first component: � (5,3) = 3.

EXAMPLE 2.11 Delete the second component: �2 (5,3) = 5.

To abbreviate a tuple whose components are all the same constant, a constant tuple

may be used, which is defined next.

DEFINITION 2.11
(
�
)

For k ∈ Z and n ∈N let �nk = (k,k,.,k︸ ︷︷ ︸
n occurrences

) ∈ Zn.

This notation is natural since Z is a totally ordered set, the subscript k gives

the kth index in this set, and the exponent gives the number of factors. An essential

property of integers is that they are totally ordered. Next, total orders of n-tuples

for Z are defined in the usual way, which should help to familiarize the notation. In

addition, it is illustrative as it is possible to define operations that depend on all of the

indices without having to explicitly write all of them. In fact, it is never necessary to

identify more than a couple indices.

For n= 1 use the familiar orders

<1 =< , ≤1=≤ , >1=> , ≥1= ≥ .

Recall for i,j ∈ Z i < j, i = j or i > j. Consider two n-tuples for Z, say

I= (i : n) and J= (j : n) with n> 1. Define the order <1 by

I<1 J

if and only if there exists p ∈ ι n such that iq = jq for all (if any) q < p and

ip < jp. Also,

I≤1 J if I<1 J or I= J

SECTION 2.3 REPRESENTATION 39

(where as usual I= J if and only if ik = jk for all k with 1≤ k≤ n). Symmet-

rically,

I>1 J if J<1 IandI≥1 J if J≤1 I.

All of the orders <1,≤1 ,>1 and ≥1are now completely defined.

Next, the remaining orders <k, >k, ≤k, and ≥k for k = 2,3,4,.,n are

defined. The order <k obeys

I<k J if ik < jk or ik = jk and �k I<1 �k J.

Analogously as for <1,

I≤k J if I<k J or I= J,I>k J if J<k IandI≥k J if J≤k I.

The order <1is called the lexicographical order or left order and <n the right order

with respect to n-tuples for Z.

2.3 REPRESENTATION

Consider the notion of array type and possible representations of an array. The sim-

plest form is preferred. First, look at the system of axes. A potential system of axes for

arrays with two or three dimensions corresponds in a natural way to the familiar Carte-

sian coordinate system (see Figure 3.3). Different representations for the“coordinates”

or locations may be used.

EXAMPLE 2.12 Consider a matrix, say A= [e], which has a single element. Suppose

for some particular index, say i, A [i] = e. Similarly, another matrix B has the same

element e but uses a different index, say j with j �= i, and suppose B [j] = e. It is

possible to define arrays so that these matrices are equal (A= B).

If different representations were allowed, then it would be necessary to check that

all operations are well-defined for different representations. This necessity can be cir-

cumvented by choosing not to allow different labeling schemes along axes. In the

preceding example, if it is required that i = j = 1, then it seems that at least one

aspect of the form of an array is unambiguous by construction.

In general, an array has forms that cannot simply be determined from inspection of

the system of axes and the elements. In particular, an array may have field directions.

Such field directions are not captured by the notions of shape and content alone.

40 A SURVEY OF ARRAYS CHAPTER 2

EXAMPLE 2.13 Consider a database in which each row represents homogeneous data

so that it is possible to perform some operation on all of the elements in the rows, such

as addition of all the elements in each row.

It is possible to specify the elements using different type specifications. Neverthe-

less, in order to treat elements collectively as a “row” for which operations may be

defined, they must be characterized accordingly. Consider a row of elements. Sup-

pose the types are specified using more than one type specifier, e.g., an element may

be specified as an integer and another as a rational number. In other words, some sort

of “union type” is employed for elements in a row. Mainly, it is difficult to discuss

operations and the resulting type without specifying the type over which the opera-

tions are performed. Yet, even when the operation is well-defined, the result may be

meaningless if the values are not related in any way besides having a common type.

An interpretation of a two-dimensional array is a series of rows with the same shape

and within any row all elements have a prescribed type. Higher-dimensional arrays

are a series of lower-dimensional arrays preserving shapes and types. In other words,

multidimensional arrays may be created from lower-dimensional arrays by stacking

along a new dimension. For instance, suppose there are two-dimensional tables of

data, one for each business day of the week. These tables may be stacked to form

a three-dimensional array. Similarly, weekly data in three-dimensional arrays for all

weeks in a month may be stacked into a four-dimensional array.

A tacit assumption is that an array may have a field direction. This means that there

may be a direction such that along any axis with this direction elements have some

specified type so that it is possible to apply some operation axially. Still, it is possible

an array model does not have a field direction. For instance, an array that has more

than one element, and for which any pair of elements have distinct and incompatible

types. It seems the simplest form of an array model is encapsulated in the description

content plus shape. The definition of an array model should enclose no more, no less,

than this simplest form.

2.4 IMPLEMENTATION

The intention is to focus on essential details and properties of computations and to

ignore nonessential implementation details. An advantage of taking this approach is

that programs are highly portable. A theory should not depend on any specific hard-

ware or software implementation. For instance, an array should not be assumed to be

stored in a contiguous memory block, even though this assumption might be realistic in

SECTION 2.4 IMPLEMENTATION 41

many cases. An array may be regarded as an immutable object that cannot be changed

but which can be operated on to produce other objects.

A satisfactory implementation depends on many factors, including the represen-

tation of the objects, the common operations that are performed, and the hardware

configuration. In any implementation, some choices will have to be made. It is impor-

tant for optimization to take into account not only the representation of the objects but

also the primitive operations that are commonly employed.

It is widely accepted that frequently used operations, like indexing, should be ef-

ficiently implemented. In order to implement primitive operations efficiently, it seems

that it is necessary to have knowledge of the hardware/software configuration. It is

unlikely that all costs can be reduced in some algebraic way. A theory is not intended

to replace engineers or hardware designers. On the other hand, hardware designers

continue to create the need for an algebraic theory.

While an algebraic theory may not provide a panacea, it seems reasonable to have

some expectation that if a program is comprised of primitives which are efficiently

implemented, then the program will likely inherit some measure of efficiency. Also if

the number of primitives is kept small as proposed, work to achieve an efficient imple-

mentation will be naturally kept to a minimum. In addition, it is well-known that good

theoretical models can yield efficient programs. An algebraic theory advances such

models by matching the data type with common operations using algebraic structures.

Ultimately, a high-level program must be translated into machine code. In prin-

ciple, it is possible to translate into another high-level language, such as a functional,

logic, object-oriented or procedural-oriented language. Ideally, a series of transforma-

tions would be developed to accomplish the translations. At the topmost level, every

primitive operation might be replaced by “skeletons” or models which are suitable for

a particular class of computer architectures. A set of skeletons would be developed for

each such class. These skeletons could then be refined and mapped to various high-

level languages. Finally, compilers could be developed to translate directly from the

given programming language to some particular machine code. When a new com-

puter is introduced, it may be possible to use existing skeletons and develop a compiler

by building on other work. It is reasonable to expect that many basic operations are

available since there exist popular libraries such as BLAS or NAG.

Although memory has remained inherently sequential, different locations can be

accessed in constant time. A primitive indexing operation on arrays is thus feasible.

Elements of an array may be stored in some order as has been traditionally done. Tuples

could be implemented by storing the number of items followed sequentially by the

42 A SURVEY OF ARRAYS CHAPTER 2

addresses of the items in the order they are listed in the tuple.

When the set of locations is small, an array could be implemented via some built-in

or user-defined function, such as an efficient case statement, matching locations with

elements. A possible implementation would store a set of pairs where the first compo-

nent is the location and the second component is the value of the data for that location;

however, it should not be necessary to search for an item as would be appropriate for

sets or general functions. It should be possible to specify an array via some sequence

in some specified order.

2.5 SUMMARY OF ELEMENTARY NOTATION

The following notation was introduced:

ι n index generator produces {1,2,.,n}

(t : n) a n-tuple (t1,.,tn) ∈ S
n for some S

�n
k

a constant tuple (k,.,k) ∈ Zn

τk (z) adds z−1 to the kth component

�k (z) inserts z at the kth position of a n-tuple

�k deletes the kth component of a given n-tuple

P(T) produces the index set

F
k
S family of all n-tuples for S with n≥ k

� a forms a pair with a as the first component

� a forms a pair with a as the second component

@ applies a given function to an argument: @ f x= f(x)

(f,g) (f,g)(x,y) = (f(x),g(y))

<k ,>k ,≤k ,≥k total orders placed on n-tuples for Z

43

CHAPTER 3

A FOUNDATION FOR ARRAYS

T
his chapter introduces formal notions of arrays. A primitive model, concise

notation and descriptive terminology are presented. All arrays possess the

same type. Useful concepts for collections of arrays and convenient symbols

are introduced. A set of primitive operations as in abstract data types is specified which

includes new functions that account for common program structures. All features and

properties of arrays are readily available via suitable and well-defined access functions.

3.1 ARRAY MODEL

This section covers the following concepts: n-array, empty array, k-axis, and k-

order. The type of an array is stated. A tool is added to translate from lists to arrays.

A few ways to specify arrays for parameters and arguments to functions are discussed.

Terminology is developed for subarrays and special arrays. Finally, useful notation for

sets of arrays is introduced.

3.1.1 ARRAY TYPE

A primitive model of an array is presented next. The term mathematical model

describes a functional dependence. An array is a function that depends on a set of

locations. Recall a sequence is a function with domain i n or N. The term instance

refers to an individual of a class.

DEFINITION 3.1 (nnn-array)

A n-array is an instance of a mathematical model

[a |T]

44 A FOUNDATION FOR ARRAYS CHAPTER 3

consisting of a n-tuple T ∈Nn, and a function a : P(T)→ Y. If T= (t : n) then

[a : t1,.,tn] = [a |T] .

The notation closely resembles set notation except the delimiters { } are replaced

by brackets []. This choice is reasonable as like sets, arrays are collections. The

“condition” is that which specifies the domain. For arrays, all that is required is a n-

tuple for N as the domain is completely determined via P. Two forms are employed

so that it is possible to distinguish between a tuple and a natural number and to avoid

excessively writing delimiters, e.g., although the parentheses in [a : (t1,.,tn)] are

relevant, they are superfluous delimiters. This notation seems natural, partly because

of the similarity to the way arrays are usually indexed.

The fact that it is possible to discuss a n-array for any n ∈ N means laws and

properties may be stated in full generality. By definition, if [a |T] is a n-array then T is

a n-tuple for N. Concerning arrays, it is not required to append “for N” after “n-tuple”

since it is required that the n-tuple for an array be a n-tuple for N whenever an object

is declared to be a n-array.

An array model refers to the model of a n-array. Note in the definition of n-array,

ordinary mathematical notions of functions and sets are employed. The definition of a

n-array is closely related to Hudak’s “functional array” (1986). A 1-array may also be

called a list whenever doing so causes no confusion.

Let A= [a |T] be a n-array. The function a is called the array function of A. For

each (i : n) ∈ P(T), the value a(i : n) is called the element or entry of A at location

(i : n) and each ik is an index. Elements of the set P(T) of all locations for A are

also called indices, nodes or points of A. Two elements, nodes or points are adjacent

or adjacent for k if the corresponding locations (i : n) and (j : n) satisfy ip = jp

for all p with p �= k and |ik−jk| = 1. Suppose T = (t : n) and consider a location

(i : n). If for all k ∈ ι n,

either ik = 1 or ik = tk

then the location (i : n) is exterior and a(i : n) is an exterior element. If for some

k ∈ ι n,

1< ik < tk

then the location (i : n) is interior and a(i : n) is an interior element.

Two n-arrays [f |P] and [g |Q] are equal, i.e., [f |P] = [g |Q], if and only if P= Q

and f(t) = g(t) for all t ∈ P(P) = P(Q). There are three different equalities here.

SECTION 3.1 ARRAY MODEL 45

Only the first equality [f |P] = [g |Q] was defined. The second equality P = Q is the

equality for tuples. The third equality e(t) = f(t) is not necessarily defined.

An array model is versatile with numerous applications. The model conforms well

to typical representations of arrays. A model should simplify the universe of objects.

Yet, the model should not diminish the objects in any way.

EXAMPLE 3.1 A n-array allows for repetition of values. It is always possible to trans-

form a n-array with duplicates into a n-array with unique elements. As an array func-

tion may be chosen arbitrarily, pair elements with locations to obtain distinct elements.

For more details, see the Appendix.

EXAMPLE 3.2 Every matrix corresponds in a natural way to a 2-array, i.e.,




a(1,1) a(1,2) · · · a(1,n)
a(2,1) a(2,2) · · · a(2,n)

...
...

. . .
...

a(m,1) a(m,2) · · · a(m,n)


 ∼ [a : m,n] .

EXAMPLE 3.3 A n×n matrix of the form




1 2 · · · n

n+1 n+2 · · · 2n

...
. . .

...

(n−1)n+1 (n−1)n+2 · · · n2


 such as



1 2 3

4 5 6

7 8 9


 ,

is concisely expressed as the 2-array Nn = [a : n,n] with a(i,j) = n(i−1)+j,

i,j ∈ ι n. Call any 2-array that is equal to Nn for some n a squared 2-array.

EXAMPLE 3.4 Every finite sequence of elements x1,x2,.,xn corresponds to the

1-array [x : n].

EXAMPLE 3.5 Hypercubes may be regarded as models of higher-dimensional ar-

rays formed from cubes. Define a simplified version recursively as follows. Omit the

specification of the values at all locations. A line segment consisting of two points, a

square (with four points), and a cube (with eight points) forms a one-dimensional, two-

dimensional, and three-dimensional hypercube, respectively. A (n+1)-dimensional

hypercube consists of two copies of a n-dimensional hypercube. Using Example 3.4,

represent a line segment given two points x1 and x2 by the 1-array [x : 2]. Represent a

46 A FOUNDATION FOR ARRAYS CHAPTER 3

square by the 2-array
[
x2 : 2,2

]
as shown in Figure 3.1(a). Continuing in this way, a

cube is represented via the 3-array
[
x3 : 2,2,2

]
. If a n-dimensional hypercube is rep-

resented as the n-array
[
xn |�n

2

]
then a (n+1)-dimensional hypercube is represented

by the (n+1)-array
[
xn+1 |�n+1

2

]
and a location (i : n+1;in+1 = k) corresponds to

the kth copy.

x
2

1,1
x

xx

2

22

1,2

2,22,1

(a) (b)

Figure 3.1: Figures 3.1(a) and 3.1(b) show a two-dimensional and a four-dimensional hypercube,

respectively.

EXAMPLE 3.6 Generalizing Example 3.5, build up simple multidimensional arrays

recursively as follows. Focus only in the shape of an array and disregard the content

(assign the value “node” to all elements). A one-dimensional array is finitely many

copies of a node, say t1. Using Example 3.4, represent it via the 1-array [a : t1]. A
two-dimensional array is finitely many copies, say t2, of a one-dimensional array and

may be represented by the 2-array
[
a2 : t1,t2

]
with a location (i1,k) corresponding

to the kth copy. A three-dimensional array is finitely many copies, say t3, of a two-

dimensional array and may be represented via the 3-array
[
a3 : t1,t2,t3

]
with a

location (i1,i2,k) corresponding to the kth copy. The set of points

{(i1,i2,k) | k is fixed}

may be described as a “hyperplane.” Continuing in this way, an (n+1)-dimensional

array, which is the (n+1)-array
[
an+1 | (t : n+1)

]
, is tn+1 copies of a n-dimensional

array [an | (t : n)] with a location (i : n+1;in+1 = k) corresponding to the kth copy.

EXAMPLE 3.7 Consider any table of the form

SECTION 3.1 ARRAY MODEL 47

x1x1x1 x2x2x2 x3x3x3 x4x4x4

a(1,1) a(1,2) a (1,3) a(1,4)
a(2,1) a(2,2) a (2,3) a(2,4)
a(3,1) a(3,2) a (3,3) a(3,4)

where xi is a table header describing the a(i,j)’ s for each i, a(i,j) possibly has

a different type for each i, and a(i,j) depends on a(i,1) and xj for j> 1. Such a

table may be represented using the 1-array [x : 4] and the 2-array [a : 3,4].

An “empty array” presumptively has no elements, axes or locations. Although

empty arrays may not make much sense as arrays per se, they are added to the theory

because they are useful to algebraically describe operations on arrays. An empty array

may be regarded as extension of an array model in the same way∞ /∈R is an extension

of the real numbers R.

DEFINITION 3.2 (empty array)

An empty array is an instance of the prototype

� .

This symbol is chosen because it is “empty” of an array function and a n-tuple.

Alternative representations (in case � is not available) are [] and� as these symbols

resemble the corresponding symbols for the empty set, namely {} and ∅. Necessarily,

any two instances of an empty array, say E and F, are equal: E = F. For definiteness,

an empty array does not have any elements, locations or points. An empty array corre-

sponds to a set of nodes, namely the empty set. Whenever needed, operations defined

on n-arrays are also defined for the empty array.

DEFINITION 3.3 (array)

An object has type array if the object is either a n-array for some n ∈ N or an empty

array.

A n-array A = [a |T] never equals an empty array. A n-array is said to be a non-

empty array if it is not equal to the empty array; whence, a nonempty array is a

n-array. It is permissible to define an operation on n-arrays only for some fixed n ∈N.

In particular, such operation need not be defined either for m-arrays with m �= nor an

empty array. Such definitions are common in mathematics, e.g., 1
x
is defined only for

x ∈R−{0}).

48 A FOUNDATION FOR ARRAYS CHAPTER 3

EXAMPLE 3.8 An object [a : 2,3,5,7,11] has type array, where a(i : 5) = 21

for all valid locations (i : 5).

EXAMPLE 3.9 An object [a : 1,3] has type array, where a(1,1) = � , a(1,2) =

[b : 1,1], b(1,1) = � , a(1,3) = [c : 1,1,1] and c(1,1,1) = � .

A n-array may be characterized as an integer array, nonnegative or positive if

all the elements are integers, nonnegative or positive, respectively. Similarly, any type

descriptor which characterizes all elements may be prefixed to the term array to de-

scribe an array with such elements. A 1-array A= [a : m] is said to be nondecreasing

if a is nondecreasing. A is strictly increasing if a is strictly increasing. Similarly, any

1-array may be characterized by properties of its array function.

3.1.2 ORDERING OF ELEMENTS

There is a familiar lexicographical order (in alphabetical order), or row order, of

elements of an array inherited from the total orders defined on n-tuples for Z in Chapter

1. Traditionally, matrices have been implemented by storing the contents sequentially

listing items from a row after the items from the preceding row. This tradition should

not be surprising since a popular model for memory has remained a sequential one.

DEFINITION 3.4 For any n-array A= [a | (t : n)] and for k ∈ ι n, define the kkk-order

of elements of A as the list

〈
ka

(
�n

)
,.,a(i : n),.,a(j : n),.,a(t : n)

〉
,

where (i : n)<k (j : n).

EXAMPLE 3.10 The 1-order of a squared 2-array is the list

〈
1,2,3,.,n

2
〉

where n is the number of rows or columns (see Example 3.3).

EXAMPLE 3.11 Consider any m×n matrix. The 1-order or row order of elements is

the usual listing of elements by rows. The 2-order or column order yields a listing of

elements by columns.

EXAMPLE 3.12 Consider any m×n×pmatrix and 3-order. For instance, the 3-array

SECTION 3.1 ARRAY MODEL 49

[a : 2,2,2] depicted in Figure 3.2 with

a(i,j,k) = 2(i−1)+j+4(k−1)

yields the 3-order 〈31,2,3,4,5,6,7,8〉.

(1,1,1)

(1,2,1)

(2,1,1)
(2,2,1)

(1,1,2)

(1,2,2)

(2,1,2)

(2,2,2)

1 2

3 4

5 6

7 8

Figure 3.2: The elements of [a : 2,2,2] with labelled locations are shown.

3.1.3 SPECIFICATION OF ARRAYS

An array function of a 1-array is a sequence. It is useful to be able to specify short

lists without referring to the index set since there is only one axis and the elements are

given in order. It is convenient to introduce a method to specify 1-arrays succinctly.

Recall a n-tuple can have arbitrary elements for components whereas a n-tuple for N

has components that are all natural numbers.

DEFINITION 3.5 Let Ak be any nonempty set for k ∈ ι n. The function — with

domain

A1×A2×·· ·×An

is given by

a1,a2,.,an �−→ [a : n] .

Consider two 1-arrays [f : p] and [g : q] with [f : p] = [g : q]. Evidently p = q

and fk = gk for all k. This establishes that the list function— is well-defined. Inci-

dentally, vinculum in mathematics groups terms by placing a bar over the compound.

EXAMPLE 3.13 Defining ak = k, 1,.,n= [a : n].

EXAMPLE 3.14 Put A= 0,3. Then A= [a : 2] with a1 = 0 and a2 = 3.

50 A FOUNDATION FOR ARRAYS CHAPTER 3

Lists are popular. It is convenient to be able to translate quickly from lists to arrays.

Since a sequence is listed in order, it is natural to infer the indices. Any small 2-array

may be specified by simply presenting a usual matrix, preferably using brackets around

it. All m×1 matrices should be distinguished as 2-arrays as this information is not

available from such matrices, i.e., a 2-array that is presented as a vector appears as a

1-array.

Any small n-array may be presented by specifying the necessary parts using array

notation, appending the list of elements in some specified order, preferably enclosed in

angled brackets. The following form is proposed

[a : t1,.,tn 〈ke1,.,es〉]

where the ek’ s are the elements listed in k-order (and s denotes the total number of

elements). It is also possible to use the forms

[a | (t : n)〈ke1,.,es〉] or [a |T〈ke1,.,es〉]

provided that the sequence t or the n-tuple T is defined elsewhere.

EXAMPLE 3.15 [a : 2,2,2 〈31,2,3,4,5,6,7,8〉] specifies the 3-array in Ex-

ample 3.12.

EXAMPLE 3.16 [a : 2,2,2 〈1,5,2,6,3,7,4,8〉] specifies the 3-array in Exam-

ple 3.12.

The iota array is the 1-array

�n = 1,.,n= [idN : n] .

The infinite iota array �∞ is a 1-array with type array of the form [idN : n] where n is

variable with type N. This array would be treated as a constant array which is as large

as needed. The variable n would be determined from other parameters. For instance

if an operation is defined for a given parameter which is a 1-array of length n and an

argument which is a n-array then if the parameter is �∞ the operation is defined for

any given array that is nonempty.

Extend the constant tuple to arrays naturally:

�n
k
= [c : n]

where ci = k for all i ∈ ι n. Call �n
k
the “constant-k by n” array. The constant-k

array �∞
k

could also be used as an infinite constant array.

SECTION 3.1 ARRAY MODEL 51

EXAMPLE 3.17 �= [idN : 1].

EXAMPLE 3.18 �4 = 1,1,1,1.

It is permitted to use arrays of the form

[f |∞]

provided f is a function with domain N and [f |∞] is treated as the 1-array [f : n]

where n is a variable with type N.

3.1.4 AXES

A n-array has axes. The system of axes together with the nodes comprise the net,

mesh or network of a n-array. An axis is an imaginary vector with a head and a tail.

This vector always has magnitude and direction. Two vectors are equal if and only if

they have the same magnitude and direction.

The magnitude or length of an axis corresponds to the number of elements at lo-

cations in the mesh along parallel vectors. An axis may be moved from one place to

another in the net provided its direction is not changed and its head and tail coincide

with exterior locations in the mesh. In particular, given an arbitrary n-array [a | (t : n)]

and a natural number k ∈ ι n, there is a k-axis with magnitude or extent tk and di-

rection k. Given any k-axis, its tail may be placed only at locations of the following

form (i : n;ik = 1). Whenever the tail of the k-axis is placed at such a location, the

head is necessarily at location (i : n;ik = tk).

All axes with the same magnitude and direction are equal and correspond to a k-

axis for some k. To identify a particular k-axis, it is necessary to specify the direction

k and to identify a location along the k-axis such as the head of the axis. Axes are

naturally ordered so that the k-axis is the kth axis. So the first axis is the 1-axis, the

second axis is the 2-axis, and so forth.

Principal operations on arrays act along some direction determined by a k-axis for

some fixed k. A field direction k is a direction k provided along any particular k-axis

there exists a binary operator that may be placed between any two adjacent elements

on that axis. Such operations are described by saying they are performed along rows

or columns and so forth. The empty array has no axes.

3.1.5 SUBARRAYS

Some new terminology is helpful to properly discuss arrays. A practical notion is

subarray, which corresponds to the restriction of an array function to a subset of the

52 A FOUNDATION FOR ARRAYS CHAPTER 3

(,1 1 (,,1 2 (,1 3

(,2 1 (,,2 2 (,2 3

3 3 3

1
-a

x
is

2-axis

(, 1 (,, 2 (, 3

)

)

)

)

)

)

)

)

)

Figure 3.3: Locations along 1-axis and 2-axis, vary vertically and horizontally, respectively, i.e.,

rotate the usual coordinate system 90 degrees and identify the tuple (i,j) with the

coordinate (i,j).

nodes.

DEFINITION 3.6 A n-array A = [a | (s : n)] is a subarray of another n-array B =

[b | (t : n)], provided si ≤ ti for all i∈ ι n, and there are strictly increasing functions

λk : ι sk→ ι tk such that a(i : n) = b
(
γi : n

)
where γik = λkik . An empty array �

is a subarray of every n-array.

EXAMPLE 3.19 A submatrix is obtained by crossing out rows and columns. Upon

removing the second row and column of the squared 2-array N3 (see Example 3.3), the

2-array A= [a : 2,2] ∼ [1 3
7 9] is obtained, which is a subarray of N3.

EXAMPLE 3.20 The squared 2-array N1 is a subarray of the squared 2-array Nn for

every n ∈ N. Put λ1 = λ2 = 1 (see Example 3.3).

If A is a subarray of B, then say B contains or includes A. An array A is said to

be a strict subarray, or a proper subarray, of an array B provided A is not an empty

array and A is a subarray of B with A �= B. It is also convenient to be able to say when

an array is a contiguous subarray of another array.

DEFINITION 3.7 A n-array A= [a | (s : n)] is a contiguous subarray of another n-

array B = [b | (t : n)] provided si ≤ ti for all i ∈ ι n and there exist nonnegative

shifts δi such that

a(i : n) = b

(
γi,δ : n

)

where γi,δ =+◦ (i,δ), i.e., γi,δ (k) = ik+ δk.

EXAMPLE 3.21 A submatrix which is any row or column of a matrix is a contiguous

subarray.

EXAMPLE 3.22 The squared 2-array N1 is a contiguous subarray of the squared 2-

array Nn for every n ∈N. (see Example 3.3)

SECTION 3.1 ARRAY MODEL 53

Recall, arrays may have duplicates of values. Hence, two subarrays formed from

different parts of an array may have common elements and may even be equal. It is

useful to be able to say when subarrays overlap in an array that contains them.

DEFINITION 3.8 A collection

{[
ak |

(
sk : n

)]}
k∈ι m

of nonempty subarrays of a n-array B = [b | (t : n)] is pairwise disjoint or nonover-

lapping in B if there exist strictly increasing functions λk,p : ι skp→ ι tp (which gives

the pth component) such that

ak (i : n) = b

(
γk,i : n

)

and

∅=
m⋂

k=1

{(
γk,i : n

)
| (i : n) ∈ P

(
sk : n

)}

where γk,ip = λ
k,p
ip

; otherwise, the collection is said to be overlapping.

EXAMPLE 3.23 The collection {B} is nonoverlapping for all n-arrays B.

EXAMPLE 3.24 The 2-arrays
{
Bk
}
k∈n

are nonoverlapping in the squared 2-array Nn

(see Example 3.3) where Bk =
[
bk : 1,1

]
with bk (1,1) = k. Put

λk,11 =
k− (kmodn)

n
+1

and

λk,21 = kmodn.

where kmodn is the remainder after dividing k by n.

Informally, two subarrays overlap if and only if they both have an element which

was taken from the same location in the larger array that contains them. Two disjoint

arrays may or may not have some common elements and do have at least one common

location. In fact, two disjoint arrays may be equal. A nonoverlapping collection has

the potential to cover an array.

DEFINITION 3.9 Let B= [b | (t : n)] be any n-array. Suppose C is any collection of

n-arrays. Then C forms a covering of B or covers B, or is a cover for B, if it is possible

to form
{
Ak
}
k∈ι m

which is a nonoverlapping collection of contiguous subarrays in B

54 A FOUNDATION FOR ARRAYS CHAPTER 3

such that each Ak =
[
ak |

(
sk : n

)]
is a subarray of a unique A ∈ C and

m∑

k=1

n∏

i=1

ski =
n∏

i=1

ti,

where
∏

denotes usual multiplication of operands. If B is an empty array, then any

collection of n-arrays covers B.

Informally, a collection of arrays covers B if it is possible to overlap B completely

by overlaying arrays from the collection onto the mesh of B. The main requirement is

there must be enough arrays that contain contiguous subarrays to cover B.

EXAMPLE 3.25 For every n-array B, {B} covers B.

EXAMPLE 3.26 Consider the 2-array A = [a : 2,2] ∼ [4 3
2 1

] with a(i,j) = 7−

2i−j. The collection {A} does not cover the squared 2-array N2 ∼ [1 2
3 4

] (see Exam-

ple 3.3). Basically, it is possible to cover only one of the elements in N2, since every

subarray from A which is also a contiguous subarray of N2 contains only one element.

It is permitted to form only one subarray from A as there are no other arrays in the

collection. Setting Bk = A for k ∈ ι 4,
{
Bk
}
k∈ι 4

forms a covering of N2.

EXAMPLE 3.27 The 2-arrays
{
Bk
}
k∈ι n2

in Example 3.24 covers the squared 2-

array Nn (see Example 3.3).

An array is comprised of a finite series of hyperplanes.

DEFINITION 3.10 Any n-array of the form [a | (t : n)] with n > 1 and tk = 1 is a

hyperplane. To identify the index k with tk = 1, write a hyperplane “for the k-axis.”

Hyperplanes are ordered in the natural order.

EXAMPLE 3.28 Let A= [a | (t : n)] be any n-array with n> 1 and tk ≥ p≥ 1. Set

B= [b |T] where

b(i1,.,ik−1,1,ik+1,.,in) = a(i1,.,ik−1,p,ik+1,.,in) ,

and

T= (t : n;tk = 1) = (t1,.,tk−1,1,tk+1,.,tn) .

Then B is the pth hyperplane of A for the k-axis. B is a contiguous subarray of A.

SECTION 3.2 ARRAY MODEL 55

3.1.6 SETS OF ARRAYS

Some useful notation and terminology for sets of arrays is given next. For T ∈Nn,

define array space for T as the set

A(T) = {[a |T] has type array}

which is the set of all arrays with shape T. Hence n-array space is the set

A
n =

⋃

T∈Nn

A(T)

which is the set of all n-arrays.An∗= {�}∪An is the set that contains the empty array

and all n-arrays. Define the family

A
k =

∞⋃

n=k

A
n,

which is the family of all n-arrays with n≥ k. NoteA1 =A is the set of all nonempty

arrays. Although it is not possible to define the set of all sets, it is possible to define

the set of all arrays. The family of all arrays is A∗ = {�}∪A.

For T ∈Nn, define the family CY (T) by announcing a ∈ CY (T) if a : P(T)→ Y is

any function. AY (T) is array space for T in Y. So n-array space in Y is

A
n

Y =
⋃

T∈Nn

AY (T) ,

which is the set of all n-arrays in Y. The family

A
k

Y
=

∞⋃

n=k

A
n

Y
,

is the family of all n-arrays in Y with n ≥ k. In addition, AY is the family of all

nonempty arrays in Y. In addition,

A
∗

Y
= {�}∪AY

is the family of all arrays in Y. It is convenient to admit a symbol for the set of all

hyperplanes

H=
{
[a | (t : n)] ∈A2 |tk = 1 for some k

}
.

The set of all hyperplanes in Y is

HY =H∩AY.

56 A FOUNDATION FOR ARRAYS CHAPTER 3

3.2 CONSTRUCTORS

A new data type may be introduced by listing generators that are actual values of

the data type and also specifying generating relations or simply relations, which are

functions that generate all other values. An empty array � is admitted as a generator,

which is the only generator employed. In the remainder of this section, all of the

generating relations are defined. Together the generators and relations comprise the

constructors.

Consider an array that contains a single element. A function to construct such

arrays is defined next.

DEFINITION 3.11 (CONSTRUCTOR)

For any object x of arbitrary type α and for arbitrary n ∈N, the function

(·)
n
: α→A

n

obeys

(·)
n
(x) =

[
a |�n

]
,

where a is the array function

a : �n →{x}

given by a
(
�n

)
= x.

An array of the form
[
a |�n

]
is called scalar, which is suggestive as unlike a vector

there is no special direction. The constructor (·)
n
is called a scalar function. Notice

an infinite number of scalar functions have been defined. A scalar function (·)
n
always

produces a n-array. An array is nonscalar if it is not scalar. If n= 1, a 1-array that is

scalar is also called a singleton. For n> 1, a n-array that is scalar is also a hyperplane,

even though it has just one point. The term hyperplane is used only to suggest more

than one dimension with one axis of minimal extent. A 1-array is never a hyperplane.

EXAMPLE 3.29 [a : 1,1,1,1] is scalar for all possible functions a defined on �4 =

(1,1,1,1).

EXAMPLE 3.30 [+1 : 1] = �2 denotes the singleton that has the element 2.

EXAMPLE 3.31 [a : 1] = (·)(a1) = a1.

Appending a new axis converts a n-array into a (n+1)-array. The content of the

array is unchanged. A “1” is simply appended to every location. This transformation

SECTION 3.2 CONSTRUCTORS 57

is a structure preserving operation, i.e., the elements are not rearranged in any way and

the orientation of the mesh is unchanged.

EXAMPLE 3.32 A squared 2-array Nn = [a : n,n] (see Example 3.3) may be trans-

formed into the 3-array [b : n,n,1] with b(i,j,1) = a(i,j).

EXAMPLE 3.33 A 1-array may be mapped to a 2-array via a transformation of the

“list” into a column matrix as shown in Figure 3.4(a).

1
2
3
4
5

1
2
3
4
5

[[

[[
(a) 1-array to column matrix

1
2
3
4
5

[

[1 2 3 4 5[

[

(b) 1-array to row matrix

Figure 3.4: (a) A 1-array A = [a : 5] where ai = i (which appears as a column yet has only

one axis) is transformed into the 2-array B = [b : 5,1] where b (i,1) = i. (b) A is

transformed into the 2-array B= [b : 1,5] with b(1,i) = i.

It is always possible to insert an axis for any n-array. If a k-axis is inserted, then

whatever was the length of the k-axis, its length is now 1, and what was the k-axis is

now the (k+1)-axis, what was the (k+1)-axis is now the (k+2)-axis, and so forth.

EXAMPLE 3.34 Consider transforming a 1-array to a 2-array by transposing the cor-

responding vector to a row matrix as depicted in Figure 3.4(b).

EXAMPLE 3.35 Consider transforming a squared 2-array N2 into a 3-array B by ro-

tating the array so that the 1-axis becomes the 2-axis and then pushing the former

2-axis down so that it becomes the 3-axis and the newly added axis is the 1-axis. See

Figure 3.5.

Adding an axis at the end results in a structure preserving transformation, while

inserting an axis yields a rotation. It is not necessary to single out one hyperplane as

being the last one and it should be possible to view any plane as being formed via a

structure preserving operation that adds an axis to an array.

It should be possible to build up arrays in any direction without rotations. The

58 A FOUNDATION FOR ARRAYS CHAPTER 3

1 2

3 4 1

2

3

4

Figure 3.5: A squared 2-array A= [a : 2,2] where a(i,j) = 2(i−1)+j is transformed into

a 3-array B= [b : 1,2,2] where b(1,i,j) = 2(i−1)+j.

problem arises due to the ordering of the axes. Yet, the ordering of the axes serves a

useful purpose.

EXAMPLE 3.36 Look at the 1×3 matrix

[
(1,1) (1,2) (1,3)

]

in which the elements are the same as the locations. Now remove the 1-axis :

[
(1) (2) (3)

]

Apparently, no rotation is required.

An array may be viewed with many different orientations (labeling schemes). It is

possible to change the orientation by relabeling axes. The work of relabeling, which

maps one system of axes to another seemingly identical system, is delegated to the

generating relation reax, defined next.

DEFINITION 3.12 (CONSTRUCTOR)

Let k ∈N. The function
reaxk :A→H

is given by

reaxk [a | (t : n)] = [a ◦ �k | �k (1)(t : n)] .

Redundant operations should be avoided. Only one reax function is required to

generate all arrays. Yet, infinitely many have been added. Nevertheless, it is precisely

the right number. Since arrays possess several dimensions, it is possible to build up

SECTION 3.2 CONSTRUCTORS 59

arrays in several ways. Fairly or not, it is the operations, not the objects, that are held

in high esteem. It is plausible to interpret reax as performing a rotation. However,

reax is useful mainly as a relabeling relation that allows operations to be defined along

different axes.

To specify the k-axis along which an operation takes place, it is preferable to write

fk instead of f k. With this convention, the role of k is clear. If a subscript, superscript

or parameter is missing, it is taken to be 1, e.g., reax A reads as reax1 A.

Using multidimensional arrays, it is possible to perform many operations axially.

Such operations can be partitioned as the data structure itself is partitioned. After

partitioning an array into hyperplanes, a method is needed to put them back together

again. In the theory of lists, an essential operator for handling lists is the concatenation

operator. Concatenation is a natural operation for arrays. Such operations are available

in commercial mathematics programs such as Maple V. A 1-array is a list. Since

homomorphisms for lists are well-known, when concatenation is taken as a constructor,

list homomorphisms are obtained for free.

For any n-array, there are exactly n concatenation operators:

{++1 ,.,++n} .

This number of operators is needed to be able to build up arrays in all directions. An

expression of the form A1++k A2++k · · ·++k Am for any finite set of arrays {Ai}i∈ι m
is

a concatenation of the Ai’ s. The verb concatenate may be used to refer to combining

two arrays via a concatenation operator. An operator ++k is defined for any n-array

with n≥ k.

For any array A, define

A++k � = �++k A= A.

The empty array is the identity element for ++k. Now all concatenations are defined

whenever one of the arrays is an empty array. It is possible to concatenate any two

nonempty arrays, provided that they have sufficiently similar shapes for stacking. The

stacking requirement is that both given arrays have the “same shape ignoring the k-

axis,” which means the number n of axes is the same for both arrays and the lengths

of all corresponding axes are equal, except possibly for the k-axis. In particular, it is

possible to form a new array with the same shape as the given arrays ignoring the k-

axis, and the length of the k-axis in the new array equals the sum of the lengths from the

given arrays. Below, a concatenation of two 2-arrays is depicted, which corresponds

60 A FOUNDATION FOR ARRAYS CHAPTER 3

to adjoining a 2×1 matrix and a 2×2 matrix into a 2×3 matrix:

[
1

4

]
��

��

[
2 3

5 6

]
�−→

[
1 2 3

4 5 6

]

DEFINITION 3.13 (CONSTRUCTOR)

For k ∈N the binary operator ++k is a partial function

A
∗×A∗ −→A

∗

that obeys

A++k � = �++k A= A,

and

[a | (t : n)] ++k [b | (t : n;tk = m)] = [c | (t : n;tk = tk+m)] ,

where

(3.1) c(i : n) =

{
a(i : n) if 1≤ ik ≤ tk

b(i : n;ik = ik−tk) if tk < ik ≤ tk+m
.

Informally, arrays are put together along the k-axis by placing the corresponding

axes in the same line. Hence, it is possible to join two points (scalar arrays), a point

(singleton) and a line (1-array), two lines, or two “boxes” that have common dimen-

sions except for at most one. By convention, in any equation a concatenation operator

has less precedence than any other constructor.

Although it may be possible to concatenate, the resulting array may be useless. In

particular, if a n-array has a field direction k and it is desired to concatenate along the

k-axis, there exist additional requirements, which concatenate does not enforce, on the

types of elements along every k-axis. It may be desired to join two particular k-axes

only if all elements along those axes have the same type. Regardless, concatenation is

defined independently of the notion of field direction.

EXAMPLE 3.37 Join two singletons into a 1-array thusly

(·)(5) ++ (·)(7) = 5,7.

A collection of n-arrays is conformable if all arrays in the collection can be con-

catenated together in some way to yield a single n-array. All elements in the collection

are used at least once to produce the result. An array is a nested array if every element

in the array has type array.

SECTION 3.3 DESTRUCTORS 61

EXAMPLE 3.38 Any nonoverlapping covering is a conformable collection.

EXAMPLE 3.39 The set {(·)(A), (·)(B)} is a conformable collection for any objects

A and B.

EXAMPLE 3.40 The set {A, reax A} is not a conformable collection for any n-array

A.

EXAMPLE 3.41 The array [a : 1,5] with a(1,k) = Nk is a nested array where Nk is

a squared 2-array (see Example 3.3).

DEFINITION 3.14 A n-array A = [a |T] is a tiled array or a tiling if A is a nested

array such that

a(s) ++k a(t)

is defined for all k ∈ ι n and for all locations s,t ∈ T that are adjacent for k ∈ A.

Informally, a tiling is a nested array all of whose elements have the same shape

along any axis ignoring that axis. Form a tiling by slicing up an array, inserting parallel

planes all the way through.

EXAMPLE 3.42 The 1-array (·)(A) is a tiling for all arrays A.

EXAMPLE 3.43 Choose n ∈N and put B= [b : n,n] with

b(i,j) = (·)((n−1)i+j).

Then B is a tiling for Nn, a squared 2-array (see Example 3.3).

3.3 DESTRUCTORS

Destructors select entire and distinct parts of objects or extract fundamental prop-

erties. For any given object, destructors yield either structural data, i.e., information

about organization, or another object defined solely in terms of structural information.

Begin by looking at familiar fundamental properties of an array.

3.3.1 FUNDAMENTAL SELECTIONS

In the theory of lists, a useful operation yields the length of a list, which is the

number of elements in the list (Bird, 1987, p. 7). An analogous operation for arrays is

62 A FOUNDATION FOR ARRAYS CHAPTER 3

size, which gives the number of elements in the array. The function size is defined for

all arrays.

DEFINITION 3.15 (DESTRUCTOR)

The function

size :A∗→N0

obeys

size � = 0,

and

size [a | (t : n)] =
n∏

i=1

ti.

EXAMPLE 3.44 The size of a 2×3 matrix is six.

EXAMPLE 3.45 Always size [a : 7,7] = size
[
a | �2

7

]
= 49.

EXAMPLE 3.46 The size of an array with m rows and n columns is

size [a : m,n] = mn.

APL has an unary function ρ that returns the shape of an array. The function shape

applied to a n-array produces a 1-array of lengths of each axis and is defined next.

DEFINITION 3.16 (DESTRUCTOR)

The function

shape :A∗→A
∗

N

is given by the equations

shape � = � ,

and

shape [a | (t : n)] = [t : n] .

The result of a shape operation may also be referred as the shape of an array.

EXAMPLE 3.47 The shape of a squared 2-array is [Kn : 2], where n is the number of

rows or columns (see Example 3.3) and Kc is the constant function Kc (x) = c.

EXAMPLE 3.48 Applying shape to a vector produces a singleton that contains the

length of the vector:

shape [a : n] = [Kn : 1] .

SECTION 3.3 DESTRUCTORS 63

EXAMPLE 3.49 For a 3-array [a : 2,4,6],

shape [a : 2,4,6] = [×2 : 3] .

To find the length of the k-axis for a nonempty array [a | (t : n)], select the kth

element of the shape tuple (t : n).

DEFINITION 3.17 (DESTRUCTOR)

The function

length :N×A∗→N0

is given by

length
k � = 0

and for any n-array A if k> n then

length
k
A= 0

and otherwise

length
k
[a | (t : n)] = tk.

EXAMPLE 3.50 Let f = + ◦ ((×◦� 10)◦div 8,mod8) ◦×. Then the number of

columns in a 4×7 octal multiplication table is

length
2
[f : 4,7] = 7.

EXAMPLE 3.51 The number of rows in a 5×7 multiplication table is

length [× : 5,7] = 5.

Next, consider the valency of an array. In APL, it is possible to simply apply shape

twice (ρρ). This operation is denoted by δ in (Mullin, 1988). Next, the function axes

is defined, which yields the number of axes of a given array.

DEFINITION 3.18 (DESTRUCTOR)

The function

axes :A∗→N0

is given by

axes � = 0,

and

axes [a | (t : n)] = n.

64 A FOUNDATION FOR ARRAYS CHAPTER 3

EXAMPLE 3.52 An empty array has zero axes, any vector or 1-array has one axis and

a 5×7 matrix or any 2-array has two axes.

EXAMPLE 3.53 The number of axes of squared 2-array is 2 (see Example 3.3).

EXAMPLE 3.54 A 1-array has only one axis: axes [a : 9] = 1.

For completeness, consider the selector that retrieves the array function itself,

namely the function selector fn which is defined next.

DEFINITION 3.19 (DESTRUCTOR)

For any n-array [a |T],
fn [a |T] = a|

P(T) ,

which is the array function a restricted to P(T).

EXAMPLE 3.55 fn [× : 5,4] =× with domain P(5,4) where ×(a,b)

= a×b.

3.3.2 RELABELING

The generating relation reax relabels locations. Inversely, it is possible to collapse

any hyperplane, removing an unnecessary axis.

DEFINITION 3.20 (DESTRUCTOR)

The partial function

collapse :N×H→A

is given by

collapse
k
[a |�k (1)(t : n)] = [a ◦�k (1) | (t : n)] .

EXAMPLE 3.56 Consider the 2-array A= [a : 1,3] ∼ [1 2 3], where a(1,k) = k.

Then collapse [a : 1,3] = [b : 3], where b(k) = k, is a 1-array B ∼
[
1
2
3

]
.

3.3.3 BLOCK SELECTIONS

Arrays are comprised of blocks. An important observation for arrays is that the

axes and the hyperplanes are ordered in a natural way. In this section, primitives are

added to extract common subarrays.

SECTION 3.3 DESTRUCTORS 65

3.3.4 INDEXING

The smallest blocks in an array are singletons. Next, define the selector index

which retrieves the elements of an array. This primitive operation is a familiar one in

functional programming (cf. for example Harrison, 1992, p. 557).

DEFINITION 3.21 (DESTRUCTOR)

The partial function

index :AY×AN→ Y

is given by

index [a | (t : n)] [i : n] = a(i : n) ,

whenever (i : n) ∈ P(T).

The function index is not defined for invalid locations.

EXAMPLE 3.57 Let t = 1,999. Then index N1000 (t) = 999 where N1000 is a

squared 2-array (see Example 3.3).

3.3.5 EXTRACTING AN AXIS

An array is comprised of a system of parallel axes (plus content). It is useful to

be able to extract any axis. It is not a subarray as such objects possess more structure

than needed. An axis may be regarded as a 1-array, that could be transformed into a

subarray provided suitable reax operations were applied to the axis. An array may be

regarded as an array of axes. In particular, any n-array with n > 1 is an (n−1)-array

of axes that are 1-arrays.

For this operation, a more expressive than concise form is chosen. To specify an

axis, the field direction along with the head of the axis is required. For any given axis,

the location for the head along the given axis is required to be one, which is not omitted

in the specification.

DEFINITION 3.22 (DESTRUCTOR)

The partial function

ax : N×A×AN→A

is given by

axk [a | (t : n)] [h : n] = [a◦� : tk] ,

where

�(j) = τk (j)(h : n) ,

66 A FOUNDATION FOR ARRAYS CHAPTER 3

provided k ∈ ι n and necessarily

hq ≤ tq for 1≤ q< k,

hk = 1,

and

hq ≤ tq+1 for k< q< n.

EXAMPLE 3.58 Observe that

ax2 N4 3,1= [+8 : 4] ,

where N4 is a squared 2-array (see Example 3.3).

3.3.6 EXTRACTING A BLOCK

A block is a contiguous subarray obtained by selecting a range of indices for each

axis. A way to specify the desired block is to state

• the shifts, and

• the size of the block as depicted in Figure 3.6(b).

Both the translation, say sk, and the length, say uk, of the k-axis are required for each

k. Unfortunately for large arrays there are many sk’ s and uk’ s. In Figure 3.6(a), a

small block is pictured inside a larger array. In Figure 3.6(b), information needed to

specify a block is shown.

(a) Picturing a block

}}

S

u

u

S
2

1

1

2

(b) Specifying a block

Figure 3.6: Picturing and specifying a block.

