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Abstract
Many real world datasets are represented in the form of graphs. The classical graph properties found in

the data, like cliques or independent sets, can reveal new interesting information in the data. However, such
properties can be either too rare or too trivial in the given context. By relaxing the criteria of the classical
properties, we can find more and totally new patterns in the data. In this paper, we define relaxed graph
properties and study their use in analyzing and processing graph-based data. Especially, we consider the problem
of finding self-referring groups in WWW, and give a general algorithm for mining all such patterns from a
collection of WWW pages. We suggest that such self-referring groups can reveal web communities or other
clusterings in WWW and also help in compression of graph-formed data.

1 Introduction

In this paper, we introduce new concepts and methods for finding new information in graph-structured data,
like World Wide Web (WWW), citation indexes or concept maps. Our aim is to study systematically, whether
the relaxed versions of the classical graph properties (Table 2) like ”nearly cliques” or ”nearly independent sets”
could reveal new interesting information. As an example, we will loosen the definition of a clique and consider
the resulting ”self-referring groups” in the WWW context. The self-referring groups can be interpreted as
clusters in WWW. Such clusters give compact description of the WWW graph structure and and are especially
useful for finding web communities. In addition, we will demonstrate how this new concept can be used for
compressing other graph-based data, like co-operational concept maps.

In the next sections, we will first introduce the idea of self-referring groups and give the formal definitions.
Then we will give the algorithm for finding all self-referring sets in a given graph and analyze its complexity.
We will introduce our first experiments for finding groupings (potential web-communities) among WWW pages
and applying our algorithm for compressing co-operational concept maps. Finally, we will compare our new
method to previous work and draw the final conclusions.

The basic concepts and notations used in this paper are listed in Table 1.
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Table 1: Basic concepts and notations for graphs.

G = (V, E) A graph which consists of a set of vertices V and a set of edges E = {{u, v}|u, v ∈ V } ⊆ V × V .
For a directed graph, E consists of ordered pairs, E = {(u, v)|u, v ∈ V }.

u Ã v A path (of length k) from vertex u to vertex v in a directed graph G, i.e. a sequence (v0, ..., vk)
such that u = v0 and v = vk and (vi−1, vi) ∈ E for ∀i = 1, 2, ..., k. In an undirected graph,
ordered pairs (vi−1, vi) are replaced by unordered pairs {vi−1, vi}.

degree(v) The degree of a vertex v. In an undirected graph, the degree of v is the number of edges
containing v: |{(v, w) | w ∈ V }|. In a directed graph, the degree of a vertex v is
degree(v) = outdegree(v) + indegree(v).

outdegree(v) The outdegree of a vertex v i.e. the number of edges leaving it.
indegree(v) The indegree of a vertex v i.e. the number of edges entering it.
|G|=|V | The size of a graph G = (V, E) is the number of vertices in V .

Table 2: Classical graph properties. First four properties are defined for undirected graphs and the last property
for both directed and undirected graphs.

Complete graph G is complete, if all of its vertices are connected to each other: ∀u, v ∈ V
{u, v} ∈ E.

Clique A subset of vertices V ′ ⊆ V such that each pair in V ′ is connected by an edge
in E: ∀u, v ∈ V ′ {u, v} ∈ E. I.e. a clique defines a complete subgraph in G.

Independent set A subset of vertices V ′ ⊆ V such that no pair in V ′ is connected by an edge
in E: ∀u, v ∈ V ′ {u, v} /∈ E. Observe that V ′ is an independent set in G iff V ′

is a clique in the complement graph G = (V, (V × V ) \ E).
Vertex cover A subset of vertices V ′ ⊆ V such that all edges in E are ”covered” by vertices

in V ′. I.e. for each {u, v} ∈ E either v ∈ V ′ or u ∈ V ′ or both. Observe that
V ′ is a vertex cover of G iff V \ V ′ is an independent set in G.

Strongly connected component A maximal subset of vertices V ′ ⊆ V such that for each pair of vertices
u, v ∈ V ′ there is a path u Ã v, v Ã u, or both. I.e. vertices u and v are
reachable from each other. A graph is strongly connected if it has only one
strongly connected component.

