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Abstract

While biometric authentication has advanced significantlyin recent years, evidence shows the technology can be susceptible to
malicious spoofing attacks. The research community has responded with dedicated countermeasures which aim to detect and deflect
such attacks. Even if the literature shows that they can be effective, the problem is far from being solved; biometric systems remain
vulnerable to spoofing. Despite a growing momentum to develop spoofing countermeasures for automatic speaker verification,
now that the technology has matured sufficiently to support mass deployment in an array of diverse applications, greater effort will
be needed in the future to ensure adequate protection against spoofing. This article provides a survey of past work and identifies
priority research directions for the future. We summarise previous studies involving impersonation, replay, speech synthesis and
voice conversion spoofing attacks and more recent efforts to develop dedicated countermeasures. The survey shows that future
research should address the lack of standard datasets and the over-fitting of existing countermeasures to specific, known spoofing
attacks.
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1. Introduction

Various distinctive and measurable physiological and be-
havioural traits have been investigated for biometric recogni-
tion (Jain et al., 2006). As our primary method of communica-
tion, speech is a particularly appealing modality. Individual dif-
ferences in both physiological and behavioural characteristics,
e.g. the vocal tract shape and intonation, can be captured and
utilised for automatic speaker verification (ASV) (Kinnunen
and Li, 2010).

Recent advances in channel and noise compensation tech-
niques have significantly improved ASV performance to levels
required for mass-market adoption. Reliable and efficient au-
thentication is now possible in smartphone logical access sce-
narios (Lee et al., 2013) and in e-commerce (Nuance, 2013)

Preprint submitted to Speech Communication September 30, 2014



Figure 1: An illustration of a typical automatic speaker verification (ASV) system with eight possible attack points. Attacks at points 1-2 are considered as direct
attacks whereas those at points 3-8 are indirect attacks.

for example. Even though ASV provides a low-cost and conve-
nient approach to authentication, however, reliability inthe face
of spoofing remains a concern (Evans et al., 2013, 2014b).

A generic biometric system may be manipulated or attacked
at various stages between sample acquisition and the delivery
of an authentication result (Ratha et al., 2001; Faundez-Zanuy,
2004; Galbally et al., 2010). In the specific case of ASV as il-
lustrated in Figure 1, attacks at both the microphone and trans-
mission levels are generally considered to pose the greatest
threat (Faundez-Zanuy et al., 2006). Here, an adversary, typ-
ically referred to as an impostor, might seek to deceive the
system by impersonating another enrolled user at the micro-
phone in order to manipulate the ASV result. Alternatively,
captured speech signals can be intercepted and replaced at the
transmission level by another specially crafted voice signal.
Since speaker recognition is commonly used in telephony, or
other unattended, distributed scenarios without human super-
vision or face-to-face contact, speech is arguably more prone
to malicious interference or manipulation than other biometric
signals; the potential for ASV systems to be spoofed is now
well-recognised (Evans et al., 2013, 2014b; Wu and Li, 2013).

Prior to the consideration of spoofing, ASV systems were
designed to distinguish between target speakers and zero-effort
impostors. This research focuses on improving fundamental
recognition performance, as opposed to security or robustness
to spoofing and drove the community to investigate different ap-
proaches to speaker characterisation at the feature level includ-
ing: (i) short-term spectral and voice source features, such as
Mel-frequency cepstral coefficients (MFCCs) and glottal pulse
features; (ii) prosodic and spectro-temporal features such as
rhythm, pitch and other segmental information; (iii) high-level
features such as phonetic, idiolect, and lexical features (Kin-
nunen and Li, 2010). Due to their simplicity and resulting ASV
performance, most speaker verification systems utilise short-
term spectral features. The literature shows that systems based
on such features are vulnerable to spoofing; speech signals with
corresponding features reflective of other speakers can be syn-
thesised with ease (Evans et al., 2013, 2014b).

Numerous vulnerability studies suggest an urgent need to ad-
dress spoofing. This can be accomplished via one of two gen-
eral approaches. Some work, e.g. (Kinnunen et al., 2012) shows
that advanced algorithms, such as joint factor analysis (Kenny,

2006), may offer an inherent protection from spoofing. The first
approach is therefore to continue with the traditional pursuit
of improved fundamental performance (i.e. in the face of only
zero-effort impostors). The other approach involves the design
of specific or generalised spoofing countermeasures. While
both approaches will remain important, independent counter-
measures have the advantage of being easily incorporated into
existing ASV system and of being able todetectspoofing at-
tempts. Research in this latter approach is in its relative infancy
and greater attention will be needed in the future.

While the use of different datasets, protocols and metrics hin-
ders such a task, this paper provides a survey of the past work.
We compare the vulnerabilities of four different spoofing at-
tacks considered thus far: impersonation, replay, speech syn-
thesis and voice conversion. We then review anti-spoofing ap-
proaches or countermeasures for each form of attack. Finally
we discuss directions for future work which will be necessary
in order to address weaknesses in the current research method-
ology.

2. Automatic speaker verification

The task of an automatic speaker verification (ASV) system
is to accept or reject a claimed identity based on a speech sam-
ple (Kinnunen and Li, 2010). There are two types of ASV
systems:text-dependentandtext-independent. Text-dependent
systems assume fixed or prompted phrases which are usually
the same for enrolment and for verification. Text-independent
systems operate on arbitrary utterances, possibly spoken in dif-
ferent languages (Campbell Jr, 1997). Text-dependent ASV is
generally better suited to authentication scenarios sincehigher
recognition accuracy can then be achieved with shorter utter-
ances. Nevertheless, text-independent systems also have utility,
for example in call-centre applications including caller verifica-
tion for telephone banking2. On account of evaluation sponsor-
ship and dataset availability, text-independent ASV dominates
the field and the research tends to place greater emphasis on
surveillance applications rather than authentication.

2http://www.nuance.com/landing-pages/products/

voicebiometrics/freespeech.asp
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This section describes briefly the state-of-the-art in ASV and
the potential for the technology to be spoofed. More general
and detailed overviews of the fundamentals (not specific to
spoofing) can be found in (Campbell Jr, 1997; Bimbot et al.,
2004; Kinnunen and Li, 2010; Li and Ma, 2010; Togneri and
Pullella, 2011; Li et al., 2013)

2.1. Feature extraction

A speech signal has three-fold information: voice timbre,
prosody and language content. Correspondingly, speaker indi-
viduality can be characterised by short-term spectral, prosodic
and high-level idiolectal features. Short-term spectral features
are extracted from short frames typically of 20-30 millisec-
onds duration. They describe the short-term spectral envelope
which is an acoustic correlate of voice timbre. Mel-frequency
cepstral coefficients (MFCCs), linear predictive cepstral coef-
ficients (LPCCs) and perceptual linear prediction (PLP) areall
popular spectral features.

Prosodic features are extracted from longer segments such as
syllables and word-like units to characterise speaking style and
intonation. These features, such as pitch, energy and duration,
are less sensitive to channel effects. However, due to their spar-
sity, the extraction of prosodic features requires relatively large
amounts of training data (Adami et al., 2003; Kajarekar et al.,
2003; Shriberg et al., 2005), and pitch extraction algorithms are
generally unreliable in noisy environments (Gerhard, 2003).

High-level features (Doddington, 2001; Reynolds et al.,
2003) are extracted from a lexicon (or other discrete tokens) to
represent speaker behaviour or lexical cues. High-level features
are considered to be even less sensitive to channel and noise
effects than spectral and prosodic features. However, the ex-
traction of high-level features requires considerably more com-
plex front-ends, such as those which employ automatic speech
recognition (Kinnunen and Li, 2010; Li and Ma, 2010).

2.2. Speaker modeling and classification

Approaches to text-independent ASV generally focus on
modelling the feature distribution of a target speaker. Thetheo-
retical framework of most ASV systems involves the computa-
tion of a log-likelihood ratio(LLR) score,

ℓ = log
p(X|H0)
p(X|H1)

, (1)

and its comparison to a pre-determined threshold in order
to decide in favour of either the target hypothesisH0 (same
speaker) or the alternative hypothesisH1 (different speaker).
HereX = {x1, x2, . . . , } is a sequence of feature vectors while
p(X|H0) and p(X|H1) denote the likelihood of each hypothe-
sis. Intuitively, the alternative modelp(X|H1) helps to nor-
malise common effects not related to speaker identity. There
are many different ways to implement Eq. (1). In the classical
approach (Reynolds and Rose, 1995), featuresX are typically
MFCCs and the acoustic models are Gaussian mixture models
(GMMs) (see below). With more modern techniques,X can
also be high-dimensional i-vectors (Dehak et al., 2011) mod-
elled with probabilistic linear discriminant analysis (PLDA)

back-ends (Li et al., 2012) (see below). Even so, GMMs are
still needed for i-vector extraction and thus we provide a more
detailed presentation of the GMM in the following.

GMMs have been used intensively and their combination
with a universal background model (UBM) has become thede
facto standard, commonly referred to as the GMM-UBM ap-
proach (Reynolds et al., 2000). Here, speech samples pooled
from a large number of speakers are used to estimate a speaker-
independent UBM using a maximum likelihood (ML) crite-
rion; the UBM likelihood corresponds top(X|H1) in Eq. (1).
Speaker-dependent models, used in determiningp(X|H0) in
Eq. (1), are then derived from the UBM with maximum a pos-
teriori (MAP) adaptation using the speech samples of a target
speaker (Gauvain and Lee, 1994). The target speaker and UBM
models are used as the hypothesised and alternative speaker
models respectively.

As a two-class classification problem, the discrimination be-
tween hypothesised and alternative speaker models is key to
performance. The combination of GMMsupervectorsand sup-
port vector machine (SVM) classifiers was developed to en-
able the discriminative training of generative models (Camp-
bell et al., 2006). This idea lead to the development of
many successful model normalisation techniques includingnui-
sance attribute projection (NAP) (Solomonoff et al., 2005; Bur-
get et al., 2007) and within-class covariance normalisation
(WCCN) (Hatch et al., 2006). These techniques all aim to com-
pensate for intersession variation and channel mismatch.