SECTION 3.3 DESTRUCTORS 67

In view of the operations that are needed and the blocks that are used, it is often

possible to arrange the data conveniently. For example, it may be possible to arrange

that the blocks are simply rows of the array. In this case, it suffices to specify only the

rows.

Some flexibility will be allowed when specifying the values of the sk’ s and uk’ s as

explained next. Any missing shift sk will be taken to be zero, which means no shift, a

shift of

sk = p

means shift over to the (p+1)st hyperplane, and if sk is too large then the result will

be an empty array. To avoid list orientations, negative shifts will also be permitted. For

a n-array [a | (t : n)], a shift

sk =−p< 0

will mean shift over to the tk−p+1 hyperplane. If any length uk is missing or if uk

is too large then the result will be as large as possible after translation.

DEFINITION 3.23 (DESTRUCTOR)

The function

block :A∗Z×A
∗

N×A
∗→A

∗

is given by

block S U � = �

and for an arbitrary n-array A= [a | (t : n)],

block S U A= C

where C is prescribed next. If S �= � , then write S= [s : ms] and set

σi = si for 1≤ i≤ ms;

otherwise, set ms = 0. For ms < k≤ n, put σk = 0. Then calculate

s′

k =



σk if σk ≥ 0

tk+σk+1 if − (tk+1)≤ σk < 0

tk if σk <−(tk+1)

.

Let

ŝk =min
{
s′

k,tk
}
, k ∈ ι n.

If ŝk = tk for any k then

C= � .

If U �= � , then write U= [u : mu] and set

µi = ui for 1≤ i≤ mu;

68 A FOUNDATION FOR ARRAYS CHAPTER 3

otherwise, set mu = 0. For mu < k≤ n, set µk = tk. Then compute

ûk =min{µk,tk− ŝk}, k ∈ ι n.

If ûk ≤ 0 for any k then take C= � ; otherwise, take

C = [c | (û : n)] ,

c(i : n) = a

(
γ
i,ŝ : n

)
where

γ
i,ŝ =+◦ (i,ŝ) .

EXAMPLE 3.59 Remove the first and last rows of a squared 2-array Nn via

block � n−2 Nn,

where n denotes the number of rows (see Example 3.3).

EXAMPLE 3.60 Given the 2-array

A ∼


 1 2 3 4 5

6 7 8 9 10

11 12 13 14 15


 ,

extract the subarray [3 4
8 9] by calculating block S U A, where S= 0,2 and U= 2,2.

EXAMPLE 3.61 Compute block � 2 A using the array A in Example 3.60 to obtain

the first two rows: [
1 2 3 4 5

6 7 8 9 10

]
.

Whenever convenient, the result of a block operation is referred to as a block array

or simply a block. Many algorithms rely on blocks. Extracting a block should be

implemented as efficiently as possible. A block operation is available, for instance,

in occam 2, a programming language with PAR, SEQ and ! (send) and ? (receive)

constructs.

3.3.7 SELECTING HYPERPLANES

Consider any array that is a hyperplane for the k-axis. Upon collapsing by remov-

ing the k-axis, the result is an array that is not a subarray, even though it resembles the

original array. On the other hand, partitioning a nonscalar array into a nonoverlapping

collection of hyperplanes that forms a covering produces only subarrays.

SECTION 3.3 DESTRUCTORS 69

EXAMPLE 3.62 Looking at B in Example 3.33, five hyperplanes for the 1-axis are

given by

B
k =

[
b
k : 1,1

]
=

[
b
k |�2

]

where bk
(
�2

)
= b(k,1) = k for k ∈ ι 5.

EXAMPLE 3.63 For B in Example 3.34, five hyperplanes for the 2-axis are given by

Bk =
[
bk |�2

]
where bk

(
�2

)
= b(1,k) for k ∈ ι 5.

EXAMPLE 3.64 Consider any squared 2-array Nn = [a : n,n] =
[
a |�2

n

]
(see Exam-

ple 3.3). Then n hyperplanes for the 1-axis are formed via Bk =
[
bk : 1,n

]
where

bk (1,j) = a(k,j). In addition, n hyperplanes for the 2-axis are given by Ck =[
ck : n,1

]
where ck (j,1) = a(j,k).

EXAMPLE 3.65 From B in Example 3.35, two hyperplanes for the 2-axis are given by

Bk =
[
bk : 1,1,2

]
where bk (1,1,j) = b(1,k,j). Two hyperplanes for the 3-axis

are Ck =
[
ck : 1,2,1

]
where ck (1,j,1) = b(1,j,k).

Arrays are concatenations of hyperplanes. It should be possible to select any hyper-

plane. A k-axis must be specified. To select the pth hyperplane, employ the function

slicek p.

Negative parameters will also be allowed. For a n-array [a | (t : n)], if p< 0 then for

sufficiently large p,

slicek p [a | (t : n)] = slicek (tk+p+1) [a | (t : n)] .

DEFINITION 3.24 (DESTRUCTOR)

The function

slice : N×Z×A∗→A
∗

is given by

slicek p � = �

and for any n-array A = [a | (t : n)], if k /∈ ι n or |p| /∈ ι tk (where | | denotes the

usual absolute value function, i.e., |x| equals x or−x if x≥ 0 or x< 0, respectively),

then

slicek p A= � ;

otherwise,

slicek p A = [â | (t : n;tk = 1)]

70 A FOUNDATION FOR ARRAYS CHAPTER 3

where

q=

{
p if 1≤ p≤ tk

tk+p+1 if −tk ≤ p≤−1

and

â(i : n;ik = 1) = a(i : n;ik = q) .

An infinite number of slice functions have been defined. The function slicek is

defined for all arrays.

EXAMPLE 3.66 Compute

slice2 N5 = [a : 5,1]

where a(k,1) = 5k−1 (see Example 3.3).

Suppose it is desired to work with a subarray that is not a block. Imagine, for

instance, crossing off every other row of a matrix. Take is a familiar list operation

that has been defined for arrays (see for example Mullin, 1988). If only consecutive

hyperplanes are used, apply block instead. Use take to make a sparse selection of

hyperplanes.

It is possible to make selections along several axes. However, allowing more axes

makes the operation more difficult to specify. Moreover, selecting too sparsely does not

seem to be an efficient usage of arrays. For instance, selecting only one hyperplane on

every axis corresponds to an indexing operation. So take shall be employed to select

hyperplanes along only one axis. Notwithstanding, any subarray may be formed by

composing a series of take operations. If several take operations are needed, investigate

alternative solutions.

To specify a take operation, it is necessary to identify an axis, say k-axis, and the

hyperplanes to take along that axis. As sparse selections are made, it is efficient to

simply list the indices corresponding to the desired hyperplanes. It is natural to specify

the indices in order. In the definition of take, a tacit assumption is that the indices are

stored in a strictly increasing integer array B. If they are not in order, only the initial

ones in order will be used (and the rest ignored).

Indices out of range will be ignored. For instance, taking the first and third rows of

a 2-array that has only two rows, will yield only the first row. Given a positive integer

1-array B= [b : p], the operation

takek B

selects the

b1st,b2nd,.,bpth

SECTION 3.3 DESTRUCTORS 71

hyperplanes in that order. Negative bi’s will be allowed provided

b1 < b2 < · · ·< bp,

which determines the “list partition” of the hyperplanes. If any bi is negative then it

corresponds to selecting the (tk+bi+1)st hyperplane.

DEFINITION 3.25 (DESTRUCTOR)

The function

take : N×A∗Z×A
∗→A

∗

is given by

takek � A=�

takek B � =�

, for B �= � and A �= �

takek B A= C,

which is specified next. Write B = [b : m] and A = [a | (t : n)]. If k > n then assign

C= � ; otherwise, set

S= {i ∈N |bj < bj+1 for 1≤ j≤ i< m} ,

and

q= 1+max(S∪{0}) .

For 1≤ i≤ q set

βi =

{
tk+bi+1 if −tk ≤ b1 ≤−1

bi otherwise

and

S′ = {i |1≤ βi ≤ tk} .

If S′ =∅ then take C= � ; otherwise, put

s=min
(
S
′
)
,

u=1−s+max
(
S′
)
,

and take

C= [â | (t : n;tk = u)]

where

â(i : n) = a(i : n;ik = βik+s−1).

EXAMPLE 3.67 Consider the squared 2-array N3= [a : 3,3] =
[
a |�23

]
(see Example

72 A FOUNDATION FOR ARRAYS CHAPTER 3

3.3). To select the first and third rows, compute

take B N3 ∼

[
1 2 3

7 8 9

]
,

where B= 1,3. To select the first and third columns, compute

take2 B N3 ∼


1 3

4 6

7 9


 .

The result is a 2-array in both cases.

The function take is a fairly powerful function. To accomplish a similar task us-

ing lists, it is necessary to apply a composition of functions (see for example Axford

and Joy, 1993). The operations block and take are important enough to warrant some

overlap. For example, if only take could be used to form blocks then arrays would be

processed like lists as it would be necessary to compose a sequence of take operations

to form a single block.

3.3.8 DELETING HYPERPLANES

Suppose it is desired to work with a large subarray that is not a block. Imagine,

for instance, crossing off a single row in the middle of a large matrix. Although it is

possible to use take, it is tedious to list so many indices. Instead, use drop to delete a

sparse number of hyperplanes along an axis. Any subarray may then be formed via a

composition of drop operations.

To specify a drop operation, it is necessary to identify an axis, say k-axis, and the

hyperplanes to drop along that axis. Any extra indices will be ignored. For instance,

dropping the first and third rows of a 2-array that has only two rows, will yield merely

the second row. Given a positive integer 1-array B= [b : p], the operation

dropk B

drops the

b1st,b2nd,.,bpth

hyperplanes in that order. Negative bi’ s are permitted provided

b1 < b2 < · · ·< bp.

If a bi is negative then it corresponds to removing the (tk+bi+1)st hyperplane.

DEFINITION 3.26 (DESTRUCTOR)

SECTION 3.3 DESTRUCTORS 73

The function

drop : N×A∗Z×A
∗→A

∗

is given by

drop
k � A=A,

drop
k
B � =� ,

for B �= � and A �= �

drop
k
B A= C

which is specified next. Write B = [b : m] and A = [a | (t : n)]. If k > n then assign

C= A. If k≤ n then set

S= {i ∈N |bj < bj+1 for 1≤ j≤ i< m} ,

q= 1+max(S∪{0}) ,

and for 1≤ i≤ q put

βi =

{
tk+bi+1 if −tk ≤ b1 ≤−1

bi otherwise
.

Let

S′ = {i |1≤ βi ≤ tk} .

If S′ =∅ then take C= A; otherwise, let

u=max
(
S′
)
−min

(
S′
)
+1.

If u= tk then take C= � ; otherwise, take

C= [â | (t : n;tk = tk−u)]

where

â(i : n) = a(i : n;ik = sik),

s0 = 0,

and

sq =min
{
j ∈N |j> sq−1, j /∈

{
βi |min

(
S
′
)
≤ i≤max

(
S
′
)}}

.

EXAMPLE 3.68 Consider the squared 2-array N3= [a : 3,3] =
[
a |�23

]
(see Example

3.3). To delete the second row, compute

drop 2 N3 ∼

[
1 2 3

7 8 9

]
.

74 A FOUNDATION FOR ARRAYS CHAPTER 3

To delete the second column, calculate

drop
2
2 N3 ∼



1 3

4 6

7 9


 .

The result is a 2-array in both cases.

3.4 ABSTRACTORS

Up to this point, arrays have not yet been fully explained. Nothing will be added

to model the objects in terms of the data structure, which has been completely incor-

porated into the constructors and destructors. There are purposes for the data type

which cannot be understood by studying the data structure alone. These purposes are

determined by the patterns of computations which are performed on the data type. It is

paramount that common program structures be accounted for in the theory. The inten-

tion is that such common computational patterns are recognized via the abstractors. In

this section all abstractors are introduced.

Not all functions need to be defined as homomorphisms. It is not intended to sub-

sume the theory under some restrictive algebraic model. All components of the sets of

equations in the theory should be taken into account.

3.4.1 HIGHER-ORDER FUNCTIONS

In general, binary operators take operands that need not be collections of objects.

When a binary operator is placed between arrays, however, there is a special case that

stands out from the general case of combining two operands. In particular, there is a

pointwise case in which the binary operator is “lowered” to the level of the elements.

The higher-order partial function
←→

is used to suggest this lowering of the binary

operator to the elements.

DEFINITION 3.27 (ABSTRACTOR)

The higher-order partial function

←→
: {X×X→ Y}×A∗

X×A
∗

X→A
∗

Y

lowers any binary operator ⊕ : X×X→ Y to the partial function

⊕
←→

:A∗

X×A
∗

X→A
∗

Y

defined pointwise by

� ⊕←→�
= � ,

SECTION 3.4 ABSTRACTORS 75

and

[a |T] ⊕
←→

[b |T] = [⊕◦ (a,b) |T] .

Suppose, for instance, that

A⊕
←→�

= � ⊕
←→

A= A.

Consider usual addition of matrices. Let Z denote the array with the same shape as A

and only zero entries. Plainly,

A+
←→

Z= Z+
←→

A= A.

There would be two distinct identity elements under usual addition unless A= � .

Call
←→

zip, which is a familiar function in functional programming. The func-

tion zip preserves the data structure of the operands. No special information such as

a parameter is required to define this operation. This function expresses a common

pattern of computation. Homomorphisms distribute across concatenation, which is an

adjoining of “similar pairs” and pairing itself is a special case of zip.

EXAMPLE 3.69 Compute the sum of two squared 2-arrays:

Nn +
←→

Nn = [a : n,n]

where a(i,j) = 2(n(i−1)+j) (see Example 3.3).

A familiar pointwise operation is map denoted by ∗.

DEFINITION 3.28 (ABSTRACTOR)

The higher-order function ∗ : {X→ Y}×A∗

X
→A

∗

Y
lifts any function f : X→ Y on the

elements to an unary function

∗f :A∗

X
→A

∗

Y

which is defined pointwise via

∗f � = � ,

and

∗f [a |T] = [f◦a |T] .

A map preserves the data structure of the argument. This abstractor is primitive

since it is defined for any array given any suitable function.

EXAMPLE 3.70 Calculate

∗(+2)3,6,9, · · · ,(3n) = ∗(+2) [×3 : n] = [+2◦×3 : n]

= 5,8,11, · · · ,(3n+2).

76 A FOUNDATION FOR ARRAYS CHAPTER 3

EXAMPLE 3.71 Let

A= [a : 2,2] ∼
[
4 9

16 25

]

where a is given by a(i,j) = (2(i−1)+j+1)2. If
√

denotes the usual square

root function, then

∗√ A=
[√ ◦a : 2,2

] ∼
[
2 3

4 5

]
.

It may be possible to combine all the elements by placing a furnished binary op-

erator ⊕ between all the elements listed in arbitrary order. In this case, an array is

viewed mainly as a collection of homogeneous elements as in a set. Mostly, the data

structure is ignored. The symbol
⊔

is used as it closely resembles set union and is

called combine.

DEFINITION 3.29 (ABSTRACTOR)

The higher-order partial function

⊔
: {X×X→ Y}×X×A∗

X
→A

∗

Y

takes an associative binary operator ⊕ : X×X→ Y with identity element e ∈ X and an

argument in A∗

X
and obeys ⊔

⊕ � = e,

and ⊔
⊕ [a |T] =

⊕
t∈P(T)

a(t) .

EXAMPLE 3.72 Let B= [b : 1,2,2] where b(1,i,j) = 2(i−1)+j which is de-

picted in Figure 3.5. Then

⊔
× B=

4∏
k=1

k= 1×2×3×4= 24,

where × denotes usual multiplication.

For lists, there is only one axis and so it is acceptable to regard the data type as

one of lists of elements of homogeneous type. For nonscalar arrays with more than one

axis it is a narrow view to think of the data type as arrays of elements of homogeneous

type. Many useful operations may be defined for nonhomogeneous arrays. The data

structure for arrays especially allows different types on different axes.

It is possible to apply not only a single (unary) operation to an array but also an

array of operations to an array. There is no reason why the elements of an array cannot

SECTION 3.4 ABSTRACTORS 77

be functions. In order to operate on arrays in a manner befitting the data type, some

operations should possess a structure resembling the data structure. By adding arrays

of functions, a high degree of uniformity in the program structure and the data structure

will be achieved.

The element functions may be applied to an array as shown in Figure 3.7. This

type of operation is a higher-order operation which is implicitly highly parallel. In

order for a formalism to incorporate a successful programming paradigm, higher-order

operations should capture common patterns of computations in suitable ways.

F

A

Figure 3.7: A function of F is mapped to elements along an axis of A.

Consider first the simpler case when the argument has the same shape as the array

of functions.

DEFINITION 3.30 (ABSTRACTOR)

The binary partial function

�:A∗
×A

∗ →A
∗

is defined pointwise by

� � � = � ,

and

� [f |T] [a |T] = [@◦ (f,a) |T] .

Recall

@◦ (f,a)(t) =@◦ (f(t),a(t)) = f(t)(a(t)) .

78 A FOUNDATION FOR ARRAYS CHAPTER 3

Call � bicomp. This operation preserves the data structure of the operands. The

operation bicomp is defined only for suitable pairs of arrays.

EXAMPLE 3.73 Let

F=
[
f |�22

]
∼

[
+1 +2
+3 +4

]

where f is given by f(i,j) = +(2(i−1)+j). Let A be as in Example 3.71. Cal-

culate

� F A=
[
b |�22

]
∼

[
5 11

19 29

]
,

where b(i,j) = (2(i−1)+j+1)2+(2(i−1)+j).

Consider second the case when the argument has some depth as depicted in Figure

3.7.

DEFINITION 3.31 (ABSTRACTOR)

The higher-order partial function

� :N×A×A2→A

satisfies

�k [f | (t : n)] [x | �k (s)(t : n)] = [u | (t : n)]

where

u(i : n) = f(i : n)
[
b
(i:n) : s

]

and the 1-array
[
b(i:n) : s

]
is an axis of X whose elements are given by

b
(i:n)
j = x ◦ �k (j)(i : n) .

Call � biaxis since it pairs functions with axes. This abstractor applies all op-

erations in the same field direction. This partial function is defined for only suitable

pairs of arrays.

EXAMPLE 3.74 Consider the 2-array A in Example 3.60. Let F equal the 1-array[
Klength : 3

]
where Kf is the constant function Kf (i) = f for all functions f. Then

�2F A= [y : 3] ∼


55
5




where yk = length
[
bk : 5

]
= 5.

SECTION 3.4 ABSTRACTORS 79

Another important operation utilizes an array of binary operators instead of just

one as in a zip operation.

DEFINITION 3.32 (ABSTRACTOR)

The higher-order partial function

←→
:A×A∗×A∗→A

∗

combines two operands using a furnished array of binary operators:

←−−→
[⊕|T] � � = � ,

←−−→
[⊕|T] [a |T] [b |T] = [tribi◦ (⊕,a,b) |T] ,

where tribi◦ (⊕,a,b)(t) = tribi◦ (⊕(t),a(t),b(t)) = a(t)⊕tb(t).

Call
←→

triad. Whenever convenient, write

←→
� [a |T] [b |T] = [a |T]

←→
� [b |T] ,

where �= [⊕|T].

EXAMPLE 3.75 Let �=
[
⊕|�2

2

]
∼

[
÷ ×

+ −

]
. Let A be as in Example 3.71. Then

←→
� A N2 ∼

[
4 18

19 21

]

where N2 is a squared 2-array (see Example 3.3).

Next, three functions are defined to perform a specified operation along a given

axis so that only part of array (argument) is used. Such operations are important, for

instance, in database queries. In all cases, it is necessary to state the field direction and

the head of the axis along which the operation is performed. Although all elements in

the array need not have the same type, all elements along an axis must have the same

type for the binary operation to be defined.

DEFINITION 3.33 (ABSTRACTOR)

The higher-order partial function

�: N×{X×X→ Y}×An×Nn→ Y

is given by

�k⊕ [a | (t : n)] h=

((· · · (a◦ τk (1)h⊕a◦ τk (2)h) · · ·)⊕a◦ τk (tk−1)h)⊕a◦ τk (tk)h,

80 A FOUNDATION FOR ARRAYS CHAPTER 3

whenever k is a valid field direction and h is the head of a k-axis for any [a | (t : n)]
∈An, provided all operations are defined.

DEFINITION 3.34 (ABSTRACTOR)

The higher-order partial function

�:N×{X×X→ Y}×An×Nn → Y

is given by

�k⊕ [a | (t : n)] h=

a◦ τk (1)h⊕ (a◦ τk (2)h⊕ (· · ·(a◦ τk (tk−1)h⊕a◦ τk (tk)h) · · ·)) ,

whenever k is a valid field direction and h is the head of a k-axis for any [a | (t : n)]
∈An, provided all operations are defined.

DEFINITION 3.35 (ABSTRACTOR)

The higher-order partial function

�:N×{X×X→ Y}×An×Nn → Y

is given by

�k⊕ [a | (t : n)] h= a◦ τk (1)h⊕a◦ τk (2)h⊕· · ·⊕a◦ τk (tk)h,

whenever k is a valid field direction and h is the head of a k-axis for any [a | (t : n)]
∈An, provided ⊕ is an associative operator.

The operations �k⊕, �k⊕ and �k⊕ may be referred to as upper, lower and

mixed folds, respectively.

EXAMPLE 3.76 Consider the squared 2-array N3 =[a : 3,3] =
[
a |�2

3

]
(see Example

3.3). Let

a⊕b= a−
b

2
.

Then

�⊕ N3 (1,2) =−
9

2
,

�⊕ N3 (1,2) =
3

2
,

�2⊕ N3 (2,1) =−
3

2
,

�2⊕ N3 (2,1) = 3,

�− N3 (1,2) =−11,

SECTION 3.4 ABSTRACTORS 81

and

�2− N3 (2,1) =−7.

3.4.2 PERMUTATIONS

The notions of permutations and arrays are closely interwoven. Recall the concept

of a permutation matrix.

EXAMPLE 3.77 Usual multiplication of matrices yields



0 1 0

0 0 1

1 0 0





1 2 3

4 5 6

7 8 9


=



4 5 6

7 8 9

1 2 3




and 

0 0 1

1 0 0

0 1 0





1 2 3

4 5 6

7 8 9


=



7 8 9

1 2 3

4 5 6


 .

Multiplying by zeros and ones is inefficient. Besides, such computations can only

be performed on arrays whose elements are of appropriate type. Basically a permuta-

tion is a rearrangement which can be performed on any array.

DEFINITION 3.36 A nnn-permutation is a sequence ι n→ ι n that is one-to-one and

onto.

The problem is not to compute a n-permutation. Instead, the problem is to reassem-

ble according to the given n-permutation.

DEFINITION 3.37 (ABSTRACTOR)

The higher-order partial function

�: N× (ι m→ ι m)×A→A

is given by

�k p [a | (t : n;tk = m)] = [b | (t : n;tk = m)]

where b(i : n) = a
(
i : n;ik = p−1 (ik)

)
.

Call � permute, which rearranges hyperplanes in any given field direction k.

EXAMPLE 3.78 Let pk = 1+ (kmod3). Then p1 = 2, p2 = 3 and p3 = 1 is a

82 A FOUNDATION FOR ARRAYS CHAPTER 3

3-permutation. Permute the rows of N3 via

� p N3 =
[
b |�23

]
∼



7 8 9

1 2 3

4 5 6


 .

where N3 is the squared 2-array with three rows and three columns (see previous ex-

ample or Example 3.3).

EXAMPLE 3.79 Let pk = 1+(kmod3). Permute the columns of N3 via

�2 p N3 =
[
b |�2

3

]
∼



3 1 2

6 4 5

9 7 8


 .

3.4.3 PARTITIONING OPERATIONS

Any array may be built-up by stacking hyperplanes. Yet, an array is much more

than a list of hyperplanes. The capability to partition an array into blocks that have

the same data structure sets arrays apart from other models. An array is not merely

a collection of elements or even a set of pairs of elements with unique locations. An

array has a “mesh” that can be partitioned into subarrays, which can be operated upon

and reassembled. Arrays exist partly because it is useful to partition operations as

arrays themselves are partitioned. The widespread usage of block algorithms attests to

this fact. Since arrays may be nested,

∗f A

may be used to apply an operation to every block of a tiled array. It remains to define

primitive operations to form the blocks themselves. Such block operations are primi-

tive, i.e., they are defined for all arrays, since they depend only on the data structure.

BORDER

For various applications, it may be desired to enlarge an array by duplicating entries

around the border. Imagine that every n-array is a subarray of an infinite array by

extending the axes in all directions and copying data from the nearest location in the

n-array. Consider partitioning the infinite array into a subarray which is the original

array plus a border.

Call a 1-array B= [b : n] a border array if it specifies the number bk of additional

entries needed along the k-axis, possibly zero, on both sides, for each k ∈ ι n. The

SECTION 3.4 ABSTRACTORS 83

thickness of the border is assumed to be symmetric, i.e., the border has the same num-

ber of elements on both sides along any axis. This requirement does not imply that an

operation must use all elements on both sides.

DEFINITION 3.38 (ABSTRACTOR)

The function

border :A∗
N0
×A

∗→A
∗

is given by

border B � =� ,

border � A=A,

border B [a | (t : n)] =
[
c |
(
γ
t,b : n

)]
,

where

γ
t,b =+◦ (t,×2◦b)

and letting B=
[
b̂ : n̂

]
,

bk =

{
b̂k if 1≤ k≤ n̂

0 if n̂< k≤ n
,

c(i : n) = a

(
î : n

)
,

and

îk =min{tk,max{1,ik−bk}} .

EXAMPLE 3.80 Taking B= �2 and N2 =
[
a |�22

]
∼ [1 2

3 4] ,

border B N2 ∼


1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

 .

3.4.4 UNBORDER

Next, an operation to remove a border is defined. This operation may be applied

to any n-array that is large enough to allow the removal of the specified border. No

checking is done to determine if the exterior elements are actually duplicates of the

interior elements.

DEFINITION 3.39 (ABSTRACTOR)

The function

unborder : A∗N0 ×A
∗→A

∗

84 A FOUNDATION FOR ARRAYS CHAPTER 3

is given by

unborder B � =� ,

unborder � A=A,

unborderB [a | (t : n)] =

{
� if tk−2bk < 1 for some k[
c |
(
γt,b : n

)]
otherwise

,

where

γt,b =−◦ (t,×2◦b)

and letting B=
[
b̂ : n̂

]
,

bk =

{
b̂k 1≤ k≤ n̂

0 n̂< k≤ n
,

c(i : n) = a(+◦ (i,b) : n) .

EXAMPLE 3.81 Taking B= �2 and N3 ∼
[
1 2 3
4 5 6
7 8 9

]
,

unborder B N3 =
[
c |�2

]
∼ [5] .

3.4.5 SPLIT

The function split splits an array along some k-axis at some specified location.

DEFINITION 3.40 (ABSTRACTOR)

The function

split : N×Z×A∗→A
∗×A∗

is given by

splitk p A= � if A= � orA= [a | (t : n)] and k /∈ ι n,

and

splitk p A=


(�,A) if p≤ 0

(A,�) if p≥ tk

(B,C) otherwise

,

where

A=[a | (t : n)] ,

B=[a | (t : n;tk = p)] ,

C=[a◦ τk (p+1) | (t : n;tk = tk−p)] .

SECTION 3.4 ABSTRACTORS 85

EXAMPLE 3.82 For instance, split2 N3 (see Example 3.3) yields a pair (B,C) where

B consists of the first two rows and C holds the last row as indicated below
1 2 3

4 5 6

7 8 9


 �→

([
1 2 3

4 5 6

]
,
[
7 8 9

])

3.4.6 COVER

Next, a covering operation is added to the set of abstractors. First, consider a

simpler partitioning of a matrix.

EXAMPLE 3.83 Partition a 2-array A =
[
a | �24

]
into two parts to obtain a 1-array

D = [d : 2] where d1 contains the top two rows and d2 contains the bottom two rows

as depicted below:

A ∼



11 12 13 14

15 16 17 18

19 20 21 22

23 24 25 26


 �→ D ∼


[

11 12 13 14
15 16 17 18]

[19 20 21 22
23 24 25 26]


 .

Fix n. Consider any n-array A= [a | (t : n)]. Let the desired partitions be specified

via a partition pair (X,P). The 1-array X = [x : m] is an axes array that specifies

the axes along which partitioning takes place with xi < xj whenever i < j, i.e.,

partitioning takes place along the xi-axis for each i= 1,.,m. It is natural to require

that axes are listed in order since locations and hyperplanes are ordered. Associate each

partition with an axis. This association is implicit. The partition array P= [p : m] is a

nested 1-array and each element of this partition array is called a partition. A partition

pk =
[
hk : lk

]
, lk ≤ txk , 1≤ k≤ m,

is a 1-array of partitioning locations hki such that

1≤ hk1 < hk2 < · · ·< hk
lk

= txk .

This last chain of inequalities delineates a valid partition. After partitioning in the new

array of blocks, the length of the xk-axis for the ith block is hki−hki−1 with hk0 = 0.

So hki is one the locations where the original array is partitioned and all indices from

1+hki−1 to hki in the ith block are included in the partition.

EXAMPLE 3.84 In Example 3.83, X= [x : 1], x1 = 1, P= [p : 1], p1 = [h : 2], h1 =

2 and h2 = 4.

86 A FOUNDATION FOR ARRAYS CHAPTER 3

Generalize the partitioning strategy as follows. After partitioning, in order to per-

form some operation on a block, suppose that near the boundary, additional information

is needed from a neighboring block (see for example Kolesnikov and Trishina, 1995, p.

10). For this reason, add a border around each block and call the operation cover since

the array is covered with blocks, possibly overlapping. Call these blocks cells as they

are part of a large “honeycomb.” Any n-array that is the result of a cover operation is

called a cover array.

The width of the border is specified via a 1-array B = [b : n], which is a border

array. Note the border array prescribes the number of elements taken from an adjacent

block and elements are duplicated if there are no such elements. It is not required to

add a border on any axis and so any of the bk’ s may be zero.

If every axis is not partitioned, it is possible to store the resulting tiled array as

an array with less valency. However, the valency should be maintained so that recon-

struction is possible by putting the blocks back together to form the original array. In

general, a covering operation is applied only if some (partial) reconstruction will be

subsequently performed later with minimal effort. In summary, preserve the valency

of the original array regardless of the number of axes along which partitioning takes

place.

In the following definition, it is implicit that (X,P) is a suitable partition pair, i.e.,

the xk-axis corresponds to the partition pk. As usual, some flexibility will be allowed

in the specification of the partition pair. If

h
k

lk
> txk ,

then the last partition location is set to txk . Although X and P should have the same

length, they may have different lengths. Any invalid values at the end of X and P will

be ignored.

DEFINITION 3.41 (ABSTRACTOR)

The function

cover : A∗N0×A
∗

N×A
∗

A∗
N

×A
∗ →A

is given by

cover B X P A=

{
(·)(border B A) if X= �,P= �,A= � or δ = 0

[c : (z : n)] otherwise
,

where the sequence z, function c, and δ are prescribed next. Let A = [a | (t : n)],
X= [x : m], x0 = 0 and

δ =max({0}∪{w |xk−1 < xk ≤ n for all k with 1≤ k≤ w≤ m}) .

SECTION 3.4 ABSTRACTORS 87

If δ �= 0 write P= [p : m̂] and set δ =min{m̂,δ}. If

pk = � for some k with 1≤ k≤ δ

put δ = 0. Let

pk =
[
hk : lk

]
and hk0 = 0 for 1≤ k≤ δ.

For k ∈ ι δ, set

S
k =

{
i ∈N |hkj−1 < h

k
j ≤ txk for all j with 1≤ j≤ i≤ l

k
}
,

and

rk =max
(
Sk∪{0}

)
.

For k ∈ ι δ with hkrk < txk , set

rk = rk+1,hkrk = txk .

If

0= min
1≤k≤δ

{rk} ,

then assign δ= 0. Although the actual implementation is irrelevant, in order to specify

the qi’ s precisely, initialize

qk = 0 for all k ∈ ι n.

Then set

qxk = k for all k ∈ ι δ.

Put

zk =

{
1 qk = 0

rqk qk �= 0
.

If B= � , then set n̂= 0; otherwise, write B=
[
b̂ : n̂

]
. Lastly, set

bk =

{
b̂k for 1≤ k≤ n̂

0 for n̂< k≤ n
,

c(i : n) =
[
α(i:n) |

(
u
(i:n) : n

)]
,

u
(i:n)
k =

{
tk+2bk if qk = 0

h
qk
ik
−h

qk
ik−1

+2bk if qk �= 0
,

α(i:n) (j : n) = a

(
γi,j : n

)
,

γ
i,j
k = φ(ik,jk) ,

88 A FOUNDATION FOR ARRAYS CHAPTER 3

φ(ik,jk) =

{
min{max{1,jk−bk},tk} if qk = 0

min
{
max

{
1,jk+h

qk
ik−1

−bk

}
,tk

}
if qk �= 0

.

Only a small portion of the indices actually make an appearance in any equation,

regardless of the valency of the array or the number of axes along which partitioning

takes place. The valency of a block in a cover array must be constant and equals the

valency of the original array.

EXAMPLE 3.85 Continuing from Example 3.83 and Example 3.84,

cover B X P A= E,

where B= � and E= [e : 2,1] with e(1,1) = d1 and e(2,1) = d2.

EXAMPLE 3.86 Replacing B in Example 3.85 by B= 1,2,

cover B X P A= E ∼




[
11 11 11 12 13 14 14 14
11 11 11 12 13 14 14 14
15 15 15 16 17 18 18 18
19 19 19 20 21 22 22 22

]
[
15 15 15 16 17 18 18 18
19 19 19 20 21 22 22 22
23 23 23 24 25 26 26 26
23 23 23 24 25 26 26 26

]

 .

EXAMPLE 3.87 Taking B= �2 (add one element on the border), X= 1,2 (partition

on both axes), P = [p : 2], p1 =
[
h1 : 2

]
, p2 =

[
h2 : 2

]
, h1 = �2, h2 = �2, (“cut” at

every location), and N2 ∼ [1 2
3 4],

cover B X P N2 = F ∼



[
1 1 2
1 1 2
3 3 4

] [
1 2 2
1 2 2
3 4 4

]
[
1 1 2
3 3 4
3 3 4

] [
1 2 2
3 4 4
3 4 4

]

 .

3.4.7 UNTILE

Presumably, a cover is performed in order to work with smaller blocks and with

the intention to reassemble as in divide-and-conquer algorithms. Although additional

elements from adjacent blocks might be needed for some computation, it is inefficient

to compute elements that are going to be discarded. If it is needed to remove some

border from all blocks, then apply

∗unborder.

Hence, borders are not removed during reassembly.

SECTION 3.4 ABSTRACTORS 89

EXAMPLE 3.88 Letting E be the 2-array in Example 3.86,

∗
(
unborder �2

)
E ∼



[11 11 12 13 14 14
15 15 16 17 18 18]

[19 19 20 21 22 22
23 23 24 25 26 26]


 .

There are potential problems when reassembling. One problem is that the given

array might not be a tiling. Another potential problem is that an element could be an

empty array. This is not a problem if all elements in a hyperplane are empty arrays.

Suppose for example there is only one element which is an empty array in a large array.

One solution is to remove a hyperplane which contains the empty array. But then there

would be more than one solution as there is more than one hyperplane that contains the

empty array. An empty array is a tool that in this instance is not useful.

For an untile operation, assume that the given array is a tiled array and that all

elements have the same valency. Given a tiled array, it is possible that blocks or cells

could be put together in more than one way. However, untile is essentially a left inverse

of a cover operation. The structure has been preserved. No additional information is

needed to untile.

DEFINITION 3.42 (ABSTRACTOR)

The partial function

untile :A→A
∗

is given by

untile(·)� = � ,

and

untile [a | (t : n)] = [u | (σ : n)] ,

where the array function u and sequence σ are defined next. Write

a(i : n) =
[
α
(i:n) |

(
s
(i:n) : n

)]
.

Let SEQ denote sequential computation and PAR denote parallel computation (if

possible). Compute as follows:

(SEQ)

1. For k= 1,.,n, p= 1,.,tk, (PARDO)

hk0 =0,

h
k
p =

p∑
q=1

s
τk(q)�n

k ;

90 A FOUNDATION FOR ARRAYS CHAPTER 3

2. For k= 1,.,n, p= 1,.,tk, (PARDO)

ψk
(
j+hkp−1

)
= p for all j with 1≤ j≤ s

τk(p)�
n

k ;

3. (PAR)

(a) For k= 1,.,n, (PARDO) σk = hktk ,

(b) Letting γik = ψkik and ω
i,h,γ
k = ik−hk

γ
i

k

put

u(i : n) = α(γ
i
:n)

(
ωi,h,γ : n

)
.

Some programming constructs indicate the potential parallelism (PARDO). Each

implementation should exploit the potential parallelism for the particular architecture.

EXAMPLE 3.89 Let F be the 1-array in Example 3.88. Then

untileF= G ∼

[
11 11 12 13 14 14
15 15 16 17 18 18
19 19 20 21 22 22
23 23 24 25 26 26

]
.

3.5 MACROS

An operation is a macro if it is an alias or shorthand for some function that is

defined. For various applications or formalisms, suitable macros may be provided for

handling common operations. Briefly, a few examples are given next.

Every n-array has a first item. It is convenient to use the macro first given by

first= index◦(idA∗,�◦(KK1,axes)) ,

where Kc (x) = c is a constant function,

(KK1,axes)[a | (t : n)] = (KK1 [a | (t : n)],axes [a | (t : n)]) = (K1,n)

and

�(K1,n) = [K1 : n] .

Alternatively, it is easier to write

first A= indexA �∞.

It is useful to define macros for handling common blocks. To take all initial (except

the last) rows of a n-array, use the macro init given by

init = (block �)◦ ((·)◦ (−1)◦ length,idA∗) .

SECTION 3.6 EXAMPLES 91

For convenience, define the macro

initial k= block � k,

which takes the first k rows (or k elements for a 1-array). To take all rows of a n-array

except the first one, employ the macro tail given by

tail = block � � .

Note init and tail are applicable to any n-array. A macro to partition an array into

blocks is

dice k= cover � � (·) [×◦� k :∞] ,

which applied to a 1-array produces a nested 1-array of blocks of size k. For instance,

if covering a 1-array that has 128 elements with blocks of size 16 then the partition is

16,32,48,64,80,96,112,128.

Next macros are given for common take operations. To select the kth column of a

n-array with n> 1, use col:

col k= take2 k.

To take the leftmost and rightmost columns, employ

col = take2 �,

colr = take2 −1.

The macros col and colr are defined for any n-array with n > 1. Notice col =

col 1.

When it is desired to partition without overlap, apply a tile macro:

tile (X,P) = cover � X P.

Note in tile P, P is a partition pair (X,PX) and necessarily

(tile P)A= cover � X PX A.

3.6 EXAMPLES

A few more examples are given next to show how to specify arrays.

92 A FOUNDATION FOR ARRAYS CHAPTER 3

EXAMPLE 3.90 Let f : N→X be any function. Then

[f : n]

is a 1-array. For example,

[×◦� 2 : 9] ∼
[
2 4 6 8 10 12 14 16 18

]
.

EXAMPLE 3.91 The Kronecker delta function

K
δ :N→{0,1}

is given by

K
δ (T) =

{
1 if T= �n

k
for some n,k ∈N

0 otherwise
.

Call
[
Kδ |�n

k

]
an nnn-dimensional identity array of order kkk. Recall the notion of an

identity matrix for matrix multiplication. For instance, the 2-dimensional identity array

of order 8 is

[
K
δ : 8,8

]
∼



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


 .

EXAMPLE 3.92 Let the constant function on nonempty tuples

Kc :N→{c}

be given by

(i : n) �→ c.

Call any array of the form [K0 | (t : n)] a zero array. Note it is necessary to state the

number of axes n as well as all of the ti’ s. For instance,

[K0 : 5,9] ∼

[
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

]
.

3.7 REVIEW

There are valid arguments for modifying the prescribed set of primitive operations.

Perhaps for some application area, an important pattern of computation should be in-

corporated into the set of abstractors. Nevertheless, it is unnecessary to add or remove

operations from this set to program with multidimensional arrays. In this sense, the

construction of the set of primitives is adequate. The notation is consistent and con-

cise. It became possible to simplify these definitions by introducing elementary func-

SECTION 3.7 REVIEW 93

tions such as τk, �k, and �. Nevertheless, it may be possible to improve the notation

by changing some of the names or symbols used. Most importantly, all the primitives

were well-defined. It would be beneficial to find more elegant ways to formulate some

of the definitions such as take,block and collapse.

A primitive model for multidimensional arrays was presented. A n-array, empty

array, hyperplane, scalar array, singleton, k-axis and k-order were defined. All arrays

possess the same type. The following symbols for sets of arrays were adopted: A(T),

A
k, A∗ and H. Descriptive terminology was introduced to facilitate reasoning about

arrays, including the following concepts: field direction, subarrays, contiguous sub-

arrays, overlapping collections, coverings and tilings. The list function was added

to succinctly translate from lists to 1-arrays and other ways were provided to spec-

ify arrays for parameters and arguments to functions. The iota array �n = 1,.,n

and the constant-k by n array �n
k
were defined. Macros and many examples of arrays

were given. A complete set of primitive operations was specified which includes new

functions that account for common program structures and are listed next:

Constructors:

� an empty array

(·) produces a scalar array

reax relabels axes

++ concatenates or stacks

Destructors:

index selects an element

fn retrieves the array function

axes yields the number of axes (valency)

size yields the number of elements

length yields the length of an axis

shape yields the shape

ax extracts an axis as a 1-array

block extracts a block

collapse collapses a hyperplane by relabeling

slice slices out a hyperplane

take selects a stack of hyperplanes

drop drops a list of hyperplanes

94 A FOUNDATION FOR ARRAYS CHAPTER 3

Abstractors:

←→
� (triad) applies operator to corresponding pairs

⊕
←→

(zip) zips with a furnished binary operator
⊔
⊕ combines all elements

∗ (map) maps a given function to the elements

� (bicomp) maps functions pointwise

� (biaxis) maps functions to axes

�k ⊕,�k ⊕,�k ⊕ applies operation to a given axis

� permutes hyperplanes

split splits an array into a pair

border/unborder adds/removes a border

cover/untile covers/untiles an array

95

CHAPTER 4

A CONSTRUCTIVE THEORY

I
n this chapter the consequences of the definitions are formally investigated in or-

der to develop a constructive theory for multidimensional arrays. A primitive

array model was introduced to define the objects and the primitive operations. All

other operations are defined in terms of the primitive operations, not in terms of this

model. It is intended to show that there is a sound theoretical basis for programming

using the primitive operations. It is also shown that the primitive operations are ex-

pressive. Array homomorphisms are explicitly classified and important properties are

verified. Useful formulas that lack many of the indices typically required are stated. To

avoid distractions, proofs involving tedious details have been placed in the Appendix.

4.1 FUNDAMENTAL IDENTITIES

The consequences of the definitions are explored next.

CLAIM 4.1 If U,V ∈ Sn with U = V then there exists a sequence t with domain

ι n such that U= (t : n) = V.

PROOF As U ∈ Sn there exists a sequence a with domain ι n such that ak ∈ S for

k ∈ ι n and U= (a1,.,an). Write U= (a : n). Similarly, as V ∈ Sn there exists

a sequence b with domain ιn such that V= (b : n). Since U= V, by definition of

equality for n-tuples, ak = bk for k ∈ ι n. Define the sequence t on ι n by

tk = ak.

By definition of equality for sequences a= t= b on ι n.

Next it is established that the representation for a n-array is well-defined.

96 A CONSTRUCTIVE THEORY CHAPTER 4

CLAIM 4.2 If A and B are n-arrays with A= B then there exists T ∈Nn and an

array function a defined on P(T) such that

A= [a |T] = B.

PROOF Suppose A and B are n-arrays with A= B. By definition of n-array, there

exists an array function c and a n-tuple U such that A= [c |U] and c(q) is defined

for all q ∈ P(U). Similarly, there exists an array function d and a n-tuple V such

that B= [d |V] and d(q) is defined for all q ∈ P(V). By definition of equality for

n-arrays, U= V. By Claim 4.1 there exists a n-tuple T= (t : n) such that

U= (t : n) = V.

For all t ∈ P(T) define the function a by a(t) = c(t). Since B = A, d(t) =

c(t) = a(t) for all t ∈ P(T). By the definition of equality for n-arrays, A= [a |T]

and B= [a |T]. By transitivity, the stated result holds.

To show that a tuple function F
p
S → F

q
T is well-defined, it is enough to check that

an arbitrary component in the result is well-defined, provided the length of the result is

a constant function of the length of the argument.

LEMMA 4.1 Let f be any partial function

f : F
p
S → F

q
T

such that f(u : n) = (v : ς (n)). Then f is well-defined provided an arbitrary com-

ponent vk is well-defined.

PROOF Let U,V ∈ FpS with U= V. Suppose

f(U) =
(
vU : ςU (n)

)

and

f(V) =
(
v
V : ςV (n)

)
.

Assume that

ς
U (n) = ς

V (n) = ς (n)

and for arbitrary k ∈ ι ς (n)
v
U
k = v

V
k.

Then by the definition of equality for tuples,

(
v
U : ςU (n)

)
=

(
v
V : ςV (n)

)
.

By transitivity,

f (U) = f(V) ,

SECTION 4.1 FUNDAMENTAL IDENTITIES 97

which confirms the statement of the lemma.

Any tuple function Z→ Z is well-defined provided the length of the resulting

tuple is a constant function of the length of the argument and an arbitrary component

in the result is a linear combination of the components of the argument.

CLAIM 4.3 If f is a tuple function

f : Z→ Z

such that

f(u : n) = (� : ς (n))

and � is a linear function satisfying

�k =
n∑

i=1

(
a
k

i
ui+b

k

i

)

for some constants ak
i

and bk
i

then f is well-defined.

PROOF If � is such a linear function, then it is well-defined; consequently, f is

well-defined by Lemma 4.1.

To show that a partial function A
∗ → A

∗ on arrays is well-defined, it suffices to

check that the empty array is mapped to a constant value and the following holds for

the resulting array: the length of the tuple is a natural number, an arbitrary component

of the tuple is well-defined, the array function is well-defined for an arbitrary location.

CLAIM 4.4 Let f be any partial function

A
∗ →A

∗.

Then f is well-defined provided the following conditions are met:

• If f� is defined then f� is a constant value;

• If f [a |T] = [α | (s : m)] then m ∈N, sk ∈N is well-defined for arbitrary k

and α(i : m) is well-defined for arbitrary (i : m) ∈ P(s : m).

PROOF Assume the conditions of the claim are satisfied. Let A,B∈A∗ with A= B.

If A= � then B= � . If f� is a constant value then

f(A) = f� = C= f� = f(B) .

98 A CONSTRUCTIVE THEORY CHAPTER 4

If m ∈N and sk ∈N is well-defined for arbitrary k, then

s : ι m→N

is a sequence and (s : m)∈Nm; whence, (s : m) is a valid m-tuple for N. If α(i : m)
is well-defined for arbitrary (i : m)∈ P(s : m) then α is a valid array function. Thus,

if the conditions of the claim are met then

[α | (s : m)]

is well-defined. Assume A �= � . Invoking Lemma 4.2, write A= [a |T] = B. Suppose

f [a |T] = [α | (s : m)] .

Then

f(A) = f [a |T] = [α | (s : m)] = f [a |T] = f(B) .

If a function on arrays depends only on the tuple of the argument then it is only

required to check that the function on the shape tuple is well-defined, and the empty

array is mapped to a constant value.

CLAIM 4.5 Let f be any partial function

A
∗ → S

such that f [a |T] = g(T). Then f is well-defined provided g is well-defined and

whenever f� is defined, it is a constant value.

PROOF In view of the proof of the preceding claim it suffices to consider A= [a |T] =

B. If g is well-defined and f [a |T] = g(T), then f(A) = g(T) = f(B).

LEMMA 4.2 The tau shift, a conditional n-tuple and delete are well-defined. In

addition, move right is injective and for all p ∈ S and n ∈N

(DR) �k ◦�k p= idFn

S
.

PROOF (SKETCH) The fact that these functions are well-defined follows since com-

ponents are linear functions. The function move right is injective since it leaves intact

the argument’s components even though some are moved to the right. (Any proof

which is sketched in the text is proved in the Appendix.)

SECTION 4.1 FUNDAMENTAL IDENTITIES 99

LEMMA 4.3 For any n-tuple (t : n) for Z there exists another n-tuple

T= (t : n;tk = 1)

such that for all m ∈ Z

(TM) τk (m)T= (t : n;tk = m) .

