
## Neural networks

Lukáš Obrdlík (lobrdlik@cs)
Marek Winkler (mwinkler@cs)

# Biological neuron

- Primary part of neural system:
  - 1. Body soma
  - 2. Inputs dendrites (about 100 dendrites each neuron)
  - 3. Output axon (only one per neuron)
- Synapse: interface between dendrite of one neuron and axon of other
- Synaptic bind (weight) can be excitant or inhibitive

# Biological neuron



# Actual general neuron model

$$y = g(u) = g(f(\vec{x}))$$

$$x_n$$

#### f base function:

- linear base function (LBF)

$$u = \sum_{i=1}^{n} w_i x_i$$

- radial base function (RBF)

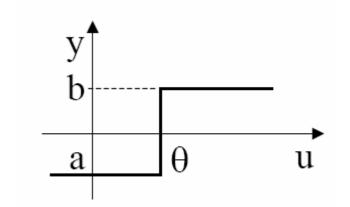
$$u = \|\vec{x} - \vec{w}\| = \sqrt{\sum_{i=1}^{n} (x_i - w_i)^2}$$

#### g trigger function:

- discrete
- piecewise continuous
- continuous

# Linear base function (LBF) Trigger function - discrete

$$y^{new} = \begin{cases} a & for & u < \theta \\ b & for & u > \theta \end{cases}$$


$$y = \begin{cases} b & b \end{cases}$$

$$y = \begin{cases} b & d \end{cases}$$

$$y = \begin{cases} b & d \end{cases}$$

$$y = \begin{cases} b & d \end{cases}$$

$$y = \begin{cases} c &$$



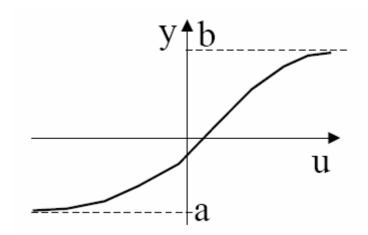
#### Usually

a = 0, b = 1 binary output

a = -1, b = 1 bipolar output

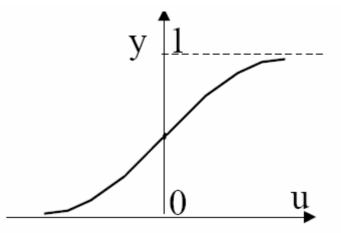
# LBF - Trigger function piecewise continuous

$$y = \begin{cases} a & for \ u < c \\ b & for \ u > d \end{cases}$$


$$a + \frac{(b-a)(u-c)}{d-c} & for \ c \le u \le d \end{cases}$$

$$a + \frac{(b-a)(u-c)}{d-c} = a + \frac$$

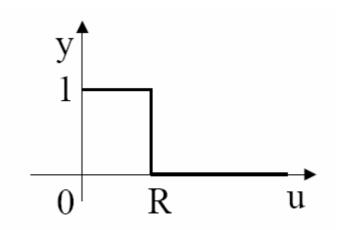
## LBF - Trigger function - continuous


ex. sigmoid:

$$y = a + \frac{b - a}{1 + e^{(-\lambda u + c)}}$$

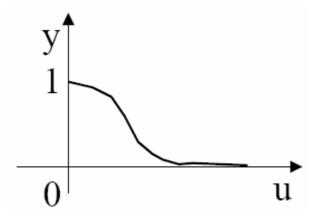


For common values a = 0, b = 1, c = 0:


$$y = \frac{1}{1 + e^{-\lambda u}}$$



# Radial base function (RBF) Trigger function

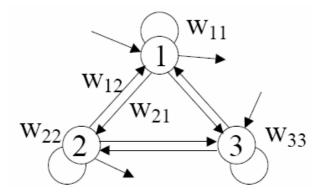

Discrete

$$y = \begin{cases} 1 & for & u \le R \\ 0 & for & u > R \end{cases}$$

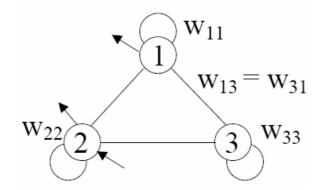


Continuous

$$y = e^{-\left(\frac{u}{\sigma}\right)^2}$$

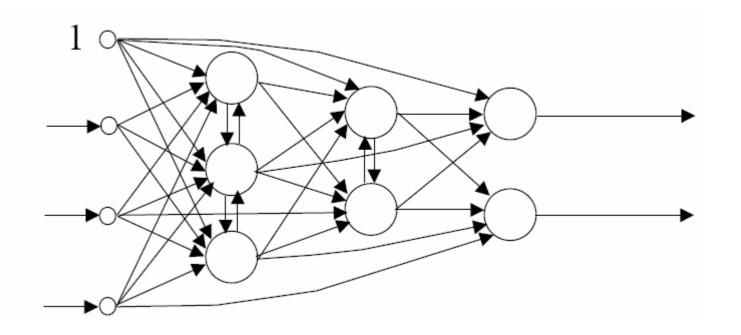



### Neuron networks classification


- Architecture
- Learning
- Application
- Implementation
- Computation
- Rating of neural networks

