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Abstract. Genome-wide association studies (GWAS) are widely applied
for understanding the associations of single-nucleotide polymorphisms
(SNPs) with a trait. GWAS data are often combined with known bio-
logical networks, and they have been analyzed using graph-mining tech-
niques toward a systems understanding of the biological changes caused
by the SNPs. To determine which subgraphs are associated with the trait,
a statistical test on each subgraph needs to be conducted. However, no
statistically significant results were found because multiple testing cor-
rection causes an extremely small corrected significance level.
We introduce a method called gLAMP to enumerate subgraphs having
statistically significant associations with a trait. gLAMP integrates the
limitless arity multiple-testing procedure (LAMP) with a graph-mining
algorithm called COmmon Itemset Network mining (COIN). gLAMP
controls the Bonferroni factor to the smallest possible value by show-
ing that a larger subgraph tends to become untestable, which can be
removed theoretically from the Bonferroni factor. The theoretical result
shows that this combination has the potential to enumerate subgraphs
statistically significantly associated with a trait.
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1 Introduction

Genome-wide association studies (GWAS) are a powerful analysis method of
associating single-nucleotide polymorphism with a trait and has been widely
used to understand both biology and disease analysis [2]. While many causal
mutations of diseases have been uncovered using GWAS, diseases are regularly
associated with multiple SNPs [6], and a systems understanding of why the
SNPs cause these diseases is required to formulate new drugs and to develop
new therapeutic methods. To this end, known biological networks are often in-
tegrated with GWAS data, and network analyses on the data have been widely
performed [1].

However, only a few analysis results have been confirmed biologically because
of the lack of statistical assessment of the results. In biology and the medical
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Fig. 1. An example of GWAS and network data. vn, im and cm are associated with a
SNP at position n, a patient m and a trait of m. Vertex vA in Fig. 1 (A) indicates that
SNP vA was found in patients i1, i2, i3 and i4.

Table 1. Contingency Table of G.

ci = 1 ci = 0

G x(G) n− x(G) n = |I(G)|
Ḡ C − x(G) N − n− C + x(G) N − n

C N − C N

Table 2. Contingency Table of the
ISS in Fig. 1(B)

ci = 1 ci = 0

G 2 0 2
Ḡ 1 2 3

3 2 5

science, the statistical significance of the results of an analysis is an important
criterion of whether they are confirmed experimentally. Computational results
without statistical assessments cannot be confirmed and thus will never be pub-
lished in any biological or medical journals.

Statistically sound association discovery methods [10, 3, 11, 8] might provide
us the statistical significance to the GWAS results. However, no existing methods
have considered statistical significance of graph structures.

Statistical assessment of the graph-mining result may lead to no significant
results because of multiple testing correction. Most graph-mining algorithms
check the importance on every subgraph. Performing a statistical test on each
subgraph would require an enormous amounts of tests, and multiple testing cor-
rection would be required. When we use Bonferroni correction on the situation,
the corrected significance level would be extremely small, and no significant re-
sult might be found. This is one reason why few studies verified the statistical
significance in graph mining.

In this paper, we formalize a statistical graph-mining problem for the GWAS
using graph data, and introduce a method to solve the problem. Our solution
uses the advantage of limitless-arity multiple testing correction (LAMP) [8] to
calibrate the Bonferroni factor to the smallest possible value, and tries to effi-
ciently find a statistically significant result even after multiple testing correction
is performed.

To describe the problem, we introduce graph structure whose vertex has an
itemset label proposed by Sese et al. [5]
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Definition 1 (Itemset-associated graph and itemset-sharing subgraph) An itemset-
associated (IA) graph is an undirected graph whose vertex contains a set of items
(an itemset). An itemset-sharing subgraph (ISS) with an itemset I means a con-
nected subgraph of a given IA graph whose intersection of itemsets associated
with the vertices in the subgraph is I. For an ISS G, we describe V (G), E(G)
and I(G) are the vertices, edges and sharing itemset in G.

In the GWAS analysis, a vertex, an edge and an item are associated with
a SNP, a connection between SNPs and a patient sample, respectively. Using
a trait associated with a patient, we perform a statistical assessment of the
subgraph.