PROOF The n-tuple T is defined since 1 ∈ Z and

τk (m)T= (t : n;tk = 1+m−1) = (t : n;tk = m)

is defined since m ∈ Z.

Mostly the tau identities are self-evident. Especially

τ (n)1= n

may be used without reference to TIN, as the tau shift was designed precisely so that

τk (n) would always shift the kth component which is 1 to n.

LEMMA 4.4 (TAU IDENTITIES)

(TI) τk (1) = idZn and [a |τk (1)T] = [a |T] = [a ◦ τk (1) |T] ,

(TIP) τk (p)◦ τk (q) = τk (p+q−1) ,

(TII) (τk (q))
−1 = τk (2−q) and τk (p)◦ (τk (q))

−1 = τk (p+1−q) ,

(TIM) τk (p)◦�k (1) =�k (p) on Zn with k< n,

(TIN) τ (n)1= n.

PROOF (SKETCH) First verify TIP by direct calculation.

The definition of a concatenation operator reveals how two n-arrays may be

stacked together. On the other hand, the definition implicitly prescribes how any n-

array may be split apart.

LEMMA 4.5 (CONCATENATION IDENTITY)

100 A CONSTRUCTIVE THEORY CHAPTER 4

For any n-array [a | (t : n)] and for any m with 1≤ m< tk,

(CI) [a | (t : n)] = [a |τk (m)T] ++k [a ◦ τk (m+1) |τk (tk−m)T] .

where T= (t : n;tk = 1).

PROOF (SKETCH) Show that the tuples (right side) have the proper shape for con-

catenation. Then verify equality by showing the resulting array (on left side) has the

proper parts.

Any hyperplane may be specified using the tau function as stated next.

LEMMA 4.6 (HYPERPLANE RELABELING)

Let A= [a | (t : n)] be any n-array with n> 1. Then A has exactly tk hyperplanes

for the k-axis and the jth hyperplane of A in field direction k is

(HR) [a◦ τk (j) | (t : n;tk = 1)] .

In addition,

(HMR) [b | �k (1)(t : n)] = reaxk [b ◦�k (1) | (t : n)] .

PROOF By definition, [a◦ τk (j) | (t : n;tk = 1)] is the jth hyperplane for the

k-axis since

(a◦ τk (j))(i : n;ik = 1) = a(i : n;ik = 1+j−1) = a(i : n;ik = j) .

By definition of reax,

reaxk [b ◦�k (1) | (t : n)] = [b ◦�k (1)◦ �k | �k (1)(t : n)] .

By DR,

b ◦�k (1)◦ �k (�k (1)(i : n)) = b ◦�k (1)(i : n) .

By inspection of this last equation and the shape tuples, it is evident that

[b ◦�k (1)◦ �k | �k (1)(t : n)] = [b | �k (1)(t : n)] ,

which completes the proof by transitivity.

In the Appendix, it is verified that all primitive operations are well-defined. It is

not possible to verify the primitives are well-defined in some trivial way. This fact

is not a failure of the methodology. In general, it is tedious to prove an operation is

well-defined. Therefore, it is difficult to program using a general model as a proof

should be supplied for every operation. A benefit of using algebra is that programming

SECTION 4.2 ARRAY FORMS 101

templates can be furnished. Functions defined using these templates are guaranteed to

be well-defined.

LEMMA 4.7 The function collapse is well-defined. Furthermore,

(RC) reaxk ◦collapsek A= A= collapse
k
◦ reaxkA.

PROOF (SKETCH) The function is well-defined since �k is well-defined. The stated

equalities hold by direct calculation (on the left side A must be a hyperplane and on

the right side k ∈ ι n+1 where A is a n-array).

4.2 ARRAY FORMS

Next, consider all of the possible ways to express arrays and operations on them

via constructors. Can every nonempty n-array be expressed using only constructors?

It suffices to consider all possible n-tuples since every nonempty array is defined via

a n-tuple and an array function. Given any n-array A, there exists a n-tuple (t : n)

and an array function a such that

A= [a | (t : n)] .

By definition, if tk = 1 for all k then A=
[
a |�n

]
is scalar. Assume tk > 1 for

some k. If n= 1 then A is a 1-array. Thus, the following criterion holds.

CRITERION 4.1 Every n-array A = [a | (t : n)] is scalar, a 1-array or a n-array

with n> 1 and tk > 1 for some k.

Consider each possibility in turn. First show that any scalar array can be expressed

using exactly one constructor.

LEMMA 4.8 (SCALAR IDENTITY)

For any scalar array
[
a |�n

]
and for arbitrary k ∈ ι n,

(SI)
[
a |�n

]
= (·)

n

(
a
(
�n

))
= reaxk (·)n−1

(
a
(
�n

))
.

PROOF Let A=
[
a |�n

]
be any scalar array. By definition,

B= (·)
n

(
a
(
�n

))
=

[
b |�n

]
,

where b
(
�n

)
= a

(
�n

)
. The equality

[
a |�n

]
=

[
b |�n

]
holds since both scalar arrays

have the same n-tuple and the same element.

102 A CONSTRUCTIVE THEORY CHAPTER 4

By definition,

(·)
n−1

(
a
(
�n

))
=

[
d |�n−1

]
,

where d
(
�n−1

)
= a

(
�n

)
. By definition,

reaxk
[
d |�n−1

]
=

[
d ◦ �k | �k (1)�n−1

]
.

By DR,

d ◦ �k ◦�k (1)
(
�n−1

)
= d

(
�n−1

)
= a

(
�n

)
.

By inspection, the stated identity holds.

Second, examine 1-arrays. Every 1-array that is not a scalar is a concatenation

of singletons.

LEMMA 4.9 Every 1-array either admits the form (·)(x) or is a concatenation of

finitely many such singletons. Furthermore,

(·)(a1) = [a : 1]

for all valid array functions a.

PROOF By definition of (·),

[a : 1] = (·)(a1) ,

which establishes the basis for induction. Suppose the lemma is true for any 1-array

A= [a : t] with 1≤ t≤ n for some n≥ 1. Put t= n+1. Invoke CI to write

A= [a : 1] ++ [a◦ τ (2) : n] .

By the inductive hypothesis, the lemma holds for [a◦ τ (2) : n]. Since by definition

[a : 1] is a singleton, and [a◦ τ (2) : n] is a concatenation of singletons, it follows

that

A= [a : 1] ++ [a◦ τ (2) : n]

is a concatenation of singletons. As t1 is finite, by the principle of mathematical

induction, the lemma is true.

Consider next a finite sequence of hyperplanes which are stacked together via a

concatenation operator.

LEMMA 4.10 Any n-array A = [a | (t : n)] with n > 1 is a hyperplane for the

k-axis or a concatenation of finitely many of them for every k ∈ ι n.

PROOF Let A be as in the statement of the lemma. Put k ∈ ι n. If tk = 1 then, by

SECTION 4.2 ARRAY FORMS 103

definition, A is a hyperplane for the k-axis. Assume [a | (t : n)] is a hyperplane for

the k-axis or a concatenation of finitely many of them whenever tk ≤ p for some

p ≥ 1 and for all array functions a. Let [a | (t : n;tk = p+1)] be any n-array.

Choose m ∈ ι p, put T= (t : n;tk = 1) and invoke CI to write

[a | (t : n)] = [a |τk (m)T] ++k [a◦ τk (m+1) |τk (tk−m)T] ,

which is a concatenation of finitely many hyperplanes for the k-axis since by the

inductive hypothesis,

[a |τk (m)T] and [a◦ τk (m+1) |τk (tk−m)T]

are such concatenations as

[a |τk (m)T] = [a | (t : n;tk = m)] by TM,

[a◦ τk (m+1) |τk (tk−m)T] = [a◦ τk (m+1) | (t : n;tk = tk−m)] by TM,

m ≤ p and tk−m ≤ p+1−m ≤ p+1−1 = p. As tk is finite, by the

principle of mathematical induction, the proof is complete.

Next, show that any nonempty array can be expressed solely in terms of reax,

(·) and ++ operators. This statement has already been confirmed for singletons and

1-arrays. It remains to consider a n-array A= [a | (t : n)] with n> 1 and tk > 1

for some k. Use the Array Collapse Algorithm given next.

ARRAY COLLAPSE ALGORITHM: Let A ∈A2 be any nonscalar m-array.

Perform the following steps in order:

1. If A is not a hyperplane for the m-axis , rewrite A as a concatenation of

hyperplanes for the m-axis, which is possible by Lemma 4.10.

2. If A is a hyperplane for the m-axis or a concatenation of them, replace each

hyperplane for the m-axis by reaxmC where C is a (m−1)-array, which is

possible by RC.

3. Suppose A is a concatenation involving an expression of the form reaxmC. For

every such expression, if C is scalar or a 1-array, replace C by a scalar function

or a concatenation of singletons, invoking SI and Lemma 4.9; otherwise, C is a

nonscalar (m−1)-array A ∈A2 by Criterion 4.1 and apply the Array Collapse

Algorithm to C.

LEMMA 4.11 Any n-array A= [a | (t : n)] with n> 1 and tk > 1 for some k

can be expressed in terms of only reax, scalar functions and ++ operators.

104 A CONSTRUCTIVE THEORY CHAPTER 4

PROOF Let A be as in the statement of the lemma. Apply the Array Collapse Algo-

rithm to A. Each time the algorithm is executed, the number of axes is reduced by one.

As there are only a finite number n of axes, eventually the algorithm terminates with

A expressed as stated in the lemma.

What are arrays? They are combinations of constructors. What is needed are some

practical rules that prescribe all of the possible forms of an object so that a programmer

may specify an operation in terms of these forms.

Every nonscalar 1-array is a concatenation of a singleton and a 1-array.

LEMMA 4.12 Every 1-array admits the form (·)(x) ++A for some type variable x

and some A ∈A∗.

PROOF Let [b : n] be any 1-array. Suppose n= 1. Then

(·)(b1) ++� = (·)(b1) = [b : 1] by SI.

For n> 1,

[b : n] = [b : 1] ++ [b◦ τ (2) : k] by CI

= (·)(b1) ++ [b◦ τ (2) : k] by SI.

COROLLARY 4.13 Every 1-array admits the form A++ (·)(x) for some type vari-

able x and for some A ∈A∗.

PROOF A symmetrical argument given in the preceding proof verifies the corollary.

COROLLARY 4.14 (LIST FORMS)

Every 1-array can be expressed in one of the list form

(·)(x) or C++A

for some type variable x and for some C,A ∈A.

PROOF This statement holds by Lemma 4.12 since any 1-array has the form

(·)(x) ++A

which by inspection corresponds to the list forms (·)(x) or C++A if A = � or

A �= � , respectively.

SECTION 4.2 ARRAY FORMS 105

LEMMA 4.15 Any n-array A= [a | (t : n)] with n> 1 admits the form

(reaxkC) ++k B

for some C ∈A, B ∈A∗ and for every k ∈ ι n.

PROOF Let A be as in the statement of the lemma. If tk = 1 then A is a hyperplane

for the k-axis and

A= reaxk ◦collapsek A by RC

= reaxk (collapsek A) ++k � ,

has the stated form. Assume tk > 1. Taking T= (t : n;tk = 1),

A= [a | (t : n)]

= [a |τ (tk)T] by TM

= [a |τk (1)T] ++k [a◦ τk (2) |τk (tk−1)T] by CI

= [a |T] ++k [a◦ τk (2) |τk (tk−1)T] by TI

= reaxk (collapsek [a |T]) ++k [a◦ τk (2) |τk (tk−1)T] by RC,

which matches the form given in the statement of the lemma.

COROLLARY 4.16 Any n-array A= [a | (t : n)] with n> 1 admits the form

B++k (reaxkC)

for some C ∈A, B ∈A∗ and for every k ∈ ι n.

PROOF Apply a symmetrical argument given in the preceding proof.

COROLLARY 4.17 (PLANAR FORMS)

For n> 1, every n-array can be expressed in one of the planar forms

reaxkC or A++kB,

for some A,B,C ∈A and for arbitrary k ∈ ι n.

PROOF Any n-array with n > 1 admits the planar form (reaxkC) ++kB by the pre-

vious lemma. This form corresponds to the planar forms reaxkC or A++kB with

A= reaxkC if B= � or B �= � , respectively.

106 A CONSTRUCTIVE THEORY CHAPTER 4

THEOREM 4.18 (ARRAY FORMS)

Every array admits one of the forms

(i) � ,

(ii) (·)(x),

(iii) (reaxkC) or

(iv) C++kA ,

for some type variable x, for some A,C ∈A and for k ∈N.

PROOF An array is either an empty array or a n-array for some n ∈N. By Criterion

4.1, every array has one of the following forms:

(a) � ,

(b)
[
a |�n

]
,

(c) [a : m],

(d) [a | (t : n)] with n> 1 and tk > 1 for some k.

By inspection, in case (a), form (i) holds. In case (b) by scalar identity SI (Lemma

4.8), form (ii) or (iii) holds. In case (c), in view of list forms, form (ii) or (iv) must

hold. Lastly, in case (d), in view of planar forms, form (iii) or (iv) must hold.

COROLLARY 4.19 (ARRAY FORMS)

Every array admits one of the forms

(1) � ,

(2) (·)(x) ++A , or

(3) (reaxkC) ++kA ,

for some type variable x, for some A ∈A∗, C ∈A and for all valid k ∈N.

PROOF This statement holds by Criterion 4.1, Lemmas 4.8, 4.12 and 4.15.

More explicit forms for arrays are needed.

LEMMA 4.20 (LIST CONCATENATION)

Any 1-array can always be expressed

(LC) [a : n] = [a◦ τ (1) : 1] ++ · · ·++ [a◦ τ (n) : 1] .

SECTION 4.3 HOMOMORPHISMS 107

PROOF (SKETCH) Any 1-array is a singleton or a concatenation of finitely many of

them (Lemma 4.9).

LEMMA 4.21 (HYPERPLANE CONCATENATION)

Setting

T= (t : n;tk = 1)

for every k ∈ ι n,

(HC) [a | (t : n)] = [a◦ τk (1) |T] ++k · · · ++k [a◦ τk (tk) |T] .

PROOF (SKETCH) A n-array with n > 1 is a hyperplane or a concatenation of

them (Lemma 4.10).

So it has been established that n-arrays possess a small number of forms. Yet

a n-array model has essentially one form. Why choose constructors over a general

model? An answer is summarized in the following word.

4.3 HOMOMORPHISMS

Given an instance of an object, presumably any operation which can be defined on

that object can be specified using a general model. The problem with general forms

such as a n-array model is that even though they are quite versatile, it is difficult

to describe classes of operations using such forms in a useful algebraic fashion. In

principle, it is always possible to write a program for any operation using a general

model. It may even be possible to draw nice pictures to describe what happens for each

particular operation. Working with such a general model, however, the programmer

typically must start from square one and develop a program for every operation.

Using constructors it is possible to say much more about programming. Before the

programmer even gets started, it is possible to deliver some programming templates

which can be used to actually write programs. After the programmer has implemented

these templates as procedures, they may be called upon during software development.

As the constructors build up data aggregates, they are natural candidates for ho-

momorphisms. Remember, a homomorphism distributes across a binary constructor.

There is only one binary constructor, namely concatenation. First, consider 1-arrays

and second, n-arrays with n> 1.

108 A CONSTRUCTIVE THEORY CHAPTER 4

4.3.1 LIST HOMOMORPHISMS

As every 1-array can be expressed using one of the list forms given earlier, it is

possible to classify homomorphisms for each such form, which is done next. Start with

the list form

A++ (·)(x)

which in a natural way corresponds to performing an (possibly nonassociative) opera-

tion from left to right. It is not necessary to insist that a given binary operator possesses

a (fictitious) identity element. For this reason, the form

(·)(x)

is used essentially twice so that it is not necessary to employ an empty array. Otherwise,

a couple definitions should be formulated, instead of one (one in case the given operator

is assigned an identity element and another definition in the alternate case).

DEFINITION 4.1 (left hom)

An operation h is a left hom for an array A if there exists a binary operator ⊕ such

that

(4.1) h(B++ (·)(x)) = h(B)⊕h(·)(x)

whenever B++ (·)(x) is a subarray of A with B �= � , and an unary function u such that

h(·)(x) = u(x)

whenever x is an element of A. If h(�) is defined, it equals the identity element for

⊕.

Next, consider the list form

(·)(x) ++A

which is a suitable form whenever performing an (possibly nonassociative) operation

from right to left.

DEFINITION 4.2 (right hom)

An operation h is a right hom for an array A if there exists a binary operator ⊕

such that

(4.2) h((·)(x) ++B) = h(·)(x)⊕h(B) ,

whenever (·)(x) ++B is a subarray of A with B �= � , and an unary function u such

that

h(·)(x) = u(x)

SECTION 4.3 HOMOMORPHISMS 109

whenever x is an element of A. If h(�) is defined, it equals the identity element for

⊕.

Third, consider the list form

A++B

which is the only remaining list form. This form is applicable whenever performing

an associative operation. In this case, assume concatenation is associative, which is

proved later.

DEFINITION 4.3 (catamorphism)

An operation h is a catamorphism for an array A if there exists a binary operator ⊕
such that

(4.3) h(B++C) = h(B)⊕h(C) ,

whenever B++C is a subarray of A with B,C �= � , and an unary function u such

that

h(·)(x) = u(x)

whenever x is an element of A. If h(�) is defined, it equals the identity element

for ⊕.

It turns out that these homomorphisms are uniquely determined by the specified

binary and unary operators, which is known as the unique extension property.

THEOREM 4.22 A left hom, a right hom and a catamorphism are uniquely deter-

mined by the binary operator ⊕ and the unary function u.

PROOF (SKETCH) Evidently any two homomorphisms with the same binary operator

⊕ and unary function u agree on singletons. By induction, they must agree on any

concatenation of singletons.

A few needed operators are listed next.

List Homomorphism Function

left hom with binary operator ⊕ and unary function u lom(⊕,u)

right hom with binary operator ⊕ and unary function u rom(⊕,u)

catamorphism with binary operator ⊕ and unary function u (|⊕,u|)

110 A CONSTRUCTIVE THEORY CHAPTER 4

THEOREM 4.23 The following identities hold:

lom(⊕,u) [a : n] = (· · ·((u(a1)⊕u(a2))⊕u(a3)) · · ·)⊕u(an) ,

rom(⊕,u) [a : n] = u(a1)⊕ (u(a2)⊕ (· · ·(u(an−1)⊕u(an)) · · ·)) ,

and

(|⊕,u|) [a : n] = u(a1)⊕u (a2)⊕· · ·⊕u(an) .

PROOF (SKETCH) Replace the constructors by the operators.

Recall, the composition of two homomorphisms is a homomorphism. The promo-

tion lemma states this fact more precisely.

LEMMA 4.24 (PROMOTION LEMMA)

Let h be any morphism such that

h(a⊕b) = h(a)⊗h(b) .

Then

h◦lom(⊕,u) = lom(⊗,h◦u) ,

h◦rom(⊕,u) = rom(⊗,h◦u) ,

and

h◦ (|⊕,u|)= (|⊗,h◦u|).

PROOF (SKETCH) This equations follow by direct calculation and uniqueness.

In general, if a binary operation is not associative, then the order of “folding” or

grouping must be defined. Consider a homomorphism which is a folding of the ele-

ments without modifying the elements in any way.

DEFINITION 4.4 If the unary function u equals the identity function

id(x) = x

then a left hom, right hom, and catamorphism is called a left fold, right fold, and

reduce operation, respectively.

Another special class of homomorphisms is one for which an operation modifies

all of the elements without changing the data organization. The elements are not folded

at all. These morphisms are called maps.

SECTION 4.3 HOMOMORPHISMS 111

DEFINITION 4.5 If the binary operator is concatenation and the unary operator u

obeys

u (x) = (·)(f(x))

for some function f, then a left hom, a right hom, or a catamorphism is called a map.

For folding homomorphisms, it suffices to specify only the binary operation as

the unary function is known. For maps, it suffices to specify only the special func-

tion which is applied to the elements as the binary operator is known. The following

conventions are adopted:

List Homomorphism Function

left fold = lom(⊕,id) �⊕

right fold = rom(⊕,id) �⊕

reduce = (|⊕,id|) �⊕

map f= (|++,f|) ∗ f

THEOREM 4.25 For any binary operator ⊕,

(�⊕) [a : n] = ((a1⊕a2)⊕a3)⊕·· ·⊕an,(4.4)

(�⊕) [a : n] = a1⊕ (a2⊕·· ·⊕ (an−1⊕an)) ,(4.5)

and for any associative binary operator ⊕,

(4.6) (�⊕)[a : n] = a1⊕a2⊕·· ·⊕an.

PROOF Plug u= id in Theorem 4.23.

THEOREM 4.26 For any binary operator ⊕,

(�⊕) [a : n] =� ⊕ [a : n] 1,

(�⊕) [a : n] =� ⊕ [a : n] 1,

and for any associative binary operator ⊕,

(�⊕)[a : n] =� ⊕ [a : n] 1.

PROOF These identities follow by inspection since

τ (k) 1= k

implies a◦ τ (k) 1= ak.

112 A CONSTRUCTIVE THEORY CHAPTER 4

EXAMPLE 4.1 Define a ↓ b=min{a,b} and a ↑ b=max{a,b}.

Reduce Equivalent Reduce Equivalent

Operation Expression Operation Expression

�+[x : n]
n∑

i=1

xi � ↓ [x : n] min
1≤i≤n

{xi}

�× [x : n]
n∏

i=1

xi � ↑ [x : n] max
1≤i≤n

{xi}

EXAMPLE 4.2 Let a⊕b= 2a+b. Then

(�⊕ [id : 3]) = ((1⊕2)⊕3) = 4⊕3= 11,

and

(�⊕)[id : 3] = 1⊕ (2⊕3) = 1⊕7= 9.

EXAMPLE 4.3 Since ++k is an associative operator,

(�++k) [a : n] = a1++ka2++k · · ·++kan.

THEOREM 4.27 The definitions of ∗f in Definition 3.28 and in Definition 4.5 are

consistent. Furthermore,

(∗f) [a : n] = [f◦a◦ τ (1) : 1] ++ · · ·++ [f◦a◦ τ (n) : 1] .

PROOF Calculate

(∗ f) [a : n] =(|++,f|) [a : n] by Definition 4.5

=(·)(f(a1)) ++ · · ·++ (·)(f(an)) by Theorem 4.23

=[f◦a◦ τ (1) : 1] ++ · · ·++ [f◦a◦ τ (n) : 1] by Lemma 4.9

=[(f◦a)◦ τ (1) : 1] ++ · · ·++ [(f◦a)◦ τ (n) : 1] as ◦ is associative

=[f◦a : n] by LC

=(∗ f)[a : n] by Definition 3.28.

THEOREM 4.28 Let [a | (t : n)] be any n-array with tk > 1 for which ∗f may

be applied. Set

T= (t : n;tk = 1) .

SECTION 4.3 HOMOMORPHISMS 113

Pick m ∈ ι (tk−1). Then

(∗f)([a |τk (m)T] ++k [a◦ τk (m+1) |τk (tk−m)T])

=(∗f)[a |τk (m)T] ++k (∗f)[a◦ τk (m+1) |τk (tk−m)T] .

PROOF Let [a | (t : n)], T and m be as in the statement of the theorem. Compute

(∗f)([a |τk (m)T] ++k [a◦ τk (m+1) |τk (tk−m)T])

=(∗f)[a | (t : n)] by CI

=[f◦a | (t : n)] by Definition 3.28

=[(f◦a) |τk (m)T] ++k [(f◦a)◦ τk (m+1) |τk (tk−m)T] by CI

=(∗f)[a |τk (m)T] ++k (∗f)[a◦ τk (m+1) |τk (tk−m)T]

by Definition 3.28.

LEMMA 4.29 (MAP DISTRIBUTIVITY)

A map distributes for 1-arrays:

∗(f◦g) = (∗f)◦ (∗g) .

PROOF Calculate

(∗f)◦ (∗g) =(|++,f|)◦ (|++,g|) by definition

=(|++,f◦g|) by the promotion lemma

=∗ (f◦g) by definition.

Next the homomorphism lemma from the theory of lists is recast for arrays.

LEMMA 4.30 (HOMOMORPHISM LEMMA)

A morphism is a left hom, right hom or catamorphism if and only if the morphism is a

composition of a left fold, right fold or reduce operation, respectively, with a map.

PROOF Rewrite

(�⊕)◦ (∗u) = (�⊕)◦lom(++,u) by definition

= lom(⊕,u) by the promotion lemma,

(�⊕)◦ (∗u) = (�⊕)◦rom(++,u) by definition

= rom(⊕,u) by the promotion lemma,

114 A CONSTRUCTIVE THEORY CHAPTER 4

and lastly,

(�⊕)◦ (∗u) = (�⊕)◦ (|++,u|) by definition

= (|⊕,u|) by the promotion lemma.

THEOREM 4.31 (PROMOTABILITY THEOREM)

Let h be any morphism such that

h(a⊕b) = h(a)⊗h(b) .

Then

h◦lom(⊕,u) = (�⊗)◦ (∗(h◦u)) ,

h◦rom(⊕,u) = (�⊗)◦ (∗(h◦u)) ,

and

h◦ (|⊕,u|)= (�⊗)◦ (∗(h◦u)) .

PROOF By direct calculation,

h◦lom(⊕,u) = lom(⊗,h◦u) by the promotion lemma

= (�⊗)◦ (∗(h◦u)) by the homomorphism lemma,

h◦rom(⊕,u) = rom(⊗,h◦u) by the promotion lemma

= (�⊗)◦ (∗(h◦u)) by the homomorphism lemma,

and lastly,

h◦ (|⊕,u|) = (|⊗,h◦u|) by the promotion lemma

= (�⊗)◦ (∗(h◦u)) by the homomorphism lemma.

These identities are versatile.

EXAMPLE 4.4 Taking u= id,

h◦ (�⊕) = (�⊗)◦ (∗h) ,

h◦ (�⊕) = (�⊗)◦ (∗h) ,

h◦ (�⊕) = (�⊗)◦ (∗h) .

EXAMPLE 4.5 Taking h= ∗f and ⊕= ++ ,

∗f◦ (�++k) = (�++k)◦ (∗∗f)

SECTION 4.3 HOMOMORPHISMS 115

since ∗f(A++k B) = (∗f A) ++k (∗f B). This example gives an important promotion

law for map on arrays.

EXAMPLE 4.6 Letting h=�� and ⊕= ++ ,

(��)◦ (�++)= (��)◦ (∗(��))

since �� (A++B) = (��A)� (��B).

EXAMPLE 4.7 If h(A++B) = h(A)⊕h (B) then

h◦ (∗f) = (�⊕)◦∗(h◦f) .

List homomorphisms have been added to the theory. This fact should not be sur-

prising as concatenation was adopted as the binary constructor. There is a functor

taking [α] to A∗α and ++ to ++ where the homomorphism — is given by [] = � and

[t1,.,tn] = [a : n] with ai = ti. It is not an isomorphism as 1-arrays are not de-

pendent on any (homogeneous) type (or set). A commutative diagram establishes the

equivalences.

([α] , [α])
(—,—)

� (A∗α,A
∗

α)

[α]

++

�

—
� A∗α

++

�

A++B= A++B,

i.e.,

—◦++= ++ ◦ (—,—) .

Another commutative diagram is presented to show that maps are homomorphisms

for both data types.

([β], [β]) �
(�f,�f)

([α] , [α])
(—,—)

� (A∗α,A
∗

α)
(∗f,∗f)

� (A∗α,A
∗

α)

[β]

++

�

�

�f
[α]

++

�

—
� A∗α

++

�

∗f
� A∗β

++

�

Concatenation is a natural transformation since it satisfies a naturality condition,

which means the diagram commutes for any function f : α→ β. By inspection, — and

(·) are natural transformations since the following diagrams commute for all functions

f : α→ β.

116 A CONSTRUCTIVE THEORY CHAPTER 4

[α]
�f
� [β]

A
∗

α

—

�

∗f
� A

∗

β

—

�

α
f
� β

A
∗

α

(·)

�

∗f
� A

∗

β

(·)

�

Next, additional array homomorphisms are classified.

4.3.2 EXTENDED LIST HOMOMORPHISMS

Classify three kinds of homomorphisms for n-arrays with n > 1, just as for 1-

arrays, using the planar forms presented earlier. First, consider the planar form

B++k (reaxkC)

which in a natural way corresponds to performing a (possibly nonassociative) operation

from left to right, axially in some field direction. Use similar names as the operations

do not appear to be different, although the objects do. The elements are now hyper-

planes, i.e., treat entire hyperplanes as single units. After folding a 1-array, the result

need not be a collection of elements and an array data structure may not be needed to

store the result. Folding hyperplanes yields a collection which is a hyperplane.

DEFINITION 4.6 (left array hom)

An operation h is a left array hom for a n-array A with n > 1 if for some field

direction k ∈ ι n and some binary operator ⊕,

(4.7) h(B++k (reaxkC)) = h(B)⊕h(reaxkC) ,

whenever B++k (reaxkC) is a subarray of A with B �= � , and for some unary function

u,

h(reaxkC) = u(reaxkC) ,

whenever reaxkC is a subarray of A. If h(�) is defined, it must be equal to the

identity element for ⊕.

Second, consider another planar form

(reaxkB) ++kC

which is a suitable form whenever performing an (possibly nonassociative) operation

from right to left, axially in some field direction.

SECTION 4.3 HOMOMORPHISMS 117

DEFINITION 4.7 (right array hom)

An operation h is a right array hom for a n-array A with n > 1 if for some field

direction k ∈ ι n and some binary operator ⊕,

(4.8) h((reaxkB) ++kC) = h(reaxkB)⊕h(C) ,

whenever (reaxkB) ++kC is a subarray of A with C �= � , and for some unary

function u,

h(reaxkC) = u(reaxkC) ,

whenever reaxkC is a subarray of A. If h(�) is defined, it must be equal to the identity

element for ⊕.

Third, consider the planar form

A++kB

which is a suitable form whenever performing an associative operation axially in some

field direction. In this case, assume concatenation is associative.

DEFINITION 4.8 (array catamorphism)

An operation h is an array catamorphism for a n-array A with n > 1 if for some

field direction k ∈ ι n and some binary operator ⊕,

(4.9) h(B++kC) = h(B)⊕h(C) ,

whenever B++kC is a subarray of A with B,C �= � , and for some unary function u,

h(reaxkC) = u(reaxkC) ,

whenever reaxkC is a subarray of A. If h(�) is defined, it must be equal to the identity

element for ⊕.

An extended list homomorphism is a left array hom, a right array hom or an array

catamorphism. As list and extended list homomorphisms are alike, it is reasonable to

suspect the theorems are similar.

THEOREM 4.32 The unique extension property extends to extended list homomor-

phisms.

PROOF (SKETCH) Evidently, any two extended list homomorphisms with the same

binary operator ⊕ and unary function u agree on any hyperplane. By induction, they

must agree on any concatenation of hyperplanes.

118 A CONSTRUCTIVE THEORY CHAPTER 4

The same notation for list homomorphisms is used, except the field direction is

attached for extended list homomorphisms:

Homomorphism Function

left array hom lomk (⊕,u)

right array hom romk (⊕,u)

array catamorphism (|⊕,u|)
k

THEOREM 4.33 The following identities hold:

lomk (⊕,u) [a | (t : n)]

= (· · ·(u [a◦ τk (1) |T]⊕u [a◦ τk (2) |T]) · · ·)⊕u [a◦ τk (tk) |T] ,

romk (⊕,u) [a | (t : n)]

= u [a◦ τk (1) |T]⊕ (· · ·(u [a◦ τk (tk−1) |T]⊕u [a◦ τk (tk) |T]) · · ·) ,

and

(|⊕,u|)
k
[a | (t : n)] = u [a◦ τk (1) |T]⊕· · ·⊕u [a◦ τk (tk) |T] ,

where using TM

T= (t : n;tk = 1) .

PROOF (SKETCH) Replace the constructors by the operators.

The promotion lemma needs to be adjusted slightly to accommodate hyperplanes.

LEMMA 4.34 (HYPERPLANE PROMOTION LEMMA)

If h is any homomorphism such that

h(a⊕b) = h(a)⊗h(b) ,

then

h◦lomk (⊕,u) = lomk (⊗,h◦u) ,

h◦romk (⊕,u) = romk (⊗,h◦u) ,

and

h◦ (|⊕,u|)
k
= (|⊗,h◦u|)

k
.

PROOF (SKETCH) This follows as before by direct calculation and the unique exten-

sion property.

SECTION 4.3 HOMOMORPHISMS 119

Extend the definitions of folding operations to n-arrays with n> 1.

DEFINITION 4.9 If the unary function u equals the identity function

id(x) = x

then a left array hom, a right array hom, and an array catamorphism is called a left

fold, a right fold, and a reduce operation, respectively.

The definition of map needs to be reformulated for n-arrays with n> 1.

DEFINITION 4.10 If the binary operator of a homomorphism is a concatenation op-

erator, then a left array hom, a right array hom, or an array catamorphism is called a

planar map.

The same higher-order operators are used, furnishing only the field direction in

addition to the special operator needed to specify the homomorphism:

Homomorphism Higher-order Function

left fold = lomk (⊕,id) �k ⊕

right fold = romk (⊕,id) �k ⊕

reduce = (|⊕,id|)
k

�k ⊕

planar map = (|++k,f|)k ∗k f

Notice

� �=�1

and so it is not permissible to drop the 1 in this case. The difference is important. The

function � is useful for recursion as the higher-order operation collapses a 1-array

via combination of the elements. The function �1 combines hyperplanes without

collapsing.

THEOREM 4.35 (REDUCE PROMOTION)

The following identity holds always:

(�k⊕)◦ (�++k) = (�⊕)◦∗(�k⊕) .

PROOF Since by definition

(�k⊕)(A++k B) = (�k⊕ A)⊕ (�k⊕ B) ,

plug h=�k⊕ into the promotability theorem to verify the stated identity.

120 A CONSTRUCTIVE THEORY CHAPTER 4

THEOREM 4.36 Setting T= (t : n;tk = 1) the following identities hold:

(�k ⊕)[a | (t : n)]

= (· · ·([a◦ τk (1) |T]⊕ [a◦ τk (2) |T]) · · ·)⊕ [a◦ τk (tk) |T] ,

(�k ⊕)[a | (t : n)]

= [a◦ τk (1) |T]⊕ (· · · ([a◦ τk (tk−1) |T]⊕ [a◦ τk (tk) |T]) · · ·) ,

and

(�k ⊕) [a | (t : n)] = [a◦ τk (1) |T]⊕· · ·⊕ [a◦ τk (tk) |T] .

PROOF Plug u= id in Theorem 4.33.

COROLLARY 4.37 For n-arrays with n> 1 the following identities hold:

�k ++k =�k ++k =�k++k = (|++k,idA |)k = idA .

PROOF These identities hold by HC and inspection of Theorem 4.33 since ++k is

associative.

EXAMPLE 4.8 Taking A= [a : 3,4] ∼
[
1 9 7 4

5 11 3 8

12 6 10 2

]
,

�2 +
←→

A ∼



21

27

30


, �2 max

←→
A ∼



9

11

12


 and �min

←→
A ∼

[
1 6 3 2

]
.

EXAMPLE 4.9 Let a⊕b= a− b

2
. Let A= [a : 3,4] ∼

[
11 10 8 4

12 12 4 8

9 6 10 2

]
. Calculate

�2 ⊕←→
A ∼



0

0

0


 and �2 ⊕←→

A ∼



15

2

6

33

4


 .

THEOREM 4.38 Let A= [a | (t : n)] with n> 1 and T= (t : n;tk = 1). Then

�k ⊕←→
A= [�k ⊕ A |T] ,

�k ⊕←→
A= [�k ⊕ A |T] ,

and

�k ⊕←→
A= [�k ⊕ A |T] .

SECTION 4.3 HOMOMORPHISMS 121

PROOF (SKETCH) The abstractor zip connects these folding operations.

THEOREM 4.39 A planar map distributes the given function to the hyperplanes as

follows:

(∗k f)[a | (t : n)] = f [a◦ τk (1) |T] ++k · · ·++k f [a◦ τk (tk) |T]

where by TM

T= (t : n;tk = 1) .

PROOF These identities hold by inspection of Theorem 4.33 and the definition of

planar map.

THEOREM 4.40 A map may be demoted to a planar map:

∗f= ∗k (∗f)

for any n-array with n> 1.

PROOF Consider an arbitrary n-array [a | (t : n)] for which (∗k ∗f) may be ap-

plied. Invoking T write

T= (t : n;tk = 1) .

Compute

(∗k ∗f)[a | (t : n)]

=(∗f) [a◦ τk (1) |T] ++k · · ·++k (∗f) [a◦ τk (tk) |T] by Theorem 4.39

=[f◦ (a◦ τk (1)) |T] ++k · · · ++k [f◦ (a◦ τk (tk)) |T] by Definition 3.28

=[(f◦a)◦ τk (1) |T] ++k · · · ++k [(f◦a)◦ τk (tk) |T] by associativity

=[(f◦a) | (t : n)] by HC

=(∗f) [a | (t : n)] by Definition 3.28.

In addition,

(∗k ∗f)� = �

since � is the identity element for ++k. By Definition 3.28,

(∗f)� = � .

This shows that map may be demoted to a planar map.

A planar map is applied only to the hyperplanes whereas a map is applied to all

of the elements. Hence the parameter function which is mapped is defined accord-

122 A CONSTRUCTIVE THEORY CHAPTER 4

ingly. Extended list homomorphisms are not defined for 1-arrays since they cannot be

decomposed via reax operators.

5
6

8
1 2

3 4

10

2
4

6
8

6 8

121
2

4
3

7

+

+ =

=

Figure 4.1: Add only corresponding “corners” of thick squares.

EXAMPLE 4.10 Add the number at each corner of (N2) illustrated on the far left

side of Figure 4.1 (2×2 matrix) to the number at the corresponding corner of both

parallel thick squares of the leftmost 3-array B depicted in Figure 4.1 to obtain the

rightmost 3-array. For instance, 4 is added only to the elements 4 and 8 of the

argument (which is the 3-array on the left) to obtain the new elements 8 and 12,

respectively, in the 3-array on the right. In other words, compute

∗3 +
←→

N2B= ∗3 +
←→

[
1 2

3 4

]
B.

LEMMA 4.41 (HYPERPLANE HOMOMORPHISM LEMMA)

If ∗ku is defined then

lomk (⊕,u) = (�k ⊕)◦ (∗k u) ,

romk (⊕,u) = (�k ⊕)◦ (∗k u) ,

and

(|⊕,u|)
k
= (�k⊕)◦ (∗k u) .

PROOF This is an immediate consequence of the definitions and the promotion lemma

for

(�k ⊕)◦ (∗k u) = (�k ⊕)◦lomk (++k,u) by definition

= lomk (⊕,u) by the promotion lemma,

(�k ⊕)◦ (∗k u) = (�k ⊕)◦romk (++k,u) by definition

= romk (⊕,u) by the promotion lemma,

SECTION 4.3 HOMOMORPHISMS 123

and lastly,

(�k ⊕)◦ (∗k u) = (�k ⊕)◦ (|++k,u|)k by definition

= (|⊕,u|)
k
by the promotion lemma.

EXAMPLE 4.11 Recall N2 = [b : 2,2] where b(i,j) = 2(i−1)+j. Put

B= [b : 2,1] and C= [b◦ τ2 (2) : 2,1]

so that

N2 = B++2 C ∼

[
1 2

3 4

]
= concatenate

([
1

3

]
,

[
2

4

])
.

Then (
�2 +

←→

)
◦ (∗×2)N2 =

(
�2 +

←→

)
◦ (∗×2)B+

(
�2 +

←→

)
◦ (∗×2)C.

In other words, first multiplying N2 by 2 and then computing the row sums, i.e.,

2

[
1 2

3 4

]
=

[
2 4

6 8

]
�−→

[
6

14

]

yields the same result as first multiplying the columns by 2 and then performing matrix

addition:

2

[
1

3

]
+2

[
2

4

]
=

[
2

6

]
+

[
4

8

]
=

[
6

14

]
.

THEOREM 4.42 (HYPERPLANE PROMOTABILITY THEOREM)

If h is any homomorphism such that

h(a⊕b) = h(a)⊗h(b) ,

then

h◦lomk (⊕,u) = (�k ⊗)◦ (∗k (h◦u)) ,

h◦romk (⊕,u) = (�k ⊗)◦ (∗k (h◦u)) ,

and

h◦ (|⊕,u|)
k
= (�k ⊗)◦ (∗k (h◦u)) ,

provided ∗k (h◦u) is defined.

124 A CONSTRUCTIVE THEORY CHAPTER 4

PROOF Calculate

h◦lomk (⊕,u) = lomk (⊗,h◦u) by the promotion lemma

= (�k ⊗)◦ (∗k (h◦u)) by the homomorphism lemma,

h◦romk (⊕,u) = romk (⊗,h◦u) by the promotion lemma

= (�k ⊗)◦ (∗k (h◦u)) by the homomorphism lemma,

and lastly,

h◦ (|⊕,u|)
k
= (|⊗,h◦u|)

k
by the promotion lemma

= (�k ⊗)◦ (∗k (h◦u)) by the homomorphism lemma.

EXAMPLE 4.12 If u= id then

h◦ (�k ⊕) = (�k ⊗)◦ (∗kh) ,

h◦ (�k ⊕) = (�k ⊗)◦ (∗kh) ,

and

h◦ (�k ⊕) = (�k ⊗)◦ (∗kh) .

EXAMPLE 4.13 Taking h = ∗f, ⊕ = ++k and u = id, and invoking Corollary

4.37, a restatement of Theorem 4.40 is obtained:

(∗f)◦ (�k++k) = (�k++k)◦ (∗k ∗f)

since

∗f(A++k B) = (∗f A) ++k (∗f B) .

EXAMPLE 4.14 If h(A++kB) = h (A)⊕h(B) then

h◦ (∗kf) = (�k⊕)◦∗k (h◦f) .

LEMMA 4.43 The generating relation reaxk is a homomorphism:

reaxk (A++pB) = (reaxkA) ++p (reaxkB) if p< k,

reaxk (A++pB) = (reaxkA) ++p+1 (reaxkB) if p≥ k.

PROOF (SKETCH) The generating relation reaxk shifts by one all components start-

ing from the kth component.

SECTION 4.3 HOMOMORPHISMS 125

THEOREM 4.44 (REAX PROMOTABILITY)

reaxk ◦(�p++p) = (�p++p)◦ (∗p reaxk) if p< k,

and

reaxk ◦(�p++p) = (�p++p+1)◦ (∗p reaxk) if p≥ k.

PROOF If p < k, then in view of Lemma 4.43 and the hyperplane promotability

theorem,

reaxk ◦(|++p,id|)p = (�p++p)◦ (∗p reaxk) .

If p≥ k, then in view of Lemma 4.43 and the hyperplane promotability theorem,

reaxk ◦(|++p,id|)p = (�p++p+1)◦ (∗p reaxk) .

LEMMA 4.45 The destructor collapsek is a homomorphism:

collapsek (A++pB) = (collapsekA) ++p (collapsekB) if p< k,

and

collapsek (A++p+1B) = (collapsekA) ++p (collapsekB) if p≥ k.

PROOF Replace A and B by collapsekA and collapsekB, respectively, in Lemma

4.43 to obtain

reaxk ((collapsekA) ++p (collapsekB)) = A++pB if p< k,

and

reaxk ((collapsekA) ++p (collapsekB)) = A++p+1B if p≥ k.

Apply collapsek to both sides and invoke RC to show that the stated identities hold.

THEOREM 4.46 (COLLAPSE PROMOTABILITY)

collapsek ◦(�p++p) = (�p++p)◦ (∗p collapsek) if p< k,

and

collapsek ◦(�p++p+1) = (�p++p)◦ (∗p collapsek) if p≥ k.

PROOF If p < k, then in view of Lemma 4.45 and the hyperplane promotability

theorem,

collapsek ◦(|++p,id|)p = (�p++p)◦ (∗p collapsek) .

126 A CONSTRUCTIVE THEORY CHAPTER 4

If p≥ k, then in view of Lemma 4.45 and the hyperplane promotability theorem,

collapse
k
◦(|++p+1,id|)p = (�p++p)◦ (∗p collapsek) .

THEOREM 4.47 For all n-arrays, k ∈ ι n and p ∈ ι (n−1),

(
�p ⊕

←→

)
◦ collapsek = collapsek ◦

(
�p+1 ⊕

←→

)
if p≥ k,

(
�p ⊕

←→

)
◦ collapsek = collapsek ◦

(
�p ⊕

←→

)
if p< k,

(
�p ⊕

←→

)
◦ collapsek = collapsek ◦

(
�p+1 ⊕

←→

)
if p≥ k,

(
�p ⊕

←→

)
◦ collapsek = collapsek ◦

(
�p ⊕

←→

)
if p< k,

(
�p ⊕

←→

)
◦ collapsek = collapsek ◦

(
�p+1 ⊕

←→

)
if p≥ k,

and (
�p ⊕

←→

)
◦ collapsek = collapsek ◦

(
�p ⊕

←→

)
if p< k.

PROOF (SKETCH) The field direction may need to be adjusted, depending on when

collapsing takes place.

List homomorphisms have been extended to n-arrays with n> 1. This extension

is a significant enhancement. Nevertheless, arrays are more than lists of hyperplanes.

Array data structures permit additional array homomorphisms.

4.3.3 ARRAY HOMOMORPHISMS

As with lists, principal operations act in field directions. List homomorphisms lift

functions on the elements to functions on lists. It is possible to lift list homomorphisms

to operations on axes. This lifting is possible due to the dimensions which arrays

possess.

DEFINITION 4.11 A harray (pronounced “hu-’rA” as in hurrah or “här · rA” as in

harmony and ray) is a n-array of functions such that every element is a left hom, a

right hom or a catamorphism.

Now it is possible to perform different operations in the same field direction. If F

is a harray, then

�kF

applies each list homomorphism to the corresponding axis.

SECTION 4.3 HOMOMORPHISMS 127

THEOREM 4.48 (AXIAL MORPHISM THEOREM)

Assume F = [f |T] is a harray. For t ∈ P(T), there exist a binary operator θ (t)
and an unary function µ(t) which determine each homomorphism f(t). If every

element of F is a left hom, then

�k [f |T] = (� [� ◦θ |T])◦ (� [∗◦µ |T])◦�k [Kid |T] .

If every element of F is a right hom, then

�k [f |T] = (� [� ◦θ |T])◦ (� [∗◦µ |T])◦�k [Kid |T] .

If every element of F is a catamorphism, then

�k [f |T] = (� [�◦θ |T])◦ (� [∗◦µ |T])◦�k [Kid |T] .

PROOF (SKETCH) Invoke the unique extension property and homomorphism lemma.

DEFINITION 4.12 A reducing array is a harray in which every element is a left fold,

a right fold or a reduce operation.

THEOREM 4.49 Assume F= [f |T] is a reducing array. For t∈P(T), there exists a
binary operator θ (t) which determines each homomorphism f(t). If every element

of a harray [f |T] is a left fold then

�k [f |T] = (� [� ◦ θ |T])◦�k [Kid |T] .

If every element of a harray R is a right fold then

�k [f |T] = (� [� ◦ θ |T])◦�k [Kid |T] .

If every element of a harray R is a reduce operation, then

�k [f |T] = (� [�◦θ |T])◦�k [Kid |T] .

PROOF (SKETCH) Rewrite f in the proof of the axial morphism theorem.

DEFINITION 4.13 Amap array is a harray in which every element is a map.

THEOREM 4.50 If M= [f |T] is a map array then

�k [f |T] = (� [∗◦µ |T])◦�k [Kid |T] ,

128 A CONSTRUCTIVE THEORY CHAPTER 4

where µ(t) is the unary function which determines the map f.

PROOF (SKETCH) Rewrite f in the proof of the axial morphism theorem.

THEOREM 4.51 (ARRAY MORPHISM THEOREM)

If F is a harray then

�kF= (� R)◦ (�kM)

where R is a reducing array, M is a map array and

F= R ◦←→M.

PROOF (SKETCH) Invoke the homomorphism lemma and perform the computations.

The importance of the abstractors is apparent from the theorems. These abstractors

provide highly parallel models for performing operations axially. The operations need

not be different. It is possible to transform a sequential operation on arrays into an

array operation (a harray whose elements are constant) using these implicitly parallel

abstractors. In particular, if h is any list homomorphism and k is any field direction

then for any n-tuple T,

�k [Kh |T]

is a highly parallel operation in field direction k.

