An Overview of Text-Independent Speaker Recognition: from Features to
Supervectors

Tomi Kinnunen*?, Haizhou LiP

“Department of Computer Science and Statistics, Speech and Image Processing Unit
University of Joensuu, P.O.Box 111, 80101 Joensuu, FINLAND
WWW homepage: http://cs. joensuu. fi/sipu/

b Department of Human Language Technology, Institute for Infocomm Research (I*R)
1 Fusionopolis Way, #21-01 Connexis, South Tower, Singapore 138632
WWW homepage: http://hlt.i2r.a-star.edu.sg/

Abstract

This paper gives an overview of automatic speaker recognition technology, with an emphasis on text-independent
recognition. Speaker recognition has been studied actively for several decades. We give an overview of both the clas-
sical and the state-of-the-art methods. We start with the fundamentals of automatic speaker recognition, concerning
feature extraction and speaker modeling. We elaborate advanced computational techniques to address robustness and
session variability. The recent progress from vectors towards supervectors opens up a new area of exploration and
represents a technology trend. We also provide an overview of this recent development and discuss the evaluation
methodology of speaker recognition systems. We conclude the paper with discussion on future directions.
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1. Introduction

Speaker recognition refers to recognizing persons
from their voice. No two individuals sound identical
because their vocal tract shapes, larynx sizes, and other
parts of their voice production organs are different. In
addition to these physical differences, each speaker has
his or her characteristic manner of speaking, including
the use of a particular accent, thythm, intonation style,
pronounciation pattern, choice of vocabulary and so on.
State-of-the-art speaker recognition systems use a num-
ber of these features in parallel, attempting to cover
these different aspects and employing them in a com-
plementary way to achieve more accurate recognition.

An important application of speaker recognition tech-
nology is forensics. Much of information is exchanged
between two parties in telephone conversations, includ-
ing between criminals, and in recent years there has
been increasing interest to integrate automatic speaker
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recognition to supplement auditory and semi-automatic
analysis methods [3, 76, 174, 185, 223].

Not only forensic analysts but also ordinary persons
will benefit from speaker recognition technology. It has
been predicted that telephone-based services with in-
tegrated speech recognition, speaker recognition, and
language recognition will supplement or even replace
human-operated telephone services in the future. An ex-
ample is automatic password reset over the telephone!.
The advantages of such automatic services are clear -
much higher capacity compared to human-operated ser-
vices with hundreds or thousands of phone calls being
processed simultaneously. In fact, the focus of speaker
recognition research over the years has been tending to-
wards such telephony-based applications.

In addition to telephony speech data, there is a contin-
ually increasing supply of other spoken documents such
as TV broadcasts, teleconference meetings, and video
clips from vacations. Extracting metadata like topic
of discussion or participant names and genders from

See e.g. http://www.pcworld.com/article/106142/
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these documents would enable automated information
searching and indexing. Speaker diarization [226], also
known as “who spoke when”, attempts to extract speak-
ing turns of the different participants from a spoken doc-
ument, and is an extension of the “classical” speaker
recognition techniques applied to recordings with mul-
tiple speakers.

In forensics and speaker diarization, the speakers can
be considered non-cooperative as they do not specif-
ically wish to be recognized. On the other hand, in
telephone-based services and access control, the users
are considered cooperative. Speaker recognition sys-
tems, on the other hand, can be divided into fext-
dependent and text-independent ones. In text-dependent
systems [91], suited for cooperative users, the recogni-
tion phrases are fixed, or known beforehand. For in-
stance, the user can be prompted to read a randomly se-
lected sequence of numbers as described in [101]. In
text-independent systems, there are no constraints on
the words which the speakers are allowed to use. Thus,
the reference (what are spoken in training) and the test
(what are uttered in actual use) utterances may have
completely different content, and the recognition system
must take this phonetic mismatch into account. Text-
independent recognition is the much more challenging
of the two tasks.

In general, phonetic variability represents one ad-
verse factor to accuracy in text-independent speaker
recognition. Changes in the acoustic environment
and technical factors (transducer, channel), as well as
“within-speaker” variation of the speaker him/herself
(state of health, mood, aging) represent other undesir-
able factors. In general, any variation between two
recordings of the same speaker is known as session vari-
ability [111, 231]. Session variability is often described
as mismatched training and test conditions, and it re-
mains to be the most challenging problem in speaker
recognition.

