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Abstract
In poor room acoustics conditions, speech signals received by
a microphone might become corrupted by the signals’ delayed
versions that are reflected from the room surfaces (e.g. wall,
floor). This phenomenon, reverberation, drops the accuracy of
automatic speaker verification systems by causing mismatch be-
tween the training and testing. Since reverberation causes tem-
poral smearing to the signal, one way to tackle its effects is to
study robust feature extraction, particularly based on long-time
temporal feature extraction. This approach has been adopted
previously in the form of 2-dimensional autoregressive (2DAR)
feature extraction scheme by using frequency domain linear
prediction (FDLP). In 2DAR, FDLP processing is followed by
time domain linear prediction (TDLP). In the current study, we
propose modifying the latter part of the 2DAR feature extraction
scheme by replacing TDLP with time-varying linear prediction
(TVLP) to add an extra layer of temporal processing. Our
speaker verification experiments using the proposed features
with the text-dependent RedDots corpus show small but con-
sistent improvements in clean and reverberant conditions (up to
6.5%) over the 2DAR features and large improvements over the
MFCC features in reverberant conditions (up to 46.5%).
Index Terms: speaker recognition, autoregressive modeling,
autocorrelation domain time-varying linear prediction

1. Introduction
An automatic speaker verification system is said to be robust
if it tolerates external distortion caused by environmental noise
or transmission channel, or internal signal variation caused by,
for example, different speaking styles. A large part of previous
speaker verification studies have focused on robustness with re-
spect to noise (e.g. [1]), while robustness with respect to vary-
ing room acoustics conditions has remained less studied. Room
acoustics, however, might have a large effect on the accuracy of
a speaker recognition system: If the training and testing data
are recorded in different room environments, there will be a
mismatch between the training and testing which will degrade
recognition accuracy. Room acoustics affect speech signals par-
ticularly in the form of reverberation [2]: the signal received by
a microphone becomes a sum of the direct component and its
delayed versions that arrive at the microphone after being re-
flected from the surfaces (e.g. walls, floor, ceiling) of the room.
Mismatch caused by reverberation can in principle be tackled
by modifying the speaker verification front-end or back-end. In
our view, advances on both sides are necessary to reach the best
possible performance. On the back-end side, techniques such as
multi-condition training [3], where multiple speaker models for
different reverberation conditions are created for each speaker,
can be utilized. In the current study, however, we focus on the
system front-end by studying features that aim at reducing the
mismatch caused by reverberation.

Speech features robust to reverberation have been previ-
ously investigated in a few speaker verification studies. In [4],
the use of locally normalized cepstral coefficients (LNCCs) was
studied. LNCC features modify the conventional MFCC fea-
tures by using an additional filterbank to perform local nor-
malization in the spectral domain. LNCCs were found to im-
prove the recognition accuracy particularly when reverberation
was severe. A different approach, based on the blind spectral
weighting (BSW) technique, was proposed in [5] to handle the
reverberation mismatch. In addition to these two previous meth-
ods, there is a family of reverberation-robust features based on
smoothing of subband Hilbert envelopes. For example, mean
Hilbert envelope coefficient (MHEC) feature extraction scheme,
proposed in [6], takes advantage of low-pass filtering of Hilbert
envelopes of Gammatone filterbank outputs. Smoothing of
Hilbert envelopes can also be conducted using frequency do-
main linear prediction (FDLP) [7, 8, 9], a method to compute
all-pole estimates for Hilbert envelopes. FDLP processing can
be used on its own [8] or in conjunction with time domain lin-
ear prediction (TDLP) [10]. The technique where FDLP is fol-
lowed by TDLP, known as 2-dimensional autoregressive model
(2DAR), has been reported to provide better speaker verification
results in reverberant conditions than when using FDLP alone
[10]. Besides being efficient in tackling the reverberation mis-
match problem, 2DAR processing has been found to improve
verification in the presence of background noise as well [10].

In this study, we propose to modify the 2DAR model by
replacing TDLP with time-varying linear prediction (TVLP)
[11, 12] which is a generalization of conventional linear pre-
diction (LP) [13]. TVLP can be used to analyze non-stationarity
of speech signals by allowing the underlying all-pole model to
be time-varying. In TVLP, temporal trajectories of the all-pole
filter coefficients are represented with basis functions such as
polynomials or trigonometric functions. This introduces an ad-
ditional temporal constraint to 2DAR models that we hypoth-
esize to be useful in tackling reverberation mismatch between
training and testing.

Our contributions are as follows: First, we present a mod-
ification of TVLP that enables us to apply TVLP in the auto-
correlation domain. Traditionally, TVLP is applied in the time-
domain but to use TVLP after FDLP, it is necessary to mod-
ify the model to be applicable for spectro-temporal representa-
tions. Second, we modify the 2DAR model by replacing TDLP
with TVLP. Third, we conduct speaker verification experiments
with the recent text-dependent RedDots corpus to compare the
proposed features with the 2DAR and MFCC features. Finally,
we study the effect of RASTA filtering [14] combined with the
2DAR model, which was not included in [10].

