Spoofing and countermeasures for speaker verification:vapur

Zhizheng W@**, Nicholas Evarts Tomi Kinnunefi, Junichi YamagisHi®, Federico Alegrg Haizhou L

aNanyang Technological University, Singapore
PEURECOM, France
CUniversity of Eastern Finland, Finland
dNational Institute of Informatics, Japan
€University of Edinburgh, United Kingdom
finstitute for Infocomm Research, Singapore

Abstract

While biometric authentication has advanced significaimlyecent years, evidence shows the technology can be gidedp
malicious spoofing attacks. The research community hasnelga with dedicated countermeasures which aim to detddefiect
such attacks. Even if the literature shows that they carfleeteve, the problem is far from being solved; biometric eyss remain
vulnerable to spoofing. Despite a growing momentum to dgvefmofing countermeasures for automatic speaker verdicati
now that the technology has maturedfsiently to support mass deployment in an array of diversdiegtfons, greaterféort will
be needed in the future to ensure adequate protection agaimsfing. This article provides a survey of past work anatifies
priority research directions for the future. We summarisevipus studies involving impersonation, replay, speagfitgesis and
voice conversion spoofing attacks and more recéorts to develop dedicated countermeasures. The surveysstiat future
research should address the lack of standard datasetseandahfitting of existing countermeasures to specific, kmspoofing
attacks.
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Figure 1: An illustration of a typical automatic speakerifiestion (ASV) system with eight possible attack pointstatks at points 1-2 are considered as direct
attacks whereas those at points 3-8 are indirect attacks.

for example. Even though ASV provides a low-cost and conve2006), may &er an inherent protection from spoofing. The first
nient approach to authentication, however, reliabilittheface  approach is therefore to continue with the traditional piirs
of spoofing remains a concern (Evans et al., 2013, 2014b). of improved fundamental performance (i.e. in the face of/onl
A generic biometric system may be manipulated or attacke@ero-efortimpostors). The other approach involves the design
at various stages between sample acquisition and the deliveof specific or generalised spoofing countermeasures. While
of an authentication result (Ratha et al., 2001; Faundemsza both approaches will remain important, independent caunte
2004; Galbally et al., 2010). In the specific case of ASV as il-measures have the advantage of being easily incorporated in
lustrated in Figure 1, attacks at both the microphone amdtra existing ASV system and of being able detectspoofing at-
mission levels are generally considered to pose the gteatel®mpts. Research in this latter approach is in its relatitanicy
threat (Faundez-Zanuy et al., 2006). Here, an adversgyy, ty and greater attention will be needed in the future.
ically referred to as an impostor, might seek to deceive the While the use of dferent datasets, protocols and metrics hin-
system by impersonating another enrolled user at the micrgders such a task, this paper provides a survey of the past work
phone in order to manipulate the ASV result. Alternatively, We compare the vulnerabilities of fourftérent spoofing at-
captured speech signals can be intercepted and repladee at tacks considered thus far: impersonation, replay, spegth s
transmission level by another specially crafted voice aign thesis and voice conversion. We then review anti-spoofing ap
Since speaker recognition is commonly used in telephony, oproaches or countermeasures for each form of attack. Finall
other unattended, distributed scenarios without humaersup we discuss directions for future work which will be necegsar
vision or face-to-face contact, speech is arguably moragro in order to address weaknesses in the current researchanetho
to malicious interference or manipulation than other bitrine  ology.
signals; the potential for ASV systems to be spoofed is now
well-recognised (Evans et al., 2013, 2014b; Wu and Li, 2013) . L
Prior to the consideration of spoofing, ASV systems Werez' Automatic speaker verification

_deS|gned to dls_tmgwsh between target _speake_rs and fiero-e The task of an automatic speaker verification (ASV) system
impostors. This research focuses on improving fundamental

I . IS to accept or reject a claimed identity based on a speech sam
recognition performance, as opposed to security or robsstn ple (Kinnunen and Li, 2010). There are two types of ASV
to spoofing and drove the community to investigafeedent ap- i ’ iy _

L . systemstext-dependerdandtext-independentText-dependent
proaches to speaker characterisation at the feature testati- . X
Do : systems assume fixed or prompted phrases which are usually
ing: (i) short-term spectral and voice source featuresh sisc e ¥
) the same for enrolment and for verification. Text-independe

Mel-frequency cepstral c@igcients (MFCCs) and glottal pulse . . o

. . systems operate on arbitrary utterances, possibly spokdift i
features; (ii) prosodic and spectro-temporal feature$h ag i .

. . D ferent languages (Campbell Jr, 1997). Text-dependent ASV i

rhythm, pitch and other segmental information; (iif) hitgivel generally better suited to authentication scenarios diigieer
features such as phonetic, idiolect, and lexical featulkés- (

nunen and Li, 2010). Due to their simplicity and resulting\AS recognition accuracy can _then be achieved with sho_rt_er-utte
o o ances. Nevertheless, text-independent systems also tilgtye u
performance, most speaker verification systems utilisetsho

term spectral features. The literature shows that systerssd fpr example in call-cent're applications including gallenfnca—
N L tion for telephone bankirfg On account of evaluation sponsor-
on such features are vulnerable to spoofing; speech sigitals w

. ) ship and dataset availability, text-independent ASV dates
corresponding features reflective of other speakers cagirbe s the field and the research tends to place greater emphasis on
thesised with ease (Evans et al., 2013, 2014b). P 9 P

L . surveillance applications rather than authentication.
Numerous vulnerability studies suggest an urgent need-to ad

dress spoofing. This can be accomplished via one of two gen-
eral approaches. Some work, e.g. (Kinnunen et al., 2012)sho 2http: //www.nuance . com/landing-pages/products/
that advanced algorithms, such as joint factor analysisifi{e  voicebiometrics/freespeech.asp
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This section describes briefly the state-of-the-artin A8d a back-ends (Li et al., 2012) (see below). Even so, GMMs are
the potential for the technology to be spoofed. More generadtill needed for i-vector extraction and thus we provide aeno
and detailed overviews of the fundamentals (not specific taletailed presentation of the GMM in the following.
spoofing) can be found in (Campbell Jr, 1997; Bimbot et al.,
2004; Kinnunen and Li, 2010; Li and Ma, 2010; Togneri and
Pullella, 2011; Li et al., 2013)

GMMs have been used intensively and their combination
with a universal background model (UBM) has becomedbe
facto standard, commonly referred to as the GMM-UBM ap-
proach (Reynolds et al., 2000). Here, speech samples pooled
from a large number of speakers are used to estimate a speaker
A speech signal has three-fold information: voice timbre’independent UBM using a maximum likelihood (ML) crite-
prosody and language content. Correspondingly, speadler in rion: the UBM likelihood corresponds tp(X|H1) in Eq. (1).
viduality can be characterised by short-term spectralsquic Speaker-dependent models, used in determim@¢Ho) in
and high-level idiolectal features. Short-term specteatdires Eq. (1), are then derived from the UBM with maximum a pos-
are extracted from short frames typically of 20-30 millisec teriori (MAP) adaptation using the speech samples of a targe
onds duration. They describe the short-term spectral epeel speaker (Gauvain and Lee, 1994). The target speaker and UBM

which is an acoustic correlate of voice timbre. Mel-frequen models are used as the hypothesised and alternative speaker
cepstral coflicients (MFCCs), linear predictive cepstral coef- models respectively.

ficients (LPCCs) and perceptual linear prediction (PLP)adlre o o
popular spectral features. As a two-class classification problem, the discriminatien b

Prosodic features are extracted from longer segments such §veen hypothesised and alternative speaker models is key to
syllables and word-like units to characterise speakingstyd ~ Performance. The combination of GMstipervectorand sup-
intonation. These features, such as pitch, energy andidayat POrt vector machine (SVM) classifiers was developed to en-
are less sensitive to channdliezts. However, due to their spar- @ble the discriminative training of generative models (gam
sity, the extraction of prosodic features requires retdgivarge ~ Pell et al., 2006).  This idea lead to the development of
amounts of training data (Adami et al., 2003; Kajarekar gt al Many successful model normalisation techniques includirg
2003; Shriberg et al., 2005), and pitch extraction algangtare ~ Sance attribute projection (NAP) (Solomahet al., 2005; Bur-
generally unreliable in noisy environments (Gerhard, 3003 ~ 9et et al., 2007) and within-class covariance normalisatio

High-level features (Doddington, 2001; Reynolds et al. (WCCN) (Hgtch etal._, 2006)_. Thesetechnlquesex_lla|mto com-
2003) are extracted from a lexicon (or other discrete tokemns pensate for intersession variation and channel mismatch.

represent speaker behaviour or lexical cues. High-lealifes Parallel to the development of SVM-based discriminative
effects than spectral and prosodic features. However, the ex, (Kenny, 2006; Kenny et al., 2007, 2008). In particujaint

traction of high-level features requ?res considerablymm- factor analysigJFA) (Kenny, 2006) can improve ASV perfor-
plex front-ends, such as those which employ automatic $peeGnance by incorporating distinct speaker and channel sebspa

2.1. Feature extraction

recognition (Kinnunen and Li, 2010; Li and Ma, 2010). models. These subspace models involve the training of vari-
. o ous hyper-parameters and generally require large questfi
2.2. Speaker modeling and classification labeled utterances. JFA subsequently evolved into a diexpli

Approaches to text-independent ASV generally focus orotal variability modelor ‘i-vector’ approach which is now the
modelling the feature distribution of a target speaker. file®-  state of the art (Dehak etal., 2011). Ani-vector represames-
retical framework of most ASV systems involves the computa-bitrary utterance, encoded via its GMM mean supervectah wi
tion of alog-likelihood ratio(LLR) score, a low dimensional vector of latent variables. From this per-

spective, i-vector extraction is a dimensionality redaictpro-
=1 P(X|Ho) (1) cess, which accordingly supports the application of traxél
P(X|Hy)’ pattern recognition techniques to i-vector modelling aoche

and its comparison to a pre-determined threshold in orde[:r)ar|son.Probab|I|st|cI|near discriminant analysi@’LDA) (Li

to decide in favour of either the target hypotheldis (same etal, 2012), a.f.actor analyS'S technique orlg!nally depeti
. . for face recognition (Prince and Elder, 2007), is the mogt-po
speaker) or the alternative hypothesig (different speaker). o ; ) .
. ., ular approach. The normalisation of i-vectors to lie on a uni
HereX = {X1,X2,...,} is a sequence of feature vectors while

p(X|Ho) and p(X|H;) denote the likelihood of each hypothe- sphere is also popula_r as a pre-processing _technlque for the
sis. Intuitively, the alternative moded(X|H;) helps to nor- PLDA back-end (Garcia-Romero and Espy-Wilson, 2011).
malise common fects not related to speaker identity. There In contrast to text-independent systems, text-depengsnt s
are many dferent ways to implement Eq. (1). In the classicaltems not only model the feature distribution, but also the la
approach (Reynolds and Rose, 1995), featdrese typically guage content. The underlying feature extraction, speaker
MFCCs and the acoustic models are Gaussian mixture modetsodelling and classification approaches developed for text
(GMMs) (see below). With more modern techniqgu¥scan  independent systems, including i-vector and PLDA models, ¢
also be high-dimensional i-vectors (Dehak et al., 2011) modalso be applied within text-dependent systems with minod-mo
elled with probabilistic linear discriminant analysis (PA) ifications (Larcher et al., 2013b; Stafylakis et al., 2013).




