Chapter 2

Modelling

2.1 Basic concepts

The basic concept of modelling is a model — an abstract representation of a real
world process. For example, scientific theories are models of reality, which try to
explain it and predict future phenomena. In computer science, models are defined
more tightly. In the following, we define the basic concepts used in this theses:

A model M = (S, 0) consists of a model structure S and assigned parameter values
f. Le. it is an instance of a given model structure.

The model structure S is a structure which determines the parameters required
for constructing a model. Typically the structure consists of variables and their
relations (e.g. conditional dependencies). A less obvious structure is e.g. a linear
regression equation V=a+ B1 X1+ B2 X5, which determines how the predicted vari-
able Y depends on explanatory variables X; and X5, but does not fix the parameters

«, ﬁla ﬁQ-

The model parameters 6 are assigned numerical values like probabilities in Bayesian
network or linear coefficients (above «, 3, 7) in linear regression.

When we want to find a model describing the problem domain, we should first decide
the modelling paradigm — the general modelling principles used. The modelling
paradigm consist of basic definitions, assumptions, and techniques for constructing
and using certain kind of models.

The next step is to define the model structure. The search space is often called
a model family — a set of possible model structures, for example all Bayesian
networks with 3 nodes.
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Figure 2.1: Modelling paradigms like Bayesian networks, decision trees and linear
regression describe the general modelling principles used. A model family is a set
of model structures in the given modelling paradigm. E.g. in Bayesian networks
modelling paradigm a model family consists of different graph structures with vari-
able nodes and conditional dependencies (edges) between variables. A model class
is a set of models with a fixed structure but different parameters 6;. In the case of
Bayesian networks the parameters are prior probabilities associated to root nodes
and conditional probabilities associated to non-root nodes. A model is an item in a
model class with a fixed structure and fixed parameters.
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When the model structure is fixed, we still have several possible models with differ-
ent parameter settings. This set is called a model class. A model class is a set of
models with the same structure and they can be considered as instances of a subset
in model family.

The hierarchy of modelling concepts with some examples is presented in Figure 2.1.

Another concept often used in data mining is a pattern. A pattern is a local model,
which describes only part of problem domain. For example associative rules describe
only some dependencies between variables in the data, while a Bayesian network
describes all dependencies (conditional probabilities) between variables.

The models can be further classified as global or local. The local models are usually
called patterns, and concept "model” is reserved only for global models. A global
model describes the whole data set and/or is able to make predictions for any
data point. For example, all students in Programming course can be classified
as beginners, novices or experts according to the prequisite test. On the other
hand, a pattern describes only a relatively small part of data, and thus they are
quite unsuitable for prediction. For example, most students who are good in Data
Structures course are typically good also in Theory of Computation.
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2.2 Descriptive and predictive modelling

The main tasks of knowledge discovery can be classified as descriptive and predictive
modelling.

Descriptive modelling is the core of classical data mining. In descripitive modelling
we describe the data or its producing process and try to give ezrplanations. We
search for groupings and dependencies which "naturally” hold in the data. Usually
the goal is to find only simple models or local patterns.

The typical tasks of descriptive modelling are:

e Clustering: identifying a finite set of categories or clusters to describe data.

e Summarization: finding a compact description for a set of data. The descrip-
tion can be for example a probability distribution.

e Dependency modelling: finding a local model (a pattern) that describes sig-
nificant dependencies between variables in the given data set.

e Change and deviation detection: discovering most significant changes in the
data set. An important application is to detect outliers, untypical datapoints,
which do not fit the general model.

For example, in educational context, we can search dependencies between students’
performance in Programming and Data structures courses, or cluster the students
into five clusters according to their weekly exercise points. Sometimes also informa-
tion retrieval (retrieving the relevant documents for the user based on their content)
and ezplatory data analysis (EDA) (interactive and visual techniques to represent
the data visually for the human interpreter) are included to descriptive descriptive
tasks of KDD.

In ViS§Cos project, most of the use cases concern descriptive modelling. We would
like to find common features for drop-outs, failed and really good students, as well
as identify tasks which indicate good or bad success. In addition, we would like to
find groupings of students and tasks and relations between those groupings.

Predictive modelling is the core of classical machine learning. In predictive mod-
elling we search the most plausible model which has produced the data, and which
can be used to predict the future outcomes. The goal is to find a global model,
which can be quite complex. The typical tasks of predictive modelling are:
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e (lassification: discovering a function, which classifies the data into predefined
classes.

e Regression: discovering a function, which maps a data item to a real-valued
variable.

e Bayesian modelling: learning a probabilistic model, which describes the de-
pendencies between attributes, and can be used for predicting reasons and
effects.

