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1. INTRODUCTION 

Document Imaging (DI) refers to the management of paper documents by capturing, 
indexing, archiving, retrieving, and distributing them electronically, as shown in 
Figure 1-1 [Lun90, Will92, Saf93, JLG96]. It has been estimated that over 1012 
paper documents exist in the world, and the quantity is estimated to double every 
three years [OAS98]. The current industry is oriented towards producing and 
reproducing paper documents, and it does it faster than the papers can be digitized. 
Document Imaging aims at stopping (or at least slowing down) the growth of the 
paper piles and substitutes for paper in storing and accessing information. It provides 
easier access to the electronic replicas of documents, and minimizes the storage cost, 
compared with other document storage solutions, such as paper or microfilm. 

A document image is the raster digital image that is the exact digitized replica of 
an original document [Lyn90]. Images are superior to paper documents because they 
can be economically stored, efficiently searched and browsed, copied without loss of 
quality, and quickly transmitted. Moreover, image is a media, satisfying both legal 
requirements and library preservation standards [JLG90, Les92, Har93]. 

We consider the following four major categories of imaging applications, 
according to the type of documents dealt with:  

• Document Digitization and Archiving System (DDAS) – text documents, such as 
forms, records, and publications; 

• Image Communications – facsimile and visual data; 
• Engineering Document Management (EDM) – line-drawings, such as 

engineering drawings, cartographic maps, architectural and urban plans, 
schemes, and circuits (radio-electrical and topological); 

• Digital Spatial Libraries (DSL) and Geographic Information Systems (GIS) – 
spatial images, maps and plans. 



1. Introduction 2 

 

Publishing

Digitizing

Document Image
Server

Word Processor
CAD Station
GIS Server

Paper
Archive

Document Image
Archive

Electronic Document
Archive:

Text, CAD, GIS

Digital World

OCR
RVC

Fax

Remote Users

Processing View/BrowsePrinting

Document Processing

Hybrid
editing

Digital
publishing

 

Figure 1-1. Life cycle of document images.
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1.1. Overview of the Application Areas 

Document Digitization and Archiving System 

In DDAS, incoming documents are digitized (unless they are initially in digital 
form), categorized, and archived in electronic form. The whole process may be set 
for fully automatic operation without human intervention. The digitization phase can 
be efficiently performed using scanners and facsimile, which are also relatively 
inexpensive technology. The archiving phase includes image enhancement, 
compression, recognition and indexing operations. 

Using Optical Character Recognition (OCR), it is possible to recognize the 
content of a digitized document and convert it to native text format so that it can be 
manipulated as though it had been typed in manually [OO92, MSY92]. However, at 
the current state of technology, the existing OCR solutions are characterized by high 
error rates and complexity [JLG93]. On the other hand, using the current 
compression technology [JBIG1, Haskel98], images can be compressed to 
approximately the same size as those used by file formats of common word 
processing software, or by PostScript files, see Table 1-1. 

Table 1-1: Storage sizes of a one-page document in different document formats. 

File Size (Kbytes) File Format 
200 dpi 300 dpi 

Raster document image 470 > 1000 
JBIG compressed image ~ 40 50-80 
Word-processing file 30-40 
Post Script file ~ 90 
ASCII text ~ 4 

 

After the document has been archived, its further processing depends on the 
application. The document may be converted to word-processing compatible format 
using OCR or be indexed [Saf95]. Document indexing [WMB94] stands for the 
categorizing of the documents by some criteria or field (e.g. account number, date, 
and name) and usually requires OCR of the predefined text regions. Full-text 
indexing serves as a text search on the actual document content and requires OCR to 
convert the document into searchable ASCII text, which is usually stored together 
with the document image [Will92]. 
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Image Communications 

In an image communication system, such as facsimile, image serves as a 
communication medium. The document is first digitized using an optical scanning 
device, and is then compressed and transmitted to the recipient, where it is re-printed 
or archived in an electronic form [Hun80, ITU T.4, T.6]. The main difference 
between this and DDAS is that the sender and the recipient are separated by a 
communication channel, usually a telephone line, which is the bottleneck of the 
system. The sender may not have sufficient memory to hold the entire image for the 
time between digitization and transfer. Image scanning, compression and 
transmission are therefore performed simultaneously, and no intermediate image 
pre-processing pass over the entire image can be applied. 

Engineering Document Management 

It has been estimated by International Data Corporation (IDC) that about 
8,000,000,000 line drawings exist in the world [Wils96, 99]. Only about 13% of 
them have been designed and stored in digital form using vector representations such 
as Computer Graphics Metafile (CGM) or AutoCAD drawings (DWG), see Figure 
1-2. Nevertheless, there are still (and will continue to be) a large number of drawings 
that are stored as paper documents. 

67%

13%

20%

48%

19%

Paper,
Blue-prints 

CAD-file 

Microfilm 
only store 
as image 

CAD modeling

 

Figure 1-2. The world of engineering drawings [Wils96]. 

A possible solution for engineering image compression is to perform a raster-to-
vector conversion (RVC), where the bitmap image is segmented into CAD 
primitives such as line segments, circles, and circular arcs and stored with any 
CAD/CAM format, see Figure 1-3 [Kas90, WD99]. Vectorized images are suitable 
for editing and they can be scaled without loss in quality. The storage size of an 
engineering drawing in CAD format takes about 2 % compared to a raster format 
with 300 dpi; this corresponds to a compression ratio of 50:1. 
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Figure 1-3. An example of raster-to-vector conversion. 

Raster-to-vector conversion, however, may be problematic because of the high 
complexity and insufficient accuracy of conversion systems. The conversion process 
does not necessarily produce a faithful copy of the original document and loss of 
data is apparent. Moreover, the process is not often automatic, and requires 
expensive human interaction. Industrial projects have shown that the costs for such 
data acquisition exceed the hardware and software costs of operational information 
systems by a ratio of 100:1, according to [RM95]. 

It has been shown that there is a strong requirement for raster images to be 
vectorized only for parametric modeling and control system applications. These 
applications represent less than 15 % of all applications where engineering 
documents are used [Wils96]. In most other applications, the raster format is often 
sufficient, especially if hybrid editing is supported [Wils99, SEA99]. Hybrid editing 
means using both raster and vector data simultaneously, see Figure 1-4. Information 
can be exchanged back and forth between the two distinctive formats. Typically, the 
old (digitized) data is kept in the raster background, and new edits are maintained in 
vector format. These can be drawn either by hand or extracted from the raster image 
using semi-automatic vectorizing. No resources would be wasted on converting 
every document into CAD format, and the conversion would be made only when so 
desired. Nor would there be any loss of data without the control of the user. 
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Figure 1-4. An example of hybrid raster/vector representation. 

Digital Spatial Libraries and Geographic Information System 

In Digital Spatial Libraries (DSL), raster map images are usually generated from a 
map database for digital publishing on CD-ROM or on the Web [ESRI94, 98; 
Fox+95]. The images consist of several binary layers, which together form the 
computer-generated color image, see Figure 1-5. The number of layers is limited, but 
the size of a single image is typically very large. 

As an example of DSL, we consider digital maps produced in several 
international projects headed by the National Land Survey of Finland (NLS): 
MapBSR, a project covering the entire Baltic Sea region; Barents GIT (Geographic 
Information Technology), a joint project between Finland, Sweden, Norway and 
Russia; and GIS-Server, a project aimed at spanning the border between Finland and 
Russia. The objective of the projects is to produce uniform geographic information 
that can be used in planning and decision-making about communication, 
infrastructure, technical, economic and cultural cooperation, tourism and security 
interests [NLS]. 
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Figure 1-5. An example of Digital Spatial Library. 
(with the permission of National Land Survey of Finland).
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1.2. Previous Work and the Scope of the Thesis 

Image Compression 

Every document imaging application has a raster image as the basic component. A 
few color tones are usually sufficient to represent the original document, and only 
two tones are widely used [JBIGWP]. A multi-color document can be decomposed 
into bi-level planes, and be processed as the collection of bi-level images [RM92, 
JKW98]. 

The storage size of digitized images has been a major restriction in document 
imaging systems for decades. The storage problem is obvious: a standard A4-size 
document scanned at a relatively low resolution of 200 dpi (1728×2376 pixels) takes 
about 0.5 Mb, whereas a high quality engineering drawing of size A1 at 400 dpi 
requires 16 Mb. A typical digital map image of 5000×5000 pixels, representing a 
single map sheet of 10×10 km2 in the NLS library, requires about 12 Mb; and there 
is no upper limit [NLS]. The GIS images may take hundreds of megabytes [PW96, 
Sam89]. The storage size impacts on nearly every aspect of a digital imaging system. 
The necessity of compression for saving storage space is, therefore, obvious. Cost 
savings emerge from several areas: fewer storage resources are needed and less 
network bandwidth required. Faster transfer implies a productivity gain because it 
makes Internet and LAN access more useful; less time is spent in waiting, and fewer 
resources are required to retrieve the files.  

The compression of bi-level images has been extensively surveyed in the 
literature [Hun80, Ur92, AT94, Sal97, Haskel98]. The general idea of compression 
is to reduce the redundancy in the compressed data. The compression is usually 
considered as the process of assigning codes to the symbols of the compressed 
message according to its model, which is an assemblage of some rules or data that 
describe the message [RL81]. The initial advancements in compression of one-
dimensional signals were quickly extended to the image domain by concatenating 
the image pixels in a single stream in an appropriate order, e.g. raster-scan or row-
major order, in which separate lines of the image were processed in a left-to-right 
top-down manner. There have also been other sophisticated pixel-ordering 
techniques resulting in a more efficient utilization of one-dimensional sequential 
compression [NW80]. 

There are many approaches to reducing the redundancy in the images. Capon was 
one of the first to introduce the run-length encoding (RLE), which replaces the runs 
of same-colored pixels by two numbers: color and length of the run [Cap59]. 
Statistical approaches are based on modeling the image according to the probability 
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distribution of the pixel values. Techniques such as Shannon-Fano [Sh48] and 
Huffman coding [Huf52, Vit87] assign shorter codes to more frequent pixel color 
values and vice versa, as in a Morse alphabet. The codes have a unique prefix 
property, enabling correct decoding.  

The codes mentioned above, as do most of the other codes [Col66, Ric79, 
Will91] belong to the family of integral codes that have an integral number of bits 
per code. Huffman codes are known as minimal-redundancy codes, since they 
deliver the minimal possible bit-rate value among other integral codes. They are 
based on the entropy concept introduced by Shannon in 1948 [Sh48] that estimates 
the optimal code-length value. 

The Huffman encoding process is usually very fast and not complex. However, 
because of the integral property, the probability distribution of the code does not 
necessarily match the distribution of the source. It also requires a minimum code 
length of one bit, which may produce a significant deterioration in the compression 
ratio if the probability distribution is much skewed. It therefore prevents the direct 
application of integral codes for the compression of binary images. To solve the 
problem, it has been proposed to apply the Huffman code, not directly to the pixels, 
but to runs of pixels, resulting in the Modified Huffman (MH) algorithm [ITU T.4, 
Hun80]. 

The following techniques have been developed to take advantage of a two-
dimensional correlation between the image lines. Vector run-length coding proposed 
by Wang and Wu [WW92] applies run-length coding two-dimensionally to m×n-
sized blocks of pixels, instead of to single pixels.  

The block coding introduced by Kunt and Johnsen [KJ80] divides the image into 
rectangular blocks of pixels. A totally white block is coded by a single 0-bit, whereas 
all other blocks are coded by a 1-bit as a prefix, followed by the content of the block. 
The process can be iterated, resulting in a hierarchical block coding algorithm. This 
technique has been improved by encoding the bit patterns of the 2×2-blocks with 
Huffman codes. Another improvement has been achieved using the prediction 
technique [NW80]. The idea is to form a so-called error image from the original 
one, by comparing the value of each original pixel to the value given by a prediction 
function. If these two are equal, the pixel of the error image is set to white, otherwise 
to black. The encoding is then applied to the error image instead of to the original 
one, and gains were achieved from the increased number of white pixels [FN95]. 

Another approach is to exploit the correlation between successive lines of the 
image. This idea is implemented in the method called relative element address 
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designate (READ). Instead of coding the lengths of the runs, this method codes the 
location of the boundaries of the runs (point of transitions from black to white and 
vice versa) relative to the corresponding positions in the previous line. If there are no 
such positions within three pixels in the reference line, one-dimensional run-length 
coding is used. The READ method is defined in the international standard for 
facsimile communications [ITU T.4]. In this, every k-th line (k = 1, 2, or 4) is coded 
using one-dimensional MH-coding, and two-dimensional READ-code (more 
accurately referred to as Modified READ) is applied to the remaining lines. 

A technique, which is completely different to integral coding, is called arithmetic 
coding, as proposed by Rissanen and Langdon [RL79]. The idea of arithmetic coding 
is to represent the entire input message as a small interval in the range [0,1]. The 
resulting codeword is the binary code representation of the interval. Arithmetic 
coding is an optimal coding method as regards the model, and it fits for compression 
of binary images. It is also well suited for dynamic modeling, because there is no 
need to store and update complex data structures such as Huffman trees. 

Arithmetic coding does not have the limitation of integral codes. The method is, 
therefore, fully applicable directly to the pixels, instead of pixel blocks or runs. In 
[LR81], Rissanen and Langdon proposed that Shannon’s context-based statistical 
modeling be used in conjunction with arithmetic coding. The idea of context-based 
modeling is to obtain the statistical model of the image by conditioning the 
probability distribution of the pixels on the context. The context is determined by the 
combination of the pixels in the local neighborhood, which is defined by the 
template. Context-based statistical modeling and arithmetic coding are implemented 
in the latest international standard for compression of binary images, JBIG (Joint 
Bilevel Image Experts Group) [JBIG1]. To distinguish it from the emerging JBIG2 
standard, we will refer to it as to JBIG1.  

Although JBIG1 is originally designed for bi-level facsimile images, the 
solutions for multi-tone and grayscale images have also been presented. The multi-
tone images can be separated into several bit-planes, and each bit-plane compressed 
separately. The separation can be performed using the binary representation of gray-
level values or the gray-code words [WRA96, JKW98]. Another approach to deal 
with multi-tone images has been developed by At&T and is called “DjVu”. It 
classifies the pixels of the image either as foreground (text, drawings) or background 
(pictures, photos, paper texture). The classification is compressed as a binary image, 
whereas a progressive, wavelet-based lossy compression technique is applied to the 
foreground and background images [Haf+99]. 
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To improve the compression of binary images, Moffat has experimented with 
various sizes and shapes of the context templates and has noticed that the bit-rate 
does not decrease further after the templates exceeds 14 pixels [Mof91]. However, 
he has demonstrated the potential of larger templates of up to 24 pixels and has 
proposed the two-level modeling technique using both 10- and 24-pixel templates. 
The variable-size modeling based on a context tree has been introduced by Rissanen 
in [Ris]. Martins and Forchhammer have recently studied variable-size context 
modeling and proposed both context tree and “free tree” techniques, in which the 
number and the positions of the context pixels are varied depending on the pixel and 
its neighborhood [MF98]. 

Remarkable improvements in image compression have been achieved by 
specializing in some known image types (e.g. text images) and exploiting global 
dependencies. The emerging standard JBIG2 [JBIG2] will segment a page into 
different classes of image data, in particular, textual, halftone and generic (other) 
[TK99], and utilize the repetitive nature of the textual and halftone images. For 
textual data, JBIG2 uses pattern matching techniques, which are based on the 
following works. Ascher and Nagy [AN74] have proposed the pattern matching 
technique to extract symbols and marks from the image into the dictionary, which is 
a collection of bitmaps. Witten et al. expanded on this approach to address the 
extraction of marks, indexing their location within the image, compressing the 
indices, and coding the residuals left after the replacement of marks by library 
prototypes [IW94, WMB94]. Howard has proposed soft pattern matching, which 
compresses the original image instead of the residual, and uses the image composed 
of prototypes in improved context modeling [How97].  

JBIG2 will also address the compression of halftone image data using either of 
the two following methods. The first is similar to JBIG1, but it uses larger context 
templates (up to 16 pixels) with multiple adaptive pixels [MF98, 99]. The larger 
templates are intended to exploit specific types of redundancies that exist in halftone 
images. The second method involves descreening the halftone image (converting it 
back to grayscale) and transmitting the grayscale values [VETK99, FJ94]. Some 
data, such as line art data, may not be identified as either textual or halftone, and will 
be coded by a cleanup coder, which is essentially a bitmap coder similar to JBIG1. 
JBIG2 will also provide lossy image compression [MF99], and quality and content 
progressive coding [How+98]. 

Image enhancement  

The quality of document images may have faded during the document life cycle and 
digitization process, while noise introduces unnecessary details in the images. It 
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degrades the image quality and weakens image compression. Several filtering 
methods have been considered in the literature for image pre-processing [TP80, 
Ber87, AKS90, ZD96]. These filters include logical smoothing, variations of median 
filtering, isolated pixel removal, and "crisp" and soft morphological filters [Ser82, 
Hei94]. All these analyze the local pixel neighborhood defined by a filtering 
template. To accept or reject the pixel, they use a set of rules, such as predefined 
masks or quantitative description of the local neighboring area. Recent research in 
mathematical morphology has shown that morphological filtering can be used as an 
efficient tool for pattern restoration in an environment of heavy additive noise, but it 
is not necessarily suitable for filtering the content-dependent noise introduced by the 
image digitization process [SG91, Hei94, KA94, DA97]. 

Hybrid raster/vector modeling 

Numerous techniques and systems have been proposed for line-drawing images, to 
extract semantic information and perform a conversion of the document to vector 
space [Hou69, HK83, Ab89, Lea93, NL90, Kas90, RM95, KBO96, WD99]. 
However, no one solution creates a faithful copy of the original document, and 
expensive human interaction is often required [RM95].  

The hybrid raster/vector compression system has been proposed to eliminate the 
necessity of converting the engineering drawings into vector format in order to 
process them in CAD applications [Wils96, 99]. Typically, vector and raster 
representations of the image are stored together in the same file. Existing 
information is kept in original raster form when new edits are made in vector form 
native for CAD. The vector features of the raster object can be extracted on demand, 
so that this raster object can be processed (moved, scaled, rotated or removed) 
directly in the raster [SEA]. 