2.3. System fusion in contrast to the wider literature pertaining to other bétric

In addition to the development of increasingly robust medel modalities (Ratha et al., 2001), we include transmissionlle
and classifiers, there is a significant emphasis within the AS attacks (point 2 in Figure 1) as a form of direct attack in the-c
community on the study aflassifier fusion The motivationis  textof ASV. This is justified on account of the often-distriéd
based on the assumption that multiple, independentlyddain nature of ASV systems which might allow for an attacker to
recognisers together capturdfdient aspects of the speech sig- interfere with the microphone signal. There is also po&nti
nal not covered by a single classifier alone. Fusion also prof©r spoofed speech signals can be injected immediately fwrio
vides a convenient vehicle for large-scale research amiib ~transmission while bypassing the microphone entirely. %o e
tions promoting independent classifier development andtben €mPplify, the Skype Voice Changeallows a voice signal to be
marking (Saeidi et al., 2013). manipulated after capture but prior to transmission.

Different classifiers can involveftrent features, classifiers, ~ Since neither microphone level nor transmission levetaga
or hyper-parameter training sets (Brimmer et al., 200%-Ha necessarily require system-level access, they are theaasiy
tamaki et al., 2013b). A simple, yet robust approach toduisi implemented attacks and are thus the greatest threat toatypi
involves the weighted summation of the base classifier scoreASV systems (Faundez-Zanuy et al., 2006). They are accord-

where the weights are optimised according to a logisticaggr INgly the focus in the remainder of this paper. In past stud-
sion cost function. ies of ASV spoofing, impersonation and replay attacks are as-

sumed to apply at the microphone. Even if speech synthesis
N o ] and voice conversion attacks may also be applied at the micro
3. Wulnerability of speaker verification to spoofing phone, in the literature they generally target the transimis

3.1. Possible attack points level, thereby bypassing the microphone.

A typical ASV system involves two processedtline enrol- 3 5 potential vulnerabilities
ment and runtime verification. During théfline enrolment, a
target speaker model is trained using features extracteal &
sample of speech. The runtime verification process is itistl
in Figure 1, where a speaker first asserts an identity claith an
then provides a §ample of fier speech. Features swmlarly 3.2 1. Feature extraction
extracted from this sample are compared to the model in order

to determine whether or not the speaker matches the claimed All three feature representations described in Sectiom@1
identity potentially vulnerable to spoofing attacks. Due to theinsdio

In practice the sample is compared to two models, one corrdY and performance, short-term spectral features are thet m
sponding to the hypothesised speaker and a second rerbmgsentpOpu'ar' Ignoring any channeffects, re_play attacks which use
the alternative hypothesis. The classifier determines &mat a pre-recorded spgeph sample can faithfully reflect thetspec
score which represents the relative similarity of the santpl attributes of the original speaker. State-of-the-art shesyn-

each of the two models. Finally, the decision logic modukesus thesisers contain models of short-term speciral chalrgpbsr
the relative score (usually, a log-likelihood ratio) toheit ac- and can thus be adapted to reflect those of a specific, target

cept or reject the identity claim speaker (Ling et al., 2012). Voice conversion can also gaaer

These components and the links between them all represeﬁ?eeCh signals whose spectral envelope reflects that ofet tar

possible attack points (Ratha et al., 2001). Eight sucheruln speaker (Matrouf etal, 2.006)' Figure 2 |IIu.strates eat
ability points for a generic ASV system are also illustraied of voice conversion on an impostor speech signal (dashed blu

Figure 1. They can be categorised as follows: profile). The spectral envelope corresponding to a singecp
frame is shifted towards that of a given, target speakerefgre
Direct attacks, also referred to aspoofing attacksan be ap-  Profile). ASV systems which use short-term spectral feature
plied at the microphone level as well as the transmissior"e thus \{ulnerable to spoofmg. o _
level — labelled as attack points 1 and 2 in Figure 1. Ex- Prosodic characteristics may also be mimicked through im-
amples include the impersonation of another person or thBersonation and appropriately trained speech synthesis an

presentation of a pre-recorded or synthesised speech sign4ice conversion systems. For example, some speech synthe-
at the microphone. sisers can generate fundamental frequency trajectoriéshwh

are highly correlated with those of a given, target speaRéer(
Indirect attacks are performed within the ASV system itself et al., 2011).
— labelled as attack points 3 to 8 in Figure 1. Indirect at- High-level features reflect language content and speaker be
tacks generally require system-level access, for examplgaviour, e.g. the choice of words. Although such featuregini
attacks which interfere with feature extraction (points 3be useful for speaker characterisation, they may be mirdicke
and 4), models (points 5 and 6) or score and decision logigelatively easily. For example, replay attacks are peréatms-
computation (points 7 and 8). ing a target speaker’s pre-recorded speech, which willrafyu

This section explains the potential for typical ASV systems
to be spoofed. We focus on two key ASV modules: feature
extraction and speaker modelling.

Even if for some physical or logical access scenarios, kdtac
may be applled Only at the microphone (Lee et al., 2013), and Snttp://www.skypevoicechanger . com/
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4. Evaluation protocol

—— Target speaker
. Impostor afer voice conversion Here we present a generic experimental protocol which ap-

b plies to the majority of past work. We discuss database de-
sign and evaluation metrics with a focus on the compargbilit
of baseline results with those of vulnerability and coumiea-

sure studies.

-4+

4.1. Dataset design

Log-magnitude (dB)

While past studies of spoofing have used a rangeftdrdint
datasets (Alegre et al., 2014) there are some similariti¢lsa
experimental protocols. Essential to them all is the megfnin
comparison of baseline performance to that for the same sys-

“12 tem when subjected to spoofing attacks. The majority of the
Frequency (Hz) past spoofing studies reported in this paper conform to the ge
eral assessment framework illustrated in Figure 3. Therdrag
Figure 2: An illustration of voice conversion and the poi@ntor spoofing. lllustrates three possible inputs: genuine, zeffoiéimpostor

The spectral envelope of an impostor’s speech signal iseshibwards that of and spoofed SpeeCh-
a given target speaker.

-10F

Claimed identity Hypothesized
GergJine Genuine speech ’l&aker model
contain the same or similar language content and speaker be- @R >
haviour. Speech signals with similar language content &zm a impgstor imggggsg;gech »Esmer
be synthesised with ease. (b) & > extraction
Attacker Spoofing speech

4 Spoofi
(©) R—| riovoes [~ -4—
3.2.2. Speaker modeling

Decision <
. . A t ject logi
Most approaches to speaker modelling, be they applied to (Receptorreject e
text-independent or text-dependent ASV’ have their rovtse Figure 3: lllustration of the general framework used in pEmbofing attack
standard GMM. Most lack the modelling of temporal sequenc&yydies. There are three kinds of input: (a) genuine speghzero-gort
information, a key characteristic of human speech, whiayhii  impostor speech; and (c) spoofed speech. An evaluation (sjmand (b) relates
otherwise &ord some protection from spoofing' most mod- to astandard, baseline ASV evaluation, whereas an evafuasing (a) and (c)
R . . ' . is used to evaluate spoofing and countermeasure perform&wmeerally, (c)
els of the feature d_|str|but|o_ns used in typ"Fa' speechtessis represents spoofed version of (b), and thus (b) has the samkar of trials as
and voice conversion algorithms assume independent &satur ),
of observations, but are nonetheleskeetive as spoofing at-

tacks. As shown in (Kons and Aronowitz, 2013), HMM-based The combination of genuine and zerfliest impostor tests

systems, which capture temporal information, are moresbbu comprise a standard, baseline ASV evaluation. In this case w

to quofing than GMM-based systems when subject to the sam@npose the protocols for such an evaluation stipulhtear-

spoofing attack. get trials andN impostor trials. A new dataset suitable for the
While preliminary studies of fused ASV system approachestudy of spoofing is derived from the baseline by replacihg al

to anti-spoofing were reported in (Riera et al., 2012), same i impostor trials with spoofed trials. For example, in a stofly

sight into their likely full potential can be gained froma&dd  spoofing through voice conversion, the speech data of all im-

work in fused, multi-modal biometric systems. A long-lived postor trials are converted towards the target client ireotd

claim is that multi-biometric systems should be inherently  generate new speech data for spoofing evaluations. There are

sistant to spoofing since an impostor is less likely to sutceethenN spoofing trials which replace thg previous impostor

in spoofingall the diferent subsystems. We note, however,trials.