For example, we can predict the student’s success in the course, given the previous
study record, or diagnosize the reasons for good or poor success. These are also the
most important use cases in the ViSCoS project: to predict the drop-outs, failed
students and possibly also good students as early as possible.

According to our view (Figure 2.2), descriptive and predictive tasks are complemen-
tary phases of the same modelling process. This view is especially useful in adaptive
learning environments, in which the model can be developed throuh several courses.
The existing data is analyzed in descriptive phase, and a desirable model class is
defined. An initial model is learnt, and applied to new data in prediction phase.
After the course, the new data is analyzed, and the old model is updated or a new
better model contructed.

new data

Predictive
\_/ model

application

data

Descriptive
model

Figure 2.2: Iterative process of descriptive and predictive modelling tasks. Descrip-
tive models reveal underlying patterns in the data and guide the selection of the
most appropriate predictive model. When the predictive model is applied in prac-
tice, we gather data for the new descriptive models. As a result, the next generation
predictive models are improved in every cycle.
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2.3 Target functions

The goal of data modelling can be defined exactly by target functions. This concept
is especially used in classification literature instead of models. Mathematically,
functions are restricted type of models, but with certain relaxations we can describe
all models as functions.

The underlying assumption is that in principle we could model the reality perfectly,
i.e. the attribute in interest is a function of other attributes. Formally, a target
function is any function defined over data set, which gets a set of known attributes
X as its parameters and calculates the value of some new attribute Y, which we
are interested. In an ideal case, we can efficiently find a function f : X — Y such
that f(mx(t)) = my(t) for all tuples ¢t € r. The form of function (model structure)
can be given, like in linear regression, where we try learn linear functions of form
Y = a+ 51X+ 5o Xo+ ... 4+ B Xy, for predefined X1, ..., X; and Y. Sometimes, even
the function form should be learnt, and we know only what kind of function we are
looking for. For example, in decision trees, we want to learn a set of boolean-valued
expressions (composed features) F;(t), for which F'(¢) = 1, only if ¢’s class is ¢;. This
corresponds to situation, when we have fixed only the modelling paradigm, but not
the model structure.

In practice, we can seldom learn the target function exactly or it can be computa-
tionally unfeasible, and we have to content ourselves with its approximation. That
is why the learnt function (model) is often called a hypothesis. In learning phase
the best hypothesis is selected according to some score function, and the new obser-
vations can either confirm or weaken the hypothesis. In educational applications,
it is also typical that the data set is itself inconsistent, i.e. for some tuples t; and
to t1[X] = t2[X], but t1]Y] # to[Y]. In that case, we cannot define any function
f: X — Yforallt € r. It is possible that we could find a function in higher
dimensions (containing new attributes X;), but with the current data we can learn
only partial functions.

The target functions are explicitely used only in predictive modelling, but the type
of target functions can also demonstrate the difference between predictive and de-
scriptive modelling. In both approaches, we are searching functions of some given
form or type. In predictive modelling, we have fixed the input attributes (function
parameters) and the output attribute and try to find a function, which best approxi-
mates the output attribute value for all data points given the input attribute values.
Because the function covers all data points, it is called global. In addition, we have
usually already selected the maximum set of potentially relevant input attributes
Xy, ..., X} and the function uses all k£ attributes as its parameters.
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As a contrast, in descriptive modelling, we usually have not fixed the input and
output variables, but try to find all functions, which approximately hold for X
and Y. The resulting functions are often defined only for a projection of r onto
some attribute set X C R. In addition, the function does not have to hold for
all datapoints, but the domain can be restricted to some subset ' C r. That
is why the functions are called partial. They do not correspond to any global
model, but a local pattern. In mathematics, this corresponds to a resctriction of
function f|/(¢). In practice this means that we should discover both the function
(of some restricted type) and the subset 7' C r, where function is defined. For
example, associative rules describe functional dependencies between some attribute-
value pairs X = x = Y = y, which hold for some large enough subset of /. The
resulting functions are characteristic functions, with restricted domain ox—.(r). In
addition, we are usually interested in only the tuples, for which the relation holds,

ie. flxs(t) = 1.

