

EUGENE AGEENKO

CONTEXT-BASED COMPRESSION OF BINARY IMAGES

ACADEMIC DISSERTA

UNIVERSITY OF JOENSUU
COMPUTER SCIENCE

DISSERTATIONS 4

UNIVERSITY OF JOEN
2000

To be presented, with the permission
Science of the University of Joensuu, fo
in Auditorium M1 of the University,
Joensuu, on May 5th, 2000 at 12 noon.

TION

SUU

of the Faculty of
r public criticism
Yliopistokatu 7,

Julkaisija
Publisher

Joensuun Yliopisto
University of Joensuu

Vaihto Joensuun yliopiston kirjasto / vaihdot
PL 107, 80101 Joensuu
puh. 013-251 2677, fax. 013-251 2691
email: Riitta.Porkka@joensuu.fi

Exchanges Joensuu University Library / Exchanges
P.O. Box 107, FIN-80101 Joensuu, Finland
tel. +358-13-251 2677, fax. +358-13-251 2691
email: Riitta.Porkka@joensuu.fi

Myynti Joensuun yliopiston kirjasto / vaihdot
PL 107, 80101 Joensuu
puh. 013-251 2652, 013-251 2662, fax. 013-251 2691
email: Armi.Lavikainen@joensuu.fi

Sales Joensuu University Library / Exchanges
P.O. Box 107, FIN-80101 Joensuu, Finland
tel. +358-13-251 2652, fax. +358-13-251 2691
email: Armi.Lavikainen@joensuu.fi

ISSN 1238-6944
ISBN 951-708-880-9
UDK 681.3.05, 681.327.12
Computing Reviews (1998) Classification: E.4, I.4.2, I.4.3, I.4.6, I.4.10
Yliopistopaino
Joensuu 2000

B

CONTEXT-BASED COMPRESSION OF BINARY IMAGES

Eugene Ageenko

Department of Computer Science
University of Joensuu
P.O.Box 111, FIN-80101 Joensuu, FINLAND
ageenko@cs.joensuu.fi

University of Joensuu, Computer Science, Dissertations 4
Joensuu, 2000, 110 pages
ISSN 1238-6944, ISBN 951-708-880-9

Keywords: binary image compression, statistical context-based modeling,

feature-based filtering, noise removal, document images, image
recognition, hybrid raster/vector modeling, digital spatial libraries,
spatial access.

inary images are used in a wide variety of digital
Document Imaging, Image Communicatio

Management, Digital Spatial Libraries and Geograp
storage size of the images has been a major restriction
decades. Existing image compression methods do not
solution, nor satisfy all application-specific requirement
quality restoration, spatial access and intellectual post-p
therefore be developed.

In this thesis, the compression of bi-level docu
statistical context-based modeling and arithmetic
variable-size context models and propose several impro
applications. Next, we apply statistical context mode
methods for the enhancement of the digitized textual d
recognition. Experiments show that the proposed te
compression performance caused by digitization nois
quality, and readability by the Optical Character Recog
images, we develop semantic modeling. We extract v
using a Hough transform and raster-to-vector conve
information is used for efficient noise removal using
improving statistical modeling in hybrid raster/vector co
propose an image storage system that enables real-time
located images. The system supports instant image pre
direct access to the image fragments.
 imaging applications including
ns, Engineering Document
hic Information Systems. The
 in digital imaging systems for
 provide an efficient universal
s, such as on-line retrieval, high
rocessing. Better solutions must

ment images is studied using
coding. First, we consider

vements for image compression
ling to design better filtering
ocuments for compression and
chnique alleviates the loss in
e, while preserving the image
nition system. For line-drawing
ector features from the images
rsion. The extracted semantic
feature-based filtering, and for
mpression systems. Finally, we

 operations with large, remotely
view, fast decompression, and

For my wife Elena and daughter Erika

PREFACE

I would like to kindly thank my good friends and colleagues for the help in the
creation of this thesis: Pasi Fränti, the supervisor of my study and co-author of
our papers; Olli Nevalainen and Søren Forschammer, the reviewers; Jussi
Parkkinen, Jorma Tarhio, and Martti Penttonen, all the heads of the Computer
Science department during my studies; Alexander Kolesnikov, Heikki
Kälviäinen, and Saku Kukkonen for cooperative work; Juha Hakkarainen,
Martti Forsell, and computer administration personnel for the help with UNIX
and Mac computers; staff of the Computer Science department of the Moscow
State University in Ulyanovsk, where I have completed my MS; my parents
Igor and Valentina, and brother Robert, who gave me respect for education and
prodded me to complete the study; Elena and daughter Erika for understanding
and love; Center for International Mobility, department of Computer Science
and East Finland Graduate School in Computer Science and Engineering for
financial support; National Land Survey of Finland for the set of cartographic
images we have used in evaluation of our methods; and all my friends
including Gerold Weinmann, Ivan Ignatieff, Andrew Alekseeff, Paul Kopyloff
and other for their infinite support.

CONTENTS

1. INTRODUCTION 1

1.1. OVERVIEW OF THE APPLICATION AREAS 3

1.2. PREVIOUS WORK AND THE SCOPE OF THE THESIS 8

1.3. STRUCTURE AND CONTRIBUTION OF THE THESIS 13

2. STATISTICAL IMAGE COMPRESSION 17

2.1. STATISTICAL MODELING 17

2.2. STATIC, SEMI-ADAPTIVE AND ADAPTIVE APPROACHES 18

2.3. CONTEXT MODELING 19

2.4. ARITHMETIC CODING 20

2.5. QM-CODER 22

2.6. AUTOMATON-BASED PROBABILITY ESTIMATION 23

2.7. FORWARD-ADAPTIVE MODELING 24

2.8. JBIG1 26

3. CONTEXT MODELING 30

3.1. FIXED SIZE CONTEXT TEMPLATE 30

3.2. VARIABLE SIZE CONTEXT MODEL 32
3.2.1. Splitting Criterion 32
3.2.2. Static and Semi-adaptive Alternatives 34

3.3. TOP-DOWN TREE CONSTRUCTION 35
3.3.1. Delayed pruning 36

3.4. BOTTOM-UP TREE CONSTRUCTION 37

3.5. COMBINATION OF VARIABLE-SIZE CONTEXT MODELING AND FORWARD-
ADAPTIVE STATISTICAL MODELING 38
3.6. ANALYSIS 39

4. GLOBAL MODELING 41

4.1. PATTERN MATCHING FOR TEXT IMAGES AND JBIG2 41

4.2. FEATURE EXTRACTION USING HOUGH TRANSFORM 43
4.2.1. Hough Transform 43
4.2.2. End-point Detection 46

4.3. RASTER-TO-VECTOR CONVERSION 46
4.3.1. Skeleton Construction 46
4.3.2. Extraction of Vector Elements 47
4.3.3. Pruning and Analysis 48

4.4. HYBRID RASTER/VECTOR IMAGE REPRESENTATION AND MODELING 48
4.4.1. Raster Representation 50
4.4.2. Vector Representation 50
4.4.3. Feature Image 51
4.4.4. Hybrid Modeling 52

5. IMAGE ENHANCEMENT AND NOISE REMOVAL 55

5.1. CONTEXT-BASED FILTERING 56
5.1.1. Simple Context Filter 57
5.1.2. Gain-Loss Filter 58

5.2. FEATURE-BASED FILTERING 61

6. INTERACTIVITY AND SPATIAL ACCESS 66

6.1. A STORAGE SYSTEM FOR INTERACTIVE ACCESS 67
6.1.1. Storage System Architecture 67
6.1.2. Compression Algorithm 69
6.1.3. Preview Data 69
6.1.4. Pixel Level Data 71

6.2. SPATIAL ACCESS 71
6.2.1. Implementation 71
6.2.2. Analysis 72

7. EMPIRICAL STUDY 76

7.1. VARIABLE SIZE CONTEXT MODELING IN IMAGE COMMUNICATIONS 76

7.2. CONTEXT-BASED FILTERING 80

7.3. FEATURE-BASED FILTERING 84

7.4. ON-LINE IMAGE PROCESSING AND SPATIAL ACCESS 88
7.4.1. Instant preview and fast decompression 88
7.4.2. Spatial access 92

8. CONCLUSIONS 95

REFERENCES 97

1. Introduction 1

1. INTRODUCTION

Document Imaging (DI) refers to the management of paper documents by capturing,
indexing, archiving, retrieving, and distributing them electronically, as shown in
Figure 1-1 [Lun90, Will92, Saf93, JLG96]. It has been estimated that over 1012
paper documents exist in the world, and the quantity is estimated to double every
three years [OAS98]. The current industry is oriented towards producing and
reproducing paper documents, and it does it faster than the papers can be digitized.
Document Imaging aims at stopping (or at least slowing down) the growth of the
paper piles and substitutes for paper in storing and accessing information. It provides
easier access to the electronic replicas of documents, and minimizes the storage cost,
compared with other document storage solutions, such as paper or microfilm.

A document image is the raster digital image that is the exact digitized replica of
an original document [Lyn90]. Images are superior to paper documents because they
can be economically stored, efficiently searched and browsed, copied without loss of
quality, and quickly transmitted. Moreover, image is a media, satisfying both legal
requirements and library preservation standards [JLG90, Les92, Har93].

We consider the following four major categories of imaging applications,
according to the type of documents dealt with:

• Document Digitization and Archiving System (DDAS) – text documents, such as
forms, records, and publications;

• Image Communications – facsimile and visual data;
• Engineering Document Management (EDM) – line-drawings, such as

engineering drawings, cartographic maps, architectural and urban plans,
schemes, and circuits (radio-electrical and topological);

• Digital Spatial Libraries (DSL) and Geographic Information Systems (GIS) –
spatial images, maps and plans.

1. Introduction 2

Publishing

Digitizing

Document Image
Server

Word Processor
CAD Station
GIS Server

Paper
Archive

Document Image
Archive

Electronic Document
Archive:

Text, CAD, GIS

Digital World

OCR
RVC

Fax

Remote Users

Processing View/BrowsePrinting

Document Processing

Hybrid
editing

Digital
publishing

Figure 1-1. Life cycle of document images.

1. Introduction 3

1.1. Overview of the Application Areas

Document Digitization and Archiving System

In DDAS, incoming documents are digitized (unless they are initially in digital
form), categorized, and archived in electronic form. The whole process may be set
for fully automatic operation without human intervention. The digitization phase can
be efficiently performed using scanners and facsimile, which are also relatively
inexpensive technology. The archiving phase includes image enhancement,
compression, recognition and indexing operations.

Using Optical Character Recognition (OCR), it is possible to recognize the
content of a digitized document and convert it to native text format so that it can be
manipulated as though it had been typed in manually [OO92, MSY92]. However, at
the current state of technology, the existing OCR solutions are characterized by high
error rates and complexity [JLG93]. On the other hand, using the current
compression technology [JBIG1, Haskel98], images can be compressed to
approximately the same size as those used by file formats of common word
processing software, or by PostScript files, see Table 1-1.

Table 1-1: Storage sizes of a one-page document in different document formats.

File Size (Kbytes) File Format
200 dpi 300 dpi

Raster document image 470 > 1000
JBIG compressed image ~ 40 50-80
Word-processing file 30-40
Post Script file ~ 90
ASCII text ~ 4

After the document has been archived, its further processing depends on the
application. The document may be converted to word-processing compatible format
using OCR or be indexed [Saf95]. Document indexing [WMB94] stands for the
categorizing of the documents by some criteria or field (e.g. account number, date,
and name) and usually requires OCR of the predefined text regions. Full-text
indexing serves as a text search on the actual document content and requires OCR to
convert the document into searchable ASCII text, which is usually stored together
with the document image [Will92].

1. Introduction 4

Image Communications

In an image communication system, such as facsimile, image serves as a
communication medium. The document is first digitized using an optical scanning
device, and is then compressed and transmitted to the recipient, where it is re-printed
or archived in an electronic form [Hun80, ITU T.4, T.6]. The main difference
between this and DDAS is that the sender and the recipient are separated by a
communication channel, usually a telephone line, which is the bottleneck of the
system. The sender may not have sufficient memory to hold the entire image for the
time between digitization and transfer. Image scanning, compression and
transmission are therefore performed simultaneously, and no intermediate image
pre-processing pass over the entire image can be applied.

Engineering Document Management

It has been estimated by International Data Corporation (IDC) that about
8,000,000,000 line drawings exist in the world [Wils96, 99]. Only about 13% of
them have been designed and stored in digital form using vector representations such
as Computer Graphics Metafile (CGM) or AutoCAD drawings (DWG), see Figure
1-2. Nevertheless, there are still (and will continue to be) a large number of drawings
that are stored as paper documents.

67%

13%

20%

48%

19%

Paper,
Blue-prints

CAD-file

Microfilm
only store
as image

CAD modeling

Figure 1-2. The world of engineering drawings [Wils96].

A possible solution for engineering image compression is to perform a raster-to-
vector conversion (RVC), where the bitmap image is segmented into CAD
primitives such as line segments, circles, and circular arcs and stored with any
CAD/CAM format, see Figure 1-3 [Kas90, WD99]. Vectorized images are suitable
for editing and they can be scaled without loss in quality. The storage size of an
engineering drawing in CAD format takes about 2 % compared to a raster format
with 300 dpi; this corresponds to a compression ratio of 50:1.

1. Introduction 5

(930, 850)
(990, 870)

Detailed enlargement from
a line sample

Sample of the digitized
raster image

Original document
in smaller scale

A single vectorized
line element

Figure 1-3. An example of raster-to-vector conversion.

Raster-to-vector conversion, however, may be problematic because of the high
complexity and insufficient accuracy of conversion systems. The conversion process
does not necessarily produce a faithful copy of the original document and loss of
data is apparent. Moreover, the process is not often automatic, and requires
expensive human interaction. Industrial projects have shown that the costs for such
data acquisition exceed the hardware and software costs of operational information
systems by a ratio of 100:1, according to [RM95].

It has been shown that there is a strong requirement for raster images to be
vectorized only for parametric modeling and control system applications. These
applications represent less than 15 % of all applications where engineering
documents are used [Wils96]. In most other applications, the raster format is often
sufficient, especially if hybrid editing is supported [Wils99, SEA99]. Hybrid editing
means using both raster and vector data simultaneously, see Figure 1-4. Information
can be exchanged back and forth between the two distinctive formats. Typically, the
old (digitized) data is kept in the raster background, and new edits are maintained in
vector format. These can be drawn either by hand or extracted from the raster image
using semi-automatic vectorizing. No resources would be wasted on converting
every document into CAD format, and the conversion would be made only when so
desired. Nor would there be any loss of data without the control of the user.

1. Introduction 6

Raster data

Application
database

Image
database

15

16

E-530

E-22

Vector data

Hybrid view

15

16

E-530

E-22

Figure 1-4. An example of hybrid raster/vector representation.

Digital Spatial Libraries and Geographic Information System

In Digital Spatial Libraries (DSL), raster map images are usually generated from a
map database for digital publishing on CD-ROM or on the Web [ESRI94, 98;
Fox+95]. The images consist of several binary layers, which together form the
computer-generated color image, see Figure 1-5. The number of layers is limited, but
the size of a single image is typically very large.

As an example of DSL, we consider digital maps produced in several
international projects headed by the National Land Survey of Finland (NLS):
MapBSR, a project covering the entire Baltic Sea region; Barents GIT (Geographic
Information Technology), a joint project between Finland, Sweden, Norway and
Russia; and GIS-Server, a project aimed at spanning the border between Finland and
Russia. The objective of the projects is to produce uniform geographic information
that can be used in planning and decision-making about communication,
infrastructure, technical, economic and cultural cooperation, tourism and security
interests [NLS].

1. Introduction 7

Map-sheet division of Central Finland

Baltic Sea Region

Sample fragment 500 500×

BINARY LAYERS

Basic Contours Water Fields

Figure 1-5. An example of Digital Spatial Library.
(with the permission of National Land Survey of Finland).

1. Introduction 8

1.2. Previous Work and the Scope of the Thesis

Image Compression

Every document imaging application has a raster image as the basic component. A
few color tones are usually sufficient to represent the original document, and only
two tones are widely used [JBIGWP]. A multi-color document can be decomposed
into bi-level planes, and be processed as the collection of bi-level images [RM92,
JKW98].

The storage size of digitized images has been a major restriction in document
imaging systems for decades. The storage problem is obvious: a standard A4-size
document scanned at a relatively low resolution of 200 dpi (1728×2376 pixels) takes
about 0.5 Mb, whereas a high quality engineering drawing of size A1 at 400 dpi
requires 16 Mb. A typical digital map image of 5000×5000 pixels, representing a
single map sheet of 10×10 km2 in the NLS library, requires about 12 Mb; and there
is no upper limit [NLS]. The GIS images may take hundreds of megabytes [PW96,
Sam89]. The storage size impacts on nearly every aspect of a digital imaging system.
The necessity of compression for saving storage space is, therefore, obvious. Cost
savings emerge from several areas: fewer storage resources are needed and less
network bandwidth required. Faster transfer implies a productivity gain because it
makes Internet and LAN access more useful; less time is spent in waiting, and fewer
resources are required to retrieve the files.

The compression of bi-level images has been extensively surveyed in the
literature [Hun80, Ur92, AT94, Sal97, Haskel98]. The general idea of compression
is to reduce the redundancy in the compressed data. The compression is usually
considered as the process of assigning codes to the symbols of the compressed
message according to its model, which is an assemblage of some rules or data that
describe the message [RL81]. The initial advancements in compression of one-
dimensional signals were quickly extended to the image domain by concatenating
the image pixels in a single stream in an appropriate order, e.g. raster-scan or row-
major order, in which separate lines of the image were processed in a left-to-right
top-down manner. There have also been other sophisticated pixel-ordering
techniques resulting in a more efficient utilization of one-dimensional sequential
compression [NW80].

There are many approaches to reducing the redundancy in the images. Capon was
one of the first to introduce the run-length encoding (RLE), which replaces the runs
of same-colored pixels by two numbers: color and length of the run [Cap59].
Statistical approaches are based on modeling the image according to the probability

1. Introduction 9

distribution of the pixel values. Techniques such as Shannon-Fano [Sh48] and
Huffman coding [Huf52, Vit87] assign shorter codes to more frequent pixel color
values and vice versa, as in a Morse alphabet. The codes have a unique prefix
property, enabling correct decoding.

The codes mentioned above, as do most of the other codes [Col66, Ric79,
Will91] belong to the family of integral codes that have an integral number of bits
per code. Huffman codes are known as minimal-redundancy codes, since they
deliver the minimal possible bit-rate value among other integral codes. They are
based on the entropy concept introduced by Shannon in 1948 [Sh48] that estimates
the optimal code-length value.

The Huffman encoding process is usually very fast and not complex. However,
because of the integral property, the probability distribution of the code does not
necessarily match the distribution of the source. It also requires a minimum code
length of one bit, which may produce a significant deterioration in the compression
ratio if the probability distribution is much skewed. It therefore prevents the direct
application of integral codes for the compression of binary images. To solve the
problem, it has been proposed to apply the Huffman code, not directly to the pixels,
but to runs of pixels, resulting in the Modified Huffman (MH) algorithm [ITU T.4,
Hun80].

The following techniques have been developed to take advantage of a two-
dimensional correlation between the image lines. Vector run-length coding proposed
by Wang and Wu [WW92] applies run-length coding two-dimensionally to m×n-
sized blocks of pixels, instead of to single pixels.

The block coding introduced by Kunt and Johnsen [KJ80] divides the image into
rectangular blocks of pixels. A totally white block is coded by a single 0-bit, whereas
all other blocks are coded by a 1-bit as a prefix, followed by the content of the block.
The process can be iterated, resulting in a hierarchical block coding algorithm. This
technique has been improved by encoding the bit patterns of the 2×2-blocks with
Huffman codes. Another improvement has been achieved using the prediction
technique [NW80]. The idea is to form a so-called error image from the original
one, by comparing the value of each original pixel to the value given by a prediction
function. If these two are equal, the pixel of the error image is set to white, otherwise
to black. The encoding is then applied to the error image instead of to the original
one, and gains were achieved from the increased number of white pixels [FN95].

Another approach is to exploit the correlation between successive lines of the
image. This idea is implemented in the method called relative element address

1. Introduction 10

designate (READ). Instead of coding the lengths of the runs, this method codes the
location of the boundaries of the runs (point of transitions from black to white and
vice versa) relative to the corresponding positions in the previous line. If there are no
such positions within three pixels in the reference line, one-dimensional run-length
coding is used. The READ method is defined in the international standard for
facsimile communications [ITU T.4]. In this, every k-th line (k = 1, 2, or 4) is coded
using one-dimensional MH-coding, and two-dimensional READ-code (more
accurately referred to as Modified READ) is applied to the remaining lines.

A technique, which is completely different to integral coding, is called arithmetic
coding, as proposed by Rissanen and Langdon [RL79]. The idea of arithmetic coding
is to represent the entire input message as a small interval in the range [0,1]. The
resulting codeword is the binary code representation of the interval. Arithmetic
coding is an optimal coding method as regards the model, and it fits for compression
of binary images. It is also well suited for dynamic modeling, because there is no
need to store and update complex data structures such as Huffman trees.

Arithmetic coding does not have the limitation of integral codes. The method is,
therefore, fully applicable directly to the pixels, instead of pixel blocks or runs. In
[LR81], Rissanen and Langdon proposed that Shannon’s context-based statistical
modeling be used in conjunction with arithmetic coding. The idea of context-based
modeling is to obtain the statistical model of the image by conditioning the
probability distribution of the pixels on the context. The context is determined by the
combination of the pixels in the local neighborhood, which is defined by the
template. Context-based statistical modeling and arithmetic coding are implemented
in the latest international standard for compression of binary images, JBIG (Joint
Bilevel Image Experts Group) [JBIG1]. To distinguish it from the emerging JBIG2
standard, we will refer to it as to JBIG1.

Although JBIG1 is originally designed for bi-level facsimile images, the
solutions for multi-tone and grayscale images have also been presented. The multi-
tone images can be separated into several bit-planes, and each bit-plane compressed
separately. The separation can be performed using the binary representation of gray-
level values or the gray-code words [WRA96, JKW98]. Another approach to deal
with multi-tone images has been developed by At&T and is called “DjVu”. It
classifies the pixels of the image either as foreground (text, drawings) or background
(pictures, photos, paper texture). The classification is compressed as a binary image,
whereas a progressive, wavelet-based lossy compression technique is applied to the
foreground and background images [Haf+99].