Parallel to the development of SVM-based discriminative
approaches, generative factor analysis models were pioneered
in (Kenny, 2006; Kenny et al., 2007, 2008). In particular,joint
factor analysis(JFA) (Kenny, 2006) can improve ASV perfor-
mance by incorporating distinct speaker and channel subspace
models. These subspace models involve the training of vari-
ous hyper-parameters and generally require large quantities of
labeled utterances. JFA subsequently evolved into a simplified
total variability modelor ‘i-vector’ approach which is now the
state of the art (Dehak et al., 2011). An i-vector representsan ar-
bitrary utterance, encoded via its GMM mean supervector, with
a low dimensional vector of latent variables. From this per-
spective, i-vector extraction is a dimensionality reduction pro-
cess, which accordingly supports the application of traditional
pattern recognition techniques to i-vector modelling and com-
parison.Probabilistic linear discriminant analysis(PLDA) (Li
et al., 2012), a factor analysis technique originally developed
for face recognition (Prince and Elder, 2007), is the most pop-
ular approach. The normalisation of i-vectors to lie on a unit
sphere is also popular as a pre-processing technique for the
PLDA back-end (Garcia-Romero and Espy-Wilson, 2011).

In contrast to text-independent systems, text-dependent sys-
tems not only model the feature distribution, but also the lan-
guage content. The underlying feature extraction, speaker
modelling and classification approaches developed for text-
independent systems, including i-vector and PLDA models, can
also be applied within text-dependent systems with minor mod-
ifications (Larcher et al., 2013b; Stafylakis et al., 2013).
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2.3. System fusion

In addition to the development of increasingly robust models
and classifiers, there is a significant emphasis within the ASV
community on the study ofclassifier fusion. The motivation is
based on the assumption that multiple, independently trained
recognisers together capture different aspects of the speech sig-
nal not covered by a single classifier alone. Fusion also pro-
vides a convenient vehicle for large-scale research collabora-
tions promoting independent classifier development and bench-
marking (Saeidi et al., 2013).

Different classifiers can involve different features, classifiers,
or hyper-parameter training sets (Brümmer et al., 2007; Hau-
tamäki et al., 2013b). A simple, yet robust approach to fusion
involves the weighted summation of the base classifier scores,
where the weights are optimised according to a logistic regres-
sion cost function.

3. Vulnerability of speaker verification to spoofing

3.1. Possible attack points

A typical ASV system involves two processes: offline enrol-
ment and runtime verification. During the offline enrolment, a
target speaker model is trained using features extracted from a
sample of speech. The runtime verification process is illustrated
in Figure 1, where a speaker first asserts an identity claim and
then provides a sample of his/her speech. Features similarly
extracted from this sample are compared to the model in order
to determine whether or not the speaker matches the claimed
identity.

In practice the sample is compared to two models, one corre-
sponding to the hypothesised speaker and a second representing
the alternative hypothesis. The classifier determines a match
score which represents the relative similarity of the sample to
each of the two models. Finally, the decision logic module uses
the relative score (usually, a log-likelihood ratio) to either ac-
cept or reject the identity claim.

These components and the links between them all represent
possible attack points (Ratha et al., 2001). Eight such vulner-
ability points for a generic ASV system are also illustratedin
Figure 1. They can be categorised as follows:

Direct attacks, also referred to asspoofing attacks, can be ap-
plied at the microphone level as well as the transmission
level – labelled as attack points 1 and 2 in Figure 1. Ex-
amples include the impersonation of another person or the
presentation of a pre-recorded or synthesised speech signal
at the microphone.

Indirect attacks are performed within the ASV system itself
– labelled as attack points 3 to 8 in Figure 1. Indirect at-
tacks generally require system-level access, for example
attacks which interfere with feature extraction (points 3
and 4), models (points 5 and 6) or score and decision logic
computation (points 7 and 8).

Even if for some physical or logical access scenarios, attacks
may be applied only at the microphone (Lee et al., 2013), and

in contrast to the wider literature pertaining to other biometric
modalities (Ratha et al., 2001), we include transmission level
attacks (point 2 in Figure 1) as a form of direct attack in the con-
text of ASV. This is justified on account of the often-distributed
nature of ASV systems which might allow for an attacker to
interfere with the microphone signal. There is also potential
for spoofed speech signals can be injected immediately prior to
transmission while bypassing the microphone entirely. To ex-
emplify, the Skype Voice Changer3 allows a voice signal to be
manipulated after capture but prior to transmission.

Since neither microphone level nor transmission level attacks
necessarily require system-level access, they are the mosteasily
implemented attacks and are thus the greatest threat to typical
ASV systems (Faundez-Zanuy et al., 2006). They are accord-
ingly the focus in the remainder of this paper. In past stud-
ies of ASV spoofing, impersonation and replay attacks are as-
sumed to apply at the microphone. Even if speech synthesis
and voice conversion attacks may also be applied at the micro-
phone, in the literature they generally target the transmission
level, thereby bypassing the microphone.

3.2. Potential vulnerabilities

This section explains the potential for typical ASV systems
to be spoofed. We focus on two key ASV modules: feature
extraction and speaker modelling.

3.2.1. Feature extraction
All three feature representations described in Section 2.1are

potentially vulnerable to spoofing attacks. Due to their simplic-
ity and performance, short-term spectral features are the most
popular. Ignoring any channel effects, replay attacks which use
a pre-recorded speech sample can faithfully reflect the spectral
attributes of the original speaker. State-of-the-art speech syn-
thesisers contain models of short-term spectral characteristics
and can thus be adapted to reflect those of a specific, target
speaker (Ling et al., 2012). Voice conversion can also generate
speech signals whose spectral envelope reflects that of a target
speaker (Matrouf et al., 2006). Figure 2 illustrates the effect
of voice conversion on an impostor speech signal (dashed blue
profile). The spectral envelope corresponding to a single speech
frame is shifted towards that of a given, target speaker (green
profile). ASV systems which use short-term spectral features
are thus vulnerable to spoofing.

Prosodic characteristics may also be mimicked through im-
personation and appropriately trained speech synthesis and
voice conversion systems. For example, some speech synthe-
sisers can generate fundamental frequency trajectories which
are highly correlated with those of a given, target speaker (Qian
et al., 2011).

High-level features reflect language content and speaker be-
haviour, e.g. the choice of words. Although such features might
be useful for speaker characterisation, they may be mimicked
relatively easily. For example, replay attacks are performed us-
ing a target speaker’s pre-recorded speech, which will naturally

3http://www.skypevoicechanger.com/
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Figure 2: An illustration of voice conversion and the potential for spoofing.
The spectral envelope of an impostor’s speech signal is shifted towards that of
a given target speaker.

contain the same or similar language content and speaker be-
haviour. Speech signals with similar language content can also
be synthesised with ease.

3.2.2. Speaker modeling

Most approaches to speaker modelling, be they applied to
text-independent or text-dependent ASV, have their roots in the
standard GMM. Most lack the modelling of temporal sequence
information, a key characteristic of human speech, which might
otherwise afford some protection from spoofing; most mod-
els of the feature distributions used in typical speech synthesis
and voice conversion algorithms assume independent features
of observations, but are nonetheless effective as spoofing at-
tacks. As shown in (Kons and Aronowitz, 2013), HMM-based
systems, which capture temporal information, are more robust
to spoofing than GMM-based systems when subject to the same
spoofing attack.

While preliminary studies of fused ASV system approaches
to anti-spoofing were reported in (Riera et al., 2012), some in-
sight into their likely full potential can be gained from related
work in fused, multi-modal biometric systems. A long-lived
claim is that multi-biometric systems should be inherentlyre-
sistant to spoofing since an impostor is less likely to succeed
in spoofingall the different subsystems. We note, however,
that (Rodriques et al., 2009; Akhtar et al., 2012) suggests it
might suffice to spoof onlyonemodality (or sub-system) un-
der a score fusion setting in the case where the spoofing of a
single, significantly weighted sub-system is particularlyeffec-
tive. Thus, traditional fusion techniques may not provide signif-
icantly increased robustness to spoofing unless they are coupled
with dedicated spoofing countermeasures.

4. Evaluation protocol

Here we present a generic experimental protocol which ap-
plies to the majority of past work. We discuss database de-
sign and evaluation metrics with a focus on the comparability
of baseline results with those of vulnerability and countermea-
sure studies.

4.1. Dataset design

While past studies of spoofing have used a range of different
datasets (Alegre et al., 2014) there are some similarities in the
experimental protocols. Essential to them all is the meaningful
comparison of baseline performance to that for the same sys-
tem when subjected to spoofing attacks. The majority of the
past spoofing studies reported in this paper conform to the gen-
eral assessment framework illustrated in Figure 3. The diagram
illustrates three possible inputs: genuine, zero-effort impostor
and spoofed speech.

Figure 3: Illustration of the general framework used in pastspoofing attack
studies. There are three kinds of input: (a) genuine speech;(b) zero-effort
impostor speech; and (c) spoofed speech. An evaluation using (a) and (b) relates
to a standard, baseline ASV evaluation, whereas an evaluation using (a) and (c)
is used to evaluate spoofing and countermeasure performance. Generally, (c)
represents spoofed version of (b), and thus (b) has the same number of trials as
(c).

The combination of genuine and zero-effort impostor tests
comprise a standard, baseline ASV evaluation. In this case we
suppose the protocols for such an evaluation stipulateM tar-
get trials andN impostor trials. A new dataset suitable for the
study of spoofing is derived from the baseline by replacing all
impostor trials with spoofed trials. For example, in a studyof
spoofing through voice conversion, the speech data of all im-
postor trials are converted towards the target client in order to
generate new speech data for spoofing evaluations. There are
thenN spoofing trials which replace theN previous impostor
trials.