that (Rodriques et al., 2009; Akhtar et al., 2012) suggests i Referring once again to Figure 3, baseline performance is as

might sufice to spoof onlyonemodality (or sub-system) un- sessed using the pool ™ genuine trials (a) andll impostor

der a score fusion setting in the case where the spoofing of gials (b), while that under spoofing is assessed with thd poo

single, significantly weighted sub-system is particulaffiec-  of M genuine trials (a) an®l spoofing trials (c). If the ASV

tive. Thus, traditional fusion techniques may not providas- system used for both baseline and spoofing tests is the same,

icantly increased robustness to spoofing unless they apembu then scores and decisions for all genuine trials will remain

with dedicated spoofing countermeasures. changed. The baseline performance and that under spoofing is



thus directly comparable and theffdrence between them re- Genuine —» Accept

flects the vulnerability of the system to the particular Spap R—mn > ASV system
attack considered. impostor \ Reijoct
. . A—=
4.2. Evaluation metrics
. . — Accept
The evaluation of ASV systems requires large numbers of 5y, yor
two distinct tests: target tests, where the speaker matblees i — = >| Countermeasure
claimed identity, and impostor tests, where the identitis L Reject

fer. Accordingly, the ASV system is required to either adcep
or reject the identity claim, thereby resulting in one ofifpos-  Figure 4: An illustration of decisions taken by a stand-al@x8V system and
sible outcomes, as illustrated in Table 1. There are twoipless countermeasure. A stand-alone ASV system could falselypen impostor or

t out ' d tw ible i i t out a spoofed trial (a false acceptance), while a stand-alonateomeasure could
correct outcomes and two possible incorrect outcomes, iyar_nereject a genuine trial (a false rejection).
false acceptance (or false alarm) and false rejection (es)mi
Statistics acquired from many independent tests (triaéshised
to estimate the false acceptance rate (FAR) and the false-rej 5. Spoofing and countermeasures
tion rate (FRR). The FAR and FRR are complementary in the . ) ] -
sense that, for a variable threshold and otherwise fixeesyst ~ TNiS section reviews past work to evaluate the vulnerapbilit
one can only be reduced at the expense of increasing the oth8f ypical ASV systems to spoofing and paraliéicets to de-
In practice, all system parameters are optimised to mirthie velop anti-spoofing countermeasures. Spoofing implies-an at
balance between FAR and FRR, which is commonly measuret®ck at either the microphone or transmission level usinga m

in terms of the equal error rate (EER3Ithough this is certainly nipulated or synt.he_sised Spgech _sample in order to. biagshe S
not the only optimisation criterion. tem towards verifying a claimed identity. We consider imper

sonation, replay, speech synthesis and voice conversida wh
concentrating on three filerent aspects: (i) the practicality of
each spoofing attack; (ii) the vulnerability of ASV systems
when subjected to such attacks, and (iii) the design of &steal
datasets for experimentation. With regard to counternreasu
we focus on: (i) the #ectiveness of a countermeasure in pre-
venting specific spoofing attacks, and (ii) the generabsatif

In a spoofing scenario, an attacker attempts to bias the sygp untermeasures in protecting against varying attacks.

tem outcome towards accepting a false identity claim. Exguiv
lently, spoofing attacks will increase the FAR for a fixed deci
sion threshold optimised on the standard baseline ASV elatas  Impersonation is one of the most obvious approaches to
Increases in the FAR (for a fixed FRR) are also reflected in théP0oofing and refers to attacks using human-altered voities, o
EER. As is common in the literature, both metrics may thus bé&rwise referred to as human mimicking. Here, an attackes tri
used to gauge the robustness of an ASV system to spoofing. t0 mimic a target speaker’s voice timbre and prosody without
To prevent spoofing attacks, countermeasures have been d&@mputer-aided technologies.
veloped to decide whether a particular trial is a licit ascais
tempt or a spoofing attack. Ideally, countermeasures shoufel1.1. Spoofing
decrease the FAR in the event of spoofing attacks while not The work in (Lau et al., 2004) showed that non-professional
increasing the FRR in the case of genuine access attempigipersonators can readily adapt their voice to overcome,ASV
Nonetheless, similar to the decisions of a regular ASV syste but only when their natural voice is already similar to that
as illustrated in Figure 4, a practical, stand-alone canmea-  of the target speaker (closest targets were selected frem th
sure will inevitably lead to some false acceptances, where ¥OHO corpus using a speaker recognition system). Further
spoofing attack remains undetected, in addition to falsecrej workin (Lau et al., 2005) showed that impersonation inceeas
tions, where genuine attempts are identified as spoofingkatta FAR rates from close to 0 % to between 10 % and 60 %. Lin-
guistic expertise was not found to be useful, except in cases
In addition to EER, FAR and FRR metrics, the detection coswhen the voice of the target speaker was markedffedtint
function (DCF) is also popular. The DCF represents a tradeto that of the impersonator. However, experiments reported
off between the FAR and FRR using a priori probabilities ofin (Mariéthoz and Bengio, 2006) suggest that, while profes
target and non-target events. Although the DCF has been usé&tbnal impersonators are moréeztive than the untrained, even
widely for the evaluation of ASV performance, it has not beenthey areunableto consistently spoof an ASV system. A more
used extensively in the spoofing and countermeasure literat recent study (Hautamaki et al., 2013a) analysed the vaibiler
Accordingly, in the following sections we report resultdyoim ity of both classical GMM-UBM and state-of-the-art i-vecto

Table 1: Four categories of trial decisions in automati@kpeverification.
Decision

Accept | Reject

Genuine | Correct acceptance False rejection

Impostor | False acceptance| Correct rejection

5.1. Impersonation

terms of EERs, FARs and FRRs. systems to impersonation attacks. In this study, five Fmnis
public figures were used as target speakers, all of whom were
4EER corresponds to the operating point at which EARR. impersonated by a professional impersonator. Similar & th



IMPERSONATOR’S NATURAL SPEECH IMPERSONATOR’S NATURAL SPEECH

= : - e =
T 4000f E RIS e = T 4000| .-
> s - % >
c —— €& < .
o o N
o 2
¢ B E = E | L -
0-4——11 L L TR A —— 1 0 L L et L Lt Ol L h L
0 01 02 03 04 05 06 07 0 01 02 03 04 05 06 07
Time (s) Time (s)
IMPERSONATED SPEECH IMPERSONATED SPEECH
= - - B T e B — K i i
Z 4000 = T 4000
> >
o o
c c
g 2000 $ 2000} -
o o
o <
s : : : T [ . - .
% 01 02 03 04 05 06 % 01 02 03 04 05 06
Time (s) Time (s)
TARGET SPEECH
£ 2000+ g e gn T Z 4000 o
g |TemEEaal S = g | T e e T e
S 2000f - g 2000f -
o ot - - - o
@ B 1}%—?— =} @
L ot 5 R Y S -2 L | e s R R
L i e - 5 s - ol ‘ R ‘ e
0 01 02 03 04 05 06 07 0 01 02 03 04 05 06 07
Time (s) Time (s)

Figure 5: An example of speech impersonation. Finnish tapgeaker pronounces “...lehdistodon” (“...to the pres$, a chunk extracted from a long interview
passage. The impersonator attempts to sound like the t&pgettrogram and formant tracks (F1 through F4) of the isg®tor’s own voice (top), impersonation
(middle) and the target speaker (bottom). The spectrogeardgormants (Burg’'s method) were computed with Praat (8oarand Weenink, 2014) from material
collected by (Leskela, 2011) and used in (Hautamaki e@ll3a). The target speaker is the current president chfdnlSauli Niinistd. Comparing the top and
middle figures, the impersonator can modify his voice awaynfhis natural vocal tract configuration (for instance, F8éserally lowered). Nevertheless, the
formants do not quite match those of the target speakerepiesaly, the impersonation sounds convincing to a natsterier.

findings in (Mariéthoz and Bengio, 2006), the impersonats  electro-glottographic (EEG) recordings and found thatemp
unable to spoof either ASV system. sonators have an active voluntary control over their voolal f

In addition to specific spoofing assessments, some inPatterns. Unsurprisingly, the impersonators varied thamme
sights into potential vulnerabilities can be drawn fromigms  and standard deviation of both FO and the speaking rate to cre
acoustic-phonetic studies of impersonation (Endres gt@r1;  ate distinct speaker identities.

Blomberg et al., 2004; Eriksson and Wretling, 1997; Zethérh Characteristic to all studies involving professional imgma-

et al., 2004; FarrQs et al., 2008; Amin et al., 2014). An exam ators is the use of relatively few speakerdfatient languages
ple of impersonation, in terms of spectrogram and formantsand ASV systems. The target speakers involved in such stud-
is illustrated in Figure 5. The acoustic-phonetic studiesws ies are also often public figures or celebrities and it i alilt
that, while imitators tend to beffective in mimicking long-  to collect technically comparable material from both theén
term prosodic FO patterns and speaking rates, they may $e lesonator and the target. Overall, these aspects makt@dudii to
effective in mimicking formant and other spectral characteris conclude whether or not impersonation poses a genuinetthrea
tics. For instance, the imitator involved in the studiesoregd ~ Since impersonation is thought to involve mostly the mimick
in (Eriksson and Wretling, 1997) was not successful in tietns  ing of prosodic and stylistic cues, it is perhaps considenece

ing his formant frequencies towards the target, wherefisrdi  effective in fooling human listeners than today’s state-@f-&nt

ent findings are reported in (Kitamura, 2008). ASV systems (Perrot et al., 2005; Hautamaki et al., 2014).