Spatial access 

The document image archive may not be physically present at the viewing location, 
but may be accessed through a communication channel, which could be nothing 
more than a slow telephone connection [Lun90]. Compression reduces the amount of 
data to be transferred and makes the image retrieval faster. However, the time 
required for image transmission and decompression may make the access to the 
images significantly slower. Spatial access is, therefore, another highly desired 
property of an imaging application, such as GIS, that deals with spatial data [Sam89, 
Fox+95]. Spatial access means direct access to an image fragment in a compressed 
file and enables an efficient and precise retrieval of the desired image fragments. 
Imaging applications using large format images (e.g. EDM) may also benefit from 
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spatial access [PW96, AF98]. It allows the user to eliminate unnecessary delays 
caused by retrieval and decompression of the entire image. Spatial access has 
received relatively little attention in the literature; for solutions in text compression, 
see [WMB94]. 

1.3. Structure and Contribution of the Thesis 

Although the lossless compression of binary images has been extensively studied 
during the last decades, and several compression standards already exist, they do not 
provide an efficient universal solution, nor satisfy all application-specific 
requirements, such as on-line retrieval, high quality restoration, spatial access and 
intellectual post-processing. Better solutions must therefore be developed. In this 
thesis, we study context-based methods for enhancement, storage and processing of 
binary images of documents and line drawings. We aim at improving compression 
performance and interactive processing. The organization of this thesis is as follows. 

Chapter 2 contains the basic concepts and definitions for statistical image 
compression. We start by recalling the concept of statistical context modeling 
introduced by Shannon, and define static, semi-adaptive and dynamic modeling 
approaches. Next, arithmetic coding and its implementation aspects are briefly 
discussed. We review also the process of the probability estimation derived from 
arithmetic coder renormalization, which is implemented in the QM-coder, a binary 
arithmetic coder used in JBIG1. Thereafter, we introduce a new forward-adaptive 
modeling technique for the QM-coder [AF99a]. The technique is useful when large 
images are subdivided into smaller parts. Finally, the JBIG1 standard is briefly 
described, including the algorithm for resolution reduction. 

Chapter 3 deals with context-based modeling and aspects of variable-size context 
models. We start by discussing the fixed size context templates and show the 
limitations of this approach. Next, we proceed to variable-size context modeling, in 
which the number of context pixels depends on a combination of neighboring pixel 
values. We define the concept of context tree and study the aspects of its 
construction. We define a splitting criterion, and consider both static and semi-
adaptive construction alternatives. Thereafter, we review and compare two strategies 
for building the context tree: top-down and bottom-up approaches. For top-down 
tree construction, we show the locality problem of the tree splitting and present a 
new delayed pruning technique [FA99]. For bottom-up tree construction, we present 
a new space efficient two-stage pruning algorithm [AF00b]. We also show how 
variable-size context modeling and forward-adaptive statistical modeling can be 
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combined [AF00b]. Finally, we give an empirical comparison of the strategies 
presented and draw conclusions. 

In Chapter 4, we study global modeling of the images. We start by discussing 
various techniques for extracting semantic information from the image. First, we 
review the pattern matching techniques used in the emerging standard JBIG2 for 
extraction of the common symbols from document images, and utilizing this 
information in improved image compression. Next, we switch to line drawings, and 
propose two techniques for the extraction of vector features: the first one is based on 
a Hough transform [FAKK98a], and the second one is based on raster-to-vector 
conversion [FAK99]. Finally, we consider hybrid raster/vector storage systems and 
propose a hybrid modeling technique, in which vector information is used for 
improving compression of raster images [FAKK98b].  

Chapter 5 is devoted to image enhancement and noise removal. We present here 
two concepts for image filtering: context-based statistical filtering for document 
images, and feature-based filtering for line-drawing images. We start by defining 
context-based filtering, and introduce the Simple Context filter that unconditionally 
changes uncommon pixels in low entropy contexts. Thereafter, we introduce a new 
Gain-Loss filter that takes into account the effect of filtering on compression (the 
gain,) as well as the error introduced by filtering (the loss) [AF00a]. Next, we 
introduce the new concept of feature-based filtering based on semantic image 
modeling [FAK99]. We present an algorithm for removing content-dependent noise 
along the line contours of the image, which is difficult to remove using traditional 
filtering methods without smoothing the image. 

Chapter 6 deals with interactive image browsing, retrieval and spatial access. 
First, we establish the objectives in order to support real-time access to the image 
archive: instant preview, fast decompression, and spatial access, i.e. direct access to 
the image fragments [AF98]. Next, we present a new storage system architecture that 
combines the compression methodologies of Chapter 2 with the properties of instant 
preview (by block-coding) and interactive access to the compressed image (by image 
tiling). We thoroughly discuss the implementation aspects of the spatial access, and 
its advantages and disadvantages for the compression [AF98]. 

In Chapter 7, we present empirical evaluation of the proposed modeling 
techniques, filtering methods and storage system. We start by studying the 
performance of variable-size context modeling in image communication [FA99]. 
Next, we analyze the effect of context-based filters introduced in Chapter 3 on 
document images [AF00a]. We study the possibility of improving the compression 
performance of filtered images, while preserving document recognition. Thereafter, 
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we evaluate the feature-based filtering method as a pre-processing stage in an image 
compression system, which uses either of two standard compression components, 
JBIG1 or ITU Group 4, and compare it with the traditional filtering methods 
[FAK99].  

Finally, we evaluate the efficiency of the storage system outlined in Chapter 6. In 
the study, we first compare two techniques for generating thumbnail images, block-
coding and JBIG resolution reduction; and analyze the effect of block codes on the 
decompression time, and the effect of image tiling on compression performance. We 
then evaluate five compression methods based on the methodologies presented in 
Chapters 2 and 3, and compare them with ITU Group 3/4 and JBIG1 [AF00b]. 

In Chapter 8, we make conclusive remarks on the study.  

The image test sets used in the evaluation are included in the Appendix. These 
sets include: CCITT facsimile documents, digitized text documents and newspaper 
images, real-life line drawings, including engineering drafts, electrical circuits, GIS 
maps and architectural plans, and, finally, topographic maps from the digital spatial 
library of the National Land Survey of Finland. 

The main contributions of this work can be summarized as: 

• a consistent presentation of the fundamental concepts and methods concerning 
context-based statistical modeling; 

• a new forward-adaptive modeling technique for the QM-coding algorithm 
aimed at the construction of a better initial model for the coder in order to 
alleviate the learning cost problem caused by tiling the image into small parts 
(Section 2.7); 

• new results and development work concerning variable-size context modeling 
(Chapter 3), including the solution for the locality problem of the tree splitting 
(Section 3.3), and a new space efficient two-stage tree construction algorithm 
(Section 3.4); 

• application of variable size modeling in image communication (Section 7.1), 
and in conjunction with forward-adaptive modeling in digital spatial libraries 
(Sections 3.5 and 7.4.2); 

• the concept of global modeling for line drawings (Chapter 4), and the study of 
methods for extracting semantic features by Hough transform (Section 4.2) and 
raster-to-vector conversion (Section 4.3); 
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• a new method for compression of the line-drawing images stored in raster-
graphic format in hybrid raster/vector storage systems (Section 4.4.4); 

• a new feature-based filtering technique for removing quantization noise from 
line-drawing images (Section 5.2); 

• a new context-based filtering algorithm for enhancing document images for 
compression, while preserving document readability (Section 5.1); 

• a new approach for evaluating filtering methods by the OCR technique 
(Section 7.2); and 

• a new storage system architecture supporting instant preview, fast 
decompression, and direct access to image fragments (Chapter 6).  
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2. STATISTICAL IMAGE COMPRESSION 

The aim of compression is to remove redundancy of the data. Statistical image 
compression consists of two distinct phases: statistical modeling and coding [RL81]. 
In the modeling phase, we construct the probability distribution for the occurrence of 
the symbols to be compressed. The coding process assigns the variable length code 
words to the symbols according to the probability model, so that shorter codes are 
assigned to symbols that are more probable and vice versa. The main problem of the 
compression is to find a good model, describing the data with high precision. The 
coding can be efficiently performed using arithmetic coding, which is an optimal 
coding for a given probability model [RL79]. 

2.1. Statistical Modeling 

A binary image can be considered as a message, generated by an information source. 
The idea of statistical modeling is to describe the message symbols (pixels) 
according to the probability distribution of the source alphabet (binary alphabet, in 
our case). Shannon has shown in [Sh48] that the information content of a single 
symbol (pixel) in the message (image) can be measured by its entropy: 

 pH pixel 2log−= , (2.1) 

where p  is the probability of the pixel. Entropy of the entire image can be calculated 
as the average entropy of all pixels: 

 ∑
=

−=
n

i
iimage p

n
H

1
2log1 , (2.2) 

where ip is the probability of i-th pixel and n is the total number of pixels in the 

image. If the probability distribution of the source alphabet (black and white pixels) 
is a priori known, the entropy of the probability model can thus be expressed as:  

 BBWW ppppH 22 loglog −−= , (2.3) 

where Wp  and Bp  are the probabilities of the white and black pixels, respectively. 
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Entropy gives the optimal number of bits required for encoding a single pixel 
with a given model. A model with skewed probability distribution will have low 
entropy, see Figure 2-1. Respectively, the codes with the lengths equal to the entropy 
values will provide an optimal compression in respect of the model. 
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Figure 2-1. Entropy of the binary probability model, as function of white pixel probability. 

2.2. Static, Semi-adaptive and Adaptive Approaches 

The modeling schemes can be classified as static, semi-adaptive or adaptive 
(dynamic). In the static modeling, the probability distribution of a source alphabet is 
a priori known (or suggested) and the same, non-changing model is applied to every 
pixel during the compression. The advantage of static modeling is its simplicity, and 
that no side information has to be passed to the decoder. 

Semi-adaptive modeling uses a preliminary pass on the input data to gather 
statistics and construct the model. The model is passed to the encoder, which 
performs data compression as in the static variant. The model must also be passed to 
the decoder to make decompression possible. 

Dynamic (adaptive) modeling takes one step further and eliminates the need for 
an extra pass over the image to construct the model, and no model overhead is 
required. Both encoder and decoder dynamically estimate the model during the 
compression/decompression adapting to the preceding data. Usually an equal initial 
probability distribution for black and white pixels is assumed. The time-dependent 
cumulative pixel counts t

Bn  and t
Wn  are therefore initialized to 1, and are 

subsequently incremented by 1 each time black or white pixel value appears, 
respectively. 
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The more sophisticated Bayesian sequential estimator calculates probability of 
the pixel on the basis of the observed pixel frequencies as follows [MF98]: 
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where t
Wn , t

Bn  are the time-dependent counters, t
Wp  , t

Bp  are the probabilities for 

white and black colors respectively, and δ is a constant. Counters t
Wn  and t

Bn  start 

from zero and are updated after the pixel has been coded (decoded). As in [JBIG1], 
we use 45.0=δ . The cumulative equation for entropy (2.2) is used to estimate the 
average bit rate and calculate the ideal code length. 

Dynamic modeling is inefficient at early stage of compression, since it takes time 
to adapt to the correct model, but highly applicable for compression large volumes of 
data, such as document images. The loss in compression rate caused by the model 
adaptation is known as the learning cost. 

2.3. Context Modeling 

The pixels in an image form geometrical structures with appropriate spatial 
dependencies. The dependencies can be localized to a limited neighborhood, and 
described by a context-based statistical model [LR81]. In this model, the pixel 
probability is conditioned on the context C, which is defined as distinct black-white 
configuration of neighboring pixels within the local template. For binary images, the 
pixel probability is calculated by counting the number of black ( C

Bn ) and white ( C
Wn ) 

pixels appeared in that context in the entire image: 
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Here, C
Bp  and C

Wp  are the corresponding probabilities of the black and white pixels. 

The entropy ( )CH  of a context C is defined as the average entropy of all pixels 
within the context: 

 ( ) C
B

C
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C
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C
W ppppCH 22 loglog ⋅−⋅−=   (2.6) 
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A context with skew probability distribution has smaller entropy and therefore 
smaller information content. The entropy of an N-level context model is the 
weighted sum of the entropies of individual contexts: 
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In principle, a skewed distribution can be obtained through conditioning of larger 
regions by using larger context templates. However, this implies a larger number of 
parameters of the statistical model and, in this way, increases the model cost, which 
could offset the entropy savings. Another consequence is the “context dilution” 
problem occurring when the count statistics are distributed over too many contexts, 
thus affecting the accuracy of the probability estimates. 

2.4. Arithmetic Coding 

Arithmetic coding is a statistical compression method that assigns one long code to 
the entire input stream, instead of assigning codes to the individual symbols [RL79, 
WNC87]. It is an optimal coding method for a given probability model, because it 
can achieve a bit-rate approximately equal to the entropy value.  

The basic idea of arithmetic coding is to represent the entire input data as a small 
sub-interval in range [0,1). The coding process starts by dividing the interval [0,1) 
into two sub-intervals according to the probability distribution of the black and white 
pixels. Depending on the pixel color, the upper or lower sub-interval is chosen, and 
the process is repeated for the next symbols, resulting in smaller and smaller 
intervals. The final interval describes the source uniquely. The length of this interval, 
L, is the cumulative product of the probabilities of the coded symbols: 

 ∏
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and it can be coded by the following number of bits: 
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The implementation aspects of the binary arithmetic coding follow [Sal97]. The 
encoding process starts by defining two variables, Low and High, in order to 
describe the coding interval. The Low is initialized to 0, and High to an infinite 
fraction .999…, since it has to be interpreted as a fraction less than 1. Usually, Low 
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and High are represented as integer (binary) variables holding the most significant 
part of the real numbers. After the pixel has been coded, the interval is reduced by a 
factor that equals the pixel probability, and Low and High are updated accordingly. 
Very soon the interval becomes too small to be expressed by the two variables, and 
the interval scaling procedure is therefore applied. When the interval falls below or 
above the half point, the codeword is known to start with the bit 0 or 1, respectively. 
In both cases, the starting bit can be shifted out of the interval variables and output to 
the compressed stream, and the interval is rescaled, see Figure 2-2. 
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Figure 2-2. Example of half point scaling [RL79]. 

Underflow can occur when the size of the interval becomes too small, but the 
interval still covers the half point. To solve this problem, quarter point scaling is 
applied, see Figure 2-3. In this case, neither bit is output. Later, when the half point 
scaling occurs, an appropriate bit will be added to the code stream, see [RL79] for 
details. 
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Figure 2-3. Example of quartet point scaling [RL79]. 
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2.5. QM-coder 

The QM-coder is the arithmetic coder used in JBIG1 [PMLA88, PM93]. It is an 
approximate implementation of arithmetic coding tailored for binary data. Its 
sub-optimality is compensated by the sophisticated automaton-based probability 
estimation (see Section 2.6), providing fast adaptation to the source data.  

The QM-coder uses the following variables to describe the interval: interval base 
and interval size. If the encoded pixel value (color) is the one with higher 
probability, it is denoted as most probable symbol (MPS), when the opposite value is 
denoted as the least probable symbol (LPS). The interval is always divided so that 
the LPS sub-interval is above and MPS sub-interval is below as shown in Figure 2-4. 
Here C is the interval base, A is the interval size, and Qe is the LPS probability 
estimate [PMLA88]. 

A+C

C

MPS

LPS AQe

C+A-AQe

A(1-Qe)

 

Figure 2-4. Interval subdivision of the QM-coder. 

Altering the interval size involves multiplication. The QM-coder accepts the 
element of approximation by replacing the interval multiplication by suitable scaling. 
It assumes that the interval size is roughly constant and equals to 1. In this case, the 
coding of a pixel changes the interval as follows. 

After MPS: 

 ( ) QeAQeAAQeAA
C

−≈⋅−=−⋅← 1
unchanged is 

 (2.10) 

After LPS: 
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The interval size is maintained between 0.75 and 1.5, centered on 1. When the 
interval size falls below lower bound, the interval is renormalized by a series of 
consecutive duplications performed by bit-shifting operations. The renormalization 
occurs always after the LPS, and if necessary, after the MPS is encountered. At each 
renormalization, the encoder generates output bits (0 or 1) regarding to MPS or LPS 
and number of duplications in the renormalization process. 

2.6. Automaton-based Probability Estimation   

Probability estimation can be derived from arithmetic coder renormalization, as in 
the QM-coder [PM88]. Instead of maintaining pixel counts, the estimation process is 
implemented as a state automaton consisting of 226 states. Each context has its own 
8-bit pointer to the automaton, where one bit indicates the color of MPS. The 
automaton has mirror symmetry about the change in the sense of MPS color, and we 
therefore consider only 113 states, see Figure 2-5. The automaton is a Markov-chain 
containing one state for each probability estimate. The states are organized in rows 
that are ordered by the level of adaptation. The states in the upper rows are more 
sparsely distributed throughout the probability range and therefore they allow faster 
adaptation. 

The adaptation process starts from the zero-state. In each state, the automaton 
can perform a transition to two other states, see Figure 2-5. After each MPS 
renormalization, a transition is made to the next state situated to the right in the same 
row, having a smaller LPS probability. After each LPS renormalization, a transition 
is made to the state with a larger LPS probability, which is the appropriate state in 
the row at the next level in the case of the transient state, or to the preceding state in 
the same row in the case of non-transient states. Transient states are, therefore, 
visited only during the learning stage, and the pointers stabilize eventually to the 
non-transient states. If the statistics change later, the non-transient states can be re-
entered from other non-transient states, making local adaptation possible. 
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Figure 2-5. Spatial organization of the QM-coder state automaton and transition sketch for the 
fast-attack states. Because of the mirror symmetry regarding the change in sense of MPS, only 
half of the states are depicted. 

2.7. Forward-adaptive Modeling 

In [AF99a] we proposed the forward-adaptive variant of statistical context-based 
modeling for the QM-coding algorithm. The technique is a two-stage combination of 
forward-adaptive and backward-adaptive strategies. Statistics are first collected 
globally over the image (as in the semi-adaptive approach) to construct a better 
initial model. The model is stored in the compressed file. In the second stage, the 
image is coded using QM-coder and initializing the statistics according to the 
constructed model. 