Referring once again to Figure 3, baseline performance is as-
sessed using the pool ofM genuine trials (a) andN impostor
trials (b), while that under spoofing is assessed with the pool
of M genuine trials (a) andN spoofing trials (c). If the ASV
system used for both baseline and spoofing tests is the same,
then scores and decisions for all genuine trials will remainun-
changed. The baseline performance and that under spoofing is
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thus directly comparable and the difference between them re-
flects the vulnerability of the system to the particular spoofing
attack considered.

4.2. Evaluation metrics
The evaluation of ASV systems requires large numbers of

two distinct tests: target tests, where the speaker matchesthe
claimed identity, and impostor tests, where the identitiesdif-
fer. Accordingly, the ASV system is required to either accept
or reject the identity claim, thereby resulting in one of four pos-
sible outcomes, as illustrated in Table 1. There are two possible
correct outcomes and two possible incorrect outcomes, namely
false acceptance (or false alarm) and false rejection (or miss).
Statistics acquired from many independent tests (trials) are used
to estimate the false acceptance rate (FAR) and the false rejec-
tion rate (FRR). The FAR and FRR are complementary in the
sense that, for a variable threshold and otherwise fixed system,
one can only be reduced at the expense of increasing the other.
In practice, all system parameters are optimised to minimise the
balance between FAR and FRR, which is commonly measured
in terms of the equal error rate (EER)4, although this is certainly
not the only optimisation criterion.

Table 1: Four categories of trial decisions in automatic speaker verification.
Decision

Accept Reject

Genuine Correct acceptance False rejection
Impostor False acceptance Correct rejection

In a spoofing scenario, an attacker attempts to bias the sys-
tem outcome towards accepting a false identity claim. Equiva-
lently, spoofing attacks will increase the FAR for a fixed deci-
sion threshold optimised on the standard baseline ASV dataset.
Increases in the FAR (for a fixed FRR) are also reflected in the
EER. As is common in the literature, both metrics may thus be
used to gauge the robustness of an ASV system to spoofing.

To prevent spoofing attacks, countermeasures have been de-
veloped to decide whether a particular trial is a licit access at-
tempt or a spoofing attack. Ideally, countermeasures should
decrease the FAR in the event of spoofing attacks while not
increasing the FRR in the case of genuine access attempts.
Nonetheless, similar to the decisions of a regular ASV system
as illustrated in Figure 4, a practical, stand-alone countermea-
sure will inevitably lead to some false acceptances, where a
spoofing attack remains undetected, in addition to false rejec-
tions, where genuine attempts are identified as spoofing attacks.

In addition to EER, FAR and FRR metrics, the detection cost
function (DCF) is also popular. The DCF represents a trade-
off between the FAR and FRR using a priori probabilities of
target and non-target events. Although the DCF has been used
widely for the evaluation of ASV performance, it has not been
used extensively in the spoofing and countermeasure literature.
Accordingly, in the following sections we report results only in
terms of EERs, FARs and FRRs.

4EER corresponds to the operating point at which FAR=FRR.

Figure 4: An illustration of decisions taken by a stand-alone ASV system and
countermeasure. A stand-alone ASV system could falsely accept an impostor or
a spoofed trial (a false acceptance), while a stand-alone countermeasure could
reject a genuine trial (a false rejection).

5. Spoofing and countermeasures

This section reviews past work to evaluate the vulnerability
of typical ASV systems to spoofing and parallel efforts to de-
velop anti-spoofing countermeasures. Spoofing implies an at-
tack at either the microphone or transmission level using a ma-
nipulated or synthesised speech sample in order to bias the sys-
tem towards verifying a claimed identity. We consider imper-
sonation, replay, speech synthesis and voice conversion while
concentrating on three different aspects: (i) the practicality of
each spoofing attack; (ii) the vulnerability of ASV systems
when subjected to such attacks, and (iii) the design of a realistic
datasets for experimentation. With regard to countermeasures,
we focus on: (i) the effectiveness of a countermeasure in pre-
venting specific spoofing attacks, and (ii) the generalisation of
countermeasures in protecting against varying attacks.

5.1. Impersonation

Impersonation is one of the most obvious approaches to
spoofing and refers to attacks using human-altered voices, oth-
erwise referred to as human mimicking. Here, an attacker tries
to mimic a target speaker’s voice timbre and prosody without
computer-aided technologies.

5.1.1. Spoofing
The work in (Lau et al., 2004) showed that non-professional

impersonators can readily adapt their voice to overcome ASV,
but only when their natural voice is already similar to that
of the target speaker (closest targets were selected from the
YOHO corpus using a speaker recognition system). Further
work in (Lau et al., 2005) showed that impersonation increased
FAR rates from close to 0 % to between 10 % and 60 %. Lin-
guistic expertise was not found to be useful, except in cases
when the voice of the target speaker was markedly different
to that of the impersonator. However, experiments reported
in (Mariéthoz and Bengio, 2006) suggest that, while profes-
sional impersonators are more effective than the untrained, even
they areunableto consistently spoof an ASV system. A more
recent study (Hautamäki et al., 2013a) analysed the vulnerabil-
ity of both classical GMM-UBM and state-of-the-art i-vector
systems to impersonation attacks. In this study, five Finnish
public figures were used as target speakers, all of whom were
impersonated by a professional impersonator. Similar to the
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Figure 5: An example of speech impersonation. Finnish target speaker pronounces “. . . lehdistöön” (“. . . to the press.. . ”), a chunk extracted from a long interview
passage. The impersonator attempts to sound like the target. Spectrogram and formant tracks (F1 through F4) of the impersonator’s own voice (top), impersonation
(middle) and the target speaker (bottom). The spectrogramsand formants (Burg’s method) were computed with Praat (Boersma and Weenink, 2014) from material
collected by (Leskelä, 2011) and used in (Hautamäki et al., 2013a). The target speaker is the current president of Finland, Sauli Niinistö. Comparing the top and
middle figures, the impersonator can modify his voice away from his natural vocal tract configuration (for instance, F3 isgenerally lowered). Nevertheless, the
formants do not quite match those of the target speaker. Perceptually, the impersonation sounds convincing to a native listener.

findings in (Mariéthoz and Bengio, 2006), the impersonatorwas
unable to spoof either ASV system.

In addition to specific spoofing assessments, some in-
sights into potential vulnerabilities can be drawn from various
acoustic-phonetic studies of impersonation (Endres et al., 1971;
Blomberg et al., 2004; Eriksson and Wretling, 1997; Zetterholm
et al., 2004; Farrús et al., 2008; Amin et al., 2014). An exam-
ple of impersonation, in terms of spectrogram and formants,
is illustrated in Figure 5. The acoustic-phonetic studies show
that, while imitators tend to be effective in mimicking long-
term prosodic F0 patterns and speaking rates, they may be less
effective in mimicking formant and other spectral characteris-
tics. For instance, the imitator involved in the studies reported
in (Eriksson and Wretling, 1997) was not successful in translat-
ing his formant frequencies towards the target, whereas differ-
ent findings are reported in (Kitamura, 2008).

An interesting recent study (Amin et al., 2014) involves
disguised speech material from three professional voice-over
artists producing 27 distinct voice identities — interestingly,
without any pre-specified target speakers, giving the imperson-
ators artistic freedom in making up some virtual voice identi-
ties. One of the key observations was that the change in the
vocal space (measured through F1 and F2) under imperson-
ation cannot be described by a simple global transform; for-
mant changes are vowel-specific. The same study also investi-
gated glottal parameters (open quotient) measured from parallel

electro-glottographic (EEG) recordings and found that imper-
sonators have an active voluntary control over their vocal fold
patterns. Unsurprisingly, the impersonators varied the mean
and standard deviation of both F0 and the speaking rate to cre-
ate distinct speaker identities.

Characteristic to all studies involving professional imperson-
ators is the use of relatively few speakers, different languages
and ASV systems. The target speakers involved in such stud-
ies are also often public figures or celebrities and it is difficult
to collect technically comparable material from both the imper-
sonator and the target. Overall, these aspects make it difficult to
conclude whether or not impersonation poses a genuine threat.
Since impersonation is thought to involve mostly the mimick-
ing of prosodic and stylistic cues, it is perhaps consideredmore
effective in fooling human listeners than today’s state-of-the-art
ASV systems (Perrot et al., 2005; Hautamäki et al., 2014).

Even if the statistical evidence from impersonation studies is
limited, and the conclusions are somewhat inconsistent, there is
alternative evidence for the potential of impersonation attacks.
As discussed in (Campbell Jr, 1997; Doddington et al., 1998)
some impostor speakers have natural potential to be confused
with other speakers. Similarly, certain target speakers may be
more easily impersonated than others. The work in (Stoll and
Doddington, 2010) demonstrated the existence of such speak-
ers in the NIST 2008 corpus and their effect on a wide range
of modern ASV systems. These observations are not specific
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Table 2: Summary of impersonation spoofing attack studies. ASV=automatic speaker verification, FAR=false acceptance rate, IER= identification error rate and
k-NN = k-nearest neighbour. Note that IER is not comparable with FAR.

# target FAR or IER
Study speaker # impersonators ASV system Feature Before spoofing After spoofing

(Lau et al., 2004) 6 2 GMM-UBM MFCCs ≈ 0 % 30 %∼ 35 %
(Lau et al., 2005) 4 6 GMM-UBM MFCCs ≈ 0 % 10 %∼ 60 %

(Farrús et al., 2010) 5 2 k-NN Prosodic features 5 % (IER) 22 % (IER)
(Hautamäki et al., 2013a) 5 1 i-vector MFCCs 9.03 % 11.61 %

to ASV and similar findings have been reported in the general
biometric literature (Yager and Dunstone, 2010).