An interesting recent study (Amin et al., 2014) involves Even if the statistical evidence from impersonation steiise
disguised speech material from three professional voies-o limited, and the conclusions are somewhat inconsistegitetis
artists producing 27 distinct voice identities — interegty,  alternative evidence for the potential of impersonatidacis.
without any pre-specified target speakers, giving the isqer  As discussed in (Campbell Jr, 1997; Doddington et al., 1998)
ators artistic freedom in making up some virtual voice ident some impostor speakers have natural potential to be cahfuse
ties. One of the key observations was that the change in theith other speakers. Similarly, certain target speakeng bea
vocal space (measured through F1 and F2) under impersomore easily impersonated than others. The work in (Stoll and
ation cannot be described by a simple global transform; forboddington, 2010) demonstrated the existence of such speak
mant changes are vowel-specific. The same study also investrs in the NIST 2008 corpus and theifext on a wide range
gated glottal parameters (open quotient) measured froallplar  of modern ASV systems. These observations are not specific
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Table 2: Summary of impersonation spoofing attack studie€dvV-fautomatic speaker verification, FARalse acceptance rate, IERidentification error rate and
k-NN = k-nearest neighbour. Note that IER is not comparable witR FA

# target FAR or IER
Study speaker| #impersonatory ASV system | Feature | Before spoofing| After spoofing
(Lau et al., 2004) 6 2 GMM-UBM MFCCs ~0% 30 %~ 35 %
(Lau et al., 2005) 4 6 GMM-UBM MFCCs ~0% 10 %~ 60 %
(Farrls et al., 2010) 5 2 k-NN Prosodic features 5 % (IER) 22 % (IER)
(Hautamaki et al., 20133 5 1 i-vector MFCCs 9.03 % 11.61 %

to ASV and similar findings have been reported in the general It might be beneficial to investigate new metrics to predict

biometric literature (Yager and Dunstone, 2010). how easy or dficult it might be to impersonate a certain target
In all cases, so-calledolvesandlambs(Campbell Jr, 1997; (Stoll and Doddington, 2010), and then to develop specific fa

Doddington et al., 1998) leave systems vulnerable to spgofinback mechanisms to cope with such speakers during runtime

through the careful selection of target identities. Coseglr, in  recognition.

order to impersonate a given individual, crowd-sourcinggyma

be used to identify an impostor whose natural voice is simila5.2. Replay

to that of the target (Panjwani and Prakash, 2014). The work Replay is a form of spoofing whereby an adversary attacks an

in (Lau et al., 2005) and (Stoll and Doddlngton', 2010) showedy gy, system using a pre-recorded speech sample collected fro

how ASV systems themselves or even acoustic features alonggenyine target speaker. The speech sample can be any-record

may be employed to identify ‘similar’ speakers in order topr  ing captured surreptitiously and even concatenated syseegh

voke false acceptances. _ _ ples extracted from a number of shorter segments, for exampl
Past studies involving impersonation attacks are SUMBHIIS 1 gvercome text-dependent ASV systems (Villalba and lagid

in_ Table.2. It shows a degree of inconsistency in their findin92011b)_ Replay is a simple spoofing attack, requiring no spe-

with various ASV systems and feature representations. 4n agific knowledge in speech processing. In addition, due to the

dition, all four studies were conducted with datasets doirtg _ availability of high quality and low-cost recording devigsuch

only a small number of speakers. In general, further studiegs smart phones, replay spoofing attack are arguably the most

will be needed to fully understand théfectiveness of imper-  5ccessible and therefore present a significant threat. Amex

sonation. ple of a practical replay attack is presented in Figure 6 eHar

smart phone is used to replay a pre-recorded speech sample in
5.1.2. Countermeasures order to unlock another smart phone which uses speaker-verifi

While the threat of impersonation is not fully understood it cation technology for logical access authentication.
is perhaps not surprising that there is virtually no priorrkvo
to investigate countermeasures against impersonatiothelf
threat is proven to be genuine, then the design of appropri:
ate countermeasures might be challenging. Unlike the spoof
ing attacks discussed below, all of which can be assumed t« (G
leave traces of the physical properties of the recordingoéend \
back devices, or signal processing artefacts from syrghasi
conversion systems, impersonators are live human beings wh
produce entirely natural speech. Interestingly, sometaéla
work (Amin et al., 2013, 2014) has addressed the problem of
disguisedetectiof. The rationale behind the disguise detector
developedin (Amin etal., 2013, 2014) is that impersonaioes
less practised with the impersonated voices and consdguent
exhibit larger (exaggerated) acoustic parameter varatialer
disguise. Specifically, the disguise detectors in (Aminlet a
2013, 2014) used quadratic discriminant on the first two for-
mans to quantiy the amount of acoustic vaiaton on a vewslie & 1 SRl e e Pl ST oL e
by-vowel basis. De_Splte p_romlsmg disguise detectlonltesu_ cation as reported in (Leepet al., 2013). The right phonetétvlor) is used to
95.8 % t0 100.0 % in (Amin et al., 2013) — the method requireSeplay a pre-recorded speech sample to unlock the left phone
vowel segmentation which was implemented through forced-
alignment followed by manual correction.

5.2.1. Spoofing

SWhile the spoofing attacks discussed in this article are igaimcrease Even though they are among the mOSF simple and easily im-
false acceptance rate, disguise is the opposite problemevane wishes to be ~ Plemented, only a small number of studies have addressed re-

notrecognized as herself, thereby increasing false reje¢tioss) rate. play attacks. In those thus far reported, attacks are giynera




Table 3: A summary of dierent studies involving replay spoofing attacks. CMSountermeasures.

# target ASV Before spoofing After spoofing With CMs

Study speaker system EERFAR EER | FAR EER | FAR

(Lindberg et al., 1999) 2 Text-Dependent HMM| 1.1~5.6 % 27.3~70.0% | 89.5~ 100 % n/a n/a
(Villalba and Lleida, 2011a) 5 JFA 0.71 % ~20 % 68.00 % 0~14% | 0~17%
(Wang et al., 2011) 13 GMM-UBM n/a 40.17 % n/a 10.26 % n/a
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Figure 7: An example of replay. An English target speakenpumces "only lawyers love millionaires”. The original das from RSR2015 (Larcher et al.,
2012, 2014). The attacker uses a smartphone to record thengespeech, and then replays it using a laptop, which iswsd to record the playback speech.
Spectrogram and formant tracks (F1 through F4) of the repieech (top) and the genuine speech (botton) were compsitegl Braat (Boersma and Weenink,
2014). Itis clearly observed that the spectrogram and fotrimacks of the replay speech are almost indistinguishiabfe the genuine speech.

assumed to occur at the microphone level, although they casiataset collected from 13 speakers.
also be implemented at the transmission level in the cade tha Figure 7 presents an example of replay speech in compari-
replayed speech signals are injected immediately prioattst  son to the genuine speech. It shows that the spectrogram and
mission. formant trajectories of the replay speech (upper image# ha
Vulnerabilities to replay attack were first evaluated imndi & highly similarity to those of the genuine speech (lower im-
berg et al., 1999). The threat was assessed in the context ofages). We can infer that the spectral features extracted fro
hidden Markov model (HMM) text-dependent, digit sequencesuch a spectrogram will match the feature distribution &f th
ASV system with attacks constructed from the concatenatiotarget speaker to a considerable degree. Thus, it is easy-to u
of pre-recorded, isolated digits. Replay attacks were shimwv derstand that ASV systems using spectral features arenadlne
provoke a significant increase in both the EERs and FARs. Iple to replay attacks.
particular, the EERs increased from 1.1 % and 5.6 % to 27.3 % A summary of the work involving replay spoofing attacks is
and 70.0 % for male and female speakers, respectively. With t presented in Table 3. Even if they are all based on a small num-
same threshold, the FARs were shown to increase from 1.1%er of speakers, all three studies are consistent in theiinfys:
and 5.6 % to 89.5 % and 100 % for male and female speakersp matter what the ASV system, replay attacks provoke signif
respectively. The significant variation between male anthle  icant increases in FARs.
speakers lies in the use of only a single speaker in each case.
Vulnerabilities in the context of text-independent ASV wer 5.2.2. Countermeasures
assessed in (Villalba and Lleida, 2010) and (Villalba arelda, Recently, due to the mass-market adoption of ASV tech-
2011a). Both studies used pre-recorded speech samplels whigiques (Lee et al., 2013; Nuance, 2013) and the awareness and
were collected using a far-field microphone and then replayesimplicity of replay attacks, both industry (Nuance, 2046)
in a mobile telephony scenario. Results showed that the FARcademia (Shang and Stevenson, 2010; Villalba and Lleida,
of a joint factor analysis (JFA) system increased from 0.4 % 2011a,b; Wang et al., 2011) have shown an interest in devel-
almost 68 % as a result of replay attacks. Both studies ieeblv oping replay attack countermeasures.
only five speakers. The first approach to replay detection was reported in (Shang
A physical access scenario was considered in (Wang et aland Stevenson, 2010) in the context of a text-dependent ASV
2011). Although no baseline statistics were reported, & tex system using fixed pass-phrases. The detector is basedhgont
independent GMM-UBM system was shown to give an EER ofcomparison of new access samples with stored instancesbf pa
40.17 % when subjected to replay attacks. This study used @ccess attempts. New accesses are identified as replaysattac
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they produce a similarity score higher than a pre-definaabtivy - are sometimes referred to as tfient-end and back-end re-
old. Detection performance was assessed using a databasespkctively. In the text analysis component, input text ia-co
genuine and replayed accesses collected across thfeeedt  verted into a linguistic specification consisting of eleftsesuch
communication channels and using threffeslent replay de- as phonemes. In the speech waveform generation component,
vices. A large number of experiments confirmed that the despeech waveforms are generated from the produced linguisti
tector succeeded in lowering the EER in most of the playbackpecification.
detection experiments conducted. There are four major approaches to speech waveform gen-
An alternative countermeasure based upon spectral ratieration. In the early 1970s, the speech waveform generation
and modulation indexes was proposed in (Villalba and Lleidacomponent used very low dimensional acoustic parameters fo
2011a,b). The motivation stems from the increase in noiseach phoneme, such as formants, corresponding to vocal trac
and reverberation which occurs as a result of replaying farresonances with hand-crafted acoustic rules (Klatt, 1980)
field recordings. The spectrum is flattened as a result arsl thuhe 1980s, the speech waveform generation component used
the modulation index is reduced. A support vector machinex small database of phoneme units called ‘diphones’ (the sec
was used to model the spectral and modulation indexes of gelond half of one phone plus the first half of the following) and
uine and replayed recordings collected across both lamdlid  concatenated them according to the given phoneme sequence
GSM telephone channels. The countermeasures were shownlig applying signal processing, such as linear predictie) (L
reduce the FAR of a text-independentjoint factor analyBig&\]  analysis, to the units (Moulines and Charpentier, 1990}hén
ASV system from 68 % to 0 % and 17 % for landline and GSM1990s, larger speech databases were collected and used to se
channels, respectively. lect more appropriate speech units that match both phonemes
A replay attack countermeasure based on the detection @nd other linguistic contexts such as lexical stress anch pit
channel noise was proposedin (Wang et al., 2011). Licitneeco accent in order to generate high-quality natural soundymg s
ings only contain channel noise from the recording device othetic speech with appropriate prosody. This approachrns ge
the ASV system, while replay attacks incur additional chan-erally referred to as ‘unit selection,” and is used in margegh
nel noise introduced by both the recording device and thé-lou synthesis systems, some commercial (Hunt and Black, 1996;
speaker used for replay. Thus, the detection of charffietts  Breen and Jackson, 1998; Donovan and Eide, 1998; Beutnagel
beyond those introduced by the recording device of the AS\ét al., 1999; Coorman et al., 2000). In the late 1990s another
system serves as an indicator of replay attack. Experimentkata-driven approach emerged. ‘Statistical parameteedp
showed that the performance of a baseline GMM-UBM systensynthesis’ has grown in popularity in recent years (Yoshianu
with a EER of 40.17 % under spoofing fell to 10.26 % with the et al., 1999; Ling et al., 2006; Black, 2006; Zen et al., 2007)
countermeasure. In this approach, several acoustic parameters are modedled
While related to a multimodal scenario with both speaker andng a time-series stochastic generative model, typicatliglden
face recognition,(Bredin et al., 2006) proposed a replegct Markov model (HMM). HMMs represent not only the phoneme
detection algorithm based on the lack in correspondence baequences but also various contexts of the linguistic Bpaci
tween acoustic and visual signals. Under replay attackram er tion in a similar way to the unit selection approach. Acausti
rate of 0 % was achieved when the visual signal consisted onlgarameters generated from HMMs and selected according to
of a still photo. the linguistic specification are used to drive a vocoderna si
The performance of ASV systems with replay attack counplified speech production model with which speech is repre-
termeasures is summarised in Table 3. Even if all the exanmsented by vocal tract parameters and excitation paramieters
ple studies involve only a small number of speakers, it iarcle order to generate a speech waveform. In addition to the four
that replay attacks provoke significant increases in therted  major approaches, inspired by advances in deep neural etwo
FARs. While countermeasures are generdifgative in reduc- (DNN)-based speech recognition (Hinton et al., 2012), new
ing the FARSs, they remain significantly higher than thoséneft data-driven, DNN-based approaches have also been adtively
respective baselines. Further work is thus required toldpve vestigated (Zen et al., 2013; Ling et al., 2013; Lu et al.,201