Instead of focusing on only one dimension, consider collapsing an array totally.

The function map modifies the elements without combining them. What is needed

are templates for combining elements without modification of them.

It is possible to collapse in different ways. The most natural way to proceed is

to collapse in the natural order. Every n-array has a 1-axis. If n > 1, then after

reducing the elements along the 1-axis and collapsing, the resulting array has a 1-

axis. It suffices to use the same concatenation operator during each collapsing phase.

In order to simplify the following recursive definitions, h(�) is treated as the identity

element for the given binary operator ⊕ which is used to combine the elements.

DEFINITION 4.14 (ordered left fold)

An operation h is an ordered left fold for a n-array A with n > 1 using some

binary operator ⊕ if

h(B++ (reaxC)) = h(B)⊕h(C) ,

SECTION 4.3 HOMOMORPHISMS 129

and h is an ordered left fold for C using the same binary operator ⊕ whenever

B++ (reaxC)

is a subarray of A. An operation h is an ordered left fold for a 1-array A using some

binary operator ⊕ if h is a left fold for A employing the binary operator ⊕.

DEFINITION 4.15 (ordered right fold)

An operation h is an ordered right fold for a n-array A with n > 1 using some

binary operator ⊕ if

h((reaxB) ++C) = h(B)⊕h(C) ,

and h is an ordered right fold for B using the same binary operator ⊕ whenever

(reaxB) ++C

is a subarray of A. An operation h is an ordered right fold for a 1-array A using

some binary operator ⊕ if h is a right fold for A employing the binary operator ⊕.

DEFINITION 4.16 (ordered reduce)

An operation h is an ordered reduce for a n-array A with n> 1 using some binary

operator ⊕ if

h(B++C) = h(B)⊕h(C) ,

whenever B++C is a subarray of A,

h(reaxC) = h(C) ,

and h is an ordered reduce for C using the same binary operator ⊕ whenever reaxC

is a subarray of A. An operation h is an ordered reduce for a 1-array A using some

binary operator ⊕ if h is a reduce for A employing the binary operator ⊕.

An ordered reduction is an ordered left fold, an ordered right fold, or an ordered

reduce operation. It is necessary to furnish the binary operator in order to specify an

ordered reduction:

Homomorphism Function

ordered left fold � ⊕

ordered right fold � ⊕

ordered reduce � ⊕

Reductions may be performed in any specified order. The entire array may or

may not be collapsed to a scalar array. In this case, reductions are performed without

collapsing in order to avoid relabeling axes. For instance, if reducing and collapsing

130 A CONSTRUCTIVE THEORY CHAPTER 4

along the p-axis before the q-axis and p < q then after removing the p-axis the

q-axis becomes the (q−1)-axis in accordance with Theorem 4.47.

DEFINITION 4.17 (permuted left fold)

An operation h is a permuted left fold if some fixed binary operator ⊕ and for some

n-permutation p,

h= (�p1 ⊕)◦ · · · ◦ (�pn ⊕) .

DEFINITION 4.18 (permuted right fold)

An operation h is a permuted right fold if for some fixed binary operator ⊕ and for

some n-permutation p,

h= (�p1 ⊕)◦ · · · ◦ (�pn ⊕) .

DEFINITION 4.19 (permuted reduce)

An operation h is a permuted reduce if for some fixed binary operator ⊕ and for

some n-permutation p,

h= (�p1 ⊕)◦ · · · ◦ (�pn ⊕) .

A permuted reduction is a permuted left fold, a permuted right fold or a permuted

reduce. Given a n-permutation p and a binary operator ⊕, the following operators

may be employed to specify a permuted reduction:

Homomorphism Function

permuted left fold �p
⊕

permuted right fold �p
⊕

permuted reduce �p
⊕

It may be possible to collapse an array doing the reductions in arbitrary order, i.e.,

the order is not specified.

DEFINITION 4.20 (total left fold)

An operation h is a total left fold for a n-array A with n > 1 given some binary

operator ⊕ if for any n-permutation p

h(A) = (·)−1n ◦ (�p
⊕) A ,

An operation h is a total left fold for a 1-array A if h is a left fold for A.

SECTION 4.3 HOMOMORPHISMS 131

DEFINITION 4.21 (total right fold)

An operation h is an total right fold for a n-array A with n> 1 given some binary

operator ⊕ if for any n-permutation p

h(A) = (·)−1n ◦ (�p
⊕) A ,

An operation h is a total right fold for a 1-array A if h is a right fold for A.

DEFINITION 4.22 (total reduce)

An operation h is a total reduce for a n-array A with n > 1 given some binary

operator ⊕ if for any n-permutation p

h(A) = (·)−1n ◦ (�p
⊕) A,

An operation h is a total reduce for a 1-array A if h is a reduce for A.

A total reduction is a total left fold, a total right fold or a total reduce. To specify

a total reduction, it is required to provide the binary operator ⊕ :

Total Reduction Higher-order Function

total left fold �∗
⊕

total right fold �∗
⊕

total reduce �∗
⊕

An operation is a total homomorphism if it can be expressed as an ordered reduction,

a total reduction, a map or a composition of such functions.

EXAMPLE 4.15 Given a 2-array A , an associative and commutative operator such

as usual addition +, it is possible to reduce by rows and then by columns or by columns

and then by rows so that

�∗+ A

is well-defined.

EXAMPLE 4.16 The binary operator need not be associative in a total left fold. Define

⊕ via

a⊕b= a−
b

2
.

Then

(1⊕2)⊕3=−
3

2
and 1⊕ (2⊕3) =

3

4
.

132 A CONSTRUCTIVE THEORY CHAPTER 4

This shows that ⊕ is nonassociative. Now consider any 2-array [a : 2,2]. Compute

(�1 ⊕)◦ (�2 ⊕)[a : 2,2] = (�2 ⊕)◦ (�1 ⊕)[a : 2,2]

= (·)2

(
a1,1−

1

2
a1,2−

1

2
a2,1+

1

4
a2,2

)
.

The total left fold

(�∗
⊕) [a : 2,2] = a1,1−

1

2
a1,2−

1

2
a2,1+

1

4
a2,2

is defined for all suitable array functions a.

EXAMPLE 4.17 Let ⊕ be the nonassociative operator in Example 4.16. Let A =
[a : 2,3] be any array. Then

(�∗
⊕)[a : 2,3] = a1,1−

1

2
a1,2−

1

2
a1,3−

1

2
a2,1+

1

4
a2,2+

1

4
a2,3.

For instance, if A ∼ [8 4 2
6 3 1] then (�

∗
⊕)[a : 2,3] = 3. However, splitting the matrix

[
8 4 2

6 3 1

]
into two matrices

[
8

6

]
and

[
4 2

3 1

]

(which is an invalid splitting for left homs) and computing

(
8−

1

2
6

)
−
1

2

((
4−

1

2
2

)
−
1

2

(
3−

1

2
1

))
=
33

8
,

it follows that the total reduction

(�∗
⊕) [a : 2,3]

is not well-defined.

EXAMPLE 4.18 In Examples 4.16 and 4.17, a nonassociative operator is employed in

a total left hom. Yet even an associative operator ⊕ does not guarantee �∗
⊕ is

defined. Let

A= [a : 2,2] ∼


[

1 1
1 0] [1 1

0 1]

[0 1
1 1

] [1 0
1 1

]


 ,

and ⊗ denote usual multiplication of matrices so that

[1 1
1 0]⊗ [1 1

0 1] = [1 2
1 1

] , [0 1
1 1

]⊗ [1 0
1 1

] = [1 1
2 1

] , [1 2
1 1

]⊗ [1 1
2 1

] = [5 3
3 2

] ,

[1 1
1 0]⊗ [0 1

1 1
] = [1 2

0 1] , [1 1
0 1]⊗ [1 0

1 1
] = [2 1

1 1] , and [1 2
0 1]⊗ [2 1

1 1] = [4 3
1 1

] .

SECTION 4.4 LAWS AND PROPERTIES 133

This shows that

(�1 ⊗)◦ (�2 ⊗) [a : 2,2] ∼ [5 3
3 2

] �= [4 3
1 1

] ∼ (�2 ⊗)◦ (�1 ⊗)[a : 2,2] .

Hence, the total reduction (�∗ ⊗)[a : 2,2] is not well-defined.

EXAMPLE 4.19 Summing all of the columns and then adding all of the resulting col-

umn sums is equivalent to summing all of the rows and then adding all of the resulting

row sums. Totally reduce the 2-array

A= [a : 4,3] ∼



1 2 3

4 5 6

7 8 9

10 11 12




by computing

�∗+A= 1+2+3+ · · ·+12=
12 ·13

2
= 78.

Without utilizing the total reduction, it would be necessary to compute via either the

row sums

(·)−1
2

◦ (�1+)◦ (�2+) A

or the column sums

(·)−1
2

◦ (�2+)◦ (�1+) A .

Calculate �∗ ↑A to obtain the maximum entry 12 and�∗ ↓A to obtain the minimum

entry 1.

4.4 LAWS AND PROPERTIES

LEMMA 4.52 For the constant identity function Kid,

� [Kid |T] [a |T] = [a |T] .

PROOF By Definition 3.30,

� [Kid |T] [a |T] = [@◦ (Kid,a) |T]

and

@◦ (Kid,a)(t) =@(id,a(t)) = a(t) ,

which confirms the stated identity.

THEOREM 4.53 (BIAXIS IDENTITY)

134 A CONSTRUCTIVE THEORY CHAPTER 4

The following identity holds always:

�k [f |T] = (� [f |T])◦�k [Kid |T] .

PROOF (SKETCH) Apply each component function to each axis by first forming the

array of axes and then pairing functions with corresponding axes.

THEOREM 4.54 (BICOMP DISTRIBUTIVITY)

The following distributive law holds:

� [(◦)◦ (f,g) |T] = (� [f |T])◦ (� [g |T]) .

PROOF Calculate

(� [f |T])◦ (� [g |T]) [a |T] = (� [f |T]) [@◦ (g,a) |T]

= [@◦ (f,@◦ (g,a)) |T] ,

@◦ (f,@◦ (g,a))(t) =@◦ (f(t),@◦ (g,a)(t))

=@◦ (f(t),g(t)(a(t)))

= f(t)(g(t)(a(t)))

= (f(t)◦g(t))(a(t))

=@◦ ((◦)◦ (f,g),a)(t) ,

and

� [(◦)◦ (f,g) |T] [a |T] = [@◦ ((◦)◦ (f,g),a) |T] ,

which verifies the stated identity by inspection.

THEOREM 4.55 (TRIAD-ZIP IDENTITY)

If ⊕ is any binary operator then

←−−−→
[K⊕ |T] = ⊕

←→
.

PROOF Recall,

[a |T] ⊕
←→

[b |T] = [⊕◦ (a,b) |T]

and ←−−−→
[K⊕ |T] [a |T] [b |T] = [tribi◦ (K⊕,a,b) |T]

SECTION 4.4 LAWS AND PROPERTIES 135

where

tribi◦ (K⊕,a,b)(t) = a(t)⊕b(t) ,

which is the corresponding element of [⊕◦ (a,b) |T].

THEOREM 4.56 (MAP DISTRIBUTIVITY)

∗(f◦g) = (∗f)◦ (∗g) .

PROOF It suffices to consider n-arrays with n> 1 since map distributivity has been

established for 1-arrays. Compare

∗(f◦g)� = � ,

(∗f)◦ (∗g)� = (∗f)� = � ,

∗(f◦g)[a |T] = [(f◦g)◦a |T] = [f◦g◦a |T] ,

and

(∗f)◦ (∗g)[a |T] = (∗f) [g◦a |T] = [f◦ (g◦a) |T] = [f◦g◦a |T] .

By inspection, ∗(f◦g) = (∗f)◦ (∗g).

LEMMA 4.57 For the constant function Kc,

(∗ Kc) [a |T] = [Kc |T] .

PROOF By definition,

(∗ Kc) [a |T] = [Kc ◦a |T]

and

Kc ◦a(t) = Kc (a (t)) = c= Kc (t) ,

which verifies the stated identity.

LEMMA 4.58 For any binary operator ⊕,

⊕
←→

= (∗ ⊕)◦id
←→

.

PROOF Since

(∗ ⊕)◦id
←→ � � = (∗ ⊕) � = � = ⊕

←→� � ,

and

(∗ ⊕)◦id
←→

[a |T] [b |T] = (∗ ⊕)[(a,b) |T] = [⊕◦ (a,b) |T] = ⊕
←→

[a |T] [b |T] ,

136 A CONSTRUCTIVE THEORY CHAPTER 4

it follows that the stated identity holds.

THEOREM 4.59 (MAP INVERSES)

A map has inverses whenever the parameter function possesses an inverse:

(∗f)−1 = ∗
(
f
−1

)
.

PROOF Compute

(
∗
(
f
−1

))
◦ (∗f)� =

(
∗
(
f
−1

))
� = � ,

(
∗
(
f
−1

))
◦ (∗f) [a |T] =

(
∗
(
f
−1

))
[f◦a |T]

=
[(
f−1

)
◦ (f◦a) |T

]

=
[(
f−1 ◦f

)
◦a |T

]

= [id◦a |T]

= [a |T] ,

and similarly,

(∗f)◦
(
∗
(
f
−1

))
(�) = (∗f)(�) = �,

(∗f)◦
(
∗
(
f
−1

))
[a |T] = (∗ (f))

[
f
−1 ◦a |T

]

=
[
f◦

(
f−1 ◦a

)
|T

]

=
[(
f◦f−1

)
◦a |T

]

= [id◦a |T]

= [a |T] .

Evidently,
(
∗
(
f−1

))
◦(∗f)= id= (∗f)◦

(
∗
(
f−1

))
for all arrays whence (∗f)−1=

∗
(
f−1

)
.

As n-arrays are expressed in terms of the constructors, it is essential that they also

have useful algebraic properties. A useful property for binary operators is associativity.

There is some obvious freedom of computation implied by associativity.

EXAMPLE 4.20 Consider usual addition: x1+x2+x3+ · · ·+xn. In FORTRAN a

DO loop is typically employed to process elements of an array. In particular, computa-

tions proceed from one end to the other. Since addition is an associative operation, it is

possible to perform the computation in different ways. For instance, the computation

SECTION 4.4 LAWS AND PROPERTIES 137

could be done via a binary tree. Using a low-level language like FORTRAN, program-

ming is controlled and limited by the language. What is desired is a language that

allows the specification of a program without imposing unnecessary constraints, and

that provides adequate tools in an algebra of programming. Mathematical functions

and properties like associativity provide such tools.

It is possible to exhibit the associativity of binary operations via concatenation,

which is itself an associative operator.

CLAIM 4.6 The concatenation operator ++k is an associative operator.

PROOF (SKETCH) Verify that

(A++k B) ++k C= A++k (B++k C)

for all arrays A,B and C for which ++k is defined.

THEOREM 4.60 (GENERALIZED ASSOCIATIVITY)

If for any operands A,B and C, the operator ⊕ satisfies

(A⊕B)⊕C= A⊕ (B⊕C)

then for any finite sequence A1,A2,.,Am of such operands,

(4.11) A1⊕ A2⊕ · · ·⊕ Am

is defined and yields the same result for arbitrary groupings whenever all operations

are defined between pairs.

PROOF (SKETCH) Employ an inductive argument. First show there can be at most

two solutions by looking at all possible solutions involving pairs (Ai⊕Ai+1). Then

show these two solutions must be the same by looking at groupings of three.

Associativity is not merely a mathematical notion without practical significance.

THEOREM 4.61 (DUALITY THEOREM)

If ⊕ is an associative binary operator then

�k ⊕ =�k ⊕ =�k ⊕.

In addition,

lomk (++k,f) = (|++k,f|)k = romk (++k,f) .

138 A CONSTRUCTIVE THEORY CHAPTER 4

PROOF First, consider 1-arrays. Assume ⊕ is associative. Let � ⊕, � ⊕ and

� ⊕ be homomorphisms for some array A. By inspection of equations (4.4), (4.5),

(4.6), and generalized associativity, the stated equalities hold. Now

lom(++,f) = (|++,f|) = rom(++,f) .

follows by Theorem 4.23 since ++ is associative.

Next, consider n-arrays with n> 1. Assume ⊕ is associative. Let�k ⊕, �k ⊕
and �k ⊕ be homomorphisms for some array A. By inspection of Theorem 4.36

and generalized associativity, the stated equalities hold. In addition,

lomk (++k,f) = (|++k,f|)k = romk (++k,f)

holds by Theorem 4.33 since ++k is associative.

For arrays, there is another “dimension” of associativity. Arrays may be partitioned

and then reassembled in different ways. Invoking CI, repeatedly split A at arbitrary

positions along any valid k-axis. By generalized associativity, the order of concatena-

tions is irrelevant. So it is possible to write

A= A1++k A2 ++k · · ·++k Am.

Next, partition each subarray Ai at arbitrary positions along any p-axis , provided

the same positions along the p-axis are selected for each subarray. Write

Ai = Ai,1++p Ai,2 ++p · · ·++p Ai,n,

to obtain

(4.12) A= (A1,1++p · · ·++p A1,n) ++k · · ·++k (Am,1++p · · ·++p Am,n) .

A nested tiled array or tiling is a useful representation for an array of blocks

A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

Am,1 Am,2 · · · Am,n

where each of the Ai,j’ s are elements of a tiled array.

4.5 EXPRESSIVENESS

Due to familiarity with arrays using indices, it may seem that a n-array is ex-

pressive. It is customary to see algorithms and programs written using indices. As

SECTION 4.6 SUMMARY 139

programming has been deferred, it may seem that the primitives are not equally ex-

pressive. However, do not be deceived. The primitives are expressive.

Admittedly, tk = 1 is a fairly concise way to describe a hyperplane. Yet little

information is contained in this equation tk = 1. It is not an array. On the other hand

reaxkC is an array which is also a hyperplane. In fact the expression tk = 1 has

about the same number of symbols as reaxkC, treating reax as one symbol. This is

just one example of expressiveness of the constructors.

Consider rotations to demonstrate the expressiveness of the constructors. The

reader is invited to express the following statement using a n-array model:

reaxk (A++k B) = (reaxkA) ++k+1 (reaxkB) ,

which is immediate from Lemma 4.43. Imagine first stacking two boxes and second

rotating them together. The same result would be obtained if the boxes were first

rotated before stacking.

EXAMPLE 4.21 If A= [a : 1] and B= [b : 1], then

reax(A++B) = [c : 1,2] = (reax A) ++2 (reax B) ,

where c(1,1) = a1 and c(1,2) = b1.

EXAMPLE 4.22 Take A= [id : 3] and B= [b : 2] with b(i) = i+3. Then

C= A++B= [id : 5] and D= reax C= [d : 1,5]

where d(1,i) = i. In addition, if E = reax A = [e : 1,3] with e(1,i) = i and

F= reax B= [f : 1,2] with f(1,i) = i+3, then

G= E++2 F= [g : 1,5] and D= G

where g(1,i) = i.

4.6 SUMMARY

The consequences of the definitions have been formally investigated. Any array

can be expressed in a few simple forms. Explicit forms have been stated. Arrays have

been successfully transformed into constructors, i.e., it is possible to define operations

and write programs using only the constructors.

List and array homomorphisms have been classified. The tool box is adequate to

begin programming. Specifically, the following programming templates are available:

140 A CONSTRUCTIVE THEORY CHAPTER 4

List List Homomorphism Operator

Homomorphism Function left fold �

left hom lom(⊕,u) right fold �

right hom rom(⊕,u) reduce �

catamorphism (|⊕,u|) map ∗

Array Total

Homomorphism Operator Homomorphism Operator

left fold �k total left fold �∗

right fold �k total right fold �∗

reduce �k total reduce �∗

planar map ∗k axial homomorphism �k

Array

Homomorphism Function

left array hom lomk (⊕,u)

right array hom romk (⊕,u)

array catamorphism (|⊕,u|)
k

Array Array

Homomorphism Operator Homomorphism Operator

ordered left fold � permuted left fold �p

ordered right fold � permuted right fold �p

ordered reduce � permuted reduce �p

It is always possible to arbitrarily define functions but they cannot always be com-

bined to form a consistent and coherent theory. Sets of equations including many

identities have been established. Some identities which have been verified are listed

below. For n-arrays with n > 1 these formulas lack most of the indices which are

typically needed in conventional notation. These identities are versatile as they express

common patterns of computations.

For 1-arrays, the following identities hold:

[a : n] = [a◦ τ (1) : 1] ++ · · ·++ [a◦ τ (n) : 1] ,

lom(⊕,u)[a : n] = (· · ·((u(a1)⊕u(a2))⊕u(a3)) · · ·)⊕u(an) ,

rom(⊕,u) [a : n] = u(a1)⊕ (u(a2)⊕ (· · ·(u(an−1)⊕u(an)) · · ·)) ,

(|⊕,u|) [a : n] = u(a1)⊕u (a2)⊕· · ·⊕u(an) ,

SECTION 4.6 SUMMARY 141

(�⊕) [a : n] = (· · ·((a1⊕a2)⊕a3) · · ·)⊕an,

(�⊕) [a : n] = a1⊕ (a2⊕ (· · ·(an−1⊕an) · · ·)) ,

(�⊕)[a : n] = a1⊕a2⊕·· ·⊕an,

(∗f)[a : n] = [f◦a◦ τ (1) : 1] ++ · · ·++ [f◦a◦ τ (n) : 1] .

For n-arrays A with n> 1 the following identities hold:

A= [a◦ τk (1) |T] ++k · · ·++k [a◦ τk (tk) |T] ,

lomk (⊕,u) A

= (· · · (u [a◦ τk (1) |T]⊕u [a◦ τk (2) |T]) · · ·)⊕u [a◦ τk (tk) |T] ,

romk (⊕,u) A

= u [a◦ τk (1) |T]⊕ (· · ·(u [a◦ τk (tk−1) |T]⊕u [a◦ τk (tk) |T]) · · ·) ,

(|⊕,u|)
k
A= u [a◦ τk (1) |T]⊕·· ·⊕u [a◦ τk (tk) |T] ,

�k ⊕ A= (· · ·([a◦ τk (1) |T]⊕ [a◦ τk (2) |T]) · · ·)⊕ [a◦ τk (tk) |T] ,

�k ⊕ A= [a◦ τk (1) |T]⊕ (· · ·([a◦ τk (tk−1) |T]⊕ [a◦ τk (tk) |T]) · · ·) ,

�k⊕ A= [a◦ τk (1) |T]⊕·· ·⊕ [a◦ τk (tk) |T] ,

�k ⊕
←→

A= [�k ⊕ A |T] ,

�k ⊕
←→

A= [�k ⊕ A |T] ,

�k ⊕
←→

A= [�k ⊕ A |T] ,

∗kf A= f [a◦ τk (1) |T] ,++k · · ·++k f [a◦ τk (tk) |T] ,

where A= [a | (t : n)] and T= (t : n;tk = 1).

The following promotion laws hold:

∗f◦ (�++k) = (�++k)◦ (∗∗f) ,

and

(�k⊕)◦ (�++k) = (�⊕)◦∗(�k⊕) .

Some of the important lemmas and theorems that have been proved are listed below:

142 A CONSTRUCTIVE THEORY CHAPTER 4

Promotion Lemma

Map Distributivity

Map Inverses

Homomorphism Lemma

Promotability Theorem

Duality Theorem

Axial Morphism Theorem

Array Morphism Theorem

Although the theory has been sufficiently developed to begin programming, it

would be beneficial to find more properties of higher-order functions. Useful theo-

retical results could be sought especially for border , unborder , cover and untile.

In particular, equational transformations are needed for optimization involving block

algorithms.

143

CHAPTER 5

PROGRAMMING EXAMPLES

R
egardless of the completeness, depth or elegance of a theory, a yardstick with

which to measure a theory is the applicability to programming. Enough prim-

itive operations should be provided to account for common operations so that

programming is not too difficult. Examples are needed to show that the theory is rel-

evant to programming practice. Computer scientists know that programmers learn by

examples. In this chapter, many examples are given. The main focus is on general pro-

gramming techniques, not on optimization which is possible using well-known tech-

niques (see Section 1.4.3).

The primitive operations that deal with structural aspects together with their prop-

erties form the foundation upon which an algebra of programming is constructed. It is

inefficient to go over the primitives in any more detail. They were defined in Chapter

3. Presumably they would be efficiently implemented.

Programming the primitive operations serves to check that an adequate set of prim-

itive operations has been provided. It is possible to focus only on the constructors and

to disallow other primitive operations. Programming is easier when more primitives

are available. In any case, programs must be written using only the primitives, not in

terms of an array model.

Going by the book, whenever two different definitions are provided, a proof of

equivalence is required. However, informal definitions are given to ferment under-

standing. The intention is to show how to write programs, not to mix the programming

examples with technical details.

In the sequel, a program consists of a sequence of equations. Any valid expression

matches one of the left-hand sides of the listed definitions. For the sake of complete-

ness, conciseness and definiteness, any valid expression should match precisely one

of the left-hand sides. However, for optimization purposes there should be as much

freedom as possible in matching any of the left-hand sides. A variable is not a constant

144 PROGRAMMING EXAMPLES CHAPTER 5

and may assume any value of the specified type. If no type is specified, a (generic)

type variable matches any valid data value. The universal set U is defined to be a set

containing all known data values.

5.1 DESTRUCTORS

Next size is programmed in terms of the constructors.

Program size : A∗
→N0;

Let x be a type variable, k ∈N and C,D ∈A.

size (C++k D) = size (C)+ size(D),
size (reaxkC) = size(C),
size (·)(x) = 1,

size� = 0.

Apply a “collapse rule” which is explained next. Partition the array into hyper-

planes via ++ . Then remove an unneeded axis via reax. Repeat the process, eventu-

ally obtaining 1-arrays that are finally subdivided via ++ until all that remains are

singletons. The program is well-defined in view of array forms (see previous chapter).

The solution is a homomorphism. The theory provides the following programming

template:

size= (�∗ +)◦ (∗ K1) .

In fact, since addition is commutative and associative,

size=
(⊔

+
)
◦ (∗ K1) .

In the program of size the types may be inferred. For instance, there should be

no doubt about the possibilities for C or k in the expression reaxk C, as according

to the definition, reaxk is defined only for n-arrays (not empty arrays) and k ∈ N.

In addition, in the expression A++k B, A and B must both be n-arrays for some

n ∈ N, unless one of them equals the empty array. In discussions, it is convenient to

drop subscripts and superscripts that appear in programs, e.g., write reax instead of

reaxk.

Program length recursively as follows.

Program length : N×A∗
→N0;

Let x be a type variable, k ∈N and C,D ∈A.

length
k
(C++kD) = length

k
(C)+ length

k
(D),

length
k
reaxk (C) = 1,

length (·)(x) = 1,

length� = 0.

SECTION 5.1 DESTRUCTORS 145

The solution is a homomorphism. Another solution is

length
k
= (|+,K1|)

k
.

Notice this operation involves only one field direction; whence, there is no point in

looking further than list homomorphisms. The following program for shape uses

length.

Program shape : A∗→A
∗

N
;

Let x be a type variable, A ∈A∗, and C ∈A.

shape((reax C) ++ A) = (·)(1+ length A) ++ shape(C),
shape((·)(x) ++ A) = (·)(1+ length A),
shape� = � .

This program is completely defined since all possible array forms are covered.

Observe that the shape of an array is the same as the shape of a row, except for the

number of rows, in accordance with the definition of ++ . The hyperplane reax C

has only one row. A has length A rows. The fact that destructors are useful for

programming furnishes evidence that primitives should not be limited to constructors.

Next, a recursive characterization of axes is presented.

Program axes : A∗→N0;

Let x be a type variable, k ∈N, A ∈A∗, and C ∈A.

axes((reaxk C) ++k A) = 1+ axes(C),
axes((·)(x) ++ A) = 1,

axes� = 0.

Any hyperplane of an array necessarily has the same number of axes as the entire

array. Each time an axis is removed, one is added to the number of axes. A 1-array

has one axis. Array forms guarantee that all arrays are programmed. Next a recursive

characterization of index is given.

Program index : AY×AN→ Y;

Let x be a type variable, n ∈N, I ∈A∗
N
, A ∈A∗, and C ∈A.

index((reax C) ++A)((·)(n+1) ++I) = indexA((·)(n) ++I),
index((reax C) ++A)((·)(1) ++I) = index C I,

index((·)(x) ++ A)(·)(n+1) = index A (·)(n),
index((·)(x) ++ A) (·)(1) = x.

146 PROGRAMMING EXAMPLES CHAPTER 5

Every n-array that is not a 1-array can be expressed as reax C++A. The first

index specifies the row number, which means “hyperplane down” to the correct row.

When the right hyperplane is reached, only that hyperplane is needed; whence, all

other hyperplanes may be discarded. In addition, after reaching the desired hyperplane,

collapse and discard the index that is no longer useful. Each time the valency is reduced

(i.e., collapse
k
◦ reaxkC = C), delete the corresponding index. Observe that all types

of generating relations were used in the program above, which implies the number of

constructors is not too large. A recursive characterization of block is presented next.

Program block : A∗
Z
×A

∗

N
×A

∗
→A

∗;

Let n,m,k ∈N, S,U,A ∈A∗, and C ∈A.

block S U A= blocks (axes A) 1 S U A,

blocks 0 k S U A= A,

blocks n k S U � = � ,

blocks n k (·)(m) ++S U ((reaxkC) ++k A)
= blocks n k (·)(m−1) ++S U A,

blocks n k (·)(m) ++S U ((·)(x) ++ A)
= blocks n k (·)(m−1) ++S U A,

blocks n k ((·)(0) ++S) U C= blocku n k S U C,

blocks n k � U C= blocku n k � U C,

blocku n k S ((·)(m) ++U) A
= blocks (n−1) (k+1) S U (blockx k m A),

blocku n k S ((·)(0) ++U) A= � ,

blocku n k S � A= blocks (n−1) (k+1) S � A,

blockx k m � = � ,

blockx k 0 A= � ,

blockx k m((reaxkC) ++k A) = (reaxkC) ++k (blockx k (m−1) A),
blockx k m((·)(x) ++ A) = ((·)(x)) ++ (blockx k (m−1) A).

To extract a block, proceed axis by axis in the natural order. Initially store the

valency n. If the given array is empty or if all axes were processed already, in which

case n = 0, return the array which is the argument from which a block was to be

extracted. There are two cyclic phases: one shifting and one taking.

In the first phase, shift over to the desired hyperplane in field direction k using

blocks. Drop all initial hyperplanes according to the specified shift m> 0. If m= 0

or S= � then skip no hyperplanes. It is possible m is too large and then blocks

returns an empty array. By the known forms of an array, it suffices to consider two

forms for the argument whenever it is nonempty. All recursive calls of blocks

SECTION 5.1 DESTRUCTORS 147

subtract one from the number of hyperplanes. Hence, the recursion must eventually

end.

In the second phase, use two subprograms to take the specified number of hyper-

planes m. The first subprogram blocku checks three possibilities. If the initial

number of hyperplanes to take is zero, then blocku returns an empty array (which

consists of zero hyperplanes). In the case U is empty, then the subprogram returns to

the first phase with the array A from which the result is to be extracted, reduces the

number of axes remaining to be checked to n−1, and updates the new field direction

to k+1. The only other possibility (ignoring m < 0) is that the number of hyper-

planes to be taken is m > 0. In this case, the subprogram blocku again returns to

the first phase utilizing the subprogram blockx, that is called upon to take the first

m hyperplanes in field direction k. If m = 0 or A = � then blockx returns

an empty array. Otherwise the subprogram recursively stacks the specified number of

hyperplanes or elements.

Next program takek, assuming B, which specifies the hyperplanes to take, has

only positive indices in order.

Program take : N×A∗
Z
×A

∗
→A

∗;

Let x be a type variable, k∈N be constant, m,n∈N, C ∈A, B ∈A∗
N

and A∈A∗.

takek B A= takesk 1 B A,

takesk m B � = � ,

takesk m � C= � ,

takesk m (·)(m) ++B ((reaxk C) ++kA)
= (reaxkC) ++k takesk (m+1) B A,

takesk m (·)(m+n) ++B ((reaxk C) ++kA)
= takesk m+1 ((·)(m+n) ++B) A,

takesk m (·)(m) ++B ((·)(x) ++A) = (·)(x) ++takesk m+1 B A,

takesk m (·)(m+n) ++B ((·)(x) ++A)
= takesk (m+1) ((·)(m+n) ++B) A.

In the preceding program of take, process all hyperplanes in the natural order. Keep

track of the number m of the current hyperplane and compare it to the next index of the

hyperplane that should be taken, which is specified in B. If the hyperplane should be

taken, then include it and dispose of the specified index that has been used; otherwise,

keep the index as the desired hyperplane has not yet been reached but discard the

hyperplane that should not be taken. Next, a recursive characterization of drop is

given, assuming B, which specifies the hyperplanes to drop, has only positive indices

in order.

148 PROGRAMMING EXAMPLES CHAPTER 5

Program drop : N×A∗
Z
×A

∗
→A

∗;

Let x be a type variable, k∈N be constant, m,n∈N, C∈A, B∈A∗
N

and A∈A∗.

drop
k
B A= dropsk 1 B A,

dropsk m B � = � ,

dropsk m � C= C,

dropsk m (·)(m+n) ++B((reaxkC) ++k A)
= (reaxkC) ++k dropsk (m+1) (·)(m+n) ++B A,

dropsk m (·)(m) ++ B((reaxkC) ++k A) = dropsk (m+1) B A,
dropsk m (·)(m+n) ++B ((·)(x) ++A)

= (·)(x) ++dropsk (m+1) (·)(m+n) ++B A,
dropsk m (·)(m) ++B ((·)(x) ++A) = dropsk (m+1) B A.

In the preceding program, process all hyperplanes in the natural order. Keep track

of the number of the current hyperplane m and compare it to the next index of the hy-

perplane which should be dropped, which is specified in B. If the hyperplane should

be dropped, then dispose of it and the specified index which is now in the way. Oth-

erwise, keep both the index and the hyperplane as an unwanted hyperplane has not yet

been found.

Compare Definition 3.26 and program drop. Starting from the specification of

the problem to drop hyperplanes, it is clear by inspection that the required task is

performed via the program. In addition, not knowing the specification of the problem,

it is fairly easy to figure out what happens using the program. This advantage is one of

the benefits of using an algebraic theory.

5.2 PAIRING OPERATIONS

Consider familiar pairing operations, which combine or pair corresponding entries

of two arrays. Such operations are needed to perform common pointwise operations.

Such common operations have been included in the set of primitives.

5.2.1 ZIP

It is natural to extend operations on basic data types to arrays. For instance, + is

defined for integers and this operation is extended in the usual way to compute the sum

of two arrays whose entries are integers. More generally, suppose ⊕ is any binary

operation defined over some homogeneous set and written in infix form. Next ⊕
←→

is

programmed using recursion written in infix form.

SECTION 5.2 PAIRING OPERATIONS 149

Program
←→

: {X×X→ Y}×A∗

X
×A∗

X
→A

∗

Y
;

Let ⊕∈ {X×X→ Y}, x1,x2 ∈ X, k ∈N, C,D ∈AX, and A,B ∈A∗

X.

� ⊕
←→�

= � ,

((·)(x1) ++ A) ⊕
←→

((·)(x2) ++ B) = (·)(x1⊕x2) ++
(
A⊕
←→

B

)
,

((reaxkC) ++k A) ⊕←→
((reaxkD) ++k B) = reaxk

(
C⊕
←→

D

)
++k

(
A⊕
←→

B

)
.

This operation is defined only for arrays with the same shape. In particular, A⊕
←→

B

is undefined whenever A= � and B �= � or A �= � and B= � . Since all possible

array forms are considered, every array is programmed. Observe that

⊕
←→

= (∗ ⊕)◦pair,

where pair forms an array of pairs of elements from two given arrays. This function

is known as zip in functional programming (see for instance Axford and Joy, 1993).

EXAMPLE 5.1 Pair two 2-arrays to obtain a 2-array of pairs:

([
1 2

3 4

]
,

[
5 6

7 8

])
→

[
(1,5) (2,6)
(3,7) (4,8)

]

Notice pair is algebraically an extension of the identity function on pairs

of elements

id(a,b) = (a,b)

to pairs of arrays, i.e.,

pair= id
←→

whence

⊕
←→

= (∗ ⊕)◦id
←→

.

5.2.2 DISTRIBUTE FUNCTIONS

Closely related to pair are two functions, namely distl and distr (Backus,

1978). They deal mainly with structure. They are defined on a pair, say an object x

and an array A.

DEFINITION 5.1 Declare

distl(x,�) = � ,

and for an arbitrary n-array [a |T],

distl (x, [a |T]) = [(� x)◦a |T] ,

150 PROGRAMMING EXAMPLES CHAPTER 5

where

(� x)a(t) = (x,a(t)) .

EXAMPLE 5.2 Pair each element of the 2-array A= [a : 2,4]∼ [1 2 3 4

5 6 7 8
] with the

number 9 via

distl(9,A)∼

[
(9,1) (9,2) (9,3) (9,4)
(9,5) (9,6) (9,7) (9,8)

]
.

Next distl is programmed.

Program distl : U×A∗ →A
∗;

Let x and y be type variables, k ∈N, C ∈A, and A ∈A∗.

distl x � = � ,

distl x (·)(y) ++ A= (·)(x,y) ++ (distl x A),
distl x (reaxkC) ++k A= (reaxkdistl x C) ++k (distl x A).

DEFINITION 5.2 Declare

distr(x,�) = � ,

and for an arbitrary n-array [a |T],

distr (x, [a |T]) = [(� x)◦a |T] ,

where

(� x)a(t) = (a(t),x) .

The function distr is programmed via recursive equations.

Program distr : U×A∗ →A
∗;

Let x and y be type variables, k ∈N, C ∈A, and A ∈A∗.

distr x � = � ,

distr x ((·)(y) ++A) = (·)(y,x) ++ (distr x A),
distr x ((reaxkC) ++kA) = (reaxk distr x C) ++k distr x A.

Actually, distl x and distr x are simple specialized maps:

distl x= ∗(� x)

and

distr x= ∗(� x) .

Although it is unnecessary to add distl and distr as primitives, it is reasonable

to account for them in optimization.

SECTION 5.3 PARTITIONING OPERATIONS 151

5.3 PARTITIONING OPERATIONS

Consider familiar partitioning operations. Such operations do not perform compu-

tations. They select portions of the data structure or partition it.

5.3.1 SPLIT

Next a recursive characterization is presented for split, which is a primitive opera-

tion.

Program split : N×Z×A∗
→A

∗
×A

∗;

Let x be a type variable, k ∈N be constant, p ∈N, q ∈ Z, C ∈A, and A ∈A∗.

split
k
q A= (spl k q A,spr k q A),

spl k p � = � ,

spl k 0 A= � ,

spl k (−p) A= � ,

spl k p (reaxkC) ++k A= (reaxkC) ++k spl k (p−1) A,
spl 1 p (·)(x) ++A= (·)(x) ++ spl 1 (p−1) A,

spr k p � = � ,

spr k 0 A= A,

spr k (−p) A= A,

spr k p (reaxkC) ++k A= spr k (p−1) A,
spr 1 p (·)(x) ++A= spr 1 (p−1) A.

The program for split is partitioned as the argument itself is partitioned. The sub-

program spl takes only the first p hyperplanes in field direction k. The subprogram

spr drops the first p hyperplanes and returns the rest. Evidently, spl and spr

may be executed concurrently.

5.3.2 BORDER

A recursive characterization of border is given next.

Program border : A∗

N0
×A

∗
→A

∗;

Let x and y be type variables, k,m,n ∈N, C ∈A, B ∈A∗

N0
, and A ∈A∗.

border B A= bord 1 B A,

bord k � A= A,

bord k B � = � ,

bord k ((·)(m) ++B)C= bordl k m m B C,

bord k ((·)(0) ++B)C= bord (k+1) B C,

152 PROGRAMMING EXAMPLES CHAPTER 5

bordl k n m B((reaxkC) ++kA)
= (reaxkC) ++k bordl k (n−1) m B ((reaxkC) ++k A),

bordl k 0 m B (A++k (reaxkC))
= bord (k+1) B ((A++k (reaxkC)) ++k bordr k m (reaxkC)),

bordl 1 n m B ((·)(x) ++A)
= (·)(x) ++bordl 1 (n−1) m B ((·)(x) ++A),

bordl 1 0 m B (A++ (·)(y)) = (A++ (·)(y)) ++bordr 1 m (·)(y),

bordr k 0 B= � ,

bordr k m B= B++k bordr k (m−1) B.

The program is divided into three subprograms, namely bord, bordl and

bordr. Subprogram bord takes care of the trivial cases, keeping track of field

directions, and if a border is needed for the k-axis then bordl is called upon to

continue processing. If bord finds that zero entries are to be duplicated for the k-

axis, then a recursive call is made, processing the next field direction k+1. Note

either B is empty or B contains nonnegative integers.

Subprogram bordl adds only the left border and when the job is done, a recursive

call to bord is made using subprogram bordr to append the right border, unless

the argument is a 1-array in which case recursion is halted as there can be no more

axes to process and the remainder of the argument is ignored (which may be useful).

Note the third parameter m for bordl is the number of hyperplanes that must be

appended. This number does not change (an invariant). Subprogram bordr receives

only the border that is duplicated, along with the field direction k and the number of

copies m required.

5.3.3 UNBORDER

Next unborder is programmed.

Program unborder : A∗
N0
×A

∗
→A

∗;

Let x be a type variable, k,m,n ∈N, B ∈A∗
N0

, A ∈A∗ and C ∈A.

unborder B A= unbord 1 B A,

unbord k � A= A,

unbord k (·)(m) ++B A= unbordl k m m B A,

unbord k (·)(0) ++B A= unbord (k+1) B A,

unbordl k n m B � = � ,

unbordl k n m B (reaxkC) ++kA= unbordl k (n−1) m B A,
unbordl 1 n m B (·)(x) ++A= unbordl 1 (n−1) m B A,
unbordl k 0 m B A= unbord (k+1) B (unbordr k m A),

SECTION 5.4 TRANSFORMATIONS 153

unbordr k 0 A= A,

unbordr k m � = � ,

unbordr k m (A++k (reaxkC)) = unbordr k (m−1) A,
unbordr k m (A++ (·)(x)) = unbordr k (m−1) A.

The program is divided into three subprograms, namely unbord, unbordl and

unbordr. Subprogram unbord takes care of the trivial cases and if a border is to

be removed for the k-axis then unbordl is called upon to continue processing. The

field direction k along with the number m of hyperplanes to drop (repeated twice,

once for each side) and the remaining border array which is nonempty is passed to

unbordl.

Subprogram unbordl strips away the left border and then a call to unbord

is made using subprogram unbordr to remove the right border. Note unbordl

is passed a third parameter which is always a natural number (invariant). Another

invariant is that the field direction k is unaltered by recursive calls to this subprogram.

In addition, the number n of remaining hyperplanes to be dropped (second parameter)

is nonnegative.

Subprogram unbordr receives the remaining array along with the field direction

k and the number m of hyperplanes that will be removed. This subprogram removes

the last hyperplane, subtracts one from the number left to remove and continues until

either there are no more hyperplanes to remove or there is nothing left of the argument.

By inspection of array forms, all cases are covered.

5.4 TRANSFORMATIONS

Next, the following common transformations are programmed: reshape, flatten,

reverse, rotate and transpose. These operations restructure their argument, i.e., data is

rearranged, not changed.

5.4.1 RAVEL

Another familiar function from APL (,) which is included in A mathematics of

arrays (Mullin, 1988) is ravel. It flattens an n-array into a 1-array. This function

is defined for all arrays and relies solely on structural aspects.

EXAMPLE 5.3 A squared 2-array

N3 ∼

[
1 2 3

4 5 6

7 8 9

]
is raveled into the 1-array ∼ [1 2 3 4 5 6 7 8 9] .

154 PROGRAMMING EXAMPLES CHAPTER 5

EXAMPLE 5.4 Using 1-order, a 3-array may be flattened as depicted in Figure 5.1.

1 2

43

5 6

7 8
[1,5,2,6,3,7,4,8]

ravel

Figure 5.1: A 3-array is raveled into a 1 -array using 1-order.

Program ravel : A∗
→A

∗;

Let x be a type variable, k ∈N, and C,D ∈A.

ravel (C++D) = (ravel C) ++ (ravel D),
ravel (reax C) = ravel C,

ravel (·) (x) = (·) (x),
ravel � = � .

Apply the collapse rule, always starting with the first axis. Any n-array can be

expressed as a concatenation A++B since every n-array has a 1-axis. Invoking

Lemma 4.15, if n > 1, then a n-array may be decomposed into rows which can be

expressed in terms of reax.

Evidently ravel is a homomorphism by inspection of the program. It turns out

that ravel is the total homomorphism

ravel= (� ++)◦ (∗ (·)) .

Note ravel � is implicitly defined since � is the identity element for ++ .

5.4.2 RESHAPE

Reshape is a powerful restructuring operation in APL (ρ). The operation is included

in A mathematics of arrays (Mullin, 1988). Reshape is available in popular mathemati-

cal software such as Maple. This operation constructs a new array with the given shape

taking the entries from the given array in row order repeatedly until the new array is

full. A closely related notion is flattening.

SECTION 5.4 TRANSFORMATIONS 155

EXAMPLE 5.5 Reshape a 2×3 matrix

[
1 2 3

4 5 6

]
into the 3×2matrix


1 2

3 4

5 6


 .

DEFINITION 5.3 Informally, reshape S A reshapes the second argument using its

content and the given shape, which is the first argument. If S= � or A= � then

reshape S A= � .

Otherwise for an arbitrary array A= [a |T] and shape array S= [s : m] ∈AN, define

reshape S A= [c | (s : m)] ,

and

c(i : m) = a
(
φ−1 (((ϕ(i : m)−1)mod(size A))+1)

)
where ϕ is given by

ϕ(i : m) = (((i1−1)s2+(i2−1))s3+ · · ·+(im−1−1))sm+im,

and φ yields the lexicographical order of elements of A. Recall, φ :P(T)→ ι (size A)

is the one-to-one map satisfying p <1 q⇒ φ(p) < φ(q).

If s1 = size A then

reshape [s : 1] A= ravel A.

Next a couple auxiliary programs are given. The size determined by a shape array is

computed using shapesize defined next.

DEFINITION 5.4 For a shape array S= [s : m],

shapesize S=
m∏

i=1

si.

A program for shapesize is given next.

Program shapesize : A∗

N
→N;

Let n ∈N and A,B ∈AN.

shapesize � = 1,

shapesize(A++B) = (shapesize A)× (shapesize B),
shapesize(·)(n) = n.

156 PROGRAMMING EXAMPLES CHAPTER 5

Notice all list forms are programmed. To determine a value for shapesize � ,

notice

shapesize A= shapesize(A++�) = (shapesize A)× (shapesize �) .

In particular, shapesize � = (shapesize �)
2 has only two nonnegative solu-

tions: 0 or 1. The former solution is unacceptable since if shapesize � = 0 then

shapesize A= 0 for all A.

The function shapesize is a homomorphism. A simpler program is

shapesize=�× .

Alternatively,

shapesize=
⊔
×.

Reshape involves both shape and content. First form a 1-array which holds all

the elements for the final reshaped array. Second, reshape this 1-array. To form

the former 1-array, ravel the given array and then concatenate the raveled array

sufficiently many times so that the resulting 1-array is large enough to be reshaped.

Before reshaping, truncate the large 1-array so that it has exactly the correct size. The

program resize forms this 1-array which will subsequently be reshaped.

Program resize : A∗
→A∗;

Let m,n,p ∈N, T ∈AN, S ∈A
∗

N
, A ∈A∗ and B ∈A.

resize � A= � ,

resize S � = � ,

resize T B= resizer (shapesize T)(size B)(ravel B),

resizer m n B= resizeit m (m−n) n B,

resizeit m p n B= resizeit m (m−2n) 2n B++B,
resizeit m 0 n B= initial m B,

resizeit m (−p) n B= initial m B.

The subprogram resizeit uses a second parameter to keep track of how many

more elements are needed. The third parameter for resizeit is used to keep

track of the current size of the 1-array. The first parameter for resizeit is the

required size (an invariant). During each round the length of the string is doubled via

concatenation, and the parameters are updated.

It remains to reshape the array, after flattening and resizing.