This paper represents an overview of speaker recog-
nition technologies, including a few representative tech-
niques from 1980s until today. In addition, we give
emphasis to the recent techniques that have presented a
paradigm shift from the traditional vector-based speaker
models to so-called supervector models. This paper
serves as a quick overview of the research questions and
their solutions for someone who would like to start re-
search in speaker recognition. The paper may also be
useful for speech scientists to have a glance at the cur-
rent trends in the field. We assume familiarity with ba-
sics of digital signal processing and pattern recognition.

We recognize that a thorough review of the field with
more than 40 years of active research is challenging.
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Figure 1: Components of a typical automatic speaker recognition sys-
tem. In the enrollment mode, a speaker model is created with the aid
of previously created background model; in recognition mode, both
the hypothesized model and the background model are matched and
background score is used in normalizing the raw score.

For the interested reader we therefore point to other use-
ful surveys. Campbell’s tutorial [33] includes in-depth
discussions of feature selection and stochastic model-
ing. A more recent overview, with useful discussions
of normalization methods and speaker recognition ap-
plications, can be found in [22]. Recent collection of
book chapters on various aspects of speaker classifica-
tion can also be found in [167, 168]. For an overview of
text-dependent recognition, refer to [91].

Section 2 provides fundamentals of speaker recogni-
tion. Sections 3 and 4 then elaborate feature extraction
and speaker modeling principles. Section 5 describes
robust methods to cope with real-life noisy and session
mismatched conditions, with the focus on feature and
score normalization. Section 6 is then devoted to the
current supervector classifiers and their session com-
pensation. In Section 7 we discuss the evaluation of
speaker recognition performance and give pointers to
software packages as well. Finally, possible future hori-
zons of the field are outlined in Section 8, followed by
conclusions in Section 9.

2. Fundamentals

Figure 1 shows the components of an automatic
speaker recognition system. The upper is the enrollment
process, while the lower panel illustrates the recognition
process. The feature extraction module first transforms



the raw signal into feature vectors in which speaker-
specific properties are emphasized and statistical redun-
dancies suppressed. In the enrollment mode, a speaker
model is trained using the feature vectors of the target
speaker. In the recognition mode, the feature vectors
extracted from the unknown person’s utterance are com-
pared against the model(s) in the system database to
give a similarity score. The decision module uses this
similarity score to make the final decision.

Virtually all state-of-the-art speaker recognition sys-
tems use a set of background speakers or cohort speak-
ers in one form or another to enhance the robustness
and computational efficiency of the recognizer. In the
enrollment phase, background speakers are used as the
negative examples in the training of a discriminative
model [36], or in training a universal background model
from which the the target speaker models are adapted
[197]. In the recognition phase, background speakers
are used in the normalization of the speaker match score
[71, 101, 139, 193, 197, 206].

2.1. Selection of Features

Speech signal includes many features of which not
all are important for speaker discrimination. An ideal
feature would [201, 234]

e have large between-speaker variability and small
within-speaker variability

be robust against noise and distortion

e occur frequently and naturally in speech

be easy to measure from speech signal

be difficult to impersonate/mimic

not be affected by the speaker’s health or long-term
variations in voice.

The number of features should be also relatively low.
Traditional statistical models such as the Gaussian mix-
ture model [197, 198] cannot handle high-dimensional
data. The number of required training samples for re-
liable density estimation grows exponentially with the
number of features. This problem is known as the curse
of dimensionality [104]. The computational savings are
also obvious with low-dimensional features.

