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A brief history of SVM.

• SVMs were introduced  by Boser, Guyon, Vapnik in 1992.

• SVMs have become popular because of their success in 
handwritten digit recognition.

• SVMs are now important and active field of all Machine 
Learning research and are regarded as an main example of 
“kernel methods”.



What is SVM and how does it work.

• Family of machine-learning algorithms that are used for 
mathematical and engineering problems including for example
handwriting digit recognition, object recognition, speaker 
identification, face detections in images and target detection. 

• Task: Assume we are given a set S of points xi ∈ Rn with i = 
1,2,..., N. Each point xi belongs to either of two classes and 
thus is given a label yi ∈ {-1,1}. The goal is to establish the 
equation of a hyperplane that divides S leaving all the points 
of the same class on the same side.

• SVM performs classification by constructing an N-dimensional 
hyperplane that optimally separates the data into two 
categories.
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How would you classify this data?

• Let’s consider the objects on illustration on the left. We can

see that the objects belong to two different classes. The

separating line (2 – dimentional hyperplane) on the second
picture is a decision plane which divides the objects into two

subsets such that in each subset all elements are similar.

Note: There are a lot of possible separating lines for a given

set of objects. Are all the separating lines (decision 

boundaries = decision planes) equally good?



Are all the separating lines equally good?

• Among the possible hyperplanes, we select the one 
where the distance of the hyperplane from the closest 
data points (the “margin”) is as large as possible. An 
intuitive justification for this criterion is: suppose the 
training data are good, in the sense that every possible 
test vector is within some radius r of a training vector.
Then, if the chosen hyperplane is at least r from any 
training vector it will correctly separate all the test data. 
By making the hyperplane as far as possible from any 
data, r is allowed to be correspondingly large. The 
desired hyperplane (that maximizes the margin) is also 
the bisector of the line between the closest points on the 
convex hulls of the two data sets.



An example of small and large margins.



Transforming the Data
• The mathematical equation which describes the separating boundary between two 

classes should be simple.

• This is why we map the data of input space into feature space. The mapping 

(rearranging) involves increasing dimension of the feature space.

• The data points are mapped from the input space to a new feature space before they 

are used for training or for classification.

• After transforming the Data and after learning we look for an answer by examing

simpler feature space.
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Learning

• Learning can be regarded as finding the maximum margin separating

hiperplane between two classes of points. Suppose that a pair (w,b) defines

a hyperplane which has the following equation:

• Let {x1, ..., xm} be our data set and let yi ∈ {1,-1} be the class label of xi.

• The decision boundary should classify all points correctly i.e. the following

equations have to be satisfied:

• Among all hyperplanes separating the data, there exists a unique one 

yielding the maximum margin of separation between the classes which can

be determined in the following way;
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Support vectors (1)

• Let’s notice that not all of the training points are important when choosing

the hyperplane. To make it clear let’s consider the following example:

• Let’s make two covex hulls for the two seperate classes of pionts. It’s is

clear that the rear points are not important for choosing the decison

boundary. At the above pictures the points which are relevant are marked

by yellow colour. The points are called Support Vectros.



Support vectors (2)

• All training points have associated coefficients with them. The 
coefficients express the strength with which that points are
embedded in the final decision function for any given test points. For 
all Support Vectors, which are the points that lie closest to the 
separating hyperplane, the coefficients are greater than 0. For the
rest of the points the corresponding coefficients are equal to zero.

• The following equation describes the dependency between the
training points and the decision boundary:

,where αi are positive real numbers – the coefficients.
The coefficients need to satisfy the following conditions:

The coefficients have to be chosen to maximize the first equation.



Support vectors (3)
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Kernel functions

• A Kernel is a function K, such that for all

• It computes the similarity of two data points in the feature space
using dot product. 

• The selection of an appropriate kernel function is important, since 
the kernel function defines the feature space in which the training 
set examples will be classified.

• The kernel expresses prior knowledge about the phenomenon being 
modeled, encoded as a similarity measure between two vectors. 

• A support vector machine can locate a separating hyperplane in the 
feature space and classify points in that space without even
representing the space explicitly, simply by defining a kernel 
function, that plays the role of the dot product in the feature space. 
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Predicting the classification

• Let X be a test point. The Support Vector Machine will predict the

classification of the test point X using the following formula:

• The function returns 1 or -1 depends on which class the X point belongs to.

- this is a dot product of vector w and vector form the origin

to the point .

b - this is a shift of the hyperplane from the origin of the

coordinate system.
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Exercises

• Explain what is the difference between soft 
margin and regular margin.

• Give two examples of kernel function.