Definition 2 (P-value of an ISS) Suppose that item i is associated with a class
ci ∈ {0, 1}. With ISS G, items are divided into two groups. One is in I(G), and
the other is not. The status can be described as a contingency table in Table 1,
where x(G) = |{i | i ∈ I(G) and ci = 1}| and C = |{i | ci = 1}|. We can perform
a chi-squared test, Fisher’s exact test, etc. on the contingency table. In GWAS
analysis, the chi-squared test is widely used; therefore, we use a chi-squared test
here. We define P (G) as the P-value of the chi-squared test of G.

A trait of a patient in the GWAS analysis is regarded as the class associated
with each item. Figure 1 shows an example of an IA graph and the ISS. Table 2
shows a contingency table for G in Figure 1(C) with trait values in Figure 1(C).
Its chi-squared value and P-value are 2.22 and 0.137, respectively.

With these definitions, we introduce a statistical graph mining problem.

Problem 1. (gLAMP problem) Suppose that we have an IA graph and class
information for each item. Given the data and significance level α, enumerate
statistically significant ISSes G in the IA graph where P (G) ≤ δ for G ∈ G, and δ
is a corrected significance level to control family-wise error rate (FWER) below
α.

The results of the problem are related to the combinations of SNPs having
statistically significant associations with the target trait.

2 Limitless Arity Multiple-testing Procedure (LAMP)

Bonferroni correction has been used in almost all GWAS analyses to control
FWER below the significance level α. However, the Bonferroni correction is too
conservative to control the FWER in practice because it assumes that any tests
can cause false positive. To avoid the problem, we here introduce LAMP [8].

Bonferroni correction is derived from the following inequality.

FWER = 1− P (∩M
i=1{Pi > δ}) = P (∪M

i=1{Pi ≤ δ}) ≤
M∑
i=1

P ({Pi ≤ δ}) ≤ Mδ,

where Pi is a P-value of test i, and M is the number of tests. The problem that
arises when the Bonferroni correction is applied to the graph-mining problem
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is that the corrected significance level might become extremely small because
of the substantial number of subgraphs, and it may become impossible to find
statistically significant results.

Limitless-arity multiple testing procedure (LAMP) [8] can enumerate sta-
tistically significant tests from multidimensional data. LAMP categorizes tests
into testable and untestable. Let f(n) be the minimum P-value of a statistical
measure of tests having n or more objects using a fixed marginal distribution. In
the contingency table in Table 1, when the marginal distribution is fixed, only
x(G) is variable. f(n) is calculated when the values in the contingency table are
the most biased, and the minimum P-value is achieved at x(G) = min{n,C}.
For Fisher’s exact test, f(n) is calculated as

f(n) =



(
C

n

)/(
N

n

)
for n ≤ C,

1

/(
N

C

)
otherwise.

(1)

Let ni be the number of objects that satisfies i. A testable one satisfies
f(ni) ≥ δ while an untestable one satisfies f(ni) < δ, where δ is a corrected
significance level.

Untestable ones can be safely removed from Bonferroni factor. Let mn be
the number of testable ones that satisfy n or more objects. Tarone [7] showed
that the untestable ones never cause false positives. With the property,

FWER = P (∪M
i=1{Pi < δ}) ≤

M∑
i=1

P ({Pi < δ}) ≤
∑

i∈{i|f(ni)<δ}

P ({Pi < δ})

≤ |{i|f(ni) < δ}|δ = mnδ.

Hence, we can set δ to α/mn unless mnδ > α. Because δ depends on n, LAMP
determines the largest n to set FWER bound δmn below α. Calculating mn from
high-dimensional data can be performed using a frequent pattern mining (FIM)
algorithm [9].

The pseudo-code of LAMP procedure is described in Algorithm 1. LAMP uses
the property that f(n) monotonically increases with decreasing n. n is initially
set to the possible largest value, and subsequently decreases until δ > f(λ− 1).

An important point in the LAMP procedure is that the decrease in n increases
mn, which decreases FWER bound monotonically. In other words, any data
structure can be used if it satisfies this property. In the next section, we use the
property to address the graph mining setting.