There are different ways to categorize the features
(Fig. 2). From the viewpoint of their physical interpre-
tation, we can divide them into (1) short-term spectral
features, (2) voice source features, (3) spectro-temporal
features, (4) prosodic features and (5) high-level fea-
tures. Short-term spectral features, as the name sug-
gests, are computed from short frames of about 20-30
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Figure 2: A summary of features from viewpoint of their physical
interpretation. The choice of features has to be based on their dis-
crimination, robustness, and practicality. Short-term spectral features
are the simplest, yet most discriminative; prosodics and high-level
features have received much attention at high computational cost.

milliseconds in duration. They are usually descriptors
of the short-term spectral envelope which is an acous-
tic correlate of timbre, i.e. the “color” of sound, as
well as the resonance properties of the supralaryngeal
vocal tract. The voice source features, in turn, char-
acterize the voice source (glottal flow). Prosodic and
spectro-temporal features span over tens or hundreds of
milliseconds, including intonation and rhythm, for in-
stance. Finally, high-level features attempt to capture
conversation-level characteristics of speakers, such as
characteristic use of words (“‘uh-huh”, “you know”, “oh
yeah”, etc.) [57].

Which features one should use? It depends on the
intended application, computing resources, amount of
speech data available (for both development purposes
and in run-time) and whether the speakers are co-
operative or not. For someone who would like to start
research in speaker recognition, we recommend to begin
with the short-term spectral features since they are easy
to compute and yield good performance [195]. Prosodic
and high-level features are believed to be more robust,
but less discriminative and easier to impersonate; for
instance, it is relatively well known that professional
impersonators tend to modify the overall pitch contour
towards the imitated speaker [10, 126]. High-level fea-
tures also require considerably more complex front-end,
such as automatic speech recognizer. To conclude, there
does not yet exist globally “best” feature but the choice
is a trade-off between speaker discrimination, robust-



ness, and practicality.

2.2. Speaker Modeling

By using feature vectors extracted from a given
speaker’s training utterance(s), a speaker model is
trained and stored into the system database. In text-
dependent mode, the model is utterance-specific and it
includes the temporal dependencies between the feature
vectors. Text-dependent speaker verification and speech
recognition do share similarities in their pattern match-
ing processes, and these can also be combined [18, 93].

In text-independent mode we often model the fea-
ture distribution, i.e. the shape of the “feature cloud”
rather than the temporal dependencies. Note that, in
text-dependent recognition, we can temporally align the
test and training utterances because they contain (are as-
sumed to contain) the same phoneme sequences. How-
ever, in text-independent recognition, since there are lit-
tle or absolutely no correspondence between the frames
in the test and reference utterances, alignment at the
frame level is not possible. Therefore, segmentation
of the signal into phones or broad phonetic classes can
be used as a pre-processing step, or alternatively, the
speaker models can be structured phonetically. Such
approaches have been proposed in [61, 81, 79, 92, 180,
107]. It is also possible to use data-driven units instead
of the strictly linguistic phonemes as segmentation units
[80].

Classical speaker models can be divided into fem-
plate models and stochastic models [33], also known as
nonparametric and parametric models, respectively. In
template models, training and test feature vectors are
directly compared with each other with the assumption
that either one is an imperfect replica of the other. The
amount of distortion between them represents their de-
gree of similarity. Vector quantization (VQ) [213] and
dynamic time warping (DTW) [70] are representative
examples of template models for text-independent and
text-dependent recognition, respectively.

In stochastic models, each speaker is modeled as a
probabilistic source with an unknown but fixed proba-
bility density function. The training phase is to estimate
the parameters of the probability density function from
a training sample. Matching is usually done by evaluat-
ing the likelihood of the test utterance with respect to the
model. The Gaussian mixture model (GMM) [198, 197]
and the hidden Markov model (HMM) [19, 171] are
the most popular models for text-independent and text-
dependent recognition, respectively.

According to the training paradigm, models can also
be classified into generative and discriminative models.
The generative models such as GMM and VQ estimate

the feature distribution within each speaker. The dis-
criminative models such as artificial neural networks
(ANNs) [62, 94, 239] and support vector machines
(SVMs) [36], in contrast, model the boundary between
speakers. For more discussions, refer to [190].

In summary, a speaker is characterized by a speaker
model such as VQ, GMM or SVM. At run-time, a un-
known voice is first represented by a collection of fea-
ture vectors or a supervector - a concatenation of mul-
tiple vectors, then evaluated against the target speaker
models.