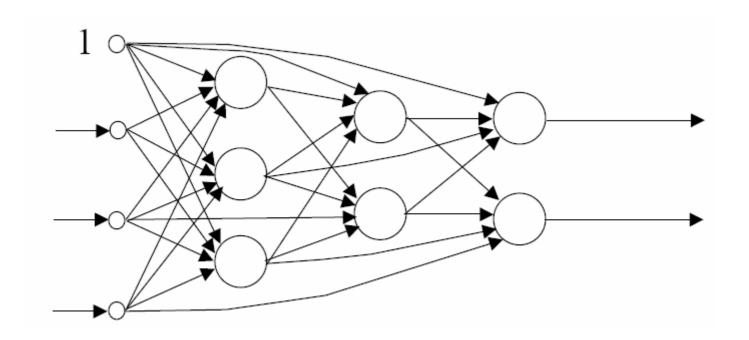
### Classification – Architecture 1/4

1) Full connected network



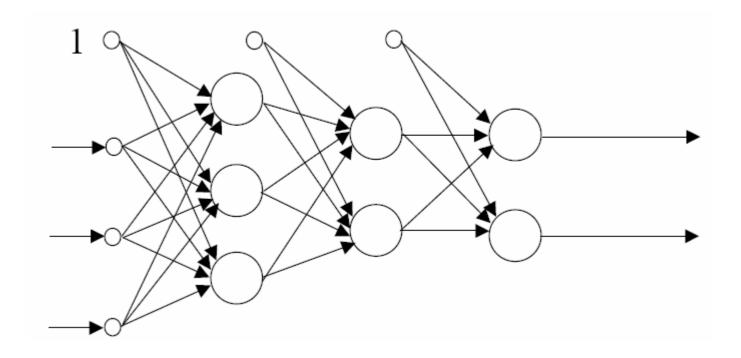

2) Full connected symmetrical network




## Classification – Architecture 2/4

#### 3) Layer network




## Classification – Architecture 3/4

#### 4) Acyclic network



## Classification – Architecture 4/4

#### 5) Feed-forward network



# Classification - learning

- 1. Correlation learning
- 2. Competitive learning (adapt only weights of the winning neuron eventually weights of its neighbours too
- 3. Adaptation learning (adapt weights of all neurons)

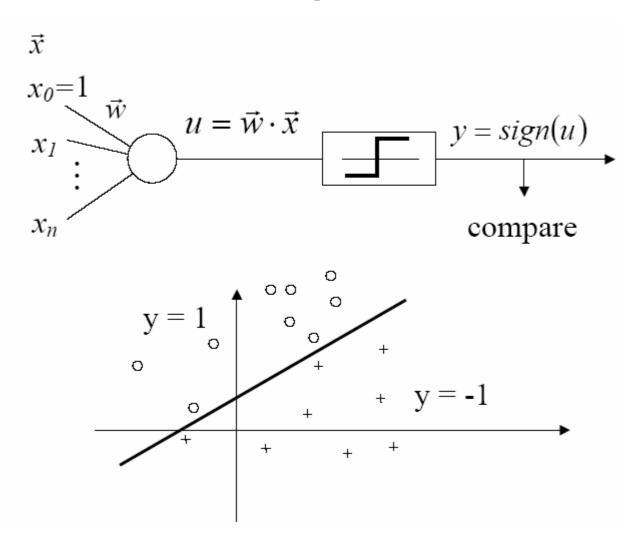
# Classification - application

- 1. Classification (input vector categorization into one of the existing class)
- 2. Clustering (creating groups of similar input vectors)
- 3. Vector quantification (assigning input vector to nearest sample vector)
- 4. Association (auto-association, hetero-association)
- 5. Functional approximation
- 6. Presumption
- 7. Identification of systems (behaviour of systems approximation)
- 8. Optimalization

#### Classification

- Implementation hardware software
- Computation
   synchronous
   asynchronous

# Classification - rating


- 1. How well can it learn patterns of the training set?
- 2. How is it successful with new (testing) patterns?
- 3. What are the requirements? (memory, time..)

Network quality response rating – may d is the demanded output vector and  $\vec{o}$  is the existing output vector  $\Rightarrow$ error is distance of these vectors.

$$Err_{Euk} = \|\vec{d} - \vec{o}\| = \sqrt{\sum_{i=1}^{m} (d_i - o_i)^2}$$

$$Err_{Ham} = \sum_{i=1}^{m} \left| d_i - o_i \right|$$

# Perceptron



# Perceptron

#### Basic rule:

$$\vec{w}(s) = random$$
  
 $\vec{w}(s+1) = \vec{w}(s) + 2p\vec{z}(s)$  for  $\vec{w}(s) \cdot \vec{z}(s) \le 0$   
 $\vec{w}(s+1) = \vec{w}(s)$  else

#### Batch rule:

$$\vec{w}(s) = random$$

$$\vec{w}(s+1) = \vec{w}(s) + p \sum_{\vec{z} \in Z(\vec{w}(s))} \vec{Z}$$

#### References

- Zbořil, F., Lecture texts for Neural Networks
- Mehrotra, K., Mohan, C., K., Ranka, S.: Artificial Neural Networks, The MIT Press, 1997
- Munakata, T.: Fundamentals of the New Artificial Intelligence, Springer 1998
- Hassoun, M.,H.: Artificial Neural Networks, The MIT Press, 1995
- Haykin,S.: Neural Networks, Macmillan College Publishing Company, 1994