In all cases, so-calledwolvesandlambs(Campbell Jr, 1997;
Doddington et al., 1998) leave systems vulnerable to spoofing
through the careful selection of target identities. Conversely, in
order to impersonate a given individual, crowd-sourcing may
be used to identify an impostor whose natural voice is similar
to that of the target (Panjwani and Prakash, 2014). The work
in (Lau et al., 2005) and (Stoll and Doddington, 2010) showed
how ASV systems themselves or even acoustic features alone
may be employed to identify ‘similar’ speakers in order to pro-
voke false acceptances.

Past studies involving impersonation attacks are summarised
in Table 2. It shows a degree of inconsistency in their finding
with various ASV systems and feature representations. In ad-
dition, all four studies were conducted with datasets containing
only a small number of speakers. In general, further studies
will be needed to fully understand the effectiveness of imper-
sonation.

5.1.2. Countermeasures
While the threat of impersonation is not fully understood it

is perhaps not surprising that there is virtually no prior work
to investigate countermeasures against impersonation. Ifthe
threat is proven to be genuine, then the design of appropri-
ate countermeasures might be challenging. Unlike the spoof-
ing attacks discussed below, all of which can be assumed to
leave traces of the physical properties of the recording andplay-
back devices, or signal processing artefacts from synthesis or
conversion systems, impersonators are live human beings who
produce entirely natural speech. Interestingly, some related
work (Amin et al., 2013, 2014) has addressed the problem of
disguisedetection5. The rationale behind the disguise detector
developed in (Amin et al., 2013, 2014) is that impersonatorsare
less practised with the impersonated voices and consequently
exhibit larger (exaggerated) acoustic parameter variation under
disguise. Specifically, the disguise detectors in (Amin et al.,
2013, 2014) used quadratic discriminant on the first two for-
mants to quantify the amount of acoustic variation on a vowel-
by-vowel basis. Despite promising disguise detection results –
95.8 % to 100.0 % in (Amin et al., 2013) – the method requires
vowel segmentation which was implemented through forced-
alignment followed by manual correction.

5While the spoofing attacks discussed in this article are meant to increase
false acceptance rate, disguise is the opposite problem where one wishes to be
not recognized as herself, thereby increasing false rejection(miss) rate.

It might be beneficial to investigate new metrics to predict
how easy or difficult it might be to impersonate a certain target
(Stoll and Doddington, 2010), and then to develop specific fall-
back mechanisms to cope with such speakers during runtime
recognition.

5.2. Replay

Replay is a form of spoofing whereby an adversary attacks an
ASV system using a pre-recorded speech sample collected from
a genuine target speaker. The speech sample can be any record-
ing captured surreptitiously and even concatenated speechsam-
ples extracted from a number of shorter segments, for example
to overcome text-dependent ASV systems (Villalba and Lleida,
2011b). Replay is a simple spoofing attack, requiring no spe-
cific knowledge in speech processing. In addition, due to the
availability of high quality and low-cost recording devices, such
as smart phones, replay spoofing attack are arguably the most
accessible and therefore present a significant threat. An exam-
ple of a practical replay attack is presented in Figure 6. Here, a
smart phone is used to replay a pre-recorded speech sample in
order to unlock another smart phone which uses speaker verifi-
cation technology for logical access authentication.

Figure 6: An example of replay attack in practical situation. The left phone
(black color) is the smart phone with a voice-unlock function for user authenti-
cation as reported in (Lee et al., 2013). The right phone (white color) is used to
replay a pre-recorded speech sample to unlock the left phone.

5.2.1. Spoofing
Even though they are among the most simple and easily im-

plemented, only a small number of studies have addressed re-
play attacks. In those thus far reported, attacks are generally
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Table 3: A summary of different studies involving replay spoofing attacks. CMs= Countermeasures.

# target ASV Before spoofing After spoofing With CMs
Study speaker system EER/FAR EER FAR EER FAR

(Lindberg et al., 1999) 2 Text-Dependent HMM 1.1∼ 5.6 % 27.3∼ 70.0 % 89.5∼ 100 % n/a n/a
(Villalba and Lleida, 2011a) 5 JFA 0.71 % ≈20 % 68.00 % 0 ∼ 14 % 0 ∼ 17 %

(Wang et al., 2011) 13 GMM-UBM n/a 40.17 % n/a 10.26 % n/a
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Figure 7: An example of replay. An English target speaker pronounces ”only lawyers love millionaires”. The original data is from RSR2015 (Larcher et al.,
2012, 2014). The attacker uses a smartphone to record the genuine speech, and then replays it using a laptop, which is alsoused to record the playback speech.
Spectrogram and formant tracks (F1 through F4) of the replayspeech (top) and the genuine speech (botton) were computed using Praat (Boersma and Weenink,
2014). It is clearly observed that the spectrogram and formant tracks of the replay speech are almost indistinguishablefrom the genuine speech.

assumed to occur at the microphone level, although they can
also be implemented at the transmission level in the case that
replayed speech signals are injected immediately prior to trans-
mission.

Vulnerabilities to replay attack were first evaluated in (Lind-
berg et al., 1999). The threat was assessed in the context of a
hidden Markov model (HMM) text-dependent, digit sequence
ASV system with attacks constructed from the concatenation
of pre-recorded, isolated digits. Replay attacks were shown to
provoke a significant increase in both the EERs and FARs. In
particular, the EERs increased from 1.1 % and 5.6 % to 27.3 %
and 70.0 % for male and female speakers, respectively. With the
same threshold, the FARs were shown to increase from 1.1%
and 5.6 % to 89.5 % and 100 % for male and female speakers,
respectively. The significant variation between male and female
speakers lies in the use of only a single speaker in each case.

Vulnerabilities in the context of text-independent ASV were
assessed in (Villalba and Lleida, 2010) and (Villalba and Lleida,
2011a). Both studies used pre-recorded speech samples which
were collected using a far-field microphone and then replayed
in a mobile telephony scenario. Results showed that the FAR
of a joint factor analysis (JFA) system increased from 0.71 %to
almost 68 % as a result of replay attacks. Both studies involved
only five speakers.

A physical access scenario was considered in (Wang et al.,
2011). Although no baseline statistics were reported, a text-
independent GMM-UBM system was shown to give an EER of
40.17 % when subjected to replay attacks. This study used a

dataset collected from 13 speakers.
Figure 7 presents an example of replay speech in compari-

son to the genuine speech. It shows that the spectrogram and
formant trajectories of the replay speech (upper images) have
a highly similarity to those of the genuine speech (lower im-
ages). We can infer that the spectral features extracted from
such a spectrogram will match the feature distribution of the
target speaker to a considerable degree. Thus, it is easy to un-
derstand that ASV systems using spectral features are vulnera-
ble to replay attacks.

A summary of the work involving replay spoofing attacks is
presented in Table 3. Even if they are all based on a small num-
ber of speakers, all three studies are consistent in their findings:
no matter what the ASV system, replay attacks provoke signif-
icant increases in FARs.

5.2.2. Countermeasures
Recently, due to the mass-market adoption of ASV tech-

niques (Lee et al., 2013; Nuance, 2013) and the awareness and
simplicity of replay attacks, both industry (Nuance, 2013)and
academia (Shang and Stevenson, 2010; Villalba and Lleida,
2011a,b; Wang et al., 2011) have shown an interest in devel-
oping replay attack countermeasures.

The first approach to replay detection was reported in (Shang
and Stevenson, 2010) in the context of a text-dependent ASV
system using fixed pass-phrases. The detector is based upon the
comparison of new access samples with stored instances of past
access attempts. New accesses are identified as replay attacks if
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they produce a similarity score higher than a pre-defined thresh-
old. Detection performance was assessed using a database of
genuine and replayed accesses collected across three different
communication channels and using three different replay de-
vices. A large number of experiments confirmed that the de-
tector succeeded in lowering the EER in most of the playback
detection experiments conducted.

An alternative countermeasure based upon spectral ratio
and modulation indexes was proposed in (Villalba and Lleida,
2011a,b). The motivation stems from the increase in noise
and reverberation which occurs as a result of replaying far-
field recordings. The spectrum is flattened as a result and thus
the modulation index is reduced. A support vector machine
was used to model the spectral and modulation indexes of gen-
uine and replayed recordings collected across both landline and
GSM telephone channels. The countermeasures were shown to
reduce the FAR of a text-independent joint factor analysis (JFA)
ASV system from 68 % to 0 % and 17 % for landline and GSM
channels, respectively.

A replay attack countermeasure based on the detection of
channel noise was proposed in (Wang et al., 2011). Licit record-
ings only contain channel noise from the recording device of
the ASV system, while replay attacks incur additional chan-
nel noise introduced by both the recording device and the loud-
speaker used for replay. Thus, the detection of channel effects
beyond those introduced by the recording device of the ASV
system serves as an indicator of replay attack. Experiments
showed that the performance of a baseline GMM-UBM system
with a EER of 40.17 % under spoofing fell to 10.26 % with the
countermeasure.

While related to a multimodal scenario with both speaker and
face recognition,(Bredin et al., 2006) proposed a replay attack
detection algorithm based on the lack in correspondence be-
tween acoustic and visual signals. Under replay attack an error
rate of 0 % was achieved when the visual signal consisted only
of a still photo.

The performance of ASV systems with replay attack coun-
termeasures is summarised in Table 3. Even if all the exam-
ple studies involve only a small number of speakers, it is clear
that replay attacks provoke significant increases in the reported
FARs. While countermeasures are generally effective in reduc-
ing the FARs, they remain significantly higher than those of the
respective baselines. Further work is thus required to develop
more effective countermeasures.

5.3. Speech synthesis
Speech synthesis, commonly referred to as text-to-speech

(TTS), is a technique for generating intelligible, natural-
sounding artificial speech for any arbitrary text. Speech synthe-
sis is used widely in various applications including in-carnav-
igation systems, e-book readers, voice-over functions forthe
visually impaired, and communication aids for the speech im-
paired. More recent applications include spoken dialogue sys-
tems, communicative robots, singing speech synthesisers,and
speech-to-speech translation systems.