2 Self-referring groups

The idea of self-referring groups is to find a group of pages, which mostly refer to each other. Let us denote
this set of self-referring pages as S. If all pages in S refer to all other pages in S, then S is a clique and the
corresponding undirected graph is complete. However, we can loosen this criterion and require that each page
in S refers to at least minf part of other pages in S, in which minf is a user-defined threshold for S’s reference
frequency. This kind of self-reference is called here as strong self-reference. (See example in Figure 1.) Formally,
we define:

Definition: Let S be a set of vertices, |S| > 1, and minf a user-defined frequency threshold. S is strongly
self-referring, if ∀p ∈ S, degree(p)

|S|−1 ≥ minf . The reference frequency of S is fref (S) = min{degree(p)|p∈S}
|S|−1 .

Observe that we are now considering the underlying undirected graph structure of the WWW, and according
to definition of graph the duplicate edges are removed. By considering the directed graph structure we can find
more information about self-referring groups and the relations between them. For example, we can adopt the
idea of HITS-algorithm [6], and search the best authorities (pages referred by good ”hubs”) and the best hubs
(pages referring to good authorities) in the group. It is quite plausible that the authorities reveal the good
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Figure 1: Graph defined by link structure of web pages. The dark nodes construct a strongly self-referring set
with threshold minf = 2/3.

sources of new information in the group, and the good hubs give good overviews of the topics considered in
the group. Further, if we identify the WWW addresses, we can also determine the geographic distribution of a
group (whether it is international or represent only some nationalities).

Similarly, we can define the relaxed counterpart of independent sets:

Definition: Let S be a set of vertices, |S| > 1, and minf a user-defined frequency threshold. S is weakly inde-
pendent, if ∀p ∈ S, |S|−1−degree(p)

|S|−1 ≥ minf . The independence frequency of S is fis(S) = |S|−1−max{degree(p)|p∈S}
|S|−1 =

1− max{degree(p)|p∈S}
|S|−1 .

Observe that the weakly independent sets in G are exactly the same than strongly self-referring sets in the
complement graph G = (V, (V ×V )\E). Thus, we can use the same algorithm for search of weakly independent
sets.

3 Algorithm for finding self-referring groups

3.1 Basic idea

In the search algorithm for self-referring pages we can restrict the search space by recognizing that the connected
components are superclasses of cliques. When applying the algorithm for directed graphs, we can prune even
more by restricting the search into strongly connected components.

The basic idea of the algorithm (Alg. 1) is following:

1. Search connected components from graph G by depth-first search. This can be completed in time Θ(3|V |+
2|E|) (See section Analysis.) Let the resulting vertex set be V ′ ⊆ V , and the corresponding undirected
subgraph G′ = (V ′, E′).

2. For each connected component search self-referring groups from G′ by depth-first search (Alg. 2).

3.2 Depth-first search for self-referring sets

Searching the strongly self-referring or weakly independent sets is more complex than searching common cliques
or independent sets. For common cliques and independent sets we can use simple depth-first search, because
for each vertex set S, such that S is clique/independent set, also T ⊆ S is clique/independent set. This means
that we can prune a branch in search space, when we find a set which is not a clique/independent set. But this
does not hold for self-referring sets or weakly independent sets. Thus, we will prove another pruning criterion
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for self-referring sets.

Lemma 1: Let f(n) be the reference frequency of vertex set T , |T | = n, and f(n+k) the reference frequency
of T ’s superset S, T ⊆ S, |T | = n + k. Then f(n + k) ≤ n−1

n+k−1f(n) + k
n+k−1 .

Proof: Let f(n) = k
n−1 . Then the maximum value of f(n + 1) is k+1

n = n−1
n f(n) + 1

n . Let us suppose that
on each step f(n + 1) gets the maximum value, n−1

n f(n) + 1
n . Then, by solving the recursion equation, we get

that after k steps f gets maximum value f(n + k) = n−1
n+k−1f(n) + k

n+k−1 . 2

The following lemma is a direct consequence of the definition of self-referring sets:

Lemma 2: Let v be a vertex and S a strongly self-referring set, v ∈ S. Then the maximum size of S is
|S| ≤ degree(v)

minf
+ 1. 2

Theorem: Let v be a vertex and S a vertex set, v ∈ S, |S| = n, and fref (S) be the reference frequency of
set S. If fref (S) < 1− degree(v)(1−minf )

(n−1)minf
, then none of S’s superset can be strongly self-referring.