1. Introduction 11

To improve the compression of binary images, Moffat has experimented with
various sizes and shapes of the context templates and has noticed that the bit-rate
does not decrease further after the templates exceeds 14 pixels [Mof91]. However,
he has demonstrated the potential of larger templates of up to 24 pixels and has
proposed the two-level modeling technique using both 10- and 24-pixel templates.
The variable-size modeling based on a context tree has been introduced by Rissanen
in [Ris]. Martins and Forchhammer have recently studied variable-size context
modeling and proposed both context tree and “free tree” techniques, in which the
number and the positions of the context pixels are varied depending on the pixel and
its neighborhood [MF98].

Remarkable improvements in image compression have been achieved by
specializing in some known image types (e.g. text images) and exploiting global
dependencies. The emerging standard JBIG2 [JBIG2] will segment a page into
different classes of image data, in particular, textual, halftone and generic (other)
[TK99], and utilize the repetitive nature of the textual and halftone images. For
textual data, JBIG2 uses pattern matching techniques, which are based on the
following works. Ascher and Nagy [AN74] have proposed the pattern matching
technique to extract symbols and marks from the image into the dictionary, which is
a collection of bitmaps. Witten et al. expanded on this approach to address the
extraction of marks, indexing their location within the image, compressing the
indices, and coding the residuals left after the replacement of marks by library
prototypes [IW94, WMB94]. Howard has proposed soft pattern matching, which
compresses the original image instead of the residual, and uses the image composed
of prototypes in improved context modeling [How97].

JBIG2 will also address the compression of halftone image data using either of
the two following methods. The first is similar to JBIG1, but it uses larger context
templates (up to 16 pixels) with multiple adaptive pixels [MF98, 99]. The larger
templates are intended to exploit specific types of redundancies that exist in halftone
images. The second method involves descreening the halftone image (converting it
back to grayscale) and transmitting the grayscale values [VETK99, FJ94]. Some
data, such as line art data, may not be identified as either textual or halftone, and will
be coded by a cleanup coder, which is essentially a bitmap coder similar to JBIG1.
JBIG2 will also provide lossy image compression [MF99], and quality and content
progressive coding [How+98].

Image enhancement

The quality of document images may have faded during the document life cycle and
digitization process, while noise introduces unnecessary details in the images. It

1. Introduction 12

degrades the image quality and weakens image compression. Several filtering
methods have been considered in the literature for image pre-processing [TP80,
Ber87, AKS90, ZD96]. These filters include logical smoothing, variations of median
filtering, isolated pixel removal, and "crisp" and soft morphological filters [Ser82,
Hei94]. All these analyze the local pixel neighborhood defined by a filtering
template. To accept or reject the pixel, they use a set of rules, such as predefined
masks or quantitative description of the local neighboring area. Recent research in
mathematical morphology has shown that morphological filtering can be used as an
efficient tool for pattern restoration in an environment of heavy additive noise, but it
is not necessarily suitable for filtering the content-dependent noise introduced by the
image digitization process [SG91, Hei94, KA94, DA97].

Hybrid raster/vector modeling

Numerous techniques and systems have been proposed for line-drawing images, to
extract semantic information and perform a conversion of the document to vector
space [Hou69, HK83, Ab89, Lea93, NL90, Kas90, RM95, KBO96, WD99].
However, no one solution creates a faithful copy of the original document, and
expensive human interaction is often required [RM95].

The hybrid raster/vector compression system has been proposed to eliminate the
necessity of converting the engineering drawings into vector format in order to
process them in CAD applications [Wils96, 99]. Typically, vector and raster
representations of the image are stored together in the same file. Existing
information is kept in original raster form when new edits are made in vector form
native for CAD. The vector features of the raster object can be extracted on demand,
so that this raster object can be processed (moved, scaled, rotated or removed)
directly in the raster [SEA].

Spatial access

The document image archive may not be physically present at the viewing location,
but may be accessed through a communication channel, which could be nothing
more than a slow telephone connection [Lun90]. Compression reduces the amount of
data to be transferred and makes the image retrieval faster. However, the time
required for image transmission and decompression may make the access to the
images significantly slower. Spatial access is, therefore, another highly desired
property of an imaging application, such as GIS, that deals with spatial data [Sam89,
Fox+95]. Spatial access means direct access to an image fragment in a compressed
file and enables an efficient and precise retrieval of the desired image fragments.
Imaging applications using large format images (e.g. EDM) may also benefit from

1. Introduction 13

spatial access [PW96, AF98]. It allows the user to eliminate unnecessary delays
caused by retrieval and decompression of the entire image. Spatial access has
received relatively little attention in the literature; for solutions in text compression,
see [WMB94].

1.3. Structure and Contribution of the Thesis

Although the lossless compression of binary images has been extensively studied
during the last decades, and several compression standards already exist, they do not
provide an efficient universal solution, nor satisfy all application-specific
requirements, such as on-line retrieval, high quality restoration, spatial access and
intellectual post-processing. Better solutions must therefore be developed. In this
thesis, we study context-based methods for enhancement, storage and processing of
binary images of documents and line drawings. We aim at improving compression
performance and interactive processing. The organization of this thesis is as follows.

Chapter 2 contains the basic concepts and definitions for statistical image
compression. We start by recalling the concept of statistical context modeling
introduced by Shannon, and define static, semi-adaptive and dynamic modeling
approaches. Next, arithmetic coding and its implementation aspects are briefly
discussed. We review also the process of the probability estimation derived from
arithmetic coder renormalization, which is implemented in the QM-coder, a binary
arithmetic coder used in JBIG1. Thereafter, we introduce a new forward-adaptive
modeling technique for the QM-coder [AF99a]. The technique is useful when large
images are subdivided into smaller parts. Finally, the JBIG1 standard is briefly
described, including the algorithm for resolution reduction.

Chapter 3 deals with context-based modeling and aspects of variable-size context
models. We start by discussing the fixed size context templates and show the
limitations of this approach. Next, we proceed to variable-size context modeling, in
which the number of context pixels depends on a combination of neighboring pixel
values. We define the concept of context tree and study the aspects of its
construction. We define a splitting criterion, and consider both static and semi-
adaptive construction alternatives. Thereafter, we review and compare two strategies
for building the context tree: top-down and bottom-up approaches. For top-down
tree construction, we show the locality problem of the tree splitting and present a
new delayed pruning technique [FA99]. For bottom-up tree construction, we present
a new space efficient two-stage pruning algorithm [AF00b]. We also show how
variable-size context modeling and forward-adaptive statistical modeling can be

1. Introduction 14

combined [AF00b]. Finally, we give an empirical comparison of the strategies
presented and draw conclusions.

In Chapter 4, we study global modeling of the images. We start by discussing
various techniques for extracting semantic information from the image. First, we
review the pattern matching techniques used in the emerging standard JBIG2 for
extraction of the common symbols from document images, and utilizing this
information in improved image compression. Next, we switch to line drawings, and
propose two techniques for the extraction of vector features: the first one is based on
a Hough transform [FAKK98a], and the second one is based on raster-to-vector
conversion [FAK99]. Finally, we consider hybrid raster/vector storage systems and
propose a hybrid modeling technique, in which vector information is used for
improving compression of raster images [FAKK98b].

Chapter 5 is devoted to image enhancement and noise removal. We present here
two concepts for image filtering: context-based statistical filtering for document
images, and feature-based filtering for line-drawing images. We start by defining
context-based filtering, and introduce the Simple Context filter that unconditionally
changes uncommon pixels in low entropy contexts. Thereafter, we introduce a new
Gain-Loss filter that takes into account the effect of filtering on compression (the
gain,) as well as the error introduced by filtering (the loss) [AF00a]. Next, we
introduce the new concept of feature-based filtering based on semantic image
modeling [FAK99]. We present an algorithm for removing content-dependent noise
along the line contours of the image, which is difficult to remove using traditional
filtering methods without smoothing the image.

Chapter 6 deals with interactive image browsing, retrieval and spatial access.
First, we establish the objectives in order to support real-time access to the image
archive: instant preview, fast decompression, and spatial access, i.e. direct access to
the image fragments [AF98]. Next, we present a new storage system architecture that
combines the compression methodologies of Chapter 2 with the properties of instant
preview (by block-coding) and interactive access to the compressed image (by image
tiling). We thoroughly discuss the implementation aspects of the spatial access, and
its advantages and disadvantages for the compression [AF98].

In Chapter 7, we present empirical evaluation of the proposed modeling
techniques, filtering methods and storage system. We start by studying the
performance of variable-size context modeling in image communication [FA99].
Next, we analyze the effect of context-based filters introduced in Chapter 3 on
document images [AF00a]. We study the possibility of improving the compression
performance of filtered images, while preserving document recognition. Thereafter,

1. Introduction 15

we evaluate the feature-based filtering method as a pre-processing stage in an image
compression system, which uses either of two standard compression components,
JBIG1 or ITU Group 4, and compare it with the traditional filtering methods
[FAK99].

Finally, we evaluate the efficiency of the storage system outlined in Chapter 6. In
the study, we first compare two techniques for generating thumbnail images, block-
coding and JBIG resolution reduction; and analyze the effect of block codes on the
decompression time, and the effect of image tiling on compression performance. We
then evaluate five compression methods based on the methodologies presented in
Chapters 2 and 3, and compare them with ITU Group 3/4 and JBIG1 [AF00b].

In Chapter 8, we make conclusive remarks on the study.

The image test sets used in the evaluation are included in the Appendix. These
sets include: CCITT facsimile documents, digitized text documents and newspaper
images, real-life line drawings, including engineering drafts, electrical circuits, GIS
maps and architectural plans, and, finally, topographic maps from the digital spatial
library of the National Land Survey of Finland.

The main contributions of this work can be summarized as:

• a consistent presentation of the fundamental concepts and methods concerning
context-based statistical modeling;

• a new forward-adaptive modeling technique for the QM-coding algorithm
aimed at the construction of a better initial model for the coder in order to
alleviate the learning cost problem caused by tiling the image into small parts
(Section 2.7);

• new results and development work concerning variable-size context modeling
(Chapter 3), including the solution for the locality problem of the tree splitting
(Section 3.3), and a new space efficient two-stage tree construction algorithm
(Section 3.4);

• application of variable size modeling in image communication (Section 7.1),
and in conjunction with forward-adaptive modeling in digital spatial libraries
(Sections 3.5 and 7.4.2);

• the concept of global modeling for line drawings (Chapter 4), and the study of
methods for extracting semantic features by Hough transform (Section 4.2) and
raster-to-vector conversion (Section 4.3);

1. Introduction 16

• a new method for compression of the line-drawing images stored in raster-
graphic format in hybrid raster/vector storage systems (Section 4.4.4);

• a new feature-based filtering technique for removing quantization noise from
line-drawing images (Section 5.2);

• a new context-based filtering algorithm for enhancing document images for
compression, while preserving document readability (Section 5.1);

• a new approach for evaluating filtering methods by the OCR technique
(Section 7.2); and

• a new storage system architecture supporting instant preview, fast
decompression, and direct access to image fragments (Chapter 6).

2. Statistical Image Compression 17

2. STATISTICAL IMAGE COMPRESSION

The aim of compression is to remove redundancy of the data. Statistical image
compression consists of two distinct phases: statistical modeling and coding [RL81].
In the modeling phase, we construct the probability distribution for the occurrence of
the symbols to be compressed. The coding process assigns the variable length code
words to the symbols according to the probability model, so that shorter codes are
assigned to symbols that are more probable and vice versa. The main problem of the
compression is to find a good model, describing the data with high precision. The
coding can be efficiently performed using arithmetic coding, which is an optimal
coding for a given probability model [RL79].

2.1. Statistical Modeling

A binary image can be considered as a message, generated by an information source.
The idea of statistical modeling is to describe the message symbols (pixels)
according to the probability distribution of the source alphabet (binary alphabet, in
our case). Shannon has shown in [Sh48] that the information content of a single
symbol (pixel) in the message (image) can be measured by its entropy:

 pH pixel 2log−= , (2.1)

where p is the probability of the pixel. Entropy of the entire image can be calculated
as the average entropy of all pixels:

 ∑
=

−=
n

i
iimage p

n
H

1
2log1 , (2.2)

where ip is the probability of i-th pixel and n is the total number of pixels in the

image. If the probability distribution of the source alphabet (black and white pixels)
is a priori known, the entropy of the probability model can thus be expressed as:

 BBWW ppppH 22 loglog −−= , (2.3)

where Wp and Bp are the probabilities of the white and black pixels, respectively.

2. Statistical Image Compression 18

Entropy gives the optimal number of bits required for encoding a single pixel
with a given model. A model with skewed probability distribution will have low
entropy, see Figure 2-1. Respectively, the codes with the lengths equal to the entropy
values will provide an optimal compression in respect of the model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2-1. Entropy of the binary probability model, as function of white pixel probability.

2.2. Static, Semi-adaptive and Adaptive Approaches

The modeling schemes can be classified as static, semi-adaptive or adaptive
(dynamic). In the static modeling, the probability distribution of a source alphabet is
a priori known (or suggested) and the same, non-changing model is applied to every
pixel during the compression. The advantage of static modeling is its simplicity, and
that no side information has to be passed to the decoder.

Semi-adaptive modeling uses a preliminary pass on the input data to gather
statistics and construct the model. The model is passed to the encoder, which
performs data compression as in the static variant. The model must also be passed to
the decoder to make decompression possible.

Dynamic (adaptive) modeling takes one step further and eliminates the need for
an extra pass over the image to construct the model, and no model overhead is
required. Both encoder and decoder dynamically estimate the model during the
compression/decompression adapting to the preceding data. Usually an equal initial
probability distribution for black and white pixels is assumed. The time-dependent
cumulative pixel counts t

Bn and t
Wn are therefore initialized to 1, and are

subsequently incremented by 1 each time black or white pixel value appears,
respectively.

2. Statistical Image Compression 19

The more sophisticated Bayesian sequential estimator calculates probability of
the pixel on the basis of the observed pixel frequencies as follows [MF98]:

 ()








−=

++
+=

=
blackxpp

whitex
nn

np
xp

tt
W

t
B

t
t
B

t
W

t
Wt

Wt

 is if,1

 is if,
2δ

δ
 (2.4)

where t
Wn , t

Bn are the time-dependent counters, t
Wp , t

Bp are the probabilities for

white and black colors respectively, and δ is a constant. Counters t
Wn and t

Bn start

from zero and are updated after the pixel has been coded (decoded). As in [JBIG1],
we use 45.0=δ . The cumulative equation for entropy (2.2) is used to estimate the
average bit rate and calculate the ideal code length.

Dynamic modeling is inefficient at early stage of compression, since it takes time
to adapt to the correct model, but highly applicable for compression large volumes of
data, such as document images. The loss in compression rate caused by the model
adaptation is known as the learning cost.

2.3. Context Modeling

The pixels in an image form geometrical structures with appropriate spatial
dependencies. The dependencies can be localized to a limited neighborhood, and
described by a context-based statistical model [LR81]. In this model, the pixel
probability is conditioned on the context C, which is defined as distinct black-white
configuration of neighboring pixels within the local template. For binary images, the
pixel probability is calculated by counting the number of black (C

Bn) and white (C
Wn)

pixels appeared in that context in the entire image:

 ()








=−=

=
+

=
=

blackxpp

whitex
nn

np
xp

C
W

C
B

C
B

C
W

C
WC

W

 if,1

 if,
, (2.5)

Here, C
Bp and C

Wp are the corresponding probabilities of the black and white pixels.

The entropy ()CH of a context C is defined as the average entropy of all pixels
within the context:

 () C
B

C
B

C
W

C
W ppppCH 22 loglog ⋅−⋅−= (2.6)

2. Statistical Image Compression 20

A context with skew probability distribution has smaller entropy and therefore
smaller information content. The entropy of an N-level context model is the
weighted sum of the entropies of individual contexts:

 () ()∑
=

⋅+⋅⋅−=
N

j

C
B

C
B

C
W

C
WjN

jjjj ppppCpH
1

22 loglog . (2.7)

In principle, a skewed distribution can be obtained through conditioning of larger
regions by using larger context templates. However, this implies a larger number of
parameters of the statistical model and, in this way, increases the model cost, which
could offset the entropy savings. Another consequence is the “context dilution”
problem occurring when the count statistics are distributed over too many contexts,
thus affecting the accuracy of the probability estimates.

2.4. Arithmetic Coding

Arithmetic coding is a statistical compression method that assigns one long code to
the entire input stream, instead of assigning codes to the individual symbols [RL79,
WNC87]. It is an optimal coding method for a given probability model, because it
can achieve a bit-rate approximately equal to the entropy value.

The basic idea of arithmetic coding is to represent the entire input data as a small
sub-interval in range [0,1). The coding process starts by dividing the interval [0,1)
into two sub-intervals according to the probability distribution of the black and white
pixels. Depending on the pixel color, the upper or lower sub-interval is chosen, and
the process is repeated for the next symbols, resulting in smaller and smaller
intervals. The final interval describes the source uniquely. The length of this interval,
L, is the cumulative product of the probabilities of the coded symbols:

 ∏
=

=⋅⋅⋅⋅=
n

i
in pppppL

1
321final ... , (2.8)

and it can be coded by the following number of bits:

 () ∑∏
==

−=−=
n

i
i

n

i
i ppLCodesize

1
2

1
2final loglog (2.9)

The implementation aspects of the binary arithmetic coding follow [Sal97]. The
encoding process starts by defining two variables, Low and High, in order to
describe the coding interval. The Low is initialized to 0, and High to an infinite
fraction .999…, since it has to be interpreted as a fraction less than 1. Usually, Low

2. Statistical Image Compression 21

and High are represented as integer (binary) variables holding the most significant
part of the real numbers. After the pixel has been coded, the interval is reduced by a
factor that equals the pixel probability, and Low and High are updated accordingly.
Very soon the interval becomes too small to be expressed by the two variables, and
the interval scaling procedure is therefore applied. When the interval falls below or
above the half point, the codeword is known to start with the bit 0 or 1, respectively.
In both cases, the starting bit can be shifted out of the interval variables and output to
the compressed stream, and the interval is rescaled, see Figure 2-2.

1.0

0.5

0.0

1.0

0.5

0.0

0.8

0.4

0.2

0.4

Figure 2-2. Example of half point scaling [RL79].

Underflow can occur when the size of the interval becomes too small, but the
interval still covers the half point. To solve this problem, quarter point scaling is
applied, see Figure 2-3. In this case, neither bit is output. Later, when the half point
scaling occurs, an appropriate bit will be added to the code stream, see [RL79] for
details.

1.0

0.5

0.0

1.0

0.5

0.0

0.7

0.6

0.3

0.1

0.75

0.25

0.75

0.25

Figure 2-3. Example of quartet point scaling [RL79].

2. Statistical Image Compression 22

2.5. QM-coder

The QM-coder is the arithmetic coder used in JBIG1 [PMLA88, PM93]. It is an
approximate implementation of arithmetic coding tailored for binary data. Its
sub-optimality is compensated by the sophisticated automaton-based probability
estimation (see Section 2.6), providing fast adaptation to the source data.

The QM-coder uses the following variables to describe the interval: interval base
and interval size. If the encoded pixel value (color) is the one with higher
probability, it is denoted as most probable symbol (MPS), when the opposite value is
denoted as the least probable symbol (LPS). The interval is always divided so that
the LPS sub-interval is above and MPS sub-interval is below as shown in Figure 2-4.
Here C is the interval base, A is the interval size, and Qe is the LPS probability
estimate [PMLA88].

A+C

C

MPS

LPS AQe

C+A-AQe

A(1-Qe)

Figure 2-4. Interval subdivision of the QM-coder.

Altering the interval size involves multiplication. The QM-coder accepts the
element of approximation by replacing the interval multiplication by suitable scaling.
It assumes that the interval size is roughly constant and equals to 1. In this case, the
coding of a pixel changes the interval as follows.

After MPS:

 () QeAQeAAQeAA
C

−≈⋅−=−⋅← 1
unchanged is

 (2.10)

After LPS:

()
QeQeAA

QeACQeAACQeACC
≈⋅←

−+≈⋅−+=−⋅+← 1
 (2.11)

2. Statistical Image Compression 23

The interval size is maintained between 0.75 and 1.5, centered on 1. When the
interval size falls below lower bound, the interval is renormalized by a series of
consecutive duplications performed by bit-shifting operations. The renormalization
occurs always after the LPS, and if necessary, after the MPS is encountered. At each
renormalization, the encoder generates output bits (0 or 1) regarding to MPS or LPS
and number of duplications in the renormalization process.

2.6. Automaton-based Probability Estimation

Probability estimation can be derived from arithmetic coder renormalization, as in
the QM-coder [PM88]. Instead of maintaining pixel counts, the estimation process is
implemented as a state automaton consisting of 226 states. Each context has its own
8-bit pointer to the automaton, where one bit indicates the color of MPS. The
automaton has mirror symmetry about the change in the sense of MPS color, and we
therefore consider only 113 states, see Figure 2-5. The automaton is a Markov-chain
containing one state for each probability estimate. The states are organized in rows
that are ordered by the level of adaptation. The states in the upper rows are more
sparsely distributed throughout the probability range and therefore they allow faster
adaptation.

The adaptation process starts from the zero-state. In each state, the automaton
can perform a transition to two other states, see Figure 2-5. After each MPS
renormalization, a transition is made to the next state situated to the right in the same
row, having a smaller LPS probability. After each LPS renormalization, a transition
is made to the state with a larger LPS probability, which is the appropriate state in
the row at the next level in the case of the transient state, or to the preceding state in
the same row in the case of non-transient states. Transient states are, therefore,
visited only during the learning stage, and the pointers stabilize eventually to the
non-transient states. If the statistics change later, the non-transient states can be re-
entered from other non-transient states, making local adaptation possible.

2. Statistical Image Compression 24

LPS Probability
0.000010.00010.0010.010.11

R
ow

transient state
non-transient state

MPS transition
LPS transition

1

2
3
4
5
6
7
8
9

10
11
12

Zero-state

Fast-attack states

mirrored
state 1

Figure 2-5. Spatial organization of the QM-coder state automaton and transition sketch for the
fast-attack states. Because of the mirror symmetry regarding the change in sense of MPS, only
half of the states are depicted.

2.7. Forward-adaptive Modeling

In [AF99a] we proposed the forward-adaptive variant of statistical context-based
modeling for the QM-coding algorithm. The technique is a two-stage combination of
forward-adaptive and backward-adaptive strategies. Statistics are first collected
globally over the image (as in the semi-adaptive approach) to construct a better
initial model. The model is stored in the compressed file. In the second stage, the
image is coded using QM-coder and initializing the statistics according to the
constructed model.

The initial model serves to enable faster adaptation and helps to alleviate the
coding inefficiency caused by learning cost, which is typical when coding small
portions of data. This can be very useful if the coding must be restarted periodically
(see Chapter 6). The forward-adaptive method can be implemented with minor
modifications to the existing software implementations of the QM-coder. This
scheme requires two passes over the image even though the decompression can be
performed with one pass only.