Typical speech synthesis systems have two main compo-
nents: text analysis and speech waveform generation, which

are sometimes referred to as thefront-endand back-end, re-
spectively. In the text analysis component, input text is con-
verted into a linguistic specification consisting of elements such
as phonemes. In the speech waveform generation component,
speech waveforms are generated from the produced linguistic
specification.

There are four major approaches to speech waveform gen-
eration. In the early 1970s, the speech waveform generation
component used very low dimensional acoustic parameters for
each phoneme, such as formants, corresponding to vocal tract
resonances with hand-crafted acoustic rules (Klatt, 1980). In
the 1980s, the speech waveform generation component used
a small database of phoneme units called ‘diphones’ (the sec-
ond half of one phone plus the first half of the following) and
concatenated them according to the given phoneme sequence
by applying signal processing, such as linear predictive (LP)
analysis, to the units (Moulines and Charpentier, 1990). Inthe
1990s, larger speech databases were collected and used to se-
lect more appropriate speech units that match both phonemes
and other linguistic contexts such as lexical stress and pitch
accent in order to generate high-quality natural sounding syn-
thetic speech with appropriate prosody. This approach is gen-
erally referred to as ‘unit selection,’ and is used in many speech
synthesis systems, some commercial (Hunt and Black, 1996;
Breen and Jackson, 1998; Donovan and Eide, 1998; Beutnagel
et al., 1999; Coorman et al., 2000). In the late 1990s another
data-driven approach emerged. ‘Statistical parametric speech
synthesis’ has grown in popularity in recent years (Yoshimura
et al., 1999; Ling et al., 2006; Black, 2006; Zen et al., 2007).
In this approach, several acoustic parameters are modelledus-
ing a time-series stochastic generative model, typically ahidden
Markov model (HMM). HMMs represent not only the phoneme
sequences but also various contexts of the linguistic specifica-
tion in a similar way to the unit selection approach. Acoustic
parameters generated from HMMs and selected according to
the linguistic specification are used to drive a vocoder, a sim-
plified speech production model with which speech is repre-
sented by vocal tract parameters and excitation parametersin
order to generate a speech waveform. In addition to the four
major approaches, inspired by advances in deep neural network
(DNN)-based speech recognition (Hinton et al., 2012), new
data-driven, DNN-based approaches have also been activelyin-
vestigated (Zen et al., 2013; Ling et al., 2013; Lu et al., 2013;
Qian et al., 2014).

The first three approaches are unlikely to be effective in ASV
spoofing. The first two approaches do not provide for the syn-
thesis of speaker-specific formant characteristics, whereas di-
phone or unit selection approaches generally require a speaker-
specific database that covers all the diphones or relativelylarge
amounts of speaker-specific data with carefully prepared tran-
scripts. In contrast, state-of-the-art HMM-based speech synthe-
sisers (Zen et al., 2009; Yamagishi et al., 2009) can learn speech
models from relatively little speaker-specific data by adapt-
ing background models derived from other speakers based on
the standard model adaptation techniques drawn from speech
recognition, i.e. maximum likelihood linear regression (MLLR)
(Leggetter and Woodland, 1995; Woodland, 2001).
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Table 4: A summary of speech synthesis spoofing attack studies. CMs= Countermeasures. Note that all the studies listed in this Table do not provide EERs of the
ASV systems after spoofing attacks.

# target ASV FAR
Study speaker system Before spoofing After spoofing With CMs

(Lindberg et al., 1999) 2 HMM 5.6 % 38.9 % n/a
(Masuko et al., 1999) 20 HMM 0.00 % 70 % n/a

(De Leon et al., 2012a) 283 GMM-UBM 0.28 % 86 % 2.5 %
(De Leon et al., 2012a) 283 SVM 0.00 % 81 % 2.5 %

5.3.1. Spoofing

There is a considerable volume of research in the literature
which has demonstrated the vulnerability of ASV to synthetic
voices generated with a variety of approaches to speech synthe-
sis (Lindberg et al., 1999; Foomany et al., 2009; Villalba and
Lleida, 2010). Although speech synthesis attacks can also be
applied at the microphone level, the majority of past work as-
sumes attacks at the transmission level.

ASV vulnerabilities to HMM-based synthetic speech were
first demonstrated over a decade ago (Masuko et al., 1999,
2000). The work used acoustic models adapted to specific hu-
man speakers (Masuko et al., 1996, 1997) and was performed
using an HMM-based, text-prompted ASV system (Matsui and
Furui, 1995). Feature vectors were scored against speaker and
background models composed of concatenated phoneme mod-
els. When tested with genuine speech the ASV system achieved
an FAR of 0 % and an FRR of 7 %. When subjected to spoofing
attacks with synthetic speech, the FAR increased to over 70 %.
This work involved only 20 speakers.

Larger scale experiments using the Wall Street Journal cor-
pus containing in the order of 283 speakers and two different
ASV systems (GMM-UBM and SVM using Gaussian super-
vectors) were reported in (De Leon et al., 2010b,a, 2012a). Us-
ing a state-of-the-art HMM-based speech synthesiser, the FAR
was shown to rise from 0.28 % and 0 % to 86 % and 81 %
for the GMM-UBM and SVM systems respectively. This re-
sult is due to the significant overlap in the distribution of ASV
scores for genuine and synthetic speech, as shown in Figure 8.
Spoofing experiments using HMM-based synthetic speech and
a commercial, forensic speaker verification tool were also re-
ported in (Galou, 2011) and reached similar findings.

Table 4 summarises the past work on speech synthesis at-
tacks. In contrast to studies of impersonation and replay at-
tacks, those of speech synthesis attacks generally use relatively
large-scale datasets, usually of high-quality clean speech. All
the past work confirms that speech synthesis attacks are ableto
increase significantly the FAR of all tested ASV systems, in-
cluding those at the state of the art.

5.3.2. Countermeasures

Most approaches to detect synthetic speech rely on process-
ing artefacts specific to a particular synthesis algorithm.Based
on the observation that the dynamic variation in the speech pa-
rameters of synthetic speech tend to be less than those of natural
speech, (Satoh et al., 2001) investigated the use of intra-frame
differences as a discriminative feature. This method works well
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Figure 8: Approximate score distributions for (a) GMM-UBM and (b) SVM
using GMM supervector SV systems with human and synthesizedspeech re-
ported in (De Leon et al., 2012a). Distributions for human speech, true claimant
(green lines, o) and synthesized speech, matched claimant (black lines, x) have
significant overlap leading to a 81 % acceptance rate for synthetic speech with
matched claims.

in detecting HMM-based synthetic speech without global vari-
ance compensation (Tomoki and Tokuda, 2007).

In (Chen et al., 2010), higher order Mel-cepstral coefficients
(MCEPs) are employed to detect synthetic speech produced by
an HMM-based synthesis system. The higher order cepstral co-
efficients, which reflect the detail in the spectral envelope, tend
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to be smoothed during the HMM model parameter training and
synthesis processes. Therefore, the higher order cepstralcom-
ponents of synthetic speech exhibit less variance than natural
speech. While estimates of this variance thus provide a means
of discriminating between genuine and synthetic speech, such
an approach is based on the full knowledge of a specific HMM-
based speech synthesis system. The same countermeasure may
thus not generalise well to other synthesisers which utilise dif-
ferent acoustic parameterisations.

There are some attempts which focus on acoustic differ-
ences between vocoders and natural speech. Since the hu-
man auditory system is thought to be relatively insensitive
to phase (Quatieri, 2002), vocoders typically do not recon-
struct speech-like phase information. This simplificationleads
to differences in the phase spectra between human and syn-
thetic speech, differences which can be utilised for discrimina-
tion (De Leon et al., 2012a; Wu et al., 2012a). These meth-
ods work well when combined with prior knowledge of the
vocoders.

Based on the difficulty in reliable prosody modelling in both
unit selection and statistical parametric speech synthesis, other
approaches to synthetic speech detection use F0 statistics(Ogi-
hara et al., 2005; De Leon et al., 2012b). F0 patterns generated
for the statistical parametric speech synthesis approach tend to
be over-smoothed and the unit selection approach frequently
exhibits ‘F0 jumps’ at concatenation points of speech units.

A summary of ASV performance with integrated spoofing
countermeasures is presented in the right-most column of Ta-
ble 4. While the countermeasure investigated in (De Leon et al.,
2012a) is shown to be effective in protecting both GMM-UBM
and SVM systems from spoofing, as discussed above, most ex-
ploit prior knowledge of specific spoofing algorithms.

5.4. Voice conversion
Voice conversion aims to manipulate the speech of a given

speaker so that it resembles in some sense that of another, tar-
get speaker (Stylianou, 2009; Evans et al., 2014a). In contrast
to speech synthesis systems which require text input, the input
to a voice conversion system is a natural speech signal. Typi-
cally, voice conversion involves spectral mapping and prosody
conversion. Spectral mapping relates to voice timbre, while
prosody conversion relates to prosodic features, such as fun-
damental frequency and duration.

There are three major approaches to spectral mapping: sta-
tistical parametric, frequency warping and unit-selection. Sta-
tistical parametric approaches usually implement linear or non-
linear conversion functions to map the spectral features ofan
input speech signal towards features representative of thetarget
speaker. A straightforward approach to spectral mapping based
on vector quantisation (VQ) was proposed in (Abe et al., 1988).
A mapping codebook is learned from source-target feature pairs
and is then used to estimate target features from source features
at runtime. Gaussian mixture model (GMM) based approaches,
which improve on the hard clustering of VQ methods were pro-
posed in (Kain and Macon, 1998; Stylianou et al., 1998; Toda
et al., 2007) to implement a weighted linear conversion func-
tion. Alternative, nonlinear approaches include those based on

neural networks (Desai et al., 2010), dynamic kernel partial
least squares (Helander et al., 2012), restricted Boltzmann ma-
chines (Chen et al., 2013) and deep belief networks (Nakashika
et al., 2013).