Proof: Let us denote by k = degree(v)
minf

+ 1 − n the number of items we can add to S until maximum size is

met. In the best case, the frequency of maximal set is f(n + k) = n−1
n+k−1f(n) + k

n+k−1 . The set is self-referring,

if n−1
n+k−1f(n) + k

n+k−1 ≥ minf ⇔ f(n) ≥ degree(v)minf−degree(v)−(1−n)minf

(n−1)minf
= 1− degree(v)(1−minf )

(n−1)minf
.

Thus, if fref (S) < 1− degree(v)(1−minf )
(n−1)minf

, then S can never become strongly self-referring. 2

Now we can give the depth-first search Algorithm 2 for searching all strongly self-referring supersets of the
current vertex set X, which is given as a parameter. In the main program, Alg. 1, the depth-first search is
called by a singular vertex set {v}, its degree d = degree(v), threshold minf , and an additional parameter
last, which is explained below. In each recursive call of Alg. 2, we first check, if the vertex set is self-referring,
and in the positive case we output it. Otherwise we check, whether it can be expanded to a self-referring set.
If the condition does not hold, we return from recursion. Otherwise we expand X with a new item, and call
the algorithm recursively. The recursion finishes, when the maximum size of the self-referring sets containing
initial vertex v is met, or we recognize that no more self-referring sets can be found. After returning from the
recursion, we try another new item, until all of them are tried.

Observe that we have to fix some order for vertices to avoid testing the same vertex sets again. In the
Algorithm 2, we denote u > v, when v precedes u in the given order. Variable last tells the last vertex added
to the candidate group, and thus all vertices preceding it are already tested.

Alg. 1 SelfReferringSets(G, minf ). An algorithm for searching all strongly self-referring sets in graph G = (V, E).

Input: G = (V, E),minf

Output: Y ⊆ V

1 begin
2 compute all connected components in G = (V, E)
3 for each connected component V ′ in G = (V, E) do
4 for all v ∈ V ′ dfs({v}, degree(v),minf , v)
5 end

3.3 Analysis

Let G = (V,E) be a directed graph. The strongly connected components can be found in time Θ(3|V |+ 2|E|)
by a well-known algorithm, which calls depth-first search once for the original graph G, once for its transpose
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Alg. 2 dfs(X, max(d, degree(u)), minf , last). A depth-first search of the self-referent sets in subgraph G′ = (V ′, E′).

Input: X ⊆ V, d, minf , last
Output: Y ⊆ V ′

1 begin
2 if fref (X) ≥ minf then
3 output X

4 else if (fref (X) < 1− d(1−minf )
(|X|−1)minf

)
5 then return
6 for all vertices u ∈ V ′ (u > last and ∃v ∈ X (v, u) ∈ E) do
7 dfs(X ∪ {u}, d, minf , u)
8 end

graph GT , and outputs the vertices of each tree. [12]
Let us now consider the worst case complexity of finding all self-referring sets. If the size of the vertex set is

|V | = n, we have to try in the worst case 2n sets (|P(V )| = 2n). However, we know that the maximum size for
each self-referring set X, which is superset of a vertex v, is degree(v)

minref
+1. This gives an upper limit for the depth

of algorithm. In sparse graphs we achieve an enormous saving: e.g. if the graph size is 100, average degree of
vertices is 18, and minf = 0.9, the hight of the search tree is only 18

0.9 + 1 = 21 instead of 100. However, in the
worst case when the graph is complete, we save nothing.

4 Initial experiments

4.1 Searching self-referring groups in Internet

In the first experiment, we searched self-referring groups in Internet. The initial graphs were constructed from
the best search results with keywords ”graph data mining”. For comparison we used two different search engines:
Google, which is based on PageRank algorithm, and AltaVista, which also uses connectivity information, but
is more content-oriented. In the extraction phase, only links to HTML pages via HTTP protocol were included
into results. After extracting the links, the relative hyperlinks were transformed into absolute addresses, cyclic
links to page itself were filtered out, and many links to one destination were considered as one link. After that
the 100 best ranked pages were selected to the input graph.

The graphs were quite loosely connected and we found only a couple of self-referring groups with frequency
threshold minf = 0.75. The self-referring groups of size ≥ 2 are listed in Tables 3 and 4. In the first graph
based on Google results we found three self-referring groups, all of them focusing around MGTS workshops
(International Workshop on Mining Graphs, Trees and Sequences) and homepages of program committee mem-
bers. In the second graph based on AltaVista results we found only two self-referring groups, both of them
about Graf-X program for graph-based data mining, and locating on the same cite.