The initial model serves to enable faster adaptation and helps to alleviate the 
coding inefficiency caused by learning cost, which is typical when coding small 
portions of data. This can be very useful if the coding must be restarted periodically 
(see Chapter 6). The forward-adaptive method can be implemented with minor 
modifications to the existing software implementations of the QM-coder. This 
scheme requires two passes over the image even though the decompression can be 
performed with one pass only.  

The implementation of the method is outlined in Figure 2-6. The input image is 
first analyzed and the probability distribution of black and white pixels is calculated 
for each context. The calculated probabilities are mapped to the 26 fast-attack states 
in the state automaton using a look-up table. The fast-attack states (first row of state 
in Figure 2-5) can represent all probabilities with sufficient accuracy, allow faster 
adaptation than from the zero-state, or re-adaptation from non-transient states. The 
choice of the fast-attack state can be coded by five bits each. The LPS probabilities 
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of the fast-attack states are shown in Table 2-1. The result of the mapping is the 
model table formed by the five-bit indices. 

Figure 2-7 shows the changes in the QM-coder caused by the forward-adaptive 
modeling. The probability mapping is implemented using the 
GetFastAttackStateIndex function. The state index is found by a sequential search 
implemented in the FindFastAttackState function. The QM-coder is initialized using 
RestoreState function. It takes the context number (context) and the state index 
(index) as input and accordingly restores the fields (mps and cstate) for the 
appropriate context in the QM-coder. 

 

 

// MODELING STAGE  

for (each pixel x of t in raster scan order)  // gather statistics 
{ 

c = GetContext (x);  // determine pixel’s context c 
n_total[c] ++;  // update statistics of context c 
if (x == white) n_whites[c] ++ ; 

} 

for (i = 0, i < NumberOfContexts, i ++) // construct and store the model 
{ 

index[i] = GetFastAttackStateIndex (n_whites[i] / n_total[i]); 
StoreModelIndexIntoFile (index[i]); 

} 

// CODING STAGE 

for (i = 0, i < NumberOfContexts, i ++) // initialize the QM-coder 
RestoreState(i, index[i]); 

for (each pixel x of t in raster scan order)  // compress the cluster t 
{ 

c = GetContext (x);  // determine pixel’s context c 
EncodePixelByQM (x, c);  // encode pixel x by QM-coder 

} 

Figure 2-6. FA-M algorithm. 

Table 2-1: LPS probabilities of the fast-attack states. 

State: 0 1 2 3 4 5 6 
pLPS: 0.49690 0.20691 0.09417 0.04435 0.02120 0.01021 0.00493 
State: 7 8 9 10 11 12 13 
pLPS: 0.00239 0.00116 0.00056 0.00028 0.00013 0.00006 0.00002 
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float FastAttackStateBounds [13] = { 
.30891, .14590, .06891, .03255, .01537, .00726, .00343, 
.00162, .00076, .00036, .00017, .00008, .00004 }; 

int FindFastAttackState (float Prob) 
{ 

int i; 
for (int i = 0; i < 13; i ++) 

if ( Prob > FastAttackStateBounds [i] )  return (i); 
return (13); 

} 

int GetFastAttackStateIndex (float WhiteProb) 
{ 

float LpsProb; 
int index; 
if (WhiteProb < 0.5)  LpsProb = WhiteProb; 
else LpsProb = 1 - WhiteProb; 
index = WhiteProb < 0.5 ? 0x00 : 0x10; 
index = index | FindFastAttackState (LpsProb); 
return (index); 

} 

void RestoreState (int context, int index) 
{ 

mps[context] = (index & 0x10) ? 0 : 1; 
cstate[context] = (index & 0x0f); 

} 
 

Figure 2-7. Extensions for the QM-coder. 

2.8. JBIG1 

JBIG1 is an International Standard for compression of bi-level images in 
communications [JBIG1]. The standard defines two methods for bi-level 
compression, progressive and sequential. In sequential coding, the image is coded in 
raster scan order using a context-based probability model and adaptive arithmetic 
coder (QM-coder), see Figure 2-8. The probability distribution of the black and 
white pixels is conditioned on the context, which is defined by the combination of 
already coded neighboring pixels. A three-line ten-pixel template is used by default, 
see Figure 2-9. Both encoder and decoder estimate the model dynamically during the 
compression. The estimation starts from scratch and adapts the model to the input 
data. The probability estimation in the QM-coder is derived from the arithmetic 
coder renormalization and is based on the Bayesian estimation concept [PM88]. 
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Figure 2-8. Block diagram of JBIG1. 
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Figure 2-9. Default ten-pixel three-line context template of JBIG1. 

JBIG1 has also progressive mode, in which the encoded image is stored in 
several resolutions. A reduced resolution version of the image, which is usually not 
larger than 640×480 pixels, is compressed first. It is followed by the layers with 
progressively increasing resolutions so that each successive layer has twice the 
number of horizontal and vertical pixels than the previous layer. Pixels from the 
previous resolution layer are added to the context template to improve the 
compression performance. A drawback of the progressive mode is the redundancy 
that it adds to the code stream. The redundancy amounts to 15-25 % according to our 
experiments, see Figure 2-10. JBIG1 can also compress gray-scale images can be 
compressed using the binary representation of gray-level values or the Gray-code 
words [WRA96, JKW98]. 
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Figure 2-10. Compression rates of JBIG1 in sequential and progressive mode for the CCITT 
test set (see Appendix A). 

JBIG1 separates an image into several horizontal stripes, resolution layers and 
planes, were each plane contains one bit per pixel. The resolution layers are stored 
all in a single bi-level image entity (BIE) file or they can be stored in several separate 
BIE files. Separate bitmap planes are stored in a multi-bitplane BIE. One single 
stripe in one plane and layer is encoded as a data unit called stripe data entity (SDE) 
inside the BIE. There are 12 different possible orders in which the SDEs can be 
stored inside the BIE. This order is only relevant for applications, in which we want 
to decode a JBIG1 file, which has not yet completely arrived from e.g. a slow 
network connection. For instance, some applications prefer that the outermost of the 
three loops (stripes, layers, planes) is over all layers so that all data of the lowest 
resolution layer are transmitted first. 

Resolution reduction in JBIG 

Here we briefly recall the principles of the JBIG resolution reduction algorithm 
[JBIG1], which we will consider for generating the thumbnail images in our storage 
system described in Chapter 6. A series of images with decreasing resolutions is 
generated from the original image prior to compression. The process continues until 
size of the final, lowest resolution image becomes smaller than a predefined size. At 
each iteration, the input image is processed in the raster-scan order, and the value of 
each target pixel is calculated as a linear function of the preceding neighboring 
pixels from the high-resolution (input) and low-resolution (target) images. The 
already-committed pixels at the low-resolution image participate in the sum with 
negative weights that offset the corresponding positive weights. 



2. Statistical Image Compression 29 

 

 Specifically:  

 
( ) ( ) ( )

( ) ( ) ( )011301121031

1021001133322322

2
224

yxyxyx
yxyxxxxxL

−+−+−+
+−+−++++=

 (2.12) 

Or equally: 

 ( ) ( ) ( ) 001001323113113223211222 324 yyyxxxxxxxxxL −+−++++++++= . (2.13) 

If black and white pixels are equally likely and the pixels are statistically 
independent, the expected value of the target 33y  pixel is 4.5. A pixel is therefore 

chosen to be black if the value is 5 or more, and white if it is 4 or less. 

The method preserves the overall grayness of the image. However, problems 
occur with lines and edges because these deteriorate very rapidly. To address this 
problem, a number of exception patterns have been defined to reverse the polarity of 
the target pixel after the thresholding of the weighted sum (2.13). An example of 
such an exception pattern is show in Figure 2-11. 
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Resulting pixel  

weights: 
Example of 

 exception pattern 
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x31 x32 x33
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000
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1 1 1
0  1

 
 

Figure 2-11. Resolution reduction in JBIG: participating pixels (left); pixel weights (center);  
an example of exception pattern (right). 
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3. CONTEXT MODELING 

Binary images form a favorable source for context-based image compression 
because of the strong correlation between their neighboring pixels [LR81, 
TWMG93]. In context modeling, the pixel probabilities are conditioned on the 
context, which is defined by the combination of pixel color values within the local 
template. 

3.1. Fixed Size Context Template 

By default, JBIG1 uses the 10-pixel context template shown in Figure 3-1. This is 
referred to here as JBIG10. With a 10-pixel template there are 210 = 1024 different 
contexts in total. Despite the high number of contexts, only a small fraction of them 
is really important. For example, in the case of the CCITT-5 test image, 50 % of the 
code bits originate from only nine most common contexts. These most important 
contexts and their statistics are shown Figure 3-2. Furthermore, 99 % of the code bits 
originate from 183 contexts, and 429 out of the 1024 contexts are never used at all. 

The context size is a trade-off between the prediction accuracy and learning cost 
(in dynamic modeling) or model overhead (in semi-adaptive modeling). A larger 
template size gives us a theoretically better pixel prediction. This results in a skewer 
probability distribution and lower bit-rates. However, with a large template the 
adaptation to the image statistics takes longer, which increases the coding deficiency 
in the early stage of compression, which is known as the learning cost [PM93]. The 
number of contexts grows as an exponential function of the template size, and the 
learning cost outweighs the benefit in compression for templates larger than 14 
pixels, according to Moffat [Mof91]. In our experiments with different set of images, 
we have obtained higher compression rates for templates up to 18 pixels, but have 
noticed only marginal improvement for those templates greater than 14 pixels (see 
Figure 3-3). Moffat, on the other hand, has demonstrated the potential of even larger 
context templates up to 22 pixels. He has proposed two-level context modeling, 
using context templates of two sizes. The larger templates are used only when 
adaptation has been performed. 
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Figure 3-1. The default three-line context template of the sequential JBIG1 with default 
position of adaptive pixel (left), and 22-pixel ordered neighborhood used to determine an 
optimal context size (right). 
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Figure 3-2. The most important contexts of JBIG1 in the case of CCITT-5 image at 200 dpi, 
according to [AF98]. 
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Figure 3-3. Compression performance as the function of context size (for CCITT images) 
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3.2. Variable Size Context Model 

In variable-size context modeling, the number of context pixels depends on the 
combination of the neighboring pixel values. The context selection is made by 
traversing the context tree (CT) instead of checking a fixed size template [Ris83, 
Ris86]. Each node in the tree represents a single context, and the two children of a 
context correspond to the parent context augmented by one more pixel. The position 
of this pixel can be fixed in a predefined order, as shown in Figure 3-4, or optimized 
within a limited search area relative to the compressed pixel position [MF98]. We 
refer to the later case as a free tree. Only the leaves of the tree are used in the 
compression. An example of a context tree is shown in Figure 3-5. 

3.2.1. Splitting Criterion 

To construct a context tree, the image is processed and the statistics C
Wn  and C

Bn  are 

calculated for every context in the full tree, including the internal nodes. The tree is 
then pruned by comparing the children and parents nodes at each level. If 
compression gain is not achieved from using the children nodes instead of their 
parent node, the children are removed from the tree and their parent will become a 
leaf node. The compression gain is calculated as: 

 ( ) ( ) ( ) ( ) SplitCostClClClCCCGain BWBW −−−=,, , (3.1) 

where C is the parent context and CW and CB are the two children nodes. The code 
length l denotes the total number of output bits from the pixels coded using the 
context. The cost of storing the tree is integrated into the SplitCost parameter.  

The code length can be calculated by summing up the entropy estimates of the 
pixels as they occur in the image: 

 ( ) ( )∑=
t

t CpCl log
 

 (3.2) 

The probability of the pixel is calculated on the basis of the observed frequencies 
using a Bayesian sequential estimator: 
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Figure 3-4.The 22-pixel ordered neighborhood used for the context tree (shown right). The first 
10 pixels in the neighborhood constitute the default JBIG1 template (shown left). The template 
form and the pixel order in this example are optimized for topographic images [AF00b]. 
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Figure 3-5. Illustration of a context tree. In practice, the context trees are much larger. But even 
this example can deliver significant compression performance. 
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where t
Wn , t

Bn  are the time-dependent frequencies, and t
Wp  , t

Bp  are the probabilities 

for white and black colors respectively, and δ = 0.45, as in [JBIG1]. 

The code length can be efficiently calculated as the Bernoulli code length from 
only the final counts n0 and n1by using a fast approximate method as in [MF98]. 
However, if the tree is constructed off-line, we can accumulate the code length 
directly in the training phase by summing up the observed entropy estimates of (3.2). 

3.2.2. Static and Semi-adaptive Alternatives 

There are two alternative approaches for generating a context tree. In the semi-
adaptive approach, the tree is optimized directly for the image that is be compressed.  
An additional pass (or passes) over the image will be required. The cost of storing 
the tree structure is one bit per node (‘1’ for indicating a divided node, and ‘0’ for 
indicating a leaf node). This takes approximately 2 bits per context because the 
number of nodes in the three is twice the number of contexts (leaf nodes) minus one. 
For a free tree, the position of the next context pixel must also be stored. It can be 
represented as an index within the search area, and stored with 

( ) sizewindow _log  bits. The disadvantage of the semi-adaptive approach is that the 
on-line construction of the tree makes the compression an order of magnitude slower 
than JBIG1. 

Another approach proposed in [FA99] uses a static tree, which is optimized on a 
training image [FA99]. This is possible because of the similarity of the trees with 
images of a similar type. The main problem of the static approach is to control the 
growth of the tree. There is no overhead from storing the tree and, therefore, we 
must add a progressively weighted constant to the SplitCost in order to prevent the 
tree from growing greedily. 
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3.3. Top-down Tree Construction 

According to the direction of the pruning operation, the tree construction is classified 
either as top-down or bottom-up. In the top-down approach, the tree is constructed 
stepwise by expanding it one level at a time, starting from a predefined minimum 
level kMIN. The process starts by constructing the models for all contexts at the level 
kMIN. The contexts on the next level are tentatively constructed, compared to their 
parent contexts, and pruned. The process continues until a predefined maximum 
level kMAX has been reached, or when no new nodes were created during the process 
of a single level. The top-down construction algorithm is outlined in Figure 3-6. 

Another top-down approach is known as the free tree [MF98]. In this, the 
position of the next context pixel is not fixed during construction but it is determined 
adaptively. When a new level is constructed, all possible positions for the next 
context pixel are analyzed within a predefined search area. The position that results 
in maximal compression gain is chosen for each context separately. A drawback of 
this approach is that the position of the new context pixel must also be stored in the 
compressed file. The computational complexity of the free tree algorithm is an order 
of magnitude greater and it grows with a factor of the search area size. 

 

ConstructContextTree (int kMIN, int kMAX) 

CONTEXTTREE CT; 
k ← kMIN; 
CT ← GenerateTreeStructure (k); 
CollectStatistics (CT, k); 
repeat 

k ← k + 1; 
ConstructLevel(CT, k); 
CollectStatistics(CT, k); 
PruneLevel(CT, k); 

until (k = kMAX or no new nodes were created); 
return (CT); 

Figure 3-6. Algorithm for top-down construction of the tree. 
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3.3.1. Delayed pruning 

It may appear that a context delivers negative gain at some step of the iteration and it 
will not be expanded further, even though the expansion can deliver positive gain 
later. For example, let us consider the tree of Figure 3-7. The inclusion of the 
seventh pixel in the context only has a marginal effect on the model; the entropy 
values of all-white contexts at the first two levels shown in Figure 3-7 are practically 
equal. Therefore, the gain is overwhelmed by the learning cost because the third 
context pixel does not reduce the frequency of black pixels in the all-white context. 
The inclusion of the eighth pixel, on the other hand, provides a remarkable 
compression gain. 

In [FA99] we have proposed delayed pruning technique to alleviate the locality 
problem. The tree expansion is not terminated directly after negative gain has been 
observed. Instead, the expansion is allowed to continue one level further. If neither 
of the children nodes produce an improvement in the case of a further split, the 
expansion is terminated and the children are actually removed from the tree. Delayed 
pruning is not applied in the case of deterministic contexts (when either of the 

counters tn1  or tn0  equals zero) because, in this case, a further improvement is 
impossible. 
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Figure 3-7. The locality problem of the splitting. The first split delivers negative gain 
(-1.2 bits), though the second split provides remarkable gain of (+153.5 bits). 
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3.4. Bottom-up Tree Construction 

In the bottom-up approach, the tree is analyzed from the leaves to the root [AF00b]. 
A full tree of kMAX levels is first constructed by calculating statistics for all contexts 
in the tree. The tree is then recursively pruned up to level kMIN, using the same 
criterion as in the top-down approach. The gain is calculated using the equation (3.1) 
and code length ( )Cl  using (3.2). The code lengths from the children contexts ( )WCl  

and ( )BCl  are derived from the previous level of the recursion. The sub-trees of the 
nodes that do not deliver positive compression gain are removed from the tree. 
A sketch of the implementation is shown in Figure 3-8 and the algorithm is 
illustrated in Figure 3-9. 

 

PruneTree (CONTEXTTREE CT, int level) 

 if (level = kMAX)  // we have reached the end of tree 
  return (CodeLength (CT )); 
 else  // process the sub-trees recursively 
  CLw ← PruneTree (CT WhiteChild, level+1); 
  CLb ← PruneTree (CT BlackChild, level+1); 
   if (level ≤ kMIN)  // out of pruning range 
   return (0); 
  else  // check the node for pruning 
   CL ← CodeLength (CT); 
   Gain ← CL – CLw – CLb – SplitCost ; 
   if (Gain > 0)  // split node 
    return (CLw + CLb + SplitCost); 
   else  // prune node 
    RemoveTree (CT WhiteChild); 
    RemoveTree (CT BlackChild); 
    return (CL); 

Figure 3-8. Recursive bottom-up tree pruning algorithm 
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Figure 3-9. Illustration of bottom-up tree pruning 

The bottom-up approach can be implemented using only one pass over the whole 
image. Unfortunately, high kMAX values will result in huge memory consumption. 
For this reason, a two-stage bottom-up pruning procedure was proposed in [AF00b]. 
In the first stage, the tree is constructed from the root to level kSTART and then 
recursively pruned until level kMIN. In the second stage, the remaining leaf nodes at 
the level kSTART are expanded up to level kMAX and then pruned until level kSTART. In 
this way, the memory consumption depends mainly on the choice of the kSTART 
because only a small proportion of the nodes at that level remains after the first 
pruning stage. The starting level kSTART is chosen as large as the memory resources 
permit. 