As alternatives to data-driven statistical conversion methods,
frequency warping based approaches to voice conversion were
introduced in (Toda et al., 2001; Sundermann and Ney, 2003;
Erro et al., 2010; Godoy et al., 2012; Erro et al., 2013). Rather
than directly substituting the spectral characteristics of the input
speech signal, these techniques effectively warp the frequency
axis of a source spectrum to match that of the target. Frequency
warping approaches tend to retain spectral details and produce
high quality converted speech. A so-called Gaussian-dependent
filtering approach to voice conversion introduced in (Matrouf
et al., 2006; Bonastre et al., 2007) is related to amplitude scal-
ing (Godoy et al., 2012) within a frequency warping framework.

Similar to unit selection speech synthesis, unit selectionap-
proaches to voice conversion have also been investigated asa
means of directly utilising the target speaker’s speech segments
to generate converted speech (Sundermann et al., 2006; Dutoit
et al., 2007; Wu et al., 2013a). As reported in the voice con-
version literature, unit selection approaches produce converted
speech much closer to the target speaker than statistical para-
metric approaches (Sundermann et al., 2006; Dutoit et al., 2007;
Wu et al., 2013a) in terms of speaker individuality and subjec-
tive listening tests.

In addition to the spectral content, prosody information also
plays an important role in characterising speaker individuality.
Among the most significant aspects of prosody investigated in
the context of voice conversion are the fundamental frequency
(F0) and duration. Approaches to convert a source speaker’s
F0 trajectories to those of a target speaker were investigated
in (Gillet and King, 2003; Wu et al., 2006; Helander and Nur-
minen, 2007; Wu et al., 2010) whereas phoneme or syllable du-
ration conversion approaches were reported in (Wu et al., 2006;
Lolive et al., 2008).

Voice conversion technology is likely to be effective in at-
tacking ASV systems. Spectral mapping techniques shift an
impostor’s spectral characteristics to match those of a specific
target speaker and hence present a threat to ASV systems which
use spectral features. Meanwhile, prosody conversion can ma-
nipulate an attacker’s prosodic characteristics to mimic those
of a target speaker and thus they present a risk to ASV systems
which use prosodic features, e.g. (Adami et al., 2003; Kajarekar
et al., 2003; Shriberg et al., 2005; Dehak et al., 2007; Ferrer
et al., 2010; Siddiq et al., 2012; Kockmann, 2012).

5.4.1. Spoofing
Voice conversion has attracted increasing interest in the con-

text of ASV spoofing for over a decade. In (Pellom and
Hansen, 1999), the vulnerability of a GMM-UBM ASV system
was evaluated using the YOHO corpus, which consists of 138
speakers. These experiments showed that the FAR increased
from a little over 1 % to 86 % as a result of voice conversion
attacks.

Some of the early work in larger-scale, text-independent
speaker verification spoofing includes that in (Perrot et al.,
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Table 5: Summary of voice conversion spoofing attack and countermeasure (CM) studies.≈ means the numbers are estimated from the detection error trade-off
(DET) curses as presented in the literature.

# target ASV Before spoofing After spoofing With CMs
Study speaker system EER/FAR EER FAR FAR

(Perrot et al., 2005) n/a GMM-UBM ≈16 % 26.00 % ≈40 % n/a
(Matrouf et al., 2006) n/a GMM-UBM ≈8 % ≈63 % ≈100 % n/a
(Bonastre et al., 2007) n/a GMM-UBM 6.61 % 28.07 % ≈55 % n/a
(Kinnunen et al., 2012) 504 JFA 3.24 % 7.61 % 17.33 % n/a

(Wu et al., 2012b) 504 PLDA 2.99 % 11.18 % 41.25 % 1.71 %
(Alegre et al., 2012b) 201 FA 4.80 % 64.30 % ≈77 % 0 %
(Alegre et al., 2013c) 298 FA 5.60 % 24.40 % ≈54 % 1.60 %
(Alegre et al., 2013a) 298 PLDA 3.03 % 20.2 % ≈55 % 4.10 %

(Kons and Aronowitz, 2013) 750 HMM-NAP 1.00 % 2.90 % 36.00 % n/a

2005; Matrouf et al., 2006). The work in (Perrot et al., 2005)
evaluated the vulnerability of a GMM-UBM ASV system. Ex-
periments reported on the 2004 NIST speaker recognition eval-
uation (SRE) dataset showed that a baseline EER of 16 %
increased to 26 % as a result of voice conversion attacks.
The work in (Matrouf et al., 2006) investigated a Gaussian-
dependent filtering approach to convert the spectral envelope of
the input speech signal towards that of the target speaker. These
experiments, conducted on the 2005 NIST SRE dataset, showed
that the baseline EER for a GMM-UBM system increased from
8 % to over 60 % as a result of voice conversion attacks which
exploit knowledge of the ASV system. The work in (Bonas-
tre et al., 2007), conducted on the 2005 and 2006 NIST SRE
datasets, showed a reduced degradation in the EER from 6.61 %
to 28.7 % when different feature parameterisations are used for
ASV and voice conversion. Even so, this particular approachto
voice conversion produces high-quality, natural speech.

The work in (Kinnunen et al., 2012) and (Wu et al., 2012b)
extended the study of GMM-UBM systems to consider an ar-
ray of different approaches to ASV. The work was performed
on the 2006 NIST SRE dataset using both joint-density GMM
and unit selection approaches to voice conversion. Even if con-
verted speech could be detected easily by human listeners, ex-
periments involving six different ASV systems showed univer-
sal susceptibility to spoofing. The FAR of the JFA system in-
creased from 3.24 % to over 17 % in the case of GMM-based
voice conversion attacks. That of the most robust PLDA sys-
tem increased from 2.99 % to over 40 % in the face of unit
selection conversion attack. These results are due to the con-
siderable overlap in the distribution of ASV scores for genuine
and converted speech, as shown in Figure 9.

Still in the context of text-independent ASV, other work rel-
evant to voice conversion includes attacks referred to as artifi-
cial signals. It was noted in (Alegre et al., 2012a) and (Alegre
et al., 2012b) that certain short intervals of converted speech
yield extremely high scores or likelihoods. On their own, such
short intervals are not representative of intelligible speech but
are nonetheless effective in overcoming ASV systems which
lack any form of speech quality assessment. Artificial signals
optimised with a genetic algorithm were shown to provoke in-
creases in EER from 8.5 % to almost 80 % for a GMM-UBM
system and from 4.8 % to almost 65 % for a factor analysis (FA)
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Figure 9: Score distributions before and after voice conversion attacks for a
PLDA system as reported in (Wu et al., 2012b).

system.
The work in (Kons and Aronowitz, 2013) examined the

vulnerability of several state-of-the-art text-dependent sys-
tems, namely, i-vector, GMM-NAP and HMM-NAP systems.
Among the three systems, HMM-NAP employed a speaker-
independent hidden Markov model (HMM) instead of a GMM
to capture temporal information. Results showed that voice
conversion provoked increases in the EERs and FARs of all the
three systems. Specifically, the FAR of the most robust HMM-
NAP system increased from 1 % to 36 %.

Table 5 presents a summary of spoofing studies described
above. Unlike impersonation and replay spoofing studies, and
as illustrated in the second column of Table 5, most studies
involving voice conversion were performed with large-scale
datasets with a large number of speakers. Even though some
approaches to voice conversion produce speech with clearlyau-
dible artefacts (Chen et al., 2003; Toda et al., 2007; Erro etal.,
2013), Table 5 shows that all provoke significant increases in
the FAR across a variety of different ASV systems.

5.4.2. Countermeasures
Voice conversion bears some similarity to speech synthesisin

that some voice conversion algorithms employ vocoding tech-
niques similar to those used in statistical parametric speech syn-
thesis (Zen et al., 2009). Accordingly, some of the first work
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Figure 10: An example of a synthetic speech detector combined with speaker verification (Wu et al., 2012b). Based on priorknowledge that many analysis-synthesis
modules used in voice conversion and TTS systems discard natural speech phase, phase characteristics parameterised via modified group delay (MGD) can be used
for discriminating natural and synthetic speech.

to detect converted speech drew on related work in synthetic
speech detection (De Leon et al., 2011).

The work in (Wu et al., 2012a) exploited artefacts introduced
by the vocoder as a means of discriminating converted speech
from natural speech. Cosine normalised phase (cos-phase) and
modified group delay phase (MGD-phase) features were shown
to be effective. Experiments performed on the 2006 NIST SRE
dataset were shown to give a detection EER of 5.95 % and
2.35% using cos-phase and MGD-phase countermeasures, re-
spectively. This work was extended in (Wu et al., 2012b) to
investigate the effect of countermeasure performance on that
of ASV, as illustrated in Figure 10. With the countermeasure,
the FAR of a PLDA ASV system reduced from 19.27 % and
41.25% to 0.0 % and 1.71 % under GMM and unit-selection
voice conversion spoofing attacks respectively. Interestingly,
baseline performance was not affected as a result of integrating
spoofing countermeasures. Even so, being based on the absence
of natural phase, neither countermeasure is likely to detect con-
verted voice exhibiting real-speech phase, as produced by the
conversion approach in (Matrouf et al., 2006).

The work in (Alegre et al., 2012b, 2013b) assessed an ap-
proach to detect both voice conversion attacks which pre-
serve real-speech phase (Matrouf et al., 2006; Bonastre et al.,
2007) and artificial signal attacks (Alegre et al., 2012a). Re-
sults in (Alegre et al., 2012b) suggest that supervector-based
SVM classifiers are naturally robust to artificial signal attacks
whereas the work in (Alegre et al., 2013b) shows that voice con-
version attacks can be detected effectively using estimates of
utterance-level, dynamic speech variability. Converted speech
was shown to exhibit less dynamic variability than natural
speech. The effect of countermeasures on ASV performance
was assessed in (Alegre et al., 2013c). The FAR of an FA sys-
tem was shown to fall from 54 % under spoofing to 2 % with
integrated spoofing countermeasures.