Clustering is an example of descriptive modelling, in which we are searching a global
target function. The goal is to find a function approximation f : r — {c1, ..., ¢ },
which maps each data point to its "best” cluster ¢;. Unlike in predictive modelling,
the goal set {ci, ..., ¢, } is not given, but we should also decide the number of clusters
and find the best clusters.

2.4 Model selection

The principal problem in data modelling is model selection, i.e. how to select the
best model, for the given data and problem. The problem can be divided into three
subproblems:

1. How to select the best modelling paradigm?
2. How to select the best model structure and thus the model family?

3. How to select the best model in a given model family?

Usually the most emphasis has been put on steps 2 and 3, which can be solved
by suitable score functions. However, step 1 already rules out a vast number of
possible models, and it is possible that the data cannot even be modelled by the
selected paradigm. Analogically, the paradigm is like a grammar, which defines what
we can express in the language. We cannot express Russian sentences by Finnish
grammar, even if the words are correct. Unfortunately, the underlying assumptions
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in paradigms are often implicit, and the only choice is to try several paradigms and
then select the best one.

Selection of model structure and model parameters are relatively well-studied prob-
lems. As we have already remarked, we can very seldom learn the exact model.
Thus, we need a policy to select the best hypotheses among all alternatives. The
same method of score functions can be applied to both problems, although trying
all possible model structures can be intractable and some heuristics are needed. In
such heuristics we once again commit ourselves to some assumptions, which should
be made explicit, before we can judge their suitability to the given data and prob-
lem. In descriptive modelling, the model structures are relatively simple, and we
can search through the whole model space. Fortunately, the score functions can also
prune the search space remarkably.

In the following, we will first discuss about the model complexity, which affects on
the selection of paradigm and model structure. Then we will continue on heuristics
and implicit assumptions, which are used to restrict model family or select the model
structure. Finally, we will discuss about the score functions used in predictive and
descriptive modelling.

2.4.1 Model complexity

The desired model complexity is an important choice in model structure selection.
On one hand, we want to get as expressive and well-fitting model as possible, but
on the otherhand, the more spcialized model is, the more training data is needed
to guarantee that the model does not overfit. Qverfitting is the main danger of
complex models in combination with small data sets like in educational domain.
We say that model M overfits data, if there exists another model M’ such that M
has smaller error in the training set than M’ but M’ has smaller true error than
M. I.e. the model adapts the training data so well that it models even the noise in
data and does not generalize to any other data sets. Overfitting can happen even
with noise-free data, if it does not represent the whole population. For example, if
some test is voluntary, only the most active students tend to do it, and we cannot
generalize the results to other students.

The best way to avoid over-fitting is to use a lot of data. A small training set is
more probably biassed, i.e. it does not represent the real distribution. For example,
the attributes can have strong correlations in the sample, even if they are uncorre-
lated. When large amounts of data are not available, the best is to select simple
models. In practice, the attribute set can be reduced by selecting and combining
original attributes. This is also an important option when selecting the modelling
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paradigm. Descriptive modelling paradigms impose usually very simple patterns,
but in predictive modelling, the paradigm may require too complex models. For
example, decision trees require much more data to work than Naive Bayes classifier.
We will return to this topic in chapter ?77?.

Some learning methods have preference for simplicity in their score function. The
most famous such principle is Occam’s Razor, which states that we should favour
simpler hypothesis. An application of Occam’s Razor in machine learning is min-
imum description length principle (MDL), which favours models which can be de-
scribed by shortest code. However, it should be noticed that the description length
depends on the representation, and MDL does not give an absolute measure for
simplicity. In addition, several heuristic overfitting avoidance methods have been
developed, with varying success. In some domains they can achieve great improve-
ments, while in others they can lead to even poorer performance.

Model validation e.g. by cross-validation is especially crucial if overfitting is sus-
pected. The goal of cross-validation is to measure, how well the model generalizes
to new data points outside the training set. Some methods use the cross-validation
already in the learning phase, to decide appropriate model complexity. We will
return to model validation in the next section.