3.5. Combination of Variable-size Context Modeling 
 and Forward-adaptive Statistical Modeling 

In forward-adaptive statistical modeling, the context size is a trade-off between the 
prediction accuracy and the overhead of the model. A larger context template results 
in a more accurate probability model, but the overhead grows exponentially with the 
size of the template. A proper choice of the context model is, therefore, even more 
important in forward-adaptive modeling than in dynamic modeling. 
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The variable-size context modeling can be efficiently combined with the 
forward-adaptive statistical modeling, as proposed in [AF00b]. In this technique 
(CT-FAM), the forward-adaptive model construction remains the same as in 
Section 2.7. The difference is that the context selection is made using a context tree. 
We apply this technique to the compression of small blocks of data (see Chapter 6 
for details). We assume that if blocks are small enough, the fast attack states make an 
adequate approximation of the probability distribution of the pixels within the block. 
Therefore, we use the following equation to estimate the code length of a context in 
the splitting criterion of the context tree (3.1): 

 ( ) 







+

+







+

⋅= C
B

C
W

C
BC

BC
B

C
W

C
WC

W nn
nn

nn
nnCl loglog . (3.4) 

In this way, the calculation of the code length is significantly faster than if the 
cumulative equation (3.2) had been used. It makes possible to construct the context 
tree on-line during compression. We also add the cost of storing the statistical model 
to the SplitCost parameter, providing the optimal tradeoff between compression 
improvement and overhead. The SplitCost is composed of the model cost (5 bits per 
context) and the cost of storing the tree structure (2 bits per context). 

3.6. Analysis 

We evaluate three different approaches (top-down, free tree and bottom-up) for 
building a context tree, see Table 3-1. In the comparison, we use the NLS test image 
Basic0 (see Appendix E). For the free tree approach, the size of the search template is 
40. The split cost is composed from the cost of storing the tree and the model (7 bits 
per context for context tree, and 12 bits for the free tree). The compression ratios are 
given for the CT-FAM method (see Section 3.5) when applied to a typical NLS 
binary map. The respective compression ratio of JBIG1 is 8.74, and the compression 
time is 1min 30s. We observe that the bottom-up tree construction is faster than the 
top-down approach but it requires more memory. For the bottom-up approach, the 
memory load grows exponentially with the size of the initial tree (kSTART) but results 
in a larger tree and higher compression performance. 
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Table 3-1: A comparison of the tree-building strategies using Basic0 NLS test image. The 
numbers in parenthesis are: (kMIN, kMAX) and (kMIN, kSTART, kMAX) for 2-stage bottom-up pruning. 

 Top-down Free tree Bottom-up 
 (6,22) (10,22) (2,22) (2,18) (2,22) (2,18,22) 
Contexts in the tree 1366 2373 2041 5596 8209 6527 
Tree file size (bytes) 341 591 1786 1400 2053 1632 
Passes over image 16 12 20 1 1 2 
Creation time 30m 20s 26m 58s 1h 58m 33s 3m 8s 4m 56s 6m 31s 
Memory load (bytes) 26K 51K  1M 8.5M 136M 8.5M 
Compression ratio 10.04 10.40 11.30 11.14 11.65 11.44 

 

The top-down construction of the tree can be performed with a small memory 
load (50 Kbytes) but it is very time consuming and, therefore, inapplicable for on-
line compression. Another problem is that the expansion of some branches may stop 
too early because of the locality of the splitting criterion. The bottom-up method 
does not have this problem.  

The free tree method does not give a significant improvement over the top-down 
approach with a fixed split pixel. The reasons for this are the high split cost, early 
termination of the tree expansion, and a limited search template (40 pixels). 
A delayed pruning technique and a significantly larger search template (about 
500 pixels) could be applied to improve these results. However, it would cause 
a significant increase in memory consumption and running time, and is, therefore, 
not investigated here.  

Bottom-up pruning requires only one or two passes over the image and gives 
better compression performance. The one-stage variant with kMAX = 22 has the 
highest compression performance but the two-stage variant requires much less 
memory (8.5 Mbytes vs. 136 Mbytes). In the first stage, the tree is pruned from level 
18 to 2. During this stage, 525,252 nodes are analyzed in total, and the number of 
leaf nodes is reduced from 256,548 to 5,596. Only 1,305 of these belong to the 18-th 
level. In the second stage, these nodes are expanded down to the 22-th level. In total, 
20,880 nodes were analyzed and 2,236 new leaf nodes were created. Thus, most of 
the nodes are analyzed and pruned during the first stage. 
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4. GLOBAL MODELING 

We define here the concept of global modeling as a process where the modeling is 
based on such global semantic information of an image, as could not be utilized by 
local context-based modeling. The extracted semantic features depend on the image 
type. They may be useful for better modeling, as well as in various applications 
containing image analyzing and understanding procedures, such as image 
segmentation, indexing, OCR and RVC [Kas90, KOG92]. 

An example of global modeling is JBIG2 [How+98, JBIG2]. It will include 
pattern matching techniques, used for extraction of common symbols from the 
image, and utilize this information in improved image compression. Our aim is to 
develop global modeling techniques that are appropriate for line-drawing images, 
which consist mostly of straight-line segments. We study two approaches of this type 
in Sections 4.2 and 4.3. 

4.1. Pattern matching for text images and JBIG2 

A text image contains many repeated symbols. Therefore, instead of coding all the 
pixels of every symbol occurrence, it is possible to code only the bitmap of one 
representative instance of the symbol. There are two encoding methods used in 
JBIG2: pattern matching and substitution (PM&S) and soft pattern matching (SPM).  

The pattern matching and substitution method works as follows [AN74, 
WMB94]. The image is segmented into pixel blocks containing connected black 
pixels. These blocks are sequentially matched against representative symbol bitmaps 
from the adaptively constructed dictionary. If an acceptable match is found, the 
pointer to the corresponding bitmap in the dictionary and the position of the 
character on the page are encoded. If there is no acceptable match, the bitmap of the 
current pixel block is encoded using standard bitmap encoding techniques such as 
MMR or JBIG1, and added to the dictionary. The method allows high lossy 
compression levels, but results in infrequent but inevitable substitution errors. For 
cases where such errors are unacceptable, the residue coding, that is the refinement 
coding of lossy image back to the lossless original, or the SPM technique can be 
used. 
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The soft pattern matching differs from PM&S in that, in addition to a pointer to 
the dictionary and position information, it includes refinement data that can be used 
to recreate the original symbol, providing for lossless compression [How97]. The 
SPM method is illustrated in Figure 4-1. The only difference to PM&S (shown in 
italics in the figure) is that lossy direct substitution of the matched symbol is 
replaced by a lossless encoding that uses the matched character in the coding 
context. The refinement coding process is similar to the bitmap coding, with the 
difference that the two-layer context template is used. The template is shown in 
Figure 4-2. It consists of a combination of four neighboring pixels from the input 
block, and seven from the bitmap of the matching dictionary symbol. 
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Encode index of
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END

Conditionally add
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dictionary

Encode position of
the block as offset

Encode original
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context template
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Figure 4-1. Block diagram of the soft pattern matching algorithm used in JBIG2 [How+98]. 
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Figure 4-2. Two-layer context template for coding the pixel blocks [JBIG2]. 

The JBIG2 standard mainly defines the general file structure and the decoding 
procedure, but leaves some freedom in the design of the encoder. In effect, the 
decoder is guaranteed to be lossless in respect of the coded image data. However, the 
original image may be modified by the encoder during a preprocessing phase to 
increase coding efficiency. For example, some loss can be introduced by eliminating 
small pixel blocks that represent noise. This will improve compression efficiency 
while still maintaining a low probability of substitution errors [MF99]. If conditions 
permit, the symbol dictionary can be constructed and optimized off-line before the 
actual compression, so that the dictionary symbols are averaged among similar 
matching symbols, and infrequent symbols are pruned from the dictionary. 

4.2. Feature Extraction using Hough Transform 

The following two techniques are used for extraction of linear features from line 
drawing images. The first one uses Hough transform and is summarized in Figure 
4-3. The motivation is to find rigid straight lines in the image. The extracted line 
segments are represented by their end-points and encoded into the feature file.  

4.2.1. Hough Transform 

Suppose that we have an image consisting of several samples of a straight line. 
Hough [Hou62] proposed a method (commonly referred to as Hough transform) for 
finding the line (or lines) among these samples. Considering a point (xi, yi), there is 
an infinite number of lines passing through it. However, they all can be described as 

 bxay ii +⋅= . (4.1) 
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Figure 4-3. Block diagram of the feature extraction process. 

It means that all the lines passing (xi, yi) defined by two parameters (a, b) can be 
expressed as 

 b x a yi i= − ⋅ + . (4.2) 

The Hough transform is a process where each pixel sample (x, y) in the original 
pixel space is transformed to a curve in the parameter space, representing all-
possible lines passing this pixel. If there is evidence of line presence in the image, 
which means that the pixel samples are located along the line, the Hough curves will 
intersect at the same point (a', b'), providing the parameter value for the line in 
question, as shown in Figure 4-4. 
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Figure 4-4. Hough transform: pixel xy-space (left), and parameter ab-space (right). 
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To implement the Hough transform, the parameter space is represented as a k × k 
accumulator array where k can be tuned according to the image size, see Figure 4-5. 
In each cell of the matrix, there is a counter of how many parametric curves are 
crossing that point. Each curve increases the counter of the cells located along its 
way. The lines are extracted from those positions of the array, for which the score 
exceeds a predefined threshold parameter. 
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Figure 4-5. Small example of Hough transform. 

A problem in this implementation is that both the slope (a) and intercept (b) 
approach infinity as the line approaches the vertical. One way around this difficulty 
is to use the normal representation of a line: 

 ρθθ =⋅+⋅ sincos yx , (4.3) 

were ρ represents the shortest distance between origin and the line, and θ  represents 
the angle of the shortest path in respect to the x-axis. Their corresponding ranges are 
ρ ∈ [0, 2D], and [ ]°°−∈ 90,90θ , where D is the distance between corners of the 
image [Lea93].  

A drawback of the method is its high complexity. A straightforward 
implementation of HT requires ( )knO  time, where n is the image size and k × k is the 
size of the accumulator matrix. The method is therefore suitable for off-line 
applications, such as image archival. HT can also be made faster using the 
randomized Hough transform (RHT) as in [KHXO95]. Here, instead of processing 
individual pixels, the image is randomly sampled by selecting pairs of pixel. Each 
pair determines only one value in the parameter space. The sampling is repeated 
until an evident maximum is emphasized in the parameter space. RHT reduces the 
size of the parameter array and decreases the computation time since only a part of 
the pixels, possibly a small part is need to be transferred into the array. 
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4.2.2. End-point Detection 

The Hough transform is capable to determine the location of a line as a linear 
function but it cannot resolve the end-points of the line. In fact, HT does not even 
guarantee that there exists any finite length line in the image but it only indicates that 
the pixels (x, y) along bxay +⋅=  may represent a line. The existence of a line 
segment must therefore be verified. The verification is performed by scanning the 
pixels along the line and checking whether they meet certain criteria. We use the 
scanning width, the minimum number of pixels, and the maximum gap between 
pixels in a line as the selection criteria. If predefined threshold values are met, a line 
segment is detected and its end-points are stored for later use. The features extracted 
with different parameter setup are shown in the Figure 4-6. 

 

number of segments: 117 line segments 289 line segments 752 line segments
min segment length: 150 70 30
max segment width: 1 1 1
max length of a gap: 2 2 3

accumulator threshold: 20 20 17

Figure 4-6. Example of the feature images that are made using different parameter setup. 

4.3. Raster-to-Vector Conversion 

Raster-to-vector conversion (also known as vectorizing) process is outlined in Figure 
4-7. The motivation is to extract semantic information from the image in the form of 
rigid line segments. Each line segment is represented by two end-points and the 
width of the line. The details of the vectorizing process are described in the 
following. 

4.3.1. Skeleton Construction 

The black-and-white raster image is first processed by a distance transform (DT) 
defined by 4-connectivity. We use the fast and memory efficient implementation of 
[KT95], which processes the image in smaller fragments. This eliminates the need 
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for two passes over the image. The resulting distance labeled image is then thinned 
using the one-pass algorithm of [AB89]. Skeletal pixels are recognized by checking 
the 3 × 3 neighborhood of each pixel. The pixels satisfying one of the so-called 
“multiplicity conditions” are marked as skeletal pixels. The result of the algorithm is 
a width-labeled skeletal image. 

Vector element
extraction

Input Image

Skeletonization

VECTORIZING

Pruning &
analysis

Final vectors elements

Elementary vectors

Skeletal pixels

 

Figure 4-7. Block diagram of the raster-to-vector conversion process. 

4.3.2. Extraction of Vector Elements 

The vector elements are extracted from the skeletal image using a fast and simple 
line-tracing algorithm. The branches of the skeleton are traced pixel-by-pixel from 
one delimiter (line end or crossroad) to another, and stored as chain codes. The 
direction for tracing is derived from a pre-calculated two-dimensional look-up table 
(LUT), as in [KBO96]. The first index for accessing the LUT is the previous 
direction, and the second index is constructed from the 3 × 3 neighboring pixel 
values of the current pixel. The resulting chain code is then processed to produce 
piecewise-linear approximation of the branch with zero error as in [HK83]. The 
width of each line segment is calculated as the average width label of the skeletal 



4. Global Modeling 48 

 

pixels in the segment. The extracted segments of the same branch are stored as a 
chain of vector elements. 

4.3.3. Pruning and Analysis 

The extracted vector chains are further analyzed for constructing larger elements. 
There are four classes of vector chains, each described by the two end-points and the 
width of the line: 

• Single point: (x 1, y1, w1). 
• Single vector: (x1, y1, w1), (x2, y2, w2). 
• Chain of n vectors: {(xk, yk, wk) | k = 1,…, n + 1}. 
• Ring of n vectors: {(xk, yk, wk) | k = 1,…, n + 1} where x1 = xn and y1 = yn. 

Vector elements are combined (pruned) from primitives having a common end-
point and the same orientation. Small gaps between the lines are filled, and false 
branches are removed. The remaining vector chains are then classified as either 
“good” (linear) or “bad” (noise and non-linear). The good chains are stored by their 
coordinate differentials using a variable-length code. 

4.4. Hybrid Raster/Vector Image Representation and Modeling 

In a hybrid raster/vector storage system, both raster and vector representations of the 
images are encoded and stored [Wills99, FA+98a], see Figure 4-8. The raster 
representation provides an exact digitized replica of the original image. The vector 
representation contains semantic information extracted from the image. It benefits 
from vector editing capabilities and is suitable for further image processing and 
semantic analysis [KOG92]. The compressed file consists of the extracted line 
features and the compressed raster image. 
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Figure 4-8. Block diagram of a typical hybrid compression system. 
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Figure 4-9. Block diagram of our hybrid compression system. 
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4.4.1. Raster Representation 

The advantage of raster representation is that images can be easily digitized and 
stored compactly using the latest compression technology. Reproduction of the 
image is easy, and lossless compression guarantees that an exact replica of the 
original image can always be restored. Vector representation, on the other hand, 
allows better editing capabilities and resolution-independent scaling and 
reproduction. Complete raster-to-vector conversion, however, is not a realistic 
solution. The existing conversion systems are of high complexity and cannot reliably 
capture all possible vector features without human interaction. Either the file will be 
filled by a huge number of small vector elements, or some of the undetected 
information will be lost. 

We consider here the storage problem of hybrid raster/vector systems. In an ideal 
situation, all linear features will be stored in vector format while the rest of the data 
remains in raster. In practice, only new data, drawn in CAD systems, will be stored 
in the vector format, while the remainder are kept in raster format because of the 
reasons mentioned above. The question is whether we can utilize the existence of the 
vector features for compressing the raster image more efficiently, see Figure 4-9. 

4.4.2. Vector Representation 

The vector representation may be obtained directly from the Hough transform (see 
Section 4.2) or raster-to-vector conversion (see Sec 4.3). The extracted line segments 
are stored in the form of {(x1,y1), (x2,y2)}, representing the end-points of the lines. A 

single coordinate value takes  log2 n  bits where n is the dimension of the image. 

For example, a line in an image of 4096 × 4096 pixels takes 4 × 12 = 48 bits in total. 
A somewhat more compact representation could be achieved if the line segments are 
sorted according to their first coordinate x1. Instead of storing the absolute value, we 
could store the difference between two subsequent coordinates x1. Most of the 
differences are very small (about 40 % of them are in the range [0, 2]). An 
improvement of about 7 bits (from 12 to 5 bits) was estimated for the case when 
entropy coding was applied to these difference values [FAK99]. 
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4.4.3. Feature Image 

A feature image is an equal size raster approximation of the input image 
reconstructed from the extracted features. It represents the extracted semantic 
information in an easier form for modeling and filtering. The feature image is 
prepared by drawing the respective width (one-pixel if using HT) straight lines 
between the end-points of the line features. The Hough transform does not determine 
the width of the lines, and wide lines are represented by a bunch of collinear line 
segments, see Figure 4-10. The line segments may also deviate from their original 
direction and/or have one-pixel positional errors because of the quantization of the 
accumulation matrix. Therefore we do not utilize the feature image directly but 
process it first by subsequent operations of morphological dilation and closing 
[Hei94]. These operations make the lines one pixel thicker in all directions (dilation) 
and fill gaps between the line segments (closing). We apply a symmetric 3 × 3 
structure element (Block) for the dilation, and a 3 × 3 cross structure element (Cross) 
for the closing, see Figure 4-11. The cross element is chosen to minimize the 
distortion in line intersections caused by closing. 