The implementation of the method is outlined in Figure 2-6. The input image is
first analyzed and the probability distribution of black and white pixels is calculated
for each context. The calculated probabilities are mapped to the 26 fast-attack states
in the state automaton using a look-up table. The fast-attack states (first row of state
in Figure 2-5) can represent all probabilities with sufficient accuracy, allow faster
adaptation than from the zero-state, or re-adaptation from non-transient states. The
choice of the fast-attack state can be coded by five bits each. The LPS probabilities

2. Statistical Image Compression 25

of the fast-attack states are shown in Table 2-1. The result of the mapping is the
model table formed by the five-bit indices.

Figure 2-7 shows the changes in the QM-coder caused by the forward-adaptive
modeling. The probability mapping is implemented using the
GetFastAttackStateIndex function. The state index is found by a sequential search
implemented in the FindFastAttackState function. The QM-coder is initialized using
RestoreState function. It takes the context number (context) and the state index
(index) as input and accordingly restores the fields (mps and cstate) for the
appropriate context in the QM-coder.

// MODELING STAGE

for (each pixel x of t in raster scan order) // gather statistics
{

c = GetContext (x); // determine pixel’s context c
n_total[c] ++; // update statistics of context c
if (x == white) n_whites[c] ++ ;

}

for (i = 0, i < NumberOfContexts, i ++) // construct and store the model
{

index[i] = GetFastAttackStateIndex (n_whites[i] / n_total[i]);
StoreModelIndexIntoFile (index[i]);

}

// CODING STAGE

for (i = 0, i < NumberOfContexts, i ++) // initialize the QM-coder
RestoreState(i, index[i]);

for (each pixel x of t in raster scan order) // compress the cluster t
{

c = GetContext (x); // determine pixel’s context c
EncodePixelByQM (x, c); // encode pixel x by QM-coder

}

Figure 2-6. FA-M algorithm.

Table 2-1: LPS probabilities of the fast-attack states.

State: 0 1 2 3 4 5 6
pLPS: 0.49690 0.20691 0.09417 0.04435 0.02120 0.01021 0.00493
State: 7 8 9 10 11 12 13
pLPS: 0.00239 0.00116 0.00056 0.00028 0.00013 0.00006 0.00002

2. Statistical Image Compression 26

float FastAttackStateBounds [13] = {
.30891, .14590, .06891, .03255, .01537, .00726, .00343,
.00162, .00076, .00036, .00017, .00008, .00004 };

int FindFastAttackState (float Prob)
{

int i;
for (int i = 0; i < 13; i ++)

if (Prob > FastAttackStateBounds [i]) return (i);
return (13);

}

int GetFastAttackStateIndex (float WhiteProb)
{

float LpsProb;
int index;
if (WhiteProb < 0.5) LpsProb = WhiteProb;
else LpsProb = 1 - WhiteProb;
index = WhiteProb < 0.5 ? 0x00 : 0x10;
index = index | FindFastAttackState (LpsProb);
return (index);

}

void RestoreState (int context, int index)
{

mps[context] = (index & 0x10) ? 0 : 1;
cstate[context] = (index & 0x0f);

}

Figure 2-7. Extensions for the QM-coder.

2.8. JBIG1

JBIG1 is an International Standard for compression of bi-level images in
communications [JBIG1]. The standard defines two methods for bi-level
compression, progressive and sequential. In sequential coding, the image is coded in
raster scan order using a context-based probability model and adaptive arithmetic
coder (QM-coder), see Figure 2-8. The probability distribution of the black and
white pixels is conditioned on the context, which is defined by the combination of
already coded neighboring pixels. A three-line ten-pixel template is used by default,
see Figure 2-9. Both encoder and decoder estimate the model dynamically during the
compression. The estimation starts from scratch and adapts the model to the input
data. The probability estimation in the QM-coder is derived from the arithmetic
coder renormalization and is based on the Bayesian estimation concept [PM88].

2. Statistical Image Compression 27

Bit stream

Pixel

Modelling

Decoded
image

Original
image

Context

Context

Pixel

QM-coder

Modelling

QM-coder

Bits

Bits

Figure 2-8. Block diagram of JBIG1.

Context pixel

? Pixel to be coded

9 10

2

?

4 8

6

3

15

7

Figure 2-9. Default ten-pixel three-line context template of JBIG1.

JBIG1 has also progressive mode, in which the encoded image is stored in
several resolutions. A reduced resolution version of the image, which is usually not
larger than 640×480 pixels, is compressed first. It is followed by the layers with
progressively increasing resolutions so that each successive layer has twice the
number of horizontal and vertical pixels than the previous layer. Pixels from the
previous resolution layer are added to the context template to improve the
compression performance. A drawback of the progressive mode is the redundancy
that it adds to the code stream. The redundancy amounts to 15-25 % according to our
experiments, see Figure 2-10. JBIG1 can also compress gray-scale images can be
compressed using the binary representation of gray-level values or the Gray-code
words [WRA96, JKW98].

2. Statistical Image Compression 28

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

1 2 3 4 5 6 7 8

Ave
rag

e

C
om

pr
es

se
d

si
ze

, b
yt

es JBIG1 seq
JBIG1 prog

Image, No

Figure 2-10. Compression rates of JBIG1 in sequential and progressive mode for the CCITT
test set (see Appendix A).

JBIG1 separates an image into several horizontal stripes, resolution layers and
planes, were each plane contains one bit per pixel. The resolution layers are stored
all in a single bi-level image entity (BIE) file or they can be stored in several separate
BIE files. Separate bitmap planes are stored in a multi-bitplane BIE. One single
stripe in one plane and layer is encoded as a data unit called stripe data entity (SDE)
inside the BIE. There are 12 different possible orders in which the SDEs can be
stored inside the BIE. This order is only relevant for applications, in which we want
to decode a JBIG1 file, which has not yet completely arrived from e.g. a slow
network connection. For instance, some applications prefer that the outermost of the
three loops (stripes, layers, planes) is over all layers so that all data of the lowest
resolution layer are transmitted first.

Resolution reduction in JBIG

Here we briefly recall the principles of the JBIG resolution reduction algorithm
[JBIG1], which we will consider for generating the thumbnail images in our storage
system described in Chapter 6. A series of images with decreasing resolutions is
generated from the original image prior to compression. The process continues until
size of the final, lowest resolution image becomes smaller than a predefined size. At
each iteration, the input image is processed in the raster-scan order, and the value of
each target pixel is calculated as a linear function of the preceding neighboring
pixels from the high-resolution (input) and low-resolution (target) images. The
already-committed pixels at the low-resolution image participate in the sum with
negative weights that offset the corresponding positive weights.

2. Statistical Image Compression 29

 Specifically:

() () ()

() () ()011301121031

1021001133322322

2
224

yxyxyx
yxyxxxxxL

−+−+−+
+−+−++++=

 (2.12)

Or equally:

 () () () 001001323113113223211222 324 yyyxxxxxxxxxL −+−++++++++= . (2.13)

If black and white pixels are equally likely and the pixels are statistically
independent, the expected value of the target 33y pixel is 4.5. A pixel is therefore

chosen to be black if the value is 5 or more, and white if it is 4 or less.

The method preserves the overall grayness of the image. However, problems
occur with lines and edges because these deteriorate very rapidly. To address this
problem, a number of exception patterns have been defined to reverse the polarity of
the target pixel after the thresholding of the weighted sum (2.13). An example of
such an exception pattern is show in Figure 2-11.

Pixel positions:
Resulting pixel

weights:
Example of

 exception pattern

x13x12x11

x21 x22 x23

x31 x32 x33

y00 y01

y10 y11

121

2 4 2

1 2 1

-1 -3

-3 ?

000

0 0 0

1 1 1
0 1

Figure 2-11. Resolution reduction in JBIG: participating pixels (left); pixel weights (center);
an example of exception pattern (right).

3. Context Modeling 30

3. CONTEXT MODELING

Binary images form a favorable source for context-based image compression
because of the strong correlation between their neighboring pixels [LR81,
TWMG93]. In context modeling, the pixel probabilities are conditioned on the
context, which is defined by the combination of pixel color values within the local
template.

3.1. Fixed Size Context Template

By default, JBIG1 uses the 10-pixel context template shown in Figure 3-1. This is
referred to here as JBIG10. With a 10-pixel template there are 210 = 1024 different
contexts in total. Despite the high number of contexts, only a small fraction of them
is really important. For example, in the case of the CCITT-5 test image, 50 % of the
code bits originate from only nine most common contexts. These most important
contexts and their statistics are shown Figure 3-2. Furthermore, 99 % of the code bits
originate from 183 contexts, and 429 out of the 1024 contexts are never used at all.

The context size is a trade-off between the prediction accuracy and learning cost
(in dynamic modeling) or model overhead (in semi-adaptive modeling). A larger
template size gives us a theoretically better pixel prediction. This results in a skewer
probability distribution and lower bit-rates. However, with a large template the
adaptation to the image statistics takes longer, which increases the coding deficiency
in the early stage of compression, which is known as the learning cost [PM93]. The
number of contexts grows as an exponential function of the template size, and the
learning cost outweighs the benefit in compression for templates larger than 14
pixels, according to Moffat [Mof91]. In our experiments with different set of images,
we have obtained higher compression rates for templates up to 18 pixels, but have
noticed only marginal improvement for those templates greater than 14 pixels (see
Figure 3-3). Moffat, on the other hand, has demonstrated the potential of even larger
context templates up to 22 pixels. He has proposed two-level context modeling,
using context templates of two sizes. The larger templates are used only when
adaptation has been performed.

3. Context Modeling 31

x Context pixel

? Pixel to be coded

9 10

2

?

4 8

6

3

15

7

11

17 14 18

19

15

13

12

16

20

21 22

9 10

2

?

4 8

6

3

15

7

Figure 3-1. The default three-line context template of the sequential JBIG1 with default
position of adaptive pixel (left), and 22-pixel ordered neighborhood used to determine an
optimal context size (right).

9 10
2
?

4 8
6

3
15

7
9 10

2
?

4 8
6

3
15

7
9 10

2
?

4 8
6

3
15

7
9 10

2
?

4 8
6

3
15

7
9 10

2
?

4 8
6

3
15

7

9 10
2
?

4 8
6

3
15

7
9 10

2
?

4 8
6

3
15

7
9 10

2
?

4 8
6

3
15

7
9 10

2
?

4 8
6

3
15

7

1.

pw = 0.999
pb = 0.001
bits = 13.4%

2.

pw = 0.025
pb = 0.975
bits = 7.8%

3.

pw = 0.201
pb = 0.799
bits = 5.8%

4.

pw = 0.116
pb = 0.884
bits = 5.0%

5.

pw = 0.822
pb = 0.178
bits = 4.9%

7.

pw = 0.874
pb = 0.126
bits = 4.4%

6.

pw = 0.206
pb = 0.794
bits = 4.8%

8.

pw = 0.836
pb = 0.164
bits = 3.5%

9.

pw = 0.660
pb = 0.440
bits = 3.1%

Figure 3-2. The most important contexts of JBIG1 in the case of CCITT-5 image at 200 dpi,
according to [AF98].

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Context size

C
om

pr
es

si
on

 ra
tio

Figure 3-3. Compression performance as the function of context size (for CCITT images)

3. Context Modeling 32

3.2. Variable Size Context Model

In variable-size context modeling, the number of context pixels depends on the
combination of the neighboring pixel values. The context selection is made by
traversing the context tree (CT) instead of checking a fixed size template [Ris83,
Ris86]. Each node in the tree represents a single context, and the two children of a
context correspond to the parent context augmented by one more pixel. The position
of this pixel can be fixed in a predefined order, as shown in Figure 3-4, or optimized
within a limited search area relative to the compressed pixel position [MF98]. We
refer to the later case as a free tree. Only the leaves of the tree are used in the
compression. An example of a context tree is shown in Figure 3-5.

3.2.1. Splitting Criterion

To construct a context tree, the image is processed and the statistics C
Wn and C

Bn are

calculated for every context in the full tree, including the internal nodes. The tree is
then pruned by comparing the children and parents nodes at each level. If
compression gain is not achieved from using the children nodes instead of their
parent node, the children are removed from the tree and their parent will become a
leaf node. The compression gain is calculated as:

 () () () () SplitCostClClClCCCGain BWBW −−−=,, , (3.1)

where C is the parent context and CW and CB are the two children nodes. The code
length l denotes the total number of output bits from the pixels coded using the
context. The cost of storing the tree is integrated into the SplitCost parameter.

The code length can be calculated by summing up the entropy estimates of the
pixels as they occur in the image:

 () ()∑=
t

t CpCl log

 (3.2)

The probability of the pixel is calculated on the basis of the observed frequencies
using a Bayesian sequential estimator:

 ()
() ()

() ()
() ()








−=

++
+=

=
blacktCpCp

whitet
CnCn

CnCp
Cp

t
W

t
B

t
B

t
W

t
Wt

Wt

 ispixel if,1

 is pixel if,
2

th

th

δ
δ

 (3.3)

3. Context Modeling 33

x Context pixel

? Pixel to be coded

9 10
2
?

4 8
6

3
15

7

JBIG CONTEXT TREE

7 9
2
?

5 10
8

3
16

4
11

13 14 16
18
12
17

15
22

19

21
20

Figure 3-4.The 22-pixel ordered neighborhood used for the context tree (shown right). The first
10 pixels in the neighborhood constitute the default JBIG1 template (shown left). The template
form and the pixel order in this example are optimized for topographic images [AF00b].

?

? ? ? ?

??? ?

??

? ? ? ? ? ?

?

? ? ? ?

? ? ? ?? ??

Figure 3-5. Illustration of a context tree. In practice, the context trees are much larger. But even
this example can deliver significant compression performance.

3. Context Modeling 34

where t
Wn , t

Bn are the time-dependent frequencies, and t
Wp , t

Bp are the probabilities

for white and black colors respectively, and δ = 0.45, as in [JBIG1].

The code length can be efficiently calculated as the Bernoulli code length from
only the final counts n0 and n1by using a fast approximate method as in [MF98].
However, if the tree is constructed off-line, we can accumulate the code length
directly in the training phase by summing up the observed entropy estimates of (3.2).

3.2.2. Static and Semi-adaptive Alternatives

There are two alternative approaches for generating a context tree. In the semi-
adaptive approach, the tree is optimized directly for the image that is be compressed.
An additional pass (or passes) over the image will be required. The cost of storing
the tree structure is one bit per node (‘1’ for indicating a divided node, and ‘0’ for
indicating a leaf node). This takes approximately 2 bits per context because the
number of nodes in the three is twice the number of contexts (leaf nodes) minus one.
For a free tree, the position of the next context pixel must also be stored. It can be
represented as an index within the search area, and stored with

() sizewindow _log bits. The disadvantage of the semi-adaptive approach is that the
on-line construction of the tree makes the compression an order of magnitude slower
than JBIG1.

Another approach proposed in [FA99] uses a static tree, which is optimized on a
training image [FA99]. This is possible because of the similarity of the trees with
images of a similar type. The main problem of the static approach is to control the
growth of the tree. There is no overhead from storing the tree and, therefore, we
must add a progressively weighted constant to the SplitCost in order to prevent the
tree from growing greedily.

3. Context Modeling 35

3.3. Top-down Tree Construction

According to the direction of the pruning operation, the tree construction is classified
either as top-down or bottom-up. In the top-down approach, the tree is constructed
stepwise by expanding it one level at a time, starting from a predefined minimum
level kMIN. The process starts by constructing the models for all contexts at the level
kMIN. The contexts on the next level are tentatively constructed, compared to their
parent contexts, and pruned. The process continues until a predefined maximum
level kMAX has been reached, or when no new nodes were created during the process
of a single level. The top-down construction algorithm is outlined in Figure 3-6.

Another top-down approach is known as the free tree [MF98]. In this, the
position of the next context pixel is not fixed during construction but it is determined
adaptively. When a new level is constructed, all possible positions for the next
context pixel are analyzed within a predefined search area. The position that results
in maximal compression gain is chosen for each context separately. A drawback of
this approach is that the position of the new context pixel must also be stored in the
compressed file. The computational complexity of the free tree algorithm is an order
of magnitude greater and it grows with a factor of the search area size.

ConstructContextTree (int kMIN, int kMAX)

CONTEXTTREE CT;
k ← kMIN;
CT ← GenerateTreeStructure (k);
CollectStatistics (CT, k);
repeat

k ← k + 1;
ConstructLevel(CT, k);
CollectStatistics(CT, k);
PruneLevel(CT, k);

until (k = kMAX or no new nodes were created);
return (CT);

Figure 3-6. Algorithm for top-down construction of the tree.

3. Context Modeling 36

3.3.1. Delayed pruning

It may appear that a context delivers negative gain at some step of the iteration and it
will not be expanded further, even though the expansion can deliver positive gain
later. For example, let us consider the tree of Figure 3-7. The inclusion of the
seventh pixel in the context only has a marginal effect on the model; the entropy
values of all-white contexts at the first two levels shown in Figure 3-7 are practically
equal. Therefore, the gain is overwhelmed by the learning cost because the third
context pixel does not reduce the frequency of black pixels in the all-white context.
The inclusion of the eighth pixel, on the other hand, provides a remarkable
compression gain.

In [FA99] we have proposed delayed pruning technique to alleviate the locality
problem. The tree expansion is not terminated directly after negative gain has been
observed. Instead, the expansion is allowed to continue one level further. If neither
of the children nodes produce an improvement in the case of a further split, the
expansion is terminated and the children are actually removed from the tree. Delayed
pruning is not applied in the case of deterministic contexts (when either of the

counters tn1 or tn0 equals zero) because, in this case, a further improvement is
impossible.

nw = 27076
nb = 200
l(C) = 1698.9

nw = 211
nb = 0
l(C) = 3.4

nw = 26865
nb = 200
l(C) = 1696.7

2
?

4
6

15

?

6

nw = 25808
nb = 127
l(C) = 1150.5

nw = 1057
nb = 73
l(C) = 392.7

?

?

6

?

6

Gain = -1.2

Gain = 153.5

Figure 3-7. The locality problem of the splitting. The first split delivers negative gain
(-1.2 bits), though the second split provides remarkable gain of (+153.5 bits).

3. Context Modeling 37

3.4. Bottom-up Tree Construction

In the bottom-up approach, the tree is analyzed from the leaves to the root [AF00b].
A full tree of kMAX levels is first constructed by calculating statistics for all contexts
in the tree. The tree is then recursively pruned up to level kMIN, using the same
criterion as in the top-down approach. The gain is calculated using the equation (3.1)
and code length ()Cl using (3.2). The code lengths from the children contexts ()WCl

and ()BCl are derived from the previous level of the recursion. The sub-trees of the
nodes that do not deliver positive compression gain are removed from the tree.
A sketch of the implementation is shown in Figure 3-8 and the algorithm is
illustrated in Figure 3-9.

PruneTree (CONTEXTTREE CT, int level)

 if (level = kMAX) // we have reached the end of tree
 return (CodeLength (CT));
 else // process the sub-trees recursively
 CLw ← PruneTree (CT WhiteChild, level+1);
 CLb ← PruneTree (CT BlackChild, level+1);
 if (level ≤ kMIN) // out of pruning range
 return (0);
 else // check the node for pruning
 CL ← CodeLength (CT);
 Gain ← CL – CLw – CLb – SplitCost ;
 if (Gain > 0) // split node
 return (CLw + CLb + SplitCost);
 else // prune node
 RemoveTree (CT WhiteChild);
 RemoveTree (CT BlackChild);
 return (CL);

Figure 3-8. Recursive bottom-up tree pruning algorithm

3. Context Modeling 38

nw = 540
nb = 155
l(C) = 532.12

nw = 88
nb = 17
l(C) = 67.08

nw = 452
nb = 138
l(C) = 463.00

?15
5

6

nw = 317
nb = 77
l(C) = 251.61

nw = 135
nb = 61
l(C) = 175.34

?

6

15
5

6

?15
5

6

?15
5

6

Gain = -6.84
pruned

?15
5

6

Gain = 532.12 -
- (251.61 + 175.34 + 7) - 67.08 - 7 =

= 24.09

Gain = 463.00 -
- 251.61 - 463.00 - 7 =

= 29.05

Figure 3-9. Illustration of bottom-up tree pruning

The bottom-up approach can be implemented using only one pass over the whole
image. Unfortunately, high kMAX values will result in huge memory consumption.
For this reason, a two-stage bottom-up pruning procedure was proposed in [AF00b].
In the first stage, the tree is constructed from the root to level kSTART and then
recursively pruned until level kMIN. In the second stage, the remaining leaf nodes at
the level kSTART are expanded up to level kMAX and then pruned until level kSTART. In
this way, the memory consumption depends mainly on the choice of the kSTART
because only a small proportion of the nodes at that level remains after the first
pruning stage. The starting level kSTART is chosen as large as the memory resources
permit.

3.5. Combination of Variable-size Context Modeling
 and Forward-adaptive Statistical Modeling

In forward-adaptive statistical modeling, the context size is a trade-off between the
prediction accuracy and the overhead of the model. A larger context template results
in a more accurate probability model, but the overhead grows exponentially with the
size of the template. A proper choice of the context model is, therefore, even more
important in forward-adaptive modeling than in dynamic modeling.

3. Context Modeling 39

The variable-size context modeling can be efficiently combined with the
forward-adaptive statistical modeling, as proposed in [AF00b]. In this technique
(CT-FAM), the forward-adaptive model construction remains the same as in
Section 2.7. The difference is that the context selection is made using a context tree.
We apply this technique to the compression of small blocks of data (see Chapter 6
for details). We assume that if blocks are small enough, the fast attack states make an
adequate approximation of the probability distribution of the pixels within the block.
Therefore, we use the following equation to estimate the code length of a context in
the splitting criterion of the context tree (3.1):

 () 







+

+







+

⋅= C
B

C
W

C
BC

BC
B

C
W

C
WC

W nn
nn

nn
nnCl loglog . (3.4)

In this way, the calculation of the code length is significantly faster than if the
cumulative equation (3.2) had been used. It makes possible to construct the context
tree on-line during compression. We also add the cost of storing the statistical model
to the SplitCost parameter, providing the optimal tradeoff between compression
improvement and overhead. The SplitCost is composed of the model cost (5 bits per
context) and the cost of storing the tree structure (2 bits per context).

3.6. Analysis

We evaluate three different approaches (top-down, free tree and bottom-up) for
building a context tree, see Table 3-1. In the comparison, we use the NLS test image
Basic0 (see Appendix E). For the free tree approach, the size of the search template is
40. The split cost is composed from the cost of storing the tree and the model (7 bits
per context for context tree, and 12 bits for the free tree). The compression ratios are
given for the CT-FAM method (see Section 3.5) when applied to a typical NLS
binary map. The respective compression ratio of JBIG1 is 8.74, and the compression
time is 1min 30s. We observe that the bottom-up tree construction is faster than the
top-down approach but it requires more memory. For the bottom-up approach, the
memory load grows exponentially with the size of the initial tree (kSTART) but results
in a larger tree and higher compression performance.

