Kuinka käy, jos pesäkoloja on yhtä monta kuin luonnollisia lukuja ja kyyhkysiä yhtä monta kuin kokonaislukuja? Entä jos kyyhkysiä on yhtä monta kuin luonnollisia lukuja, mutta jokainen kyyhkynen yrittää pesiä jokaisen toisen kyyhkysen kanssa eri pesissä? (Yhteen koloon mahtuu vain yksi pesä.)
2. Hilbertin Hotelliin on saapumassa bussiletka, jossa on äärettömän monta bussia, kussakin äärettömän monta matkust ajaa. Miten sijoittaisit vieraat Hilbertin hotellin huoneisiin?
3. Hilbertin hotellin vieraskirjan jokaisella sivulla on vain äärellisen monta nimeä ja uusien vieraiden on kirjoitettava nimensä aina seuraavalle tyhjälle riville. Kuinka monta sivua kirjassa on oltava, jotta uusien vieraiden nimille olisi tilaa (järjestämättä nimiä uudelleen), niin kauan kuin vieraita voitaisiin sijoittaa hotelliin (mahdollisesti järjestämällä uudelleen)?
4. Cantorin planeetalla asiat on tapana mitata äärettömällä tarkkuudella. Jokaisella planeetan asukkaalla on ainutlaatuinen nimi, joka koostuu äärettömän pitkästä aakkoston $\{a, b\}$ merkkijonosta.
Asukkaat $a a a a \ldots . .$. ja baaaa ovat päättäneet järjestää seuramatkan Hilbertin Hotelliin ja kutsuneet matkalle mukaan kaikki asukkaat, joiden nimi on aakkosjärjestyksessä heidän välillään. Mukaan ovat kutsutut mm. aaaa...:n pikkusisko abaaaa.... ja $b a a a a \ldots .$. n serkun poika $a b b b b b b$. Mahtuuko porukka Hilbertin Hotelliin? Perustele vastauksesi huolella! (Vihje: Cantorin diagonaaliargumentti.)
5. Etsi virhe seuraavasta todistuksesta, jonka mukaan $2=1$. Tarkastellaan yhtälöä $a=b$. Kerro molemmat puolet a :lla, jolloin saat $a^{2}=a b$. Vähennä b^{2} molemmilta puolilta, jolloin saat $a^{2}-b^{2}=a b-b^{2}$. Jaa kumpikin puoli tekijöihin, $(a-b)(a+b)=b(a-b)$, ja jaa $(a-b)$:llä, jolloin saat $a+b=b$. Lopuksi oletetaan, että a ja b ovat 1 , jolloin pätee $2=1$.
6. Olkoon X joukko ja X :n koko $n=|X|$. Todista induktiolla, että X :n potenssijoukon koko on $|\mathcal{P}(X)|=2^{n}$.
7. Mitä vikaa on seuraavassa induktiotodistuksessa, jonka mukaan kaikki kissat ovat samanvärisiä?
Olkoon n kissojen lukumäärä. Jos $n=1$, niin väite selvästi tosi (yksi kissa on aina samanvärinen, olipa väri mikä tahansa). Oletetaan nyt, että mille tahansa n :n kissan joukolle pätee, että kaikki kissat ovat samanvärisiä. Tarkastellaan sitten $n+1:$ n kissan joukkoa. Valitsemalla näistä mitkä tahansa n kissaa (jotka voidaan valita $n+1$ eri tavalla) saadaan induktio-oletuksen perusteella samanväristen kissojen joukko. Siispä kaikki $n+1$ kissaa ovat samanvärisiä.
8. Todista seuraava väite: Jos juhlissa on $n(n \geq 2)$ henkilöä, niin vähintään kahdella henkilöllä on yhtä monta ystävää juhlissa.
9. Todista kontrapositiolla: Jos c on pariton kokonaisluku, niin yhtälöllä $n^{2}+n-$ $c=0$ ei ole paritonta kokonaislukuratkaisua n :lle.