 

Original HT-image Feature image 

  

Figure 4-10. Illustration of the feature image for an image sample of size 50×50 pixels. 

x

Element CrossElement Block

x

x Origin  

Figure 4-11. Structural elements Block and Cross. 
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4.4.4. Hybrid Modeling 

Although the raster and vector data could be stored independently, the vector 
representation (feature image) can be used to improve compression of the raster 
image, see Figure 4-9. There are two basic approaches for utilizing the feature 
image: (1) lossless compression of the residual between the original and the feature 
image; (2) compression of the original image using the feature image as extra 
information. The first approach does not work in practice, because taking the residue 
destroys spatial dependencies near the borders of the extracted line features. The 
residual image is therefore not any easier to compress than the original one 
[WMB94]. On the other hand, the effectiveness of the second approach has been 
shown for textual images in [How97].  

In [FAKK98a] we propose a new hybrid modeling method, in which the context 
is determined by combining the neighboring pixel values taken from both the input 
and feature images. We use 10 pixels from the original image to substitute into the 
three-line standard JBIG1 template, and five pixels from the feature image, see 
Figure 4-12. An important point is that in the feature image we can utilize even pixel 
locations that have not yet been processed, because the line features are already 
stored in the compressed file and are similarly available to the decoder. 

?

Feature imageOriginal image

Context pixel

? Pixel to be coded

 

Reconstructed image

?

Original image

 

Figure 4-12. Illustration of the two-level context template.  
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A summary of experimental results for the hybrid compression of the line-images 
from Appendix D is shown in Table 4-1. “Simple RVC” stands for the raster-to-
vector conversion as it has been explained above, whereas the “professional RVC” 
denotes the results obtained using one of the professional vectorizing systems 
available on the market. In our experiments, an improvement of up to 25 % is 
obtained. For a sample image from Figure 4-6, the amount of the raster and vector 
data in the compressed file is shown in Figure 4-13. The improvement is greater 
when more line segments are extracted. The amount of saving, however, is rather 
small and in all cases too small to compensate for the overhead required by the 
vector file. This is especially visible in the case of the simple raster-to-vector 
conversion; the method produces excessive feature files. The main reason for that is 
that the information of the extracted line features is mainly in all-black 
neighborhoods inside the line segments. These are the pixels that are already 
compressed well by JBIG1, and therefore only small improvements can be achieved. 
On the contrary, most of the information (output bits) originates from the boundaries 
of the objects. These areas are not well predicted by the local modeling of JBIG1, 
and global information is useful, especially if the input image is noisy. This 
emphasizes the importance of the exactness of the feature extraction. The vector 
elements do not provide reduction in the overall file size and their storage can be 
recommended argued only for their usage in hybrid editing and indexing tasks. 

The speed of the methods discussed for Pentium-200 machines is summarized in 
Table 4-2. The HT-based feature extraction dominates the running time in the 
compression phase and makes it an order of magnitude slower. The method is 
therefore suitable only for applications where the compression operation can be 
made off-line. Simple RVC is fast, provides significant savings, but results in 
excessive vector files that cannot be directly used in CAD/CAM applications 
because of their coarse quality. The professional RVC performed on-demand can 
improve the compression of raster data by 1-10 %. Hybrid compression and 
decompression procedures are about 35 % slower than JBIG1 because of the 
additional processing of the vector features. 
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Figure 4-13. The amount of raster and vector data for the hybrid compression method using 
feature files with different level of details. 

Table 4-1. Summary of the storage sizes for different hybrid compression methods (in bytes). 

  Hybrid compression 
 JBIG1 Hough transform Simple RVC Professional RVC 

Image raster vector raster vector raster vector raster 
PLAN 5,098 2,370 4,578 7,932 3,889 8,077 4,556 

HOUSE 15,688 13,398 13,961 26,640 12,109 10,495 14,786 
CHAIR 52,384 16,710 50,140 134,143 38,385 56,695 48,328 

MODULE 7,671 3,468 7,222 10,898 5,816 – – 
PLUS 17,609 5,268 17,132 34,885 13,204 – – 
BOLT 12,966 6,438 11,514 24,711 9,879 – – 

Total (I) 73,170 32,478 68,679 168,715 54,383 75,267 67,670 
Total (I+II) 111,416 47,652 104,547 239,209 83,282 – – 

 

Table 4-2. Speed of different hybrid compression methods, kB/s for Pentium-200. 

 Feature extraction Compression/Decompression 
JBIG1 N/A 196 

HT-hybrid 0.676 149 
SRVC-hybrid 180 149 
PRVC-hybrid human interaction 149 
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5. IMAGE ENHANCEMENT AND NOISE REMOVAL 

The quality of document images may have faded during the document life cycle. 
Noise appears on the images because of such factors as low quality originals (e.g. 
old blue-prints), quantization errors in the digitization process, non-optimal light and 
contrast settings of the copying/scanning process, document transmission errors, 
paper defects, and dirty optical sensor systems. The noise degrades image quality 
and makes further image processing and analysis more difficult. Even though human 
eyes and modern OCR systems can tolerate some level of noise, it still introduces 
unnecessary details that weaken compression performance.  

Noise appears in the images in two forms: additive, as randomly scattered noise 
pixels, and content-dependent, distorting the contours of printed objects (lines, 
characters) by making them ragged, see. Figure 5-1. Image enhancement is aimed at 
eliminating noise degradation and improving image compression performance, while 
still preserving image quality. 

 

Figure 5-1. Illustration of the heavy additive noise (left) and content-dependent noise (right). 
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5.1. Context-based Filtering 

The idea of context-based filtering is to apply statistical context modeling and 
measure the information content of the entire document image to achieve better 
selection of the noise pixels [DA97]. Although context modeling is commonly used 
in image compression, the primary aims of filtering and compression are not the 
same. This implies differences in the choice of the context template and in the way 
the statistics are collected. In compression, only the preceding pixels that are known 
to both the coder and decoder can be utilized in the context template. For filtering 
purposes, however, a directionally limited context template would not be accurate 
enough. As there are no limits for referring pixels in all directions, a symmetric 
filtering template can, therefore, be applied. The round shape of the template ensures 
even filtering in all directions.  

We have chosen the 20-pixel filtering template, see Figure 5-2. It is a well-balanced 
trade-off between filtering performance, and reliability of the statistics. Using a 
larger context template, we could utilize spatial dependencies from a wider area, and 
in this way construct an even better statistical model. The number of contexts, on the 
other hand, increases exponentially with the number of pixels in the template. 
Therefore, further extension in the context template could lead to a context dilution 
problem, resulting in inaccurate statistics because of a lack of the context samples. 
The huge memory requirement is another limitation for using very large templates. 
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Figure 5-2. The 20-pixel filtering context template (left) and 10-pixel three-line compression 
context template used in JBIG1 (right). 
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The second difference is that the compression is typically performed by a single 
pass over the image, and the statistics are adaptively determined during the 
compression. In the filtering, on-line adaptation to the statistics would make the 
result unreliable until the model adapts to the image. Instead, a two-pass scheme is 
applied to achieve uniform image filtering: one pass for collecting the statistics, and 
another one for the actual filtering. 

Two context-based filtering methods, namely Simple Context Filter and Gain-
Loss Filter, are proposed in [AF00a] for the enhancement of document images. The 
Simple Context Filter unconditionally changes the uncommon pixels in low entropy 
contexts, whereas the Gain-Loss Filter changes the pixels conditionally, depending 
on whether the gain in compression outweighs the loss of information. Both filters 
reduce irregularities in the image statistics caused by noise, and in this way, improve 
the compression without degradation of the image quality and OCR accuracy. 

5.1.1. Simple Context Filter 

A simple context filter is based on determining the statistical content of the image 
using context-based modeling, and flipping the pixels with low probability values, 
using the assumption that they are noise. The filtering process consist of two phases, 
each requires one pass over the image.  

In the analyzing phase, context modeling with a 20-pixel filtering template is 
applied for the input image, and the number of black ( C

Bn ) and white ( C
Wn ) pixels for 

each context C and their respective probabilities are calculated: 

 C
B

C
W

C
WC

W nn
np
+

= , C
B

C
W

C
BC

B nn
np
+

= . (5.1) 

After analysis, the contexts are categorized as low information contexts if the 
probability of either black or white pixel ( C

Bp  or C
Wp ) does not exceed a predefined 

threshold value (e.g. 0.05). The probabilities are calculated on the basis of observed 
pixel frequencies. The less probable pixels in low information contexts are classified 
as rare, and most probable as common pixels. 

The output image is generated in the filtering phase when all rare pixels in low 
entropy contexts are flipped. The threshold value is a trade-off between compression 
improvement and image degradation caused by filtering. The Simple Context Filter 
is illustrated in the Figure 5-3. 
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Figure 5-3. Examples of the Context filter. The original image is shown in gray, and changed 
pixels are marked with ‘x’. 

5.1.2. Gain-Loss Filter 

In the previous filtering scheme, all pixels in the same context are processed in the 
same way, although resulting compression improvement may vary from pixel to 
pixel. Because of the difference in the context templates used for filtering and for 
compression, it is possible that the alteration of pixel value does not result in 
compression improvement. On the contrary, it may extend the code size. 

To alleviate this problem, we have proposed a Gain-Loss Filter (GLF) in 
[AF00a]. Instead of using a simple probability threshold, as in CF, GLF takes into 
account the possible compression gain (Gain) as well as the error (Loss) caused by 
changing the pixel color during filtering. 

Gain is defined by the impact on the code length caused by flipping the pixel x in 
context CC. It is composed of the direct effect of coding another pixel value and the 
effect of changing the context for all the pixels for which the flipped pixel appears in 
the context template [MF99]: 

 ( ) ( ) ( )∑
∈

+=
yCCxy

y xGainxGainxGain
 

0  (5.2) 

where Gain0 denotes the direct effect of flipping x, Gainy denotes the impact on the 
code length caused by altering the contexts yCC  of all the pixels y for which x is the 

context pixel.  
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Gain0 is calculated as the difference between entropy values (H) of the pixel x 
before and after its change: 

 
( ) ( ) ( )

( ) ( )( )CCxpCCxp

CCxHCCxHxGain

−+−=

=−=

1loglog 22

0  (5.3) 

where x  is the flipped value of x. The context CC is obtained using the compression 
context template, see Figure 5-2, and the pixel probability is estimated as: 
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where 45.0=δ  as in [JBIG1], and CC
Bn , CC

Wn  are the numbers of black and white 

pixels of the image in the context CC. Note that the probability is calculated on the 
basis of the statistics collected over the whole image, not the statistics at the 
moment, as in adaptive image compression. This is done to achieve equal filtering at 
the beginning and the end of the image. Thus, the learning cost and the possible 
compression improvement caused by local adaptation do not affect the filtering. 

Gainy is calculated as the difference between entropy values of the pixel y before 
and after the pixel x has been flipped: 
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where ( )xCCy  and ( )xCCy  are the contexts of the pixel y before and after the pixel x 

was flipped, respectively. 

Loss is defined as the amount of information that was lost when the pixel x was 
flipped. It is calculated as the entropy of the flipped pixel x : 

 ( ) ( ) ( )( )FCxpCFxHxLoss −−== 1log2 . (5.6) 

Here FC is the context obtained using the filtering context template, see Figure 5-2. 
The pixel probability is estimated either as FC

Bp  or FC
Wp , as regards the color of x: 
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Thus, changing the pixel value to the less probable one will result in the higher 
loss (values greater than 1), and vice versa. Changing one pixel value to another with 
equal probability (0.5), will deliver a unit of loss. The decision as to whether a pixel 
color should be changed is based on the following criterion: 

 ( )
( ) Threshold
xGain
xLoss <  . (5.8) 

The GLF requires two passes: analyzing and filtering. In the analyzing, the image 
statistics ( CC

Bn , CC
Wn , FC

Bn , FC
Wn ) for both context templates are calculated. After the 

statistics have been collected, the Loss is calculated for each context. The output 
image is generated in the second phase, where for each pixel x, the contexts CC and 
FC are obtained, Gain and Loss values are calculated, and the filtering criterion (5.7) 
is checked. If the threshold condition is met, the pixel is flipped and the statistics 
( CC

Bn , CC
Wn ) for the altered compression contexts are updated. This update is 

performed because the encoder will process the already filtered image and these 
updated statistics will be the statistics used when the actual coding is carried out. 
The work of the GLF filter is illustrated in Figure 5-4. 
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Figure 5-4. Examples of the Gain-Loss filter. Original image is shown in gray, and flipped 
pixels are marked with ‘x’. 
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Original image Simple Context Filter Gain-Loss Filter 

   

Figure 5-5. Example of the filtering with Simple Context Filter with threshold = 0.25, and 
Gain-Loss Filter with threshold = 0.5. 

5.2. Feature-based Filtering 

In [FAK99a] we have proposed a feature-based filtering technique for removing the 
quantization noise from digitized line drawings. The noise is a mixture of the 
additive and content-dependent noise. It can be visible as randomly scattered isolated 
pixels and jagged boundaries of the boundaries of the image objects (lines, symbols, 
etc). The proposed filtering technique is based on the semantic image modeling that 
utilizes the global spatial dependencies in the image. Line drawings consist mainly 
of straight-line elements, and global information can be gathered by extracting line 
features. The filtering is applied as a part of an image compression system, see 
Figure 5-6. The feature extraction and the filtering are considered as preprocessing 
steps before the compression. The noise removal improves the image quality and 
alleviates the loss in the compression ratio caused by noise. 

We consider here two different approaches for the feature extraction. The first 
one is based on Hough Transform (see Section 4.2) as proposed in [FAKK98b]. The 
second one utilizes Raster-to-Vector conversion (see Section 4.3) as proposed in 
[FAK99a]. An equal size feature image is created from the extracted line segments to 
approximate the input image. We use the feature as a semantic model of the image 
(see Section 4.4.3). 

The filtering is based on the noise removal procedure shown in Figure 5-7 (left). 
A mismatch image is constructed from the differences between the original and the 
feature image. Isolated mismatched pixels (and pixel groups of up to two pixels) are 
detected, and the corresponding pixel values in the original image are changed. This 
removes additive noise and smoothes the edges along the detected line segments. 
The quality of the filtering is by allowing only isolated groups of noise pixels to be 
changed. Objects that are not recognized by the feature extraction process are left 
untouched. The compression remains near-lossless because an uncontrolled loss of 
image quality cannot appear. 
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The noise removal procedure is successful if the feature image is accurate. The 
applied vectorizing method, however, does not always provide the exact width of the 
lines. The noise removal procedure is therefore iterated three times as shown in 
Figure 5-7 (right). In the first stage, the feature image is applied; in the second stage 
the feature image is dilated; and in the third stage, it is eroded before being input 
into the noise removal procedure. This compensates for most of the inaccuracies in 
the line width detection. See [Ser82, Hei94] for the details of the morphological 
dilation and erosion. 

Output Image

Feature
extraction

Compression Decompression

COMPRESSION DECOMPRESSION

Input Image

Feature File

Feature Image

ra
st

er
 d

at
a

ve
ct

or

Fltering

OPTIONAL

 

Figure 5-6. Block diagram of the three-stage compression method. 
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Figure 5-7. Block diagram of the noise removal procedure (left) and the entire three-stage 
filtering process (right) 
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The stepwise process for a small image sample is demonstrated in Figure 5-8 
(using Hough transform) and Figure 5-9 (using RVC). Most of the noise is detected 
and removed in the first phase. However, in some cases there are too many 
mismatched pixels grouped together because of an incorrect estimation of the line 
width and therefore no pixels can be filtered. Even if these inaccuracies have 
a visually unpleasant appearance in the feature image, they do not necessarily 
prevent effective filtering. For example, the right-most diagonal line in the feature 
image in Figure 5-8 is too wide in some places and the pixels are therefore not 
filtered in the first two stages. The eroded version, however, gives a more accurate 
approximation of the line, and more noise pixels can be detected and filtered in the 
third stage. 
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FIRST STAGE SECOND STAGE THIRD STAGE

Input image Filtering result (1st) Filtering result (2nd) Filtering result (3rd)

Feature image Dilated feature image Eroded feature imageHough Transform
image

Mismatch pixels (1st) Mismatch pixels (2nd) Mismatch pixels (3rd)

Filtered pixels (1st) Filtered pixels (2nd) Filtered pixels (3rd)

 

Figure 5-8. Illustration of the feature-based filtering using Hough transform 
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FIRST STAGE SECOND STAGE THIRD STAGE

Input image Filtering result (1st) Filtering result (2nd) Filtering result (3rd)

Skeletal image Feature image Dilated feature image Eroded feature image

Mismatch pixels (1st) Mismatch pixels (2nd) Mismatch pixels (3rd)

Filtered pixels (1st) Filtered pixels (2nd) Filtered pixels (3rd)

 

Figure 5-9. Illustration of the feature-based filtering using vectorizing algorithm. 
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6. INTERACTIVITY AND SPATIAL ACCESS 

The actual image database may not be physically present at the viewing location, 
but is accessed through communication channels, which could be nothing more than 
a slow telephone connection. The compression reduces the amount of data to be 
transferred and makes the image retrieval faster. Next, we define important 
properties that must be taken into account in the design of the image archiving 
system. 

The Instant Preview property enables the user to browse the archive without 
decompressing entire images. Preview represents a recognizable version of an image 
(thumbnail), using only a small portion of the compressed image data. It must be 
constructed and transmitted quickly enough to avoid inconvenient delays. 

Fast Decompression: one might tolerate longer compression times if it can be 
performed off-line. On the other hand, the decompression process must be fast so 
that the system does not loose its interactivity because of decompression delays. 

Spatial Access stands for direct access to an image fragment in the compressed 
file without having to retrieve and decompress the entire image. It enables efficient 
retrieval of the desired image fragments with high precision. Spatial access is the 
requirement for applications that deal with spatial data structures, e.g., digital spatial 
libraries and GIS. 

When an image is accessed, the entire file is typically retrieved and 
decompressed into memory. However, memory resources sufficient to hold the entire 
decompressed image, and high-speed channels able to quickly transfer the entire 
compressed file, are not always available. At the same time, typical viewing devices 
have smaller size and resolution than the original raster image and thus, only a small 
fragment of the entire image may be viewed at a time. If spatial access is supported, 
an image may be interactively browsed on the viewing device. When the image is 
scrolled, a new part of data is retrieved and decompressed on the fly. In this way, 
spatial access eliminates time delays caused by image decompression and transfer. 
The thumbnail image may serve as a map to locate the desired part of the image at a 
higher scale.   
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6.1. A Storage System for Interactive Access 

In [AF98] we propose a storage system that combines the compression 
methodologies presented in Section 2 with the properties that enable interactive 
access to the compressed images. 