On the other hand, a simple model generalizes well, but it can be also too simple.
Too simple model does not catch any essential features. There is also danger that
if you try enough many simple patters, at least some of them will fit, even if there
are no patterns at all. For example, consider a data set of totally independent
binary-valued attributes, which follow binomial distribution with parameter p = 0.5
(i.e. each attribute has an equal distribution). If the data size is 100 tuples, any
associative rule of two attributes has 35% probability to occur. This is quite high
frequency, and there is a big temptation to accept such a spurious rule, if no further
validation is performed. This phenomenon is typical to descriptive modelling, and
historically, it has been one of the main reasons to critisize data mining. As Sullivan
et al. [?] state it: ” Data snooping occurs when a given set of data is used more than
once for the purposes of inference or model selection. When such data reuse occurs,
there is always the possibility that any satisfactory results may simply be due to
chance rather than to any merit inherent in the method yielding the results’.

As a compromise, we should select simple models, which still explain the data well.
Very often, this happens through trial and error, in an iterative process of descriptive
and predictive modelling.
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2.4.2 The bias in learning styles

Every teacher knows that the learning style affects the learning outcomes, too. The
same holds for machine learning. Even if the learners are committed to the same
modelling paradigm and try to optimize the same score function, they can produce
different models according to their learning styles. The main reason is that the
learners do not perform an exhaustive search through the model space, but use
some heuristic principles to prune the search space. These assumptions cause bias
in the resulting model: certain kind of models are preferred to others.

The main division of learning styles is to inductive and deductive learning. The
methods are same than in general scientific paradigm: in induction we infer a hy-
potheses from a set of examples, while in deduction the theory is applied to new
instances. In pedagogical terms, inductive learner is like a student, who practices
mechanically with as many examples as possible before goint to the exam, while a
deductive learner tries to understand the new material in accordance with her/his
previous knowledge.

In machine learning, the inductive learning is much more popular, because it enables
generalization to new instances without any a prior knowledge about the domain.
In deductive learning we do not in fact learn anything new, but just infer new con-
sequences from the existing domain theory. We can for example infer new features
from the data or learn how the theory is manifested in data. According to Mitchell
[Mit97|, deductive learning is best used as a complement to inductive learning,
where it can be used to initialize the model, define the score function or guide the
search. In this way, we can manage with smaller training sets, and the assumptions
of the deductive theory are explicitely declared.

Inductive learning requires more training examples to work, and what is even more
critical, it has to make some implicit assumptions about the data. These assump-
tions are known as inductive bias or inductive principles. These principles are nec-
essary for inductive learning, because otherwise the model cannot generalize outside
the training set. Often, the inductive bias is also necessary for practical reasons,
because complete search in large model space is intractable.

Inductive bias has a critical role in data modelling, because it tells, which model
family and algorithm works best for the given data and purpose. When the goal
is predictive modelling, we can first perform descriptive analysis to discover the
nature of data, and then select the methods with most suitable inductive principles.
In descriptive modelling, the purpose affects on selection, for example the principle
how we define a cluster.

The inductive bias can be further divided to two types [Mit97|:
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1. In restriction bias we restrict the search space (model family). This kind
of bias is also called representational or syntactic, because it restricts what
kind of models we can represent. The restriction can be inherent already
in the modelling paradigm. For example, linear regression model supposes
that the target function is linear, and rule out all other functions. Inside a
modelling paradigm, we can restrict the search space by selecting the number
of attributes (model size). The bias can also concern the learning style. In
consistent learning we suppose that the true model is fully representable in
the selected model family and thus the model should have 0 training error.
The stricter the restrictions, the more efficiently we can learn the model — if
the reduced search space contains the true model any more.

2. In preference bias we do not rule our any models, but instead put preferences
on them. For example, we can prefer more special models to general ones,
or favour the simplest models like in Occam Razor principle. The preferences
can also concern the ways to estimate parameters. Preference biasses are
frequently used in heuristic optimization algorithms to navigate in the search
space and find good models efficiently. For example, in greedy heuristic we
always move to locally best direction, and the resulting model is not necessarily
the globally optimal.

As we observe, the restriction bias concerns selection of model structure, while
preference bias can concern both model structure and parameters. Preference bias is
usually more recommendable, but sometimes we cannot avoid restriction bias. The
effects of bias are very domain-specific, and the same bias can be either beneficial or
undesirable, depending on the domain. In fact, prior knowledge about the domain
can work as an efficient bias. This kind of semantic bias can be expressed in the form
of either restriction or preference bias. This idea is occupied in our general paradigm
of descriptive and predictive modelling: the results of descriptive modelling phase
guide the predictive modelling.