3. Context Modeling 40

Table 3-1: A comparison of the tree-building strategies using Basic0 NLS test image. The
numbers in parenthesis are: (kMIN, kMAX) and (kMIN, kSTART, kMAX) for 2-stage bottom-up pruning.

 Top-down Free tree Bottom-up
 (6,22) (10,22) (2,22) (2,18) (2,22) (2,18,22)
Contexts in the tree 1366 2373 2041 5596 8209 6527
Tree file size (bytes) 341 591 1786 1400 2053 1632
Passes over image 16 12 20 1 1 2
Creation time 30m 20s 26m 58s 1h 58m 33s 3m 8s 4m 56s 6m 31s
Memory load (bytes) 26K 51K 1M 8.5M 136M 8.5M
Compression ratio 10.04 10.40 11.30 11.14 11.65 11.44

The top-down construction of the tree can be performed with a small memory
load (50 Kbytes) but it is very time consuming and, therefore, inapplicable for on-
line compression. Another problem is that the expansion of some branches may stop
too early because of the locality of the splitting criterion. The bottom-up method
does not have this problem.

The free tree method does not give a significant improvement over the top-down
approach with a fixed split pixel. The reasons for this are the high split cost, early
termination of the tree expansion, and a limited search template (40 pixels).
A delayed pruning technique and a significantly larger search template (about
500 pixels) could be applied to improve these results. However, it would cause
a significant increase in memory consumption and running time, and is, therefore,
not investigated here.

Bottom-up pruning requires only one or two passes over the image and gives
better compression performance. The one-stage variant with kMAX = 22 has the
highest compression performance but the two-stage variant requires much less
memory (8.5 Mbytes vs. 136 Mbytes). In the first stage, the tree is pruned from level
18 to 2. During this stage, 525,252 nodes are analyzed in total, and the number of
leaf nodes is reduced from 256,548 to 5,596. Only 1,305 of these belong to the 18-th
level. In the second stage, these nodes are expanded down to the 22-th level. In total,
20,880 nodes were analyzed and 2,236 new leaf nodes were created. Thus, most of
the nodes are analyzed and pruned during the first stage.

4. Global Modeling 41

4. GLOBAL MODELING

We define here the concept of global modeling as a process where the modeling is
based on such global semantic information of an image, as could not be utilized by
local context-based modeling. The extracted semantic features depend on the image
type. They may be useful for better modeling, as well as in various applications
containing image analyzing and understanding procedures, such as image
segmentation, indexing, OCR and RVC [Kas90, KOG92].

An example of global modeling is JBIG2 [How+98, JBIG2]. It will include
pattern matching techniques, used for extraction of common symbols from the
image, and utilize this information in improved image compression. Our aim is to
develop global modeling techniques that are appropriate for line-drawing images,
which consist mostly of straight-line segments. We study two approaches of this type
in Sections 4.2 and 4.3.

4.1. Pattern matching for text images and JBIG2

A text image contains many repeated symbols. Therefore, instead of coding all the
pixels of every symbol occurrence, it is possible to code only the bitmap of one
representative instance of the symbol. There are two encoding methods used in
JBIG2: pattern matching and substitution (PM&S) and soft pattern matching (SPM).

The pattern matching and substitution method works as follows [AN74,
WMB94]. The image is segmented into pixel blocks containing connected black
pixels. These blocks are sequentially matched against representative symbol bitmaps
from the adaptively constructed dictionary. If an acceptable match is found, the
pointer to the corresponding bitmap in the dictionary and the position of the
character on the page are encoded. If there is no acceptable match, the bitmap of the
current pixel block is encoded using standard bitmap encoding techniques such as
MMR or JBIG1, and added to the dictionary. The method allows high lossy
compression levels, but results in infrequent but inevitable substitution errors. For
cases where such errors are unacceptable, the residue coding, that is the refinement
coding of lossy image back to the lossless original, or the SPM technique can be
used.

4. Global Modeling 42

The soft pattern matching differs from PM&S in that, in addition to a pointer to
the dictionary and position information, it includes refinement data that can be used
to recreate the original symbol, providing for lossless compression [How97]. The
SPM method is illustrated in Figure 4-1. The only difference to PM&S (shown in
italics in the figure) is that lossy direct substitution of the matched symbol is
replaced by a lossless encoding that uses the matched character in the coding
context. The refinement coding process is similar to the bitmap coding, with the
difference that the two-layer context template is used. The template is shown in
Figure 4-2. It consists of a combination of four neighboring pixels from the input
block, and seven from the bitmap of the matching dictionary symbol.

Segment image
into pixel blocks

Search for
acceptable match

Encode index of
matching symbol

END

Conditionally add
new symbol to the

dictionary

Encode position of
the block as offset

Encode original
block using 2-level

context template

Encode bitmap by
JBIG style

compressor

Last block?

Match found?

Next block

Yes

NoYes

Figure 4-1. Block diagram of the soft pattern matching algorithm used in JBIG2 [How+98].

4. Global Modeling 43

?

Context pixels from
the original image

Context pixels from
the matching pixel block

Figure 4-2. Two-layer context template for coding the pixel blocks [JBIG2].

The JBIG2 standard mainly defines the general file structure and the decoding
procedure, but leaves some freedom in the design of the encoder. In effect, the
decoder is guaranteed to be lossless in respect of the coded image data. However, the
original image may be modified by the encoder during a preprocessing phase to
increase coding efficiency. For example, some loss can be introduced by eliminating
small pixel blocks that represent noise. This will improve compression efficiency
while still maintaining a low probability of substitution errors [MF99]. If conditions
permit, the symbol dictionary can be constructed and optimized off-line before the
actual compression, so that the dictionary symbols are averaged among similar
matching symbols, and infrequent symbols are pruned from the dictionary.

4.2. Feature Extraction using Hough Transform

The following two techniques are used for extraction of linear features from line
drawing images. The first one uses Hough transform and is summarized in Figure
4-3. The motivation is to find rigid straight lines in the image. The extracted line
segments are represented by their end-points and encoded into the feature file.

4.2.1. Hough Transform

Suppose that we have an image consisting of several samples of a straight line.
Hough [Hou62] proposed a method (commonly referred to as Hough transform) for
finding the line (or lines) among these samples. Considering a point (xi, yi), there is
an infinite number of lines passing through it. However, they all can be described as

 bxay ii +⋅= . (4.1)

4. Global Modeling 44

End-point
detection

Input Image

Hough Transform

FEATURE EXTRACTION

Line parameters

Line segments

Figure 4-3. Block diagram of the feature extraction process.

It means that all the lines passing (xi, yi) defined by two parameters (a, b) can be
expressed as

 b x a yi i= − ⋅ + . (4.2)

The Hough transform is a process where each pixel sample (x, y) in the original
pixel space is transformed to a curve in the parameter space, representing all-
possible lines passing this pixel. If there is evidence of line presence in the image,
which means that the pixel samples are located along the line, the Hough curves will
intersect at the same point (a', b'), providing the parameter value for the line in
question, as shown in Figure 4-4.

2

b

a'

b'

a

b = -x a + y2

b = -x a + y1 1

x

y

x ,y1 1

x ,y2 2

L

Figure 4-4. Hough transform: pixel xy-space (left), and parameter ab-space (right).

4. Global Modeling 45

To implement the Hough transform, the parameter space is represented as a k × k
accumulator array where k can be tuned according to the image size, see Figure 4-5.
In each cell of the matrix, there is a counter of how many parametric curves are
crossing that point. Each curve increases the counter of the cells located along its
way. The lines are extracted from those positions of the array, for which the score
exceeds a predefined threshold parameter.

0 1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

-1
-2
-3
-4
-5
-6
-7
-8

-1-2-3-4-5-6-7-8

Figure 4-5. Small example of Hough transform.

A problem in this implementation is that both the slope (a) and intercept (b)
approach infinity as the line approaches the vertical. One way around this difficulty
is to use the normal representation of a line:

 ρθθ =⋅+⋅ sincos yx , (4.3)

were ρ represents the shortest distance between origin and the line, and θ represents
the angle of the shortest path in respect to the x-axis. Their corresponding ranges are
ρ ∈ [0, 2D], and []°°−∈ 90,90θ , where D is the distance between corners of the
image [Lea93].

A drawback of the method is its high complexity. A straightforward
implementation of HT requires ()knO time, where n is the image size and k × k is the
size of the accumulator matrix. The method is therefore suitable for off-line
applications, such as image archival. HT can also be made faster using the
randomized Hough transform (RHT) as in [KHXO95]. Here, instead of processing
individual pixels, the image is randomly sampled by selecting pairs of pixel. Each
pair determines only one value in the parameter space. The sampling is repeated
until an evident maximum is emphasized in the parameter space. RHT reduces the
size of the parameter array and decreases the computation time since only a part of
the pixels, possibly a small part is need to be transferred into the array.

4. Global Modeling 46

4.2.2. End-point Detection

The Hough transform is capable to determine the location of a line as a linear
function but it cannot resolve the end-points of the line. In fact, HT does not even
guarantee that there exists any finite length line in the image but it only indicates that
the pixels (x, y) along bxay +⋅= may represent a line. The existence of a line
segment must therefore be verified. The verification is performed by scanning the
pixels along the line and checking whether they meet certain criteria. We use the
scanning width, the minimum number of pixels, and the maximum gap between
pixels in a line as the selection criteria. If predefined threshold values are met, a line
segment is detected and its end-points are stored for later use. The features extracted
with different parameter setup are shown in the Figure 4-6.

number of segments: 117 line segments 289 line segments 752 line segments
min segment length: 150 70 30
max segment width: 1 1 1
max length of a gap: 2 2 3

accumulator threshold: 20 20 17

Figure 4-6. Example of the feature images that are made using different parameter setup.

4.3. Raster-to-Vector Conversion

Raster-to-vector conversion (also known as vectorizing) process is outlined in Figure
4-7. The motivation is to extract semantic information from the image in the form of
rigid line segments. Each line segment is represented by two end-points and the
width of the line. The details of the vectorizing process are described in the
following.

4.3.1. Skeleton Construction

The black-and-white raster image is first processed by a distance transform (DT)
defined by 4-connectivity. We use the fast and memory efficient implementation of
[KT95], which processes the image in smaller fragments. This eliminates the need

4. Global Modeling 47

for two passes over the image. The resulting distance labeled image is then thinned
using the one-pass algorithm of [AB89]. Skeletal pixels are recognized by checking
the 3 × 3 neighborhood of each pixel. The pixels satisfying one of the so-called
“multiplicity conditions” are marked as skeletal pixels. The result of the algorithm is
a width-labeled skeletal image.

Vector element
extraction

Input Image

Skeletonization

VECTORIZING

Pruning &
analysis

Final vectors elements

Elementary vectors

Skeletal pixels

Figure 4-7. Block diagram of the raster-to-vector conversion process.

4.3.2. Extraction of Vector Elements

The vector elements are extracted from the skeletal image using a fast and simple
line-tracing algorithm. The branches of the skeleton are traced pixel-by-pixel from
one delimiter (line end or crossroad) to another, and stored as chain codes. The
direction for tracing is derived from a pre-calculated two-dimensional look-up table
(LUT), as in [KBO96]. The first index for accessing the LUT is the previous
direction, and the second index is constructed from the 3 × 3 neighboring pixel
values of the current pixel. The resulting chain code is then processed to produce
piecewise-linear approximation of the branch with zero error as in [HK83]. The
width of each line segment is calculated as the average width label of the skeletal

4. Global Modeling 48

pixels in the segment. The extracted segments of the same branch are stored as a
chain of vector elements.

4.3.3. Pruning and Analysis

The extracted vector chains are further analyzed for constructing larger elements.
There are four classes of vector chains, each described by the two end-points and the
width of the line:

• Single point: (x 1, y1, w1).
• Single vector: (x1, y1, w1), (x2, y2, w2).
• Chain of n vectors: {(xk, yk, wk) | k = 1,…, n + 1}.
• Ring of n vectors: {(xk, yk, wk) | k = 1,…, n + 1} where x1 = xn and y1 = yn.

Vector elements are combined (pruned) from primitives having a common end-
point and the same orientation. Small gaps between the lines are filled, and false
branches are removed. The remaining vector chains are then classified as either
“good” (linear) or “bad” (noise and non-linear). The good chains are stored by their
coordinate differentials using a variable-length code.

4.4. Hybrid Raster/Vector Image Representation and Modeling

In a hybrid raster/vector storage system, both raster and vector representations of the
images are encoded and stored [Wills99, FA+98a], see Figure 4-8. The raster
representation provides an exact digitized replica of the original image. The vector
representation contains semantic information extracted from the image. It benefits
from vector editing capabilities and is suitable for further image processing and
semantic analysis [KOG92]. The compressed file consists of the extracted line
features and the compressed raster image.

4. Global Modeling 49

Output Image

Feature
extraction

Compression Decompression

COMPRESSION DECOMPRESSION

Input Image
ve

ct
or

Filtering

ra
st

er
 d

at
a

Retrieval
Analysis
Editing

Feature File

Figure 4-8. Block diagram of a typical hybrid compression system.

Output Image

Feature
extraction

COMPRESSION DECOMPRESSION

Input Image

Feature File

Reconstruction

Feature Image Feature Image

ra
st

er
 d

at
a

ve
ct

or

Filtering

Retrieval
Analysis
Editing

JBIG decompression

Decoding

Context
modelling

Coding

Context
modelling

JBIG compression

Figure 4-9. Block diagram of our hybrid compression system.

5. Image Enhancement and Noise Removal 50

4.4.1. Raster Representation

The advantage of raster representation is that images can be easily digitized and
stored compactly using the latest compression technology. Reproduction of the
image is easy, and lossless compression guarantees that an exact replica of the
original image can always be restored. Vector representation, on the other hand,
allows better editing capabilities and resolution-independent scaling and
reproduction. Complete raster-to-vector conversion, however, is not a realistic
solution. The existing conversion systems are of high complexity and cannot reliably
capture all possible vector features without human interaction. Either the file will be
filled by a huge number of small vector elements, or some of the undetected
information will be lost.

We consider here the storage problem of hybrid raster/vector systems. In an ideal
situation, all linear features will be stored in vector format while the rest of the data
remains in raster. In practice, only new data, drawn in CAD systems, will be stored
in the vector format, while the remainder are kept in raster format because of the
reasons mentioned above. The question is whether we can utilize the existence of the
vector features for compressing the raster image more efficiently, see Figure 4-9.

4.4.2. Vector Representation

The vector representation may be obtained directly from the Hough transform (see
Section 4.2) or raster-to-vector conversion (see Sec 4.3). The extracted line segments
are stored in the form of {(x1,y1), (x2,y2)}, representing the end-points of the lines. A

single coordinate value takes  log2 n bits where n is the dimension of the image.

For example, a line in an image of 4096 × 4096 pixels takes 4 × 12 = 48 bits in total.
A somewhat more compact representation could be achieved if the line segments are
sorted according to their first coordinate x1. Instead of storing the absolute value, we
could store the difference between two subsequent coordinates x1. Most of the
differences are very small (about 40 % of them are in the range [0, 2]). An
improvement of about 7 bits (from 12 to 5 bits) was estimated for the case when
entropy coding was applied to these difference values [FAK99].

5. Image Enhancement and Noise Removal 51

4.4.3. Feature Image

A feature image is an equal size raster approximation of the input image
reconstructed from the extracted features. It represents the extracted semantic
information in an easier form for modeling and filtering. The feature image is
prepared by drawing the respective width (one-pixel if using HT) straight lines
between the end-points of the line features. The Hough transform does not determine
the width of the lines, and wide lines are represented by a bunch of collinear line
segments, see Figure 4-10. The line segments may also deviate from their original
direction and/or have one-pixel positional errors because of the quantization of the
accumulation matrix. Therefore we do not utilize the feature image directly but
process it first by subsequent operations of morphological dilation and closing
[Hei94]. These operations make the lines one pixel thicker in all directions (dilation)
and fill gaps between the line segments (closing). We apply a symmetric 3 × 3
structure element (Block) for the dilation, and a 3 × 3 cross structure element (Cross)
for the closing, see Figure 4-11. The cross element is chosen to minimize the
distortion in line intersections caused by closing.

Original HT-image Feature image

Figure 4-10. Illustration of the feature image for an image sample of size 50×50 pixels.

x

Element CrossElement Block

x

x Origin

Figure 4-11. Structural elements Block and Cross.

5. Image Enhancement and Noise Removal 52

4.4.4. Hybrid Modeling

Although the raster and vector data could be stored independently, the vector
representation (feature image) can be used to improve compression of the raster
image, see Figure 4-9. There are two basic approaches for utilizing the feature
image: (1) lossless compression of the residual between the original and the feature
image; (2) compression of the original image using the feature image as extra
information. The first approach does not work in practice, because taking the residue
destroys spatial dependencies near the borders of the extracted line features. The
residual image is therefore not any easier to compress than the original one
[WMB94]. On the other hand, the effectiveness of the second approach has been
shown for textual images in [How97].

In [FAKK98a] we propose a new hybrid modeling method, in which the context
is determined by combining the neighboring pixel values taken from both the input
and feature images. We use 10 pixels from the original image to substitute into the
three-line standard JBIG1 template, and five pixels from the feature image, see
Figure 4-12. An important point is that in the feature image we can utilize even pixel
locations that have not yet been processed, because the line features are already
stored in the compressed file and are similarly available to the decoder.

?

Feature imageOriginal image

Context pixel

? Pixel to be coded

Reconstructed image

?

Original image

Figure 4-12. Illustration of the two-level context template.

5. Image Enhancement and Noise Removal 53

A summary of experimental results for the hybrid compression of the line-images
from Appendix D is shown in Table 4-1. “Simple RVC” stands for the raster-to-
vector conversion as it has been explained above, whereas the “professional RVC”
denotes the results obtained using one of the professional vectorizing systems
available on the market. In our experiments, an improvement of up to 25 % is
obtained. For a sample image from Figure 4-6, the amount of the raster and vector
data in the compressed file is shown in Figure 4-13. The improvement is greater
when more line segments are extracted. The amount of saving, however, is rather
small and in all cases too small to compensate for the overhead required by the
vector file. This is especially visible in the case of the simple raster-to-vector
conversion; the method produces excessive feature files. The main reason for that is
that the information of the extracted line features is mainly in all-black
neighborhoods inside the line segments. These are the pixels that are already
compressed well by JBIG1, and therefore only small improvements can be achieved.
On the contrary, most of the information (output bits) originates from the boundaries
of the objects. These areas are not well predicted by the local modeling of JBIG1,
and global information is useful, especially if the input image is noisy. This
emphasizes the importance of the exactness of the feature extraction. The vector
elements do not provide reduction in the overall file size and their storage can be
recommended argued only for their usage in hybrid editing and indexing tasks.

The speed of the methods discussed for Pentium-200 machines is summarized in
Table 4-2. The HT-based feature extraction dominates the running time in the
compression phase and makes it an order of magnitude slower. The method is
therefore suitable only for applications where the compression operation can be
made off-line. Simple RVC is fast, provides significant savings, but results in
excessive vector files that cannot be directly used in CAD/CAM applications
because of their coarse quality. The professional RVC performed on-demand can
improve the compression of raster data by 1-10 %. Hybrid compression and
decompression procedures are about 35 % slower than JBIG1 because of the
additional processing of the vector features.

5. Image Enhancement and Noise Removal 54

13.0 12.6 12.2 11.5

1.7 4.5
0.7

0
2
4
6
8

10
12
14
16

JBIG Hybrid: 117
segments

Hybrid: 289
segments

Hybrid: 752
segments

C
om

pr
es

se
d

fil
e

si
ze

 (K
B)

Raster data Vector data

Figure 4-13. The amount of raster and vector data for the hybrid compression method using
feature files with different level of details.

Table 4-1. Summary of the storage sizes for different hybrid compression methods (in bytes).

 Hybrid compression
 JBIG1 Hough transform Simple RVC Professional RVC

Image raster vector raster vector raster vector raster
PLAN 5,098 2,370 4,578 7,932 3,889 8,077 4,556

HOUSE 15,688 13,398 13,961 26,640 12,109 10,495 14,786
CHAIR 52,384 16,710 50,140 134,143 38,385 56,695 48,328

MODULE 7,671 3,468 7,222 10,898 5,816 – –
PLUS 17,609 5,268 17,132 34,885 13,204 – –
BOLT 12,966 6,438 11,514 24,711 9,879 – –

Total (I) 73,170 32,478 68,679 168,715 54,383 75,267 67,670
Total (I+II) 111,416 47,652 104,547 239,209 83,282 – –

Table 4-2. Speed of different hybrid compression methods, kB/s for Pentium-200.

 Feature extraction Compression/Decompression
JBIG1 N/A 196

HT-hybrid 0.676 149
SRVC-hybrid 180 149
PRVC-hybrid human interaction 149

5. Image Enhancement and Noise Removal 55

5. IMAGE ENHANCEMENT AND NOISE REMOVAL

The quality of document images may have faded during the document life cycle.
Noise appears on the images because of such factors as low quality originals (e.g.
old blue-prints), quantization errors in the digitization process, non-optimal light and
contrast settings of the copying/scanning process, document transmission errors,
paper defects, and dirty optical sensor systems. The noise degrades image quality
and makes further image processing and analysis more difficult. Even though human
eyes and modern OCR systems can tolerate some level of noise, it still introduces
unnecessary details that weaken compression performance.

Noise appears in the images in two forms: additive, as randomly scattered noise
pixels, and content-dependent, distorting the contours of printed objects (lines,
characters) by making them ragged, see. Figure 5-1. Image enhancement is aimed at
eliminating noise degradation and improving image compression performance, while
still preserving image quality.

Figure 5-1. Illustration of the heavy additive noise (left) and content-dependent noise (right).

5. Image Enhancement and Noise Removal 56

5.1. Context-based Filtering

The idea of context-based filtering is to apply statistical context modeling and
measure the information content of the entire document image to achieve better
selection of the noise pixels [DA97]. Although context modeling is commonly used
in image compression, the primary aims of filtering and compression are not the
same. This implies differences in the choice of the context template and in the way
the statistics are collected. In compression, only the preceding pixels that are known
to both the coder and decoder can be utilized in the context template. For filtering
purposes, however, a directionally limited context template would not be accurate
enough. As there are no limits for referring pixels in all directions, a symmetric
filtering template can, therefore, be applied. The round shape of the template ensures
even filtering in all directions.