6.1.1. Storage System Architecture 

The proposed storage system (see Figure 6-1) is based on JBIG1 with the following 
modifications:  
1. Each image is segmented into separate clusters of C × C pixels. The clusters are 

compressed separately. 
2. An index table of cluster pointers is constructed for locating the clusters in the 

compressed file. 
3. Clusters are segmented into the blocks of B × B pixels, by the block modeling 

technique of [Fr94]. Block level codes form the preview data, which is stored at 
the beginning of the compressed file and used to build an image thumbnail. 

4. Forward-adaptive statistical modeling is used to construct the initial probability 
model for the QM-coder. The model table is stored in the compressed file and is 
used for the coder re-initialization. The re-initialization reduces learning cost 
caused by small cluster sizes. 

The structure of the compressed file is shown in Figure 6-2. Unlike [Fr94], the 
block and pixel level codes are not mixed, and the block level codes appear in the 
compressed file before the pixel level code. Thus, a thumbnail image can be 
constructed by reading the block level codes only. The pixel level data are stored 
sequentially, cluster by cluster. Any cluster can be reconstructed from the block level 
codes and the appropriate pixel level codes starting from the position given by the 
cluster index. The text header consists of an identification string and image 
parameters, such as image size, cluster size, block size, etc. 
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Figure 6-1. Outline of the storage system. 
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 Figure 6-2. Organization of the compressed file. 
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6.1.2. Compression Algorithm 

The compression algorithm is outlined in Figure 6-3. It includes forward-adaptive 
statistical modeling (see Section 2.7) to minimize learning cost when coding small 
clusters. The algorithm works in two phases, each making a pass over the input 
image. During the analyzing phase, the block types are determined, and the 
forward-adaptive statistical model for pixel level data is calculated. The header data 
is then stored, block types are compressed, and a context model table is stored in the 
compressed file. During the compression phase, the pixel level data are compressed. 
The QM-coder is used for compressing the block codes and pixel level data. When 
compressing pixel level data, each cluster is processed separately. The QM-coder is 
reinitialized and the model is restored each time the compression of a new cluster 
begins. The implementation details are discussed in the following subsections. 

 

1. Analyze the image (analysis phase) 
1.1. Analyze block types and pixel statistics 
1.2. Construct initial model for pixel level compression 

2. Write header and block level data 
2.1. Store text header 
2.2. Compress block codes using QM-coder 
2.3. Store dummy indexes 
2.4. Store pixel level model 

3. Process each cluster (compression phase) 
3.1. Reinitialize QM-coder to initial model 
3.2. Compress the pixels with sequential JBIG1 
3.3. Record the starting positions of the next clusters 

4. Terminate compression 
4.1. Replace the dummy indexes with the real ones 

Figure 6-3. Main steps of the compression algorithm. 

6.1.3. Preview Data 

Two different techniques can be used to generate and encode the thumbnail 
(preview) of the image: (1) the block modeling scheme [FN93, Fr94] or (2) the 
resolution reduction technique of JBIG1. The block modeling works as follows. The 
image data is split into two separate levels: block level and pixel level codes. The 
block codes are obtained by dividing the clusters into smaller blocks of B × B pixels. 
Each block is classified either as an all-white, all-black, or mixed block. The block 
classifications are coded by two binary decisions shown in Figure 6-4. The all-white 
blocks are represented by a single 0-bit, all-black blocks by a bit sequence of 10, and 
mixed blocks by 11. The actual coding is performed by the standard QM-coder, 
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using a second-order context model. The classification of the neighboring blocks to 
the left and above determines the context, yielding 2 · 32 = 18 different contexts for 
the block codes in total. The block types of the entire image are constructed during 
the model construction pass. 

ALL-WHITE
  BLOCK

ALL-BLACK
  BLOCK

MIXED
BLOCK

NON-WHITE
  BLOCK

0 1

0 1

 

Figure 6-4. Decision tree for the block classification. 

The block coding method has several advantages:  
1. It is much simpler to implement than the progressive JBIG1 algorithm. 
2. It requires only one pass over the data to generate a thumbnail image.  
3. It does not significantly increase the bit rate because the pixels in uniform (all-

white and all-black) blocks can be omitted without compression. Only the pixels 
of the mixed blocks must to be compressed. This fact mostly compensates the 
overhead due to the block codes. 

4. The decrease in the pixel-level data also speeds up the decompression time by a 
factor of 2.5, on average. 

The thumbnail image can be constructed from the block codes using a simple 
resolution reduction technique known as the logical sum method [MM87, EKY91]. 
Each pixel in the preview image represents a B × B block in the original image. The 
color of a pixel is white if the corresponding block type is all-white; and black, 
otherwise. This kind of preview is usually sufficient to identify the image. At the 
same time, the overhead remains marginal. A better quality of the preview can be 
obtained if the mixed blocks are exposed in gray. 

The resolution reduction technique of JBIG1 can be used in the following way. 
The low-resolution thumbnail image can be a priori generated, independently 
compressed by a sequential JBIG1algorithm, and stored in the same file as the 
original compressed image. The comparative test data for these two techniques are 
presented in Section 7.4.  
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6.1.4. Pixel Level Data 

The image is divided into fixed size clusters of C × C pixels. Each cluster is 
compressed separately. An index table is constructed from the pointers indicating 
where the data of each cluster is located in the compressed file. The index table is 
stored at the beginning of the compressed file. To restore any part of the image, only 
the clusters consisting of the desired pixels need to be decompressed. The cluster 
size is a compromise between compression efficiency and decoding delay; the 
smaller the clusters, the shorter the decoding delay but at the same time the overhead 
of the indices increases. 

The cluster indices are coded by calculating the starting point of the cluster data 
relative to the previous cluster. The space requirement of the indices is known before 
the compression, and, thus, we can allocate enough space in the header. The actual 
indices, however, are not known until the entire image has been compressed. For this 
reason, the pointers can be stored at the end of the algorithm. The overhead cause by 
the indices remains rather small. However, very small cluster sizes will result in 
a relatively large number of clusters, and the compression of the cluster indices will 
be required to reduce the overhead. In the present method, we omit such 
compression schemes for simplicity. 

6.2. Spatial Access 

6.2.1. Implementation 

Here we discuss three different choices available for implementing the image tiling, 
see Table 6-1 [AF99a]. In all cases, the clusters are compressed independently by 
using the QM-coder (as in JBIG1). The QM-coder is re-initialized each time when 
the compression of a new cluster starts. The difference is in the initial model used for 
re-initialization. These re-initialization options are: 

• zero-state as in JBIG1 (T-JBIG); 
• forward adaptive model, estimated for the image (FA-JBIG); 
• static model estimated for a set of training images (S-JBIG). 

Table 6-1: Implementation alternatives for spatial access (and JBIG1). 

Method Spatial access Initial model Passes 
JBIG1 – – 1 
T-JBIG + – 1 
S-JBIG + static 1 

FA-JBIG + forward-adaptive 2 
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One problem with the straightforward combination of tiling and JBIG1 (T-JBIG) 
is the high learning cost. In JBIG1, the model is dynamically estimated during 
compression starting from scratch (zero-state). In principle, the adaptation is fast and 
the learning cost is restricted to the early stage of compression. However, the effect 
of the learning cost increases significantly when coding small clusters. A better 
initial model should, therefore, be applied to overcome the learning cost problem. 

We propose the use of the forward-adaptive modeling technique, as described in 
Section 2.7. The method is a two-stage procedure consisting of (1) construction and 
storage of the initial model, and of (2) pixelwise compression of the clusters. The 
initial model is constructed of statistics gathered from the entire image. Once 
constructed, it is used for the re-initialization of the QM-coder's internal model. 
Otherwise, the coding is performed using the standard QM-coder routines. This 
technique alleviates the deterioration of the coding efficiency caused by tiling 
because of faster adaptation and smaller learning cost. 

It should be also noted that the pixels of the neighboring cluster could not be 
used in the context template. The pixels outside the cluster are, therefore, assumed to 
be of the dominant image color (background color). After the cluster has been coded, 
the data buffer is filled with dummy bits to byte-align the cluster, and flushed to the 
code stream. Cluster indices are recorded and stored in the compressed file so as to 
indicate the starting points of the clusters in the compressed bit stream. 

The forward-adaptive scheme requires two passes over the image even though 
the decompression can be performed with one pass only. A one-pass variant can be 
obtained using a static initial model, estimated off-line for a training image 
sequence. As a drawback, this technique would result in a less accurate initial model 
and, therefore, slightly higher learning cost. 

The decompression is similar to the compression, except that a separate stage for 
constructing the initial model is not needed. Instead, the model is read from the 
compressed file.  

6.2.2. Analysis 

The forward-adaptive method improves the compression performance because the 
adaptation does not start from scratch but a pre-calculated model is used for the 
initialization. The re-initialization decreases learning cost and increases local 
adaptation further by pushing the models from slowly adaptive non-transient states 
back to the fast-attack states when the coding of a new cluster starts. These effects, 
for typical GIS images (see Appendix F), are shown in Figure 6-5. 
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Figure 6-5. Illustration of the tiling and coder re-initialization effects on the compression as a 
function of cluster size (relative to JBIG1). 

On the other hand, there are also several sources of deficiencies: 

• overhead of the model table MΩ ; 

• overhead of the cluster indices CΩ ; 

• inefficient compression at cluster boundaries; 
• inefficient disk access caused by fixed-size image partitioning. 

We will measure the overhead by the number of extra bits relative to the JBIG1 
compressed file size. 

Model table overhead: The model table is stored in the compressed file using five 
bits per context. The total overhead for a k-pixel context template is thus: 

 
YX

R
S

k

f

k
M ⋅

⋅⋅=⋅⋅=Ω 25125  , (6.1) 

where X⋅Y is the image size, fS  is the compressed file size, and R the compression 

ratio of JBIG1. The overhead is constant in respect to the cluster size. In the case of 
static initialization (S-M), the model table is not stored and it, therefore, causes no 
overhead.  

Cluster overhead: Cluster indices can be stored compactly as the offset (in bytes) 
from the previous cluster location. In this case, the actual cluster index table will be 
reconstructed and held in memory. In the presented scheme, we use two bytes to 
hold an offset. It is enough to point clusters up to 216 = 65536 bytes 
(724×724 pixels). In the worst case, when no compression is achieved (theoretically 
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possible), the cluster is stored as such without compression. This situation is 
indicated by a special cluster offset code #FFFF. Additional overhead originates 
from the dummy bits that must be added to the last code byte, which amounts to four 
bits per cluster, on average. The overhead is denoted as cluster overhead and it totals 
to 20 bits per cluster. The cluster overhead is calculated as:  

 220120
C
R

S
N

f
CC ⋅=⋅⋅=Ω  ,  (6.2) 

where NC is the number of clusters, and C × C is the cluster size. 

Boundary overhead: Tiling the image also has the drawback that pixels outside 
the cluster cannot be used in the context template. The compression of pixels along 
cluster boundaries becomes less efficient and weakens the overall compression 
performance (this problem is referred to as boundary overhead). 

To sum up, both the cluster overhead and the boundary overhead are inversely 
proportional to the cluster size. The boundary overhead is the dominant of these two. 
The model overhead, however, depends on the image size only, but it is relatively 
small for larger images. The overheads for typical GIS images (see Appendix F) are 
illustrated in Figure 6-6. 
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Figure 6-6. Overhead of the model, cluster and boundaries as a function of the cluster size. 

Disk access inefficiency: The fixed image partition leads to regions whose 
compressed data may not fill entire data blocks of the database or disk, in which the 
compressed image is stored. If the compressed cluster data falls on the border of the 
physical data block, an additional data block may need to be accessed to retrieve the 
data. The disk access inefficiency increases when compressed clusters of the 
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requested image fragment do not come together in a continuous stream but are 
broken into separate chunks, which are located in different data blocks, see Figure 
6-7.  

To avoid this problem, dynamic image clustering based on the compressed data 
has been studied in [PW96]. This strategy scans the image along an appropriate 
space filling curve [Jag90] and builds its regions according to the amount of 
compressed data filling one or more entire data blocks. This technique is not very 
applicable to context-based image compression, but the idea can be adapted for 
fixed-size image tiling, as follows. While the cluster content is compressed in 
raster-scan order, the clusters can be organized in the compressed file along the 
Hilbert curve [PW96]. In this case, the clusters that form the requested image 
fragment will most likely appear in the disk closer to each other, which will 
minimize disk access operations, see Figure 6-7. 
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Figure 6-7. Illustration of the inefficiency of disk access. 
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7. EMPIRICAL STUDY 

The performance of the proposed modeling techniques, filtering methods and storage 
system has been empirically evaluated. Various test sets were used, depending on the 
technique and its application. These sets include: the CCITT standard facsimile test 
set, digitized document and newspaper images, digitized textual documents, real-life 
line-drawing images of various categories, and cartographic and GIS images (see 
Appendix for test set details). The QM-coder has been used as an arithmetic-coding 
component. The compression results were compared with JBIG1. To report running 
times, we have used our high-level modular implementation of JBIG1. It takes about 
10 s per 1 Mb of raw image data on a Pentium-200 machine, whereas the low-level 
hardware-optimized implementation may take about 2 s. 

7.1. Variable Size Context Modeling in Image Communications 

Here we study the use of variable-size context modeling for facsimile image 
communications [FA99]. In variable-size context modeling, the number of context 
pixels depends on the combination of the neighboring pixel values. The context is 
constructed by checking the pixel values in the positions given by the context tree 
instead of checking the pixel values in the fixed-size local template. Two modeling 
variants are evaluated: Context tree refers to the variant with a fixed order of the 
context pixels, and Free tree to the one with variable ordering. For these, we 
consider both the semi-adaptive and static approaches for constructing the tree. The 
static tree is generated off-line using a training image. The semi-adaptive tree is built 
on-line for the input image before the actual compression. The static tree, once 
constructed, can be used for the compression of multiple images. It eliminates the 
need for additional passes over the image required for semi-adaptive tree 
construction, and therefore makes the compression method suitable for facsimile 
communication. If the semi-adaptive approach is used, the cost of storing the tree 
must also be included in the splitting criterion (3.1). The additional cost is 2 bits per 
context for Context tree, and ( )  840log2 =+  bits for Free tree (with a 40-pixel 
search template). The rest of the parameter setup is given in Table 7-1. 

Table 7-1: Parameter setup. 

 Context tree Free tree 
kMIN 6 2 
kMAX 24 24 
Search template – 40 
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The performance of the context tree is tested using two sets of A4-size images. 
The first set (CCITT) consists of the eight CCITT images scanned at 200 dpi (see 
Appendix A). The second set (Newspaper) consists of eight typical 300 dpi 
newspaper images containing variations of text and graphics (see Appendix B). For 
training, we use a separate newspaper image of the same size and resolution. 

The comparative compression performance of the various context tree 
construction alternatives using a static approach is summarized in Table 7-2. The 
delayed pruning gives improvement in all cases. 

Table 7-2: Effect of the delayed pruning in the static approach. The numbers give the amount of 
improvement in comparison to baseline JBIG1. 

Context tree Free tree Test Set 
normal delayed normal delayed 

Newspaper 8.5 % 10.9 % 11.1 % 14.5 % 
CCITT 5.2 % 7.2 % 2.5 % 6.6 % 

 

Table 7-3 shows that the static approach compares favorably with the semi-
adaptive approach. It gives similar or better compression performance without the 
heavy computation in the compression phase. The actual running time of the static 
approach is about twice as long for the Context tree as for JBIG1, which takes about 
30 s per page of document, or 1.8 times longer than JBIG1 for the Free tree. The 
semi-adaptive approach would require several minutes (Context tree), or several 
hours (Free tree), depending on the tree construction approach and the search 
template size (for Free tree). Of the two static variants, Free tree is preferred if 
applied to the images of the same type as the training image, cf. the Newspaper test 
set. For CCITT images, the Context tree variant gives slightly better compression 
rates. 

Table 7-3: Comparison of the static and semi-adaptive approaches. The numbers give the 
amount of improvement in comparison to baseline JBIG1. 

Semi-adaptive Static 
 Test Set Context 

tree 
Free tree Context tree Free tree 

Newspaper 8.6 % 13.4 % 10.9 % 14.5 % 
CCITT 4.0 % 8.4 % 7.2 % 6.6 % 

 

For experimental purposes, we adjust the number of contexts in the tree by using 
an additional growth control parameter (ω) in the node splitting criterion (3.1) as 
follows: 
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 ( ) ( ) ( ) ( ) ω−−−−= SplitCostClClClCCCGain BWBW ,, , (7.1) 

Positive values of w will decrease the number of contexts in the tree and vice 
versa. The minimum number of contexts (with ω = ∞) is 322 =MINk . The maximum 
number of contexts (with ω = -∞) depends on the training image. For the CCITT 
images, it was 14,400 in the case of the Context tree, and 43,980 in the case of the 
Free tree, see Figure 7-1. The effect of the parameter, ω, on compression 
performance is shown in Figure 7-2. The CCITT images and the Context tree 
approach were used in this example. The optimal value for ω was found to be 0.1, 
although the default value (0) gave essentially the same results. The deep slope on 
the ‘Context tree’ curve in Figure 7-2 (the decrease in the compression ratio for very 
large numbers of contexts) is explained by the increased learning cost and context 
dilution effect. 
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Figure 7-1. Number of contexts as a function of ω. 
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Figure 7-2. Compression ratio for the Context tree and JBIG1 methods (for CCITT images) as a 
function of the number of contexts. The number of contexts is controlled by the growth control 
parameter for Context tree, and by the context template size for JBIG1. 
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A summary of the test runs for the CCITT test set [ITU T.24] is given in Table 
7-4. The results are for Context tree and Free tree techniques using semi-adaptive 
and static approaches. We performed the following tests to estimate the maximum, 
theoretically achievable improvement (shown in Table 7-4 as Max.) using variable-
size modeling. The tree was constructed on-line as for the semi-adaptive variant, but 
neither the cost of storing the tree, nor the size of the tree was taken into 
consideration. 