3. Feature Extraction

3.1. Short-Term Spectral Features

The speech signal continuously changes due to artic-
ulatory movements, and therefore, the signal must be
broken down in short frames of about 20-30 millisec-
onds in duration. Within this interval, the signal is as-
sumed to remain stationary and a spectral feature vector
is extracted from each frame.

Usually the frame is pre-emphasized and multiplied
by a smooth window function prior to further steps. Pre-
emphasis boosts the higher frequencies whose intensity
would be otherwise very low due to downward sloping
spectrum caused by glottal voice source [82, p. 168].
The window function (usually Hamming), on the other
hand, is needed because of the finite-length effects of
the discrete Fourier transform (DFT); for details, refer
to [83, 56, 177]. in practice, choice of the window func-
tion is not critical. Although the frame length is usually
fixed, pitch-synchronous analysis has also been studied
[172, 247, 75]. The experiments in [172, 247] indicate
that recognition accuracy reduces with this technique,
whereas [75] obtained some improvement in noisy con-
ditions. Pitch-dependent speaker models have also been
studied [9, 60].

The well-known fast Fourier transform (FFT), a fast
implementation of DFT, decomposes a signal into its
frequency components [177]. Alternatives to FFT-based
signal decomposition such as non-harmonic bases, ape-
riodic functions and data-driven bases derived from in-
dependent component analysis (ICA) have been studied
in literature [77, 103, 105]. The DFT, however, remains
to be used in practice due to its simplicity and efficiency.
Usually only the magnitude spectrum is retained, based
on the belief that phase has little perceptual importance.
However, [179] provides opposing evidence while [96]
described a technique which utilizes phase information.

The global shape of the DFT magnitude spectrum
(Fig. 3), known as spectral envelope, contains informa-
tion about the resonance properties of the vocal tract and
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Figure 3: Extraction of spectral envelope using cepstral analysis and
linear prediction (LP). Spectrum of NFFT = 512 points can be ef-
fectively reduced to only N, = 12 cepstral coeflicients or p = 12 LP
coefficients. Both the cepstral and LP features are useful and comple-
mentary to each other when used in speaker recognition.

has been found out to be the most informative part of
the spectrum in speaker recognition. A simple model of
spectral envelope uses a set of band-pass filters to do en-
ergy integration over neighboring frequency bands. Mo-
tivated by psycho-acoustic studies, the lower frequency
range is usually represented with higher resolution by
allocating more filters with narrow bandwidths [82].

Although the subband energy values have been used
directly as features [20, 21, 49, 205], usually the di-
mensionality is further reduced using other transforma-
tions. The so-called mel-frequency cepstral coefficients
(MFCCs) [50] are popular features in speech and audio
processing. MFCCs were introduced in early 1980s for
speech recognition and then adopted in speaker recog-
nition. Even though various alternative features, such
as spectral subband centroids (SSCs) [125, 221] have
been studied, the MFCCs seem to be difficult to beat in
practice.

MFCCs are computed with the aid of a psychoa-
coustically motivated filterbank, followed by logarith-
mic compression and discrete cosine transform (DCT).
Denoting the outputs of an M-channel filterbank as
Y(m),m = 1,..., M, the MFCCs are obtained as fol-
lows:

M
€y = ; | log Y(m)| cos [%(m - %)} (1)

1

Here n is the index of the cepstral coefficient. The fi-
nal MFCC vector is obtained by retaining about 12-15
lowest DCT coefficients. More details of MFCCs can
be found in [56, 102]. Alternative features that empha-
size speaker-specific information have been studied in
[43, 165, 113, 178]. For study of speaker-discriminative

information in spectrum, refer to [144]. Finally, some
new trends in feature extraction can be found in [6].

Linear prediction (LP) [152, 155] is an alternative
spectrum estimation method to DFT that has good intu-
itive interpretation both in time domain (adjacent sam-
ples are correlated) and frequency domain (all-pole
spectrum corresponding to the resonance structure). In
time domain, LP predictor equation is defined as,

p
5n] = Z apsln — kl. 2)

k=1

Here s[n] is the observed signal, a; are the predictor co-
efficients and §[n] is the predicted signal. The prediction
error signal, or residual, is defined as e[n] = s[n] — §[n],
and illustrated in the middle panel of Fig. 4. The co-
efficients a; are usually determined by minimizing the
residual energy using the so-called Levinson-Durbin al-
gorithm [82, 102, 189]. The spectral model is defined
as,
1

L= 30 ar®

and it consists of spectral peaks or poles only (dash-
dotted line in Fig. 3).