We have chosen the 20-pixel filtering template, see Figure 5-2. It is a well-balanced
trade-off between filtering performance, and reliability of the statistics. Using a
larger context template, we could utilize spatial dependencies from a wider area, and
in this way construct an even better statistical model. The number of contexts, on the
other hand, increases exponentially with the number of pixels in the template.
Therefore, further extension in the context template could lead to a context dilution
problem, resulting in inaccurate statistics because of a lack of the context samples.
The huge memory requirement is another limitation for using very large templates.

20-pixel filtering
context template

10-pixel JBIG
context template

9 10
2
?

4 8
6

3
15

7

x Context pixel

? Modelled pixel

9 10
2
?

4 8
6

3
15

7
4 4

2 4 837
9 106

Figure 5-2. The 20-pixel filtering context template (left) and 10-pixel three-line compression
context template used in JBIG1 (right).

5. Image Enhancement and Noise Removal 57

The second difference is that the compression is typically performed by a single
pass over the image, and the statistics are adaptively determined during the
compression. In the filtering, on-line adaptation to the statistics would make the
result unreliable until the model adapts to the image. Instead, a two-pass scheme is
applied to achieve uniform image filtering: one pass for collecting the statistics, and
another one for the actual filtering.

Two context-based filtering methods, namely Simple Context Filter and Gain-
Loss Filter, are proposed in [AF00a] for the enhancement of document images. The
Simple Context Filter unconditionally changes the uncommon pixels in low entropy
contexts, whereas the Gain-Loss Filter changes the pixels conditionally, depending
on whether the gain in compression outweighs the loss of information. Both filters
reduce irregularities in the image statistics caused by noise, and in this way, improve
the compression without degradation of the image quality and OCR accuracy.

5.1.1. Simple Context Filter

A simple context filter is based on determining the statistical content of the image
using context-based modeling, and flipping the pixels with low probability values,
using the assumption that they are noise. The filtering process consist of two phases,
each requires one pass over the image.

In the analyzing phase, context modeling with a 20-pixel filtering template is
applied for the input image, and the number of black (C

Bn) and white (C
Wn) pixels for

each context C and their respective probabilities are calculated:

 C
B

C
W

C
WC

W nn
np
+

= , C
B

C
W

C
BC

B nn
np
+

= . (5.1)

After analysis, the contexts are categorized as low information contexts if the
probability of either black or white pixel (C

Bp or C
Wp) does not exceed a predefined

threshold value (e.g. 0.05). The probabilities are calculated on the basis of observed
pixel frequencies. The less probable pixels in low information contexts are classified
as rare, and most probable as common pixels.

The output image is generated in the filtering phase when all rare pixels in low
entropy contexts are flipped. The threshold value is a trade-off between compression
improvement and image degradation caused by filtering. The Simple Context Filter
is illustrated in the Figure 5-3.

5. Image Enhancement and Noise Removal 58

x

x

x

x
x

Statistics for the
context and pixel
shown in figure:

nBLACK = 924

nWHITE = 31255

pBLACK = 0.0287

threshold = 0.05

Pixel changed
to white.

Gain in
compression =
= H(C) = 0.1879

Figure 5-3. Examples of the Context filter. The original image is shown in gray, and changed
pixels are marked with ‘x’.

5.1.2. Gain-Loss Filter

In the previous filtering scheme, all pixels in the same context are processed in the
same way, although resulting compression improvement may vary from pixel to
pixel. Because of the difference in the context templates used for filtering and for
compression, it is possible that the alteration of pixel value does not result in
compression improvement. On the contrary, it may extend the code size.

To alleviate this problem, we have proposed a Gain-Loss Filter (GLF) in
[AF00a]. Instead of using a simple probability threshold, as in CF, GLF takes into
account the possible compression gain (Gain) as well as the error (Loss) caused by
changing the pixel color during filtering.

Gain is defined by the impact on the code length caused by flipping the pixel x in
context CC. It is composed of the direct effect of coding another pixel value and the
effect of changing the context for all the pixels for which the flipped pixel appears in
the context template [MF99]:

 () () ()∑
∈

+=
yCCxy

y xGainxGainxGain

0 (5.2)

where Gain0 denotes the direct effect of flipping x, Gainy denotes the impact on the
code length caused by altering the contexts yCC of all the pixels y for which x is the

context pixel.

5. Image Enhancement and Noise Removal 59

Gain0 is calculated as the difference between entropy values (H) of the pixel x
before and after its change:

() () ()

() ()()CCxpCCxp

CCxHCCxHxGain

−+−=

=−=

1loglog 22

0 (5.3)

where x is the flipped value of x. The context CC is obtained using the compression
context template, see Figure 5-2, and the pixel probability is estimated as:

 ()








−=

++
+=

=
blackxpp

whitex
nn

np
CCxp

CC
W

CC
B

CC
B

CC
W

CC
WCC

W

 is if,1

 is if,
2δ

δ
 (5.4)

where 45.0=δ as in [JBIG1], and CC
Bn , CC

Wn are the numbers of black and white

pixels of the image in the context CC. Note that the probability is calculated on the
basis of the statistics collected over the whole image, not the statistics at the
moment, as in adaptive image compression. This is done to achieve equal filtering at
the beginning and the end of the image. Thus, the learning cost and the possible
compression improvement caused by local adaptation do not affect the filtering.

Gainy is calculated as the difference between entropy values of the pixel y before
and after the pixel x has been flipped:

() ()() ()()

()() ()()xCCypxCCyp

xCCyHxCCyHxGain

yy

yyy

22

loglog +−=

−=
 (5.5)

where ()xCCy and ()xCCy are the contexts of the pixel y before and after the pixel x

was flipped, respectively.

Loss is defined as the amount of information that was lost when the pixel x was
flipped. It is calculated as the entropy of the flipped pixel x :

 () () ()()FCxpCFxHxLoss −−== 1log2 . (5.6)

Here FC is the context obtained using the filtering context template, see Figure 5-2.
The pixel probability is estimated either as FC

Bp or FC
Wp , as regards the color of x:

 ()








−=

+
=

=
blackxpp

whitex
nn

np
FCxp

FC
W

FC
B

FC
B

FC
W

FC
WFC

W

 is if,1

 is if,
 (5.7)

5. Image Enhancement and Noise Removal 60

Thus, changing the pixel value to the less probable one will result in the higher
loss (values greater than 1), and vice versa. Changing one pixel value to another with
equal probability (0.5), will deliver a unit of loss. The decision as to whether a pixel
color should be changed is based on the following criterion:

 ()
() Threshold
xGain
xLoss < . (5.8)

The GLF requires two passes: analyzing and filtering. In the analyzing, the image
statistics (CC

Bn , CC
Wn , FC

Bn , FC
Wn) for both context templates are calculated. After the

statistics have been collected, the Loss is calculated for each context. The output
image is generated in the second phase, where for each pixel x, the contexts CC and
FC are obtained, Gain and Loss values are calculated, and the filtering criterion (5.7)
is checked. If the threshold condition is met, the pixel is flipped and the statistics
(CC

Bn , CC
Wn) for the altered compression contexts are updated. This update is

performed because the encoder will process the already filtered image and these
updated statistics will be the statistics used when the actual coding is carried out.
The work of the GLF filter is illustrated in Figure 5-4.

x

x

x

x

x

x
Statistics for the
context and pixel
shown in figure:

p(x|FC) = 0.3750

p(x|CC) = 0.6255

Loss(x) = 0.6781

Gain(x) = 3.2378 -
- 0.5013 = 2.7366

Loss/Gain = 0.2478

threshold = 0.5

Pixel changed
to black

Figure 5-4. Examples of the Gain-Loss filter. Original image is shown in gray, and flipped
pixels are marked with ‘x’.

5. Image Enhancement and Noise Removal 61

Original image Simple Context Filter Gain-Loss Filter

Figure 5-5. Example of the filtering with Simple Context Filter with threshold = 0.25, and
Gain-Loss Filter with threshold = 0.5.

5.2. Feature-based Filtering

In [FAK99a] we have proposed a feature-based filtering technique for removing the
quantization noise from digitized line drawings. The noise is a mixture of the
additive and content-dependent noise. It can be visible as randomly scattered isolated
pixels and jagged boundaries of the boundaries of the image objects (lines, symbols,
etc). The proposed filtering technique is based on the semantic image modeling that
utilizes the global spatial dependencies in the image. Line drawings consist mainly
of straight-line elements, and global information can be gathered by extracting line
features. The filtering is applied as a part of an image compression system, see
Figure 5-6. The feature extraction and the filtering are considered as preprocessing
steps before the compression. The noise removal improves the image quality and
alleviates the loss in the compression ratio caused by noise.

We consider here two different approaches for the feature extraction. The first
one is based on Hough Transform (see Section 4.2) as proposed in [FAKK98b]. The
second one utilizes Raster-to-Vector conversion (see Section 4.3) as proposed in
[FAK99a]. An equal size feature image is created from the extracted line segments to
approximate the input image. We use the feature as a semantic model of the image
(see Section 4.4.3).

The filtering is based on the noise removal procedure shown in Figure 5-7 (left).
A mismatch image is constructed from the differences between the original and the
feature image. Isolated mismatched pixels (and pixel groups of up to two pixels) are
detected, and the corresponding pixel values in the original image are changed. This
removes additive noise and smoothes the edges along the detected line segments.
The quality of the filtering is by allowing only isolated groups of noise pixels to be
changed. Objects that are not recognized by the feature extraction process are left
untouched. The compression remains near-lossless because an uncontrolled loss of
image quality cannot appear.

5. Image Enhancement and Noise Removal 62

The noise removal procedure is successful if the feature image is accurate. The
applied vectorizing method, however, does not always provide the exact width of the
lines. The noise removal procedure is therefore iterated three times as shown in
Figure 5-7 (right). In the first stage, the feature image is applied; in the second stage
the feature image is dilated; and in the third stage, it is eroded before being input
into the noise removal procedure. This compensates for most of the inaccuracies in
the line width detection. See [Ser82, Hei94] for the details of the morphological
dilation and erosion.

Output Image

Feature
extraction

Compression Decompression

COMPRESSION DECOMPRESSION

Input Image

Feature File

Feature Image

ra
st

er
 d

at
a

ve
ct

or

Fltering

OPTIONAL

Figure 5-6. Block diagram of the three-stage compression method.

Output Image

Isolated
pixel

extraction

XOR

Input image

Feature Image

XOR

NOISE REMOVAL

Isolated mismatch pixels

Mismatch pixels

Output Image

Input imageFeature Image

FILTERING

Dilation

Erosion

Noise
removal

Noise
removal

Noise
removal

Figure 5-7. Block diagram of the noise removal procedure (left) and the entire three-stage
filtering process (right)

5. Image Enhancement and Noise Removal 63

The stepwise process for a small image sample is demonstrated in Figure 5-8
(using Hough transform) and Figure 5-9 (using RVC). Most of the noise is detected
and removed in the first phase. However, in some cases there are too many
mismatched pixels grouped together because of an incorrect estimation of the line
width and therefore no pixels can be filtered. Even if these inaccuracies have
a visually unpleasant appearance in the feature image, they do not necessarily
prevent effective filtering. For example, the right-most diagonal line in the feature
image in Figure 5-8 is too wide in some places and the pixels are therefore not
filtered in the first two stages. The eroded version, however, gives a more accurate
approximation of the line, and more noise pixels can be detected and filtered in the
third stage.

5. Image Enhancement and Noise Removal 64

FIRST STAGE SECOND STAGE THIRD STAGE

Input image Filtering result (1st) Filtering result (2nd) Filtering result (3rd)

Feature image Dilated feature image Eroded feature imageHough Transform
image

Mismatch pixels (1st) Mismatch pixels (2nd) Mismatch pixels (3rd)

Filtered pixels (1st) Filtered pixels (2nd) Filtered pixels (3rd)

Figure 5-8. Illustration of the feature-based filtering using Hough transform

5. Image Enhancement and Noise Removal 65

FIRST STAGE SECOND STAGE THIRD STAGE

Input image Filtering result (1st) Filtering result (2nd) Filtering result (3rd)

Skeletal image Feature image Dilated feature image Eroded feature image

Mismatch pixels (1st) Mismatch pixels (2nd) Mismatch pixels (3rd)

Filtered pixels (1st) Filtered pixels (2nd) Filtered pixels (3rd)

Figure 5-9. Illustration of the feature-based filtering using vectorizing algorithm.

6. Interactivity and Spatial Access 66

6. INTERACTIVITY AND SPATIAL ACCESS

The actual image database may not be physically present at the viewing location,
but is accessed through communication channels, which could be nothing more than
a slow telephone connection. The compression reduces the amount of data to be
transferred and makes the image retrieval faster. Next, we define important
properties that must be taken into account in the design of the image archiving
system.

The Instant Preview property enables the user to browse the archive without
decompressing entire images. Preview represents a recognizable version of an image
(thumbnail), using only a small portion of the compressed image data. It must be
constructed and transmitted quickly enough to avoid inconvenient delays.

Fast Decompression: one might tolerate longer compression times if it can be
performed off-line. On the other hand, the decompression process must be fast so
that the system does not loose its interactivity because of decompression delays.

Spatial Access stands for direct access to an image fragment in the compressed
file without having to retrieve and decompress the entire image. It enables efficient
retrieval of the desired image fragments with high precision. Spatial access is the
requirement for applications that deal with spatial data structures, e.g., digital spatial
libraries and GIS.

When an image is accessed, the entire file is typically retrieved and
decompressed into memory. However, memory resources sufficient to hold the entire
decompressed image, and high-speed channels able to quickly transfer the entire
compressed file, are not always available. At the same time, typical viewing devices
have smaller size and resolution than the original raster image and thus, only a small
fragment of the entire image may be viewed at a time. If spatial access is supported,
an image may be interactively browsed on the viewing device. When the image is
scrolled, a new part of data is retrieved and decompressed on the fly. In this way,
spatial access eliminates time delays caused by image decompression and transfer.
The thumbnail image may serve as a map to locate the desired part of the image at a
higher scale.

6. Interactivity and Spatial Access 67

6.1. A Storage System for Interactive Access

In [AF98] we propose a storage system that combines the compression
methodologies presented in Section 2 with the properties that enable interactive
access to the compressed images.

6.1.1. Storage System Architecture

The proposed storage system (see Figure 6-1) is based on JBIG1 with the following
modifications:
1. Each image is segmented into separate clusters of C × C pixels. The clusters are

compressed separately.
2. An index table of cluster pointers is constructed for locating the clusters in the

compressed file.
3. Clusters are segmented into the blocks of B × B pixels, by the block modeling

technique of [Fr94]. Block level codes form the preview data, which is stored at
the beginning of the compressed file and used to build an image thumbnail.

4. Forward-adaptive statistical modeling is used to construct the initial probability
model for the QM-coder. The model table is stored in the compressed file and is
used for the coder re-initialization. The re-initialization reduces learning cost
caused by small cluster sizes.

The structure of the compressed file is shown in Figure 6-2. Unlike [Fr94], the
block and pixel level codes are not mixed, and the block level codes appear in the
compressed file before the pixel level code. Thus, a thumbnail image can be
constructed by reading the block level codes only. The pixel level data are stored
sequentially, cluster by cluster. Any cluster can be reconstructed from the block level
codes and the appropriate pixel level codes starting from the position given by the
cluster index. The text header consists of an identification string and image
parameters, such as image size, cluster size, block size, etc.

6. Interactivity and Spatial Access 68

DOCUMENT IMAGE

PREVIEW IMAGE
(80 149)×

CLUSTER
(128 128)×

PIXEL LEVEL IMAGE
(1728 2376)×

cluster indices
for direct access

Figure 6-1. Outline of the storage system.

Pixel level data:Preview data:

Text
header

Cluster
indexes

Context
models

Block
codes

Cluster
 1

Cluster
 2

Cluster
 3 ...

 Figure 6-2. Organization of the compressed file.

6. Interactivity and Spatial Access 69

6.1.2. Compression Algorithm

The compression algorithm is outlined in Figure 6-3. It includes forward-adaptive
statistical modeling (see Section 2.7) to minimize learning cost when coding small
clusters. The algorithm works in two phases, each making a pass over the input
image. During the analyzing phase, the block types are determined, and the
forward-adaptive statistical model for pixel level data is calculated. The header data
is then stored, block types are compressed, and a context model table is stored in the
compressed file. During the compression phase, the pixel level data are compressed.
The QM-coder is used for compressing the block codes and pixel level data. When
compressing pixel level data, each cluster is processed separately. The QM-coder is
reinitialized and the model is restored each time the compression of a new cluster
begins. The implementation details are discussed in the following subsections.

1. Analyze the image (analysis phase)
1.1. Analyze block types and pixel statistics
1.2. Construct initial model for pixel level compression

2. Write header and block level data
2.1. Store text header
2.2. Compress block codes using QM-coder
2.3. Store dummy indexes
2.4. Store pixel level model

3. Process each cluster (compression phase)
3.1. Reinitialize QM-coder to initial model
3.2. Compress the pixels with sequential JBIG1
3.3. Record the starting positions of the next clusters

4. Terminate compression
4.1. Replace the dummy indexes with the real ones

Figure 6-3. Main steps of the compression algorithm.

6.1.3. Preview Data

Two different techniques can be used to generate and encode the thumbnail
(preview) of the image: (1) the block modeling scheme [FN93, Fr94] or (2) the
resolution reduction technique of JBIG1. The block modeling works as follows. The
image data is split into two separate levels: block level and pixel level codes. The
block codes are obtained by dividing the clusters into smaller blocks of B × B pixels.
Each block is classified either as an all-white, all-black, or mixed block. The block
classifications are coded by two binary decisions shown in Figure 6-4. The all-white
blocks are represented by a single 0-bit, all-black blocks by a bit sequence of 10, and
mixed blocks by 11. The actual coding is performed by the standard QM-coder,

6. Interactivity and Spatial Access 70

using a second-order context model. The classification of the neighboring blocks to
the left and above determines the context, yielding 2 · 32 = 18 different contexts for
the block codes in total. The block types of the entire image are constructed during
the model construction pass.

ALL-WHITE
 BLOCK

ALL-BLACK
 BLOCK

MIXED
BLOCK

NON-WHITE
 BLOCK

0 1

0 1

Figure 6-4. Decision tree for the block classification.

The block coding method has several advantages:
1. It is much simpler to implement than the progressive JBIG1 algorithm.
2. It requires only one pass over the data to generate a thumbnail image.
3. It does not significantly increase the bit rate because the pixels in uniform (all-

white and all-black) blocks can be omitted without compression. Only the pixels
of the mixed blocks must to be compressed. This fact mostly compensates the
overhead due to the block codes.

4. The decrease in the pixel-level data also speeds up the decompression time by a
factor of 2.5, on average.

The thumbnail image can be constructed from the block codes using a simple
resolution reduction technique known as the logical sum method [MM87, EKY91].
Each pixel in the preview image represents a B × B block in the original image. The
color of a pixel is white if the corresponding block type is all-white; and black,
otherwise. This kind of preview is usually sufficient to identify the image. At the
same time, the overhead remains marginal. A better quality of the preview can be
obtained if the mixed blocks are exposed in gray.

The resolution reduction technique of JBIG1 can be used in the following way.
The low-resolution thumbnail image can be a priori generated, independently
compressed by a sequential JBIG1algorithm, and stored in the same file as the
original compressed image. The comparative test data for these two techniques are
presented in Section 7.4.

6. Interactivity and Spatial Access 71

6.1.4. Pixel Level Data

The image is divided into fixed size clusters of C × C pixels. Each cluster is
compressed separately. An index table is constructed from the pointers indicating
where the data of each cluster is located in the compressed file. The index table is
stored at the beginning of the compressed file. To restore any part of the image, only
the clusters consisting of the desired pixels need to be decompressed. The cluster
size is a compromise between compression efficiency and decoding delay; the
smaller the clusters, the shorter the decoding delay but at the same time the overhead
of the indices increases.

The cluster indices are coded by calculating the starting point of the cluster data
relative to the previous cluster. The space requirement of the indices is known before
the compression, and, thus, we can allocate enough space in the header. The actual
indices, however, are not known until the entire image has been compressed. For this
reason, the pointers can be stored at the end of the algorithm. The overhead cause by
the indices remains rather small. However, very small cluster sizes will result in
a relatively large number of clusters, and the compression of the cluster indices will
be required to reduce the overhead. In the present method, we omit such
compression schemes for simplicity.

6.2. Spatial Access

6.2.1. Implementation

Here we discuss three different choices available for implementing the image tiling,
see Table 6-1 [AF99a]. In all cases, the clusters are compressed independently by
using the QM-coder (as in JBIG1). The QM-coder is re-initialized each time when
the compression of a new cluster starts. The difference is in the initial model used for
re-initialization. These re-initialization options are:

• zero-state as in JBIG1 (T-JBIG);
• forward adaptive model, estimated for the image (FA-JBIG);
• static model estimated for a set of training images (S-JBIG).

Table 6-1: Implementation alternatives for spatial access (and JBIG1).

Method Spatial access Initial model Passes
JBIG1 – – 1
T-JBIG + – 1
S-JBIG + static 1

FA-JBIG + forward-adaptive 2

6. Interactivity and Spatial Access 72

One problem with the straightforward combination of tiling and JBIG1 (T-JBIG)
is the high learning cost. In JBIG1, the model is dynamically estimated during
compression starting from scratch (zero-state). In principle, the adaptation is fast and
the learning cost is restricted to the early stage of compression. However, the effect
of the learning cost increases significantly when coding small clusters. A better
initial model should, therefore, be applied to overcome the learning cost problem.

We propose the use of the forward-adaptive modeling technique, as described in
Section 2.7. The method is a two-stage procedure consisting of (1) construction and
storage of the initial model, and of (2) pixelwise compression of the clusters. The
initial model is constructed of statistics gathered from the entire image. Once
constructed, it is used for the re-initialization of the QM-coder's internal model.
Otherwise, the coding is performed using the standard QM-coder routines. This
technique alleviates the deterioration of the coding efficiency caused by tiling
because of faster adaptation and smaller learning cost.

It should be also noted that the pixels of the neighboring cluster could not be
used in the context template. The pixels outside the cluster are, therefore, assumed to
be of the dominant image color (background color). After the cluster has been coded,
the data buffer is filled with dummy bits to byte-align the cluster, and flushed to the
code stream. Cluster indices are recorded and stored in the compressed file so as to
indicate the starting points of the clusters in the compressed bit stream.

The forward-adaptive scheme requires two passes over the image even though
the decompression can be performed with one pass only. A one-pass variant can be
obtained using a static initial model, estimated off-line for a training image
sequence. As a drawback, this technique would result in a less accurate initial model
and, therefore, slightly higher learning cost.

The decompression is similar to the compression, except that a separate stage for
constructing the initial model is not needed. Instead, the model is read from the
compressed file.