more dfective countermeasures. Qian et al., 2014).
_ The first three approaches are unlikely to Heetive in ASV
5.3. Speech synthesis spoofing. The first two approaches do not provide for the syn-

Speech synthesis, commonly referred to as text-to-speecthesis of speaker-specific formant characteristics, vesed:
(TTS), is a technique for generating intelligible, natural phone or unit selection approaches generally require &kepea
sounding artificial speech for any arbitrary text. Speectitss-  specific database that covers all the diphones or relatiaefg
sis is used widely in various applications including in-nav-  amounts of speaker-specific data with carefully preparau- tr
igation systems, e-book readers, voice-over functiongter scripts. In contrast, state-of-the-art HMM-based spegothe-
visually impaired, and communication aids for the speech imsisers (Zen et al., 2009; Yamagishi et al., 2009) can leazadp
paired. More recent applications include spoken dialogge s models from relatively little speaker-specific data by adap
tems, communicative robots, singing speech synthesiaeds, ing background models derived from other speakers based on
speech-to-speech translation systems. the standard model adaptation techniques drawn from speech

Typical speech synthesis systems have two main compaecognition, i.e. maximum likelihood linear regressiorL(MR)
nents: text analysis and speech waveform generation, whicfheggetter and Woodland, 1995; Woodland, 2001).
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Table 4: A summary of speech synthesis spoofing attack stu@igls= Countermeasures. Note that all the studies listed in tHieTdo not provide EERs of the
ASV systems after spoofing attacks.

# target ASV FAR
Study speaker system Before spoofing] After spoofing | With CMs

(Lindberg et al., 1999) 2 HMM 5.6 % 38.9% n/a

(Masuko et al., 1999) 20 HMM 0.00 % 70 % n/a

(De Leon etal., 2012a) 283 GMM-UBM 0.28 % 86 % 25%

(De Leon etal., 2012a) 283 SVM 0.00 % 81 % 25%
5.3.1. Spoofing x10™ ‘ ‘ ‘ GM!\{I—UBM Srfore D\str\l‘:uhons ‘ ‘ ‘

There is a considerable volume of research in the literature 7| e S ot

which has demonstrated the vulnerability of ASV to syniheti . =

voices generated with a variety of approaches to speechesynt ¢
sis (Lindberg et al., 1999; Foomany et al., 2009; Villalba an
Lleida, 2010). Although speech synthesis attacks can aso b
applied at the microphone level, the majority of past work as
sumes attacks at the transmission level.

ASV vulnerabilities to HMM-based synthetic speech were af
first demonstrated over a decade ago (Masuko et al., 1999,
2000). The work used acoustic models adapted to specific hu-
man speakers (Masuko et al., 1996, 1997) and was performed
using an HMM-based, text-prompted ASV system (Matsui and
Furui, 1995). Feature vectors were scored against speaker a 0 ‘ ; ‘
background models composed of concatenated phoneme mod- % % T 0500 2
els. When tested with genuine speech the ASV system achieved (2) GMM-UBM ASV System
an FAR of 0 % and an FRR of 7 %. When subjected to spoofing
attacks with synthetic speech, the FAR increased to over.70 % 1 e —
This work involved only 20 speakers. e L ymiesised speech, Matched damant

Larger scale experiments using the Wall Street Journal cor- ’
pus containing in the order of 283 speakers and twitednt 12}
ASV systems (GMM-UBM and SVM using Gaussian super-
vectors) were reported in (De Leon et al., 2010b,a, 2012s). U '
ing a state-of-the-art HMM-based speech synthesiser,Alfe F
was shown to rise from 0.28 % and 0 % to 86 % and 81 %
for the GMM-UBM and SVM systems respectively. This re-
sult is due to the significant overlap in the distribution &
scores for genuine and synthetic speech, as shown in Figure 8
Spoofing experiments using HMM-based synthetic speech and 02l
a commercial, forensic speaker verification tool were aéso r
ported in (Galou, 2011) and reached similar findings. %

Table 4 summarises the past work on speech synthesis at-
tacks. In contrast to studies of impersonation and replay at

ks, th f h synthesi k nerally ugi
;[aC St Olsedo speech sy t” esfsha.‘ttﬁc S ?.e el ally u$ﬂ:§;ﬂla Figure 8: Approximate score distributions for (a) GMM-UBMd(b) SVM
arge-scale atase_ts’ usually of high-qua 'W clean dpe using GMM supervector SV systems with human and synthesipedch re-
the past work confirms that speech synthesis attacks aréoableported in (De Leon et al., 2012a). Distributions for humaeesph, true claimant

increase significantly the FAR of all tested ASV systems, in-(green lines, o) and synthesized speech, matched claitnlaok(ines, x) have

cluding those at the state of the art significant overlap leading to a 81 % acceptance rate fohsyictspeech with
’ matched claims.
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5.3.2. Countermeasures

Most approaches to detect synthetic speech rely on process detecting HMM-based synthetic speech without globai-var
ing artefacts specific to a particular synthesis algoritBased ance compensation (Tomoki and Tokuda, 2007).
on the observation that the dynamic variation in the speeeh p In (Chen et al., 2010), higher order Mel-cepstralftaents
rameters of synthetic speech tend to be less than thoseushat (MCEPS) are employed to detect synthetic speech produced by
speech, (Satoh et al., 2001) investigated the use of irmrad  an HMM-based synthesis system. The higher order cepstral co
differences as a discriminative feature. This method works weltfficients, which reflect the detail in the spectral envelope] te
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to be smoothed during the HMM model parameter training andgheural networks (Desai et al., 2010), dynamic kernel partia
synthesis processes. Therefore, the higher order cepstral  least squares (Helander et al., 2012), restricted Boltmmnaar-
ponents of synthetic speech exhibit less variance tharralatu chines (Chen et al., 2013) and deep belief networks (Nakashi
speech. While estimates of this variance thus provide a mearet al., 2013).
of discriminating between genuine and synthetic speeath su  As alternatives to data-driven statistical conversionhods,
an approach is based on the full knowledge of a specific HMM{requency warping based approaches to voice conversiom wer
based speech synthesis system. The same countermeasure imépduced in (Toda et al., 2001; Sundermann and Ney, 2003;
thus not generalise well to other synthesisers which atdi$-  Erro et al., 2010; Godoy et al., 2012; Erro et al., 2013). Bath
ferent acoustic parameterisations. than directly substituting the spectral characteristfch®@input
There are some attempts which focus on acousfiierdi speech signal, these techniqué&eetively warp the frequency
ences between vocoders and natural speech. Since the haxis of a source spectrum to match that of the target. Frexyuen
man auditory system is thought to be relatively insensitivewarping approaches tend to retain spectral details andupeod
to phase (Quatieri, 2002), vocoders typically do not reconhigh quality converted speech. A so-called Gaussian-cig@n
struct speech-like phase information. This simplificatieeds filtering approach to voice conversion introduced in (Mafro
to differences in the phase spectra between human and syetal., 2006; Bonastre et al., 2007) is related to amplituwdé s
thetic speech, dlierences which can be utilised for discrimina- ing (Godoy et al., 2012) within a frequency warping framekvor
tion (De Leon et al., 2012a; Wu et al., 2012a). These meth- Similar to unit selection speech synthesis, unit selecion
ods work well when combined with prior knowledge of the proaches to voice conversion have also been investigatad as
vocoders. means of directly utilising the target speaker’s speecmseds
Based on the diiculty in reliable prosody modelling in both to generate converted speech (Sundermann et al., 2006it Duto
unit selection and statistical parametric speech syrghettier et al., 2007; Wu et al., 2013a). As reported in the voice con-
approaches to synthetic speech detection use FO sta{iStitcs  version literature, unit selection approaches produceered
hara et al., 2005; De Leon et al., 2012b). FO patterns gesterat speech much closer to the target speaker than statistical pa
for the statistical parametric speech synthesis appraaahto  metric approaches (Sundermann et al., 2006; Dutoit et@G0.7 2
be over-smoothed and the unit selection approach frequentWu et al., 2013a) in terms of speaker individuality and schje
exhibits ‘FO jumps’ at concatenation points of speech units  tive listening tests.
A summary of ASV performance with integrated spoofing In addition to the spectral content, prosody informaticsoal
countermeasures is presented in the right-most column-of Talays an important role in characterising speaker indiiitiy
ble 4. While the countermeasure investigated in (De Leoh,et a Among the most significant aspects of prosody investigated i
2012a) is shown to befective in protecting both GMM-UBM  the context of voice conversion are the fundamental frequen
and SVM systems from spoofing, as discussed above, most ef-0) and duration. Approaches to convert a source speaker’s

ploit prior knowledge of specific spoofing algorithms. FO trajectories to those of a target speaker were investigat
_ . in (Gillet and King, 2003; Wu et al., 2006; Helander and Nur-
5.4. Voice conversion minen, 2007; Wu et al., 2010) whereas phoneme or syllable du-

