
Solutions for the 2nd middle term exam 21.4. 2005
1. The CYK-table:

a a b b c
S, D, Ca

D S, D,Ca

S S, A Cb

S, A X ∅ Cb

S ∅ ∅ S, E S,C, Cc

Thus aabbc belongs to language. (Notice the same language can be de-
scribed as {anbmcl|n = m ∨m = l}.

For totally correct answer 10 p, detailed evaluation criteria will be in-
formed later.

2. It was enough to give the correct subclass for each grammar.

a) G1 describes all integers (with possible beginning zeroes), and you can
give a regular expression (0 ∪ 1 ∪ ... ∪ 9)(0 ∪ 1 ∪ ... ∪ 9)∗ or a right-linear
grammar S → 0S|1S|...|9S|0|1|...|9. 2p

G2 is the same language as in task 1. It is ambiguous, e.g. string aabbcc
has two parse trees in the given grammar. We can prove that the language
is in fact inherently ambiguous but this was not required. 3p

G3 can be described as {anbm|n ≤ m}. This can be solved easily by
a deterministic pushdown automaton, so the language is at least deter-
ministic. However, if you perform LL(1) test, you see it is also LL(1).
FIRST ({aSb}FOLLOW (S))∩FIRST ({B}FOLLOW (S)) = {a}∩{b, ε} =
∅ and FIRST ({bB}FOLLOW (B))∩FIRST ({ε}FOLLOW (B)) = {b}∩
{ε} = ∅. 3p

b) Parsing methods:
Linear languages: deterministic �nite automaton 1p
LL(1)-languages: recursive parser 1p
Deterministic languages: deterministic pushdown automaton (or LR(1)
parser) 1p
Unambiguous (non-deterministic) and inherently ambiguous languages:
CYK-algorithms 1p

3. Let's assume that the input is given the least signi�cant bit on left (easier
to solve). Idea: change the second character to 1, if it was 0 or <. If it was
1, then scan to right and change all 1s to 0's until you meet 0 or <, which
is changed to 1.
The machine described by transition functions:

1

δ(q1, 0) = (q2, 0, R)
δ(q1, 1) = (q2, 1, R)
δ(q2, 0) = (q3, 1, R)
δ(q2, <) = (q3, 1, R)
δ(q2, 1) = (q2, 0, R)

Task: Draw the machine!

For fully correct answer 10 points. Detailed evaluation criteria will be
informed later.

4. a) See e.g. lecture material. The main point was that we have no computa-
tional means to test run-time properties of computer programs. Simulating
the program doesn't help, because the program may not halt or we have
to test all possible inputs, the set of which is typically in�nite. 2p

b)Semantic properties: i) and iv), syntactic ii) and iii). 4 points, 1p/each.

c) i) is partially solvable: you can e.g. construct a machine which recognizes
such cM , but does not halt in �No�-cases, or show that the complement
problem is totally unsolvable. 2p
iv) is totally unsolvable: we should check all possible inputs, which will
never �nish. You can also prove it easily by contradiction method. Or rea-
son that because the complement problem is partially solvable (recursive-
ly enumerable language), the current problem must be totally unsolvable
(otherwise the problem would be solvable, which is known to be false). 2p

2