The predictor coefficients {a;} themselves are rarely
used as features but they are transformed into robust
and less correlated features such as linear predictive
cepstral coefficients (LPCCs) [102], line spectral fre-
quencies (LSFs) [102], and perceptual linear predic-
tion (PLP) coefficients [97]. Other, somewhat less suc-
cessful features, include partial correlation coefficients
(PARCORYS), log area ratios (LARSs) and formant fre-
quencies and bandwidths [189].

Given all the alternative spectral features, which one
should be used for speaker recognition and how should
the parameters (e.g. the number of coefficients) be se-
lected? Some comparisons can be found in [12, 114,
118, 198], and it has been observed that in general chan-
nel compensation methods are much more important
than the choice of the base feature set [198]. Differ-
ent spectral features, however, are complementary and
can be combined to enhance accuracy [28, 36, 118]. In
summary, for practical use we recommend any of the
following features: MFCC, LPCC, LSF, PLP.

H(z) = 3

3.2. Voice Source Features

Voice source features characterize the glottal excita-
tion signal of voiced sounds such as glottal pulse shape
and fundamental frequency, and it is reasonable to as-
sume that they carry speaker-specific information. Fun-
damental frequency, the rate of vocal fold vibration, is
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Figure 4: Glottal feature extraction [116]. Speech frame (top), lin-
ear prediction (LP) residual (middle), and glottal flow estimated via
inverse filtering (bottom). ©2009 IEEE. Reprinted by permission.

popular and will be discussed in Section 3.4. Other pa-
rameters are related to the shape of the glottal pulse,
such as the degree of vocal fold opening and the du-
ration of the closing phase. These contribute to voice
quality which can be described for example, as modal,
breathy, creaky or pressed [59].

The glottal features are not directly measurable due to
the vocal tract filtering effect. By assuming that the glot-
tal source and the vocal tract are independent of each
other, vocal tract parameters can be first estimated us-
ing, for instance, the linear prediction model, followed
by inverse filtering of the original waveform to obtain an
estimate of the source signal [116, 170, 186, 188, 220,
242]. An alternative method uses closed-phase covari-
ance analysis during the portions when the vocal folds
are closed [78, 186, 208]. This leads to improved esti-
mate of the vocal tract but accurate detection of closed
phase is required which is difficult in noisy conditions.
As an example, Fig. 4 shows a speech signal together
with its LP residual and glottal flow estimated with a
simple inverse filtering method [4].

Features of the inverse filtered signal can be ex-
tracted, for instance, by using an auto-associative neural
network [188]. Other approaches have used paramet-
ric glottal flow model parameters [186], wavelet anal-
ysis [242], residual phase [170], cepstral coefficients
[78, 47, 116] and higher-order statistics [47] to mention
a few.

Based on the literature, voice source features are
not as discriminative as vocal tract features but fusing
these two complementary features can improve accu-

racy [170, 242]. Experiments of [42, 188] also sug-
gest that the amount of training and testing data for the
voice source features can be significantly less compared
to the amount of data needed for the vocal tract features
(10 seconds vs 40 seconds in [188]). A possible ex-
planation for this is that vocal tract features depend on
the phonetic content and thus require sufficient phonetic
coverage for both the training and test utterances. Voice
source features, in turn, depend much less on phonetic
factors.

3.3. Spectro-Temporal Features

It is reasonable to assume that the spectro-temporal
signal details such as formant transitions and energy
modulations contain useful speaker-specific informa-
tion. A common way to incorporate some temporal in-
formation to features is through 1% and 2" order time
derivative estimates, known as delta (A) and double-
delta (A?) coefficients, respectively [70, 102, 214].
They are computed as the time differences between
the adjacent vectors feature coefficients and usually ap-
pended with the base coefficients on the frame level (e.g.
13 MFCCs with A and A? coefficients, implying 39 fea-
tures per frame). An alternative, potentially more ro-
bust, method fits a regression line [189] or an orthog-
onal polynomial [70] to the temporal trajectories, al-
though in practice simple differentiation seems to yield
equal or better performance [114]. Time-frequency prin-
cipal components [148] and data-driven temporal filters
[153] have also been studied.