Some of the biasses are explicitely expressed in the method and the used can manip-
ulate them. For example, in probabilistic clustering, the user can decide the form
of distribution. But more often the biasses are implicit and unchangable, and the
user should just be aware of them. A typical inductive bias in maching learning is
an assumption that the training set represents the whole population and thus the
distribution is also same. If the future examples have very different distribution,
the method does not work. A more restrictive inductive bias is the assumption of
Normal distribution, which in practice holds very seldom. If the training set is very
large, the error is small, but for small data sets assumption of binomial distribution
is better. In clustering, there is a vast number of different methods with different
biasses. These will be discussed later in Chapter 77.
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Inductive learning can be further divided into eager and lazy or instance-based learn-
ing. An eager learner constructs one global model during the training and the model
cannot be change afterwards. In pedagocial terms eager learner is like a student,
who already thinks how to apply the theory to new problems, before it is actually
asked. On the other hand, a lazy learner tries to delay learning as long as possible.
The learner stores all training examples, and approximates the function value for
a new instance locally, according to previous examples. Thus, lazy leaner is like s
student, who collects all given material, but does not try to construct any general
principles. When given a problem, s/he tries to apply most similar old examples and
interpolates the answer. The most common variation of lazy learning is k-nearest
neighbours method. For every new data point the method calculates mean, median
or some other function of k£ nearest neighbours’s target function values.

In eager learning, the inductive bias is the assumption that a global model can be
learnt from the training example. In lazy learning, the inductive assumption is that
the new point is similar to the closest previous examples. Eager learner takes more
time in the learning phase, but the application is very fast. As a contrast, in lazy
learning the training is fast, but application is more worksome. In addition, lazy
learning requires a lot of training data to work. That is why eager learning, or
combination of both, are by default better cadnidates for educational applications.

2.4.3 Score functions in supervised and unsupervised learn-
ing

The score function measures, how well the model or pattern fits the data. An ideal
measure function would reflect precisely the utility of a particular model. However,
such functions are hard to define, and instead we use generic measure functions like
probability, sum of squared errors, or misclassification rate. One important criterion
is that the measure function should be robust, i.e. insensitive to small changes in
the data.

According to machine learning terminology, predictive and descriptive modelling
can be seen as supervised amd unsupervised learning. The main difference lies in the
use of score functions: In supervised learning (classical machine learning) the goal
is to determine the model structure and parameter values that maximize the score
function, given some example data (training set). Because the correct answers are
known, we can simply compare the predicted values to real values. In unsupervised
learning, the correct answers are not known, and we should use other kind of score
functions, which measure the general goodness of a model or pattern.

In pedagogical terms, supervised learning could be compared to "teacher-centered
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pedagogy”. We suppose a "teacher”, who is teaching the system and evaluating its
performance. The teacher can be a fittness function or some other external method
for estimating the proposed model by learning machine. The teacher has example
data — set of input values with their correct output values — and knowledge about
environment (unknown to the learning system). The system tries to learn a model,
which produces the most correct output values. Typically this learning happens
through "trial and error” The system is given input values, and it produces output
values according to its current model candidate. The performance is evaluated
by the teacher according to prediction error, i.e. the difference between real and
proposed output values. In addition, there may some other evaluation criteria based
on teacher’s preferences or knowledge about environment. For example, the teacher
may favour simpler solutions to more complex ones according to Occam’s Razor
principle.

Unsupervised learning could be compared to ”student-centered pedagogy”. No
teacher is supposed, but the learning system has to construct and evaluate the
model itself. The system is given only set of sample inputs without any ”correct”
output values. The system has only a general goodness function to evaluate its own
performance, based on apriori knowledge about the environment. For example, the
score function measures, how well the pattern covers data (e.g. the frequency of an
associative rule, or data likelihood given a clustering) or how informative it is (e.g.
information gain measure). This kind of goodness function could be called a tutor,
who supervises general learning process and knows some general learning principles,
but does not know the correct answers on spesific tasks!

2.4.4 Overfitting avoidance and bias in ViSCoS project

In ViSCoS project, the data sets are small like in most educational applications,
and the risk for overfitting is apparent. Thus, restriction to or preference for simple
models is a natural bias. This preference for simplicity concerns both modelling
paradigms and model sructures. For classifications tasks — predicting success or
failure in the course — linear regression and Naive Bayes model are good paradigm
candidates. In both paradigms, the model parameters can be defined quite accu-
rately from a small set of data. The number of attributes is also critical for model
simplicity, but in our case it is not a problem, because we have only a few attributes
available. However, the attribute domains are too large and may need some reduc-
tion. This will be returned in the next chapter.