Voice conversion aims to manipulate the speech of a givemation conversion approaches were reported in (Wu et 80620
speaker so that it resembles in some sense that of another, tholive et al., 2008).
get speaker (Stylianou, 2009; Evans et al., 2014a). In ashtr  Voice conversion technology is likely to befective in at-
to speech synthesis systems which require text input, hat in tacking ASV systems. Spectral mapping techniques shift an
to a voice conversion system is a natural speech signal.- Typimpostor’s spectral characteristics to match those of aipe
cally, voice conversion involves spectral mapping and @dgs target speaker and hence present a threat to ASV systemis whic
conversion. Spectral mapping relates to voice timbre, evhil use spectral features. Meanwhile, prosody conversion Gan m
prosody conversion relates to prosodic features, suchras funipulate an attacker’'s prosodic characteristics to mirhase
damental frequency and duration. of a target speaker and thus they present a risk to ASV systems

There are three major approaches to spectral mapping: stahich use prosodic features, e.g. (Adami et al., 2003; kekjr
tistical parametric, frequency warping and unit-seletti®ta- et al., 2003; Shriberg et al., 2005; Dehak et al., 2007; Ferre
tistical parametric approaches usually implement lingawom- et al., 2010; Siddiq et al., 2012; Kockmann, 2012).
linear conversion functions to map the spectral featuresnof
input speech signal towards features representative ¢athet  5.4.1. Spoofing
speaker. A straightforward approach to spectral mappisgdba  Voice conversion has attracted increasing interest in d¢ime ¢
on vector quantisation (VQ) was proposed in (Abe et al., 1988 text of ASV spoofing for over a decade. In (Pellom and
A mapping codebook is learned from source-target featuire pa Hansen, 1999), the vulnerability of a GMM-UBM ASV system
and is then used to estimate target features from souragésat was evaluated using the YOHO corpus, which consists of 138
at runtime. Gaussian mixture model (GMM) based approachespeakers. These experiments showed that the FAR increased
which improve on the hard clustering of VQ methods were profrom a little over 1 % to 86 % as a result of voice conversion
posed in (Kain and Macon, 1998; Stylianou et al., 1998; Todattacks.
et al., 2007) to implement a weighted linear conversion func Some of the early work in larger-scale, text-independent
tion. Alternative, nonlinear approaches include those8as  speaker verification spoofing includes that in (Perrot et al.
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Table 5: Summary of voice conversion spoofing attack and teoomeasure (CM) studiess means the numbers are estimated from the detection erda-tf&
(DET) curses as presented in the literature.

# target ASV Before spoofing After spoofing With CMs
Study speaker system EERFAR EER | FAR FAR
(Perrot et al., 2005) n/a GMM-UBM ~16 % 26.00% | =~40% n/a
(Matrouf et al., 2006) n/a GMM-UBM ~8 % ~63% | ~100 % n/a
(Bonastre et al., 2007) n/a GMM-UBM 6.61 % 28.07% | ~55% n/a
innunen et al., . (] . ] . (] n/a
(Ki I, 2012) 504 JFA 3.24 % 7.61% | 17.33 %

(Wu et al., 2012b) 504 PLDA 2.99 % 11.18% | 41.25%| 1.71%
(Alegre et al., 2012b) 201 FA 4.80 % 64.30% | ~77% 0%
(Alegre et al., 2013c) 298 FA 5.60 % 24.40% | ~54% 1.60 %
(Alegre et al., 2013a) 298 PLDA 3.03% 20.2% | =~55% 4.10 %

ons and Aronowitz, - . ] . ] . (] n/a
Ki d Al itz, 2013) 750 HMM-NAP 1.00 % 2.90 % | 36.00 %

2005; Matrouf et al., 2006). The work in (Perrot et al., 2005)

evaluated the vulnerability of a GMM-UBM ASYV system. Ex- o cenine
periments reported on the 2004 NIST speaker recognition eva 0.1l Impostor after voice conversion
uation (SRE) dataset showed that a baseline EER of 16 % "

increased to 26 % as a result of voice conversion attacks. 0.08
The work in (Matrouf et al., 2006) investigated a Gaussian-
dependent filtering approach to convert the spectral epeadd

the input speech signal towards that of the target speakeser
experiments, conducted on the 2005 NIST SRE dataset, showed
that the baseline EER for a GMM-UBM system increased from

8 % to over 60 % as a result of voice conversion attacks which
exploit knowledge of the ASV system. The work in (Bonas- o S o 0u2 " S e
tre et al., 2007), conducted on the 2005 and 2006 NIST SRE s e % %
datasets, showed a reduced degradationin the EER from 6.61 %

to 28.7 % when dferent feature parameterisations are used fokigure 9: Score distributions before and after voice ccsiver attacks for a
ASV and voice conversion. Even so, this particular appréach PLDA system as reported in (Wu et al., 2012b).

voice conversion produces high-quality, natural speech.

The work in (Kinnunen et al., 2012) and (Wu et al., 2012b)gystem.

extended the study of GMM-UBM systems to consider an ar- The work in (Kons and Aronowitz, 2013) examined the
ray of different approaches to ASV. The work was performed,y|nerability of several state-of-the-art text-depertdeps-
on the 2006 NIST SRE dataset using both joint-density GMMems, namely, i-vector, GMM-NAP and HMM-NAP systems.
and unit selection approaches to voice conversion. Evesnif ¢ Among the three systems, HMM-NAP employed a speaker-
verted speech could be detected easily by human listeners, @ndependent hidden Markov model (HMM) instead of a GMM
periments involving six dierent ASV systems showed univer- to capture temporal information. Results showed that voice
sal susceptibility to spoofing. The FAR of the JFA system in-conversion provoked increases in the EERs and FARs of all the
creased from 3.24 % to over 17 % in the case of GMM-baseghree systems. Specifically, the FAR of the most robust HMM-
voice conversion attacks. That of the most robust PLDA sysyap system increased from 1 % to 36 %.
tem increased from 2.99 % to over 40 % in the face of unit Tgple 5 presents a summary of spoofing studies described
selection conversion attack. These results are due to tie coghove. Unlike impersonation and replay spoofing studies, an
siderable overlap in the distribution of ASV scores for geeu s jllustrated in the second column of Table 5, most studies
and converted speech, as shown in Figure 9. involving voice conversion were performed with large-scal
Still in the context of text-independent ASV, other work-rel datasets with a large number of speakers. Even though some
evant to voice conversion includes attacks referred totifs ar approaches to voice conversion produce speech with claarly
cial signals. It was noted in (Alegre et al., 2012a) and (#deg dible artefacts (Chen et al., 2003; Toda et al., 2007; Eral.et
et al., 2012b) that certain short intervals of converteceshe 2013), Table 5 shows that all provoke significant increases i
yield extremely high scores or likelihoods. On their owrgtsu the FAR across a variety of ilerent ASV systems.
short intervals are not representative of intelligibleesgebut
are nonethelessffective in overcoming ASV systems which 5.4.2. Countermeasures
lack any form of speech quality assessment. Artificial dgna  Voice conversion bears some similarity to speech syntliesis
optimised with a genetic algorithm were shown to provoke in-that some voice conversion algorithms employ vocoding-tech
creases in EER from 8.5 % to almost 80 % for a GMM-UBM niques similar to those used in statistical parametricapegn-
system and from 4.8 % to almost 65 % for a factor analysis (FAthesis (Zen et al., 2009). Accordingly, some of the first work
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Figure 10: An example of a synthetic speech detector cordhirith speaker verification (Wu et al., 2012b). Based on gamwledge that many analysis-synthesis
modules used in voice conversion and TTS systems discandahapeech phase, phase characteristics parameterésatbified group delay (MGD) can be used
for discriminating natural and synthetic speech.

to detect converted speech drew on related work in syntheti6. Discussion

speech detection (De Leon et al,, 2011). As discussed in Section 5, spoofing and countermeasures for

The work in (Wu et al., 2012a) exploited artefacts introdlice ASV have been studied with various approaches to simulate
by the vocoder as a means of discriminating converted speedpoofing attacks, fierent ASV systems, diverse experimen-
from natural speech. Cosine normalised phase (cos-phade) atal designs, and with a multitude offtérent datasets, evalua-
modified group delay phase (MGD-phase) features were showibn protocols and metrics. The lack of commonality makes th
to be dfective. Experiments performed on the 2006 NIST SREcomparison of vulnerabilities and countermeasure perioca
dataset were shown to give a detection EER of 5.95 % angxtremely challenging. Drawing carefully upon the litemrat
2.35% using cos-phase and MGD-phase countermeasures, ggd the authors’ own experience, we have nevertheless made
spectively. This work was extended in (Wu et al., 2012b) tosuch an attempt.
investigate the ffect of countermeasure performance on that
of ASV, as illustrated in Figure 10. With the countermeasure6.1. Spoofing
the FAR of a PLDA ASV system reduced from 19.27 % and In Table 6, we summarise the threat of the four major ap-
41.25% to 0.0 % and 1.71 % under GMM and unit-selectionproaches to spoofing considered in this paper. Each attack
voice conversion spoofing attacks respectively. Intenghtj is compared in terms ohccessibilityand effectiveness Ac-
baseline performance was ndfexted as a result of integrating cessibilityis intended to reflect the ease with which the at-
spoofing countermeasures. Even so, being based on the absetfck may be performed, i.e. whether the technology is widely
of natural phase, neither countermeasure is likely to detae  known and available or whether it is limited to the techriical
verted voice exhibiting real-speech phase, as producetidoy t knowledgeable. Effectivenesseflects the increase in FAR
conversion approach in (Matrouf et al., 2006). caused by each attack, or the risk it poses to ASV.