Table 7-4: Compression performance (bytes) for the CCITT test set. The methods are: 
sequential JBIG1 with standard 10-pixel context template (JBIG10) and custom 14-pixel context 
templates (JBIG14); Context tree and Free tree methods using static (static) and semi-adaptive 
(S-A) approaches, and theoretical maximum improvement (Max.). 

JBIG1 Context tree Free tree Image 
JBIG10  JBIG14 static S-A Max. static S-A Max.

CCITT 1 14717 14618 14279 14402 13907 14465 14180 12889
CCITT 2 8500 8186 7678 8052 7445 7723 7664 7101
CCITT 3 21999 21263 20328 20694 19944 20870 19924 18847
CCITT 4 54300 52652 49393 50263 48591 48267 48012 42091
CCITT 5 25832 25239 24196 24587 23722 24213 23379 21694
CCITT 6 12561 12202 11287 11961 11156 11630 11200 10203
CCITT 7 56316 55116 53189 56670 52946 54480 53705 48660
CCITT 8 14238 13762 13021 13571 12906 12978 12935 12127
TOTAL 208463 203038 193371 200200 190617 194626 190999 173612
Improvement – 2.6 % 7.2 % 4.0 % 8.6 % 6.6 % 8.4 % 16.7 %

 

Conclusion 

The compression methods based on the context trees trained on a similar type image 
achieve a 14 % improvement over JBIG1 for a set of newspaper images. An 
improvement of about 7 % was obtained when the same context tree was applied to 
the CCITT test images. Most of the improvement originates from a selective context 
expansion. Larger context templates are utilized without overwhelming the learning 
cost. The compression takes about twice as long as if JBIG1 is used. 
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7.2. Context-based Filtering 

The two context-based filtering methods described in Section 5.1 were applied to a 
set of digitized document images. The first method, the Simple Context Filter (CF) 
unconditionally flips the uncommon pixels in low entropy contexts. In the second 
method, the Gain-Loss Filter (GLF) flips the pixels conditionally, depending on 
whether the gain in compression outweighs the loss of information. We use two test 
sets in our evaluation. The first set consists of eight artificially generated document 
images, and has been used for estimation of the threshold parameters of the filtering 
methods. The test images originate from a document that has been typed using a text 
processing system and has been further transformed through printing, photocopying, 
faxing, and digitization (see Appendix C for details). The objectives of the first 
evaluation are to determine the effect of filtering on the compression performance 
and the OCR accuracy (recognition error) of the images after filtering. 

The second large scale test set consists of real documents. The documents are 
taken from conference proceedings and contain text with a variety of fonts and 
offprint quality. The documents are digitized at resolutions of 300 and 400 dpi, 
resulting in 56 images of the size 2328×3028 and 3112×4038 pixels, respectively. 
These images are further referred to as real document images. This test set was used 
for the final evaluation of the filters. 

To measure compression performance, we apply the sequential JBIG1 with the 
default (three-line ten-pixel) context template. We measure the improvement in 
compression, i.e. the difference in the file size before and after filtering, and compare 
it with the upper limit. The upper limit for compression is estimated by compressing 
the original noise-free document image, which has been generated from the 
PostScript file of the original document.  

The Caere OmniPage 5.0 LE OCR software was applied, to recognize the textual 
content of the digitized images. This software offers good recognition rates (97.2 % 
on average) and is widely available [Has98]. The resulting textual files were 
compared with the original text. Recognition error was measured as the edit distance 
under the unit cost model, that is, the minimum number of edit operations (e.g. 
symbol changes, insertions and deletions) required for transforming a given text 
back to the original [SK83]. All spaces between words and paragraphs were counted 
as one space symbol. 
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Filtering performance 

To estimate the upper limit of compression improvement by image filtering, we 
compress the noiseless document image, which is generated directly from the 
PostScript output of the text processing system. The size of the 300-dpi noiseless 
image has been found to be 58,773 bytes, and 36,763 bytes for the noiseless 200-dpi 
image. The upper limit for compression improvement is therefore estimated as 
21.5 % for 300-dpi images and 22.4 % for 200-dpi fax images. The effect of the 
threshold parameter on the compression and recognition of document images is 
illustrated in Figure 7-3. For 300-dpi document images, the threshold value for GLF 
can be set to 0.5 without any noticeable effect on the recognition error rate. At this 
point, the method has almost achieved the estimated maximal improvement (20.6 % 
vs. 21.5 %). The simple context filter, on the other hand, weakens the OCR accuracy 
much sooner and it never reaches the maximal compression improvement. The best 
result remains around 10 % for the threshold value of 0.1. 

For the fax image, CF always weakens the recognition accuracy, and the 
compression improvement remains rather small (below 7 %). GLF achieves an 
improvement of about 10 % (with a threshold value of 0.1) without producing 
defective recognition accuracy. Filtering with higher threshold values would achieve 
further compression, but it starts to have a significant impact on recognition 
accuracy. Text typed in 10-point Times and digitized at 200 dpi makes the letters too 
small and coarse to be recognized, and does not allow a distinct statistical 
description, which is necessary for the filtering, to be built. 

The compression and the recognition error rates for the original and filtered 
images are summarized in Table 7-5. Typical recognition errors are illustrated in 
Table 2. They originate mostly from two distinct symbols adjacent to each other 
(such as Th is mistaken for either ’A or Ml, mn is often confused with nm, cl with d, 
and so on), or due to character similarity (like l, /, and i for example). To sum up, no 
new serious errors were found, with one exception, where digit 8 is interpreted as 9 
in both the original and filtered versions of one document. 
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Table 7-5: Compression performance of JBIG1, and the recognition errors for the original 
(noisy) and filtered images using the GLF filter (with threshold = 0.5).  

Image Measured value Laser 
print 

Ink 
print

HiQ*
copy

LoQ* 
copy

Dark 
copy

Bright 
copy 

Fax 
 (fine) 

Recognition error 4 7 9 13 28 33 9 
Original 

Compressed size 68,545 83,832 74,396 72,454 77,825 72,131 47,360 
Recognition error 4 9 12 7 24 39 8 

Filtered 
Compressed size 54,511 64,537 59,374 58,980 61,809 57,455 42,904 

* HiQ and LoQ stand for High-quality and Low-quality copies made by using high and low resolution 
copiers, respectively  

Table 7-6: Illustration of the recognition errors for two digitized images, using the Gain-Loss 
filter with threshold = 0.5. The total number of errors in the document is shown in parentheses. 
Mismatched symbols are typed in bold, and unrecognized symbols are marked as ‘∅∅∅∅’. 

Low-quality copy Ink printing Font, size 
Before filter (13) After filter (7) Before filter (7) After filter (9) 
uncompressed 
uncornpressed 

 and/or 
andlor 

and/or 
andlor 

Times, 12-pt. 

and/or 
andlor 

and/or 
andlor 

  

uncompressed 
uncornpressed 

  available 
avaflable 

28,800 
29,800 

28,800 
29,800 

The 
'Me 

The 
Ale 

satellite 
satelfite 

 and/or 
andlor 

and/or 
andlor 

and/or 
andlor 

and/or 
andlor 

  

Times, 10-pt. 

. 
, 

   

and/or 
andlor 

and/or 
andlor 

and/or 
andlor 

and/or 
andlor 

"on-the-fly" 
"on-the-fi∅∅∅∅' 

"on-the-fly" 
"on-the-fi∅∅∅∅' 

"on-the-fly" 
'on-the-fly' 

"on-the-fly" 
'on-the-fly 

Arial, 10-pt. 

   lines 
fines 
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The evaluation results for the filtering methods applied to the second test set (real 
document images) are shown in Figure 7-3. We have used the threshold values 
optimized for test set 1 (0.1 for CF and 0.3 for GLF) to ensure maximal compression 
improvement with minimal affect on the recognition error. The experiment shows 
approximately the same rate of compression improvement as was obtained using the 
generated images. 
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a) Average for 300-dpi document images b) 200-dpi fax image 

Figure 7-3. Compression improvement and recognition error rates of the Gain-Loss (GLF) and 
Simple Context filters (CF) as a function of the threshold. Compression improvement is 
reported as the difference of the compressed file size before and after filtering. 
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Traditional non-statistical filtering methods 

Traditional non-statistical filters (such as median and morphological filters) are 
based on the shape, or quantitative analysis of a local neighborhood area using a set 
of predefined rules. They result in much smaller compression improvement and less 
accurate image recognition. We have tested the various filters reported in [TP80, 
B87, AG91, AKS90, Hei94, ZD96, DA97], including the median filter, self-dual 
operator with different rank, alternative sequential filters, and soft morphological 
filters. Among these, the best results for the 300-dpi test images (from set one) were 
achieved with the median filter (10 % improvement, recognition error of 19 
symbols), and with the self-dual rank operator (11 %, 28 symbols). The median 
filter flips the pixel if the majority of the pixel colors in the neighborhood are of the 
opposite color. Its soft generalization, self-dual rank operator [Hei94], flips a pixel if 
the number of the opposite color pixels exceeds a predefined threshold value. For the 
fax image, only the median filter was able to keep the number of errors at a tolerable 
level (25 symbols), delivering 8.8 % improvement in compression. 

Conclusion 

The filtering method based on context-based statistical modeling of the image was 
proposed for enhancement of the document images for compression and recognition. 
Context-based filtering does not depend on the semantic interpretation of the image 
and is solely based on the statistical properties of the image. The method removes 
the digitization noise from the images and alleviates losses in the compression 
performance caused by noise. A 15-20 % improvement in compression performance 
has been achieved, while the image quality and OCR accuracy have been preserved. 

7.3. Feature-based Filtering 

Here we study the feature-based filtering method (outlined in Section 5.2) as a 
pre-processing stage in an image compression system, which uses either of the two 
standard compression components, JBIG1 or the older, but still widely used ITU 
Group 4 [ITU T.6]. The method is based on the flipping of isolated pixel groups 
found in the difference (mismatch) between the original image and one that is 
reconstructed from extracted vector features. Filtering examples are shown in Figure 
7-4. In these examples, the pixel-level noise is mainly filtered out, but some of the 
roughness remains along the line boundaries. It consists of large groups of noise 
pixels that are not filtered by the proposed method. Symbols and other small and 
non-linear elements are not completely detected, and therefore parts of them may not 
have been processed. 



7. Empirical Study 85 

 

Input image Output image Filtered pixels 

  

  

  

  

Figure 7-4. Feature-based filtering examples from left to right: sample of original image, the 
filtered image, and their difference. 
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In our evaluation, we first compare the two different feature extraction approaches 
studied in Chapter 4: Hough transform (HT) and raster-to-vector conversion (RVC). 
We use three typical line-drawing images from the line-drawing set as 
representatives: image Bolt (engineering drawing), Plan (architectural plan) and 
Power (electrical circuit); see Appendix D. Table 7-7 shows that the Hough 
transform gives a lower compression ratio than RVC and is an order of magnitude 
slower. Therefore, we will continue further only with RVC-based filtering. 

In order to carry out thorough testing, we use a set of 28 test images, divided into 
four classes: electrical circuits, engineering drawings, cartographic maps, and 
architectural and urban plans (see Appendix D). The results are summarized in 
Table 7-8. The compressed vector file represents the result of the vectorizing when 
the chain-coded elements are compressed by ZIP (a commonly used file compression 
method). The corresponding compression ratios (in total) are 15:1 for the vector file, 
33:1 for JBIG1, and 40:1 for the proposed method. At the same time, the quality of 
the decompressed images is visually the same as the original, given that only isolated 
groups of mismatched pixels are filtered. The quality is sometimes even better than 
the original, because the filtered pixels are mainly quantization noise near the 
borders of line segments. The preprocessing (vectorizing and filtering) slows down 
the entire compression process, which is now about 2.7 times slower than standard 
JBIG1 encoding. 

Finally, we have considered existing filtering techniques adapted to the same 
near-lossless context. We apply the traditional Median filter and a combination of 
three known morphological filters: opening, closing and annular filters. The results 
of the filtering are fed to the noise removal process shown in Figure 5-7 in order to 
allow only isolated groups of noise pixels to be filtered. In this way, the compression 
method remains near-lossless. The compression improvement due to these filtering 
methods is summarized in Figure 7-5. 

Conclusion 

The proposed feature-based filtering technique removes additive and quantization 
noise from the original image, restores image quality, and in this way produces a 
better compression performance. For a set of test images, the method improves the 
compression ratio by about 17 % in comparison to JBIG1. One drawback of the 
method is that the compression phase is now more complex and the method must use 
several passes over the image. However, vectorizing can be performed quite quickly, 
and the vector features are not stored in the compressed file, so that the process is 
invisible in the decompression phase. The method can thus be considered as a 
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preprocessing step to existing compression techniques, and standard decompression 
routines can be applied. 

Table 7-7: JBIG1 compression results for images processed by feature-based filtering using a 
Hough transform and raster-to-vector conversions. The compression improvement is measured 
in comparison with the unfiltered image. 

Input 
image 

Original 
raster image 

Without
filtering 

HT-based 
filtering 

RVC-based 
filtering 

Bolt 317,038 12,966 10,537 10,210 
Power 512,199 17,609 16,271 14,581 
Plan 484,561 5,098 4,319 3,978 
TOTAL: 1,313,798 35,673 31,127 28,769 
Improvement: — — 12.7 % 19.4 % 

 

Table 7-8: Summary of the compression results (in bytes) for the line-drawing test set. The row 
TOTAL shows the results in total for the test set, and RATIO shows the compression ratio. 

 Original 
raster image 

Compressed 
vector file 

ITU 
Group 4 

Filtering + 
Group 4 JBIG1 Filtering + 

JBIG1
Circuits 6,092,892 268,953 220,430 193,702 150,119 122,799
Drawings 13,807,484 488,210 413,732 397,028 254,917 231,715
Maps 13,476,580 1,720,864 1,040,105 858,243 706,080 557,402
Plans 10,460,683 429,792 353,375 336,205 206,010 184,447
TOTAL: 43,837,639 2,907,819 2,027,642 1,785,178 1,317,126 1,096,363
RATIO: — 15.1 21.6 24.6 33.3 40.0
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Figure 7-5. Comparison of the filtering methods discussed, used together with two compression 
standards. The figure shows the numbers as the relative reduction in file size when compressing 
the filtered images from the entire test set. 
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7.4. On-line Image Processing and Spatial Access 

We evaluate here the document imaging storage system (DISS) for the interactive 
image browsing and retrieval system. The system architecture was outlined in 
Chapter 6. The system supports quick image decompression, instant preview, and 
spatial access through block coding and image tiling. 

7.4.1. Instant preview and fast decompression 

Two techniques, block coding and JBIG1 resolution reduction, are evaluated as 
regards the image preview using the standard CCITT test images and NLS 
topographic maps (component of Image0), see Appendix for image details. In the 
case of block coding, the compressed file consists of block-level and pixel-level 
data. Block data represents the classification of the pixel blocks of a predefined size, 
and pixel data is the JBIG1-compressed stream of pixels belonging to mixed blocks. 
The thumbnail is generated directly from the block codes (see Section 6.1.3 for 
details). When the resolution reduction of JBIG1 (see Section 2.8) is applied, the 
original image and the generated thumbnail are independently compressed and 
stored together in the same file. Examples of the thumbnails generated using these 
two methods are shown in Figure 7-6 and Figure 7-7. The JBIG1 resolution 
reduction gives better quality thumbnails, whereas the block codes can speed up the 
image decompression. 

For the block coding method, the block size is a trade-off between the compression 
ratio and running time (see Figure 7-8). A block size of 16×16 is a safe choice in the 
sense that the compression ratio is hardly compromised at all. The respective 
thumbnail images are sixteen times smaller than the original images in each 
dimension. Faster decoding (and a higher quality preview) could be achieved using a 
smaller block size (8×8) at the cost of a minor increase in the bit rate. For JBIG1 
resolution reduction, the same size thumbnail images can be generated if the 
resolution reduction algorithm is applied sequentially to the original image four 
(16×16) or three (8×8) times, respectively. 

The details of distribution of the code bits for block- and pixel-data are shown in 
Table 7-9. For block coding, the overhead of the block codes is mostly compensated 
for by the reduction of the pixel-level data that has to be compressed. For a block 
size of 16×16 pixels, this reduction is approximately equal to the size of block-data 
resulting in a zero net effect. In the case of JBIG1 resolution reduction, the data size 
of the compressed thumbnail image is approximately the same as for the block 
codes. Table 7-9 also shows comparative rates for the progressive compression of 
JBIG1. 
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Figure 7-6. Thumbnail images for the CCITT test images (see Appendix A) generated with the 
block coding technique with 16×16 block size (upper row), and JBIG resolution reduction in 
the fourth generation (bottom row). Thumbnail images are 16 times smaller at each dimension. 
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Figure 7-7. Thumbnail images for two NLS map images (see Appendix E) generated with block 
coding techniques (upper row), and with the JBIG resolution reduction algorithm (bottom row). 
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Figure 7-8 Compression ratio and decompression time as a function of block size. 

Table 7-9: Distribution of code bits in the compressed image file using two compression 
techniques: DISS with block-coding and JBIG1 with thumbnail. All results are given in bytes 
and total results are also given in percentages relative to standard JBIG1 rates. Standard JBIG1 
results are given in the JBIG1/‘No preview’ column. 