3 Enumerating testable itemset-associated subgraphs

We here introduce the testable subgraphs that are associated with the maximal
itemset-sharing subgraphs and show that LAMP can address subgraphs using
the replacement of the FIM algorithm with a graph-mining algorithm.

We here show that we need to count only maximal ISSes in Bonferroni factor.
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Algorithm 1 LAMP (dataset D, significance level α)

1: λ← the number of objects whose classes are 1, δ ← 1.0
2: while λ > 0 do
3: I ← itemsets that relate λ or more objects in D. (run the FIM algorithm)
4: mλ ← |I|
5: δ ← α/mλ

6: if δ < f(λ− 1) then
7: break
8: end if
9: λ← λ− 1
10: end while
11: Return the set of itemsets whose P-value ≤ δ in I

Definition 3 (Maximal ISS) For ISSes G, when no ISS G′ whose V (G) ⊆
V (G′), E(G) ⊆ E(G′) and I(G) ⊆ I(G′) exists, G is defined as the maximal
ISS.

Property 1 Only maximal ISSes should be counted in Bonferroni factor

Proof. To proof the property, it is enough to show that non-maximal ISS is
depend on a maximal ISS.

Suppose that G is not a maximal ISS. Let G′ be a maximal ISS whose
V (G) ⊆ V (G′), E(G) ⊆ E(G′) and I(G) ⊆ I(G′). When I(G) = I(G′), the
test of G is identical to the test of G′, and hence we can safely remove G from
Bonferroni factor. When I(G) ⊂ I(G′), V (G′) = V (G) and E(G′) = E(G).
Hence, I(G) is subset of intersection of itemsets associated with V (G), which
indicates that G is not proper ISS. Then, any non-maximal ISS depends on a
maximal ISS.

The following property guarantees that we use the ISS enumeration technique
instead of FIM algorithm in LAMP.

Property 2 (Adding a vertex decreases the size of sharing itemset) Let G be
an ISS. Let G′ be an ISS generated by adding node v ̸∈ V (G). I(G′) ⊆ I(G) for
any v.

By adding node v to G, For a maximal graph G′ having vertices V ∪ {v}
where v ̸∈ V , I(G′) ⊂ I(G).

From the property, we can conclude the following property. The property shows
that the number of Bonferroni factor decreases according to the increase of λ,
and hence the minimum P-value associated with the subgraphs increases.

Property 3 Let Gn be a set of maximal ISSes that relate n or more items.
Between Gλ and Gλ+1, Gλ ⊇ Gλ+1 holds. Hence, |Gλ| ≥ |Gλ+1|

These properties allow us to replace the FIM algorithm with the graph-
mining algorithm to find maximal ISSes called COmmon Itemset Network mining
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Algorithm 2 gLAMP (IA graph G, class C, significance level α)

1: λ← |{i|ci = 1}|, δ ← 1.0
2: while λ > 0 do
3: Gλ ← run COIN to find maximal ISSes that relate λ or more items in G
4: mλ ← |Gλ|
5: δ ← α/mλ

6: if δ < f(λ− 1) then
7: break
8: end if
9: λ← λ− 1
10: end while
11: Return the set of itemsets whose P-value ≤ δ in G

(COIN) [5] in LAMP to enumerate statistically significant subgraphs (Algorithm
2). The difference between LAMP in Algorithm 1 and gLAMP in Algorithm 2
is only at line 3, in which the FIM algorithm is replaced with COIN.

4 Summary and Future Work

We introduced an algorithm to a multiple testing procedure algorithm for sub-
graphs in a large complex graph. The procedure uses the main framework of
LAMP and replaces the FIM in the LAMP with the COIN.

Minato et al. [4] introduced an efficient algorithm for LAMP, which uses
depth-first traversal instead of LAMP’s breadth-first traversal. gLAMP inherits
the LAMP’s breadth-first traversal, and the dept-first traversal would be appli-
cable to the proposed problem.

This paper only demonstrates the theoretical points of the statistically sound
graph mining problem. We plan on implementing this procedure, and evaluating
the efficiency and usefulness of this algorithm in the future.
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