In [115, 123], we proposed to use modulation fre-
quency [13, 98] as a feature for speaker recognition
as illustrated in Fig. 5. Modulation frequency repre-
sents the frequency content of the subband amplitude
envelopes and it potentially contains information about
speaking rate and other stylistic attributes. Modulation
frequencies relevant for speech intelligibility are ap-
proximately in the range 1-20 Hz [13, 98]. In [115], the
best recognition result was obtained by using a temporal
window of 300 milliseconds and by including modula-
tion frequencies in the range 0-20 Hz. The dimension-
ality of the modulation frequency vector depends on the
number of FFT points of the spectrogram and the num-
ber of frames spanning the FFT computation in the tem-
poral direction. For the best parameter combination, the
dimension of the feature vector was 3200 [115].

In [122] and [123] we studied reduced-dimensional
spectro-temporal features. The temporal discrete cosine
transform (TDCT) method, proposed in [122] and illus-
trated in Fig. 6, applies DCT on the temporal trajecto-
ries of the cepstral vectors rather than on the spectro-
gram magnitudes. Using DCT rather than DFT mag-
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nitude here has an advantage that it retains the relative
phases of the feature coefficient trajectories, and hence,
it can preserve both phonetic and speaker-specific in-
formation. This, however, requires more research. In
[123], DCT was used in a different role: reducing the di-
mensionality of the modulation magnitude spectra. The
best results in [115, 123] were obtained by using a time
context of 300-330 milliseconds, which is significantly
longer compared with the typical time contexts of the
delta features.

Even though we obtained some improvement over
the cepstral systems by fusing the match scores of the
cepstral and temporal features [115, 122], the gain was
rather modest and more research is required before these

features can be recommended for practical applications.
One problem could be that we have applied speaker
modeling techniques that are designed for short-term
features. Due to larger temporal context, the num-
ber of training vectors is usually less compared with
short-term features. Furthermore, as the short-term and
longer-term features have different frame rates, they
cannot be easily combined at the frame level. Perhaps
a completely different modeling and fusion technique is
required for these features.

An alternative to amplitude-based methods consid-
ers frequency modulations (FM) instead [222]. In FM-
based methods, the input signal is first divided into sub-
band signals using a bank of bandpass filters. The domi-
nant frequency components (such as the frequency cen-
troids) in the subbands then capture formant-like fea-
tures. As an example, the procedure described in [222]
uses 2™ order all-pole analysis to detect the dominant
frequency. The FM features are then obtained by sub-
tracting the center frequency of the subband from the
pole frequency, yielding a measure of deviation from the
“default” frequency of the bandpass signal. This feature
was applied to speaker recognition in [223], showing
promise when fused with conventional MFCCs.

3.4. Prosodic Features

Prosody refers to non-segmental aspects of speech,
including for instance syllable stress, intonation pat-
terns, speaking rate and rhythm. One important as-
pect of prosody is that, unlike the traditional short-term
spectral features, it spans over long segments like syl-
lables, words, and utterances and reflects differences
in speaking style, language background, sentence type,
and emotions to mention a few. A challenge in text-
independent speaker recognition is modeling the differ-
ent levels of prosodic information (instantaneous, long-
term) to capture speaker differences; at the same time,
the features should be free of effects that the speaker can
voluntarily control.

The most important prosodic parameter is the funda-
mental frequency (or FO). Combining FO-related fea-
tures with spectral features has been shown to be ef-
fective, especially in noisy conditions. Other prosodic
features for speaker recognition have included dura-
tion (e.g. pause statistics, phone duration), speaking
rate, and energy distribution/modulations among others
[2, 16, 195, 204]. Interested reader may refer to [204]
for further details. In that study, it was found out, among
a number of other observations, that FO-related features
yielded the best accuracy, followed by energy and dura-
tion features in this order. Since FO is the predominant
prosodic feature, we will now discuss it in more detail.