 DISS (block coding + JBIG1) 
 Block size 8×8 Block size 16×16 
 Block data Pixel data Total Block data Pixel data Total 
Basic 29,099 339,381 368,480 8,223 349,152 357,375 
Contour 33,624 305,148 338,772 7,865 311,345 319,210 
Water 13,657 69,047 82,704 4,981 70,868 75,849 
Field 5,065 17,937 23,002 2,011 18,738 20,749 
Total 81,445 731,513 812,958 23,080 750,103 773,183 
Relative to JBIG1 10.6 % 95.3 % 105.9 % 3.0 % 97.7 % 100.7 % 
     
 JBIG1 (sequential mode) JBIG1
 No preview 8-fold image 

reduction 
16-fold image 

reduction
prog-

ressive
 Image Thumbnail Image + 

Thumbnail
Thumbnail Image + 

Thumbnail 
mode 

Basic 357,612 27,001 384,613 9,513 367,125 438,879 
Contour 316,781 33,818 350,599 10,663 327,444 359,597 
Water 73,217 9,399 82,616 4,320 77,537 76,562 
Field 20,076 2,799 22,875 1,380 21,456 20,425 
Total 767,686 73,017 840,703 25,876 793,562 895,463 
Per cent of JBIG1 100 % 9.5 % 109.5 % 3.4 % 103.4 % 116.6 % 
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For both methods discussed, the data required to reconstruct the preview image 
occupies only a few percent of the compressed file, enabling a quick preview. In 
particular, the preview data comprises 3 % of the original file size for a 16-fold, and 
10 % for an 8-fold resolution reduction. The block coding offers benefits beyond the 
JBIG resolution reduction, because it speeds up the compression/decompression 
procedure. This is so because fewer pixels must be processed by the time-consuming 
context modeling and arithmetic coding procedures. On average, the decompression 
takes 30-50 % of the time required by JBIG1 (see Table 7-10). The method thus 
achieves decompression times comparable to the Group 4 standard. Compression 
takes longer than decompression because of the additional image analyzing 
procedures. Note that the method is expected to be even faster for higher resolution 
images, because the increase in resolution evidently results in an increased number 
of uniform blocks. On the contrary, if JBIG resolution reduction is applied, the 
compression operation becomes slower by the relative amount of data in the 
thumbnail image, which is 1/8 or 1/16 of the original image, plus the time required 
to generate the thumbnail.  

Table 7-10: Comparison of running times for DISS with the block coding method (in 
percentage of time for sequential JBIG1).  

 16×16 pixel block 8×8 pixel block 
Image Compression Decompression Compression Decompression 
CCITT 1 29 % 19 % 21 % 13 % 
CCITT 2 29 % 19 % 21 % 13 % 
CCITT 3 43 % 31 % 36 % 25 % 
CCITT 4 64 % 44 % 50 % 50 % 
CCITT 5 43 % 31 % 36 % 25 % 
CCITT 6 36 % 25 % 29 % 19 % 
CCITT 7 57 % 38 % 43 % 44 % 
CCITT 8 36 % 25 % 29 % 19 % 
AVERAGE: 42 % 29 % 33 % 26 % 
   
Basic 71 % 73 % 54 % 54 % 
Contour 76 % 77 % 57 % 54 % 
Water 34 % 27 % 26 % 17 % 
Field 20 % 9 % 18 % 7 % 
AVERAGE: 50 % 47 % 39 % 33 % 

The exact running time depends on the implementation details. A high-level modular 
implementation of JBIG1 takes about 15 s per A4 document on a Pentium-200 machine, 
whereas the low-level hardware-optimized memory-consuming implementation may take 
about 3 s.  
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7.4.2. Spatial access 

The effect of image tiling on compression performance is evaluated by compressing 
the set of map NLS images for five different domains (see Appendix E). The map 
image for each domain X consists of four binary component layers denoted as 
LayerX, where Layer is the layer name, and X is the relative domain number from 0 
to 4.  

We evaluate the seven compression methods shown in Table 7-11. Sequential 
JBIG1 and the ITU Group 3 and Group 4 compression standards are the points of 
comparison. CT is the combination of context tree and baseline JBIG1. These four 
methods do not support spatial access, whereas the other methods do. T-JBIG is a 
combination of tiling and sequential JBIG1. FAM stands for compression based on 
forward-adaptive modeling (as in Section 6.2). CT-FAM stands for compression 
based on a combination of context tree and forward-adaptive modeling (as in 
Section 3.5), and CT-FAMS is its static variant, where the context tree is optimized 
off-line for the training image (as outlined in Section 3.2.2). The two-stage bottom-
up algorithm (see Section 3.4) has been used to construct the tree. 

The overall effect of tiling and the variable-size context modeling are 
summarized in Figure 7-9. The benefits of a better initial model efficiently outweigh 
the overhead and learning costs for all cluster sizes, except the very small ones. In 
this case, the cluster and boundary overheads become too large to be compensated. 
The periodic coder re-initialization also improves local adaptation, so that even 
T-JBIG outperforms JBIG1 for large cluster sizes. The experiment shows that 
sequential JBIG1 can be applied with the tiling using a cluster size of about 350×350 
pixels without sacrificing the compression performance. The corresponding number 
is 100×100 for the FAM, and 50×50 for the CT-FAM. Moreover, the CT-FAM 
improves the compression performance by 20 % if the cluster size is 200×200 or 
greater. The maximum possible improvement line shows the compression that would 
be achieved if the tiling were not applied (CT method). 

Comparative compression results for the method discussed are summarized in 
Table 7-12. In this experiment, images 1 to 4 are used for the compression. Tiling 
the image to clusters of size 256×256 is assumed for the methods that support spatial 
access. For evaluating the static variant of the CT-FAM method, four context trees 
were trained separately off-line using Image0 for each binary component. 
Experiments show that the proposed method improves the performance of JBIG1 by 
over 20 % for this cluster size. The static variant is also applicable because of similar 
types of images. In our example, the static variant was only 3.5 % worse than the 
semi-adaptive one. 
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Table 7-11: Compression methods and their properties. 

 Method Tiling Statistical model Context tree Passes 
 Group 3/4 – – – 1 
 JBIG1 – backward-adaptive – 1 
 CT – backward-adaptive semi-adaptive 2* 
 T-JBIG + backward-adaptive – 1 
 FAM + forward-adaptive – 2 
 CT-FAM + forward-adaptive semi-adaptive 2* 
 CT-FAMS + trained trained 1 

* One stage is assumed for the bottom-up context tree construction.  
 Add one more pass for the 2-stage bottom-up method. 
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Figure 7-9. Compression gain for T-JBIG, FAM, CT-FAM as a function of the cluster size 
when compared to the sequential JBIG1. 

Table 7-12: Bit rates per image type, and overall compression ratios. Cluster size of 256×256 
pixels is assumed for the methods supporting tiling (spatial access). A two-stage bottom-up 
pruning approach is used for context tree construction. 

Methods not supporting tiling Methods supporting tiling  
(256×256 cluster size) Test images 

Group 3 Group 4 JBIG1 CT T-JBIG FAM CT-FAM CT-FAMS 
Basic1-4 2,834,589 2,881,614 1,197,983 884,435 1,263,311 1,211,338 903,597 944,107 
Contours1-4 1,968,901 1,230,480 643,998 514,353 683,314 632,882 536,788 549,571 
Water1-4 1,122,591 548,124 270,703 206,282 280,031 249,697 207,829 210,636 
Fields1-4 233,415 64,530 29,127 25,030 35,914 33,412 28,558 33,412 
TOTAL (16) 6,159,496 4,724,748 2,141,811 1,630,100 2,262,570 2,127,329 1,676,772 1,737,726 
Compression 
ratio 8.12 10.58 23.34 30.67 22.10 23.50 29.82 28.77 
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Conclusion 

The proposed storage system architecture meets the requirements of interactive 
image processing as outlined in Section 6. Quick image decompression, an instant 
preview option, and direct access to the compressed image were sufficiently 
supported by the block coding and image tiling. Block coding enables an image 
preview, and results in an increase in speed of the decompression time by a factor of 
2.5.  

Spatial access eliminates the need to decompress the entire image for accessing 
its fragment. The use of a context tree makes it possible to utilize larger context 
templates without greatly increasing the learning cost. The method alleviates the 
deterioration of the coding efficiency caused by tiling and achieves higher 
compression rates because of the improved pixel prediction.  

Being applied to binary layers of large maps for four different domains, the 
proposed technique enables denser image tiling down to 50×50 pixels versus the 
350×350 possible with JBIG1. In addition, the technique improves the compression 
performance of JBIG1 by over 20 % for clusters sized 200×200 pixels or larger. 

We have also considered a static variant of the method, in which the model is 
generated using a training image. It gives faster one-pass compression and enables 
image tiling down to 100×100 pixels. The static variant can be applied if the images 
are of a similar type. Otherwise, the two-pass method should be used at the cost of 
higher compression times. The decompression times are similar in both cases. 
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8. CONCLUSIONS 

In this thesis, we have studied compression of binary images in various document 
imaging applications. We have considered context-based statistical modeling and 
arithmetic coding. The JBIG1 standard coding implementation (QM-coder) has been 
adopted. Advanced modeling techniques, such as variable-size context modeling and 
forward-adaptive statistical modeling have been presented and evaluated. 

The empirical study shows that these techniques improved compression 
performance by about 25 % in comparison to that achieved by JBIG1. A variant of 
the variable-size modeling has also been proposed for on-line image 
communications, improving compression up to 14 %. It is also possible to utilize the 
advantages of the proposed techniques when applied in conjunction with the recent 
image compression standard, JBIG2. 

We have studied the use of statistical context-based modeling for removing the 
additive (random) and content-dependent (quantization) noise from digitized 
documents. Using the proposed filtering schemes, we have improved the 
compression performance of textual document images to the level of noise-free 
images. The quality of the images, as measured by the OCR accuracy, has not been 
affected by filtering. 

For line-drawing images, we have studied global modeling. Two techniques for 
the extraction of linear features from an image have been evaluated: the Hough 
transform and raster-to-vector conversion. For the hybrid raster/vector compression, 
we utilized the extracted vector features in the compression of raster images. We 
have also introduced a new filtering technique that uses extracted vector information 
to remove the noise near the contours of printed objects. From the compression point 
of view, the new technique appears twice as effective as such traditional methods as 
morphological filtering. 

Finally, we have considered direct access to the compressed images. A storage 
system that features instant previews, fast image decompression, and spatial access 
has been proposed. These properties enable the user to interactively browse the 
image archive and access the desired fragment of the image without transmission and 
decompression delays. A 2.5-fold increase in access time over JBIG1 has been 
achieved for image decompression, and only 2 % of the entire compressed data set 
must be retrieved to build an image thumbnail. The proposed technique enables 
denser image tiling down to 50×50 pixels versus the 350×350 possible with JBIG1, 
without sacrificing compression performance. It allows far more efficient image 
retrieval than when using standard JBIG1 compression. 
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APPENDIX: THE TEST SETS. 

A. CCITT TEST SET – FACSIMILE IMAGES 

All images are standard CCITT documents of A4 format [ITU T.24], digitized at 
facsimile resolution of 200 dpi. Image size is 1728 × 2376 pixels. 

 

  
CCITT 1 CCITT 2 CCITT 3 CCITT 4 

  
CCITT 5 CCITT 6 CCITT 7 CCITT 8 
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B. NEWSPAPER IMAGES 

The set consists of eight newspaper images of A4 format, 2464 × 3497 pixels each: 

   
Image 1 Image 2 Image 3 Image 4 

   
Image 5 Image 6 Image 7 Image 8 

The combined image used for training (A4). It consists of various text types typical 
for the particular newspaper. 
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C. DIGITIZED DOCUMENT IMAGES 

There are two test sets with document images that have been used in the evaluation. 
First set consists of eight A4 format document images originated from the text 
document, which has been typed in a word processing system. The document contains 
the same text parts formatted in two different fonts: Times and Arial, both in two 
different sizes: 10 and 12 points. The typefaces were chosen so that they represent the 
two commonly used families of fonts (with and without “serif” elements). The total 
number of symbols in the document is 4712 including spaces. 

The printed document was a subject to further transformations such as 
photocopying and faxing. We include four different photocopies of the document: high 
quality (HiQ) copy (sophisticated copy machine with optimal copying parameter setup), 
bright and dark second copies, and low quality (LoQ) copy made using all-in-one 
desktop office machine. An ink-jet printing was also included in the set. 

The resulting seven documents were then digitized on an office desktop scanner at 
the same resolution 300 dpi (dot-per-inch) referred further as digitized images. Only the 
fax image was electronically received at the resolution 200 dpi. The PostScript image 
was generated directly from the textual document and approximates noise free 
document image. 

The second, larger scale, test set consists of real documents. The documents are 
taken from conference proceedings and contain text with a variety of fonts and offprint 
quality. The documents were digitized at resolutions of 300 and 400 dpi resulting in 56 
images of the size 2328×3028 and 3112×4038 pixels, respectively. 

Samples of digitized documents (fragment of the text typed in font Times at 12 points): 

PostScript image Laser printer Ink-jet printer High quality copy 

 

Low quality copy Dark copy Bright copy Fax (200 DPI) 

 

 

 



Appendix  108 

 

Original text document (reduced PostScript image):  

Spatial access:

When an image is accessed, the entire file is typically read and decompressed into memory. This
is not possible if the uncompressed raster image size exceeds the available memory resources (cf.
GIS images). Besides, high-speed channels are not always available. For example, most
communications channels in Russia are 14,400-28,800 bps channels based on analog phone
lines. 64-128 Kbps bridges are used only for connecting separate city networks together (mostly
via satellite links). The actual transmission speed practically never exceeds 1 kilobytes per
second.

The decompression of the entire image can be a major source of inefficiency. Only a small part
of the image is often needed, or the image is processed and/or viewed fragment by fragment.
Typical viewing devices, for example, have a smaller resolution than the original raster image
and thus, only a small fragment of the entire image may be viewed at a time. When the image is
scrolled, new portion of the data is retrieved and decompressed. Spatial access together with a
fast “on-the-fly” decompression allow the user to operate directly on the compressed data
without retrieving the entire image.

Spatial access:

When an image is accessed, the entire file is typically read and decompressed into
memory. This is not possible if the uncompressed raster image size exceeds the
available memory resources (cf. GIS images). Besides, high-speed channels are not
always available. For example, most communications channels in Russia are
14,400-28,800 bps channels based on analog phone lines. 64-128 Kbps bridges are
used only for connecting separate city networks together (mostly via satellite links). The
actual transmission speed practically never exceeds 1 kilobytes per second.

The decompression of the entire image can be a major source of inefficiency. Only
a small part of the image is often needed, or the image is processed and/or viewed
fragment by fragment. Typical viewing devices, for example, have a smaller resolution
than the original raster image and thus, only a small fragment of the entire image may
be viewed at a time. When the image is scrolled, new portion of the data is retrieved
and decompressed. Spatial access together with a fast “on-the-fly” decompression allow
the user to operate directly on the compressed data without retrieving the entire image.

Spatial access:

When an image is accessed, the entire file is typically read and decompressed into memory. This is not possible if the
uncompressed raster image size exceeds the available memory resources (cf. GIS images). Besides, high-speed channels are not
always available. For example, most communications channels in Russia are 14,400-28,800 bps channels based on analog phone
lines. 64-128 Kbps bridges are used only for connecting separate city networks together (mostly via satellite links). The actual
transmission speed practically never exceeds 1 kilobytes per second.

The decompression of the entire image can be a major source of inefficiency. Only a small part of the image is often needed, or
the image is processed and/or viewed fragment by fragment. Typical viewing devices, for example, have a smaller resolution
than the original raster image and thus, only a small fragment of the entire image may be viewed at a time. When the image is
scrolled, new portion of the data is retrieved and decompressed. Spatial access together with a fast “on-the-fly” decompression
allow the user to operate directly on the compressed data without retrieving the entire image.

Spatial access:

When an image is accessed, the entire file is typically read and decompressed into memory. This is not possible if the
uncompressed raster image size exceeds the available memory resources (cf. GIS images). Besides, high-speed
channels are not always available. For example, most communications channels in Russia are 14,400-28,800 bps
channels based on analog phone lines. 64-128 Kbps bridges are used only for connecting separate city networks
together (mostly via satellite links). The actual transmission speed practically never exceeds 1 kilobytes per second.

The decompression of the entire image can be a major source of inefficiency. Only a small part of the image is often
needed, or the image is processed and/or viewed fragment by fragment. Typical viewing devices, for example, have a
smaller resolution than the original raster image and thus, only a small fragment of the entire image may be viewed at
a time. When the image is scrolled, new portion of the data is retrieved and decompressed. Spatial access together
with a fast “on-the-fly” decompression allow the user to operate directly on the compressed data without retrieving the
entire image.
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D. LINE-DRAWING IMAGES 

The complete set: 

The complete test set consists of 28 line-drawing images, divided into four classes: 
electrical circuits, engineering drawings, cartographic maps, and architectural and 
urban plans. The images are taken from real-life applications and amount in about 43 
Mbytes in uncompressed form. The format of the images varies from A4 to A2. 

Statistics of the test set: 

Image type No. of images Total size Smallest Largest 
Circuits 6 5.8 Mbytes 1480 × 2053 5522 × 4039 
Drawings 8 13.2 Mbytes 1765 × 1437 7296 × 4903 
Maps 5 12.9 Mbytes 3100 × 3475 6608 × 4677 
Plans 9 10.0 Mbytes 1253 × 970 5888 × 5888 
TOTAL: 28 42.8 Mbytes — — 

 

The mini-sets: 

There are two line-drawing mini-sets A and B, each contains three images from the 
complete set: 

A Plan  (2167 × 1788) House  (4803 × 2873) Chair  (2842 × 2748) 
 

 

 
B Module (1480 × 2053) Power  (2293 × 1787) Bolt  (1765 × 1437) 
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E. NLS MAP IMAGES 

The test set includes five randomly chosen images from the “NLS Basic Map Series 
1:20000” corresponding to the map sheets No/No 431306, 124101, 201401, 263112, and 
431204. Each map image consists of four binary component layers, each has the size of 
5000 × 5000 pixels. The images are denoted as ImageX, and the layers as LayerX, where 
Layer is the layer name, and X is the relative domain number from 0 to 4 in a given 
order. The layer names are following: 

• Basic – topographic image, supplemented with communications networks, 
buildings, protected sites, benchmarks and administrative boundaries; 

• Contours – elevation lines; 
• Water – lakes, rivers, swamps, water streams; 
• Fields. 

 

Sample fragment of a test image (left) and its four binary components (right): 

 
Basic Contours 

 
Sample test image (500 × 500) Water Fields 

The image is re-printed with the permission of National Land Survey of Finland and available via web 
page: http://www.nls.fi/kartta/democd/aineisto/index_e.html. 
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F. GIS IMAGES 

This mini-set consists of four images typical for GIS applications. 

 

    
6608 × 4677 3425 × 4697 2368 × 3568 3322 × 5355 
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