This study was partly funded by Academy of Finland projects
#284671 and #288558.



0 10 20 30 40 50
Time (ms)

0.0

0.5

1.0 u0

u1 u2
u3

Basis functions

0 10 20 30 40 50
Time (ms)

0

2 1. 2. 3. 4.a1 =
q

i = 0
b1iui

a3 =
q

i = 0
b3iui

a2 =
q

i = 0
b2iui

a4 =
q

i = 0
b4iui

(TV)LP coefficient trajectories

0 1 2 3 4
Frequency (kHz)

40

20

0 1. 2. 3.
4.

All-pole spectra

Figure 1: An example of time-varying linear predictive (TVLP) modeling. The graph on the left shows the monomial basis functions
used in TVLP-modeling of the predictor filter coefficient trajectories of 50 ms long speech signal depicted in the middle graph. In this
illustration, prediction order of 4 is used, leading to only four trajectories. Graph on the right shows examples of four all-pole spectra
that are all obtained from withing the single 50 ms long TVLP window.

2. Time-varying linear prediction
2.1. Classical time-domain formulation

In conventional LP analysis [13], the current speech sample
x[n] is predicted as a linear weighted sum of the past p sam-
ples given by x̂[n] = −

∑p
k=1 akx[n− k] where {ak}pk=1 are

the predictor coefficients. The solution to this formulation can
be obtained by minimizing the cost function E =

∑
n e

2[n],
where e[n] = x[n] − x̂[n], which in turn leads to solving a set
of normal equations given by

p∑
k=1

akrki = −r0i, i = 1, . . . , p, (1)

where rki denotes the correlation coefficients given by

rki =
∑
n

x[n− k]x[n− i]. (2)

The above formulation provides a piecewise constant ap-
proximation of the vocal tract system over short time intervals
(frames) by assuming the system to be quasi-stationary. How-
ever, the vocal tract is a slowly but continuously varying system
and therefore better modeled using time-varying linear predic-
tion (TVLP) analysis over longer time intervals. TVLP intro-
duces a time-continuity constraint on the predictor filter coeffi-
cients by expressing the prediction as

x̂[n] = −
p∑
k=1

ak[n]x[n− k] (3)

where ak[n] denotes the kth time-varying filter coefficient that
is approximated as a linear combination of q basis functions
ui[n] as follows:

ak[n] =

q∑
i=0

bkiui[n]. (4)

Different sets of basis functions such as monomials, trigono-
metric functions, or Legendre polynomials can be used for
the approximation. In this paper, a simple monomial basis
ui[n] = ni, i = 0, . . . , 3, is adopted. An illustration of TVLP
analysis using monomial basis functions is given in Figure 1.

Minimization of the cost function with respect to each poly-
nomial coefficient leads to a set of normal equations given by

p∑
k=1

q∑
i=0

bkicij [k, l] = −c0j [0, l] (5)

for 1 ≤ l ≤ p and 0 ≤ j ≤ q [11]. Here cij [k, l] denotes the
generalized correlation coefficients defined as

cij [k, l] =
∑
n

ui[n]uj [n]x[n− k]x[n− l]. (6)

2.2. Proposed autocorrelation domain formulation

In several applications, including robust feature extraction, the
signal may have been converted into a spectro-temporal repre-
sentation using a filter-bank or spectrogram analysis. In such a
scenario, conventional TVLP modeling of the processed signal
would require a reconstruction of the time-domain signal from
the spectro-temporal representation. In order to avoid any such
reconstruction requiring careful handling of phase information,
we propose a new autocorrelation domain time-varying linear
prediction (AD-TVLP) analysis.

Any given spectro-temporal representation X(t, f) can be
converted into a sequence of autocorrelation functions rτ (t) =∫
f
X(t, f) exp(−j2πfτ)df by computing the inverse Fourier

transform of the power spectrum X(t, f) at each time instant
t. Now, the conventional LP analysis can be applied indepen-
dently on correlation function at each time instant by solving
the normal equations similar to that in Eq. (1). However, a time-
continuity constraint can be imposed on the LP coefficients de-
rived at each time instant by modifying the normal equations
in Eq. (1) to take advantage of the availability of a sequence of
autocorrelation functions. The resulting normal equations with
the continuity constraint is given by

p∑
k=1

ak[n]rki[n] ≈ −r0i[n], i = 1, . . . , p, (7)
n = 0, . . . , N − 1,

where rki[n], ak[n], and N denote the time-varying autocor-
relation coefficients, the time-varying LP coefficients, and the
window length for the time-varying analysis, respectively.