Program reshape : A∗
N
×A

∗
→A

∗;

Let m ∈N, S ∈A∗
N
, T ∈AN, A ∈A

∗, and B,C ∈A.

SECTION 5.4 TRANSFORMATIONS 157

reshape � A= � ,

reshape S � = � ,

reshape T B= reshaper T (resize T B),

reshaper (·)(m) B= B,

reshaper ((·)(m) ++T) B= replane (shapesize T) T B,

replane m T= (reaxis m T)◦ (split m),

reaxis m T B � = reaxial T B,

reaxis m T B C= (reaxial T B) ++ (replane m T C),

reaxial T B= reax◦(reshaper T B).

The argument in the definition of replane is omitted, which is a preferable way

to define operations. Note the argument to reshaper and replane is a always a

1-array (invariant). Each time reshaper is called again, the shape array T has one

less element, and termination occurs when the shape array is a singleton since then the

argument is required to be a 1 -array which it is always.

The only way to add an axis is in a call to reshaper. It is impossible to con-

catenate before adding an axis as replane terminates only via the subprogram

reaxial. Just as with ordered reductions, only a single concatenation operator is

required as concatenation takes place along the newly formed axis, which may be re-

garded as collapsing in reverse. The fact that it is possible to reshape using mainly the

constructors lends evidence that they have been properly chosen.

EXAMPLE 5.6 In order to duplicate the single row of the array

�4 ∼
[
1 2 3 4

]
apply

reshape 2,4 ∼

[
1 2 3 4

1 2 3 4

]
.

5.4.3 REVERSE

The function reverse is another familiar operation in functional programming.

This operation may be programmed so that the order of the hyperplanes in field direc-

tion k is reversed.

Program reverse : N×A∗
→A

∗;

Let x be a type variable, k ∈N be constant, A ∈A∗ and C ∈A.

reversek (A++k (reaxkC)) = (reaxk C) ++k (reversek A),

158 PROGRAMMING EXAMPLES CHAPTER 5

reverse A++ (·)(x) = (·)(x) ++ (reverse A),
reversek � = � .

It turns out that

reverse [a : n] =� p [a : n] ,

where p is the n-permutation given by

pk = n−k+1.

5.4.4 TRANSPOSE

Consider the operation transpose for n-arrays which transposes hyperplanes

for the j-axis into hyperplanes for the i-axis.

Program transpose : N×N×A∗→A
∗;

Let i,j ∈N be constants, A ∈A∗ and C ∈A.

transpose i j � = � ,

transpose i j (reaxj C) ++j A= (reaxi C) ++i transpose i j A.

In the nontrivial case, the program is a single equation that uses various construc-

tors, showing that they are useful. If fewer constructors were provided, programming

in this case would be more difficult.

EXAMPLE 5.7 Let

[φ : 2,3] ∼ A=

[
1 2 3

4 5 6

]
.

Then

transpose 1 2 [φ : 2,3] = [β : 3,2] ∼ AT =


1 4

2 5

3 6


 .

5.5 HIGHER-ORDER FUNCTIONS

The following program recursively defines map.

Program ∗ : {X→ Y}×A∗→A
∗;

Let n ∈ N be constant, f ∈ {X→ Y} be any defined function, x ∈ X, k ∈ N and

A,B ∈A.

∗f� = � ,

∗f (·)n (x) = (·)n (f(x)),
∗f (A++kB) = (∗ f A) ++k (∗f B).

SECTION 5.6 ARRAY PRODUCTS 159

It can be shown that this program is equivalent to Definition 3.28 (see proof in Appen-

dix).

Consider the scan operation, sometimes called accumulation or prefix-sums. The

scan vector model is a data parallel model based on vectors. A wide range of problems

can be solved using this model (Blelloch, 1990). It is possible to replace the vector

model by an array model and apply the same algorithm. Essentially, for n-arrays with

n> 1 replace the elements by hyperplanes.

Program \ : N×{X×X→ X}×A∗

X→A
∗

X;

Let k ∈N be constant, ⊕∈ {X×X→ X}, x ∈ X, A ∈A∗ and C ∈A.

\k⊕ � = � ,

\k⊕ ((reaxk C) ++k A) = (reaxk C) ++k�k (∗(⊕◦�)(reaxk C)) \k⊕A,
\⊕ ((·)(x) ++ A) = (·)(x) ++ ∗ (⊕◦� x) (\⊕A).

EXAMPLE 5.8 For a 2-array

A ∼

[
1 2 3

4 5 6

]
, \2+A ∼

[
1 3 6

4 9 15

]
.

5.6 ARRAY PRODUCTS

Consider functions for products, such as inner product (usually associated with a

measure known as the norm) and matrix multiplication. The inner product of two

vectors is programmed using a homomorphism and an abstractor.

Program �;

Let ⊕ be any associative binary operator and ⊗ any binary operator.

�⊕⊗= (�⊕)◦ ⊗
←→

.

EXAMPLE 5.9 Calculate the inner product

�+× �3 �3 = 1
2+2

2+3
2 = 14.

EXAMPLE 5.10 Compute

�⊕⊗ a,b,c d,e,f= (a⊗d)⊕ (b⊗e)⊕ (c⊗f) .

A single symbol � instead of �+× may be used to denote the usual inner

product. Closely related to inner product is outer product, which is not the same as

cross product or vector product. The outer product of two vectors is programmed

160 PROGRAMMING EXAMPLES CHAPTER 5

using a couple subprograms in addition to primitives and a homomorphism. The only

new subprogram len is defined using only primitives.

Program �;

Let ⊗ be any binary operator and A,B ∈A.

�⊗ A B= ∗2

(
⊗
←→
◦� (reax2 A)

)
(reshape (len A B) B),

len A B= (·)(length A) ++ (·)(length B).

EXAMPLE 5.11 Compute the outer product

�× �3 5,7,11 ∼


12
3


[5 7 11

]
=


 5 7 11

10 14 22

15 21 33


 .

To obtain this result, multiply 5,7,11 by the entries 1, 2, and 3 of �3 and

concatenate as rows in the same order.

EXAMPLE 5.12 Calculate

�⊗ a,b,c d,e,f ∼


a⊗d a⊗e a⊗f

b⊗d b⊗e b⊗f

c⊗d c⊗e c⊗f


 .

More (1979) defined two powerful functions: EACHLEFT and EACHRIGHT.

Examples include Kronecker products which are useful to build-up matrices (Jain,

1989, p. 30).

EXAMPLE 5.13 Consider

[
Kδ |�2

2

]
∼

[
1 0

0 1

]
and A=

[
a |�2

2

]
∼

[
1 0

0 2

]
.

A Kronecker product is obtained by distributing the identity matrix to each element of

A and then performing the usual scalar multiplication yielding a nested 2-array B of

2-arrays:

B ∼


[

1 0
0 1

] [0 0
0 0

]

[0 0

0 0
] [2 0

0 2
]


 .

The direct product of two arrays may be defined as in the following program.

Program �;

Let ⊗ be any binary operator and A,B ∈A.

� ⊗A B= ∗(∗(⊗◦�)◦ (� A))B.

SECTION 5.6 ARRAY PRODUCTS 161

EXAMPLE 5.14 Take the 2-array A in Example 5.13 and compute

�×

[
K
δ : 2,2

]
A

which yields the nested 2-array of 2-arrays in the cited example.

Matrix multiplication and related algorithms are well-known. Typically, an algo-

rithm is designed for small matrices and then a tensor product construction yields an

algorithm for larger ones (Coppersmith and Winograd, 1990). Many applications are

computationally intensive.

Usually, the product of two square matrices A and B is denoted by C = AB,

where

ci,j =

n∑
k=0

ai,kbk,j for all i,j.

A special case occurs when B is a vector. Matrix-vector products are often associated

with a linear system of equations.

Consider a generalized matrix product defined for any two operators, say ⊕ and

⊗. In the above discussion, + and × replace ⊕ and ⊗, respectively.

EXAMPLE 5.15 The all pairs shortest path problem can be solved by substituting

min and + for ⊕ and ⊗, respectively (JáJá, 1992, p. 252).

Let A and B be arbitrary n-arrays. As inner and outer product have already been

programmed, assume n > 1. Just as operations like reduce are defined axially,

an array product may be defined using axes, appealing to the usual notion of matrix

multiplication. To this end, consider rows of the left array to be parallel to the 2-axis

and the columns of the right array to be parallel to the 1-axis . Although this choice

of axes corresponds to the usual multiplication of matrices, an array product could be

defined for any pair of axes.

The next definition for array product is intended to show how properties of an

operation can be expressed in the formalism.

DEFINITION 5.5 In order to define the higher-order partial function

�⊕⊗,

let ⊕ be any associative binary operator and ⊗ be any binary operator. For all arrays

162 PROGRAMMING EXAMPLES CHAPTER 5

E ∈A2∗,

�⊕⊗ E � = � ,

�⊕⊗ � E= � .

Assume A,B,C,D ∈ A2 are suitable arrays for the given operators. The following

distributive laws hold:

(5.1) �⊕⊗ (A++B)C= (�⊕⊗ A C) ++ (�⊕⊗ B C) ,

(5.2) �⊕⊗ A(B++2 C) = (�⊕⊗ A B) ++2 (�⊕⊗ A C) .

In addition, if

length
k
A= length

k
C and i /∈ {1,2}

then

(5.3) �⊕⊗ (A++k B)(C++k D) = (�⊕⊗ A C) ++k (�⊕⊗ B D) .

Letting � denote inner product, if

length
k
A= 1 for all k �= 2,

and

length
k
B= 1 for all k �= 1,

then

(5.4) �⊕⊗ A B=�⊕⊗
(
ax2 A �∞

) (
ax1 B �∞

)
.

What sizes are possible? For matrices, the number of columns in the left matrix

must equal the number of rows in the right matrix. Similar rules hold for array products.

This requirement is implicit in the definition.

Consider the usual properties of matrix multiplication. Equation (5.1) reveals that

rows in the resulting array are computed using corresponding rows from the left array

together with the right array. Similarly, equation (5.2) shows that columns in the re-

sulting array are computed using corresponding columns from the right array together

with the left array. Equation (5.3) shows that a block in the resulting array is computed

using corresponding blocks from the left and right arrays, whenever the arrays are par-

titioned in a different field direction k with k �= 1,2. Equation (5.4) reveals that

an element in the resulting array is computed using appropriate axes from the left and

right arrays.

SECTION 5.6 ARRAY PRODUCTS 163

Program �;

Let p ∈N, A,B,C,D ∈A2, E ∈A2∗, and F,G ∈A.

�⊕⊗ E � = � ,

�⊕⊗ � E= � ,

�⊕⊗ A B= untile◦∗ (multcol ⊕⊗ A)
(
cover � 2 �∞ B

)
,

multcol ⊕⊗ A B= untile◦∗ (multrow ⊕⊗ B)
(
cover � 1 �∞ A

)
,

multrow ⊕⊗ A B= splitplane⊕⊗ B A,

splitplane⊕⊗ ((reaxp+2A) ++p+2 C) ((reaxp+2B) ++p+2 D)
= (splitplane⊕⊗ (reaxp+2A)(reaxp+2B)) ++p+2

(splitplane⊕⊗ C D),

splitplane⊕⊗
(
(reax3)

p−1 ◦ (reax)F
)
((reax2)

p
G) =�⊕⊗ F G.

The program uses the highly parallel abstractors cover and untile. The subprogram

multcolmultiplies the left array by a “column” of the right array, which may actually

be a block array. The subprogram multrow multiplies a “row” (which may be a

block) of the left array by a column of the right array. The subprogram splitplane

splits the blocks up into hyperplanes which contain the axes that are used in an inner

product. For 2-arrays, splitplane merely computes an inner product.

EXAMPLE 5.16 Consider two 3-arrays A = [a : 2,2,2〈3 1,2,3,4,5,6,7,8〉] and

B= [b : 2,3,2〈3−1,−2,−3,−4,−5,−6,−7,−8,−9,−10,−11,−12〉] depicted below.

5 � 6

��
�

��
�

1 � 2

7 � 8

��
�

��
�
A

3 � 4

−7 −8 −9

��
�

��
�

��
�

−1 −2 −3

−10
�

−11
�

−12
�

��
�

��
�

��
�
B

−4
�

−5
�

−6
�

The horizontal and vertical arrows are suggestive of the rows and columns, respec-

tively, for usual matrix multiplication. The array product �+× A B is a 3-array

C = [c : 2,3,2〈3−9,−12,−15,−19,−26,−33,−95,−106,−117,−129,−144,−159〉]

obtained by multiplying matrices taken from corresponding hyperplanes

164 PROGRAMMING EXAMPLES CHAPTER 5

[
5 6

7 8

][
−7 −8 −9

−10 −11 −12

]

[
1 2

3 4

][
−1 −2 −3

−4 −5 −6

] �−→

[
−95 −106 −117

−129 −144 −159

]

[
−9 −12 −15

−19 −26 −33

] ,

and is sketched next.

−95 −106 −117

��
�

��
�

��
�

−9 −12 −15

−129 −144 −159

��
�

��
�

��
�
C

−19 −26 −33

Next, consider powers of square arrays. Given the usual matrix multiplication

operators and a square matrix A, powers of the array may be computed. For instance,

A
2
=�+× A A.

Recall

Ak =
∏
bj=1

A2
j

where k has the base 2 representation bn · · ·b0. Any power of an array may be

computed by computing all of the factors A2
j

and then multiplying them together.

Each factor A2
j

may be computed via repeated squaring

A2
j

=
((
(A)2

)2
· · ·

)
2

.

The following program computes powers using repeated squaring.

Program power;

Let n ∈N.

power 2n ⊕⊗ A= power n ⊕⊗(�⊕⊗ A A),
power 1 ⊕⊗ A= A.

5.7 SUMMARY

Programming techniques, such as the collapse rule, which is a standard program-

ming rule to collapse an array, were explained. Array forms were used to guarantee

SECTION 5.7 SUMMARY 165

that all arrays are programmed. Many common operations were programmed, includ-

ing zip, distl, distr, split , border, unborder, ravel, reshape, reverse, transpose and

higher-order operations.

Programming with arrays is possible without handling indices excessively. Us-

ing primitive operations, it is easy to write and read programs compared to general

programs. The theory is relevant since properties of operations can be studied in the

formalism.

Operations may be defined more generally than is usually possible using a general

model. For instance, array product was defined for any suitable operators, not only

usual matrix multiplication. Software may be developed by building on this founda-

tion, employing the primitives and programming templates from the theory. Future

work should focus on optimization techniques.

166

CHAPTER 6

NEAR HOMOMORPHISMS

T
he level of abstraction seems to be at the right level. Higher-order functions

and homomorphisms have been furnished for generic programming. Cole

(1993) showed how it is possible, with the aid of a little extra “baggage,”

to turn problems that are not genuine homomorphisms into near homomorphisms. The

attraction of the approach is twofold. First, the approach offers an intuitive way to

partition problems in a way that often leads to a solution. Second, a solution if it

can be found is almost always implicitly parallel and efficient. Case studies show that

programs can be written at a low-level using fine-grain parallelism.

6.1 MAP AND REDUCE

Recall, list homomorphisms are compositions of a map and a reduction and every

such composition is a homomorphism. This means that list homomorphisms can be

partitioned into two processes. The intuition is to try to squeeze as much of the so-

lution into the map and the rest into the reduction. If mostly useful work is done in

each phase, then the algorithm is likely to be efficient. It is well-known that homomor-

phisms provide templates for generic programming. Such models are useful for new

computing technologies (Trichina and Eriksson-Bique, 1998).

Unfortunately, not all processing problems can be modelled by homomorphisms.

The diversity of parallel algorithms attests to this fact. Surprisingly perhaps, it seems

not even homomorphisms themselves can always be expressed in a practical way as

a composition of a map and a reduction, although proving this fact is tantamount to

proving that no such solution exists (perhaps it just has not yet been found). The

next example illustrates that it is sometimes difficult to write an efficient program that

computes a homomorphism as a composition of a map and a reduction.

SECTION 6.1 MAP AND REDUCE 167

x

...
1

�

�

x 2 x 3 x
4

x5 x6 x n-1 x n

� � �

�

�

(a) Reduce Model

1 2 3 n

f

f fff

...

x x x x

1 2 3 nx x x x

(b) Map Model

Figure 6.1: (a) Reduce and (b) map models.

EXAMPLE 6.1 The function rotate pushes the head of a list to its end:

rotate [a : n] = [a◦φ : n]

where

φ(k) = (kmodn)+1.

This function is a homomorphism. Define the operator ⊕ so that it pulls the last mem-

�

�

[

[

[

[

[

[

[

]

]

]

]

]

]

]

rotate

rotate

rotate

=

=

=

=

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

Figure 6.2: The function rotate is a homomorphism.

ber of the right list to the front of that list, and then pushes the last member of the left

list to the very end of the concatenation of the lists. In addition, define f x = (·)(x).
Then

rotate=�⊕◦∗f.

168 NEAR HOMOMORPHISMS CHAPTER 6

�

[

[]]

by definition

=

1 2 3 4 5

6 7 8 9

10

1 2 3 4]510

6 7 8 9[

Figure 6.3: Definition of binary operator⊕ for rotate.

Unfortunately, a single application of ⊕ is computationally more expensive than the

operation rotate itself.

Hence near homomorphisms are not always useful. Notwithstanding this fact,

many problems admit a satisfactory solution in the homomorphic style. Any parts

of the solution which are not homomorphisms, i.e., the baggage, do not contribute sig-

nificantly to the expected cost of the algorithm using a sufficient degree of parallelism.

In the sequel, programs are developed for a few classical problems to show that it is

easy and natural to derive nearly homomorphic solutions.

6.2 PARENTHESES MATCHING

Does a given string contain only matching parentheses? This question is solved via

a program developed next (Trichina and Eriksson-Bique, 1999). Let L denote any

alphabet with) ∈ L and (∈ L. For convenience define for α ∈ L,

ρ (α) =




1 if α= (

−1 if α=)

0 otherwise

.

Strings are essentially lists without any punctuation, i.e., a string is what is left after

removal of the brackets and the commas from a list. A string may be identified with a

1-array. The following characterization of strings is useful.

THEOREM 6.1 (MATCHING PARENTHESIS CHARACTERIZATION)

A finite string [α : n] ∈ AL contains only matching parentheses if and only if the fol-

lowing conditions are satisfied:

(�+)◦ (∗ρ)[α : k]≥ 0 for all k ∈ ι n,(6.1)

(�+)◦ (∗ρ)[α : n] = 0.(6.2)

SECTION 6.2 PARENTHESES MATCHING 169

PROOF The theorem holds trivially if n = 1. Assume the theorem holds whenever

n ≤ q for some q ≥ 1. Let n = q+1 and [α : n] ∈ AL be arbitrary. If there are

no parentheses in the given string, then every partial sum is zero. If there is exactly

one parenthesis, then the total sum is not zero. Suppose that there are at least two

parentheses. Let k and j, respectively, be the smallest and largest integers in ι n

such that αk and αj are parentheses. If αk is a right parentheses then

(�+)◦ (∗ρ)[α : k] = ραk =−1

and the given string is unbalanced. Assume αk = (. If αj is a left parenthesis then the

given string is unbalanced. The conditions of the theorem cannot be satisfied in this

case. Suppose by way of contradiction (bwoc) that the conditions of the theorem are

satisfied. Since (�+)◦ (∗ρ) is a homomorphism,

0=(�+)◦ (∗ρ) [α : n]

=(�+)◦ (∗ρ) [α : j]+(�+)◦ (∗ρ) [α◦ (+j) : n−j]

=(�+)◦ (∗ρ) [α : j]

using the fact that ρ ◦α◦ (p) = 0 for p > n−j by the choice of j as the largest

index for which αj is a parenthesis. Furthermore

0=(�+)◦ (∗ρ)[α : j]

=(�+)◦ (∗ρ)[α : j−1]+ρ◦αj

=(�+)◦ (∗ρ)[α : j−1]+1.

But then

(�+)◦ (∗ρ)[α : j−1] =−1,

a contradiction. Hence, the conditions of the theorem cannot be satisfied. Now assume

αj=). Suppose the string [α : n] is balanced. Upon removing the leftmost parenthesis

which is αk = (and the rightmost parenthesis which is αj =), the remaining string

is balanced and by the inductive hypothesis the conditions of the theorem are met. It

follows that

(�+)◦ (∗ρ)[α : p] =0 for p< k,

(�+)◦ (∗ρ)[α : k] =1,

(�+)◦ (∗ρ)[α : p]≥1 for k≤ p< j,

(�+)◦ (∗ρ)[α : p] =0 for p≥ j.

Thus, the conditions of the theorem hold for [α : n] in this case. Lastly, assume the

string [α : n] is unbalanced. Removing the leftmost parenthesis which is αk = (and

the rightmost parenthesis which is αj =), the remaining string must be unbalanced;

whence, by the inductive hypothesis, the conditions of the theorem fail to hold for this

170 NEAR HOMOMORPHISMS CHAPTER 6

string. It follows that the conditions of the theorem cannot hold for [α : n].

The proof is included mainly to show that the formalism is relevant and adequate

for theoretical analysis of problems in addition to programming them. If the string

[α : n] contains only matching parentheses, it is easy to see that the stated conditions

are satisfied. In view of the theorem, it might appear that any algorithm would have

to be sequential as every partial sum must be nonnegative. A straightforward solu-

tion which directly follows from the theorem is nothing more than a directed reduce

operation, which is suitable for a sequential computer. Define the operator ⊗ via

e⊗a=

{
−1 if e< 0

e+ρa otherwise
.

The sequential program is

(= 0)◦ (�⊗ 0).

As soon as a negative result is encountered, it is unnecessary to look at additional

characters. Hence, it would be beneficial to carry out some method of lazy evaluation.

However, the information should be available to all parallel processors, which depends

upon the implementation, e.g., the read/write memory model.

To obtain a homomorphic solution, it should be possible to split the input arbitrarily

into two blocks and process each block independently. How is it possible to check

that every partial sum is nonnegative using only the results from the blocks? Upon

reflection, it is enough to keep track of the minimum and the total sum from each

block.

LEMMA 6.2 Equation (6.1) fails to hold if and only if

(6.3) min
k<n

{(�+)◦ (∗ρ)[α : k]}< 0.

PROOF Let k be the smallest integer with 0≤ k< n such that (/+)◦(∗ρ)[α : k]<
0. If no such integer k exists, then

(�+)◦ (∗ρ)[α : k]≥ 0 for all k ∈ ι n.

Otherwise if there exists such an integer k then

min
i<n

{(/+)◦ (∗ρ)[α : i]} ≤ (/+)◦ (∗ρ) [α : k]< 0.

The baggage which is needed is a pair (t,m) that stores the result for every block

as illustrated in Figure 6.4(b). Letting [α : k] represent a block of characters, the total

SECTION 6.2 PARENTHESES MATCHING 171

sum is

t= (�+)◦ (∗ρ)[α : k] = ρ (α1)+ρ (α2)+ · · ·+ρ (αk) .

The minimum partial sum is the number

m= min
q<k

{(�+)◦ (∗ρ) [α : q]} .

DEFINITION 6.1 Let the pairs (a,b) and (c,d) denote the results after applying

the parentheses matching algorithm independently to two adjacent blocks as depicted

in Figure 6.4(b). To combine these partial results, define the reduce operator ⊕ via

(6.4) (a,b)⊕ (c,d) = (a+c,b ↓ (a+d)) ,

where ↓ denotes the min operator in infix form. Take as the identity element id⊕ =
(0,∞). Let the function f for the map in the near homomorphic solution be given by

(6.5) f(α) = (ρα,0) .

1 -1 -1

() () () ()

map

reduce

...

...

())

1 -1 1 -1 1 -1 1 -1

(a) Map and Reduce

(a,b) (c,d)

} }()()() ()())

(b) Reduce

Figure 6.4: (a) The matching parentheses program applies ∗f producing the baggage and then

applies �⊕. (b) The partial results from adjacent blocks are combined thusly:

(a,b)⊕ (c,d).

Program MatchingParentheses;

Let the map function f and reduce operator ⊕ be as in equations (6.5) and (6.4),

respectively.

MatchingParentheses=�◦ (�⊕)◦ (∗f),
�(a,b) = (a= 0)∧ (b≥ 0).

172 NEAR HOMOMORPHISMS CHAPTER 6

EXAMPLE 6.2 Calculate MatchingParentheses (,),(,),(,),):

�◦(�⊕)◦ (∗f)(,),(,),(,),)

=� ((1,0)⊕ (−1,0))⊕ ((1,0)⊕ (−1,0))⊕ ((1,0)⊕ (−1,0))⊕ (−1,0)

=� ((0,0)⊕ (0,0))⊕ ((0,0)⊕ (−1,0))

=� ((0,0)⊕ (−1,0))

=� (−1,0) = 0∧1= 0,

which is the correct result as ()()()) is not balanced.

The operator ⊕ is well-defined since + and ↓ are well-defined. In order to apply

reduce, it is required to verify that ⊕ is associative. Let a= (a1,a2), b= (b1,b2),

and c= (c1,c2). It is necessary to verify that

(a⊕b)⊕c= a⊕ (b⊕c) .

Since + is an associative operator, it is enough to show that

(a2 ↓ (a1+b2)) ↓ ((a1+b1)+c2) = a2 ↓ (a1+(b2 ↓ (b1+c2))) .

It follows that this equality holds since ↓ is an associative operator and

a1+(b2 ↓ (b1+c2)) = (a1+b2) ↓ (a1+(b1+c2)) .

After gaining some experience, it is often fairly easy to define operations so that

they are associative and to recognize operators that are nonassociative. It may be pos-

sible to find an example that confirms an operator is nonassociative. Nevertheless,

checking associativity is not always trivial. All cases must be considered, especially

when the solution is nearly correct.

THEOREM 6.3 The program MatchingParentheses solves the matching paren-

theses problem.

PROOF In view of Theorem 6.1 and Lemma 6.2, it suffices to show that for any string

[α : n] ∈AL,

(6.6) (�⊕)◦ (∗f)[α : n] = (t,m)

where

t= (�+)◦ (∗ρ)[α : n]

SECTION 6.2 PARENTHESES MATCHING 173

and

m= min
k<n

{(�+)◦ (∗ρ) [α : k]} .

Proceed by induction on the number n≥ 1. If n= 1 then

�⊕◦(∗f)(·)(α1) =�⊕ (ρα1,0) = (ρα1,0) = (t,m) .

Suppose equation (6.6) holds whenever n ≤ q for some q ≥ 1. Put n = q and let

[α : n] ∈AL be arbitrary. Choose k ∈ i n. Since (�⊕)◦ (∗f) is a homomorphism,

(6.7) (�⊕)◦ (∗f) [α : n] = (�⊕)◦ (∗f) [α : k]⊕ (�⊕)◦ (∗f) [α◦ (+k) : n−k] .

By the inductive hypothesis,

(�⊕)◦ (∗f) [α : k] =

(
(�+)◦ (∗ρ) [α : k],min

i<k

{(�+)◦ (∗ρ) [α : i]}

)
,

and

(�⊕)◦ (∗f)[α◦ (+k) : n−k]

=

(
(�+)◦∗ρ [α◦ (+k) : n−k], min

i<n−k

{(�+)◦∗ρ [α◦ (+k) : i]}

)
.

Perform the operation ⊕ in equation (6.7) after substituting the results from the pre-

vious two equations to obtain

(�⊕)◦ (∗f)[α : n] = (t,m) .

Note that since (�+)◦ (∗ρ) is a homomorphism,

t=(�+)◦ (∗ρ) [α : k]+(�+)◦ (∗ρ) [α◦ (+k) : n−k]

=(�+)◦∗ρ [α : n] .

In addition, use the fact

m= min
i<k

{�+◦∗ρ [α : i]} ↓

(
�+ ◦ ∗ρ [α : k]+ min

i<n−k

{�+◦∗ρ [α◦ (+k) : n−k]}

)

= min
i<n

{�+◦∗ρ [α : i]} .

Consider the number of operations for a string with n characters. First, consider

only the task requirements. Checking all n−1 partial sums and the final sum, yields

174 NEAR HOMOMORPHISMS CHAPTER 6

at least n comparisons. To compute the sums requires at least n− 1 additions.

Hence, it is necessary to perform approximately 2n operations. Second, analyze

the program. Applying map ∗f involves n operations. Doing the reduction requires

about 3n additional operations, since each application of ⊕ requires three operations

(two additions and one minimum). Thus, the program requires approximately 4n

operations. So the program requires O(n) operations which is the same order of

magnitude as the required number of operations.

Consider the time complexity. It depends only on map and reduce since the other

operations can be done in constant time. Suppose that an initial string is distributed

among n processing elements. Then the map can be done in O(1) time steps. The

reduction can be carried via a tree-like structure, yielding in total O (logn) steps. The

solution is as efficient as expected.

6.3 PATTERN MATCHING

Consider the following query: does a given text contain a given string? Such a

query is common when searching for documents which contain a key word or pattern.

A brute-force approach is taken. Other popular algorithms such as Boyer-Moore, Karp-

Robin, and Knuth-Morris-Pratt, are not considered.

Before proceeding with the development of a program, a couple operations are

needed. For this application, a more restricted version of the concatenation operator

++ is appropriate. Presumably, if the lengths of all strings are known in advance then

this information can be utilized. Although the length of the text may not be known, the

length of each block is known since the text is partitioned into equal sized blocks.

DEFINITION 6.2 Let

x++0y= �

and for k ∈N,

�++k
� = � ,

�++k ((·)(a) ++y) = (·)(a) ++
(
�++k−1

y
)
,

((·)(a) ++x) ++ky= (·)(a) ++
(
x++k−1y

)
.

The operator ++k works like ++ except that the former drops all elements, if any,

after the kth one. Interestingly, initial is now a homomorphism:

(initial k)(x++y) = (initial k)(x) ++k (initial k)(y) .

Another useful operation produces “windows” that overlap in a regular manner.

SECTION 6.3 PATTERN MATCHING 175

DEFINITION 6.3 Let k≥ 0. The operator �k is given by

x�k ((·)(a) ++ys) =
(
∗
(
++k

◦� a
)
(x)

)
++ ((·)(a) ++ (ys)) .

Put f(x) = (·)(·)(x). The operation window k is the homomorphism

window k=
(
��k

)
◦ (∗f) .

The resulting objects produced by its application are called windows.

EXAMPLE 6.3 Compute

(window 3) a1,a2,a3,a4,a5

= a1�
3
a2�

3
a3�

3
a4�

3
a5

= a1,a2,a2�
3a3,a4,a4�

3a5

= a1,a2,a3,a2,a3,a4,a3,a4,a4�
3a5

= a1,a2,a3,a2,a3,a4,a3,a4,a5,a4,a5,a5.

Consider a program to compare two strings. Informally, two strings match if one

string is the initial part of another. The strings a and b match if there exists a string

c (possibly �) such that either

a= b++c or b= a++c.

The primitive matching operation is defined next.

Program match;

Let ∧ and == denote the usual Boolean AND operation and equality test, respec-

tively.

match = (�∧)◦==
←→

.

The program match is a near homomorphism. Rewriting by Lemma 4.58,

match = (�∧)◦ (∗==)◦id
←→

.

Instead of searching from the beginning to the end of the given text, split the text

into approximately equal blocks and perform a brute-force search concurrently on each

block. The only potential problem is that the given pattern may overlap two adjacent

blocks. After checking each block, it is necessary to employ an additional reduction to

determine if there is a match between two adjacent blocks.

The results from a block will be stored in a triple (α,β,δ). The string α is the

leftmost window in the block. This string must be kept in case there is a partial match

176 NEAR HOMOMORPHISMS CHAPTER 6

from the adjacent block on the left side. The string β is the matching string if there is

one. The Boolean value δ equals 1 if and only if there is a matching string.

Denote the given pattern by P. The strategy is to split the given text into large

blocks with k characters each and then form windows of size

WS= length P

in each such block. Assume k >> WS. In the first round, try to match each window

with the given pattern. In the second round, search for a match between blocks. Put

(6.8) PMP = (idL∗,idL∗,match ◦� P) ,

where L denotes any alphabet, and

(f,g,h)(x) = (f(x),g(x),h(x))

is the usual construction (Backus, 1978). Applying PMP to a window α yields a

triple (α,α,δ) where δ is the Boolean value resulting from comparing the strings

α and P. Note WS and PMP are part of the pre-processing phase.

DEFINITION 6.4 The operator ⊕ is given by

(6.9) (α,β,δ)⊕ (a,b,d) =

{
(α,b,d) if δ = 0

(α,β,δ) if δ = 1
,

and is used to combine results within a block.

If a matching string from any block has the same length as the pattern, then the

pattern occurs within the text. Otherwise, it will be necessary to check if the pattern

overlaps two adjacent blocks. For this purpose, the operator �P is used.

DEFINITION 6.5 The operator �P is given by

(6.10) (α,β,δ)�P (a,b,d)

=


(α,b,d) if δ = 0

(α,P,1) if (δ = 1∧ lengthβ = WS)∨ (d= 1∧ lengthb= WS)(
α,b̂,d̂

)
otherwise

,

where (
b̂,d̂

)
=

{
(P,1) if d̃= 1

(b,d) otherwise
,

SECTION 6.3 PATTERN MATCHING 177

and d̃ is the Boolean result of searching for the pattern between the adjacent blocks

via

(
α̃,b̃,d̃

)

= (�⊕)◦ (∗PMP)◦ (initial lengthβ)◦ (window WS)(β++ (init a)) .

In the preceding definition, the program used to compute d̃ uses mainly subpro-

grams of the following pattern matching program.

Program MatchPattern;

The operations PMP, ⊕, and �P are defined in equations (6.8), (6.9) and (6.10),

respectively.

MatchPattern

= last◦ (��P)◦∗((�⊕)◦ (∗PMP)◦ (window WS))(dice k),
last (e,f,g) = g.

EXAMPLE 6.4 Does the text acbacbacbacabacbac contain the pattern cab?

Setting k= 6, compute

(dice 6)a,c,b,a,c,b,a,c,b,a,c,a,b,a,c,b,a,c

= a,c,b,a,c,b,a,c,b,a,c,a,b,a,c,b,a,c.

As the pattern has three characters, obtain (using map distributivity)

∗(window 3)a,c,b,a,c,b,a,c,b,a,c,a,b,a,c,b,a,c= W1,W2,W3,

where

W1 = a,c,b,c,b,a,b,a,c,a,c,b,c,b,b,

W2 = a,c,b,c,b,a,b,a,c,a,c,a,c,a,a,

W3 = b,a,c,a,c,b,c,b,a,b,a,c,a,c,c.

Next calculate

∗ ((�⊕)◦ (∗PMcab))W1,W2,W3

=
(
a,c,b,b,0

)
,
(
a,c,b,c,a,1

)
,
(
b,a,c,c,1

)
.

Then

(��cab)
(
a,c,b,b,0

)
,
(
a,c,b,c,a,1

)
,
(
b,a,c,c,1

)
=
(
a,c,b,c,a,b,1

)
,

and lastly

last([a,c,b], [c,a,b],1) = 1,

178 NEAR HOMOMORPHISMS CHAPTER 6

which is the correct result as cab does appear in the given text.

The operator ⊕ is well-defined (since δ ∈ {0,1} always) and associative. After

reducing any block via �⊕, only the leftmost window that matches the given pattern

will be preserved. Consequently, a matching string, if any, must have the longest length

in the block since windows only decrease in size.

The operator �P is well-defined as (α,β,δ)�P (a,b,d) = (α,b,d) unless a

complete matching string exists and in that case (α,β,δ)�P (a,b,d) = (α,P,1). It

follows that �P is associative. Note that it is necessary only to find a single occurrence

of the given pattern.

In the worst case scenario, it will be necessary to compare the pattern P against

every possible window, involving at most O(nm) comparisons where n denotes the

length of the text, which is also the number of windows, and m = lengthP is the

maximum number of comparisons for each window. Assuming that splitting the orig-

inal text, forming windows and applying maps requires only constant time, the time

complexity will depend mainly on the reductions, which involve only a portion of the

text.

6.4 DIGIT SERIAL COMPUTATIONS

Consider programming usual addition, multiplication and convolution of strings of

digits (Eriksson-Bique, 1998). Fix b ∈N−{1} with b≥ 2. Consider base b com-

putations and let L= {0,1,2,.,b−1}. As usual, any arbitrary finite sequence of

digits anan−1 · · ·a0 ∈ L∗ represents the number
∑

n

i=0
aib

i. This representation is

unique since
∑

n

i=0
aib

i =
∑

n

i=0
âib

i implies
∑

n

i=1
(ai− âi)b

i = â0−a0 must

be divisible by b forcing â0 = a0, and dividing through by b and repeating the

argument, forces âi = ai for all i. Adding two digits always yields a string with at

most two digits and any carry is always equal to 1 since whenever α,β ∈ L,

α+β ≤ (b−1)+(b−1) = 2b−2< 2b−2+1= 1b
1+(b−1)b0,

which means

(6.11) α+β =
1∑

i=0

aib
i

for some unique a0,a1 ∈ L with a1 ≤ 1 whenever α,β ∈ L.

DEFINITION 6.6 In equation (6.11), call the coefficient a0 the “digit part” and the

coefficient a1 the “carry part.” Using the same equation, define the “carry add”

SECTION 6.4 DIGIT SERIAL COMPUTATIONS 179

operator +c via

α+c β = a1 ∈ {0,1}

and define the “digit add” operator +d via

α+d β = a0.

By uniqueness of the coefficients in equation (6.11), these operations are well-defined.

6.4.1 USUAL ADDITION

The problem is to add two long strings in L∗. First analyze the problem and second

develop a homomorphic solution. Let amam−1 · · ·a0, ânân−1 · · · â0 ∈ L∗. Without

loss of generality, assume m≤ n (otherwise relabel using commutativity of addition).

Set ai = 0 for all m< i≤ n. Then

(6.12)

n∑
i=0

aib
i+

n∑
i=0

âib
i =

n∑
i=0

(ai+ âi)b
i
.

It is necessary to investigate how the carries propagate from right to left, i.e., from the

ith term (with coefficient ai+ âi) to the (i+1) st term in the right hand side of

equation (6.12).

First, the number of digits in the result is at most n+2 as

(6.13)

n∑
i=0

aib
i+

n∑
i=0

âib
i < bn+1+bn+1 = 2bn+1 ≤ bbn+1 = bn+2

implying that
n∑

i=0

aib
i+

n∑
i=0

âib
i =

n+1∑
i=0

ãib
i

for some ãi’ s in L. The task is to compute these ãi’ s.

Second, the maximum carry is at most 1, as initially (i= 0) the carry is zero and

for i≥ 0

carryi+ai+ âi ≤ 1+(b−1)+(b−1) = 1b+(b−1) ,

which shows that the carry for the (i+1) st term is at most 1. In view of equation

(6.12) and equation (6.13) and uniqueness of representation, it follows that ãi=ai+d

âi+dcarryi where carryi ∈ {0,1}.

Consider a string adder as a homomorphism. Partition the input strings into blocks

with corresponding blocks having the same size. After adding all corresponding pairs

of blocks, a reduce operation is applied to combine the results.

Two corresponding substrings are added together, doing computations from right

to left, as depicted below.

180 NEAR HOMOMORPHISMS CHAPTER 6

←−

ân · · · âj∗+2 âj∗+1 âj∗ · · · âj âj−1 · · · â0

an · · · aj∗+2 aj∗+1 aj∗ · · · aj aj−1 · · · a0

an · · · aj∗+2 aj∗+1 aj∗ · · · aj aj−1 · · · a0

Assume the strings are partitioned into blocks and each block is added concurrently. In

any block

âj∗+1 âj∗ · · · âj

aj∗+1 aj∗ · · · aj

aj∗+1 aj∗ · · · aj

.

if there will be no carry from the right, then all of the computed aj’ s are correct. What

happens if there is a carry of 1 from the right? It must be added to aj. If

aj+c1= 0,

then the remaining aj’ s are correct; otherwise, add the carry to the next digit and if

aj+1+c1= 1,

it will be necessary to repeat the process. When will the carry stop propagating to the

left? Precisely when a
̂j
< b−1 is encountered since this inequality holds if and only

if a
̂j
+1 ≤ b−1. Hence, either all the digits in the block are correct or it is only

necessary to add 1 to all the digits to the right of and including the rightmost digit

less than b−1.

Before receiving any carry from the right, the resulting string for each block may

be split into two parts: the left part, say l, and the right part, say r. The string l

(possibly empty) is guaranteed to be correct and the string r is either correct or it will

be necessary to add 1 to all of the digits in this substring. Actually, it is necessary to

add one only to the leftmost digit of r and set all remaining digits to zero. A tag, say

t, is needed to indicate whether or not the right string r actually contains a digit less

than b−1, as it is possible r will not stop a carry.

The baggage consists of quadruples of the form (c,l,r,t) where

c++l++r

is the correct result of adding two given substrings. In particular, if there is a carry from

adding the given substrings, then c= �; otherwise, c= � . Moreover, the string l

is known to be correct and the right string r will stop any carry whenever l has

any digits. All of the digits in string r are correct if there will be no carry from other

blocks; otherwise, it will be necessary to modify the digits in r as discussed in the

SECTION 6.4 DIGIT SERIAL COMPUTATIONS 181

preceding paragraph. The tag t ∈ {0,1} will be nonzero if and only if the string r

has a digit less than b−1.

r 1

1

v

vr

r

r

j+1

j+1

j+1

j+1j

j

c

c v1

r v

v r

r

r
j+1

j+1j+1j

j j+1

j

j

j

j

c

c

v r

v r

r

r
j+1

j+1j

j

j

j

j

j

c

c v

v r v

v r

r

r
j+1

j+1j+1

j j+1

j

jj

'
'v

jj

Figure 6.5: Different cases for combining strings added independently.

DEFINITION 6.7 For any two digits α,β let

d = α+d β,

t = d< b−1.

Define the function f by

(6.14) f(α,β) =

{(
�,�,d,t

)
if α+c β = 1(

�,�,d,t
)

otherwise
.

DEFINITION 6.8 The binary operator ⊕ is given by

(6.15) (c1,l1,r1,t1)⊕ (c2,l2,r2,t2)

=




(
c2,r

′

1
++l2,r2,t2

)
if c2 �= � , t1 = 0 (6.15a)(

c1,l1++r
′

1
++l2,r2,t2

)
if c2 �= � , t1 = 1 (6.15b)

(c1,l1,r1++r2,t1) if c2 = � , t2 = 0 (6.15c)

(c1,l1++r1++l2,r2,t2) if c2 = � , t2 = 1 (6.15d)

182 NEAR HOMOMORPHISMS CHAPTER 6

where r′ is defined by

r= (·)(a) ++xs =⇒ r′ = (·)(a+d 1) ++ (∗K0)xs.

For completeness, the identity element is id⊕ = (�,�,�,0).

The digit serial adder program is given next.

Program AddStrings;

The map function f and the binary operator ⊕ are defined in equations (6.14) and

(6.15), respectively.

AddStrings= unbag◦ (�⊕◦∗f)◦ id
←→

= unbag◦�⊕◦ f
←→

,

unbag (c,l,r,t) = c++l++r.

If one string is shorter, prefix sufficiently many zeros so that they both have the

same length. Although AddStrings is not a pure homomorphism that applies to

a single argument, the pre-processing id
←→

is an implicitly parallel abstractor, and the

post-processing operation unbag only concatenates the resulting strings.

THEOREM 6.4 The program AddStrings computes the sum of two strings.

PROOF It turns out that the baggage can only appear in certain forms. In order to show

the program is correct, it is necessary to investigate all possible forms. The function

f and the binary operator ⊕ are well-defined by inspection. It is impossible to obtain

a quadruple of the form

(c,l,�,t)

by the construction of f and ⊕. In addition, it is impossible to obtain a quadruple

(6.16) (c,l,r,t) = (�,�,r,0)

which follows from the fact that whenever a carry is produced, a digit less than b−1

must also be produced since, for any α,β ∈ L,

α+β ≤ 2(b−1) = b+(b−2) .

By inspection (�,�,r,0) cannot be produced via f or

(c1,l1,r1,t1)⊕ (c2,l2,r2,t2)

as neither (c1,l1,r1,t1) nor (c2,l2,r2,t2) can have the form (�,�,r,0).
For l= � and t= 0 is possible only via equation 6.15(c) since in all other cases

r1 �= � forces l �= �. But then c1 = �, l1 = � , and t1 = 0, a contradiction

since a carry implies t1 = 1.

SECTION 6.4 DIGIT SERIAL COMPUTATIONS 183

For any valid quadruple (c,l,r,t), if l �= � then r must stop any carry, i.e.,

(6.17) l �= � ⇒ t= 1.

Assume (c,l,r,t) is valid and

(6.18) l �= � .

By inspection, this quadruple cannot be produced by an application of f (as f

produces l= �). Suppose (bwoc) that t= 0 and the quadruple is obtained via

(c1,l1,r1,t1)⊕ (c2,l2,r2,t2) = (c,l,r,t)

where (by supposition) the implication (6.17) holds for the operands (c1,l1,r1,t1)
and (c2,l2,r2,t2). By next examining all possibilities, it is possible to arrive at a

contradiction in every case, thereby verifying implication (6.17).

CASE t1 = 0,t2 = 0: By supposition, l1 = l2 = � as the implication 6.17 holds

for the operands. If c2 = � , then equation 6.15(c) applies and l = � ,

which violates the assumption (6.18). So c2 �= � , which is impossible as it

implies an invalid form for the second operand (6.16).

CASE t1 = 1,t2 = 0: By hypothesis, l2 = � (otherwise t2 = 1). If c2 = � ,

then equation 6.15(c) applies and t= 1, which contradicts the supposition.

So c2 �= � , which is impossible as it implies an invalid form for the second

operand (6.16).

CASE t1 = 0,t2 = 1: By premise, l1 = � (otherwise t1 = 1). If c2 = � , then

equation 6.15(d) applies and t = 1, which contradicts the supposition. So

c2 �= � and equation 6.15(a) applies, yielding t= 1, a contradiction.

CASE t1 = 1,t2 = 1: It is immediate that t= 1 as the tag is always equal to one

of the tags, which violates the supposition.

By inspection, the solution is correct provided the correct baggage (c,l,r,t) is

produced so that

c++l++r

is the correct result. This can be established in two phases, just as the solution is divided

into two phases (map and reduction). First show that the function f produces only

correct baggage. Second show that the binary operator ⊕ produces correct baggage

whenever the operands are correct.

Consider a single application of the function f, which computes the sum α+β
of two digits α,β ∈ L. Put

a1 = α+c β and a0 = α+d β

and t= a0 < b−1. The correct result is

a1,a0 if a1 = 1

a0 if a1 �= 1

184 NEAR HOMOMORPHISMS CHAPTER 6

If a1 = 1, then

f(α,β) = (�,�,a0,t)

and

�++�++a0 = a1,a0.

If a1 �= 1, then

f(α,β) = (�,�,a0,t)

and

�++�++a0 = a0.

Hence, every application of f produces a quadruple which yields the correct string as

well as the correct tag.

It remains to show that

(c1,l1,r1,t1)⊕ (c2,l2,r2,t2) = (c,l,r,t) .

is valid whenever (c1,l1,r1,t1) and (c2,l2,r2,t2) are valid. Either c2 = �
or c2 �= � .

CASE c2 = � : As c2 = � , r1 is not modified. It follows that the correct string

for the combined result is

c1++l1++r1++l2++r2.

By inspection of the relevant cases (equation 6.15(c) and 6.15(d)), it is

evident that the correct string will be produced. Note in equation 6.15(c) ,

l2 = � since otherwise t2 = 1 (6.17). The carry c = c1 is correct since

c2 = � implies no new carry is produced. For equation 6.15(d),

l= l1++r1++l2,

r= r2, and t= t2 are correct, since l1 and l2 are correct, t2 = 1 implies

r = r2 will stop any carry and t depends only on r = r2. For equation

6.15(c) , l= l1,

r= r1++r2,

and t= t1 are correct, since l1 is correct initially, and as t2 = 0, r2 will

not stop any carry; consequently, t depends only on r1.

CASE c2 �= � : As there is a carry, r1 must be replaced by r′

1
. In all relevant

cases (equation 6.15(a) and equation 6.15(b)), r = r2 and t = t2. Note

t2= 0 is impossible since otherwise in order that the second operand has a valid

form (see (6.16)) l2 �= � which forces t2 = 1 (6.17), a contradiction. The

tag is correct because it was correct initially (depends only on r2). If equation
6.15(a) applies, then c = c2 as l1 = � (otherwise t1 = 1), t1 = 0

implies r1 will not stop the carry, and c1 = � since the first operand cannot

have an invalid form (6.16). In addition, by the implication (6.17), t2 = 1 and

r2 will stop any future carry implying that r= r2. The resulting string

c2++r
′

1
++l2++r2

SECTION 6.4 DIGIT SERIAL COMPUTATIONS 185

is correct since c1 = l1 = � and r1 does not stop the carry. If equation

6.15(b) applies, then t1 = 1 implies r1 stops the carry; consequently, the

carry c= c1 is unchanged. It follows that the resulting string

c1++l1++r′

1
++l2++r2

is correct.