6.2.2. Analysis

The forward-adaptive method improves the compression performance because the
adaptation does not start from scratch but a pre-calculated model is used for the
initialization. The re-initialization decreases learning cost and increases local
adaptation further by pushing the models from slowly adaptive non-transient states
back to the fast-attack states when the coding of a new cluster starts. These effects,
for typical GIS images (see Appendix F), are shown in Figure 6-5.

6. Interactivity and Spatial Access 73

-20%

-15%

-10%

-5%

0%

5%

10%

0 100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

Cluster size

C
om

pr
es

si
on

 g
ai

n

FA-JBIG
S-JBIG
T-JBIG

Figure 6-5. Illustration of the tiling and coder re-initialization effects on the compression as a
function of cluster size (relative to JBIG1).

On the other hand, there are also several sources of deficiencies:

• overhead of the model table MΩ ;

• overhead of the cluster indices CΩ ;

• inefficient compression at cluster boundaries;
• inefficient disk access caused by fixed-size image partitioning.

We will measure the overhead by the number of extra bits relative to the JBIG1
compressed file size.

Model table overhead: The model table is stored in the compressed file using five
bits per context. The total overhead for a k-pixel context template is thus:

YX

R
S

k

f

k
M ⋅

⋅⋅=⋅⋅=Ω 25125 , (6.1)

where X⋅Y is the image size, fS is the compressed file size, and R the compression

ratio of JBIG1. The overhead is constant in respect to the cluster size. In the case of
static initialization (S-M), the model table is not stored and it, therefore, causes no
overhead.

Cluster overhead: Cluster indices can be stored compactly as the offset (in bytes)
from the previous cluster location. In this case, the actual cluster index table will be
reconstructed and held in memory. In the presented scheme, we use two bytes to
hold an offset. It is enough to point clusters up to 216 = 65536 bytes
(724×724 pixels). In the worst case, when no compression is achieved (theoretically

6. Interactivity and Spatial Access 74

possible), the cluster is stored as such without compression. This situation is
indicated by a special cluster offset code #FFFF. Additional overhead originates
from the dummy bits that must be added to the last code byte, which amounts to four
bits per cluster, on average. The overhead is denoted as cluster overhead and it totals
to 20 bits per cluster. The cluster overhead is calculated as:

 220120
C
R

S
N

f
CC ⋅=⋅⋅=Ω , (6.2)

where NC is the number of clusters, and C × C is the cluster size.

Boundary overhead: Tiling the image also has the drawback that pixels outside
the cluster cannot be used in the context template. The compression of pixels along
cluster boundaries becomes less efficient and weakens the overall compression
performance (this problem is referred to as boundary overhead).

To sum up, both the cluster overhead and the boundary overhead are inversely
proportional to the cluster size. The boundary overhead is the dominant of these two.
The model overhead, however, depends on the image size only, but it is relatively
small for larger images. The overheads for typical GIS images (see Appendix F) are
illustrated in Figure 6-6.

GIS images

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

Cluster size

O
ve

rh
ea

d

boundaries overhead
cluster overhead
model overhead

Figure 6-6. Overhead of the model, cluster and boundaries as a function of the cluster size.

Disk access inefficiency: The fixed image partition leads to regions whose
compressed data may not fill entire data blocks of the database or disk, in which the
compressed image is stored. If the compressed cluster data falls on the border of the
physical data block, an additional data block may need to be accessed to retrieve the
data. The disk access inefficiency increases when compressed clusters of the

6. Interactivity and Spatial Access 75

requested image fragment do not come together in a continuous stream but are
broken into separate chunks, which are located in different data blocks, see Figure
6-7.

To avoid this problem, dynamic image clustering based on the compressed data
has been studied in [PW96]. This strategy scans the image along an appropriate
space filling curve [Jag90] and builds its regions according to the amount of
compressed data filling one or more entire data blocks. This technique is not very
applicable to context-based image compression, but the idea can be adapted for
fixed-size image tiling, as follows. While the cluster content is compressed in
raster-scan order, the clusters can be organized in the compressed file along the
Hilbert curve [PW96]. In this case, the clusters that form the requested image
fragment will most likely appear in the disk closer to each other, which will
minimize disk access operations, see Figure 6-7.

Image

Data blocks

Compressed clusters 1 2 3 4

Inefficient disk access: 5 disk blocks, long seeking distance

1 2 3 4
8765
1211109

13 14 15 16

Requested
fragment

9 10 11 125 6 7 81 2 3 4 ...

Efficient disk access: 3 disk blocks, short seeking distance

Space
filling
curve

141315161 2 3 45 6 7 8 9101112

Figure 6-7. Illustration of the inefficiency of disk access.

7. Empirical Study 76

7. EMPIRICAL STUDY

The performance of the proposed modeling techniques, filtering methods and storage
system has been empirically evaluated. Various test sets were used, depending on the
technique and its application. These sets include: the CCITT standard facsimile test
set, digitized document and newspaper images, digitized textual documents, real-life
line-drawing images of various categories, and cartographic and GIS images (see
Appendix for test set details). The QM-coder has been used as an arithmetic-coding
component. The compression results were compared with JBIG1. To report running
times, we have used our high-level modular implementation of JBIG1. It takes about
10 s per 1 Mb of raw image data on a Pentium-200 machine, whereas the low-level
hardware-optimized implementation may take about 2 s.

7.1. Variable Size Context Modeling in Image Communications

Here we study the use of variable-size context modeling for facsimile image
communications [FA99]. In variable-size context modeling, the number of context
pixels depends on the combination of the neighboring pixel values. The context is
constructed by checking the pixel values in the positions given by the context tree
instead of checking the pixel values in the fixed-size local template. Two modeling
variants are evaluated: Context tree refers to the variant with a fixed order of the
context pixels, and Free tree to the one with variable ordering. For these, we
consider both the semi-adaptive and static approaches for constructing the tree. The
static tree is generated off-line using a training image. The semi-adaptive tree is built
on-line for the input image before the actual compression. The static tree, once
constructed, can be used for the compression of multiple images. It eliminates the
need for additional passes over the image required for semi-adaptive tree
construction, and therefore makes the compression method suitable for facsimile
communication. If the semi-adaptive approach is used, the cost of storing the tree
must also be included in the splitting criterion (3.1). The additional cost is 2 bits per
context for Context tree, and ()  840log2 =+ bits for Free tree (with a 40-pixel
search template). The rest of the parameter setup is given in Table 7-1.

Table 7-1: Parameter setup.

 Context tree Free tree
kMIN 6 2
kMAX 24 24
Search template – 40

7. Empirical Study 77

The performance of the context tree is tested using two sets of A4-size images.
The first set (CCITT) consists of the eight CCITT images scanned at 200 dpi (see
Appendix A). The second set (Newspaper) consists of eight typical 300 dpi
newspaper images containing variations of text and graphics (see Appendix B). For
training, we use a separate newspaper image of the same size and resolution.

The comparative compression performance of the various context tree
construction alternatives using a static approach is summarized in Table 7-2. The
delayed pruning gives improvement in all cases.

Table 7-2: Effect of the delayed pruning in the static approach. The numbers give the amount of
improvement in comparison to baseline JBIG1.

Context tree Free tree Test Set
normal delayed normal delayed

Newspaper 8.5 % 10.9 % 11.1 % 14.5 %
CCITT 5.2 % 7.2 % 2.5 % 6.6 %

Table 7-3 shows that the static approach compares favorably with the semi-
adaptive approach. It gives similar or better compression performance without the
heavy computation in the compression phase. The actual running time of the static
approach is about twice as long for the Context tree as for JBIG1, which takes about
30 s per page of document, or 1.8 times longer than JBIG1 for the Free tree. The
semi-adaptive approach would require several minutes (Context tree), or several
hours (Free tree), depending on the tree construction approach and the search
template size (for Free tree). Of the two static variants, Free tree is preferred if
applied to the images of the same type as the training image, cf. the Newspaper test
set. For CCITT images, the Context tree variant gives slightly better compression
rates.

Table 7-3: Comparison of the static and semi-adaptive approaches. The numbers give the
amount of improvement in comparison to baseline JBIG1.

Semi-adaptive Static
 Test Set Context

tree
Free tree Context tree Free tree

Newspaper 8.6 % 13.4 % 10.9 % 14.5 %
CCITT 4.0 % 8.4 % 7.2 % 6.6 %

For experimental purposes, we adjust the number of contexts in the tree by using
an additional growth control parameter (ω) in the node splitting criterion (3.1) as
follows:

7. Empirical Study 78

 () () () () ω−−−−= SplitCostClClClCCCGain BWBW ,, , (7.1)

Positive values of w will decrease the number of contexts in the tree and vice
versa. The minimum number of contexts (with ω = ∞) is 322 =MINk . The maximum
number of contexts (with ω = -∞) depends on the training image. For the CCITT
images, it was 14,400 in the case of the Context tree, and 43,980 in the case of the
Free tree, see Figure 7-1. The effect of the parameter, ω, on compression
performance is shown in Figure 7-2. The CCITT images and the Context tree
approach were used in this example. The optimal value for ω was found to be 0.1,
although the default value (0) gave essentially the same results. The deep slope on
the ‘Context tree’ curve in Figure 7-2 (the decrease in the compression ratio for very
large numbers of contexts) is explained by the increased learning cost and context
dilution effect.

0

2048

4096

6144

8192

10240

12288

14336

16384

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Growth control parameter (bit)

N
um

be
r o

f c
on

te
xt

s Free-tree

Context-tree

Figure 7-1. Number of contexts as a function of ω.

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

Number of contexts

C
om

pr
es

si
on

 ra
tio

26 27 28 29 210 211 212 213 214 215 216

JBIG1

Context tree

default optimal

default

optimal

Figure 7-2. Compression ratio for the Context tree and JBIG1 methods (for CCITT images) as a
function of the number of contexts. The number of contexts is controlled by the growth control
parameter for Context tree, and by the context template size for JBIG1.

7. Empirical Study 79

A summary of the test runs for the CCITT test set [ITU T.24] is given in Table
7-4. The results are for Context tree and Free tree techniques using semi-adaptive
and static approaches. We performed the following tests to estimate the maximum,
theoretically achievable improvement (shown in Table 7-4 as Max.) using variable-
size modeling. The tree was constructed on-line as for the semi-adaptive variant, but
neither the cost of storing the tree, nor the size of the tree was taken into
consideration.

Table 7-4: Compression performance (bytes) for the CCITT test set. The methods are:
sequential JBIG1 with standard 10-pixel context template (JBIG10) and custom 14-pixel context
templates (JBIG14); Context tree and Free tree methods using static (static) and semi-adaptive
(S-A) approaches, and theoretical maximum improvement (Max.).

JBIG1 Context tree Free tree Image
JBIG10 JBIG14 static S-A Max. static S-A Max.

CCITT 1 14717 14618 14279 14402 13907 14465 14180 12889
CCITT 2 8500 8186 7678 8052 7445 7723 7664 7101
CCITT 3 21999 21263 20328 20694 19944 20870 19924 18847
CCITT 4 54300 52652 49393 50263 48591 48267 48012 42091
CCITT 5 25832 25239 24196 24587 23722 24213 23379 21694
CCITT 6 12561 12202 11287 11961 11156 11630 11200 10203
CCITT 7 56316 55116 53189 56670 52946 54480 53705 48660
CCITT 8 14238 13762 13021 13571 12906 12978 12935 12127
TOTAL 208463 203038 193371 200200 190617 194626 190999 173612
Improvement – 2.6 % 7.2 % 4.0 % 8.6 % 6.6 % 8.4 % 16.7 %

Conclusion

The compression methods based on the context trees trained on a similar type image
achieve a 14 % improvement over JBIG1 for a set of newspaper images. An
improvement of about 7 % was obtained when the same context tree was applied to
the CCITT test images. Most of the improvement originates from a selective context
expansion. Larger context templates are utilized without overwhelming the learning
cost. The compression takes about twice as long as if JBIG1 is used.

7. Empirical Study 80

7.2. Context-based Filtering

The two context-based filtering methods described in Section 5.1 were applied to a
set of digitized document images. The first method, the Simple Context Filter (CF)
unconditionally flips the uncommon pixels in low entropy contexts. In the second
method, the Gain-Loss Filter (GLF) flips the pixels conditionally, depending on
whether the gain in compression outweighs the loss of information. We use two test
sets in our evaluation. The first set consists of eight artificially generated document
images, and has been used for estimation of the threshold parameters of the filtering
methods. The test images originate from a document that has been typed using a text
processing system and has been further transformed through printing, photocopying,
faxing, and digitization (see Appendix C for details). The objectives of the first
evaluation are to determine the effect of filtering on the compression performance
and the OCR accuracy (recognition error) of the images after filtering.

The second large scale test set consists of real documents. The documents are
taken from conference proceedings and contain text with a variety of fonts and
offprint quality. The documents are digitized at resolutions of 300 and 400 dpi,
resulting in 56 images of the size 2328×3028 and 3112×4038 pixels, respectively.
These images are further referred to as real document images. This test set was used
for the final evaluation of the filters.

To measure compression performance, we apply the sequential JBIG1 with the
default (three-line ten-pixel) context template. We measure the improvement in
compression, i.e. the difference in the file size before and after filtering, and compare
it with the upper limit. The upper limit for compression is estimated by compressing
the original noise-free document image, which has been generated from the
PostScript file of the original document.

The Caere OmniPage 5.0 LE OCR software was applied, to recognize the textual
content of the digitized images. This software offers good recognition rates (97.2 %
on average) and is widely available [Has98]. The resulting textual files were
compared with the original text. Recognition error was measured as the edit distance
under the unit cost model, that is, the minimum number of edit operations (e.g.
symbol changes, insertions and deletions) required for transforming a given text
back to the original [SK83]. All spaces between words and paragraphs were counted
as one space symbol.

7. Empirical Study 81

Filtering performance

To estimate the upper limit of compression improvement by image filtering, we
compress the noiseless document image, which is generated directly from the
PostScript output of the text processing system. The size of the 300-dpi noiseless
image has been found to be 58,773 bytes, and 36,763 bytes for the noiseless 200-dpi
image. The upper limit for compression improvement is therefore estimated as
21.5 % for 300-dpi images and 22.4 % for 200-dpi fax images. The effect of the
threshold parameter on the compression and recognition of document images is
illustrated in Figure 7-3. For 300-dpi document images, the threshold value for GLF
can be set to 0.5 without any noticeable effect on the recognition error rate. At this
point, the method has almost achieved the estimated maximal improvement (20.6 %
vs. 21.5 %). The simple context filter, on the other hand, weakens the OCR accuracy
much sooner and it never reaches the maximal compression improvement. The best
result remains around 10 % for the threshold value of 0.1.

For the fax image, CF always weakens the recognition accuracy, and the
compression improvement remains rather small (below 7 %). GLF achieves an
improvement of about 10 % (with a threshold value of 0.1) without producing
defective recognition accuracy. Filtering with higher threshold values would achieve
further compression, but it starts to have a significant impact on recognition
accuracy. Text typed in 10-point Times and digitized at 200 dpi makes the letters too
small and coarse to be recognized, and does not allow a distinct statistical
description, which is necessary for the filtering, to be built.

The compression and the recognition error rates for the original and filtered
images are summarized in Table 7-5. Typical recognition errors are illustrated in
Table 2. They originate mostly from two distinct symbols adjacent to each other
(such as Th is mistaken for either ’A or Ml, mn is often confused with nm, cl with d,
and so on), or due to character similarity (like l, /, and i for example). To sum up, no
new serious errors were found, with one exception, where digit 8 is interpreted as 9
in both the original and filtered versions of one document.

7. Empirical Study 82

Table 7-5: Compression performance of JBIG1, and the recognition errors for the original
(noisy) and filtered images using the GLF filter (with threshold = 0.5).

Image Measured value Laser
print

Ink
print

HiQ*
copy

LoQ*
copy

Dark
copy

Bright
copy

Fax
 (fine)

Recognition error 4 7 9 13 28 33 9
Original

Compressed size 68,545 83,832 74,396 72,454 77,825 72,131 47,360
Recognition error 4 9 12 7 24 39 8

Filtered
Compressed size 54,511 64,537 59,374 58,980 61,809 57,455 42,904

* HiQ and LoQ stand for High-quality and Low-quality copies made by using high and low resolution
copiers, respectively

Table 7-6: Illustration of the recognition errors for two digitized images, using the Gain-Loss
filter with threshold = 0.5. The total number of errors in the document is shown in parentheses.
Mismatched symbols are typed in bold, and unrecognized symbols are marked as ‘∅∅∅∅’.

Low-quality copy Ink printing Font, size
Before filter (13) After filter (7) Before filter (7) After filter (9)
uncompressed
uncornpressed

 and/or
andlor

and/or
andlor

Times, 12-pt.

and/or
andlor

and/or
andlor

uncompressed
uncornpressed

 available
avaflable

28,800
29,800

28,800
29,800

The
'Me

The
Ale

satellite
satelfite

 and/or
andlor

and/or
andlor

and/or
andlor

and/or
andlor

Times, 10-pt.

.
,

and/or
andlor

and/or
andlor

and/or
andlor

and/or
andlor

"on-the-fly"
"on-the-fi∅∅∅∅'

"on-the-fly"
"on-the-fi∅∅∅∅'

"on-the-fly"
'on-the-fly'

"on-the-fly"
'on-the-fly

Arial, 10-pt.

 lines
fines

7. Empirical Study 83

The evaluation results for the filtering methods applied to the second test set (real
document images) are shown in Figure 7-3. We have used the threshold values
optimized for test set 1 (0.1 for CF and 0.3 for GLF) to ensure maximal compression
improvement with minimal affect on the recognition error. The experiment shows
approximately the same rate of compression improvement as was obtained using the
generated images.

0%

5%

10%

15%

20%

25%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Filter threshold

C
om

pr
es

si
on

 im
pr

ov
em

en
t (

%
)

GLF

CF

Estimated maximum improvement

0%

5%

10%

15%

20%

25%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Filter threshold

C
om

pr
es

si
on

 im
pr

ov
em

en
t (

%
)

GLF

CF

Estimated maximum improvement

10

11

12

13

14

15

16

17

18

19

20

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Filter threshold

R
ec

og
ni

tio
n

er
ro

r (
sy

m
bo

ls
)

GLF

CF

5

10

15

20

25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Filter threshold

R
ec

og
ni

tio
n

er
ro

r (
sy

m
bo

ls
)

GLF

CF

a) Average for 300-dpi document images b) 200-dpi fax image

Figure 7-3. Compression improvement and recognition error rates of the Gain-Loss (GLF) and
Simple Context filters (CF) as a function of the threshold. Compression improvement is
reported as the difference of the compressed file size before and after filtering.

7. Empirical Study 84

Traditional non-statistical filtering methods

Traditional non-statistical filters (such as median and morphological filters) are
based on the shape, or quantitative analysis of a local neighborhood area using a set
of predefined rules. They result in much smaller compression improvement and less
accurate image recognition. We have tested the various filters reported in [TP80,
B87, AG91, AKS90, Hei94, ZD96, DA97], including the median filter, self-dual
operator with different rank, alternative sequential filters, and soft morphological
filters. Among these, the best results for the 300-dpi test images (from set one) were
achieved with the median filter (10 % improvement, recognition error of 19
symbols), and with the self-dual rank operator (11 %, 28 symbols). The median
filter flips the pixel if the majority of the pixel colors in the neighborhood are of the
opposite color. Its soft generalization, self-dual rank operator [Hei94], flips a pixel if
the number of the opposite color pixels exceeds a predefined threshold value. For the
fax image, only the median filter was able to keep the number of errors at a tolerable
level (25 symbols), delivering 8.8 % improvement in compression.

Conclusion

The filtering method based on context-based statistical modeling of the image was
proposed for enhancement of the document images for compression and recognition.
Context-based filtering does not depend on the semantic interpretation of the image
and is solely based on the statistical properties of the image. The method removes
the digitization noise from the images and alleviates losses in the compression
performance caused by noise. A 15-20 % improvement in compression performance
has been achieved, while the image quality and OCR accuracy have been preserved.

7.3. Feature-based Filtering

Here we study the feature-based filtering method (outlined in Section 5.2) as a
pre-processing stage in an image compression system, which uses either of the two
standard compression components, JBIG1 or the older, but still widely used ITU
Group 4 [ITU T.6]. The method is based on the flipping of isolated pixel groups
found in the difference (mismatch) between the original image and one that is
reconstructed from extracted vector features. Filtering examples are shown in Figure
7-4. In these examples, the pixel-level noise is mainly filtered out, but some of the
roughness remains along the line boundaries. It consists of large groups of noise
pixels that are not filtered by the proposed method. Symbols and other small and
non-linear elements are not completely detected, and therefore parts of them may not
have been processed.

7. Empirical Study 85

Input image Output image Filtered pixels

Figure 7-4. Feature-based filtering examples from left to right: sample of original image, the
filtered image, and their difference.

7. Empirical Study 86

In our evaluation, we first compare the two different feature extraction approaches
studied in Chapter 4: Hough transform (HT) and raster-to-vector conversion (RVC).
We use three typical line-drawing images from the line-drawing set as
representatives: image Bolt (engineering drawing), Plan (architectural plan) and
Power (electrical circuit); see Appendix D. Table 7-7 shows that the Hough
transform gives a lower compression ratio than RVC and is an order of magnitude
slower. Therefore, we will continue further only with RVC-based filtering.

In order to carry out thorough testing, we use a set of 28 test images, divided into
four classes: electrical circuits, engineering drawings, cartographic maps, and
architectural and urban plans (see Appendix D). The results are summarized in
Table 7-8. The compressed vector file represents the result of the vectorizing when
the chain-coded elements are compressed by ZIP (a commonly used file compression
method). The corresponding compression ratios (in total) are 15:1 for the vector file,
33:1 for JBIG1, and 40:1 for the proposed method. At the same time, the quality of
the decompressed images is visually the same as the original, given that only isolated
groups of mismatched pixels are filtered. The quality is sometimes even better than
the original, because the filtered pixels are mainly quantization noise near the
borders of line segments. The preprocessing (vectorizing and filtering) slows down
the entire compression process, which is now about 2.7 times slower than standard
JBIG1 encoding.

Finally, we have considered existing filtering techniques adapted to the same
near-lossless context. We apply the traditional Median filter and a combination of
three known morphological filters: opening, closing and annular filters. The results
of the filtering are fed to the noise removal process shown in Figure 5-7 in order to
allow only isolated groups of noise pixels to be filtered. In this way, the compression
method remains near-lossless. The compression improvement due to these filtering
methods is summarized in Figure 7-5.