This small experiment supported our initial guess that the self-referring groups are centred around one
common theme. However, there are various reasons for self-reference: the occurrence of same people, institutions,
products or just the location (cite). It also demonstrated the importance of the initial graph. In our experiment
the initial graphs were too sparse to produce more and larger self-referring groups, and the construction of more
tightly connected graphs should be further researched.

4.2 Combining concept-maps

In the second experiment, we tested our algorithm for compressing co-operational concept maps. The idea was
to combine several concept maps and compress the resulting graph by replacing the strongly self-referring sets
by new ”super-nodes”, which were given new labels.
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Table 3: Self-referring groups of size ≥ 2, when the initial graph consisted of 100 best search results by Google.
The page numbers are Google ranking numbers.

Page numbers Contents
22, 34, 86 MGTS-2003 and MGTS-2004 workshop pages and a homepage of a member of program

committee
22, 34, 97 MGTS-2003 and MGTS-2004 workshop pages and a homepage of another member of

program committee
22, 39, 56 MGTS-2003 workshop page and homepages of a member of committee in English and

Japanese

Table 4: Self-referring groups of size ≥ 2, when the initial graph consisted of 100 best search results by AltaVista.
The page numbers are AltaVista ranking numbers.

Page numbers Contents
1 23 58 Articles about Graf-X program
1 58 67 Articles about Graf-X program

The original concept maps were drawn by three university students on topic ”Tanzanian culture and educa-
tion”. The concept maps were combined simply by matching the nodes, which contained same words or stems,
like ”technology”– ”technology exposition” and ”social”– ”society”. All the ”loose” nodes which had at most
one relation were dropped. The resulting graph consisted of 48 concept nodes.

After combination, we searched strongly self-referring sets among concepts in the underlying unidirectional
graph. We made several experiments with different threshold values minf . First we run the program with
minf = 1.0, i.e. we searched all cliques in the underlying undirected graph. We found 29 cliques, which were
either cliques in one of the original concept maps, or contained concept nodes with same words. This did not
reveal anything new, as was expected. The threshold valued minf = 0.9 and minf = 0.8 gave the same result.
However, with threshold values minf = 0.7 we found new concept groups:

{Contextualized knowledge, Formal knowledge, Hidden knowledge, ICT, Indigenus knowledge systems }
{ Education, Poor internet exposition, Tanzanian culture, Technology, Technology explosion }
{ Education, Tanzanian culture, Technological education, Technology, Technology exposition }
The first concept group could be concluded from one of the concept maps alone, and the third one reveals

the contribution to educational technology, which was common for all students. However, the second one is a
new discovery which reveals the core of all the concept maps.

With threshold value minf = 0.6 we found 49 self-referring groups, each of them composed of at least four
concepts. The largest groups were

{ Change in educational system, Diffusion into local social systems, Laptop/Desktop computers, Programming
tutorial, Simputer, Technological education }

{ Change in educational system, Education, HIV/AIDS education, Laptop/Desktop computers, Programming
tutorial, Technological education }

{ Education, Poor internet exposition, Tanzanian culture, Technological education, Technology, Technology
explosion }

The third one only expands the group found in the previous experiment, but the first two concept groups are
totally new. They contain mostly the same concepts: Change in educational system, Laptop/Desktop computers,
Programming tutorial, Technological education. All of these are inherited from only one concept map, which
was very tightly connected and thus dominated the combination.

This experiment gave rise to two remarks: Firstly, our initial combination technique (adding edges between
nodes containing same words or stems) had too strong influence on the result. Secondly, one tightly connected
map can totally dominate the result, if the others are very loose. However, we found the results quite encour-
aging: self-referring groups could be applied for a tool, which assists in constructing cooperative concept maps
by suggesting closely related concepts.

6



5 Related work

The existing data mining techniques for graph-based data can be coarsely divided into two approaches: mining
frequent substructures, and clustering and searching the graph according to connectivity information. Our new
method can be included into the second approach, although it differs from the existing methods.

In the classical graph-based data mining (e.g. [9, 1]) the datasets are represented as graphs, and the task
of finding frequently occurring substructures reduces to search of frequent subgraphs. The graph-based data
mining suits especially well for structured data, but in fact any relational database can be represented as graph.
The vertices of graph correspond entities and the edges between them correspond binary relationships.