EXAMPLE 6.5 Consider 99999+99199= 199198 (decimal system). Calculate

unbag◦ (�⊕◦∗f)◦id
←→

(
9,9,1,9,9,9,9,9,9,9

)

=unbag◦ (�⊕◦∗f)(9,9),(9,9),(1,9),(9,9),(9,9)

=unbag◦�⊕

[
(
�,�,8,1

)
,
(
�,�,8,1

)
,
(
�,�,0,1

)
,
(
�,�,8,1

)
,
(
�,�,8,1

)
]

=unbag
((
�,9,8,1

)
⊕

(
�,�,8,1

)
⊕

(
�,�,8,1

))
by equation 6.15(b)

=unbag
((
�,9,9,1,8,1

)
⊕

(
�,�,8,1

))
by equation 6.15(b)

=unbag
(
�,9,9,1,9,8,1

)
by equation 6.15(b)

=1,9,9,1,9,8.

Adding all the digits ignoring the carries requires n additions and then adding in

the carries requires approximately n additions, yielding a total of about 2n additions.

From the definition of f, at least n additions are performed plus n comparisons

for computing the tags, and using the unit cost model, the cost of f alone is about

2n. Looking at the reduce operation ⊕, there are at most five operations involving

comparisons, concatenations or “toggling” and assuming approximately equal cost of

these operations the total reduction costs about 5n (tree algorithm). Note that although

toggling is actually a map, it is never possible to toggle more than a cumulative total of

n digits. Hence the computational complexity is O(n). The reduction takes O(logn)

time steps via a binary tree algorithm and the map as well as other processing takes

only constant time.

Consider the same problem using a sequential model of computation.

DEFINITION 6.9 The binary operator � obeys

(6.19) (α,β)� ((·)(c) ++x) = α+c β+c c,α+d β+dc++x.

A sequential digit adder is defined next.

Program AddStringsSEQ;

The function � is defined in equation (6.19).

AddStringsSEQ= (� �)◦id
←→

.

186 NEAR HOMOMORPHISMS CHAPTER 6

6.4.2 USUAL MULTIPLICATION

The problem is to multiply two strings from L∗, say

αmαm−1 · · ·α0 and βnβn−1 · · ·β0.

Without loss of generality, assume m ≤ n (otherwise relabel using commutativity of

multiplication). It is necessary to investigate how the carries propagate from right to

left. The number of digits in the result is at most m+n+2 as

m∑

i=0

αib
i

n∑

i=0

βib
i ≤

(
bm+1−1

)(
bn+1−1

)
= bm+n+2−bm+1−bn+1+1

< bm+n+2

implies
m∑

i=0

αib
i

n∑

i=0

βib
i =

m+n+1∑

k=0

λkb
k

for some λk’ s in L. The task is to calculate these λk’ s.

Consider the net depicted in Figure 6.6(a). The α’ s are passed to the right and the

β’ s are passed down the net. A horizontal row in this net corresponds to multiplying

some digit αi by all of the digits βj, 0≤ j≤ n, just as rows are computed using the

usual multiplication algorithm. Similarly, diagonals (↘) in this net correspond to the

columns obtained using the usual multiplication algorithm by aligning the calculated

rows.

In particular, each node in Figure 6.6(c) computes c′

i,j and d′

i,j by setting

ci,j+di,j+αiβj equal to c′

i,jb+d′

i,j as illustrated in Figure 6.6(a). The sum

computed by a node will produce exactly two digits since

ci,j+di,j+αiβj ≤ (b−1)+(b−1)+(b−1)2 = (b−1)b+(b−1) .

A node in Figure 6.6(d) corresponds to a quintuple (β,α,t,c,d). The digit β

comes from the right string and the digit α from the left string. The tag t serves

a dual purpose. First, it records state information indicating whether or not a node is

ready to perform a computation. Second, the tag records information about the spread

of data in order to guarantee associativity. Viewing the spread of data through the net

for quintuples as a reduction, for the reduce operation to be associative, it must not

matter whether β and c are passed before or after α. Accordingly, a tag t = 0

indicates a node is inactive whereas a tag t = 1 indicates a node is ready to update

the carry c and the cumulative sum d as in Figure 6.6(c). In addition, a tag t= 2

indicates β and c must be passed to the left node and α to the right node. A tag

SECTION 6.4 DIGIT SERIAL COMPUTATIONS 187

� � ��
2 1 03

�
�

�

�

�

�

�

�

�

�

0

0

1

2

3

4

5

6

1

2

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

(a) Multiplication of strings

�

�

�

�

2

1

0

3
�

�

�

�

�

�

�

�

�

�

0

0

1

2

3

4

5

6

1

2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(b) Nodes grouped together

�

�

i

i,j
i,j

j

i,j

c
d

d

'

'

�
i

�
ji,j

c

(c) Computing carry and digit

x

�

�

	

�
6

�
5

�
4

�
3

�
2

�
1

�
0

(d) Net for quintuples

Figure 6.6: Rotate the diagram (a) clockwise so that the diagonals are vertical as shown in dia-

gram (b). In the latter diagram the nodes are grouped vertically and then “collapsed”

to obtain the new graph (d), which shows only the edges for one node. Each node

computes the carry part c′

i,j and the digit part d′

i,j as illustrated in (c).

t = 3 indicates β and c must be passed to the left node and α has already been

passed to the right node. A tag t = 4 indicates β and c have already been passed

188 NEAR HOMOMORPHISMS CHAPTER 6

to the left node and α must still be passed to the right node. The pre-processing is

done via dscat which initializes the components of the quintuples using the inputs

indicated in Figure 6.6(a) and which is defined next.

DEFINITION 6.10 Setting

θk =



(0,0,0,0,0) for k= m+1

(0,αk,0,0,0) for 1≤ k≤ m

(β
n
,α0,1,0,0) for k= 0(

0,βk+n,0,0,0
)

for −n≤ k≤−1

,

put

(6.20) dscat
(
αm,.,α0,βn,.,β0

)
= θm+1,θm,.,θ

−n.

The main operations in the homomorphic solution are defined next.

DEFINITION 6.11 The binary operator ⊕ is given by

(6.21) x++(β1,α1,t1,c1,d1)⊕ (β2,α2,t2,c2,d2)++y

=




x++(β1,0,3,c1,d1), (β2,α1,1,c2,d2)++y if t1 = 2

x++(β
1
,0,0,c1,d1), (β2,α1,1,c2,d2)++y if t1 = 4

x++(β2,α1,1,c2,d1),(0,α2,4,0,d2)++y if t2 = 2

x++(β
2
,α1,1,c2,d1),(0,α2,0,0,d2)++y if t2 = 3

x++(β1,α1,t1,c1,d1),(β2,α2,t2,c2,d2)++y otherwise

.

The function for the map in the homomorphic solution is f= (·)◦g forms singletons

using g :

(6.22) f(x) = g(x).

The operator ⊕ is well-defined and associative. Some post-processing is done

using the function g and ap.

DEFINITION 6.12 The function g does the computations in Figure 6.6(c):

(6.23) g(β,α,t,c,d) =

{(
β,α,2,c′,d′

)
if t= 1

(β,α,t,c,d) otherwise
,

where c′ and d′ satisfy

βα+c+d= c′b+d′.

SECTION 6.4 DIGIT SERIAL COMPUTATIONS 189

The function ap applies a given function to the first element of a 1-array:

(6.24) ap g (·)(a) ++xs = ((·)g(a)) ++xs.

The digit serial multiplication program is defined next.

Program dsmult;

Let ap, g, f, ⊕ and dscat be given by equations (6.24), (6.23), (6.22), (6.21) and

(6.20), respectively. The post-processing function dz drops the initial zero if there is

one, ∗lst selects the last digit from each quintuple, and p= m+2n− 2.

dsmult= dz ◦ (∗lst)◦ (ap g)◦ (�⊕◦∗f)p ◦dscat.

A proof that the program is correct is geometrical. The arrows in Figure 6.6(a)

reveal that initially only one node (which has α0 and βn) is active. Subsequently,

every adjacent node (i.e., nodes that were inactive in the last round) of an active node

performs an update. Observe that

(6.25) t1 ∈ {2,4}=⇒ t2 /∈ {2,3} ,

whenever t1 is a valid tag for some node and t2 is the tag of the adjacent node on

the right. This follows from the net and the semantics as a node on the right must be

inactive whenever a node computes and is ready to pass an α to the right.

After applying dscat, the quintuples satisfy the stated semantics and all tags are

valid. Moreover, implication (6.25) holds as all tags are zero except for one tag which

is one. By construction, f performs the computation depicted in Figure 6.6(c). After

applying the map ∗f, only those quintuples with tags that were equal to one (t= 1)

will get their tags modified and the new value for such tags is two (t= 2). Before the

first application of the reduction �⊕, the tags possess the following two properties:

1. all internal nodes have tags in {0,2} and any internal node having tag equal to

2 has neighbors with tags in {0,3,4};

2. the leftmost node has tag in {0,2,3} and the rightmost node has tag in

{0,2,4}.

Two tags are said to be adjacent if their corresponding nodes are adjacent. Consider

a node whose tag is equal to two. After applying ⊕ on the left side of such a node,

the tag is replaced by t= 4 and the adjacenttag on the left is set equal to one. After

applying ⊕ on the right side of a node whose tag is equal to two, the tag is replaced

by t = 3 and the adjacent tag on the right is set equal to one. In both cases, after

evaluating on the other side, the tag is replaced by t= 0. After applying the map ∗f

again, it follows that the same properties (1 and 2) must hold.

190 NEAR HOMOMORPHISMS CHAPTER 6

From Figure 6.6(a), it is clear that there are n−1 times that the α’ s must be passed

to neighbors and only after α0 is passed to the rightmost node, β0 is propagated

along. There are n−1+m times that β0 is passed until the last update is done via

ap g.

EXAMPLE 6.6 Compute 99×99= 9801(base 10). Let h=�⊕◦∗f, p= 4 and

calculate as follows:

h4 ◦dscat
(
9,9,9,9

)
= h4(0,0,0,0,0),(0,9,0,0,0),(9,9,1,0,0),(9,0,0,0,0)

= h3
(
(0,0,0,0,0)⊕ (0,9,0,0,0)⊕ (9,9,2,8,1)⊕ (9,0,0,0,0)

)

= h3
(
(0,0,0,0,0),(0,9,0,0,0)⊕ (9,0,3,8,1),(9,9,1,0,0)

)

= h3(0,0,0,0,0),(9,9,1,8,0),(0,0,0,0,1),(9,9,1,0,0)

= h2
(
(0,0,0,0,0)⊕ (9,9,2,8,9)⊕ (0,0,0,0,1)⊕ (9,9,2,8,1)

)

= h2
(
(9,0,1,8,0),(0,9,4,0,9)⊕ (9,0,1,8,1),(0,9,4,0,1)

)

= h2(9,0,1,8,0),(0,0,0,0,9),(9,9,1,8,1),(0,9,4,0,1)

= h

(
(9,0,2,0,8)⊕ (0,0,0,0,9)⊕ (9,9,2,9,0)⊕ (0,9,4,0,1)

)

= h

(
(9,0,3,0,8),(0,0,1,0,9)⊕ (9,0,3,9,0),(0,9,1,0,1)

)

= h (9,0,3,0,8),(9,0,1,9,9),(0,0,0,0,0),(0,9,1,0,1)
= (9,0,3,0,8)⊕ (9,0,2,1,8)⊕ (0,0,0,0,0)⊕ (0,9,2,0,1)
= (9,0,1,1,8),(0,0,4,0,8)⊕ (0,0,1,0,0),(0,9,4,0,1)
= (9,0,1,1,8),(0,0,0,0,8),(0,0,1,0,0),(0,9,4,0,1).

Lastly,

dz◦ (∗ lst)◦ap g

(9,0,1,1,8),(0,0,0,0,8),(0,0,1,0,0),(0,9,4,0,1)

= dz◦ (∗ lst)(9,0,2,0,9), (0,0,0,0,8),(0,0,1,0,0),(0,9,4,0,1)

= dz 9,8,0,1= 9,8,0,1.

6.4.3 CONVOLUTION

The problem is to compute

min{j,m}∑
i=0

aixj−i = bj,

which resembles a linear system of equations except the xj’ s are known. Instead

of solving for the xj’ s, it is desired to simply calculate the bj’ s. Essentially the

SECTION 6.4 DIGIT SERIAL COMPUTATIONS 191

xj’ s are replaced by a weighted average of their neighbors. A valid interpretation of

the computation is to view the weights as a window that slides over the data. Only

the data in the window is used. Consider the net depicted on the left side of Figure

6.7. The weights (ai’ s) are passed to the right. The data (xj’ s) flows down the net. A

horizontal row in this net corresponds to multiplying some weight ai by all of the

xj’ s, 0≤ j≤ n. Diagonals in this net correspond to a sum bj. A particular node in

the net computes a product aixj−i and adds it to the sum bj as depicted in Figure

6.7(c).

A node in Figure 6.7(d) corresponds to a quadruple (a,x,t,b). The data x

comes from the right node and the weight a from the left node. The tag t serves

a dual purpose. First, it records state information indicating whether or not a node

is ready to perform a computation. Second, the tag records information in order to

guarantee associativity. In order that the reduce operation is associative, it should be

possible to pass the weight a before or after transmitting the data x.

Accordingly, let a tag t = 0 indicate that a node is inactive and a tag t = 1

indicate that a node is ready to update the cumulative sum b as in Figure 6.7(c). A tag

t= 2 indicates x must be passed to the left node and weight a to the right node. A

tag t= 3 indicates x must be passed to the left node and weight a has already been

passed to the right node. Lastly, a tag t= 4 indicates x has already been passed to

the left node and weight a must still be passed to the right node.

The pre-processing is accomplished via preconv defined next.

DEFINITION 6.13 Set

θk =




(0,xk,0,0) if 1≤ k≤ n

(am,x0,1,0) if k= 0

(am+k,0,0,0) if −m≤ k≤−1

,

and

(6.26) preconv(a0,.,am,x0,.,xn) = θ
−m,θ−m+1,.,θn.

192 NEAR HOMOMORPHISMS CHAPTER 6

x x xx 1 2 30
a

b b b b

a

a

a

3

0 1 2 3

2

1

0

(a) Convolution

x

x

x

x

1

2

3

0
a

b

b

b

b

a

a

2

0

1

2

3

1

0

(b) Rotated Diagram

x

x

a a

j-i

j-i

j

i i

j

b

b'

(c) b′

j = aixj−i+bj.

ax

b

b
0

b
1

b2 b3

(d) Net for quadruples

Figure 6.7: Rotate the diagram on the top left (a) clockwise so that the diagonals are vertical as

shown on the right side (b). The nodes in (b) are grouped vertically. The diagram (b)

is “collapsed” to obtain the new graph (d), i.e., a node in diagram (d) represents all

of the nodes in a group (b). In diagram (d) only the edges for one node are shown.

DEFINITION 6.14 The binary operator ⊕ in the homomorphic solution is given by

(6.27) x++(a1,x1,t1,b1)⊕ (a2,x2,t2,b2)++y

=




x++(0,x1,3,b1),(a1,x2,1,b2)++y if t1 = 2

x++(0,x1,0,b1),(a1,x2,1,b2)++y if t1 = 4

x++(a1,x2,1,b1),(a2,0,4,b2)++y if t2 = 2

x++(a1,x2,1,b1),(a2,0,0,b2)++y if t2 = 3

x++(a1,x1,t1,b1),(a2,x2,t2,b2)++y otherwise

.

SECTION 6.5 DIGIT SERIAL COMPUTATIONS 193

Post-processing involves a function g which is defined next.

DEFINITION 6.15 The function g is given by

(6.28) g(a,x,t,b) =

{
(a,x,2,b+ax) if t= 1

(a,x,t,b) if t �= 1
.

The multiplication program for convolution is defined next.

Program conv;

The operations preconv, ⊕ and g are given by (6.26), (6.27) and (6.28), respec-

tively, ∗ lst selects the b’ s from each quadruple, f= (·)◦g and p= m+n.

conv= (initial n+1)◦∗(lst◦g)◦ (�⊕◦∗f)p ◦preconv

EXAMPLE 6.7 Compute the convolution using weights a0 = 1, a1 = 2, a2 = 1

and data x0 = 2, x1 = 3, x2 = 5, x3 = 7. Taking p = 5 and h =�⊕◦∗f,

calculate

h5 ◦preconv
(
1,2,1,2,3,5,7

)
= h5 (1,0,0,0),(2,0,0,0),(1,2,1,0),(0,3,0,0),(0,5,0,0),(0,7,0,0)

= h4((1,0,0,0)⊕(2,0,0,0)⊕(1,2,2,2)⊕(0,3,0,0)⊕(0,5,0,0)⊕(0,7,0,0))
= h4((1,0,0,0),(2,0,0,0)⊕(0,2,3,2),(1,3,1,0)⊕(0,5,0,0),(0,7,0,0))
= h4((1,0,0,0),(2,2,1,0),(0,0,0,2),(1,3,1,0)⊕(0,5,0,0),(0,7,0,0))
= h4(1,0,0,0),(2,2,1,0),(0,0,0,2),(1,3,1,0),(0,5,0,0),(0,7,0,0)

= h3((1,0,0,0)⊕(2,2,2,4)⊕(0,0,0,2)⊕(1,3,2,3)⊕(0,5,0,0)⊕(0,7,0,0))
= h3(1,2,1,0),(0,0,0,4),(2,3,1,2),(0,0,0,3),(1,5,1,0),(0,7,0,0)

= h2((1,2,2,2)⊕(0,0,0,4)⊕(2,3,2,8)⊕(0,0,0,3)⊕(1,5,2,5)⊕(0,7,0,0))
= h2(0,2,3,2),(1,3,1,4),(0,0,0,8),(2,5,1,3),(0,0,0,5),(1,7,1,0)

= h((0,2,3,2)⊕(1,3,2,7)⊕(0,0,0,8)⊕(2,5,2,13)⊕(0,0,0,5)⊕(1,7,2,7))
= h(0,3,1,2),(0,0,0,7),(1,5,1,8),(0,0,0,13),(2,7,1,5),(1,0,4,7)

=(0,3,2,2)⊕(0,0,0,7)⊕(1,5,2,13)⊕(0,0,0,13)⊕(2,7,2,19)⊕(1,0,4,7)

=(0,3,3,2),(0,5,1,7),(0,0,0,13),(1,7,1,13),(0,0,0,19),(1,0,4,7).

Using map distributivity,

∗ (lst◦g)(0,3,3,2),(0,5,1,7),(0,0,0,13),(1,7,1,13),(0,0,0,19),(1,0,4,7)
= ∗ lst (0,3,3,2),(0,5,2,7),(0,0,0,13),(1,7,2,20),(0,0,0,19),(1,0,4,7)

=2,7,13,20,19,7,

and lastly,

(initial 4) 2,7,13,20,19,7= 2,7,13,20.

The correct solution is

b0 = 2, b1 = 7, b2 = 13, and b3 = 20.

194 NEAR HOMOMORPHISMS CHAPTER 6

6.5 SUMMARY

It seems the programming templates are useful. Frequently, the programs are as

efficient as expected. It is possible to analyze costs using any appropriate model. The

complexity analysis serves to develop measures for a particular program. Such analy-

sis, however, cannot be used to evaluate the methodology. The complexity analysis

reveals whether or not a program has the potential to meet the requirements and which

parts of a program are relatively expensive and should be optimized. If the cost analy-

sis is unsatisfactory, it does not necessarily mean that the methodology is wrong. It

simply means another solution should be sought, perhaps investigating other models,

computational patterns and algorithms.

Using complexity analysis, an implementation can be chosen and adapted to yield

an optimal program. Increasingly in the future, computers might be custom-built based

on such programs and analysis of them. By studying the programs, it is possible to

discover applicable methods such as lazy evaluation which could be utilized to improve

performance.

Optimization may be viewed as two phases. The first phase is accomplished via

the programs. In this phase, the task is studied and models and templates are chosen

to write an optimal program. In the second phase, the task is removed from the picture

and only the programming solution is studied to do further optimizations.

It is easy and natural to develop programs using near homomorphisms. The prob-

lems can be partitioned in a natural way using the templates for map and reduce. The

formalism furnishes the needed tools for analysis. Experience solving one problem

like multiplication of strings helps when solving another problem like convolution. It

seems homomorphisms offer quite versatile applications in computer science.

195

CHAPTER 7

FUTURE WORK

A
concise calculus for generic programming of multidimensional arrays has

been presented. A model, terminology and simple notation to facilitate rea-

soning about multidimensional arrays have been introduced. A set of primi-

tive operations has been constructed. A methodology to build such a set has been pre-

scribed. Higher-order functions have been provided to recognize a variety of program

structures for the particular data structure. Homomorphisms have been classified. A

number of explicit formulas that lack many of the indices typically required have been

stated. Programming examples have been given.

Mainly, research focuses on developing complete theories for any particular data

type. An existing theory might be modified to solve particular classes of problems.

Higher-order functions that model different computational patterns should be investi-

gated.

Consider the following problem: find the rightmost list element that is smaller than

its neighbor on the right.

EXAMPLE 7.1 In 1,2,3,4,8,7,6,5, the element 4 is the desired element. In

the worst case, it is necessary to compare all adjacent elements. To do Therefore, a

comparison operator must be placed between all adjacent elements. This implies that

the interior elements are used twice whereas the exterior elements are used only once.

EXAMPLE 7.2 For 1,2,3,4,8,7,6,5, all of the following comparisons may be

performed:

1< 2, 2< 3, 3< 4, 4< 8, 8< 7, 7< 6, 6< 5.

This problem motivates a new splitting defined next.

196 FUTURE WORK CHAPTER 7

DEFINITION 7.1 The join operator ‖ obeys

x ‖ y= xs++ (·)(a) ++ys

provided

x = xs++ (·)(a) �= (·)(a) ,

y = (·)(a) ++ys �= (·)(a) .

Empty strings xs= � and ys= � are disallowed in the definition of the join

operator. The join operator is a well-defined associative operator.

EXAMPLE 7.3 1,2,3,4= 1,2 ‖ 2,3,4= 1,2,3 ‖ 3,4.

EXAMPLE 7.4
(
1,2 ‖ 2,3

)
‖ 3,4= 1,2,3,4= 1,2 ‖

(
2,3 ‖ 3,4

)
.

A new operation � places a given operator between all the elements.

DEFINITION 7.2 For any binary operator ⊕,

�⊕ [a : 2] = (·)(a1⊕a2) ,

�⊕(x ‖ y) = (�⊕ x) ++ (�⊕ y) .

The function � is not defined for 1-arrays with fewer than two elements. The

cost of � is the same as the cost of map since all binary operations may be computed

concurrently.

DEFINITION 7.3 A function h is a ‖-homomorphism if there exists an associative

binary operator ⊕ such that

h(x ‖ y) = h(x)⊕h(y)

for all valid x and y.

EXAMPLE 7.5 Define ⊕ by

a⊕b= a+b−1 for all a,b ∈ Z.

Then length is a ‖-homomorphism since

length(x ‖ y) = length x⊕ length y.

SECTION 7.0 FUTURE WORK 197

EXAMPLE 7.6 The function ∗f is a ‖-homomorphism:

∗f(x ‖ y) = (∗f x) ‖ (∗f y) .

Assume the desired result may be found by comparing adjacent elements and then

searching through the results of these comparisons. Various algorithms, including lin-

ear and binary tree algorithms are well-known. Is there a satisfactory solution using

algebraic structures? Consider the following programming template:

(�⊕)◦ (��) ,

in which the operation �� places the comparison operator between all the elements

and then the reduction �⊕ performs the search. Assuming �� can be performed

in constant time and �⊕ is implemented using a binary tree, the above program has

time complexity O(logn), where n denotes the length of the argument.

A “binary linear search from the right” is defined next.

DEFINITION 7.4

blsr � x++ [a : 2] =

{
a1 if a1�a2

blsr � x++ [a : 1] otherwise
.

EXAMPLE 7.7 Compute

blsr< 1,2,3,4,8,7,6,5= 4.

In order to fit into the specified programming template, the baggage needs to be set

up properly.

DEFINITION 7.5 The binary comparison operator ≺ is given by

a≺ b= (a,a< b) .

The search is performed via a reduction using the binary operator defined next.

DEFINITION 7.6 The binary operator � is given by

(a,b)� (c,d) =

{
(c,d) if d= 1

(a,b) otherwise
.

The program blsrc= blsr ≺ is defined next.

198 FUTUREWORK CHAPTER 7

Program blsrc;

The operations ≺ and � are given by (7.5) and (7.6), respectively and fst(a,b) =
a.

blsrc= fst◦ (��)◦ (�≺).

EXAMPLE 7.8 Compute

(��)◦ (�≺) 1,2,3,4,8,7,6,5

= (��) (1,1),(2,1),(3,1),(4,1),(8,0),(7,0),(6,0)

= ((1,1)� (2,1))� ((3,1)� (4,1))� ((8,0)� (7,0))� (6,0)

= ((2,1)� (4,1))� ((8,0)� (6,0))

= (4,1)� (8,0)

= (4,1)

and

fst◦ (��)◦ (�≺) 1,2,3,4,8,7,6,5 = fst (4,1) = 4.

EXAMPLE 7.9 Suppose that instead of finding the element 4 in the previous exam-

ple, it is desired to find the index of the element, which is 4. The baggage is

(lf,lt)

where lf denotes the length found and lt denotes the total length. Redefine the binary

operators so that

a≺ b= (a< b,1)

and

(a,b)� (c,d) =

{
(b+c,b+d) if c �= 0

(a,b+d) otherwise
.

Then

fst◦ (��)◦ (�≺) 1,2,3,4,8,7,6,5

=fst◦ (��) (1,1)(1,1)(1,1)(1,1)(0,1)(0,1)(0,1)

=fst(((1,1)� (1,1))� ((1,1)� (1,1))� ((0,1)� (0,1))� (0,1))

=fst((2,2)� (2,2)� (0,2)� (0,1))

=fst((4,4)� (0,3))

=fst(4,7)

=4.

This overlapping approach based on the join operator could be applied to a class

of problems. Other constructors might be invented which would solve other classes of

SECTION 7.0 FUTUREWORK 199

problems. In principle, many computational patterns could be incorporated into useful

programming templates (involving appropriate constructors).

An empty object was given as a generator. Generators are adequate whenever deal-

ing with only one object. It is unnecessary to invent a function merely to manage a

single object. An empty array was employed for algebraic reasons. A benefit is the

simplification of definitions and programs. For instance, any nonempty 1-array could

be written in the form

(·)(x) ++A

and so definitions and programs for any nonempty 1-array could be written using only

this form. In practice there are trade-offs and an empty object is not strictly required.

An empty object is a useful object. When instructed to remove all the items, it is

appropriate to return an empty object as opposed to an undefined one. There may be

more tolerance for unexpected results as operations should always be defined for an

empty object whenever it is admitted into a formalism.

Although arrays possess a single array type, it is possible to discuss particular

classes of arrays in useful ways. Many sorted arrays or different types could be de-

fined. For instance, it is possible to define an infinite family of empty arrays {[]
n
}

so that []
n

has the new type n-array (instead of defining just one empty array with a

single type), an infinite family of empty functions

εn : unit−→ n-array

by εn (1) = []
n
, reaxk as reaxk,n, which applies only to n-arrays, and ++k as

++k,n which applies only n-arrays. Using more than one type should be avoided,

since the notation may become more cumbersome while the power of the formalism

may not be significantly improved. Simple notation and unifying ideas are beneficial.

Notwithstanding the fact that an array model is a versatile model, it is not all en-

compassing. For example, an infinite sequence,

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,.

does not fit into an array model. Nevertheless, the specification of infinite arrays which

could be used for parameters to operations was discussed.

EXAMPLE 7.10 The infinite 1-array

[f :∞]

cannot be an argument to a map since evidently the result would be an infinite array.

200 FUTUREWORK CHAPTER 7

However, this infinite array could be a parameter to� (bicomp) provided the argument

is a valid 1-array.

A lesson from mathematics is that it is not wise to mix finite and infinite cases.

Although only the finite case was studied, it is possible to develop an algebra for infinite

arrays. An array may regarded as infinite if it can always be extended. This idea seems

reasonable. Limits and sequences may be approached in the same way. A closely

related notion is lazy evaluation for infinite lists. In any case, an array can always be

extended.

Arrays were endowed with regular structures that resemble boxes. Operations may

utilize irregular structures within an array. Theories may be developed for irregular

structures. Instead of trying to construct one universal model, build different models

by finding the right match between the objects and the operations on them.

If several ADTs are available, choose one based upon the common operations that

are performed. The choice hopefully reduces the overall cost(s) in a significant way.

For any particular ADT, only a couple access functions may be relatively inexpensive

compared to other primitives. When developing an algebraic theory, look at models

and primitives based on the common operations that are needed. After analysis of the

kind of operations that are needed, try to find similarities between the data structure

and the program structures.

An ADT solves only a small part of the software dilemma. Essentially the abstrac-

tion is not high enough away from implementation. The data type is hidden behind

access functions so that it is possible to easily rewrite operations or modify the imple-

mentation. However, no tools are provided to help program in the first place, which is

really what is needed.

Consider sets. Various ADTs for sets are well-known. Moreover, numerous im-

plementations are available. Actually the algebra of sets is not complicated and many

ADTs incorporate useful functions (such as union and intersection). Therefore, ADTs

can be successful. Yet the diversity of existing data types attests to the fact that not all

algebras are so simple.

Programming is at the right level for formal program development. In principle,

solutions, especially implicitly parallel ones, may be calculated starting from the spec-

ification of a task. The efficiency of a solution may be improved or geared for a par-

ticular computer model by rewriting the program using laws, which is another benefit

of the approach. In short, the formalism is at the right level for software development

because it provides a useful bridge between tasks and computers.

There are many factors to consider besides particular programming solutions. Any

SECTION 7.0 FUTUREWORK 201

part of a program can be optimized for existing or future computers. Cost analysis

is possible. By studying the programs instead of the tasks, it is possible to optimize

for any particular implementation. While the programs are completely specified, they

allow the freedom to optimize without imposing unneeded details. Engineers can build

computers based on the programs, instead of trying to program based on existing com-

puters or languages. The freedom to implement in different ways is important for

optimization (cf. for example Axford and Joy, 1993, p. 16 on list processing).

There are existing software packages that work quite well. It may be possible to

map primitive operations in the theory to an ADT, or adapt an existing ADT, and find a

corresponding implementation in PASCAL or some other desired language. It is always

possible to modify or extend an existing theory. Thus, while much work lies ahead, it

is likely that there are many libraries, packages and tools that can be used.

There are challenges ahead if algebraic theories are going to be used on a large

scale. There may be resistance to moving away from traditional languages. It is un-

likely that there is some panacea and that the problems are simply going to be resolved

by teaching new languages or even finding more applications.

It is important to learn to get away from the mind-set of the way research is done,

especially the way functions and sets are employed, not just the way programming

is done. Employing other formal notions is one of the attractions of category theory.

Nevertheless, the proper framework for an algebraic theory does not lie so much in any

general theory but rather in the discovery of the right category for each theory.

Be wary of any claims of deep results using category theory as pure theories are

too general. Homomorphisms by definition concern mainly objects and functions that

are equivalent in some sense. If the theory is in fact so general then it is unlikely that

adequate tools are provided which reveal how the theory can be applied in practice. It

is paramount that the theory is relevant and aids in programming.

The programming language should be sufficiently developed. Do not look for prac-

tical results based on a theory that is not specialized enough. Especially, it does not

seem promising if the foundation is based on a complex model or if the theory does

not account many common operations that are appropriate for the data structure.

A satisfactory theory balances abstraction and application. A lesson for computer

scientists from the previous millennium is that software should be designed at the right

level of abstraction. Poor design involves only programming languages, “hacking” and

reverse engineering. On the other hand, theories are overrated, despite their elegance,

whenever they subsume the data type. A favorable proposition is progressive software

design that begins with a data type and ends with an algebraic theory which matches

202 FUTUREWORK CHAPTER 7

suitable program structures with the data structure.

Take the most general point of view possible, even though the model is specific. In

other words, try to get the most out of a specific model. At the same time, avoid in-

troducing notation and classifying every algebraic structure whenever doing so comes

at too high a price relative to the benefits that are reaped. It seems a daunting task to

attempt to classify every operation and every possible structure. Moreover, the benefits

of doing so are unclear, especially in a larger framework that is manageable in size.

The goal is not to develop algebra or category theory but instead to apply the relevant

ideas whenever beneficial to do so.

Using the same basic model of an array it is possible to choose different construc-

tors. There may be good reasons for using different constructors. It is unlikely that

one theory would suffice as costs often depend on the common operations that are

performed.

The primitives should be carefully chosen since the whole theory is built on this

foundation. It is especially important to choose suitable constructors so that it is pos-

sible to obtain useful programming templates for generic programming. A benefit of

using algebra, mainly homomorphisms, is all the parts of the theory that come for free.

Once the primitives have been chosen, much of the programming falls into place. Some

trial and error will likely be needed. There is this controlling mechanism so that the

language cannot expand in some chaotic fashion. When developing a formalism and it

is not possible to define something in terms of the primitives as desired, it is time to go

back and think more carefully about them. When defining a function, in order for it to

fit into the theory some choices are often fairly clear right from the start. Even when

it is not immediately clear how to proceed, most or all issues are eventually resolved.

Many functions are automatically programmed by merely filling-in the necessary parts.

For instance, given the equations

h((·)
n
(x)) = u(x) ,

h(A++kB) = h(A)⊕h(B) ,

by the unique extension property, it suffices to specify u and ⊕ in order to program

h. It is difficult or impossible to provide such programming templates in a low-level

language such as PASCAL as it is necessary to specify types and details that are nones-

sential. On the other hand, such templates can be implemented in any language such as

PASCAL. Due to type constraints of a particular implementation it may be necessary to

copy the code for a particular template for various types; however, all such procedures

are copies except for types.

Homomorphisms are not the only templates for generic programming. The homo-

SECTION 7.0 FUTUREWORK 203

morphism lemma has practical application because it provides a way to partition the

problem and thereby obtain a solution. Perhaps other higher-order functions can be

found which yield a different type of solution. Any parallel algorithm could be studied

in this context.

Despite all of the problems, general systems have proven successful. Nevertheless,

it is important to recognize the limitations and settling only for the current state of

affairs is a delaying action. The choices made today will doubtless have a profound

impact on the future.

The specification of a task is not always trivial compared to the task itself. For

some primitive operations, it is possible to allow some flexibility in the specification of

a task. All operations entail some cost under some model and assumptions. It is vital

that the expected cost not be altered significantly by changing only the specification. A

long definition does not necessarily imply an expensive operation. For example, it may

be more expensive to relabel all indices than extract a small block, though the definition

of reax is much shorter than the definition of block. In a particular application, it might

be desired to eliminate some flexibility which has been introduced if it is not needed

as anyway such revisions do not change the operation fundamentally. Definitions may

be specialized for particular applications.

Any flexibility which might be permissible could be added at the implementation

level or in a particular application. These problems could be totally ignored. However,

the theory should be balanced with practice and experience. Such details should not

be left entirely to an implementation as an understanding of the theory is desirable

to advantageously control software development. On the other hand, there are practi-

cal matters which are better suited to an implementation and for which the theory is

irrelevant and one reason why the theory is independent of any implementation.

A valid approach might be to define operations disallowing any flexibility. At least

it would be easier to define operations and prove that they are correct. It is beneficial

if some guidelines are provided for an implementation that are appropriate for the data

type and the given operation.

Arrays could be expressed via a small number of forms. A measure of success

for any formalism is the number of possible forms. If after experimentation, it is dis-

covered that there are too many forms, then it may be worthwhile to investigate other

primitives before proceeding with development.

Are constructors useful? Besides the fact that useful operations can be defined in

terms of the constructors, perhaps the most convincing evidence in this work is the

lack of indices in programs. It should not be necessary to separate theory from pro-

204 FUTUREWORK CHAPTER 7

gramming practice. The problems in software engineering are well-known. When a

program is needed, it should not be necessary to look for theoretical results, translate

the theory into some algorithm, rewrite in some language, prove it is all correct, and

start all over when porting to a different system. Scientists still write in different lan-

guages and use different software. Naturally this causes communication problems and

makes it difficult to compare and to check results. By taking the proposed approach

to programming, it is possible for scientists to communicate more effectively. They

can share not only the programs but also the proofs. While there are many challenges

ahead, the potential benefits of using an algebraic theory should not be dismissed as

there are important ramifications for both software development and research in the

future.

205

REFERENCES

Aho, A.

1982. Data Structures and Algorithms. Reading, Massachusetts: Addison-Wesley.

Alexander, B., D. Englehardt, and A. Wendelborn

1995. An overview of the Adl language project. In High Performance Functional

Computing, A. P. W. Bohm and J. T. Feo, eds., Pp. 73–82.

Arvind, R. Nikhil, and K. Pangali

1989. I-structures: Data structures for parallel computing. ACM Transactions on

Programming Languages and Systems, 11(4):589–632.

Axford, T. and M. Joy

1993. List processing primitives for parallel computation. Comput. Lang., 19(1):1–

17.

Backhouse, R.

1989. An exploration of the Bird-Meertens Formalism. In International Summer

School on Constructive Algorithmics, Ameland, The Netherlands.

Backhouse, R. and P. Hoogendijk

1993. Elements of a relational theory of datatypes. In Formal Program Develop-

ment, B. Möller, H. Partsch, and S. Schuman, eds., volume 755 of Lecture Notes in

Computer Science, Pp. 7–42. IFIP TC2/WG 2.1, Springer-Verlag. State of the Art

Seminar, Rio de Janeiro, Jan. 1992.

Backhouse, R. C., P. J. de Bruin, P. Hoogendijk, G. Malcolm, T. S. Voermans, and

J. C. S. P. van der Woude

1991. Relational catamorpisms. In Constructing Programs from Specifications,

B. Möller, ed., Pp. 287–318.

Backus, J.

1978. Can programming be liberated from the von neumann style? a functional style

and its algebra of programs. Communications of the ACM, 21(8):613–641.

Backus, J.

1981. The algebra of functional programs: Function level reasoning, linear equa-

tions, and extended definitions. In Formalization of Programming Concepts, volume

107 of Lecture Notes in Computer Science, Pp. 1–43. Springer.

206 REFERENCES

Banger, C.

1992. Arrays with categorical type constructors. In ATABLE’92, Pp. 105–121.

Banger, C.

1994. Construction of multidimensional arrays as Categorical Data Types. PhD

thesis, Queen’s University, Kingston, Canada.

Banger, C. R. and D. B. Skillicorn

1992. Flat arrays as a categorical data type. unpublished.

Banger, C. R. and D. B. Skillicorn

1993. A foundation for theories of arrays. unpublished.

Barth, P. S., R. Nikhil, and Arvind

1991. M-Structures: Extending a Parallel, Non-Strict Functional Language with

State. In FPCA’91, Cambrige, Massachusetts, volume 523 of Lecture Notes in Com-

puter Science, Pp. 538–568. Springer-Verlag.

Bird, R.

1984. The promotion and accumulation strategies in transformational programming.

acm Transactions on Programming Languages and Systems, 6(4):487–504.

Bird, R.

1986. Transformational programming and the paragraph problem. Science of Com-

puter Programming, 6(2):159–189.

Bird, R.

1988. Lectures on constructive functional programming. Technical Monograph PRG

69, Oxford University.

Bird, R.

1990. A calculus of functions for program derivation. In Research Topics in Func-

tional Programming, D. A. Turner, ed., University of Texas at Austin Year of Pro-

gramming Series, Pp. 287–307. New York, N.Y.: Addison-Wesley.

Bird, R. and O. de Moor

1997. Algebra of Programming, volume 100 of International Series in Computer

Science. Prentice Hall.

Bird, R., O. de Moor, and P. Hoogendijk

1996. Generic functional programming with types and relations. Journal of Func-

tional Programming, 6(1):1–28.

Bird, R. and L. Meertens

1987. Two exercises found in a book on algorithmics. In Program Specification and

Transformations, L. Meertens, ed., Pp. 451–457. North Holland.

Bird, R. and L. Meertens

1998. Nested datatypes. In Fourth International Conference on Mathematics of

Program Construction, MPC’98, Marstrand, Sweden, J. Jeuring, ed., volume 1422

of Lecture Notes in Computer Science, Pp. 52–67.

REFERENCES 207

Bird, R. and R. Paterson

1999a. de bruijn notation as a nested datatype. Journal of Functional Programming,

9(1):77–91.

Bird, R. and R. Paterson

1999b. Generalized folds for nested datatypes. Formal Aspects of Computing,

11(2):200–222.

Bird, R. S.

1987. An introduction to the theory of lists. In Logic of Programming and Calculi

of Discrete Design, M. Broy, ed., volume 36 of NATO ASI Series F, Pp. 3–42.

Springer-Verlag.

Bird, R. S.

1989a. Algebraic identities for program calculation. The Computer Journal,

32(2):122–126.

Bird, R. S.

1989b. Lectures on constructive functional programming. In Constructive Methods

in Computing Science, M. Broy, ed., volume 55 ofNATOASI Series F, Pp. 151–216.

Springer-Verlag.

Blelloch, G.

1990. Vector Models for Data-Parallel Computing. Cambridge, Massachusetts: The

MIT Press.

Bratvold, T.

1994. Parallelising a functional program using a list-homomorphism skeleton. In

Proceedings of PaSCo94, H. Long, ed., Pp. 44–53, Linz, Austria. World Scientific

Publishing Company.

Bratvold, T. A.

1992. Determining Useful Parallelism in Higher Order Functions. In 4th In-

ternational Workshop on the Parallel Implementation of Functional Languages,

H. Kuchen and R. Loogen, eds., Aachener Informatik-Berichte Nr 92-19, Pp. 213–

226, Aachen, Germany.

Burstall, R. and P. Landin

1969. Programs and their proofs: an algebraic appoach. In Machine Intelligence,

volume 4, Pp. 17–43. American Elsevier.

Campbell, D. K. G.

1997. A survey of models of parallel computation. Technical Report YCS-278,

University of York.

Chamberlain, B. L., S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and W. D. Weathersby

1998. The case for high level programming in zpl. volume 5, Pp. 76–86.

Chamberlain, B. L., E. C. Lewis, C. Lin, and L. Snyder

1999. Regions: An abstraction for expressing array computation. In 1999 ACM

SIGAPL/SIGPLAN International Conference on Array Programming Languages.

208 REFERENCES

Codd, E. F.

1970. A relational model of data for large shared data banks. Communications of

the ACM, 13(6):377–387.

Cole, M.

1993. Parallel programming, list homomorphisms and the maximum segment sum

problem. Technical Monograph CSR-25-93, The University of Edinburgh.

Cole, M.

1995. Parallel programming with list homomorphisms. Parallel Processing Letters,

5(2):191–203.

Coppersmith, D. and S. Winograd

1990. Matrix multiplication via arithmetic progressions. Journal of symbolic com-

putation, 9(3):251–280.

Davis, P. and R. Hersh

1981. The Mathematical Experience. Boston, Massachusetts: Birkhäuser.

Duff, Z. N. G. and P. Harrison

1996. Parallelism via homomorphism. Parallel Processing Letters, 6(2):279–295.

Eriksson-Bique, S.

1998. Digit serial computations via homomorphisms. In Proceedings of PART ’98:

The 5th Australasian Conference on Parallel and Real-Time Systems, K. Hawick and

H. James, eds., Pp. 389–400, University of Adelaide, Adelaide, Australia. Springer-

Verlag Singapore Pte. Ltd.

Fokkinga, M. M.

1996. Datatype laws without signatures. Mathematical Structures in Computer

Science, 6:1–32.

Goguen, J.

1977. Initial algebra semantics and continuous algebras. Journal of the Association

for Computing Machinery, 24(1):68–95.

Gorlatch, S.

1996a. Systematic efficient parallelization of scan and other list homomorphisms.

In Annual European Conference on Parallel Processing, volume 1124 of Lecture

Notes in Computer Science, Pp. 401–408. Springer-Verlag. Lyon, France.

Gorlatch, S.

1996b. Systematic extraction and implementation of divide-and-conquer paral-

lelism. In Conference on Programming Languages: Implementation, Logics and

Programs, volume 1140 of Lecture Notes in Computer Science, Pp. 274–288.

Springer-Verlag.

Gorlatch, S. and C. Lenguaer

1995. Parallelisation of divide-and-conquer in the Bird-Meertens Formalism. For-

mal Aspects of Computing, 7(6):663–682.

REFERENCES 209

Hagino, T.

1987. Category Theoretic Approach to Data Types. PhD thesis, University of Edin-

burgh.

Hains, G. and L. M. R. Mullin

1991. An algebra of multidimensional arrays. Technical Report 782.

Harrison, P.

1992. Higher order approach to parallel algorithms. The Computer J., 35(6):555–

566.

Hinze, R.

1999. Polytypic functions over nested datatypes. Discrete Mathematics and Theo-

retical Computer Science, 3(2):159–180.

Hu, Z., H. Iwasaki, and M. Takeichi

1994. Catamorphism based transformation of functional programs. In Technical

Report of IEICE, Pp. 49–56.

Hu, Z. and M. Takeichi

1999. Calculating an optimal homomorphic algorithm for bracket matching. Parallel

Processing Letters, 9(1).

Hu, Z., M. Takeichi, and W. N. Chin

1998a. Parallelization in calculational forms. In 25th ACM Symposium on Principles

of Programming Languages, Pp. 316–328, San Diego, California, USA.

Hu, Z., M. Takeichi, and H. Iwasaki

1997. Formal derivation of efficient parallel programs by construction of list homo-

morphisms. 19(3):444–461.

Hu, Z., M. Takeichi, and H. Iwasaki

1998b. Towards polytypic parallel programming. Technical Report METR 98-09,

Department of Information Engineering, University of Tokyo, Japan.

Hudak, P.

1986. Para-functional programming. Computer, 19(8):60–70.

Hughes, J.

1991. Functional programming with bananas, lenses, envelopes, and barbed wire.

In FPCA’91: Functional Programming Languages and Computer Architecture,

E. Meijer, M. M. Fokkinga, and R. Paterson, eds., volume 523 of Lecture Notes

in Computer Science, Pp. 124–144. Springer-Verlag.

Hutton, G.

1999. A tutorial on the universality and expressiveness of fold. Journal of Functional

Programming, 9(4):355–372.

Iverson, K.

1962. A Programming Language. New York: John Wiley and Sons.

210 REFERENCES

Jain, A.

1989. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice

Hall.

JáJá, J.

1992. An Introduction to Parallel Algorithms. Reading, Massachusetts: Addison-

Wesley Publishing Company.

Jansson, P.

2000. Functional Polytypic Programming. PhD thesis, Computing Science,

Chalmers University of Technology and Göteborg University, Sweden.

Jay, C., M. Cole, M. Sekanna, and P. Steckler

1997. A monadic calculus for parallel costing in a functional language of arrays.

In Euro-Par’97 Parallel Processing, C. Lengauer, M. Griebl, and S. Gorlatch, eds.,

volume 1300 of Lecture Notes in Computer Science, Pp. 650–651. Springer.

Jay, C. B. and J. Cockett

1994. Shapely types and shape polymorphism. In Programming Languages and

Systems - ESOP’94, D. Sannella, ed., volume 788 of Lecture Notes in Computer

Science, Pp. 302–316. Springer-Verlag.

Jenkins, M., J. Glasgow, and C. McCrosky

1986. Programming styles in nial. IEEE Software, 3(1):46–55.

Kolesnikov, A. and E. Trishina

1995. A parallel algorithm for thinning of binary images. In Optoelectronics, In-

strumentation and Data Processing, number 6, Pp. 7–13.

Kumar, K. and D. Skillicorn

1995. Data parallel geometric operations on lists. Parallel Computing, 21:447–459.

Lambeck, J.

1968. A fixpoint theorem for complete categories. Mathematische Zeitschrift,

103:151–161.

Lehmann, D. J. and M. B. Smyth

1981. Algebraic specification of data types: A synthetic approach. Mathematical

Systems Theory, 14:97–139.