Reliable FO determination itself is a challenging task.
For instance, in telephone quality speech, FO is often
outside of the narrowband telephone network passband
(0.3-3.4 kHz) and the algorithms can only rely on the
information in the upper harmonics for FO detection.
For a detailed discussion of classical FO estimation ap-
proaches, refer to [100]. More recent comparison of FO
trackers can be found in [48]. For practical use, we rec-
ommend the YIN method [51] and the autocorrelation
method as implemented in Praat software [26].

For speaker recognition, FO conveys both physiolog-
ical and learned characteristics. For instance, the mean
value of FO can be considered as an acoustic correlate
of the larynx size [201], whereas the temporal varia-
tions of pitch are related to the manner of speaking. In
text-dependent recognition, temporal alignment of pitch
contours have been used [11]. In text-independent stud-
ies, long-term FO statistics - especially the mean value -
have been extensively studied [39, 117, 158, 176, 209,
210]. The mean value combined with other statistics
such as variance and kurtosis can be used as speaker
model [16, 39, 117], even though histograms [117], la-
tent semantic analysis [46] and support vector machines
[204] perform better. It has also been found through a
number of experiments that log(F0) is a better feature
than FO itself [117, 210].

FO is a one-dimensional feature, therefore mathemat-
ically, not expected to be very discriminative. Multi-
dimensional pitch- and voicing-related features can be
extracted from the auto-correlation function without ac-
tual FO extraction as done in [131, 146, 233] for exam-
ple. Another way to improve accuracy is modeling both
the local and long-term temporal variations of FO.

Capturing local FO dynamics can be achieved by ap-
pending the delta features with the instantaneous FO
value. For longer-term modeling, FO contour can be
segmented and presented by a set of parameters asso-
ciated with each segment [1, 2, 160, 204, 209]. The
segments may be syllables obtained using automatic
speech recognition (ASR) system [204]. An alterna-
tive, ASR-free approach, is to divide the utterance into
syllable-like units using, for instance, vowel onsets
[161] or FO/energy inflection points [1, 55] as the seg-
ment boundaries.

For parameterization of the segments, prosodic fea-
ture statistics and their local temporal slopes (tilt)
within each segment are often used. In [2, 209], each
voiced segment was parameterized by a piece-wise lin-
ear model whose parameters formed the features. In
[204], the authors used N-gram counts of discretized
feature values as features to an SVM classifier with
promising results. In [55], prosodic features were ex-

tracted using polynomial basis functions.

3.5. High-Level Features

Speakers differ not only in their voice timbre and ac-
cent/pronounciation, but also in their lexicon - the kind
of words the speakers tend to use in their conversations.
The work on such “high-level” conversational features
was initiated in [57] where a speaker’s characteristic vo-
cabulary, the so-called idiolect, was used to characterize
speakers. The idea in “high-level” modeling is to con-
vert each utterance into a sequence of fokens where the
co-occurrence patterns of tokens characterize speaker
differences. The information being modeled is hence
in categorical (discrete) rather than in numeric (contin-
uous) form.

The tokens considered have included words [57],
phones [8, 35], prosodic gestures (rising/falling
pitch/energy) [2, 46, 204], and even articulatory tokens
(manner and place of articulation) [137]. The top-1
scoring Gaussian mixture component indices have also
been used as tokens [147, 225, 235].

Sometimes several parallel tokenizers are utilized
[35, 106, 147]. This is partly motivated by the success
of parallel phone recognizers in state-of-the-art spo-
ken language recognition [248, 145]. This direction is
driven by the hope that different tokenizers (e.g. phone
recognizers trained on different languages or with dif-
ferent phone models) would capture complementary as-
pects of the utterance. As an example, in [147] a set of
parallel GMM tokenizers [225, 235] were used. Each
tokenizer was trained from a different group of speakers
obtained by clustering.

The baseline classifier for token features is based on
N-gram modeling. Let us denote the token sequence
of the utterance by {a, a»,...,ar}, where a; € V and
V is a finite vocabulary. An N-gram model is con-
structed by estimating the joint probability of N con-
secutive tokens. For instance, N = 2 gives the bigram
model where the probabilities of token pairs (a;, @;+1)
are estimated. A trigram model consists of triplets
(s, @41, @r42), and so forth. As an example, the bi-
grams of the token sequence hello_world are (h,e),
(e, 1), (1,1), (1,0), (0,.), (L,w), (w,0), (o,1),
(r,1) and (1,d).