A summary of the efforts to develop countermeasures against
voice conversion spoofing attacks is presented in Table 5. It
shows that countermeasures are effective in protecting ASV
systems from voice conversion attacks, and that performance
with integrated countermeasures is not too dissimilar to base-
line performance.

6. Discussion

As discussed in Section 5, spoofing and countermeasures for
ASV have been studied with various approaches to simulate
spoofing attacks, different ASV systems, diverse experimen-
tal designs, and with a multitude of different datasets, evalua-
tion protocols and metrics. The lack of commonality makes the
comparison of vulnerabilities and countermeasure performance
extremely challenging. Drawing carefully upon the literature
and the authors’ own experience, we have nevertheless made
such an attempt.

6.1. Spoofing
In Table 6, we summarise the threat of the four major ap-

proaches to spoofing considered in this paper. Each attack
is compared in terms ofaccessibilityand effectiveness. Ac-
cessibility is intended to reflect the ease with which the at-
tack may be performed, i.e. whether the technology is widely
known and available or whether it is limited to the technically-
knowledgeable. Effectivenessreflects the increase in FAR
caused by each attack, or the risk it poses to ASV.

Although some studies have shown that impersonation can
fool ASV systems, in practice the effectiveness seems to de-
pend on the skill of the impersonator, the similarity of the at-
tacker’s voice to that of the target speaker, as well as the system
itself. There are clearly easier, more accessible and more effec-
tive approaches to spoofing. Indeed, replay attacks are highly
effective in the case of text-independent ASV and fixed-phrase
text-dependent systems. Even if the effectiveness is reduced in
the case of randomised, phrase-prompted text-dependent sys-
tems, replay attacks are the most accessible approach to spoof-
ing, requiring only a recording and playback device such as a
tape recorder or a smart phone.

Neither speech synthesis nor voice conversion systems ca-
pable of producing speech indicative of other specific, target
speakers are readily available in commercial off-the-shelf sys-
tems. Nonetheless, both speech synthesis and speaker adapta-
tion are active research topics with clear commercial applica-
tions. Trainable speech synthesis and publicly available voice
conversion tools are already in the public domain, e.g. Festival6

6http://www.cstr.ed.ac.uk/projects/festival/
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Table 6: A summary of the accessibility and effectiveness of the four spoofing attack approaches, and the availability of countermeasures for automatic speaker
verification. They are graded on a three-level scale.

Spoofing Accessibility Effectiveness (risk) Countermeasure
technique (practicality) Text-independent Text-dependent availability
Impersonation Low Low Low Non-existent
Replay High High Low to high Low
Speech synthesis Medium to high High High Medium
Voice conversion Medium to high High High Medium

and Festvox7 and it has been reported that some speech synthe-
sis systems are able to produce speech comparable in quality
to human speech8. The accessibility of speech synthesis and
voice conversion attacks should thus be considered medium to
high. Among the others considered in this paper, speech synthe-
sis and voice conversion spoofing attacks may pose the greatest
threat to ASV performance and thus effectiveness, for both text-
dependent and text-independent ASV systems is high.

6.2. Countermeasures

The vulnerability of ASV systems to each of the four attacks
considered above has been confirmed by several independent
studies. Even so, efforts to develop countermeasures are rela-
tively embryonic, lagging far behind the level of effort in the
case of some other biometric modalities. Also summarised in
Table 6 is the currentavailability of countermeasures for each
spoofing attack, namely the status of countermeasures for im-
mediate, practical use.

Since impersonated speech is entirely natural, there are no
processingartefacts which might otherwise be useful for detec-
tion purposes. Furthermore, to the best of our knowledge, there
are no impersonation countermeasures in the literature andthus
the availability is indicated asnon-existentin Table 6.

Only a small number of countermeasures have been reported
in the literature for replay attacks. Availability is thus indicated
as low in Table 6. Even if speech synthesis and voice conversion
have attracted greater attention, the majority of existingcoun-
termeasures make unrealistic use of prior knowledge. Avail-
ability is therefore indicated as medium. Furthermore, these
countermeasures might be easily overcome if they are known
to spoofing attackers. For example, countermeasures based on
phase-related features can be overcome by including natural
phase information.

6.3. Generalised countermeasures

All of the past work described above targets a specific form
of spoofing and generally exploits some prior knowledge of a
particular spoofing algorithm. In practice, however, neither the
form of spoofing nor the exact algorithm can be known with any
certainty. Hence, countermeasures based on processing arte-
facts indicative of a specific approach to spoofing may not gen-
eralise well in the face of varying attacks. Recent work has
thus investigated the reliability of specific countermeasures to

7http://www.festvox.org/index.html
8http://www.festvox.org/blizzard/index.html

different attacks (not seen during training) in addition to new,
generalised approaches.

The potential for generalised countermeasures is high-
lighted in independent studies of spoofing with synthetic
speech (De Leon et al., 2012a) and converted voice (Wu et al.,
2012a). Since both forms of attack employ vocoding tech-
niques, the use of phase information proved a reliable meansof
detecting manipulated speech signals in both studies. The work
in (Wu et al., 2013b) also showed that a common countermea-
sure based on long-term, temporal magnitude and phase mod-
ulation features was successful in detecting both synthetic and
converted speech, even if the countermeasure exploits knowl-
edge of the vocoder. Longer-term or higher-level features were
investigated in (Alegre et al., 2013c) in the form of local bi-
nary pattern (LBP) analysis (Figure 11), a technique originally
developed for texture analysis in computer vision problems
(Pietikäinen et al., 2011). The LBP-based countermeasureop-
timised for voice conversion was shown also to be effective in
detecting entirely different (no common vocoder) speech syn-
thesis and artificial signal attacks.

While still based on the LBP analysis proposed in (Ale-
gre et al., 2013c), the first entirely generalised countermeasure
was proposed in (Alegre et al., 2013a). Generality is ensured
through the learning of a one-class classifier optimised using
natural speech alone, without any form of spoofed speech train-
ing data. Despite the lack of any matched training data, experi-
mental results presented in Figure 12 show that the generalised,
one-class classifier is effective in detecting both synthetic and
converted speech, in addition to artificial signal spoofing attacks
for which the detection EER is 0 %.

7. Issues for future research

As discussed in Section 5, the spoofing and countermeasure
studies reported in the literature were conducted with different
datasets, evaluation protocols and metrics. Unfortunately, the
lack of standards presents a fundamental barrier to the com-
parison of different research results. This section discusses the
current evaluation protocols and metrics and some weaknesses
in the methodology. We also discuss some open-source soft-
ware packages which can be recommended for future spoofing
and countermeasure research.

7.1. Large-scale standard datasets

Past studies of impersonation and replay spoofing attacks
were all conducted using small-scale datasets, with only small

15



Figure 11: An illustration of local binary pattern (LBP) feature extraction. The procedure involves: a) the extractionof linear frequency cepstral coefficient (LFCC)
features from the speech signal; b) the application of uniform LBP analysis to convert the cepstrogram into a so-called textrogram; c) the generation of histograms
of LBP values for all but the first and last rows of the textrogram; d) the concatenation of normalised histograms to form feature supervectors for spoofing detection.
More details can be found in (Alegre et al., 2013c). Figure reproduced from (Alegre et al., 2013c).
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Figure 12: Detection performance for the first generalised,one-class classifier
in the case of voice conversion, speech synthesis and artificial signal spoofing
attacks. The profile for artificial signals is not visible since the EER is 0 %.
Figure reproduced from (Alegre et al., 2013a).

numbers of speakers. While they all suggest that ASV sys-
tems might be vulnerable, it is difficult to draw any more
meaningful conclusions without the use of significantly larger
datasets. While many of the past studies on speech synthesis
and voice conversion spoofing attacks already employ large-
scale datasets, e.g. NIST speaker recognition evaluation (SRE)
corpora, they all require the use of non-standard speech synthe-
sis and voice conversion algorithms in order to generate spoofed
speech. Moreover, some of the studies involving speech synthe-
sis have used datasets of high-quality speech recorded in clean,
controlled conditions; they lack channel/noise mismatch which
might typify the practical use-case scenario. Larger-scale, stan-
dard datasets with realistic channel and recording environment
variability will be needed for future work in order that the threat
from each form of attack can be compared reliably under real-
istic conditions (Alegre et al., 2014).

It is probably for the study of countermeasures, however,
where the need for standard datasets is greatest. All the past
work has investigated countermeasures where details of the
spoofing attack are either implicitly or explicitly known, e.g.
the form of attack or even the exact algorithm. This is clearly
wholly unrepresentative of the practical scenario where the na-
ture of the spoofing attack can never be known precisely. In
this sense, while past work is sufficient to demonstrate the po-
tential of spoofing countermeasures, their performance is prob-
ably over-estimated. In addition, most of the past countermea-
sure studies have been conducted under matched conditions,
e.g. where speech samples used to optimise the countermeasure
are collected in the same or similar acoustic environment and
over the same or similar channel as those used for evaluation.
Large-scale, standard datasets are thus also needed in order that
countermeasure performance can be evaluated not only with re-
alistic channel or recording environment variability, butalso in
the absence of a priori knowledge and hence under variable at-
tacks. The detection of spoofing will then be considerably more
challenging but more reflective of practical use cases.

7.2. Evaluation metrics

While countermeasures can be integrated into existing ASV
systems, they are most often implemented as independent mod-
ules which allow for theexplicit detectionof spoofing attacks.
The most common approach in this case is to concatenate the
two classifiers in series as illustrated in Figure 10. As shown
in Table 1, a standard ASV system measures two types of er-
ror: false acceptances and false rejections. Similarly, there are
also two incorrect outcomes from a stand-alone countermea-
sure. The assessment of countermeasure performance on its
own is relatively straightforward; results are readily analysed
with standard detection error trade-off (DET) profiles (Martin
et al., 1997) and related metrics.