Lin, C. and L. Snyder

1993. Zpl: An array sublanguage. In Proceedings of the Sixth International Work-

shop on Languages and Compilers for Parallel Computing, U. Banerjee, D. Gelern-

ter, A. Nicolau, and D. Padua, eds., Pp. 96–114.

Malcolm, G.

1989. Homomorphism and promotability. InMathematics of Program Construction

1989, J. van de Snepscheut, ed., Lecture Notes in Computer Science 375, Pp. 335–

347. Springer-Verlag.

Malcolm, G.

1990a. Algebraic Data Types and Program Transformation. PhD thesis, Rijksuni-

versiteit Groningen.

REFERENCES 211

Malcolm, G.

1990b. Data structures and program transformation. Science of Computer Program-

ming, 14:255–279.

Malcolm, G.

1997. Hidden algebra and systems of abstract machines. In Proceedings NewModels

for Software Architecture (IMSA97). Information-technology Promotion Agency.

Manes, E. G. and M. A. Arbib

1986. Algebraic approaches to Program Semantics, Text and Monographs in Com-

puter Science. Berlin: Springer-Verlag.

Meertens, L.

1986. Algorithmics - towards programming as a mathematical activity. In Proceed-

ings of the CWI Symposium on Mathematics and Computer Science, J. de Bakker,

M. Hazewinkel, and J. Lenstra, eds., volume 1 of CWI Monographs, Pp. 289–334.

North Holland.

Meertens, L.

1996. Calculate polytypically! In PLILP’96, volume 1140 of Lecture Notes in

Computer Science, Pp. 1–16. Springer-Verlag.

Meijer, E. and J. Jeuring

1995. Merging monads and folds for functional programming. In Advanced Func-

tional Programming, AFP’95, volume 925 of Lecture Notes in Computer Science,

Pp. 228–266. Springer-Verlag.

Miller, R.

1993. A Constructive Theory of Multidimensional Arrays. PhD thesis, Lady Mar-

garet Hall, Oxford.

More, T.

1973. Axioms and theorems for a theory of arrays. Technical Report 2, IBM Journal

of Research and Development.

More, T.

1979. The nested rectangular array as a model of data. In APL 79, APL Quote Quad,

number 4, Pp. 55–73. ACM, Inc.

More, T.

1986a. Notes on the diagrams, logic, and operations of array theory. Technical

Report G230-2137, IBM Cambridge Scientific Center Technical Report.

More, T.

1986b. On the development of array theory. Technical report, IBM Cambridge

Scientific Center Technical Report.

Mou, Z.

1990a. Divacon: A parallel language for scientific computing based on divide and

conquer. In The 3rd Symposium on the Frontiers of Massively Parallel Computation,

J. JáJá, ed., Pp. 451–461, Los Almitos, CA. IEEE Computer Society.

212 REFERENCES

Mou, Z.

1990b. A Formal Model for Divide-and-Conquer and Its Parallel Realization. PhD

thesis, Yale University.

Mou, Z. and P. Hudak

1988. An algebraic model for divide-and-conquer algorithms and its parallelism.

Journal of Supercomputing, 2(3):257–278.

Mullin, L. and M. Jenkins

1991. A comparison of array theory and a mathematics of arrays. In Arrays, Func-

tional Languages and Parallel Systems., Pp. 237–269. Kluwer Academic Publish-

ers.

Mullin, L. M. R.

1988. A Mathematics of Arrays. Doctoral dissertation, Syracuse University, Syra-

cuse, New York.

Noble, B. and J. Daniel

1992. Applied Linear Algebra, third edition. Englewood Cliffs, New Jersey:

Prentice-Hall.

Okasaki, C.

1998. Purely Functional Data Structures. Cambridge, UK: Cambridge University

Press.

Paige, R.

1983. Transformational programming — applications to algoritms and systems. In

Conference Record of the 10th Annual ACM Symposium on POPL, Pp. 73–87.

Pfeifer, H. and H. Rueá

1999. Polytypic proof construction. In Proceedings of the 12th International

Conference on Theorem Proving in Higher Order Logics, Y. Brelot, G. Dowek,

A. Hirschowitz, C. Paulin, and L. ThĆry, eds., volume 1690 of Lecture Notes in

Computer Science, Pp. 55–72. Springer-Verlag.

Pierce, B.

1991. Basic Category Theory for Computer Scientists. Cambridge, MA: The MIT

Press.

Reynolds, J.

1979. Reasoning about arrays. Communications of the ACM, 22(5):290–299.

Skillicorn, D.

. Foundations of Parallel Programming, Cambridge Series in Parallel Computation

6. Cambridge University Press.

Skillicorn, D.

1990. Architecture-independent parallel computation. IEEE Computer, 23(12):38–

51.

REFERENCES 213

Skillicorn, D.

1993. The Bird-Meertens Formalism as a parallel model. In Software for Parallel

Computation, J. Kowalik and L. Grandinetti, eds., volume 106 of NATO ASI Series

F. NATOWorkshop on Software for Parallel Computation, Springer-Verlag.

Skillicorn, D.

1994a. Categorical data types. In Second Workshop on Abstract Models for Highly

Parallel Computation. Oxford University Press. Leeds, April 1993.

Skillicorn, D.

1994b. Foundations of Parallel Programming, Cambridge Series in Parallel Com-

putation 6. Cambridge University Press.

Skillicorn, D.

1994c. Questions and answers about categorical data types. invited paper at Meeting

on Bulk Data Types for Architecture Independence, Parallel Processing Specialist

Group, British Columbia Society, University of London.

Skillicorn, D.

1995. Towards a higher level of abstraction in parallel programming. In Proceed-

ings of the Programming Models for Massively Parallel Computers (PMMP ’95),

Pp. 78–85. IEEE CS Press. Berlin, Germany, October 1995.

Skillicorn, D. and W. Cai

1994. Equational code generation: Implementing categorical data types for data

parallelism. In Proceedings of TENCON’94, Singapore.

Skillicorn, D. and W. Cai

1995. A cost calculus for parallel functional programming. J. Parallel and Distrib-

uted Computing, 28(1):65–83.

Skillicorn, D. B.

1992. Parallelism and the Bird-Meertens Formalism. Kingston, Ontario: Depart-

ment of Computing and Information Science, Queen’s University.

Skillicorn, D. B. and D. Talia

1998. Models and languages for parallel computation. ACM Computing Surveys,

30(2):123–169.

Smith, M. and G. Plotkin

1982. The category-theoretic solution of recursive domain equations. SIAM Journal

of Computing, 11(4):761–783.

Spindler, K.

1994. Abstract Algebra with Applications: Vector spaces and groups, volume 1.

New York: Marcel Dekker, Inc.

Spivey, M.

1989. A categorical approach to the theory of lists. InMathematics of Program Con-

struction, J. L. A. van de Snepscheut, ed., volume 375 of Lecture Notes in Computer

Science, Pp. 399–408.

214 REFERENCES

Trichina, E. and S. Eriksson-Bique

1998. Calculus of locality based computations for custom computing machines.

In Proceedings of the 8th International Parallel Computing Workshop (PCW ’98),

Y. Teo, M. Feng, T. Ling, and E. Loh, eds., Pp. 259–266, School of Computing,

National University of Singapore. Fujitsu Computers (Singapore) Pte. Ltd.

Trichina, E. and S. Eriksson-Bique

1999. Parallel solution to parentheses and pattern matching via near homomor-

phisms. Australian Computer Science Communications, 21(1):205–216.

Tu, H.-C.

1986. Fac: A functional apl language. IEEE Software, 3(1):36–45.

Wadler, P.

1981. Applicative style programming, program transformation, and list operators.

In Proceedings ACMConference on Functional Programming Languages and Com-

puter Architecture, Pp. 25–32. ACM. Portsmouth, New Hampshire, Oct. 18-22.

Walters, R.

1991. Categories and Computer Science. Cambridge University Press.

215

APPENDIX

This appendix contains rigorous proofs of statements that were made in the main

text. The proofs are arranged in the same order that they appear in the text.

CLAIM Any n-array may be transformed into a n-array with unique elements.

PROOF Let A = [a | (t : n)] be any nonempty array. Employ the usual method to

transform a multiset into a set. Put ̂A= [â | (t : n)] where

â(i : n) = ((i : n),a(i : n)) .

Every element of ̂A is unique as every element is associated with a unique label. It is

not possible to distinguish between A and ̂A by inspection of fundamental properties

such as the number of elements, the valency, the shapes, or the length of any axis.

In addition, there is a one-to-one correspondence between subarrays of A and

subarrays of ̂A. In particular, if B = [b | (s : n)] is a subarray of A, then ̂B =[
b̂ | (s : n)

]
is a subarray of Â where b̂(i : n) = ((i : n),b(i : n)). Moreover,

the process is reversible: if B̂ =
[
b̂ | (s : n)

]
is a subarray of Â with b̂(i : n) =

((i : n),c(i : n)), then B= [c | (s : n)] is a subarray of A.

There is a naturality condition determined by applying any function f : α→ β to

the elements as indicated by the following commuting diagram

A
∗f
� B

Â

̂
�

∗̂f
� B̂

̂
�

where ˆ is a natural transformation of an array B into an array B̂ with unique

elements and

∗f [a | (t : n)] = [b | (t : n)] ,

b(i : n) = f(a(i : n)) ,

216 APPENDIX

∗̂f [â | (t : n)] =
[
b̂ | (t : n)

]
,

and

b̂(i : n) = ((i : n),f(a(i : n))) .

Hence, there is an equivalence between a multiarray and a map with a unique array

and another map.

LEMMA The tau shift, a conditional n-tuple and delete are well-defined. In addition,

move right is injective and for all p ∈ S

�k ◦�k p= id
F
k

S

.

PROOF Let k ∈ N, p ∈ Z and take T ∈ Zn. Write T = (t : n). If k ≤ n then

tk+p−1 ∈ Z and so define

τk (p)T= (f : n)

where

fp =

{
tp if p �= k

tk+p−1 if p= k
,

which is well-defined since it is a linear function of the ti’ s. If k> n then

τk (p)T= T.

The component functions are well-defined since they are linear (identity functions) by

inspection. It has been established that τk is well-defined.

If m ∈ Z and T= (t : n) is a n-tuple for Z then

(T;tk = m) = (t : n;tk = m)

= τk (m+1−tk)(t : n)

is a valid n-tuple for Z since τk is well-defined.

Suppose

�k p (s : m) =�k (q)(t : n) .

If k ∈ ι n, by definition

�k p (s : m) = (g : m+1)

where

gi =


si if i< k

p if i= k

si−1 if i> k

.

Similarly, if k ∈ ι n, by definition

�k q (t : n) = (h : n+1)

APPENDIX 217

where

hi =



ti if i< k

q if i= k

ti−1 if i> k

.

As

�k p (s : m) =�k q (t : n) ,

it follows that

(g : m+1) = (h : n+1) .

Hence, m+1= n+1 and gi = hi, which implies m= n and si = ti whence

(s : n) = (t : n) .

If k> n then

�k p (s : m) = (g : m+1)

where

gi =

{
si if i �= m+1

p if i= m+1
.

Similarly, for k ∈ ι n by definition if k> n then

�k q (t : n) = (h : n+1)

where

gi =

{
ti if i �= n+1

q if i= n+1
.

As

�k p (s : m) =�k q (t : n)

it follows that

(g : m+1) = (h : n+1) .

Thus, m+1= n+1 and gi = hi, which implies m= n and si = ti; whence,

(s : n) = (t : n) .

This proves that �k is injective.

Let (t : n) ∈ Sn with n≥ 2. If k ∈ ι n then

�k (t : n) = (ρ : n−1)

where

ρq =

{
tq if q< k

tq+1 if q≥ k
,

which is a well-defined linear function. If k> n then

�k T= T

218 APPENDIX

is well-defined. This shows that �k is well-defined.

If k ∈ ι n then by definition

(�k ◦�k p) (t : n) = �k (t1,.,tk−1,p,tk,tk+1,.,tn) = (t : n) .

If k> n then by definition

(�k ◦�k p) (t : n) =�k (t : n)

= (t : n) .

This verifies that for all p ∈ S,

�k ◦�k p= id
F
k

S

and completes the proof.

CLAIM Two locations L1 and L2 are adjacent for k if and only if for some

T= (t : n),

L1 = τk (p)T, L2 = τk (q)T and |p−q|= 1.

PROOF Suppose L1 = (i : n) and L2 = (j : n) are adjacent for k. Then

(j : n) = (i : n;ik = jk) .

with |ik−jk|= 1. By TM,

T= (i : n;ik = 1) ,

and

τk (ik)T= (i : n) ,

τk (jk)T= (j : n) .

This proves the necessity. For the sufficiency, suppose for some T= (t : n),

τk (p)T= L1, τk (q)T= L2 and |p−q|= 1.

Write

L1 = (i : n) ,

L2 = (j : n) .

APPENDIX 219

Then

L1 = τk (p)T= (t : n;tk = tk+p−1) ,

L2 = τk (q)T= (t : n;tk = tk+q−1) .

By inspection,

im = tm = jm

for all m �= k and

|ik−jk|= |(tk+p−1)− (tk+q−1)|

= |p−q|

= 1.

This completes the proof.

LEMMA The tau identities hold always.

PROOF If T= (t : n) is any n-tuple for Z then

τk (1)T= (t : n;tk = tk+1−1)

= (t : n;tk = tk)

= T,

which shows τk (1) = idZn . In particular,

a◦ τk (1)(i : n) = a(i : n) .

This proves [a |τk (1)T] = [a |T] = [a◦ τk (1) |T].

If k ∈ ι n, then τk (p)◦ τk (q)(t : n)
= τk (p)(t : n;tk = tk+q−1) by definition of τ

= (t : n;tk = tk+q−1+p−1) by definition of τ

= (t : n;tk = tk+(p+q−1)−1) by commutativity

= τk (p+q−1)(t : n) by definition of τ .

If k> n, then

τk (p)◦ τk (q)(t : n) = τk (p)(t : n) by definition of τ

= (t : n) by definition of τ

= τk (p+q−1)(t : n) by definition of τ .

220 APPENDIX

This proves τk (p)◦ τk (q) = τk (p+q−1). Calculate

τk (q)◦ τk (2−q) = τk (2−q)◦ τk (q) by TIP.

Hence, (τk (q))
−1 = τk (2−q). Consequently,

τk (p)◦ (τk (q))
−1 = (τk (p)◦ τk (2−q)) = τk (p+1−q) by TIP.

If k ∈ ι n+1 then

τk (p)◦�k (1)(t : n) =τk (p)(t1,.,tk−1,1,tk,.,tn)

=(t1,.,tk−1,p,tk,.,tn)

= �k (p)(t : n) .

Lastly,

τ (n)1= 1+n−1= n.

Observe that τk (p) always shifts the kth component whenever it is 1 to p.

LEMMA For any n-array [a | (t : n)] and for any m with 1≤ m< tk,

[a | (t : n)] = [a |τk (m)T] ++k [a◦ τk (m+1) |τk (tk−m)T] .

where T= (t : n;tk = 1).

PROOF Choose m with 1≤ m< tk. Then

τk (m)T= (t : n;tk = m) and τk (tk−m)T= (t : n;tk = tk−m) by TM.

By definition,

[a |τk (m)T] ++k [a◦ τk (m+1) |τk (tk−m)T]

= [d | (t : n;tk = m+tk−m)]

= [d | (t : n)]

where

d(i : n) =

{
a(i : n) if 1≤ ik ≤ m

a◦ τk (m+1)(i : n;ik = ik−m) if m< ik ≤ tk
.

Evidently,

a◦ τk (m+1)(i : n;ik = ik−m) = a(i : n;ik−m+(m+1−1))

= a(i : n) ,

APPENDIX 221

and [d | (t : n)] = [a | (t : n)].

CLAIM The scalar function (·)
n

is injective for every n ∈N.

PROOF Choose n ∈N. Suppose (·)
n
(x) = (·)

n
(y). Write (·)

n
(x) =

[
a |�n

]
with

a
(
�n

)
= x and (·)

n
(y) =

[
b |�n

]
with b

(
�n

)
= y. By the definition of equality for

arrays, a
(
�n

)
= b

(
�n

)
; whence x= a

(
�n

)
= b

(
�n

)
= y.

CLAIM The function reaxk is injective for every k ∈N.

PROOF Let k ∈N. Assume

(1) reaxkA= reaxkB.

Write A= [a | (t : n)] as reaxk is defined only for n-arrays. By definition,

reaxk [a | (t : n)] = [a◦ �k | �k (1)(t : n)] .

As reaxk B= reaxk A,

(2) reaxkB=
[
b̃ |S

]

with

S =�k (1)(t : n)

and

(3) b̃ ◦�k (1)(i : n) = a ◦ �k ◦�k (1)(i : n) .

Write B= [b | (s : m)]. By definition,

(4) reaxk [b | (s : m)] = [b◦ �k | �k (1)(s : m)]

In view of equations (2) and (4),

(5) �k (1)(s : m) =�k (1)(t : n) and b̃(q) = b◦ �k (q)

for all valid locations q. As �k is injective,

m= n and sq = tq.

222 APPENDIX

Now B= [b | (t : n)] and

b(i : n) = b ◦ �k ◦�k (1)(i : n) by equation (4)

= b̃ ◦�k (1)(i : n) by equation (5)

= a ◦ �k ◦�k (1)(i : n) by equation (3)

= a(i : n) by DR.

These equations show that B= A, which completes the proof.

CLAIM Concatenation is well-defined.

PROOF Suppose A,B ∈ A∗, choose k ∈ N and consider A++k B. If A = � and

B �= � , then

A++k B= B.

If A �= � and B= � , then

A++k B= A.

If A = � and B = � then the result is either A or B. Since A= B, in each case,

the result is unique. Assume A �= � and B �= � .

Write A = [a | (t : n)]. Now by inspection of the definition, concatenation is de-

fined only if B can be expressed as B= [b | (t : n;tk = m)] for some m ∈N. By defin-

ition,

A++k B= [c | (t : n;tk = tk+m)] ,

where

c(i : n) =

{
a(i : n) if 1≤ ik ≤ tk

b(i : n;ik = ik−tk) if tk < ik ≤ tk+m
.

Evidently, (t : n;tk = tk+m) is a valid n-tuple since tk+m∈N and tq ∈N
for q �= k by assumption. Let (i : n) ∈ P(t : n;tk = tk+m). If ik ≤ tk then by

inspection,

(i : n) ∈ P(t : n)

whence c(i : n) = a(i : n) is well-defined. If ik > tk then by inspection

(i : n) ∈ P(t : n;tk = tk+m)⇒ tk < ik ≤ tk+m,

whence

0= tk−tk < ik−tk ≤ tk+m−tk = m,

which implies

1≤ ik−tk ≤ m.

By inspection, c(i : n) = b(i : n) is well-defined.

APPENDIX 223

CLAIM The function size is well-defined.

PROOF Let A ∈A∗. If A= � then

size A= size � = 0

is constant. Assume A �= � . Write A= [a | (t : n)]. Then

size A= size [a | (t : n)] =
n∏

i=1

ti,

which is known to be well-defined.

CLAIM The function shape is well-defined.

PROOF Let A ∈A∗. If A= � then

shape A= �

is constant. Assume A �= � . Write A= [a | (t : n)]. Then,

shape A= [t : n] ,

which is well-defined since t is a sequence and n is a 1-tuple ˙

CLAIM The function length is well-defined.

PROOF Let k ∈N. Let A ∈A∗. If A= � then

length
k
A= length

k � = 0

is constant. Assume A �= � . Write A= [a | (t : n)]. If k> n, then

length
k
A= 0

is constant; otherwise,

length
k
A= length

k
[a | (t : n)] = tk,

which is well-defined since it is a linear combination of the ti’ s.

CLAIM The function axes is well-defined.

224 APPENDIX

PROOF Let A ∈A∗. If A= � then

axes A= axes � = 0

is constant. Assume A �= � . Write A= [a | (t : n)]. By definition

axes A= axes [a | (t : n)] = n,

which is well-defined since the number of components in a n-tuple is well-defined.

CLAIM The function selector fn is well-defined.

PROOF Let A= [a |T]. Let (i : n) ∈ P(T). Then

(fn A)(i : n) = fn [a |T] (i : n)

= a|
P(T) (i : n)

= a(i : n) ,

which is well-defined since [a |T] is a n-array.

LEMMA The function collapse is well-defined. Furthermore, if A is any hyperplane

for the k-axis, then

reaxk ◦collapsek A= A.

If A is any n-array and k ∈ ι (n+1), then

collapse
k
◦ reaxkA= A.

PROOF Let k ∈N and let A ∈H. Using Definition 3.20, write

A= [a |�k (1)(t : n)] .

Then

(6) collapse
k
A= [a ◦�k (1) | (t : n)] .

Evidently the result is well-defined since �k is well-defined and a is an array

function which is defined on P(�k (1)(t : n)).

In addition,

reaxk ◦collapsek A= reaxk [a ◦�k (1) | (t : n)]

= [a ◦�k (1)◦ �k | �k (1)(t : n)]

APPENDIX 225

where

(a ◦�k (1)◦ �k)◦�k (1)(i : n)

= a ◦�k (1)◦ (�k ◦�k (1))(i : n) since ◦ is associative

= a ◦�k (1)(i : n) by DR

whence reaxk ◦collapsek A= A.

Let A be any n-array. If k ∈ ι (n+1), then by Definition 3.12,

reaxk [a | (t : n)] = [a ◦ �k | �k (1)(t : n)]

By Definition 3.20,

collapse
k
[a◦ �k | �k (1)(t : n)] = [a ◦ �k ◦�k (1) | (t : n)]

= [a | (t : n)] by DR

wherefore

collapse
k
◦ reaxkA= A,

which completes the proof.

CLAIM The function index is well-defined.

PROOF Suppose A ∈AY. Write A= [a | (t : n)]. Let [i : m] ∈AN. If m �= n then

(i : m) /∈ P(t : n)

since (t : n) ∈Nn has precisely n components. In this case,

index A [i : m]

is not defined. Assume m= n. If

(i : n) /∈ P(t : n)

then again index A [i : n] is not defined. If (i : n) ∈ P(T) then

index A [i : n] = a(i : n) ,

which is well-defined since A ∈AY.

CLAIM The function ax is well-defined.

226 APPENDIX

PROOF Let k ∈N. Suppose A= [a | (t : n)] ∈A. By definition

axk [a | (t : n)] [� : n] = [a◦� : tk] ,

The destructor ax is defined only if k ∈ ι n. Plainly, �k = 1 and

�q ≤

{
tq if 1≤ q< k

tq+1 if k< q< n
.

The result [a◦� : tk] ∈ A provided a ◦� is defined on P(tk) since tk ∈ N. If
1≤ j≤ tk then

�(j) = τk (j)(� : n)

= (�1,.�k−1,j,�k+1,.,�n)

is a valid location for a by inspection, completing the proof.

CLAIM The function block is well-defined.

PROOF Let S ∈A∗

Z
and U ∈A∗

N
and let A be any array. If A= � then

block S U A= block S U � = �

is constant. Assume A �= � . Write A= [a | (t : n)]. By Definition 3.23,

block S U A= C

If S �= � , then write S= [s : ms], which is possible since S ∈AZ. Set

σi = si for 1≤ i≤ ms.

If S= � , then put ms = 0. For ms < k≤ n, let σk = 0. Calculate

s′

k =


σk if σk ≥ 0

tk+σk+1 if − (tk+1)≤ σk < 0

tk if σk <−(tk+1)

.

By inspection s′

k is defined for all possible values of σk. Furthermore, s′

k ≥ 0 (in

the last case note tk ∈N). For k ∈ ι n,

0≤ ŝk =min
{
s′

k,tk
}
≤ tk.

If ŝk = tk for any k then the result is

C= �

is constant. Assume ŝk < tk for all k since ŝk ≤ tk. If U �= � , then write

APPENDIX 227

U= (mu,u) and set

µi = ui for 1≤ i≤ mu;

otherwise, set mu = 0. For mu < k≤ n, set µk = tk. Then compute

ûk =min{µk,tk− ŝk} , k ∈ ι n.

If ûk ≤ 0 for any k then C= � ; otherwise,

C= [c | (û : n)] ,

where

c(i : n) = a

(
γi,ŝ : n

)
and

γi,ŝ =+◦ (i,ŝ) .

By construction,

1≤ ûq =min
{
µq,tq− ŝq

}
≤ tq− ŝq.

By the previous work,

0≤ ŝq < tq

and this implies

tq− ŝq ≤ tq.

Since

1≤ ûq

(û : n) is a valid n-tuple L̇et (i : n) ∈ P(û : n). By inspection,

1+0≤ iq+ ŝq ≤ ûq+ ŝq ≤ (tq− ŝq)+ ŝq = tq

which proves 1≤ iq+ ŝq ≤ tq; consequently,(
γi,ŝ : n

)
= (i1+ ŝ1,.,in+ ŝn)

is valid and a
(
γi,ŝ : n

)
is well-defined, which completes the proof.

CLAIM The function slice is well-defined.

PROOF Choose k ∈N and p ∈ Z. Let A ∈A. If A= � then

slicek p � = �

is constant. Assume A �= � . Write A = [a | (t : n)]. If k /∈ ι n or |p| /∈ ι tk, then
by definition

slicek p A= �

228 APPENDIX

is constant; otherwise,

slicek p A= [â | (t : n;tk = 1)]

where

q=

{
p if 1≤ p≤ tk

tk+p+1 if −tk ≤ p≤−1

and

â(i : n;ik = 1) = a(i : n;ik = q) .

Assume k ∈ ι n or |p| ∈ ι tk. By inspection 1≤ q≤ tk. Consequently, q is a valid

index. It follows at once that

â(i : n;ik = 1) = a(i : n;ik = q)

is well-defined, which completes the proof.

CLAIM The function take is well-defined.

PROOF Let A ∈A∗, B ∈A∗
Z

and k ∈N. Consider

C= takek B A.

If A= � or B= � then by Definition 3.25, C = � is constant. Assume A �= �

and B �= � . Write B = [b : m] and A = [a | (t : n)]. If k > n then by definition

C= � . Assume k≤ n. By definition

S= {i ∈N |bj < bj+1 for 1≤ j≤ i< m} ,

and

q= 1+max(S∪{0}) .

Evidently q is well-defined as S∪{0} �= ∅. Every nonempty finite set of totally

ordered elements has a maximum element. In addition, by construction

b1 < · · ·< bq.

For 1≤ i≤ q assign

βi =

{
tk+bi+1 if −tk ≤ b1 ≤−1

bi otherwise
.

If −tk ≤ b1 ≤−1 then add tk+1 to each term in the chain of inequalities

b1 < · · ·< bq

to obtain

β1 = tk+b1+1< · · ·< βq = tk+bq+1.

APPENDIX 229

If the inequalities −tk ≤ b1 ≤−1 fail to hold then still

β1 = b1 < · · ·< βq = bq.

By definition

S
′
= {i |1≤ βi ≤ tk} .

If S′
=∅ then C= � . Assume S

′ �=∅. Put

s=min
(
S

′
)
,

u= 1−s+max
(
S

′
)
.

Now s and u are defined since every nonempty set of totally ordered elements has a

minimum and a maximum. By construction of S′, the necessary condition

1≤ βi ≤ tk for min
(
S

′
)
≤ i≤max

(
S

′
)

is guaranteed, which verifies that the βi’ s are valid indices.

By inspection,

u= 1−min
(
S

′
)
+max

(
S

′
)

= 1+max
(
S

′
)
−min

(
S

′
)
by commutativity

≥ 1+min
(
S

′
)
−min

(
S

′
)
since max(X)≥min(X)

= 1+0= 1,

u= 1+max
(
S

′
)
−min

(
S

′
)
≤ 1+tk−1= tk,

which yields 1 ≤ u ≤ tk. Consequently, u is a valid index for the kth component.

The fact that the βi’ s are distinct

1≤ β1 < · · ·< β
max(S′) ≤ tk

implies max
(
S

′
)
≤ tk. By definition,

C= [â | (t : n;tk = u)]

where

â(i : n) = a(i : n;ik = βik+s−1).

If

1≤ ik ≤ u

then adding s−1 to each term in this chain of inequalities, it is evident that

s≤ ik+s−1≤ u+s−1.

As

s=min
(
S
′
)
≥ 1

230 APPENDIX

by construction of S′ and

u+s−1≤max
(
S′
)
≤ tk

it follows that

1≤ ik+s−1≤ tk,

which shows that ik+s−1 is a valid argument for β. In review,

1≤ βik+s−1 ≤ tk,

which shows that

(i : n;ik = βik+s−1)

is a valid index for a; consequently, â is well-defined, completing the proof.

CLAIM The function drop is well-defined.

PROOF Pick k ∈N, A ∈A∗ and B ∈A∗
Z
. Consider

C= dropk B A.

If A= � or B= � , then by Definition 3.26,

C= A ∈A∗;

whence, the result is uniquely determined if A = � or B = � . Assume A �= �

and B �= � . Write B= [b : m] and A= [a | (t : n)]. If k> n then C= A. Assume

k≤ n and set

S= {i ∈N |bj < bj+1 for 1≤ j≤ i< m} ,

q= 1+max(S∪{0}) .

Evidently q is well-defined as S∪{0} �= ∅. Every nonempty finite set of totally

ordered elements has a maximum element. By construction,

b1 < · · ·< bq.

Using the definition, for 1≤ i≤ q put

βi =

{
tk+bi+1 if −tk ≤ b1 ≤−1

bi otherwise
.

If

−tk ≤ b1 ≤−1

then add tk+1 to each term in this chain of inequalities

b1 < · · ·< bq

APPENDIX 231

to obtain

β1 = tk+b1+1< · · · < βq = tk+bq+1.

If the inequalities −tk ≤ b1 ≤−1 fail to hold then again

β1 = b1 < · · ·< βq = bq.

Let

S
′ = {i |1≤ βi ≤ tk} .

If S′ = ∅ then C = A and the result is uniquely determined in this case. Assume

S′ �= � . Let

u=max
(
S′
)
−min

(
S′
)
+1.

Now u is defined since every nonempty set of totally ordered elements has a minimum

and a maximum element. By construction

1≤ βi ≤ tk for i ∈
{
min

(
S′
)
,.,max

(
S′
)}

,

which verifies that the βi’ s are valid indices. By inspection,

u=max
(
S′
)
−min

(
S′
)
+1≥min

(
S′
)
−min

(
S′
)
+1= 1+0= 1,

u=max
(
S

′
)
−min

(
S

′
)
+1≤ tk−1+1= tk,

which implies 1≤ u≤ tk. The fact that the βi’ s are distinct

1≤ β1 < · · ·< β
max(S′) ≤ tk

implies max
(
S′
)
≤ tk. In addition, min

(
S′
)
≥ 1 by construction of S′. If u= tk

then the result C= � is uniquely determined also in this case. Assume u< tk. By

definition,

C= [â | (t : n;tk = tk−u)]

where

â(i : n) = a(i : n;ik = sik),

s0 = 0,

and

sq =min
{
j ∈N |j> sq−1, j /∈

{
βi | min

(
S
′
)
≤ i≤max

(
S
′
)}}

.

By definition of s,

0≤ s0 < sq−1 < sq

which implies

sq is strictly increasing, and sq ≥ 1 for q> 0.

Since β1 < · · ·< β
max(S′), the set

{
βi |min

(
S′
)
≤ i≤max

(
S′
)}

232 APPENDIX

has precisely

max
(
S′
)
−min

(
S′
)
+1= u

elements. As (see earlier work)

1≤ β1 < · · ·< β
max(S′) ≤ tk

it follows there are tk−u distinct elements in

ι tk−
{
βi |min

(
S′
)
≤ i≤max

(
S′
)}

which can be placed in strictly increasing order; whence, by construction the sq’ s are

exactly these elements. Therefore,

1≤ sq ≤ tk

and so sq is valid index, which completes the proof.

CLAIM The abstractor combine is well-defined.

PROOF Any array [a |T] has an array function a that is well-defined on the set

P(T). Thus, ⊕

t∈P(T)

a(t)

is well-defined for any suitable operator ⊕.

CLAIM The abstractor zip is well-defined.

PROOF Let ⊕ be a binary operator and A,B ∈A∗. If A= � then ⊕
←→

is defined

only if B= � and then the result

A⊕
←→

B= �

is uniquely determined in this case. Assume A �= � . Write A= [a |T]. Now ⊕
←→

is

defined only if B admits the form [b |T] and

[a |T] ⊕
←→

[b |T] = [⊕◦ (a,b) |T] ∈A,

since evidently T is a valid n-tuple and for t ∈ P(T)

⊕◦ (a,b)(t) = a(t)⊕b(t)

is well-defined since a, b and ⊕ are well-defined, which completes the proof.

APPENDIX 233

CLAIM The abstractor map is well-defined.

PROOF Let A ∈A∗. If A= � then the result

∗f A= �

is constant. Assume A �= � . Write A= [a |T]. Invoke the definition to obtain

∗f [a |T] = [f◦a |T] .

Evidently T is a valid tuple. Let t ∈ P(T). Then

(f◦a)(t) = f(a(t))

is well-defined since f and a are well-defined, which completes the proof.

CLAIM The abstractor bicomp is well-defined.

PROOF Let F,A ∈ A∗. If F = � or A = � then in order for � to be defined,

A= F= � . The result

� F A= �

is uniquely determined in this case. Assume F �= � and A �= � . Write F= [f |T].
For � to be defined, A= [a |T]. Now

� [f |T] [a |T] = [@◦ (f,a) |T] .

where

@◦ (f,a)(t) =@◦ (f(t),a(t)) = f(t)(a(t)) ,

which is well-defined since f and a are well-defined. This completes the proof.

CLAIM The abstractor triad is well-defined.

PROOF Let � ∈A. Write �= [θ |T]. Take suitable A,B ∈A∗. If A= � then for

the operation to be defined B= � and vice versa. In both cases, the result

←→
� A B= �

is uniquely determined. Assume A �= � . For
←→
� A B to be defined,

A= [a |T] and B= [b |T]

By definition
←−→
[θ |T] [a |T] [b |T] = [tribi◦ (θ,a,b) |T] .

234 APPENDIX

where

tribi◦ (θ,a,b)(t) = tribi◦ (θ (t),a(t),b(t)) = a(t)θtb(t) ,

which is well-defined on P(T) since θt, a(t) and b(t) are well-defined.

CLAIM The abstractor biaxis is well-defined.

PROOF Let F∈A, k∈N. Take suitable A∈A2. Write F= [f | (t : n)]. For �kF A

to be defined, A must admit the form

A= [x | �k (s)(t : n)] .

By definition

�k [f | (t : n)] [x | �k (s)(t : n)] = [u | (t : n)]

where

u(i : n) = f(i : n)
[
b
(i:n) : s

]

and the 1-array
[
b(i:n) : s

]
is an axis of A whose components are given by

(7) b
(i:n)
j = x ◦�k (j)(i : n) .

By inspection it suffices to check that u is well-defined as the n-tuple in the re-

sulting array is a n-tuple of a given array. By inspection, u is well-defined provided[
b(i:n) : s

]
is well-defined since f is assumed to be well-defined on P(t : n). Now

s ∈N since

�k (s)(t : n)

is a n-tuple of a given array and by inspection of equation (7), b
(i:n)
j

is well-defined

since x and �k are well-defined, which completes the proof.

CLAIM The abstractors �k,�k and �k are well-defined.

PROOF These functions are well-defined since if the folding operation is not directed,

then the operation is required to be associative.

CLAIM The abstractor permute is well-defined.

PROOF Pick m ∈N and let p be a m-permutation. Let A ∈A. The operation

�k p A

APPENDIX 235

is defined only if A has the form

A= [a | (t : n;tk = m)]

and k ∈ ι n. By definition

�k p [a | (t : n;tk = m)] = [b | (t : n;tk = m)]

where

b(i : n) = a
(
i : n;ik = p

−1 (ik)
)
.

The tuple (t : n;tk = m) is evidently well-defined since it is a n-tuple for an array.

The element b(i : n) is well-defined since a is an array function and p is a m-

permutation, which implies

p−1 (1),.,p−1 (m)

is a m-permutation (as p : ι m→ ι m is bijective).

CLAIM The abstractor border is well-defined.

PROOF Let A ∈A∗ and B ∈A∗
N0

. If B= � or A= � then

border B A= A

is uniquely determined in this case. Assume B �= � and A �= � . Write A =

[a | (t : n)] and B=
[
b̂ : n̂

]
. By definition

border B A=
[
c |

(
γ
t,b : n

)]
,

γ
t,b =+◦ (t,×2◦b) ,

bk = b̂k for 1≤ k≤ n̂,

bk = 0 for n̂< k≤ n,

c(i : n) = a

(
î : n

)
,

and

îk =min{tk,max{1,ik−bk}} .

By inspection

tk+2bk ≥ tk ≥ 1

since bk ∈N0 implies bk ≥ 0. Hence, tk+2bk ∈N is a valid index. Now

max{1,ik−bk} ≥ 1;

236 APPENDIX

whence,

îk =min{tk,max{1,ik−bk}} ≥min{tk,1} ≥ 1

since tk ≥ 1. In addition,

îk =min{tk,max{1,ik−bk}} ≤ tk

since the minimum of two numbers cannot be smaller than either of them. Hence,

1≤ îk ≤ tk;

consequently,
(
î : n

)
is a valid location and c(i : n) = a

(
î : n

)
is well-defined,

which completes the proof.

CLAIM The abstractor unborder is well-defined.

PROOF Let A ∈A∗ and B ∈A∗
N0

. If A= � or B= � then

unborder B C= A

is uniquely determined in this case. Assume B �= � and A �= � . Write A =

[a | (t : n)] and B=
[
b̂ : n̂

]
. By definition,

unborderB A=

{
� if tk−2bk < 1 for some k[
c |

(
γt,b : n

)]
otherwise

,

γ
t,b =−◦ (t,×2◦b) ,

bk = b̂k for 1≤ k≤ n̂,

bk = 0 for n̂< k≤ n,

c(i : n) = a(+◦ (i,b) : n) .

If for some k

tk−2bk < 1

then

unborder [b : n] A= � .

Assume

1≤ tk−2bk

which confirms that tk−2bk is a valid index. By inspection

1≤ ik ≤ tk−2bk.

APPENDIX 237

Add bk to both sides of ik ≤ tk−2bk to obtain

1≤ ik+bk ≤ tk−2bk+bk = tk−bk ≤ tk

since bk ≥ 0 as B ∈A∗
N0

. Hence, (+◦ (i,b) : n) is a valid location and so

c(i : n) = a(+◦ (i,b) : n)

is well-defined, which completes the proof.

CLAIM The abstractor split is well-defined.

PROOF Let A ∈A∗, p ∈ Z and k ∈N. By definition

split
k
p A= � if A= � or A= [a | (t : n)] and k /∈ ι n.

The result is uniquely determined in these cases. Assume A= [a | (t : n)] and k∈ ι n.
By definition,

split
k
p A=



(�,A) if p≤ 0

(A,�) if p≥ tk

(B,C) otherwise

where

A= [a | (t : n)] ,

B= [a | (t : n;tk = p)] ,

C= [a◦ τk (p+1) | (t : n;tk = tk−p)] .

Evidently the result is uniquely determined if p≤ 0 or p≥ tk. Assume

1≤ p< tk.

If

A= [a | (t : n)] =
[
â |
(
t̂ : n

)]
= Â

then

split
k
p Â=

(
B̂,Ĉ

)
.

Hence, B = B̂ and C = Ĉ. It suffices to check that B and C are well-defined.

By inspection, B is a well-defined subarray of A . The n-tuple for C is valid. If

1≤ ik ≤ tk−p then

a◦ τk (p+1)(i : n) = a(i : n;ik = ik+p) .

Evidently, 1 ≤ ik+p ≤ tk−p+p = tk which shows (i : n;ik = ik+p) is a

valid location for a, which completes the proof.

238 APPENDIX

CLAIM The abstractor cover is well-defined.

PROOF Let A ∈A∗. If X= � , P= � , or A= � then

cover B X P A= (·)(border B A)

is well-defined since (·) and border are well-defined. Assume P �= � , A �= � and

X �= � , write A= [a | (t : n)], X= [x : m], put x0 = 0 and

δ =max({0}∪{w |xk−1 < xk ≤ n for all k with 1≤ k≤ w≤ m}) .

Then δ is well-defined since every nonempty finite set has a maximum element. By

construction,

(8) 1≤ x1 < x2 < · · ·< xδ ≤ n;

consequently, the xi’ s are valid axes in order. If δ �= 0 , then write P = [p : m̂], set
δ =min{m̂,δ}. If pk = � for some k with 1≤ k≤ δ, then put δ = 0.

The minimum of two numbers always exists in the case pk �= � and so δ is

well-defined. Let

pk =
[
hk : lk

]
and hk0 = 0 for 1≤ k≤ δ,

For k ∈ ι δ, set

Sk =
{
i ∈N |hkj−1 < hkj ≤ txk for all j with 1≤ j≤ i≤ lk

}
,

and

rk =max
(
Sk∪{0}

)
.

For k ∈ ι δ with hkrk < txk set

rk = rk+1 and then h
k
rk

= txk .

Evidently rk is well-defined since S∪{0} �= ∅ and every nonempty finite set of

totally ordered elements has a maximum element. If

(9) 0= min
1≤k≤δ

{rk}

then set δ = 0. By construction of Sk,

(10) 0= hk0 < hk1 < hk2 < · · ·< hkrk ≤ txk ,

which confirms the partition is valid for the xk-axis. If δ = 0 then

cover B X P A= (·)(border B A)

which is well-defined. Now assume δ > 0. Reviewing, as δ > 0 in view of equation

APPENDIX 239

(9),

(11) rk ∈N for 1≤ k≤ δ.

Set

qk = 0 for all k ∈ ι n,

and then update

qxk = k for all k ∈ ι δ.

This is possible by equation (8). As the xi’ s consist of all the axes along which

partitioning takes place, if qk = 0 then the k-axis is not partitioned. If qk �= 0 then

partition along the k-axis. Next show that the k-axis is actually used as this fact is

not obvious. If

qk = p �= 0

then by construction of the qi’ s,

qxp = p= qk

and noticing the subscripts cannot be different since the qi’ s are distinct,

xp = k.

Substituting p= qk,

xqk = k.

Thus, qk �= 0 corresponds to xqk = k, pqk , h
qk , and rqk by construction. By

definition,

cover B X P A= [c : (z : n)]

where

zk =

{
1 if qk = 0

rqk if qk �= 0
.

Now n ∈N and zk ∈N since rqk ∈N by equation (11).

If B= � then set n̂= 0; otherwise, write B=
[
b̂ : n̂

]
. Set

bk =

{
b̂k if 1≤ k≤ n̂

0 if n̂< k≤ n
,

c(i : n) =
[
α(i:n) |

(
u
(i:n) : n

)]
,

u
(i:n)
k =

{
tk+2bk if qk = 0

h
qk
ik
−h

qk
ik−1

+2bk if qk �= 0
,

α(i:n) (j : n) = a

(
γi,j : n

)
,

γi,jk = φ(ik,jk) ,

240 APPENDIX

φ(ik,jk) =

{
min{max{1,jk−bk},tk} if qk = 0

min
{
max

{
1,jk+h

qk
ik−1

−bk

}
,tk

}
if qk �= 0

.

To show that c is well-defined, establish that

u
(i:n)
k

and α(i:n) (j : n) are well-defined. The valency n is correct as the blocks are

subarrays of A. If qk = 0 then the k-axis is not partitioned, and

u
(i:n)

k = tk+2bk ≥ tk.

If qk �= 0 then the k-axis is partitioned, which corresponds to partition pqk and by

definition the width of this cell is

u
(i:n)
k = h

qk
ik
−hqk

ik−1
+2bk

≥ h
qk
ik
−hqk

ik−1
since bk ≥ 0

≥ 1 by construction of Sqk .

Note hqk is defined by construction since by inspection 0 < qk ≤ δ and hk is

defined for 1≤ k≤ δ. In addition, h
qk
ik

and h
qk
ik−1

are defined in view of equation

(10) since by inspection

1≤ ik ≤ rqk

and ik−1≥ 0. It follows that

u
(i:n)
k

is well-defined.

Now α(i:n) (j : n) is well-defined provided(
γi,j : n

)
= (φ(i1,j1),.,φ(in,jn))

is a valid location for A. To prove
(
γi,j : n

)
is a valid location it suffices to show

that

γi,jk = φ(ik,jk)

is a valid index. (Although it is not strictly necessary to prove the function is well-

defined, observe that jk+h
qk
ik−1

−bk is the correct translation as +hqk
ik−1

shifts

over to the correct cell and −bk compensates correctly for the added border.) By

inspection for suitable ψ,

φ(ik,jk) =min{max{1,ψ},tk}

≤ tk since min{ζ,γ} ≤ γ always,

APPENDIX 241

and

φ(ik,jk) =min{max{1,ψ},tk}

≥min{1,tk} since max{ζ,γ} ≥ ζ always

≥ 1.

Hence,

1≤ φ(ik,jk)≤ tk

and this shows that φ(ik,jk) is a valid location which completes the proof.

CLAIM The abstractor untile is well-defined.

PROOF Let A ∈A. If A= (·)� then

untile A= �

is constant. Assume A �= (·)� . Write

A= [a | (t : n)] and a(i : n) =
[
α(i:n) |

(
s
(i:n) : n

)]
.

For k= 1,.,n, p= 1,.,tk, put

h
k
0 = 0 and h

k
p =

p∑
q=1

s
τk(q)�n

k .

Now s
τk(q)�n

k is well-defined by inspection since

1≤ q≤ p≤ tk.

It follows at once that hkp is well-defined since
∑p

q=1f(q) is well-defined whenever

f is well-defined. Now

h
k
p =

p∑
q=1

s
τk(q)�n

k = s
τk(p)�n

k +

p−1∑
q=1

s
τk(q)�n

k

= s
τk(p)�n

k +h
k
p−1.(12)

For k= 1,.,n, p= 1,.,tk,

(13) ψk
(
j+hkp−1

)
= p for all j with 1≤ j≤ s

τk(p)�n

k .

242 APPENDIX

By inspection j is well-defined and

j+hkp−1 ≤ s
τk(p)�n

k +hkp−1

= hkp by equation (12)

which implies ψkj is well-defined for

(14) j= 1,.,hktk

as 1≤ p≤ tk. For k= 1,.,n, set

σk = hktk .

Evidently, σk is well-defined. Letting γik = ψkik and ω
i,h,γ
k = ik−h

k

γ
i

k

put

u(i : n) = α(γ
i
:n)

(
ωi,h,γ : n

)
.

For 1≤ k≤ n, if ik is a valid index, i.e.,

1≤ ik ≤ σk = h
k
tk
,

then γik = ψkik is well-defined by equation (14). By equation (13)

(15) ψkik = p

provided

1+hkp−1 ≤ ik ≤ hkp.

Subtracting hkp−1 from each term in this chain of inequalities to obtain

1≤ ik−h
k
p−1 ≤ h

k
p−h

k
p−1 = s

τk(p)�n

k

whence

1≤ ω
i,h,γ

k ≤ s
τk(p)�n

k .

Therefore ω
i,h,γ
k is well-defined. As

1≤ γik = p≤ tk

by equation (15), it follows that

u(i : n) = α(γ
i
:n)

(
ωi,h,γ : n

)

is well-defined, which completes the proof.

APPENDIX 243

THEOREM (LIST DECOMPOSITION) Any 1-array can always be expressed

[a : n] = [a◦ τ (1) : 1] ++ · · ·++ [a◦ τ (n) : 1] .

PROOF By TI,

[a : τ (1)1] = [a◦ τ (1) : 1] .

Moreover,

[a : τ (2)1] = [a : τ (1)1] ++ [a◦ τ (2) : τ (1)1] by CI

= [a◦ τ (1) : 1] ++ [a◦ τ (2) : 1] by TI

Suppose

[a : τ (n)1] = [a◦ τ (1) : 1] ++ · · ·++ [a◦ τ (n) : 1]

for some n≥ 2. Then

[a : τ (n+1)1]

= [a : τ (n)1] ++ [a◦ τ (n+1) : τ (1)1] by CI

= [a : τ (n)1] ++ [a◦ τ (n+1) : 1] by TI

= ([a◦ τ (1) : 1] ++ · · ·++ [a◦ τ (n) : 1]) ++ [a◦ τ (n+1) : 1]

by inductive hypothesis

= [a◦ τ (1) : 1] ++ · · ·++ [a◦ τ (n+1) : 1]

since ++ is associative.