Substituting Eq. (4) into Eq. (7), we can compute the least
squares solution to the resulting set of linear equations (of the
form Rb = −r) as follows:

b̂ = argmin
b
||r +Rb||22 (8)

where

r = [r01[0], . . . , r0p[0], . . . , r01[N − 1], . . . , r0p[N − 1]]T
Np×1

(9)

b = [b10, . . . , b1q, . . . , bp0, . . . , bpq]
T

p(q+1)×1
(10)

R = [R0, R1, . . . , RN−1]
T

Np×p(q+1)
(11)

where Rn is a p(q + 1)× p matrix whose ith column is given
by

Rni = ri[n]⊗ u[n]. (12)

Here, ⊗ denotes the Kronecker product of ri[n] =
[r1i[n] . . . rpi[n]]

T and u[n] = [u0[n] . . . uq[n]]
T .



3. 2-D autoregressive models
3.1. Background
Two dimensional autoregressive speech modeling (2DAR) was
first introduced in 2004 [15]. The 2DAR model provides a re-
freshing way of building speech spectrograms: instead of ap-
plying Fourier transform or AR modeling to short-time win-
dows, the speech signal is first transformed into frequency do-
main and then AR modeling is applied to frequency windows
followed by the usual temporal AR modeling. This idea was
first adopted to speaker recognition in [16] and extended later in
[17] and [10]. These studies indicate that 2DAR-processed fea-
tures give consistent and considerable improvements over stan-
dard MFCC features for speaker verification in noisy conditions
without compromising performance in clean conditions.

Autoregressive modeling is also known as LP modeling
and hence its applications in frequency and time domain are
known as frequency domain linear prediction (FDLP) and time
domain linear prediction (TDLP), respectively. The former is
less known, but nonetheless, it is the key concept behind the
2DAR model allowing temporal processing of speech without
first splitting the signal into short-time windows.

The left side of Figure 2 shows the steps for 2DAR-
processing of speech. The first step is to transform the in-
put speech with the discrete cosine transform (DCT) and then
to window this DCT-transformed signal into many overlapping
frequency bands (we used 100 bands). Then, FDLP is applied
to obtain all-pole estimates of Hilbert envelopes of each sub-
band. These envelopes represent signal’s energy in the subband-
specific frequency range as a function of time, which allows us
to form a spectrogram of the speech by stacking the informa-
tion from all of the envelopes. At this stage, we perform energy
integrations over the subband envelopes using 25 ms long Ham-
ming windows at 10 ms intervals. By doing so, the spectrogram
is effectively subsampled to obtain a frame rate that is similar
to that used in the conventional MFCC feature extraction. This
ends the FDLP part of 2DAR processing, where the data is pro-
cessed along the temporal dimension.

The second part of 2DAR is to apply TDLP to the FDLP-
processed spectrogram. The autocorrelation coefficients needed
for computing the LP coefficients are obtained from the power
spectra by using inverse Fourier transform. As a result of suc-
cessive application of FLDP and TVLP, we obtain a 2DAR
spectrogram that has been processed in both temporal and spec-
tral dimensions and from which we can then extract MFCC fea-
tures in the usual way.

3.2. Proposed method
We propose a modification to the 2DAR model by replacing
TDLP with the autocorrelation domain TVLP. This will, in ad-
dition to spectral processing, add an extra constraint for the LP-
coefficients in the temporal domain, preventing them to change
too abruptly from frame to frame. This effect is demonstrated
in Figure 3.

Figure 2 shows the differences between 2DAR and its
modified version 2DAR-TVLP. In 2DAR-TVLP, after obtain-
ing the autocorrelation sequences, we proceed by forming “su-
perframes” of autocorrelation sequences by using an 11 frames
long window that is shifted one frame at a time. We then apply
autocorrelation domain TVLP to each of the superframes. This
gives us 11 spectra per superframe and because superframes are
shifted 1 autocorrelation sequence at a time, we must select only
one spectrum from each superframe to keep the frame rate at the
original rate (100 Hz). Thus, we extract MFCCs only from the
middle frame of each superframe.

Figure 2: Diagram showing the differences between the 2DAR
and the 2DAR-TVLP models.
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Figure 3: 11 consecutive magnitude spectra (10 ms step) ob-
tained from 2DAR and 2DAR-TVLP processing. TVLP leads to
smoother transitions between successive spectra.