Conclusion

The proposed feature-based filtering technique removes additive and quantization
noise from the original image, restores image quality, and in this way produces a
better compression performance. For a set of test images, the method improves the
compression ratio by about 17 % in comparison to JBIG1. One drawback of the
method is that the compression phase is now more complex and the method must use
several passes over the image. However, vectorizing can be performed quite quickly,
and the vector features are not stored in the compressed file, so that the process is
invisible in the decompression phase. The method can thus be considered as a

7. Empirical Study 87

preprocessing step to existing compression techniques, and standard decompression
routines can be applied.

Table 7-7: JBIG1 compression results for images processed by feature-based filtering using a
Hough transform and raster-to-vector conversions. The compression improvement is measured
in comparison with the unfiltered image.

Input
image

Original
raster image

Without
filtering

HT-based
filtering

RVC-based
filtering

Bolt 317,038 12,966 10,537 10,210
Power 512,199 17,609 16,271 14,581
Plan 484,561 5,098 4,319 3,978
TOTAL: 1,313,798 35,673 31,127 28,769
Improvement: — — 12.7 % 19.4 %

Table 7-8: Summary of the compression results (in bytes) for the line-drawing test set. The row
TOTAL shows the results in total for the test set, and RATIO shows the compression ratio.

 Original
raster image

Compressed
vector file

ITU
Group 4

Filtering +
Group 4 JBIG1 Filtering +

JBIG1
Circuits 6,092,892 268,953 220,430 193,702 150,119 122,799
Drawings 13,807,484 488,210 413,732 397,028 254,917 231,715
Maps 13,476,580 1,720,864 1,040,105 858,243 706,080 557,402
Plans 10,460,683 429,792 353,375 336,205 206,010 184,447
TOTAL: 43,837,639 2,907,819 2,027,642 1,785,178 1,317,126 1,096,363
RATIO: — 15.1 21.6 24.6 33.3 40.0

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

ITU Group 4 JBIG

C
om

pr
es

si
on

 im
pr

ov
em

en
t

Mismatch median Comby morphological Feature-based

Figure 7-5. Comparison of the filtering methods discussed, used together with two compression
standards. The figure shows the numbers as the relative reduction in file size when compressing
the filtered images from the entire test set.

7. Empirical Study 88

7.4. On-line Image Processing and Spatial Access

We evaluate here the document imaging storage system (DISS) for the interactive
image browsing and retrieval system. The system architecture was outlined in
Chapter 6. The system supports quick image decompression, instant preview, and
spatial access through block coding and image tiling.

7.4.1. Instant preview and fast decompression

Two techniques, block coding and JBIG1 resolution reduction, are evaluated as
regards the image preview using the standard CCITT test images and NLS
topographic maps (component of Image0), see Appendix for image details. In the
case of block coding, the compressed file consists of block-level and pixel-level
data. Block data represents the classification of the pixel blocks of a predefined size,
and pixel data is the JBIG1-compressed stream of pixels belonging to mixed blocks.
The thumbnail is generated directly from the block codes (see Section 6.1.3 for
details). When the resolution reduction of JBIG1 (see Section 2.8) is applied, the
original image and the generated thumbnail are independently compressed and
stored together in the same file. Examples of the thumbnails generated using these
two methods are shown in Figure 7-6 and Figure 7-7. The JBIG1 resolution
reduction gives better quality thumbnails, whereas the block codes can speed up the
image decompression.

For the block coding method, the block size is a trade-off between the compression
ratio and running time (see Figure 7-8). A block size of 16×16 is a safe choice in the
sense that the compression ratio is hardly compromised at all. The respective
thumbnail images are sixteen times smaller than the original images in each
dimension. Faster decoding (and a higher quality preview) could be achieved using a
smaller block size (8×8) at the cost of a minor increase in the bit rate. For JBIG1
resolution reduction, the same size thumbnail images can be generated if the
resolution reduction algorithm is applied sequentially to the original image four
(16×16) or three (8×8) times, respectively.

The details of distribution of the code bits for block- and pixel-data are shown in
Table 7-9. For block coding, the overhead of the block codes is mostly compensated
for by the reduction of the pixel-level data that has to be compressed. For a block
size of 16×16 pixels, this reduction is approximately equal to the size of block-data
resulting in a zero net effect. In the case of JBIG1 resolution reduction, the data size
of the compressed thumbnail image is approximately the same as for the block
codes. Table 7-9 also shows comparative rates for the progressive compression of
JBIG1.

7. Empirical Study 89

Figure 7-6. Thumbnail images for the CCITT test images (see Appendix A) generated with the
block coding technique with 16×16 block size (upper row), and JBIG resolution reduction in
the fourth generation (bottom row). Thumbnail images are 16 times smaller at each dimension.

 16-fold reduction 8-fold reduction

B
lo

ck
-c

od
in

g

JB
IG

Figure 7-7. Thumbnail images for two NLS map images (see Appendix E) generated with block
coding techniques (upper row), and with the JBIG resolution reduction algorithm (bottom row).

7. Empirical Study 90

12

13

14

15

16

17

18

19

20

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Blocksize

C
om

pr
es

si
on

 ra
tio

 (C
R

)

0%

10%

20%

30%

40%

50%

60%

D
ec

om
pr

es
si

on
 ti

m
e

(%
 to

 J
BI

G
)

 CR

 time

Figure 7-8 Compression ratio and decompression time as a function of block size.

Table 7-9: Distribution of code bits in the compressed image file using two compression
techniques: DISS with block-coding and JBIG1 with thumbnail. All results are given in bytes
and total results are also given in percentages relative to standard JBIG1 rates. Standard JBIG1
results are given in the JBIG1/‘No preview’ column.

 DISS (block coding + JBIG1)
 Block size 8×8 Block size 16×16
 Block data Pixel data Total Block data Pixel data Total
Basic 29,099 339,381 368,480 8,223 349,152 357,375
Contour 33,624 305,148 338,772 7,865 311,345 319,210
Water 13,657 69,047 82,704 4,981 70,868 75,849
Field 5,065 17,937 23,002 2,011 18,738 20,749
Total 81,445 731,513 812,958 23,080 750,103 773,183
Relative to JBIG1 10.6 % 95.3 % 105.9 % 3.0 % 97.7 % 100.7 %

 JBIG1 (sequential mode) JBIG1
 No preview 8-fold image

reduction
16-fold image

reduction
prog-

ressive
 Image Thumbnail Image +

Thumbnail
Thumbnail Image +

Thumbnail
mode

Basic 357,612 27,001 384,613 9,513 367,125 438,879
Contour 316,781 33,818 350,599 10,663 327,444 359,597
Water 73,217 9,399 82,616 4,320 77,537 76,562
Field 20,076 2,799 22,875 1,380 21,456 20,425
Total 767,686 73,017 840,703 25,876 793,562 895,463
Per cent of JBIG1 100 % 9.5 % 109.5 % 3.4 % 103.4 % 116.6 %

7. Empirical Study 91

For both methods discussed, the data required to reconstruct the preview image
occupies only a few percent of the compressed file, enabling a quick preview. In
particular, the preview data comprises 3 % of the original file size for a 16-fold, and
10 % for an 8-fold resolution reduction. The block coding offers benefits beyond the
JBIG resolution reduction, because it speeds up the compression/decompression
procedure. This is so because fewer pixels must be processed by the time-consuming
context modeling and arithmetic coding procedures. On average, the decompression
takes 30-50 % of the time required by JBIG1 (see Table 7-10). The method thus
achieves decompression times comparable to the Group 4 standard. Compression
takes longer than decompression because of the additional image analyzing
procedures. Note that the method is expected to be even faster for higher resolution
images, because the increase in resolution evidently results in an increased number
of uniform blocks. On the contrary, if JBIG resolution reduction is applied, the
compression operation becomes slower by the relative amount of data in the
thumbnail image, which is 1/8 or 1/16 of the original image, plus the time required
to generate the thumbnail.

Table 7-10: Comparison of running times for DISS with the block coding method (in
percentage of time for sequential JBIG1).

 16×16 pixel block 8×8 pixel block
Image Compression Decompression Compression Decompression
CCITT 1 29 % 19 % 21 % 13 %
CCITT 2 29 % 19 % 21 % 13 %
CCITT 3 43 % 31 % 36 % 25 %
CCITT 4 64 % 44 % 50 % 50 %
CCITT 5 43 % 31 % 36 % 25 %
CCITT 6 36 % 25 % 29 % 19 %
CCITT 7 57 % 38 % 43 % 44 %
CCITT 8 36 % 25 % 29 % 19 %
AVERAGE: 42 % 29 % 33 % 26 %

Basic 71 % 73 % 54 % 54 %
Contour 76 % 77 % 57 % 54 %
Water 34 % 27 % 26 % 17 %
Field 20 % 9 % 18 % 7 %
AVERAGE: 50 % 47 % 39 % 33 %

The exact running time depends on the implementation details. A high-level modular
implementation of JBIG1 takes about 15 s per A4 document on a Pentium-200 machine,
whereas the low-level hardware-optimized memory-consuming implementation may take
about 3 s.

7. Empirical Study 92

7.4.2. Spatial access

The effect of image tiling on compression performance is evaluated by compressing
the set of map NLS images for five different domains (see Appendix E). The map
image for each domain X consists of four binary component layers denoted as
LayerX, where Layer is the layer name, and X is the relative domain number from 0
to 4.

We evaluate the seven compression methods shown in Table 7-11. Sequential
JBIG1 and the ITU Group 3 and Group 4 compression standards are the points of
comparison. CT is the combination of context tree and baseline JBIG1. These four
methods do not support spatial access, whereas the other methods do. T-JBIG is a
combination of tiling and sequential JBIG1. FAM stands for compression based on
forward-adaptive modeling (as in Section 6.2). CT-FAM stands for compression
based on a combination of context tree and forward-adaptive modeling (as in
Section 3.5), and CT-FAMS is its static variant, where the context tree is optimized
off-line for the training image (as outlined in Section 3.2.2). The two-stage bottom-
up algorithm (see Section 3.4) has been used to construct the tree.

The overall effect of tiling and the variable-size context modeling are
summarized in Figure 7-9. The benefits of a better initial model efficiently outweigh
the overhead and learning costs for all cluster sizes, except the very small ones. In
this case, the cluster and boundary overheads become too large to be compensated.
The periodic coder re-initialization also improves local adaptation, so that even
T-JBIG outperforms JBIG1 for large cluster sizes. The experiment shows that
sequential JBIG1 can be applied with the tiling using a cluster size of about 350×350
pixels without sacrificing the compression performance. The corresponding number
is 100×100 for the FAM, and 50×50 for the CT-FAM. Moreover, the CT-FAM
improves the compression performance by 20 % if the cluster size is 200×200 or
greater. The maximum possible improvement line shows the compression that would
be achieved if the tiling were not applied (CT method).

Comparative compression results for the method discussed are summarized in
Table 7-12. In this experiment, images 1 to 4 are used for the compression. Tiling
the image to clusters of size 256×256 is assumed for the methods that support spatial
access. For evaluating the static variant of the CT-FAM method, four context trees
were trained separately off-line using Image0 for each binary component.
Experiments show that the proposed method improves the performance of JBIG1 by
over 20 % for this cluster size. The static variant is also applicable because of similar
types of images. In our example, the static variant was only 3.5 % worse than the
semi-adaptive one.

7. Empirical Study 93

Table 7-11: Compression methods and their properties.

 Method Tiling Statistical model Context tree Passes
 Group 3/4 – – – 1
 JBIG1 – backward-adaptive – 1
 CT – backward-adaptive semi-adaptive 2*
 T-JBIG + backward-adaptive – 1
 FAM + forward-adaptive – 2
 CT-FAM + forward-adaptive semi-adaptive 2*
 CT-FAMS + trained trained 1

* One stage is assumed for the bottom-up context tree construction.
 Add one more pass for the 2-stage bottom-up method.

Cluster size

C
om

pr
es

si
on

 g
ai

n

maximum possible improvement

CT-FAM
FAM
T-JBIG

-30%

-20%

-10%

0%

10%

20%

30%

0 100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Figure 7-9. Compression gain for T-JBIG, FAM, CT-FAM as a function of the cluster size
when compared to the sequential JBIG1.

Table 7-12: Bit rates per image type, and overall compression ratios. Cluster size of 256×256
pixels is assumed for the methods supporting tiling (spatial access). A two-stage bottom-up
pruning approach is used for context tree construction.

Methods not supporting tiling Methods supporting tiling
(256×256 cluster size) Test images

Group 3 Group 4 JBIG1 CT T-JBIG FAM CT-FAM CT-FAMS
Basic1-4 2,834,589 2,881,614 1,197,983 884,435 1,263,311 1,211,338 903,597 944,107
Contours1-4 1,968,901 1,230,480 643,998 514,353 683,314 632,882 536,788 549,571
Water1-4 1,122,591 548,124 270,703 206,282 280,031 249,697 207,829 210,636
Fields1-4 233,415 64,530 29,127 25,030 35,914 33,412 28,558 33,412
TOTAL (16) 6,159,496 4,724,748 2,141,811 1,630,100 2,262,570 2,127,329 1,676,772 1,737,726
Compression
ratio 8.12 10.58 23.34 30.67 22.10 23.50 29.82 28.77

7. Empirical Study 94

Conclusion

The proposed storage system architecture meets the requirements of interactive
image processing as outlined in Section 6. Quick image decompression, an instant
preview option, and direct access to the compressed image were sufficiently
supported by the block coding and image tiling. Block coding enables an image
preview, and results in an increase in speed of the decompression time by a factor of
2.5.

Spatial access eliminates the need to decompress the entire image for accessing
its fragment. The use of a context tree makes it possible to utilize larger context
templates without greatly increasing the learning cost. The method alleviates the
deterioration of the coding efficiency caused by tiling and achieves higher
compression rates because of the improved pixel prediction.

Being applied to binary layers of large maps for four different domains, the
proposed technique enables denser image tiling down to 50×50 pixels versus the
350×350 possible with JBIG1. In addition, the technique improves the compression
performance of JBIG1 by over 20 % for clusters sized 200×200 pixels or larger.

We have also considered a static variant of the method, in which the model is
generated using a training image. It gives faster one-pass compression and enables
image tiling down to 100×100 pixels. The static variant can be applied if the images
are of a similar type. Otherwise, the two-pass method should be used at the cost of
higher compression times. The decompression times are similar in both cases.

8. Conclusions 95

8. CONCLUSIONS

In this thesis, we have studied compression of binary images in various document
imaging applications. We have considered context-based statistical modeling and
arithmetic coding. The JBIG1 standard coding implementation (QM-coder) has been
adopted. Advanced modeling techniques, such as variable-size context modeling and
forward-adaptive statistical modeling have been presented and evaluated.

The empirical study shows that these techniques improved compression
performance by about 25 % in comparison to that achieved by JBIG1. A variant of
the variable-size modeling has also been proposed for on-line image
communications, improving compression up to 14 %. It is also possible to utilize the
advantages of the proposed techniques when applied in conjunction with the recent
image compression standard, JBIG2.

We have studied the use of statistical context-based modeling for removing the
additive (random) and content-dependent (quantization) noise from digitized
documents. Using the proposed filtering schemes, we have improved the
compression performance of textual document images to the level of noise-free
images. The quality of the images, as measured by the OCR accuracy, has not been
affected by filtering.

For line-drawing images, we have studied global modeling. Two techniques for
the extraction of linear features from an image have been evaluated: the Hough
transform and raster-to-vector conversion. For the hybrid raster/vector compression,
we utilized the extracted vector features in the compression of raster images. We
have also introduced a new filtering technique that uses extracted vector information
to remove the noise near the contours of printed objects. From the compression point
of view, the new technique appears twice as effective as such traditional methods as
morphological filtering.

Finally, we have considered direct access to the compressed images. A storage
system that features instant previews, fast image decompression, and spatial access
has been proposed. These properties enable the user to interactively browse the
image archive and access the desired fragment of the image without transmission and
decompression delays. A 2.5-fold increase in access time over JBIG1 has been
achieved for image decompression, and only 2 % of the entire compressed data set
must be retrieved to build an image thumbnail. The proposed technique enables
denser image tiling down to 50×50 pixels versus the 350×350 possible with JBIG1,
without sacrificing compression performance. It allows far more efficient image
retrieval than when using standard JBIG1 compression.

References 97

REFERENCES

[AB89] Arcelli C., di Baja G.S. (1989) A one-pass two-operation process to
detect the skeletal pixels on the 4-distance transform. IEEE Trans. on
Pattern Analysis, Machine Intelligence, 11 (4): 411-414.

[AF98] Ageenko E.I., Fränti P. (1998) Enhanced JBIG-based compression for
satisfying objectives of engineering document management system,
Optical Engineering 37 (5): 1530-1538.

 a preliminary version: ‘Storage system for document imaging
applications’ appears in Proc. Picture Coding Symposium (Berlin,
Germany, 1997), 361-364.

[AF99a] Ageenko E.I., Fränti P. (1999) Forward-adaptive method for
compressing large binary images, Software Practice & Experience,
29(11): 943-952.

[AF99b] Ageenko E.I., Kolesnikov A., Fränti P. (1999) On-line demonstration of
the Document Imaging Compression System supporting spatial access:
http://cs.joensuu.fi/~ageson/research/edm_demo.html

[AF00a] Ageenko E.I., Fränti P. (2000) Context-based filtering of document
images, Pattern Recognition Letters (to appear);

[AF00b] Ageenko E.I., Fränti P. (2000) Compression of large binary images in
digital spatial libraries. Computer & Graphics 24 (1): 91-98;

[AKS90] Algazi V.R., Kelly P.L., Estes R.R. (1990) Compression of binary
facsimile images by preprocessing and color shrinking. IEEE Trans. on
Communications 38 (9): 1592-1598.

[AN74] Ascher R.N., Nagy G. (1974) A means for achieving a high degree of
compaction on scan-digitized printed text. IEEE Trans. Computers, C-23
(November): 1174-1179.

[AT94] Arps R.B., Truong T.K. (1994) Comparison of international standards
for lossless still image compression. Proceedings of the IEEE 82:
889-899.

[Ber87] Bernstein R. (1987) Adaptive nonlinear filters for simultaneous removal
of different kinds of noise in images. Proc. IEEE Transaction on Circuits,
Systems CAS-34 (11): 1275-1291.

[Cap59] Capon J. (1959) A probabilistic model for run-length coding of pictures.
IRE Tran. Information Teory, IT-5: 157-163.

[Col66] Colomb S.W. (1966) Run-length encodings. IEEE Trans. Inform Theory,
IT-12: 399-401.

[DA97] Dougherty E.R., Astola J. (eds) (1997) Nonlinear Filters for Image
Processing, SPIE Optical Engineering Press.

[DLDC93] Dori D., Linag Y., Dowell J., Chai I. (1993) Sparse-pixel recognition of
primitives in engineering drawings. Machine Vision and Applications 6:
69-82.

References 98

[EKY91] Endoh T., Kato S., Yasuda Y. (1991) Progressive coding scheme for
binary images, Electronic and Communications in Japan, part 1, 74(8):
1-17.

[ESRI94] ESRI (1994) GIS Approach to Digital Spatial Libraries. ESRI White
Paper Series. Environmental System Research Institute, Inc., USA.
http://www.esri.com/

[ESRI98] ESRI (1998) The role of Geographic Information Systems on the
electronic battlefield. ESRI White Paper Series. Environmental System
Research Institute, Inc., USA.

[FA99] Fränti P., Ageenko E.I. (1999) On the use of context tree for binary
image compression. Proc. IEEE International Conference on Image
Processing “ICIP ’99” (Kobe, Japan), 27PP2.3.

[FAKK98a] Fränti P., Ageenko E.I., Kälviäinen H., Kukkonen S. (1998)
Compression of line drawing images using Hough transform for
exploiting global dependencies, Proc. 4th Joint Conf. on Information
Sciences JCIS'98 (RTP, NC, USA) IV: 433-436.

[FAKK98b] Fränti P., Ageenko E.I., Kälviäinen H., Kukkonen S. (1998) Lossless
and near-lossless compression of line-drawing images using Hough
transform. University of Joensuu, Department of Computer Science,
Technical Report A-1998-6 (submitted for publication)

[FAK99] Fränti P., Ageenko E.I., Kolesnikov A.N. (1999) Vectorizing and
feature-based filtering for line-drawing image compression. Pattern
Analysis and Applications, 2 (4): 285-291;
a preliminary version: “Compression of line-drawing images using
vectorizing and feature-based filtering” appears in Proc. 8th Int. Conf. on
Computer Graphics and Visualization “GraphiCon 98” (Moscow, Russia,
1998), 219-224.

[FJ94] Forchhammer S., Jensen K.S. (1994) Data compression of scanned
halftones images. IEEE Trans. Communications, 42: 1881-1893.

[FN93] Fränti P., Nevalainen O. (1993) A two-stage modeling method for
compressing binary images by arithmetic coding. The Computer Journal
36 (7): 615-622.

[FN95] Fränti P., Nevalainen O. (1995) Compression of binary images by
composite methods based on the block coding. Journal of Visual
Communication, Image Representation 6 (4): 366-377.

[Fox+95] Fox E.A., et al. (1995) (Eds.) Digital Libraries. [Special issue of]
Communications of the ACM 38 (4).

[Fr94] Fränti P. (1994) A fast and efficient compression method for binary
images. Signal Processing: Image Communication 6 (1): 69-76.

[GW92] Gonzalez R.C., Woods R.E. (1992) Digital image processing.
Addison-Wesley.

[Gray70] Gray R.M. (1970) Information rates of autoregressive processes. IEEE
Trans. Inform Theory IT-16: 412-421.

[Haf+99] Haffner P., LeCunn Y., Bottou L., Howard P., Vincent P., Riemers B.
(1999) Color document on the Web with DjVu. Proc. IEEE International
Conference on Image Processing “ICIP ’99” (Kobe, Japan), 25PS1.7.

References 99

[Har93] Harvey R. (1993) (eds.). Preservation in Libraries: A Reader. London:
Bowker-Saur.

[Haskel98] Haskell B.G. et al. (1998) Image and video coding – emerging standards
and beyond. IEEE Trans. Circuits and Systems for Video Technology
8 (7): 814-837.

[Haskin98] Haskins D. (1998) Word for Word. PC Magazine, (1998)1: 20-2x.
[Hei94] Heijmans H.J.A.M. (1994) Morphological image operators. Boston:

Academic Press.
[How97] Howard P.G. (1997) Text image compression using soft pattern

matching. The Computer Journal 40 (2/3): 146-156.
[How+98] Howard P.G., Kossentini F., Martins B., Forchammer S.,

Rucklidge W. J., Ono F. (1998) The emerging JBIG2 standard. IEEE
Trans. Circuits, Systems for Video Technology 8 (7): 838-848.

[Hou62] Hough P.C.V. (1962) Methods and means for recognizing complex
patterns. U.S. Patent 3,069,654.