The work in (Alegre et al., 2012b, 2013b) assessed an a[%_OAIthough some studies have shown that impersonation can

proach to detect both voice conversion attacks which pre- ol ASV systems, n pr_act|ce theﬁecnvene_ss_se_ems to de-
pend on the skill of the impersonator, the similarity of the a

serve real-speech phase (Matrouf et al., 2006; Bonastre, et L
2007) and artificial signal attacks (Alegre et al., 2012ag- R a.tackersvowe to that of the t.arget speaker, as well as thesy
itself. There are clearly easier, more accessible and nffge-e

sults in (Alegre et al., 2012b) suggest that supervecteetha . . :

SVM classifiers are naturally robust to artificial signabhaks gée a:_p prpa::hhes to sp;)?flr:g. dlndeeg, r?ﬂgnatta:jcllf_s e:jréy::lgh

whereas the work in (Alegre et al., 2013b) shows that voice co ectiveIn the case of text-independen and fixed-pnrase
text-dependent systems. Even if tiféeetiveness is reduced in

version attacks can be detectefeetively using estimates of th f randomised. ph ted text-d dent
utterance-level, dynamic speech variability. Converfaeesh € case ol randomised, phrase-prompted text-depen Sy
tems, replay attacks are the most accessible approachadé spo

was shown to exhibit less dynamic variability than natural.

speech. Thefeect of countermeasures on ASV performancemg’ requw:jng only a rectorro]lmg and playback device such as a
was assessed in (Alegre et al., 2013c). The FAR of an FA systf’Ipe recorderorasmartphone. .
Neither speech synthesis nor voice conversion systems ca-

tem was shown to fall from 54 % under spoofing to 2 % with . Lo 2
pable of producing speech indicative of other specific, darg

Integrated spoofing countermeasures. speakers are readily available in commerci#ltbe-shelf sys-

A summary of the forts to develop countermeasures againstems. Nonetheless, both speech synthesis and speakea-adapt
voice conversion spoofing attacks is presented in Table 5. Kon are active research topics with clear commercial appli
shows that countermeasures afEeetive in protecting ASV  tions. Trainable speech synthesis and publicly availableev

systems from voice conversion attacks, and that performanconversion tools are already in the public domain, e.g %t
with integrated countermeasures is not too dissimilar &eba

line performance. Snttp://www.cstr.ed.ac.uk/projects/festival/
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Table 6: A summary of the accessibility anfleetiveness of the four spoofing attack approaches, and #ilafaility of countermeasures for automatic speaker
verification. They are graded on a three-level scale.

Spoofing Accessibility Effectiveness (risk) Countermeasure
technique (practicality) Text-independent Text-dependent  availability
Impersonation | Low Low Low Non-existent
Replay High High Low to high Low
Speech synthesis Medium to high| High High Medium
Voice conversion Medium to high| High High Medium

and Festvokand it has been reported that some speech synthelifferent attacks (not seen during training) in addition to new,
sis systems are able to produce speech comparable in qualijgneralised approaches.

to human speeéh The accessibility of speech synthesis and The potential for generalised countermeasures is high-
voice conversion attacks should thus be considered medium tighted in independent studies of spoofing with synthetic
high. Among the others considered in this paper, speechesynt speech (De Leon et al., 2012a) and converted voice (Wu et al.,
sis and voice conversion spoofing attacks may pose the gteat®012a). Since both forms of attack employ vocoding tech-
threat to ASV performance and thugeztiveness, for both text- niques, the use of phase information proved a reliable mefans

dependent and text-independent ASV systems is high. detecting manipulated speech signals in both studies. Bhle w
in (Wu et al., 2013b) also showed that a common countermea-
6.2. Countermeasures sure based on long-term, temporal magnitude and phase mod-

The vulnerability of ASV systems to each of the four attacksulation features was successful in detecting both symtiaetil
considered above has been confirmed by several independéi@nverted speech, even if the countermeasure exploitslknow
studies. Even so,florts to develop countermeasures are rela£dge of the vocoder. Longer-term or higher-level featuresew
tively embryonic, lagging far behind the level offert in the ~ investigated in (Alegre et al., 2013c) in the form of local bi
case of some other biometric modalities. Also summarised ifary pattern (LBP) analysis (Figure 11), a technique osiiyn
Table 6 is the curreravailability of countermeasures for each developed for texture analysis in computer vision problems
spoofing attack, namely the status of countermeasures for intPietikainen et al., 2011). The LBP-based countermeaspie
mediate, practical use. timised for voice conversion was shown also to ffedive in

Since impersonated speech is entirely natural, there are rfigtecting entirely dferent (no common vocoder) speech syn-
processingartefacts which might otherwise be useful for detec-thesis and artificial signal attacks.
tion purposes. Furthermore, to the best of our knowledgeeth ~ While still based on the LBP analysis proposed in (Ale-
are no impersonation countermeasures in the literaturéharsd ~ 9re et al., 2013c), the first entirely generalised countesuee
the availability is indicated ason-existenin Table 6. was proposed in (Alegre et al., 2013a). Generality is embure

Only a small number of countermeasures have been reporté@rough the learning of a one-class classifier optimisedgusi
in the literature for replay attacks. Availability is thuslicated ~ natural speech alone, without any form of spoofed speett tra
as low in Table 6. Even if speech synthesis and voice cororersi ing data. Despite the lack of any matched training data, expe
have attracted greater attention, the majority of existagn- ~ mental results presented in Figure 12 show that the gesedali
termeasures make unrealistic use of prior knowledge. Availone-class classifier idfective in detecting both synthetic and
ability is therefore indicated as medium. Furthermores¢he converted speech, in addition to artificial signal spoofitacks
countermeasures might be easily overcome if they are knowt®r which the detection EER is 0 %.
to spoofing attackers. For example, countermeasures based o
phase-related features can be overcome by including rhaturg

phase information Issues for future research

) As discussed in Section 5, the spoofing and countermeasure

6.3. Generalised countermeasures studies reported in the literature were conducted wiffecént

All of the past work described above targets a specific forndatasets, evaluation protocols and metrics. Unfortupated
of spoofing and generally exploits some prior knowledge of dack of standards presents a fundamental barrier to the com-
particular spoofing algorithm. In practice, however, neitthe  parison of diferent research results. This section discusses the
form of spoofing nor the exact algorithm can be known with anycurrent evaluation protocols and metrics and some weakaess
certainty. Hence, countermeasures based on processeyg arin the methodology. We also discuss some open-source soft-
facts indicative of a specific approach to spoofing may not genware packages which can be recommended for future spoofing
eralise well in the face of varying attacks. Recent work hasand countermeasure research.
thus investigated the reliability of specific countermeasuo

7.1. Large-scale standard datasets

Thttp: //waw. festvox.org/index . html Past studies of impersonation and replay quofing attacks
8http://www.festvox.org/blizzard/index.html were all conducted using small-scale datasets, with onllsm
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Figure 11: An illustration of local binary pattern (LBP) faee extraction. The procedure involves: a) the extraadiimear frequency cepstral cieient (LFCC)
features from the speech signal; b) the application of umifoBP analysis to convert the cepstrogram into a so-caéigttdgram; c) the generation of histograms
of LBP values for all but the first and last rows of the textaogr d) the concatenation of normalised histograms to foatufe supervectors for spoofing detection.
More details can be found in (Alegre et al., 2013c). Figupraduced from (Alegre et al., 2013c).

It is probably for the study of countermeasures, however,
where the need for standard datasets is greatest. All the pas

— \S/oice Eosnve;ioh | work has investigated countermeasures where details of the
3 -- eec nthesis . . . .. ..
» Aftiﬁdal syigna.s ] spoofing attack are either implicitly or explicitly known.ge

the form of attack or even the exact algorithm. This is clearl
wholly unrepresentative of the practical scenario wheeenidr

ture of the spoofing attack can never be known precisely. In
this sense, while past work isféigient to demonstrate the po-
tential of spoofing countermeasures, their performanceois-p
ably over-estimated. In addition, most of the past counéarm
sure studies have been conducted under matched conditions,
e.g. where speech samples used to optimise the countenmaeasu
are collected in the same or similar acoustic environmedt an
over the same or similar channel as those used for evaluation
Large-scale, standard datasets are thus also needed iriratie
countermeasure performance can be evaluated not onlyevith r

_ alistic channel or recording environment variability, lalgo in

False Rejection Rate [in %] the absence of a priori knowledge and hence under variable at
tacks. The detection of spoofing will then be considerablyano
challenging but more reflective of practical use cases.

False Acceptance Rate [in %]
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Figure 12: Detection performance for the first generalisem-class classifier
in the case of voice conversion, speech synthesis and iattgignal spoofing
attacks. The profile for artificial signals is not visible @nthe EER is 0 %.
Figure reproduced from (Alegre et al., 2013a).