4. Experimental setup
4.1. Speech corpus

We performed speaker verification experiments using the male
speakers of common phrase task of the RedDots challenge cor-
pus [18] following the protocol for text-dependent speaker ver-
ification. This task consists of 320 pass-phrase specific target
speaker models from 35 unique speakers. For enrollment, data
of the same pass-phrase from three different sessions are used.
The target and non-target speakers utter the same pass-phrase
during enrollment and verification. The average duration of
each pass-phrase is three seconds. The common phrase task
has total 3242 genuine and 120086 impostor trials. As a back-
ground data, we used male speakers from TIMIT. Both corpora
have a sample rate of 16 kHz.
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Figure 4: Speaker verification results for dif-
ferent features in different conditions.
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Figure 5: Detection error tradeoff graphs for the original and stairway-reverberation
conditions.

4.2. Speech reverberation
In addition to the original RedDots data, we experimented on
artificially reverberated RedDots data. Reverberation was per-
formed by convolving original speech files with room impulse
responses (RIRs) obtained from the Aachen impulse response
(AIR) database [19]. We selected three different RIRs, one mea-
sured form an office room, second from a lecture room, and the
last one from a stairway. Reverberation times (RT60) for these
impulse responses are 0.35s, 0.28s, and 0.81s, respectively. Re-
verberation was only applied to the test data and not to the en-
rollment or background data.

4.3. Features and classifier
In our speaker verification experiments, we used the MFCC fea-
tures with a configuration shown in Table 1. These features
were computed from spectrograms that were obtained either by
Fourier-transforming Hamming-windowed frames or by apply-
ing 2DAR or 2DAR-TVLP.

We found that minimum EER was achieved with 2DAR by
using prediction orders of 24 and 42 for FDLP and TDLP, re-
spectively. For 2DAR-TVLP, the corresponding optimal predic-
tion orders were 24 and 38. Here, FDLP prediction orders are
given for 1 second long segments and they are normalized ac-
cording to the segment length. Long utterances were split into
3 second long segments before FDLP processing.

We used a classic Gaussian mixture model – universal back-
ground model (GMM-UBM) system [20], for which we trained
a 256-component UBM from the background data. Speaker
models were obtained by MAP adapting component means of
UBM using relevance factor 3. We chose a lightweight GMM-
UBM-based system to conduct rapid parameter experimentation
with computationally heavy 2DAR models. As demonstrated in
[21], GMM-UBM provides a competitive accuracy on the Red-
Dots data consisting of short utterances.

Table 1: Configuration of MFCC features.

Frame length / step 25 ms / 10 ms
Number of cepstral coefficients 19
Center frequency of the first mel-filter 100 Hz
Center frequency of the last mel-filter 5400 Hz
Energy coefficient Not included
Velocity and acceleration coefficients Included
RASTA filter pole position (if applied) z = 0.97
Speech activity detection Energy-based [22]
Feature normalization Cepstral mean and vari-

ance norm. (CMVN)

5. Results
Figure 4 presents the results for the speaker verification exper-
iments on RedDots corpus in terms of EER. We compared per-
formances of traditional FFT-based MFCCs, 2DAR-processed
MFCCs, and 2DAR-TVLP-processed MFCCs. Additionally,
we studied the effect of cepstral level RASTA filtering on
these feature types. In preliminary experiments, we found that
RASTA improves performance of FFT and 2DAR features, but
does not provide benefit with 2DAR-TVLP features and hence
the last combination is omitted from the figure. 2DAR-TVLP
outperforms other features in all the tested conditions. Differ-
ences between 2DAR-TVLP and 2DAR with RASTA are rel-
atively small but nevertheless consistent. Differences between
2DAR-TVLP and FFT with RASTA are larger and especially
so in the reverberant conditions. Table 2 contains the exact
numbers for these comparisons for the original and Stairway-
reverberation conditions. Detection error tradeoff graphs in Fig-
ure 5 reveal that the good performance of 2DAR-TVLP is not
restricted only to the proximity of the EER-point.

Table 2: Speaker verification equal error rates (EER (%)) for
the best performing feature configurations in the original and
in the stairway-reverberation conditions. The last two columns
show relative changes obtained by using the proposed features.

(1)
FFT +
RASTA

(2)
2DAR +
RASTA

(3)
2DAR-
TVLP

(1)→(3)
change

(%)

(2)→(3)
change

(%)

Original 3.08 3.02 2.87 -6.8 -5.0

Stairway 14.03 8.03 7.51 -46.5 -6.5

6. Conclusions
We studied the possibility of incorporating time-varying autore-
gressive modeling to the 2DAR feature extraction scheme to
improve speaker verification in reverberant conditions. This re-
quired us to develop a new time-varying linear prediction for-
mulation, AD-TVLP, that is applicable to the spectro-temporal
representations of signals. We adopted this formulation to the
existing 2DAR feature extraction method and obtained promis-
ing results. In comparison to the baseline 2DAR and MFCC
features, the proposed 2DAR-TVLP features improved speaker
verification performance in both original and reverberated test
conditions. These promising results encourage us to further ex-
plore adopting time-varying autoregressive models for speech
feature extraction in adverse conditions.
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