The prior knowledge on the domain would be especially valuable bias, which could
compensate also the missing data. The course teachers can give some subjective
knowledge, but the better approach is to discover such knowledge. This is exactly
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the goal of descriptive modelling. In the descriptive phase, we will use all available
data to find knowledge in the form of patterns: relations like correlations and as-
sociative rules and groupings by several clustering methods. These patterns give
important information about the most relevant attributes and their relations.

In clustering, the bias is especially critical, because it determines, what kind of
groupings we will find. We should define the desired number of clusters and what
kind of clusters are preferred. In probabilistic clustering an important question
is the shape of distribution. In the grade distribution we can usually accept the
Normal Distribution, but does it hold for exercise task points or difficulty of tasks?
This topic will be returned in Chapter 77.

2.5 Model validation

The aim of model validation is to give insurance that we have found a good model,
or at least that we do not accept a poor model. The same techniques can also be
used for comparing alternative models and select the best one. However, it is good
to remember that the methods are just insurance policies, and they do not eliminate
chance and variability in data. In the following, we will briefly introduce the most
common validation techniques for decsriptive and predictive modelling. The tests
will be demonstrated in practice in the susequent chapters.

2.5.1 Statistical tests

In descriptive modelling, we would like to get insurance that the found patterns
are meaningful and not only due to chance. This is a real danger especially with
small data sets, because we perform an exhaustive search for quite simple pattern
structures. It is quite probable that some of the discoveries are spurious and could
have occured in totally random data, as well. It is always good to follow Smyth’s
[Smy01] instruction and imagine, how the method would have worked with totally
random data. This is exactly the goal of statistical significance tests.

The statistical tests follow the general schema of proof by antithesis. If we want to
validate hypothesis H, given observation X = z, we make an antihesis (0-hypothesis)
Hy, = —H. If the probability of obervation given the 0-hypothesis is very small, we
reject it and accept the original hypothesis H.

In significance test we evaluate some test measure X and calculate the probability
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PX>t)=a

t

Figure 2.3: The idea of significance test. The distributional form depends on the
given test measure. Value P(X > t) = a is the significance level, typically 0.01,
and t is the corresponding critical value, given the test distribution. If the value of
the test measure X = x lies on shaded area, the observation can be considered as
statistically significant at the given level a.

P(X > z) = p' that observed value X = x could occur by chance. If this probability
is very small, we can accept the hypotheses at the level of significance p. The typical
levels of significance are:

0.05  nearly significant
0.01  significant
0.001 very significant

The corresponding test measure values g5, t0.01 ,l0.001 are called critical levels.
Usually the critical levels are available and it is enough to compare the test measure
to critical levels of the given test distribution.

x2-test

x2-test is a popular significance test used to compare distributions (variances). The
uderlying assumption is that the data is approximately normal-distributed and thus
the squared deviation from the expected distribution approaches y2-distribution.
Let’s suppose that we have observed interesting distribution in attribute X € R.

1This so called right-tail test is used, when we have observed larger test measure value than
expected. If we have observed smaller value, left-tail test P(X < —x) is used instead. In the
two-tailed test we calculate probability P(X < —z V X > x).
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We would like to know, if this phenomenon is just due to chance or if we have found
something extraordinary. If X can have m different values x4, .., z,,, we calculate
test measure

2 _ oy m(m(xi) — e(z:))®
X = Ez:l 6(%,)

bl

in which e(z;) the expected value of m(xz;). Expected frequencies are evaluated
under assumption of random data, and thus e(z;) = n/m for all 5. If the measure
is greater than the critical value t,(m — 1) for selected level p and m — 1 degrees
of freedom, then the we can suppose that with p probability the observation is not
due to chance.

If the observed frequencies are very small, the the measure does not follow y2-
distribution and test becomes less accurate. As a rule of thumb, all frequencies
should be at least 5. If this this does not hold, we can try to combine or redefine
attribute values or use binomial test instead.

Binomial test

Binomial test is a better alternative than x2-test, when the frequencies are small,
which is often the case with educational data. Now the observed attribute can
have only two values or it should be made binary-valued. For example, if X can
have m values, we can still study cases X = = and X # z. Like in previous
example, we suppose that in random data all values have equal distribution, and
thus p = P(X = z) = 1/m and ¢ = P(X # z) = ™. Now we can calculate the
probability that our observation m(X = x) = k is significant. If we suppose random
data, the observation holds with probability

n

Pm(X =x)>k)=%_" ( )piqn_i.