7.2. Evaluation metrics

While countermeasures can be integrated into existing ASV
systems, they are most often implemented as independent mod
numbers of speakers. While they all suggest that ASV sysules which allow for theexplicit detectiorof spoofing attacks.
tems might be vulnerable, it is filicult to draw any more The most common approach in this case is to concatenate the
meaningful conclusions without the use of significanthglar two classifiers in series as illustrated in Figure 10. As show
datasets. While many of the past studies on speech synthegisTable 1, a standard ASV system measures two types of er-
and voice conversion spoofing attacks already employ largesor: false acceptances and false rejections. Similarbretlare
scale datasets, e.g. NIST speaker recognition evalus@iRk) also two incorrect outcomes from a stand-alone countermea-
corpora, they all require the use of non-standard speet¢hesyn sure. The assessment of countermeasure performance on its
sis and voice conversion algorithmsin order to generatefsgo  own is relatively straightforward; results are readily lgsad
speech. Moreover, some of the studies involving speectheynt with standard detection error trad&-¢DET) profiles (Martin
sis have used datasets of high-quality speech recordeddncl etal., 1997) and related metrics.
controlled conditions; they lack chanfraise mismatch which Itis often of interest, however, that the assessment refieet
might typify the practical use-case scenario. Largeressan-  impact on ASV performance. Assessment is then non-trivial,
dard datasets with realistic channel and recording enmeort  calling for the joint optimisation of combined classifierds
variability will be needed for future work in order that the¢at  reflected in Section 5, there are currently no standard atialu
from each form of attack can be compared reliably under realprotocols, metrics or ASV systems and there is thus a need to
istic conditions (Alegre et al., 2014). define such standards in the future.
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Candidate standards for evaluation protocols and metrecs a - 2o, T —— —
belpg drafted Wll:hln the scope of the EU FP7 TABULA R_ASA o o o v NSNS —————
projecf. Here, independent countermeasures preceding bic %) : baseline under attack ‘
----- baseline + countermeasure under attack ||

metric verification are optimised at threeffdrent operating il | :

99.5 |-

points where thresholds are set to obtain false fake rejecti S e e e
rates (the probability of labelling a genuine access as afspo SILEE1E: i [
ing attack) of either 1 %, 5 % or 10 %. Only those sam- =
ples labelled as genuine accesses are passed to the ASV s%
tem whereas those labelled as spoofed accesses are diS€arde &
Performance is assessed using foffiedent DET profile¥, ex-
amples of which are illustrated in Figure 13. The four prgafile
illustrate performance of the baseline system with nafeed-
effort) impostors, the baseline system with active countermes
sures, the baseline system where all impostor accesses-are b o VO RO e, ST :
placed with spoofing attacks and, finally, the baseline ayste L 5 I L 00 S o TI VOSSO e
with spoofing attacks and active countermeasures. Comsider [ TN\ 1'
tion of all four profiles is needed to gauge the impacts of eoun ity e :
termeasures. These include those on licit transactionysden
terioration in false rejection — fference between 1st and 2nd
profiles) and those on robustness to spoofing (improvemen
in false acceptance —ftierence between 3rd and 4th profiles).
However, profiles 2 and 4 are dependent on the countermeast . _ False Rejection Rate [in %]
threshold whereas the comparison of profiles 1 and 4 is poten-

tially misleading; they reflect simultaneous changes td hoe Figure 13: An example of four DET curves needed to a_n_alysae!abllltles
to spoofing and countermeasure performance, both on lidispoofed access

system and the dataset. attempts. Results correspond to spoofing attacks usingetjmspeech and a
The expected performance and spoofability curve (E’lﬁﬁC standard GMM-UBM classifier assessed on the male subsee &6 NIST

provides an alternative approach to evaluate biometriesys SRE dataset.

with integrated spoofing countermeasures (Marcel, 2013¢. T

EPSC metric is applied to the fused scores produced by indem the test seDiesiaccording to:

pendent biometric and countermeasure classifiers andteeflec

trade-df between the half total error rate (HTER) and the so-

called spoof false acceptance rate (SFAR). The HTER is the

mean of the weighted FAR and FRR (Chingovska et al., 2013) .

whereas the SFAR refers to the probability of a spoofed acces T_he_HTERs are thus computed_as afunctiomolhe SFAR

being falsely accepted (Johnson et al., 2010). The HTER ii_s,lmllarly computed as a function a$ on the test set. In

determined with a decision threshatyj which minimises the this way, the EPSC explicitly reflects three types of errot-me

difference between the FRR and the weighted FAR (- rics, the FAR, FRR and SFAR’ Wh."? still providing a single
ccl)rding to: weld combined metric with a unique decision threshold. The EPSC

also supports the performance comparison dedent coun-
¥ = arg MinfFAR,(r, Dgey) — FRR(T, Dgey)l, (2) termeasures or ASV systems. However, the EPSC metric is
T only applicable where the countermeasure and ASV classifier
are fused at the score level. More details of the EPSC can be
FAR, = - SFAR+ (1 - w) - FAR, ©) found in' (Marcel, 20'13; thnggvska _et al., 2014) and_an open-
source implementation is available in the Bob toolkit (Ajo
wherew is the weight which balances the SFAR and FAR, andet al., 2012).
whereDqey refers to the development set. Hence, the decision |n general, the interpretation of existing evaluation riestr
threshold depends on the weight is non-trivial and the metrics themselves lack universaliap
With the decision threshold;, the HTER can be computed cability across dferent approaches to system integration. Fur-
ther work is thus required to design intuitive, universatmics
which represent the performance of spoofing countermesisure

®http://www.tabularasa-euproject.org/ when combined with ASV.
10/n practice spoofed accesses cannot be fully discarded sindoing would

unduly influence ASV false reject and false acceptance caleslated as a per-

centage of all accesses. Instead, spoofed accesses bypdssd are assigned

False Acceptance

FARL(75, Dres) + FRR{S, Dresy)
2 b

HTER(72) = @

where

7.3. Open-source software packages

anl?rbitrary, low score. _ As reflected throughout this article, spoofing and counter-
Produced with the ~TABULA ~RASA Scoretoolkit  http:  maagyre studies involve a broad range of technologiesidncl
//publications.idiap.ch/downloads/reports/2012/Anjos_ X i X X
Idiap-Com-02-2012. pdf mg.ASV, speech synthesis a}nd voice conversion. In order to
Pnttps://pypi.python.org/pypi/antispoofing.evaluation facilitate further research, this section hlghllghts a bemof

17



useful open-source software packages which can be used eith
for ASV or spoofing and countermeasure research.

The ALIZE library and associated toolkitsare among the
most popular in ASV research. Version 3.0 of ALIZE includes
several state-of-the-art approaches including jointiaahaly-
sis (JFA), i-vector modelling and probabilistic linear alisi-
nant analysis (PLDA) (Larcher et al., 2013a). The Bob signal
processing and machine learning toollfhis a general purpose
biometric toolkit which also includes ASV functionality (jos
et al., 2012). Popular solutions for feature extractiorude
SPrd® and the Hidden Markov Model Toolkft (HTK) which
also includes extensive statistical modelling functidies.

Some toolkits also provide speech synthesis and voice con-
version functionalities. The HMM-based Speech Synthesis
Systent’ (HTS) can be used to implement HMM-based speech
synthesis as well as speaker model adaptation, whereas the

Festvox® toolkit can be used for voice conversion. The Speech Combined spoofing attacks: The majority of the past stud-

speech. With the expertise to implement such attacks be-
ing beyond the means of the lay person, greater emphasis
should be placed on the lesffextive, though more ac-
cessible attacks; even if they are lefgetive, they might
occur more frequently in practice. The most obvious, ac-
cessible attack involves replay.

Countermeasures under acoustic mismatchmost evalua-
tions reported to date involve speech data with channel and
recording environment variability identical to that used
in countermeasure optimisation. fErent transmission
channels, additive noises and other imperfections should
be expected in practice and have potential to mask process-
ing artefacts key to spoofing detection. Future evaluations
should thus evaluate countermeasures under acoustically
degraded and channel-mismatched conditions.

Signal Processing Toolkt (SPTK) dfers speech analysis and
synthesis functionalities which can be used for featureaext
tion and the reconstruction of audible speech signals wbem ¢

ies involve only independent spoofing approaches. Fu-
ture work should consider the possibility of attackers com-
bining several spoofing techniques to bod&etiveness.

bined with HTS and Festvox. For example, voice conversion and impersonation could be

combined to spoof both spectral and prosodic cues.

7.4. Future directions . . . .
It is, however, the consistent theme throughout this aticl

The survey highlights the lack of standards which in turnnamely the lack of standard databases, protocols and metric
leads to a number of issues in the current methodology, all ofyhich leads to what is arguably the most urgent of all direc-
which need attention in the future. tions for the future. The use of ftierent experimental config-

urations impedes the comparison offdient results and will
Generalised countermeasures:the majority of past anti- pe a fundamental barrier to future advances; such standards
spoofing studies have focused on a specific spoofing aire essential to the benchmarking offelient ideas and expe-
tack, while variable attacks can be expected in pracrience shows they are critical to progress. Just as they have
tice. Future research should continue the pursuit of genheen for progress in automatic speaker verification, stahda
eralised countermeasures capable of detectifigrdnt  gatabases, protocols and metrics will be an essential coempo
spoofing attacks unseen during countermeasure optimisg; the future for spoofing and countermeasure researcht Firs
tion. Such work may potentially build on the one-classand foremost, the future work should define a publicly avail-
approach (Alegre et al., 2013a) where the countermeasuigle dataset and competitive challenge similar in spirihe

is trained only with natural speech. Evaluation protocolsyraditional NIST speaker recognition evaluations. Theharst
should include diverse, mismatched spoofing techniquegre currently working in this direction.

thereby reflecting the uncertainty in the likely nature of a

spoofing attack. i
8. Conclusions

Text-dependent systemsion account of dataset availability,

o ! : This article reviews the previous work to assess the vuinera
the majority of past work involves text-independent ASV | . . . e .
o ; . bility of automatic speaker verification systems to spooéing
which is arguably more relevant to surveillance applica-

tions. Euture work should increase the focus on teXt_the potential to protect them using dedicated countermeasu

. o Even if there are currently no standard datasets, evaluptim
dependent systems, more pertinent to authentication sc?— . . g ;
narios ocols or metrics with which to conduct meaningfully compa-

rable or reproducible research, previous studies invgluin-
Replay attacks: the present literature focuses on relatively P€rsonation, replay, speech synthesis and voice conveasiio

sophisticated attacks, such as synthesised and convertttflicate genuine vulnerabilities. While a growing body of |
dependent research also points to the potential of coueterm

sures, fundamental shortcomings in the research methgylolo
are common to all the past work and point towards specific pri-
orities for the future. Finally, while there is potential foext
generation countermeasures to detect varying spoofingkatta

a continuous arms race is likelyfferts to develop more so-
phisticated countermeasures will likely be accompaniethby
creased #orts to spoof automatic speaker verification systems.
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The area s therefore set to remain an important field of reeea Bredin, H., Miguel, A., Witten, I.H., Chollet, G., 2006. Bting replay attacks

in the future.
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