By the principle of mathematical induction, (LC) holds.

THEOREM (HYPERPLANE DECOMPOSITION) For every n-array [a | (t : n)] with

n> 1 and every k ∈ ι n,

[a | (t : n)] = [a◦ τk (1) |T] ++k · · ·++k [a◦ τk (tk) |T]

where using TM

T= (t : n;tk = 1) .

PROOF By TI,

[a |τk (1)T] = [a◦ τk (1) |T] .

Furthermore,

[a |τk (2)T] = [a |τk (1)T] ++k [a◦ τk (2) |τk (1)T] by CI

= [a◦ τk (1) |T] ++k [a◦ τk (2) |T] by TI.

244 APPENDIX

Suppose

[a |τk (s)T] = [a◦ τk (1) |T] ++k · · ·++k [a◦ τk (s) |T]

whenever s≤ p for some p≥ 2. Then [a |τk (s+1)T]

= [a |τk (s)T] ++k [a◦ τk (s+1) |τk (1)T] by CI

= [a |τk (s)T] ++k [a◦ τk (s+1) |T] by TI

= ([a◦ τk (1) |T] ++k · · ·++k [a◦ τk (s) |T]) ++k [a◦ τk (s+1) |T]

by inductive hypothesis

= [a◦ τk (1) |T] ++k · · ·++k [a◦ τk (s+1) |T]

since ++k is associative.

By the principle of mathematical induction, the statement of the theorem is true.

THEOREM A left hom, a right hom and a catamorphism are uniquely determined by

the binary operator ⊕ and the unary function u.

PROOF Assume h and h′ are left homs for an array A with binary operator ⊕ and

unary function u. Let x be an element of A. Then

h(·)(x) = u(x) = h′ (·)(x) ,

which establishes the basis for induction. Assume h(B) = h′ (B) whenever B, which

is a subarray of A, is a singleton or a concatenation of a sufficiently small number of

them. Let B be any subarray of A. By Theorem 4.9, B is a singleton or a concatenation

of finitely many of them. Using Corollary 4.13, write

B= C++ (·)(x) .

As h and h′ are left homs,

h(B) = h(C++ (·)(x))

= h(C)⊕h(·)(x)

= h′ (C)⊕h′ (·)(x) by induction

= h′ (C++ (·)(x))

= h′ (B) .

Since h and h′ agree for concatenations of two singletons (C is a singleton), they

must agree for concatenations of three singletons, and so forth. If h(�) and h′ (�)
are defined, then

h(�) = h′ (�)

since both are required to be equal to the unique identity element for ⊕. This estab-

lishes uniqueness for left homs. A symmetrical argument holds for right homs, i.e.,

APPENDIX 245

replace

C++ (·)(x)

by

(·)(x) ++ C

in the preceding discussion and use equation (4.2) instead of equation (4.1).

Now assume h,h′ are catamorphisms for an array A with binary operator ⊕
and unary function u. The previous work shows that h and h′ agree on singletons.

Let B++C be a subarray of A with B,C �= � . Then

h(B++C) = h(B)⊕h(C)

= h
′ (B)⊕h

′ (C) by induction

= h
′ (B++ C) .

By Theorem 4.9, B and C are singletons or concatenations of finitely many of them.

Since h and h′ agree on singletons, they must agree on a concatenation of any two

singletons, and then on any concatenation involving up to four singletons and so forth.

If catamorphisms h and h′ are defined on an empty array then again h(�) = h′ (�),

by uniqueness of identity elements. This establishes uniqueness for catamorphisms

and completes the proof of the unique extension property for list homomorphisms.

THEOREM (PROMOTION LEMMA) Let h be any morphism such that

h(a⊕b) = h(a)⊗h(b) .

Then

h◦lom(⊕,u) = lom(⊗,h◦u) ,

h◦rom(⊕,u) = rom(⊗,h◦u) ,

h◦ (|⊕,u|)= (|⊗,h◦u|).

PROOF Assume lom(⊕,u) is defined for some array A, that

h(lom(⊕,u)(B++ (·)(x))) ,

h(lom(⊕,u)B) ,

h(lom(⊕,u)(·)(x)) ,

are defined whenever B++ (·)(x) is a valid subarray of A, and that

h(lom(⊕,u)(·)(x))

246 APPENDIX

is defined for all elements x of A. Let x be an element of A. Calculate

(h◦lom(⊕,u))(·)(x) = h(lom(⊕,u)(·)(x))

= h(u(x))

= (h◦u)(x) .

If B++ (·)(x) is a valid subarray of A then

(h◦lom(⊕,u))(B++ (·)(x))

= h(lom(⊕,u)(B++ (·)(x)))

= h((lom(⊕,u)B)⊕ (lom(⊕,u)(·)(x)))

= h(lom(⊕,u)B)⊗h(lom(⊕,u)(·)(x))

= (h◦lom(⊕,u))B⊗ (h◦lom(⊕,u))(·)(x) .

This shows that h◦lom(⊕,u) is a left hom. By uniqueness,

h◦lom(⊕,u) = lom(⊗,h◦u) .

A symmetrical argument shows that

h◦rom(⊕,u) = rom(⊗,h◦u) .

Next assume (|⊕,u|) is defined for some array A, that

h
(
(|⊕,u|)(B++ C)

)
, h

(
(|⊕,u|)B

)
and h

(
(|⊕,u|)C

)
,

are defined whenever B++ C is a valid subarray of A, and that

h
(
(|⊕,u|)(·)(x)

)

is defined for all elements x of A. Let x be an element of A. Compute

(
h◦ (|⊕,u|)

)
(·)(x) = h

(
(|⊕,u|) (·)(x)

)

= h(u(x))

= (h◦u)(x) .

If B++ C is a valid subarray of A then

(
h◦ (|⊕,u|)

)
(B++ C) = h

(
(|⊕,u|) (B++ C)

)

= h
((
(|⊕,u|)B

)
⊕

(
(|⊕,u|)C

))

= h
(
(|⊕,u|)B

)
⊗h

(
(|⊕,u|)C

)

=
(
h◦ (|⊕,u|)

)
B⊗

(
h◦ (|⊕,u|)

)
C.

APPENDIX 247

This shows that h◦ (|⊕,u|) is a catamorphism. Use uniqueness to obtain

h◦ (|⊕,u|)= (|⊗,h◦u|),

which completes the proof.

THEOREM The following identities hold:

lom(⊕,u)[a : n] = (· · ·((u(a1)⊕u(a2))⊕u(a3)) · · ·)⊕u(an) ,

rom(⊕,u)[a : n] = u(a1)⊕ (u(a2)⊕ (· · ·(u(an−1)⊕u(an)) · · ·)) ,

(|⊕,u|) [a : n] = u(a1)⊕u(a2)⊕·· ·⊕u(an) .

PROOF Let lom(⊕,u), rom (⊕,u), and (|⊕,u|) be homomorphisms for some array

A. Consider any function h which is a left hom, right hom or catamorphism for A with

unary function u. If [a : τk (1)1] is any subarray of A, then

h [a : τk (1)1] = h [a : 1] by TI

= h(·)(a1) by SI

= u(a1) by definition of h.

If [a : τk (2)1] is any subarray of A, then

h [a : τk (2)1]

= h([a : τk (1)1] ++k [a◦ τk (2) : τk (1)1]) by CI

= h([a◦ τk (1) : 1] ++k [a◦ τk (2) : 1]) by TI

= h((·)(a1) ++k (·)(a2)) by SI

= u(a1)⊕u(a2) by definition of h.

The basis for induction is established (in all cases).

First, consider h= lom(⊕,u). Suppose

h [a : τ (n)1] = (· · ·((u(a1)⊕u(a2))⊕u(a3)) · · ·)⊕u(an)

holds for some n≥ 2, whenever [a : τ (n)1] is a subarray of A. Let [a : τ (n+1)1] be
any subarray of A. Then

h [a : τ (n+1)1]
= h([a : τ (n)1] ++ [a◦ τ (n+1) : τ (1)1]) by CI

= h([a : τ (n)1] ++ [a◦ τ (n+1) : 1]) by TI

= h([a : τ (n)1] ++ (·)(an+1)) by SI

= (h [a : τ (n)1])⊕u(an+1) since h= lom(⊕,u)
= ((· · ·((u(a1)⊕u(a2))⊕u(a3)) · · ·)⊕u(an))⊕u(an+1)c by inductive hypoth-

248 APPENDIX

esis.

This establishes the stated identity for lom (⊕,u).

Second, consider h= rom(⊕,u). Suppose

h [a : τ (n)1] = u(a1)⊕ (u(a2)⊕ (· · ·(u(an−1)⊕u(an)) · · ·))

holds for some n ≥ 2 whenever [a : τ (n)1] is a subarray of A. If [a : n+1] is any

subarray of A, then

h [a : τ (n+1)1]

= h([a : τ (1)1] ++ [a◦ τ (2) : τ (n)1]) by CI

= h([a : 1] ++ [a◦ τ (2) : τ (n)1]) by TI

= h((·)(a1) ++ [a◦ τ (2) : τ (n)1]) by SI

= u(a1)⊕h [a◦ τ (2) : n] since h= rom(⊕,u)

= u(a1)⊕

(u((a◦ τ (2))(1))⊕ (· · ·(u((a◦ τ (2))(n−1))⊕u((a◦ τ (2))(n))) · · ·))

by the inductive hypothesis

= u(a1)⊕ (u(a2)⊕ (· · · (u(an)⊕u(an+1)) · · ·)) by TIP

By the principle of mathematical induction, the stated identity for rom(⊕,u) holds.

Third, consider h= (|⊕,u|). Suppose

(|⊕,u|) [a : τ (n)1] = u(a1)⊕u(a2)⊕·· ·⊕u(an)

holds for some n ≥ 2 whenever [a : τ (n)1] is a subarray of A. If [a : n+1] is any

subarray of A, then

h [a : τ (n+1)1]

= h([a : τ (m)1] ++ [a◦ τ (m+1) : τ (n+1−m)1]) by CI

= (h [a : τ (m)1])⊕ (h [a◦ τ (m+1) : τ (n+1−m)1]) since h= (|⊕,u|)

= (u(a1)⊕·· ·⊕u(am))⊕

(u((a◦ τ (m+1))(1))⊕· · ·⊕u((a◦ τ (m+1))(n+1−m)))

by the inductive hypothesis

= (u(a1)⊕·· ·⊕u(am))⊕ (u(am+1)⊕·· ·⊕u(an+1)) by TIP

= u(a1)⊕· · ·⊕u(an+1) since m is arbitrary.

By the principle of mathematical induction, the stated identity holds for (|⊕,u|).

APPENDIX 249

THEOREM The following identities hold:

lomk (⊕,u)[a |τk (tk)T]

= (· · · (u [a◦ τk (1) |T]⊕u [a◦ τk (2) |T]) · · ·)⊕u [a◦ τk (tk) |T] ,

romk (⊕,u)[a |τk (tk)T]

= u [a◦ τk (1) |T]⊕ (· · ·(u [a◦ τk (tk−1) |T]⊕u [a◦ τk (tk) |T]) · · ·) ,

and

(|⊕,u|)
k
[a |τk (tk)T] = u [a◦ τk (1) |T]⊕·· ·⊕u [a◦ τk (tk) |T]

where using TM

T= (t : n;tk = 1) .

PROOF Let lomk (⊕,u), romk (⊕,u), and (|⊕,u|)k be homomorphisms for some

array A. Consider any function h which is a left hom, right hom or catamorphism for

A with unary function u. If [a |τk (1)T] is any subarray of A, then

h [a |τk (1)T] = h [a |T] by TI

= h◦ reaxk (collapsek [a |T]) by RC

= u◦ reaxk (collapsek [a |T]) by definition of h

= u [a |T] by RC

= u [a◦ τk (1) |T] by TI.

If [a|τk (2)T] is any subarray of A, then

h [a |τk (2)T]
= h([a |τk (1)T] ++k [a◦ τk (2) |τk (1)T]) by CI

= h([a◦ τk (1) |T] ++k [a◦ τk (2) |T]) by TI

= h((reaxk (collapsek [a◦ τk (1) |T])) ++k (reaxk (collapsek [a◦ τk (2) |T])))
by RC

= u(reaxk (collapsek [a◦ τk (1) |T]))⊕u(reaxk (collapsek [a◦ τk (2) |T]))
by definition of h

= u [a◦ τk (1) |T]⊕u([a◦ τk (2) |T]) by RC.

This establishes the basis for induction (in all cases). First, consider h= lomk (⊕,u).
Suppose

h [a |τk (s)T] = (· · ·(u [a◦ τk (1) |T]⊕u [a◦ τk (2) |T]) · · ·)⊕u [a◦ τk (s) |T]

holds for some s ≥ 2 whenever [a|τk (s)T] is a subarray of A. If [a|τk (s+1)T] is

250 APPENDIX

any subarray of A, then

h [a |τk (s+1)T]

= h([a |τk (s)T] ++k [a◦ τk (s+1) | τk (1)T]) by CI

= h([a |τk (s)T] ++k [a◦ τk (s+1) |T]) by TI

= h([a|τk (s)T] ++k reaxk (collapsek [a◦ τk (s+1) |T])) by RC

= h [a |τk (s)T]⊕ u(reaxk (collapsek [a◦ τk (s+1) |T]))

since h= lomk (⊕,u)

= h [a |τk (s)T]⊕ u [a◦ τk (s+1) |T] by RC

= (· · · (u [a◦ τk (1) |T]⊕u [a◦ τk (2) |T]) · · ·)⊕ u [a◦ τk (s+1) |T]

by the inductive hypothesis.

By the principle of mathematical induction, the stated result holds for lomk (⊕,u).

Second, consider h= romk (⊕,u). Suppose

h [a |τk (s)T]

=u([a◦ τk (1) |T])⊕ (· · ·(u [a◦ τk (s−1) |T]⊕u [a◦ τk (s) |T]) · · ·)

holds for some s ≥ 2 whenever [a|τk (s)T] is a subarray of A. If [a |τk (s+1)T] is
any subarray of A, then

h [a |τk (s+1)T]

= h([a |τk (1)T] ++k [a◦ τk (2) |τk (s)T]) by CI

= h([a◦ τk (1) |T] ++k [a◦ τk (2) |τk (s)T]) by TI

= h((reaxk (collapsek [a◦ τk (1) |T])) ++k [a◦ τk (2) |τk (s)T]) by RC

= u(reaxk (collapsek [a◦ τk (1) |T]))⊕h [a◦ τk (2) |τk (s)T]

since h= romk (⊕,u)

= u [a◦ τk (1) |T]⊕h [a◦ τk (2) |τk (s)T] by RC

= u [a◦ τk (1) |T]⊕ (u([(a◦ τk (2))◦ τk (1) |T])⊕

(· · ·(u [(a◦ τk (2))◦ τk (s−1) |T]⊕u [(a◦ τk (2))◦ τk (s) |T]) · · ·))

by the inductive hypothesis

= u [a◦ τk (1) |T]⊕ (u([a◦ τk (2) |T])⊕

(· · ·(u [a◦ τk (s) |T]⊕u [a◦ τk (s+1) |T])) · · ·)

by TIP

APPENDIX 251

By the principle of mathematical induction, the stated identity holds for romk (⊕,u).
Third, consider h= (|⊕,u|)

k
. Suppose

h [a |τk (s)T] = u [a◦ τk (1) |T]⊕u [a◦ τk (2) |T]⊕· · ·⊕u [a◦ τk (s) |T]

holds for some s≥ 2 whenever [a |τk (s)T] is a subarray of A. If [a |τk (s+1)T]

is any subarray of A, then

h [a |τk (s+1)T]

= h([a |τk (m)T] ++k [a◦ τk (m+1) |τk (s+1−m)T]) by CI

= h [a |τk (m)T]⊕h [a◦ τk (m+1) |τk (s+1−m)T] as h= (|⊕,u|)
k

= (u [a◦ τk (1) |T]⊕u [a◦ τk (2) |T]⊕·· ·⊕u [a◦ τk (m) |T])⊕

(u [(a◦ τk (m+1))◦ τk (1) |T]⊕

u [(a◦ τk (m+1))◦ τk (2) |T]⊕· · ·⊕u [(a◦ τk (m+1))◦ τk (s+1−m) |T])

by the inductive hypothesis

= u [a◦ τk (1) |T]⊕u [a◦ τk (2) |T]⊕· · ·⊕u [a◦ τk (s+1) |T]

since m is arbitrary.

By the principle of mathematical induction, the stated identity holds for (|⊕,u|)
k
.

THEOREM The unique extension property extends to left array homs, right array

homs and array catamorphisms.

PROOF Assume h and h′ are left array homs for a n-array A with n> 1 utilizing

some binary operator ⊕ and unary function u. Let reaxk C be a subarray of A.

Then

h(reaxk C) = u(reaxkC) = h
′ (reaxkC) ,

which establishes the basis for induction. Assume h(B) = h′ (B) whenever B, which

is a subarray of A, is a hyperplane or a concatenation of a sufficiently small number

of them. Let B be any subarray of A. By Theorem 4.10, B is a hyperplane or a

concatenation of finitely many of them. Using planar forms, write

B= C++k (reaxkD) .

As h and h′ are left array homs,

h(B) = h(C++k (reaxkD))

= h(C)⊕h(reaxkD)

= h
′ (C)⊕h

′ (reaxkD) by induction

= h
′ (C++k (reaxkD))

= h
′ (B) .

252 APPENDIX

For surely, h and h′ agree on a concatenation of two hyperplanes (C is a hyperplane),

and then they must agree for concatenations of three hyperplanes, and so forth. If

h(�) and h′ (�) are defined, then

h(�) = h
′ (�)

since both are required to be equal to the unique identity element for ⊕. This estab-

lishes uniqueness for left array homs. A completely symmetrical argument holds for

right array homs (replace

C++k (reaxkD)

by

(reaxkC) ++kD

in the preceding discussion and use equation (4.8) instead of equation (4.7)).

Now assume h,h′ are array catamorphisms for an array A with binary operator

⊕ and unary function u. The prior work shows that h and h′ agree on hyperplanes.

Let B++kC be a subarray of A with B,C �= � . Then

h(B++ C) = h(B)⊕h(C)

= h
′ (B)⊕h

′ (C) by induction

= h
′ (B++ C) .

By Theorem 4.10, B and C are hyperplanes or concatenations of finitely many of

them. Since h and h′ agree on hyperplanes, they must agree on a concatenation

of any two of them, and then on any concatenation involving up to four hyperplanes

and so forth. If catamorphisms h and h′ are defined on an empty array then again

h(�) = h′ (�), by uniqueness of identity elements. This establishes uniqueness for

array catamorphisms and completes the proof of the unique extension property for

array homomorphisms.

THEOREM If h is any homomorphism such that

h(a⊕b) = h(a)⊗h(b) ,

then

h◦lomk (⊕,u) = lomk (⊗,h◦u) ,

h◦romk (⊕,u) = romk (⊗,h◦u) ,

h◦ (|⊕,u|)
k
= (|⊗,h◦u|)

k
.

APPENDIX 253

PROOF Assume lomk (⊕,u) is defined for some n-array A with n> 1, that

h(lomk (⊕,u)(B++k (reaxkC))) ,

h(lomk (⊕,u)B) ,

are defined whenever B++k (reaxkC) is a valid subarray of A, and that

h(u(reaxkC))

is defined whenever reaxkC is a subarray of A. Let reaxkC be a subarray of A.

Calculate

(h◦lomk (⊕,u))(reaxkC) = h(lomk (⊕,u)(reaxkC))

= h(u(reaxkC))

= (h◦u)(reaxkC) .

If B++k (reaxkC) is a valid subarray of A then

(h◦lomk (⊕,u))(B++k (reaxkC))

= h(lomk (⊕,u)(B++k (reaxkC)))

= h((lomk (⊕,u)B)⊕ (lomk (⊕,u)(reaxkC)))

= h(lomk (⊕,u)B)⊗h(lomk (⊕,u)(reaxkC))

= (h◦lomk (⊕,u))B⊗ (h◦lomk (⊕,u))(reaxkC) .

This shows that h◦lomk (⊕,u) is a left hom. By uniqueness,

h◦lomk (⊕,u) = lomk (⊗,h◦u) .

A symmetrical argument shows that

h◦romk (⊕,u) = romk (⊗,h◦u) .

Next assume (|⊕,u|)
k

is defined for some array A, that

h
(
(|⊕,u|)

k
(B++k C)

)
, h

(
(|⊕,u|)

k
B
)

and h
(
(|⊕,u|)

k
C
)
,

are defined whenever B++kC is a valid subarray of A, and that

h(u(reaxk C))

is defined whenever reaxkC is a subarray of A. Let reaxk C be a subarray of A.

254 APPENDIX

Compute

(
h◦ (|⊕,u|)

k

)
(reaxk C) = h

(
(|⊕,u|)

k
(reaxk C)

)

= h(u(reaxkC))

= (h◦u)(reaxkC) .

If B++k C is a valid subarray of A , then

(
h◦ (|⊕,u|)

k

)
(B++k C) = h

(
(|⊕,u|)

k
(B++k C)

)

= h
((
(|⊕,u|)

k
B
)
⊕

(
(|⊕,u|)

k
C
))

= h
(
(|⊕,u|)

k
B
)
⊗h

(
(|⊕,u|)

k
C
)

=
(
h◦ (|⊕,u|)

k

)
B⊗

(
h◦ (|⊕,u|)

k

)
C.

This shows that h◦ (|⊕,u|)
k

is a catamorphism. Hence,

h◦ (|⊕,u|)
k
= (|⊗,h◦u|)

k
,

by uniqueness.

THEOREM Let

A= [a | (t : n)]

with n> 1 and

T= (t : n;tk = 1) .

Then

�k ⊕←→
A = [�k⊕ A |T] ,

�k ⊕←→
A = [�k⊕ A |T] ,

and

�k ⊕←→
A = [�k⊕ A |T] .

PROOF Trivial if the length of the k-axis is one, i.e., tk = 1. Assume the theorem

holds whenever

tk ≤ p

for some p≥ 1. Suppose

tk = p+1.

Invoking CI write

[a | (t : n)] = [a |τk (p)T] ++k [a ◦ τk (p+1) |T] ,

since

tk−p= (p+1)−p= 1

APPENDIX 255

and

τk (1)T= T

by TI. Calculate

�k ⊕←→
A

=�k ⊕←→
([a |τk (p)T] ++k [a ◦ τk (p+1) |T])

=
(
�k ⊕←→

[a |τk (p)T]
)
⊕
←→

(
�k ⊕←→

[a ◦ τk (p+1) |T]
)

by definition of �k

=
(
�k ⊕←→

[a |τk (p)T]
)
⊕
←→

([a ◦ τk (p+1) |T]) by definition of �k

= [�k⊕ [a |τk (p)T] |T] ⊕←→
[a ◦ τk (p+1) |T]

by inductive hypothesis

= [⊕◦ (�k⊕ [a |τk (p)T],a ◦ τk (p+1)) |T] by Definition 3.27

= [�k⊕ A |T] by Definition 3.33.

By the principle of mathematical induction,

�k ⊕←→
A = [�k ⊕ A |T]

holds always. Replacing �k by �k and �k by �k in the preceding equations,

�k ⊕←→
A = [�k ⊕ A |T] .

Invoke CI and TI again to write

[a | (t : n)] = [a |T] ++k [a ◦ τk (2) |τk (p)T]

and apply a symmetrical argument to obtain

�k ⊕←→
A = [�k ⊕ A |T] ,

which completes the proof.

LEMMA

reaxk (A++pB) = (reaxkA) ++p (reaxkB) if p< k,

reaxk (A++pB) = (reaxkA) ++p+1 (reaxkB) if p≥ k.

PROOF Let A,B ∈A and write

A= [a | (t : n)] and B= [b | (s : m)] .

256 APPENDIX

In order for A++pB to be defined, the shape tuple can differ only in the pth component

which means

(t : n) = (s : m;sp = tp) .

This implies m= n and si = ti for all i �= p. Hence

B= [b | (t : n;tp = sp)] ;

wherefore,

C= A++pB= [c | (t : n;tp = tp+sp)] ,

where

c(i : n) =

{
a(i : n) if 1≤ ip ≤ tp

b(i : n;ip = ip−tp) if tp < ip ≤ tp+sp
.

Thus,

reaxkC= [c ◦ �k | �k (1)(t : n;tp = tp+sp)]

and

c ◦ �k (�k (1)(i : n)) = c(i : n) by DR.

In addition,

reaxkA = reaxk [a | (t : n)] = [a ◦ �k | �k (1)(t : n)] .

Moreover,

reaxkB = reaxk [b | (s : m)] = [b ◦ �k | �k (1)(s : m)] .

First assume p< k. For

D = (reaxkA) ++p (reaxkB)

to be defined, the shape tuples must be equal except for the pth component, which

means (after setting the pth components equal)

�k (1)(t : n) =�k (1)(s : m;sp = tp) .

As �k is well-defined, m= n and si = ti for all i �= p. Hence

B= [b | (t : n;tp = sp)] .

Apply reaxk to obtain

reaxkB= [b ◦ �k | �k (1)(t : n;tp = sp)] .

Now

D = [d | �k (1)(t : n;tp = tp+sp)]

APPENDIX 257

where

d(�k (1)(i : n))

=

{
a ◦ �k (�k (1)(i : n)) if 1≤ ip ≤ tp

b ◦ �k (�k (1)(i : n;ip = ip−tp)) if tp < ip ≤ tp+sp

=

{
a(i : n) if 1≤ ip ≤ tp

b(i : n;ip = ip−tp) if tp < ip ≤ tp+sp
by DR

= c(i : n) .

By inspection,

reaxkC= D,

which verifies

reaxk (A++pB) = (reaxkA) ++p (reaxkB) if p< k.

Second assume p≥ k. For

D = (reaxkA) ++p+1 (reaxkB)

to be defined, the shape tuples must be equal except for the (p+1) st component,

which means (after setting the pth components equal since �k moves sp to sp+1)

�k (1)(t : n) =�k (1)(s : m;sp = tp) .

As �k is well-defined, m= n and si = ti for all i �= p. Hence

B= [b | (t : n;tp = sp)] .

By inspection,

reaxkC= D,

which verifies

reaxk (A++pB) = (reaxkA) ++p+1 (reaxkB) if p≥ k,

which completes the proof.

THEOREM For all n-arrays, k ∈ ι n and p ∈ ι (n−1),(
�p ⊕

←→

)
◦ collapsek = collapsek ◦

(
�p+1 ⊕

←→

)
if p≥ k,(

�p ⊕
←→

)
◦ collapsek = collapsek ◦

(
�p ⊕

←→

)
if p< k,

258 APPENDIX

(
�p ⊕

←→

)
◦ collapsek = collapsek ◦

(
�p+1 ⊕

←→

)
if p≥ k,

(
�p ⊕

←→

)
◦ collapsek = collapsek ◦

(
�p ⊕←→

)
if p< k,

and
(
�p ⊕←→

)
◦ collapsek = collapsek ◦

(
�p+1 ⊕←→

)
if p≥ k,

(
�p ⊕←→

)
◦ collapsek = collapsek ◦

(
�p ⊕←→

)
if p< k.

PROOF In order to compute

collapsekA

it must be possible to write

A= [a |�k (1)(t : n)] .

Put

T= (t : n;tp = 1) .

Then

collapsek [a |�k (1)(t : n)] = [a ◦�k (1) | (t : n)] .

By Theorem 4.38

(
�p ⊕←→

)
[a ◦�k (1) | (t : n)] = [�p ⊕ [a ◦�k (1) | (t : n)] |T] .

By composition,

(
�p ⊕←→

)
◦ collapsek [a |�k (1)(t : n)] = [�p ⊕ [a ◦�k (1) | (t : n)] |T] .

If p< k then

(
�p ⊕←→

)
[a |�k (1)(t : n)]

= [�p ⊕ [a |�k (1)(t : n)] | �k (1)(t : n;tp = 1)]

= [�p ⊕ [a |�k (1)(t : n)] | �k (1)T] .

Now

collapsek [�p ⊕ [a |�k (1)(t : n)] | �k (1)T]

= [(�p ⊕ [a |�k (1)(t : n)])◦�k (1) | T]

APPENDIX 259

Calculate

�p⊕ [a ◦�k (1) | (t : n)] (i : n;ip = 1)

= (a ◦�k (1)(i : n;ip = 1))⊕· · ·⊕ (a ◦�k (1)(i : n;ip = tp))

and

(�p ⊕ [a |�k (1)(t : n)])◦�k (1) (i : n;ip = 1)

= (a ◦�k (1)(i : n;ip = 1))⊕· · ·⊕ (a ◦�k (1)(i : n;ip = tp)) .

By inspection, if p< k then

[�p ⊕ [a ◦�k (1) | (t : n)] |T]

= [(�p ⊕ [a |�k (1)(t : n)])◦�k (1) |T] .

By transitivity, if p< k then

(
�p ⊕←→

)
◦ collapsek [a |�k (1)(t : n)]

= collapsek ◦
(
�p ⊕←→

)
[a |�k (1)(t : n)] .

If p≥ k then

(
�p+1 ⊕←→

)
[a |�k (1)(t : n)]

= [�p+1 ⊕ [a |�k (1)(t : n)] | �k (1)(t : n;tp = 1)]

= [�p+1 ⊕ [a |�k (1)(t : n)] | �k (1)T] .

Now

collapsek [�p+1 ⊕ [a |�k (1)(t : n)] | �k (1)T]

= [(�p+1 ⊕ [a |�k (1)(t : n)])◦�k (1) | T]

Calculate

(�p+1 ⊕ [a |�k (1)(t : n)])◦�k (1)(i : n;ip = 1)

= (a ◦�k (1)(i : n;ip = 1))⊕· · ·⊕ (a ◦�k (1)(i : n;ip = tp)) .

By inspection, if p≥ k then

[�p ⊕ [a ◦�k (1) | (t : n)] |T] = [(�p+1 ⊕ [a |�k (1)(t : n)])◦�k (1) |T] .

260 APPENDIX

By transitivity, if p≥ k then

(
�p ⊕←→

)
◦ collapsek [a |�k (1)(t : n)]

= collapsek ◦
(
�p+1 ⊕←→

)
[a |�k (1)(t : n)] .

The identities for left and right folds follow by symmetrical computations.

THEOREM The following identity holds always:

�k [f |T] = (� [f |T])◦�k [Kid |T] .

PROOF Assume �k [f |T] X is defined. Let A= [a | �k (s)T] be a subarray of X.

Apply Definition 3.31 to write

�k [f |T] [a | �k (s)T] = [h |T]

where

h(i : n) = f(i : n)
[
b
(i:n) : s

]

and the 1-array
[
b(i:n) : s

]
is an axis of A whose components are given by

b
(i:n)
j

= a ◦�k (j)(i : n) .

Apply Definition 3.31 again to write

�k [Kid |T] [a | �k (s)T] = [g |T]

where

g(i : n) =
[
b
(i:n) : s

]
.

In view of Definition 3.30,

(� [f |T]) [g |T] = [@ ◦ (f,g) |T] .

By inspection,

@ ◦ (f,g)(i : n) = f(i : n)g(i : n) = f(i : n)
[
b
(i:n) : s

]
= h(i : n) .

It follows that

[h |T] = [@◦ (f,g) |T] ,

which completes the proof by transitivity.

THEOREM (AXIAL MORPHISM THEOREM) Assume F = [f |T] is a harray. For

t ∈ P(T), there exist a binary operator θ (t) and an unary function µ(t) which

APPENDIX 261

determine each homomorphism f(t). If every element of F is a left hom, then

�k [f |T] = (� [� ◦θ |T])◦ (� [∗◦µ |T])◦�k [Kid |T] .

If every element of F is a right hom, then

�k [f |T] = (� [� ◦θ |T])◦ (� [∗◦µ |T])◦�k [Kid |T] .

If every element of F is a catamorphism, then

�k [f |T] = (� [�◦θ |T])◦ (� [∗◦µ |T])◦�k [Kid |T] .

PROOF Assume F= [f |T] is a harray and �kF X is defined. For t∈P(T), f(t)
is a list homomorphism. By the unique extension property there exist a binary operator

θt = θ (t) and a unary function µt = µ(t) which determine f(t). Suppose every
component homomorphism is a left hom. By the homomorphism lemma,

f(t) = lom(θt,ut) = (� θt)◦ (∗µt) .

It follows by inspection that

[f |T] = [(◦)◦ (� ◦θ,∗◦µ) |T]

since

(◦)◦ (� ◦θ,∗◦µ)(t) = (◦)◦ (� θ (t),∗µ(t))

= (� θt)◦ (∗µt) .

Now

�k [f |T] = (� [f |T])◦�k [Kid |T] by Biaxis Identity

= (� [(◦)◦ (� ◦θ,∗◦µ) |T])◦�k [Kid |T]

= (� [� ◦θ |T])◦ (� [∗◦µ |T])◦�k [Kid |T]

where the last equation holds by Bicomp Distributivity. If every component homomor-

phism is a right hom, then by the homomorphism lemma,

f(t) = rom(θt,ut) = (� θt)◦ (∗µt) .

By inspection,

�k [f |T] = (� [� ◦ θ |T])◦ (� [∗◦ µ |T])◦�k [Kid |T] .

Lastly, if every component homomorphism is a catamorphism, then by the homomor-

phism lemma,

f(t) = (|θt,µt|)= (�θt)◦ (∗µt) .

262 APPENDIX

Thus,

�k [f |T] = (� [�◦θ |T])◦ (� [∗◦µ |T])◦�k [Kid |T] ,

which completes the proof.

THEOREM If every element of a harray [f |T] is a left fold then

�k [f |T] = (� [� ◦ θ |T])◦�k [Kid |T] .

If every element of a harray R is a right fold then

�k [f |T] = (� [� ◦ θ |T])◦�k [Kid |T] .

If every element of a harray R is a reduce operation, then

�k [f |T] = (� [�◦θ |T])◦�k [Kid |T].

PROOF If every element of a harray [f |T] is a left fold then

f(t) = (◦)◦ (� ◦θ,Kid)(t) .

Compute

�k [f |T] = (� [f |T])◦�k [Kid |T] by Biaxis Identity

= (� [(◦)◦ (� ◦ θ,Kid) |T])◦�k [Kid |T]

= (� [� ◦ θ |T])◦ (� [Kid |T])◦�k [Kid |T] ,

where the last equation holds by Bicomp Distributivity. Call upon Lemma 4.52 (see

page 133) to obtain

�k [f |T] = (� [� ◦ θ |T])◦�k [Kid |T] .

Similarly, if every element of a harray [f |T] is a right fold then

f(t) = (◦)◦ (� ◦ θ,Kid)(t) .

If every element of a harray [f |T] is a catamorphism, then

f(t) = (◦)◦ (�◦θ,Kid)(t) .

The stated identities hold by inspection.

THEOREM If M= [f |T] is a map array then

�k [f |T] = (� [∗◦ µ |T])◦�k [Kid |T] ,

APPENDIX 263

where µ(t) is the unary function which determines the map f(t).

PROOF If every element of a harray [f |T] is a map then

f (t) = (◦)◦ (Kid,∗◦ µ)(t) .

Calculate

�k [f |T] = (� [f |T])◦�k [Kid |T] by Biaxis Identity

= (� [(◦)◦ (Kid,∗◦ µ)(t) |T])◦�k [Kid |T]

= (� [Kid |T])◦ (� [∗◦ µ |T])◦�k [Kid |T] ,

where the last equation holds by Bicomp Distributivity. Call upon Lemma 4.52 (see

page 133) to obtain

�k [f |T] = (� [∗◦ µ |T])◦�k [Kid |T] ,

which is the desired result.

THEOREM If F is a harray then

�kF= (� R)◦ (�kM)

where R is a reducing array, M is a map array and

F= R ◦←→M.

PROOF Write F= [f |T]. As F is a harray, in view of the homomorphism lemma it

is possible to define for t ∈ P(T), m(t) = ∗ut and

r(t) =




�⊕t if f(t) = (�⊕t)◦ (∗ut)

�⊕t if f(t) = (�⊕t)◦ (∗ut)

�⊕t if f(t) = (�⊕t)◦ (∗ut)

.

Put R= [r |T] and M= [m | T]. By construction,

R ◦
←→

M= [◦(r,m) |T] = [f |T] = F.

Evidently R is a reducing array and M is a map array. Using Definition 3.31,

�k [f |T] [a | �k (s)(t : n)] =
[
y
f |T

]

where

yf (t) = f(t)
[
bt : s

]
.

264 APPENDIX

Now

(� R)◦ (�kM) [a | �k (s)(t : n)]

=� R [ym |T] by Definition 3.31

= [@◦ (r,ym) |T] by Definition 3.30

where

y
m (t) = m(t)

[
b
t : s

]
,

and

@◦ (r,ym)(t) = r(t)(ym (t))

= r(t)
(
m(t)

[
b
t : s

])

= (r(t)◦m(t))
[
bt : s

]

= f(t)
[
bt : s

]

= y
f (t) .

This shows that [
yf |T

]
= [@◦ (r,ym) |T]

whence

�k [f |T] [a | �k (s)(t : n)] = (� R)◦ (�kM) [a | �k (s)(t : n)] .

Since [a | �k (s)(t : n)] is arbitrary, it follows that

�kF= (� R)◦ (�kM) ,

which is the desired result.

CLAIM The concatenation operator ++k is an associative operator.

PROOF Let A,B,C ∈An∗. Fix k ∈ ι n. If A= � , then

(A++k B) ++k C= B++k C

= A++k (B++k C) .

Similarly, by inspection, if B= � or C= � then

(A++k B) ++k C= A++k (B++k C) .

It suffices to consider nonempty arrays. Write

A= [a | (s : n)] , B= [b | (t : n)] and C= [c | (u : n)] .

APPENDIX 265

In order to compute A++k B, it is required that

si = ti for all i �= k.

Hence,

B= [b | (s : n;sk = tk)] .

By definition

A++kB= [ab | (s : n;sk = sk+tk)]

where

ab(i : n) =

{
a(i : n) if 1≤ ik ≤ sk

b(i : n;ik = ik−sk) if sk < ik ≤ sk+tk

.

In order to compute (A++kB) ++kC, a necessary condition is that

si = ui for all i �= k.

Therefore,

C= [c | (s : n;sk = uk)] .

By definition

(16) (A++kB) ++kC= [abc | (s : n;sk = sk+tk+uk)] ,

where

abc(i : n) =

{
ab(i : n) if 1≤ ik ≤ sk+tk

c(i : n;ik = ik−sk−tk) if sk+tk < ik ≤ sk+tk+uk

=



a(i : n) if 1≤ ik ≤ sk

b(i : n;ik = ik−sk) if sk < ik ≤ sk+tk

c(i : n;ik = ik−sk−tk) if sk+tk < ik ≤ sk+tk+uk

.(17)

In order to calculate B++kC,

ti = ui for all i �= k.

Hence

C= [c | (t : n;tk = uk)] ,

and

B++kC= [bc | (t : n;tk = tk+uk)] ,

where

bc(i : n) =

{
b(i : n) if 1≤ ik ≤ tk

c(i : n;ik−tk) if tk < ik ≤ tk+uk

.

In order to calculate A++k (B++kC),

si = ti for all i �= k,

266 APPENDIX

yielding

(18) A++k (B++kC) =
[
âbc | (s : n;sk = sk+tk+uk)

]
,

where

âbc(i : n) =

{
a(i : n) if 1≤ ik ≤ sk

bc(i : n,ik = ik−sk) if sk < ik ≤ sk+tk+uk

=

{
a(i : n) if 1≤ ik ≤ sk

bc(i : n,ik = ik−sk) if 1≤ ik−sk ≤ tk+uk

=


a(i : n) if 1≤ ik ≤ sk

b(i : n,ik = ik−sk) if 1≤ ik−sk ≤ tk

c(i : n;ik = ik−sk−tk) if tk < ik−sk ≤ tk+uk

=


a(i : n) if 1≤ ik ≤ sk

b(i : n,ik = ik−sk) if sk ≤ ik ≤ sk+tk

c(i : n;ik = ik−sk−tk) if sk+tk < ik ≤ sk+tk+uk

.(19)

By inspection of equations (16), (18), (17) and (19), conclude associativity holds.

THEOREM (GENERALIZED ASSOCIATIVITY) If for any suitable operands A, B

and C, the operator ⊕ satisfies

(A⊕B)⊕C= A⊕ (B⊕C)

then for any finite sequence A1,A2,.,Am of such operands,

(20) A1⊕ A2⊕· · ·⊕ Am

is defined and yields the same result for arbitrary groupings whenever all operations

are pairwise defined.

PROOF Consider equation (4.11) and assume all operations are pairwise defined. The

case m = 3 is true by assumption. Assume the theorem holds whenever m ≤ p for

some p ≥ 3. Let m = p+1. Calculate Ai⊕Ai+1 and then perform all remaining

operations in arbitrary order. By the inductive hypothesis, the result must always be

the same, say Bi, since there are fewer than p operations after performing the first

one. Now there are at most p different solutions. Plainly Bi and Bi+2 must be equal

since it is possible to group Ai with Ai+1 and Ai+2 with Ai+3 when computing

Bi or Bi+2. Hence there are at most two distinct solutions, namely B1 and B2, since

all solutions Bi for which i is even must be equal, and symmetrically when i is

odd. A similar argument works for groupings of three. Within any grouping of three,

it is possible to group at will by the inductive hypothesis. Hence,

(A1⊕ A2)⊕A3 and A1⊕ (A2⊕A3)

APPENDIX 267

yield the same result. After forming such groupings, the result must be unique by the

inductive hypothesis as the total number of operations is less than p if m=p+1. This

forces B1 = B2, which means the solution is unique. By the principle of mathematical

induction, this completes the proof.

THEOREM The recursive program

∗ f � = � ,

∗f (·)
n
(x) = (·)

n
(f(x)) ,

∗f (A++kB) = (∗ f A) ++k (∗ f B) .

is equivalent to the definition

∗ f � = � ,

∗ f [a |T] = [f◦a |T] .

PROOF By the unique extension property the recursive program must be equivalent to

∗k (∗f). By Theorem 4.40

∗k (∗f) = ∗f,

which completes the proof.

268

INDEX

++, 17

—, 49

A
k

Y
, 55

ι, 34

K
δ, 92

P, 36

�, 80

�, 79

�, 80

�, 78

�, 78

[α], 17⊔
, 76

�n
k
, 50

∼, 45

�k, 38
∅, 3

� , 47

N, 35

Z, 35

�n, 50

→, 5

HY, 55

∗, 75

�k, 37

A
∗

Y
, 55

An, 55

AY (T), 55
�, 7

�, 7

τk, 36
←→
� , 79

⊕
←→

, 74

abstractors, 32

accumulation lemma, 20

adjacent, 44

aggregation, 14

argument, 6

arrangement, 14

array catamorphism, 117

array function, 44

array model, 44

array product, 161

array space, 55

arrows, 23

ax, 65

axes, 63

axes array, 85

axis, 51

base type, 4

biaxis, 78

biaxis identity, 134

bicomp, 78

bicomp distributivity, 134

binary function, 6

block, 67

block array, 68

BMF, 21

border, 83

border array, 82

Cartesian product, 6

catamorphism, 109

categorical data type, 22

cell, 86

CI, 100

closed, 10

codomain, 5

col, 91

collapse, 64

collapse rule, 144

column order, 48

combine, 76

composition, 9

concatenate, 59

INDEX 269

concatenation, 59

concatenation identity, 100

concatenation operator, 59

conformable, 60

constant tuple, 38

constructor, 20, 32

contiguous subarray, 52

cover, 53, 86

cover array, 86

data structure, 13

data type, 4

delete, 38

destructor, 32, 61

dice, 91

direction, 51

disjoint, 53

distl, 149

domain, 5

DR, 98

drop, 73

element, 44

empty array, 47

empty set, 3

equality of n-arrays, 44

extended list homomorphism, 117

field direction, 51

first, 90

foldl, 19

foldr, 19

function, 5

function selector, 64

functional array, 44

generating relation, 20, 56

generator, 20, 56

group, 9

harray, 126

HC, 107

higher-order function, 7

HOF, 17

homomorphism, 8

homomorphism lemma, 18, 113

H[M]R, 100

hypercube, 45

hyperplane, 54

hyperplane concatenation, 107

hyperplane relabeling, 100

identity, 8

identity matrix, 92

ignoring the k-axis , 59

index, 44, 65

index generator, 34

index set, 36

indices, 44

infinite array, 82

infix form, 6

init, 90

initial, 91

injective, 6

instance, 43

integer array, 48

iota array, 50

isomorphism, 8

istr, 149

k-axis, 51

k-order, 48

Kronecker delta function, 92

Kronecker product, 160

LC, 106

left accumulate, 20

left array hom, 116

left fold, 110, 119

left list hom, 108

left order, 39

left reduce, 19

lexicographical order, 48

list catamorphism, 109

list concatenation, 106

list forms, 104

list function, 49

list partition, 71

location, 44

lower fold, 80

macro, 90

map, 17, 75, 111

map array, 127

map distributivity, 17

mapping, 5

270 INDEX

mixed fold, 80

monoid, 8

morphism, 23

move right, 37

multiarray trick, 45, 215

n-array space, 55

n-dimensional tuple, 35

n-permutation, 81

n-tuple, 35

nested, 60

nesting, 14

neutral, 8

nodes, 44

nondecreasing, 48

nonempty array, 47

nonnegative array, 48

nonoverlapping, 53

nonscalar, 56

objects, 23

one-to-one, 6

operation, 5

ordered reduction, 129

orientation, 14

orthogonal functions, 32

outer product, 159

overlapping, 53

parameter, 6

partial function, 6

partition, 85

partition array, 85

partition pair, 85

pattern matching, 4

permute, 81

permuted reduction, 130

planar form, 105

planar map, 119

points, 44

polymorphic, 17

positive array, 48

power, 164

promotion laws, 19

promotion lemma, 110

proper subarray, 52

range, 5

RC, 101

reaxk, 58

reduce, 110, 119

reducing array, 127

repetition, 14

reshape, 155

reverse, 157

right array hom, 117

right fold, 110, 119

right list hom, 108

right order, 39

right reduce, 19

row order, 48

scalar array, 56

scalar function, 56

scalar identity, 101

scanl, 20

semigroup, 8

sequence, 34

sequential product, 36

shape, 62

shapesize, 155

shortest path problem, 161

SI, 101

singleton, 56

size, 62

slice, 69

smoothness, 14

split, 84

squared 2-array, 45

Squiggol, 21

strict subarray, 52

strictly increasing, 48

subarray, 52

submatrix, 52

tail, 91

take, 71

tau identities, 99

tau shift, 36

TI[I,M,N,P], 99

tile, 91

tiled array, 61, 138

tiling, 61, 138

TM, 99

total homomorphism, 131

total reduction, 131

INDEX 271

transpose, 158

triad, 79

triad-zip identity, 134

tuple, 6

type, 47

type constructor, 17

type variable, 4

unary function, 6

unborder, 83

unique extension property, 109

universal set, 144

upper fold, 80

valency, 14

well-ordering, 14

zero array, 92

zip, 75

Dissertations in the Department of Computer Science

Rask, Raimo. Automating Estimation of Software Size During the Requirements

Specification Phase — Application of Albrecht’s Function Point Analysis Within

Structured Methods. Joensuun yliopiston luonnontieteellisiä julkaisuja 28 — Uni-

versity of Joensuu. Publications in Sciences, 28. 128 p. + appendix. Joensuu, 1992.

Ahonen, Jarmo. Modeling Physical Domains for Knowledge Based Systems. Joen-

suun yliopiston luonnontieteellisiä julkaisuja 33 — University of Joensuu. Publica-

tions in Sciences, 33. 127 p. Joensuu, 1995.

Kopponen, Marja. CAI in CS. University of Joensuu, Computer Science, Disserta-

tions 1. 97 p. Joensuu, 1997.

Forsell, Martti. Implementation of Instruction-Level and Thread-Level Parallelism

in Computers, University of Joensuu, Computer Science, Dissertations 2. 121 p.

Joensuu, 1997.

Juvaste, Simo. Modeling Parallel SharedMemory Computations, University of Joen-

suu, Computer Science, Dissertations 3. 190 p. Joensuu, 1998.

Ageenko, Eugene. Context-based Compression of Binary Images. University of

Joensuu, Computer Science, Dissertations 4. 111 p. Joensuu, 2000.

Tukiainen, Markku. Developing a New Model of Spreadsheet Calculation: A Goals

and Plans Approach. University of Joensuu, Computer Science, Dissertations 5. 151

p. Joensuu, 2001.