It is often of interest, however, that the assessment reflects the
impact on ASV performance. Assessment is then non-trivial,
calling for the joint optimisation of combined classifiers.As
reflected in Section 5, there are currently no standard evaluation
protocols, metrics or ASV systems and there is thus a need to
define such standards in the future.
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Candidate standards for evaluation protocols and metrics are
being drafted within the scope of the EU FP7 TABULA RASA
project9. Here, independent countermeasures preceding bio-
metric verification are optimised at three different operating
points where thresholds are set to obtain false fake rejection
rates (the probability of labelling a genuine access as a spoof-
ing attack) of either 1 %, 5 % or 10 %. Only those sam-
ples labelled as genuine accesses are passed to the ASV sys-
tem whereas those labelled as spoofed accesses are discarded10.
Performance is assessed using four different DET profiles11, ex-
amples of which are illustrated in Figure 13. The four profiles
illustrate performance of the baseline system with naı̈ve (zero-
effort) impostors, the baseline system with active countermea-
sures, the baseline system where all impostor accesses are re-
placed with spoofing attacks and, finally, the baseline system
with spoofing attacks and active countermeasures. Considera-
tion of all four profiles is needed to gauge the impacts of coun-
termeasures. These include those on licit transactions (any de-
terioration in false rejection – difference between 1st and 2nd
profiles) and those on robustness to spoofing (improvements
in false acceptance – difference between 3rd and 4th profiles).
However, profiles 2 and 4 are dependent on the countermeasure
threshold whereas the comparison of profiles 1 and 4 is poten-
tially misleading; they reflect simultaneous changes to both the
system and the dataset.

The expected performance and spoofability curve (EPSC12)
provides an alternative approach to evaluate biometric systems
with integrated spoofing countermeasures (Marcel, 2013). The
EPSC metric is applied to the fused scores produced by inde-
pendent biometric and countermeasure classifiers and reflects a
trade-off between the half total error rate (HTER) and the so-
called spoof false acceptance rate (SFAR). The HTER is the
mean of the weighted FAR and FRR (Chingovska et al., 2013)
whereas the SFAR refers to the probability of a spoofed access
being falsely accepted (Johnson et al., 2010). The HTER is
determined with a decision thresholdτ⋆ω which minimises the
difference between the FRR and the weighted FAR (FARω) ac-
cording to:

τ
⋆
ω = arg min

τ
|FARω(τ,Ddev) − FRR(τ,Ddev)|, (2)

where
FARω = ω · SFAR+ (1− ω) · FAR, (3)

whereω is the weight which balances the SFAR and FAR, and
whereDdev refers to the development set. Hence, the decision
threshold depends on the weightω.

With the decision thresholdτ⋆ω, the HTER can be computed

9http://www.tabularasa-euproject.org/
10In practice spoofed accesses cannot be fully discarded since so doing would

unduly influence ASV false reject and false acceptance ratescalculated as a per-
centage of all accesses. Instead, spoofed accesses bypass ASV and are assigned
an arbitrary, low score.

11Produced with the TABULA RASA Scoretoolkit: http:

//publications.idiap.ch/downloads/reports/2012/Anjos_

Idiap-Com-02-2012.pdf
12https://pypi.python.org/pypi/antispoofing.evaluation

Figure 13: An example of four DET curves needed to analyse vulnerabilities
to spoofing and countermeasure performance, both on licit and spoofed access
attempts. Results correspond to spoofing attacks using synthetic speech and a
standard GMM-UBM classifier assessed on the male subset of the 2006 NIST
SRE dataset.

on the test setDtest according to:

HTERω(τ⋆ω) =
FARω(τ⋆ω,Dtest) + FRR(τ⋆ω,Dtest)

2
, (4)

The HTERs are thus computed as a function ofω. The SFAR
is similarly computed as a function ofω on the test set. In
this way, the EPSC explicitly reflects three types of error met-
rics, the FAR, FRR and SFAR, while still providing a single
combined metric with a unique decision threshold. The EPSC
also supports the performance comparison of different coun-
termeasures or ASV systems. However, the EPSC metric is
only applicable where the countermeasure and ASV classifiers
are fused at the score level. More details of the EPSC can be
found in (Marcel, 2013; Chingovska et al., 2014) and an open-
source implementation is available in the Bob toolkit (Anjos
et al., 2012).

In general, the interpretation of existing evaluation metrics
is non-trivial and the metrics themselves lack universal appli-
cability across different approaches to system integration. Fur-
ther work is thus required to design intuitive, universal metrics
which represent the performance of spoofing countermeasures
when combined with ASV.

7.3. Open-source software packages

As reflected throughout this article, spoofing and counter-
measure studies involve a broad range of technologies, includ-
ing ASV, speech synthesis and voice conversion. In order to
facilitate further research, this section highlights a number of
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useful open-source software packages which can be used either
for ASV or spoofing and countermeasure research.

The ALIZE library and associated toolkits13 are among the
most popular in ASV research. Version 3.0 of ALIZE includes
several state-of-the-art approaches including joint factor analy-
sis (JFA), i-vector modelling and probabilistic linear discrimi-
nant analysis (PLDA) (Larcher et al., 2013a). The Bob signal
processing and machine learning toolbox14, is a general purpose
biometric toolkit which also includes ASV functionality (Anjos
et al., 2012). Popular solutions for feature extraction include
SPro15 and the Hidden Markov Model Toolkit16 (HTK) which
also includes extensive statistical modelling functionalities.

Some toolkits also provide speech synthesis and voice con-
version functionalities. The HMM-based Speech Synthesis
System17 (HTS) can be used to implement HMM-based speech
synthesis as well as speaker model adaptation, whereas the
Festvox18 toolkit can be used for voice conversion. The Speech
Signal Processing Toolkit19 (SPTK) offers speech analysis and
synthesis functionalities which can be used for feature extrac-
tion and the reconstruction of audible speech signals when com-
bined with HTS and Festvox.

7.4. Future directions

The survey highlights the lack of standards which in turn
leads to a number of issues in the current methodology, all of
which need attention in the future.

Generalised countermeasures:the majority of past anti-
spoofing studies have focused on a specific spoofing at-
tack, while variable attacks can be expected in prac-
tice. Future research should continue the pursuit of gen-
eralised countermeasures capable of detecting different
spoofing attacks unseen during countermeasure optimisa-
tion. Such work may potentially build on the one-class
approach (Alegre et al., 2013a) where the countermeasure
is trained only with natural speech. Evaluation protocols
should include diverse, mismatched spoofing techniques
thereby reflecting the uncertainty in the likely nature of a
spoofing attack.

Text-dependent systems:on account of dataset availability,
the majority of past work involves text-independent ASV
which is arguably more relevant to surveillance applica-
tions. Future work should increase the focus on text-
dependent systems, more pertinent to authentication sce-
narios.

Replay attacks: the present literature focuses on relatively
sophisticated attacks, such as synthesised and converted

13http://alize.univ-avignon.fr/
14http://idiap.github.io/bob/
15http://www.irisa.fr/metiss/guig/spro/
16http://htk.eng.cam.ac.uk/
17http://hts.sp.nitech.ac.jp/
18http://festvox.org/
19http://sp-tk.sourceforge.net/

speech. With the expertise to implement such attacks be-
ing beyond the means of the lay person, greater emphasis
should be placed on the less effective, though more ac-
cessible attacks; even if they are less effective, they might
occur more frequently in practice. The most obvious, ac-
cessible attack involves replay.

Countermeasures under acoustic mismatch:most evalua-
tions reported to date involve speech data with channel and
recording environment variability identical to that used
in countermeasure optimisation. Different transmission
channels, additive noises and other imperfections should
be expected in practice and have potential to mask process-
ing artefacts key to spoofing detection. Future evaluations
should thus evaluate countermeasures under acoustically
degraded and channel-mismatched conditions.

Combined spoofing attacks:The majority of the past stud-
ies involve only independent spoofing approaches. Fu-
ture work should consider the possibility of attackers com-
bining several spoofing techniques to boost effectiveness.
For example, voice conversion and impersonation could be
combined to spoof both spectral and prosodic cues.

It is, however, the consistent theme throughout this article,
namely the lack of standard databases, protocols and metrics,
which leads to what is arguably the most urgent of all direc-
tions for the future. The use of different experimental config-
urations impedes the comparison of different results and will
be a fundamental barrier to future advances; such standards
are essential to the benchmarking of different ideas and expe-
rience shows they are critical to progress. Just as they have
been for progress in automatic speaker verification, standard
databases, protocols and metrics will be an essential component
in the future for spoofing and countermeasure research. First
and foremost, the future work should define a publicly avail-
able dataset and competitive challenge similar in spirit tothe
traditional NIST speaker recognition evaluations. The authors
are currently working in this direction.

8. Conclusions

This article reviews the previous work to assess the vulnera-
bility of automatic speaker verification systems to spoofingand
the potential to protect them using dedicated countermeasures.
Even if there are currently no standard datasets, evaluation pro-
tocols or metrics with which to conduct meaningfully compa-
rable or reproducible research, previous studies involving im-
personation, replay, speech synthesis and voice conversion all
indicate genuine vulnerabilities. While a growing body of in-
dependent research also points to the potential of countermea-
sures, fundamental shortcomings in the research methodology
are common to all the past work and point towards specific pri-
orities for the future. Finally, while there is potential for next
generation countermeasures to detect varying spoofing attacks,
a continuous arms race is likely; efforts to develop more so-
phisticated countermeasures will likely be accompanied byin-
creased efforts to spoof automatic speaker verification systems.
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The area is therefore set to remain an important field of research
in the future.
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