The general problem of graph-based data mining is following: We are given a set of labelled graphs S, in
which each vertex and edge has a label associated to it, and some threshold σ ∈]0, 1]. The task is to find
all subgraphs which occur at least σ|D| of the input graphs. Two subgraphs are considered identical, if they
are isomorphic (topologically identical) and have the same labels on the vertices and edges. Usually it is also
required that the graphs are connected, which reduces complexity and is uniform with the goal of finding
interesting relations. The problem is very complex because subgraph isomorphism is known to be NP -complete
[3].

Thus, our approach differs largely from the classic graph-based data mining task. While we search all
instances of some (relaxed) graph property in one huge graph, the typical graph-based data mining task supposes
a set of labelled graphs, in which they search frequently occurring subgraphs (i.e. each subgraph has several
instances in the collection). However, both methods can be used for simplifying graph-structured data. Cook
and Holder [1] suggest that we describe a frequently occurring substructure by some concept, and replace its
instances by this concept. Our approach can be used in the similar way: the strongly self-referring sets can be
replaced by ”super-nodes”, which are given a new label. Our future work is to study, whether these labels could
also be learnt automatically.

The techniques based on connectivity information are nowadays popular in Internet context. In the clustering-
based approaches, the idea is to interpret the sub-graph as a cluster, and the measure of similarity by length of
the shortest path between two vertices (for more details see e.g. [5, 4, 11]). For example, the clustering tech-
niques have been applied for analyzing and visualizing the Internet structure [2, 13], constructing taxonomies [8],
and extracting web communities [7]. However, the most important applications based on connectivity analysis
are the advanced search methods like HITS [6] and PageRank [10].

In HITS algorithm, we evaluate two weights for each page: authority value, which tells how relevant in-
formation the page contains, and hub value, which describes, how good references (links) the page contains.
According to main assumption, a page is a good authority if it is pointed by good hub pages, and a good hub,
if it points to good authorities. The goal is to find good authorities from the initial subgraph, by updating hub
and authority weights until the system converges.

In Page Rank algorithm, only one weight, the ”page rank” (PR) is calculated for the current page. The PR
value of a page is determined from the PR values of the predecessor pages (pages pointing to it). Thus, loosely
speaking, a good authority is also interpreted as a good hub. In addition, the processing order simulates an
idealized random surfer on Internet.

The trawling algorithm [7] for enumerating web communities can also be described by hubs and authorities.
In trawling, the idea is to find subgraphs containing bipartite cliques of i + j vertices. In such a clique each
of i vertices (hubs) points to all j vertices (authorities). This method differs from our approach in two ways:
first, we do not require full cliques, but only relative clique structure in the underlying undirected graph.
Second, our approach does not restrict the web communities to bipartite groups, but also ”democratic” groups
are considered. In Figure 2 we demonstrate this difference. The first graph and any three vertices (but not
all four) of the second graph construct bipartite cliques and are interpreted as a web communities by the
trawling algorithm, while our algorithm for self-referring groups selects only the second graph, which constructs
a self-referring group with frequency threshold minf = 0.75. It should be noticed that according to the HITS
algorithm, vertices 3, 4, 5, 6, 7, and 8 all have equal authority values.
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Figure 2: Example of two subgraphs G1 and G2. By trawling algorithm G1 and any three vertices of G2 are
interpreted as web communities, while our algorithm for self-referring groups produces only G2 with frequency
threshold minf = 0.75.

6 Conclusions

In this paper we have introduced new interesting graph properties, which can be applied for analysis and
processing of graph-based data. Especially, we have introduced a notion of self-referring set, which corresponds
a relaxed version of a clique. We have given an algorithm for searching all self-referring sets from the given
graph, and analyzed its time complexity.

In the future, we are going to study systematically, whether the relaxed graph properties reveal new inter-
esting information and how they can be applied. In addition, we are going to analyze the self-referring sets
further by HITS algorithm. The algorithm itself offers many interesting research tasks. For example, we can
adapt it for mining self-referring groups in weighed graphs.

Mining the relaxed graph properties has also a general interest in knowledge discovery. The most important
research problem for their wider use is how to optimize the algorithm. It should also be studied, whether the
existing optimization algorithms of the NP -complete problems could be applied within tolerable error range.
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