[Huf52] Huffman D.A. (1952) A method for the construction of minimum
redundancy codes. Proc. of IEEE, 40 (9): 1098-1101.

[HK83] Hung S.H.Y., Kasvand T. (1983) Linear approximation of quantized thin
lines. In: Haralick R.M. (eds) Pictorial Data Analysis. Berlin: Springer-
Verlag, 15-28.

[Hun80] Hunter R., Robinson A.H. (1980) International digital facsimile coding
standards. Proc. of IEEE, 68 (7), 854-867.

[ITU T.4] ITU-T (CCITT) Recommendation T.4. (1980)
[ITU T.6] ITU-T (CCITT) Recommendation T.6. (1988) Facsimile coding

schemes and coding control functions for Group 4 facsimile apparatus.
[ITU T.24] ITU-T (CCITT) Recommendation T.24. (1994) Standardized digitized

image set.
[ITU T.43] ITU-T (CCITT) Recommendation T.43. (1997) Colour and gray-scale

image representations using lossless coding scheme for facsimile.
[IW94] Inglis S., Witten I. (1994) Compression-based template matching. In

Proc. IEEE Data Compression Conference (Utah, USA), 106-115.
[Jag90] Jagadish H.V. (1990) Linear clustering of objects with multiple

attributes. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
332-342.

[JBIG1] JBIG. ISO/IEC International Standard 11544 (1993)
ISO/IEC/JTC1/SC29/WG9; also ITU-T Recommendation T.82.
Progressive Bi-level Image Compression.

[JBIG2] JBIG2 Working Draft. http://www.jpeg.org/public/jbigpt2.htm
[JBIGWP] JBIG Alliance White Paper (1996), InfoTrends Research Group, Inc.,

One Main Plaza, 4435 Main Street, Kansas City, MO 64111, USA.
http://www.pdsimage.com/html/news/jbig/whtpaper.htm

[JKW98] Joung H., Kim S.P., Wong E.K. (1998) Lossless grayscale image coding
by using higher order context modeling and bit-plane decomposition.
Proc. 4th Joint Conf. on Information Sciences (JCIS ’98), RTP, USA, IV:
254-257.

References 100

[JLG96] Jann Lynn-George (1996) Digitization: A literature review, summary of
technical processes, applications, issues. Jonh A. Weir Memorial Law
Library, Univ. of Alberta, Edmonton, Alberta, Canada,
(http://www.library.ualberta.ca/library_html/libraries/law/pubs.html)

[JWC98] Joung H., Wong E.K., Chen Y. (1998) Document image compression
using straight line extraction and block context model. Proc. IEEE
International Conference on image Processing (ICIP ’98), Chicago,
Illinois, USA

[KA94] Koskinen L., Astola J. (1994) Soft morphological filters: A robust
morphological filtering method. Journal of Electronic Imaging 3: 60-70.

[Kas90] Kasturi R., et al. (1990) A system for interpretation of line drawings.
IEEE Trans. on Pattern Analysis, Machine Intelligence 12(10): 978-992.

[KBO96] Kolesnikov A.N., Belekhov V.I., Chalenko I.O. (1996) Vectorization of
raster images. Pattern Recognition, Image Analysis 6 (4): 786-794.

[KHXO95] Kälviäinen H., Hirvonen P., Xu L., Oja E. (1995) Probabililistic, non-
probabilistic Hough transforms: overview and comparisons. Image,
Vision Computing 13: 239-251.

[KJ80] Kunt M., Johnsen O. (1980) Block Coding: A Tutorial Review.
Proceedings of the IEEE, 68 (7): 770-786.

[KOG92] Kasturi R., O’Gourman L. (1992) Document image analysis:
A bibliography. Machine Vision, Applications 5: 231-243.

[KT95] Kolesnikov A.N., Trichina E.V (1995) The parallel algorithm for the
binary images thinning. Optoelectronics, Instrumentation, Data
Processing 1995 (6): 7-13.

[Lea93] Leavers V.F. (1993) Survey: Which Hough Transform. CVGIP Image
Understanding 58 (2): 250-264.

[Les92] Lesk M. (1992) Image formats for preservation and access: a report of the
Technology Assessment Advisory Committee to the Commission on
Preservation and Access, reprinted in [Har93].

[LR81] Langdon G.G., Rissanen J. (1981) Compression of black-white images
with arithmetic coding. IEEE Trans. Communications 29 (6): 858-867.

[Lun90] Lunin L. (1990) An overview of electronic image information. Optical
Information systems 10 (3): 114-130.

[Lyn90] Lynn M., and the Technology Assessment Advisory Committee to the
Commision on Preservation and Access. (1990) The relationship between
digital and other media conversion processes: a structured glossary of
technical terms. Information Technology, Libraries 9 (4): 309-336.

[MR92] Markas T., Reif J. (1992) Quad tree structures for image compression
applications, Information Processing & Management 28 (6): 707-721.

[MF98] Martins B., Forchhammer S. (1998) Bi-level image compression with
tree coding. IEEE Trans. Image Processing 7 (4): 517-528.

[MF99] Martins B., Forchhammer S. (1999) Lossless, near-lossless, and
refinment coding of bi-level images. IEEE Trans. Image Processing 8 (5):
601-613.

References 101

[MM87] Mintzer F.C., Mitchell J.L. (1987) Line-preserving binary image
reduction algorithm. ISO/IEC JTC1/SC2/WG8, no. 601.

[Mof91] Moffat A. (1991) Two-level context based compression of binary images.
IEEE Proc. Data Compression Conference (Snowbird, Utah, USA),
382-391.

[MSY92] Mori S., Suen C.Y., Yamamoto K. (1992) Historical review of OCR
research and development. Proc. of IEEE, 80: 1029-1058.

[NG96] Nelson M., Gailly J.-L. (1996) The data compression book. M&T Books,
New York, NY, USA.

[NL90] Nagasamy V., Langrana N.A. (1990) Engineering drawing processing
and vectorizing system. Computer Vision, Graphics and Image Processing
49: 379-397.

[NLS] NLS: National Land Survey of Finland, Opastinsilta 12 C, P.O.Box 84,
00521 Helsinki, Finland. http://www.nls.fi/index_e.html.

[NW80] Netravali A.N., Mounts F.W. (1980) Ordering Techniques for Facsimile
Coding: A Review. Proceedings of the IEEE, 68 (7): 796-807.

[OAS98] O.A.S. (1998) Cost Justification Paper. Open Archive Systems, Inc, 5
Jefferson Road, Windham, NH 03087, USA. Publications, Document
CJ.DOC. http://www.openarchive.com/

[OO92] Ogg H., Ogg M. (1992) Optical Character Recognition: A Librarian’s
guide. Westport, Conn: Meckler.

[PMLA88] Pennebaker W.B., Mitchell J.L., Langdon G.G., Arps, R.B (1988) An
overview of the basic principles of the Q-coder adaptive binary arithmetic
coder. IBM Journal of Research, Development 32(6): 717-726.

[PM88] Pennebaker W.B., Mitchell J.L. (1988) Probability estimation for the
Q-coder. IBM Journal of Research, Development 32(6): 737-759.

[PM93] Pennebaker W.B., Mitchell J.L. (1993) JPEG Still Image Data
Compression Standard. Van Nostrand Reinhold.

[PW96] Pajarola R., Widmayer P. (1996) Spatial indexing into compressed
raster images: how to answer range queries without decompression. Proc.
Int. Workshop on Multimedia DBMS (Blue Mountain Lake, NY, USA),
94-100.

[Ric79] Rice R.F. (1979) Some practical universal noiseless coding techniques.
Proc. 1993 Data Compression Conference (Snow Bird, Utah, USA), 351-
360.

[Ris83] Rissanen J.J. (1983) A universal data compression system. IEEE Trans.
Inform. Theory IT-29 (Sept. 1983): 656-664.

[RL79] Rissanen J.J., Langdon G.G. (1979) Arithmetic coding. IBM Journal of
Research, Development 23: 146-162.

[RL81] Rissanen J.J., Langdon G.G. (1981) Universal modeling and coding.
IEEE Trans. Inform. Theory IT-27: 12-23.

[RM92] Rabbani M., Melnychuck P.W. (1992) Conditioning context for the
arithmetic coding of bit planes. IEEE Trans. Signal Processing 40:
232-236.

References 102

[RM95] Röösli M., Monagan G. (1995) A high quality vectorizing combining
local quality measures and global constraints. IEEE Proc. 3rd Int. Conf.
on Document Analysis, Recognition (Montreal, Canada), 243-248.

[Saf93] Saffady W. (1993) Electronic Document Imaging Systems: Design,
Evaluation, Implementation. Westport, Conn.:Meckler.

[Saf95] Saffady, W. (1995) Digital library concepts and technologies for the
management of library collections: an analysis of methods, costs. Library
technology reports 31 (3): 221-380.

[Sal97] Salomon D. (1997) Data compression: the complete reference. New York:
Springer-Verlag.

[Sam89] Samet H. (1989) Applications of Spatial Data Structures: Computer
Graphics, Image Processing, GIS. MA: Addison-Wesley, Reading.

[Sam90] Samet H. (1990) The Design and Analysis of Spatial Data Structures.
MA: Addison-Wesley, Reading.

[Ser82] Serra J. (1982) Image Analysis and Mathematical morphology. London:
Academic Press.

[SG91] Schonfeld D., Goutsias J. (1991) Optimal morphological pattern
restoration from noisy binary images. IEEE Trans. on Pattern Analysis,
Machine Intelligence 13 (1): 14-29.

[Sh48] Shannon C.E. (1948) A mathematical theory of communication. Bell
Syst. Tech Journal 27: 398-403.

[SK83] Sankoff D., Kruskal J.B. (1983) (eds.) Time Warps, string edits and
macromolecules: the theory and practice of sequence comparison. MA:
Addyson-Wesley, Reading.

[TWMG93] Tisher P.E., Worley R.T., Maeder A.J., Goodwin M. (1993) Context-
based lossless image compression. The computer Journal 36: 68-77.

[TP80] Ting D., Prasada B. (1980) Digital processing techniques for encoding of
graphics. Proc. of the IEEE 68 (7): 757-769.

[TK99] Tompkins D.A.D., Kossentini F. (1999) A fast segmentation algorithm
for bi-level image compression using JBIG2. Proc. IEEE International
Conference on Image Processing “ICIP ’99” (Kobe, Japan), 25PS1.4.

[Ur92] Urban S.J. (1992) Review of standards for electronic imaging for
facsimile systems. Journal of Electronic Imaging, 1(1): 5-21.

[VETK99] Valliappan M., Evans B.L., Tompkins D.A.D., Kossentini F. (1999)
Lossy compression of stochastic halftones with JBIG2. Proc. IEEE
International Conference on image Processing “ICIP ’99” (Kobe, Japan),
25PS1.2.

[Vit97] Vitter J. (1987) Design and Analysis of dynamic Huffman codes. Journal
of Association for Computing Machinery, 34:825-845.

[WW92] Wao Y. Wu Y. J.-M. (1992) Vector Run-Length Coding of Bi-level
Images. Proceedings Data Compression Conference, Snowbird, Utah,
USA, 289-298.

[WRA96] Weinberger M.J., Rissanen J., Arps R. (1996) Application of universal
context modeling to lossless compression of gray-scale images. IEEE
Trans. Image Processing, Apr, 1996.

References 103

[WD99] Wenyin L., Dori D (1999) From raster to vectors: extracting visual
information from line drawings, Pattern Analysis & Applications,
(1999)2:10-21.

[Will91] Williams R. (1991) Adaptive data compression. Kluwer Academic
Publishers.

[Will92] Willis D. (1992) Imaging: the information access tool of the nineties.
Proc. 13th National Online Meeting (Medford, N.J., USA), 435-444.

[Wils96] Wilson D.J. (1996) How to modernize your paper engineering drawings.
Imaging World, 5 (6): 52-53.

[Wils99] Wilson D.J. (1999) S.E.A. Your paper. Scan Edit Archive Initiative,
White paper. http://www.sea-initiative.org/

[WMB94] Witten I.H., Moffat A., Bell T.C. (1994) Managing Gigabytes:
Compressing and Indexing Documents and Images. Van Nostrand
Reinhold, New York.

[WNC87] Witten I., Near R., Cleary J. (1987) Arithmetic coding for data
compression. Communications ACM, 30: 520-539.

[ZD96] Zhang Q., Danskin J.M. (1996) Bitmap reconstruction for document
image compression. SPIE Proc. Multimedia Storage, Archiving Systems
(Boston, MA, USA), Vol. 2916: 188-199.

Remarks 104

Appendix 105

APPENDIX: THE TEST SETS.

A. CCITT TEST SET – FACSIMILE IMAGES

All images are standard CCITT documents of A4 format [ITU T.24], digitized at
facsimile resolution of 200 dpi. Image size is 1728 × 2376 pixels.

CCITT 1 CCITT 2 CCITT 3 CCITT 4

CCITT 5 CCITT 6 CCITT 7 CCITT 8

Appendix 106

B. NEWSPAPER IMAGES

The set consists of eight newspaper images of A4 format, 2464 × 3497 pixels each:

Image 1 Image 2 Image 3 Image 4

Image 5 Image 6 Image 7 Image 8

The combined image used for training (A4). It consists of various text types typical
for the particular newspaper.

Appendix 107

C. DIGITIZED DOCUMENT IMAGES

There are two test sets with document images that have been used in the evaluation.
First set consists of eight A4 format document images originated from the text
document, which has been typed in a word processing system. The document contains
the same text parts formatted in two different fonts: Times and Arial, both in two
different sizes: 10 and 12 points. The typefaces were chosen so that they represent the
two commonly used families of fonts (with and without “serif” elements). The total
number of symbols in the document is 4712 including spaces.

The printed document was a subject to further transformations such as
photocopying and faxing. We include four different photocopies of the document: high
quality (HiQ) copy (sophisticated copy machine with optimal copying parameter setup),
bright and dark second copies, and low quality (LoQ) copy made using all-in-one
desktop office machine. An ink-jet printing was also included in the set.

The resulting seven documents were then digitized on an office desktop scanner at
the same resolution 300 dpi (dot-per-inch) referred further as digitized images. Only the
fax image was electronically received at the resolution 200 dpi. The PostScript image
was generated directly from the textual document and approximates noise free
document image.

The second, larger scale, test set consists of real documents. The documents are
taken from conference proceedings and contain text with a variety of fonts and offprint
quality. The documents were digitized at resolutions of 300 and 400 dpi resulting in 56
images of the size 2328×3028 and 3112×4038 pixels, respectively.

Samples of digitized documents (fragment of the text typed in font Times at 12 points):

PostScript image Laser printer Ink-jet printer High quality copy

Low quality copy Dark copy Bright copy Fax (200 DPI)

Appendix 108

Original text document (reduced PostScript image):

Spatial access:

When an image is accessed, the entire file is typically read and decompressed into memory. This
is not possible if the uncompressed raster image size exceeds the available memory resources (cf.
GIS images). Besides, high-speed channels are not always available. For example, most
communications channels in Russia are 14,400-28,800 bps channels based on analog phone
lines. 64-128 Kbps bridges are used only for connecting separate city networks together (mostly
via satellite links). The actual transmission speed practically never exceeds 1 kilobytes per
second.

The decompression of the entire image can be a major source of inefficiency. Only a small part
of the image is often needed, or the image is processed and/or viewed fragment by fragment.
Typical viewing devices, for example, have a smaller resolution than the original raster image
and thus, only a small fragment of the entire image may be viewed at a time. When the image is
scrolled, new portion of the data is retrieved and decompressed. Spatial access together with a
fast “on-the-fly” decompression allow the user to operate directly on the compressed data
without retrieving the entire image.

Spatial access:

When an image is accessed, the entire file is typically read and decompressed into
memory. This is not possible if the uncompressed raster image size exceeds the
available memory resources (cf. GIS images). Besides, high-speed channels are not
always available. For example, most communications channels in Russia are
14,400-28,800 bps channels based on analog phone lines. 64-128 Kbps bridges are
used only for connecting separate city networks together (mostly via satellite links). The
actual transmission speed practically never exceeds 1 kilobytes per second.

The decompression of the entire image can be a major source of inefficiency. Only
a small part of the image is often needed, or the image is processed and/or viewed
fragment by fragment. Typical viewing devices, for example, have a smaller resolution
than the original raster image and thus, only a small fragment of the entire image may
be viewed at a time. When the image is scrolled, new portion of the data is retrieved
and decompressed. Spatial access together with a fast “on-the-fly” decompression allow
the user to operate directly on the compressed data without retrieving the entire image.

Spatial access:

When an image is accessed, the entire file is typically read and decompressed into memory. This is not possible if the
uncompressed raster image size exceeds the available memory resources (cf. GIS images). Besides, high-speed channels are not
always available. For example, most communications channels in Russia are 14,400-28,800 bps channels based on analog phone
lines. 64-128 Kbps bridges are used only for connecting separate city networks together (mostly via satellite links). The actual
transmission speed practically never exceeds 1 kilobytes per second.

The decompression of the entire image can be a major source of inefficiency. Only a small part of the image is often needed, or
the image is processed and/or viewed fragment by fragment. Typical viewing devices, for example, have a smaller resolution
than the original raster image and thus, only a small fragment of the entire image may be viewed at a time. When the image is
scrolled, new portion of the data is retrieved and decompressed. Spatial access together with a fast “on-the-fly” decompression
allow the user to operate directly on the compressed data without retrieving the entire image.

Spatial access:

When an image is accessed, the entire file is typically read and decompressed into memory. This is not possible if the
uncompressed raster image size exceeds the available memory resources (cf. GIS images). Besides, high-speed
channels are not always available. For example, most communications channels in Russia are 14,400-28,800 bps
channels based on analog phone lines. 64-128 Kbps bridges are used only for connecting separate city networks
together (mostly via satellite links). The actual transmission speed practically never exceeds 1 kilobytes per second.

The decompression of the entire image can be a major source of inefficiency. Only a small part of the image is often
needed, or the image is processed and/or viewed fragment by fragment. Typical viewing devices, for example, have a
smaller resolution than the original raster image and thus, only a small fragment of the entire image may be viewed at
a time. When the image is scrolled, new portion of the data is retrieved and decompressed. Spatial access together
with a fast “on-the-fly” decompression allow the user to operate directly on the compressed data without retrieving the
entire image.

Appendix 109

D. LINE-DRAWING IMAGES

The complete set:

The complete test set consists of 28 line-drawing images, divided into four classes:
electrical circuits, engineering drawings, cartographic maps, and architectural and
urban plans. The images are taken from real-life applications and amount in about 43
Mbytes in uncompressed form. The format of the images varies from A4 to A2.

Statistics of the test set:

Image type No. of images Total size Smallest Largest
Circuits 6 5.8 Mbytes 1480 × 2053 5522 × 4039
Drawings 8 13.2 Mbytes 1765 × 1437 7296 × 4903
Maps 5 12.9 Mbytes 3100 × 3475 6608 × 4677
Plans 9 10.0 Mbytes 1253 × 970 5888 × 5888
TOTAL: 28 42.8 Mbytes — —

The mini-sets:

There are two line-drawing mini-sets A and B, each contains three images from the
complete set:

A Plan (2167 × 1788) House (4803 × 2873) Chair (2842 × 2748)

B Module (1480 × 2053) Power (2293 × 1787) Bolt (1765 × 1437)

Appendix 110

E. NLS MAP IMAGES

The test set includes five randomly chosen images from the “NLS Basic Map Series
1:20000” corresponding to the map sheets No/No 431306, 124101, 201401, 263112, and
431204. Each map image consists of four binary component layers, each has the size of
5000 × 5000 pixels. The images are denoted as ImageX, and the layers as LayerX, where
Layer is the layer name, and X is the relative domain number from 0 to 4 in a given
order. The layer names are following:

• Basic – topographic image, supplemented with communications networks,
buildings, protected sites, benchmarks and administrative boundaries;

• Contours – elevation lines;
• Water – lakes, rivers, swamps, water streams;
• Fields.

Sample fragment of a test image (left) and its four binary components (right):

Basic Contours

Sample test image (500 × 500) Water Fields

The image is re-printed with the permission of National Land Survey of Finland and available via web
page: http://www.nls.fi/kartta/democd/aineisto/index_e.html.

Appendix 111

F. GIS IMAGES

This mini-set consists of four images typical for GIS applications.

6608 × 4677 3425 × 4697 2368 × 3568 3322 × 5355

Remarks 112

	Introduction
	Overview of the Application Areas
	
	Document Digitization and Archiving System
	Image Communications
	Engineering Document Management
	Digital Spatial Libraries and Geographic Information System

	Previous Work and the Scope of the Thesis
	
	Image Compression
	Image enhancement
	Hybrid raster/vector modeling
	Spatial access

	Structure and Contribution of the Thesis

	Statistical Image Compression
	Statistical Modeling
	Static, Semi-adaptive and Adaptive Approaches
	Context Modeling
	Arithmetic Coding
	QM-coder
	Automaton˚based Probability Estimation
	Forward˚adaptive Modeling
	JBIG1
	
	Resolution reduction in JBIG

	Context Modeling
	Fixed Size Context Template
	Variable Size Context Model
	Splitting Criterion
	Static and Semi-adaptive Alternatives

	Top-down Tree Construction
	Delayed pruning

	Bottom-up Tree Construction
	Combination of Variable-size Context Modeling� and Forward-adaptive Statistical Modeling
	Analysis

	Global Modeling
	Pattern matching for text images and JBIG2
	Feature Extraction using Hough Transform
	Hough Transform
	End-point Detection

	Raster-to-Vector Conversion
	Skeleton Construction
	Extraction of Vector Elements
	Pruning and Analysis

	Hybrid Raster/Vector Image Representation and Modeling
	Raster Representation
	Vector Representation
	Feature Image
	Hybrid Modeling

	Image Enhancement and Noise Removal
	Context-based Filtering
	Simple Context Filter
	Gain-Loss Filter

	Feature-based Filtering

	Interactivity and Spatial Access
	A Storage System for Interactive Access
	Storage System Architecture
	Compression Algorithm
	Preview Data
	Pixel Level Data

	Spatial Access
	Implementation
	Analysis

	Empirical Study
	Variable Size Context Modeling in Image Communications
	
	Conclusion

	Context-based Filtering
	
	Filtering performance
	Traditional non-statistical filtering methods
	Conclusion

	Feature-based Filtering
	
	Conclusion

	On˚line Image Processing and Spatial Access
	Instant preview and fast decompression
	Spatial access
	Conclusion

	Conclusions
	References
	A.pdf
	APPENDIX: THE TEST SETS.

		2000-12-28T15:59:21+0200
	Joensuu
	Eugene Ageenko
	I am the author of this document