?

If this probability is less than 0.01, we can assume that discovery is significant.

2.5.2 Independence test

With independence test we can measure, whether the dependency between at-
tributes is significant. Let us consider the simple case, when we have two binary-
valued attributes A and B. Now the 0-hypothesis is that the A and B are indepen-
dent, and thus P(A, B) = P(A)P(B). Otherwise we proceed as in y*-test, but now
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Table 2.1: 2 X 2 contingency table.
B -B X
A | m(A, B) m(A,—-B) | m(A)
—A | m(# A,B) | m(# A, B) | m(—A)
Y | m(B) m(—B) n

the expected frequencies are calculated under independence assumption from m(A)
and m(B). We get the counts from 2 x 2 contingency table (Table 2.1).
Now the test measure

m(A=i,B=j)—e(A=i,B=j))’
B By IASREZI AL B

follows x?-distribution with 1 degree of freedom.

The test can be easily generalized for non-binary attributes. The only difference
is the number degrees of freedom, which is (r — 1)(c — 1), if |dom(A)| = r and
|dom(B)| = c. Once again, if the frequencies are very small, the test cannot be used
and we should use Fisher’s exact test, instead.

2.5.3 Testing prediction accuracy

In predictive modelling, we have slightly different aims. We would like to ensure
that the model has not overfitted and generalizes well. Small training error does
not give any guarantees about good prediction accuracy in the future, because we
can achieve zero training error for any data set, if we just select sufficiently complex
model. As a solution, different kind of testing schemas are used.

In the ideal case, we can reserve part of data as a validation set and use the rest
for training. Now the validation set gives good outlines, how well the model works
with unseen data. However, if the original data set is very small, this only increases
the risk of overfitting. In this case, (k-fold) cross-validation is a better solution.
The idea is that we partition the original data set to k disjoint subsets of size n/k.
Then we reserve one subset for validation and learn the model with other £ — 1
subsets. The procedure is repeated k times with different validation set and finally
we calculate the mean of prediction errors. The same method can be used for
comparing different models.

The most popular error functions for measuring prediction error are Sum of squared
errors (SSE) and classification rates. SSE is defined as
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SSE =%i_,"(y; — f(@))?,

in which y; is the real value f(7;) the predicted value of data point T; (i = 1,...n).
SSE can be used to measure prediction error of any numeric-valued target function
f. In addition, it is often used as a score function in learning phase.

In classification, where the predicted values are typically categorial, classification
rates are often used. Let us first consider the case of two classes, ¢; and cj:

true positive false negative Y=
m(fTeaNye€e) | m(f(TEcaANyee) | m(y € c)
false positive true negative Y=

m(fTecANyec) | m(f(TEcaNyEc) | m(y € c)
Y=m(f@ec) |T=m(f(T)Ec)

Now the rate . .
true positive + true negative

n
tells the classification accuracy (proportion of correctly classified examples), and

false positive + false negative

n

tells the classification error. When we have more classes, we simply calculate true
positive and false negatice for all classes.

2.6 Further reading

A comprehensive description of different learning styles can be found in [Mit97].
We have skipped genetic algorithms [Hol62, Hol92|, because they are more an opti-
mization method than a model of their own. However, genetic algorithms do also
restrict what kind of models we can learn — i.e. they contain their own bias. In
the same way other optimization techniques like simulated annealing [KGV83] and
tabu search |Glo86| can be used in knowledge discovery. In instance-based or lazy
learning, we could also mention case-based reasoning (e.g. [Kol93]), which is quite
similar than k-nearest neighbours method, but works on symbolic data.

The bias in modelling paradigms and learning styles is unfortunately quite neglected
topic in literature. [Mit97| has done a pioneering work by formalizing the inductive
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bias and analyzing the bias in different machine learning algorithms. The idea of
overfitting avoidance as a good or bad bias is discussed in [DHS00| and [Sch93]. |[EC]|
has risen discussion about inductive bias in clustering algorithms. In this theses,
we have processed the topic further.

Our introduction to statistical tests have been very brief, and we recommend further
reading. As [SmyO01] states it ”Data mining algorithms should not be a substitute
for statistical common sense”. [MAOQ3] is an easy-reading and quite comprehensive
textbook on probability and statistics. For Finnish readers, we also recommend
[Kar01].