The probability of each N-gram is estimated in the
same way as N-gram in statistical language models in
automatic speech recognition [173]. It is the maximum
likelihood (ML) or maximum a posteriori (MAP) esti-
mate of the N-gram in the training corpus [137]. The N-
gram statistics have been used in vector space [35, 147]
and with entropy measures [7, 137] to assess similarity
between speakers.
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Figure 7: Codebook construction for vector quantization using the K-
means algorithm. The original training set consisting of 5000 vectors
is reduced to a set of K = 64 code vectors (centroids).

4. Speaker Modeling: Classical Approaches

This section describes some of the popular models in
text-independent speaker recognition. The models pre-
sented here have co-evolved with the short-term spectral
features such as MFCC:s in the literature.

4.1. Vector Quantization

Vector quantization (VQ) model [32, 88, 90, 109,
120, 213, 214], also known as centroid model, is one
of the simplest text-independent speaker models. It was
introduced to speaker recognition in the 1980s [32, 213]
and its roots are originally in data compression [73].
Even though VQ is often used for computational speed-
up techniques [142, 120, 199] and lightweight practical
implementations [202], it also provides competitive ac-
curacy when combined with background model adapta-
tion [88, 124]. We will return to adaptation methods in
Subsection 4.2.

In the following, we denote the test utterance feature
vectors by X = {xi, ..., X7} and the reference vectors by
R ={ry,...,rg}. The average quantization distortion is
defined as,

RO
Do(X,R) = = Z min d(x,, i), “)
1=

where d(-,-) is a distance measure such as the Eu-
clidean distance ||x; — r¢|l. A smaller value of (4) in-
dicates higher likelihood for X and R originating from
the same speaker. Note that (4) is not symmetric [109]:
Do(X,R) # Do(R, X).

In theory, it is possible to use all the training vectors
directly as the reference template R. For computational
reasons, however, the number of vectors is usually re-
duced by a clustering method such as K-means [140].
This gives a reduced set of vectors known as codebook
(Fig. 7). The choice of the clustering method is not as
important as optimizing the codebook size [121].
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4.2. Gaussian Mixture Model

Gaussian mixture model (GMM) [197, 198] is a
stochastic model which has become the de facto refer-
ence method in speaker recognition. The GMM can be
considered as an extension of the VQ model, in which
the clusters are overlapping. That is, a feature vector is
not assigned to the nearest cluster as in (4), but it has a
nonzero probability of originating from each cluster.

A GMM is composed of a finite mixture of multivari-
ate Gaussian components. A GMM, denoted by 4, is
characterized by its probability density function:

K
pOA) = > P N(Xlpty, 2. )
k=1

In (5), K is the number of Gaussian components, Py is
the prior probability (mixing weight) of the k™ Gaussian
component, and

N (Kl Bi) = (2m) 2 [El 2 exp {—%(x—uUTE;l(x—uk)}

(6)
is the d-variate Gaussian density function with mean
vector y; and covariance matrix X;. The prior proba-
bilities P; > 0 are constrained as Y/, Py = 1.

For numerical and computational reasons, the covari-
ance matrices of the GMM are usually diagonal (i.e.
variance vectors), which restricts the principal axes of
the Gaussian ellipses in the direction of the coordinate
axes. Estimating the parameters of a full-covariance
GMM requires, in general, much more training data and
is computationally expensive. As an example for esti-
mating the parameters of a full-covariance GMM, refer
to [241].

Monogaussian model uses a single Gaussian compo-
nent with a full covariance matrix as the speaker model
[21, 20, 23, 33, 246]. Sometimes only the covari-
ance matrix is used because the cepstral mean vector
is affected by convolutive noise (e.g. due to the mi-
crophone/handset). The monogaussian and covariance-
only models have a small number of parameters and are
therefore computationally efficient, although their accu-
racy is clearly behind GMM.

Training a GMM consists of estimating the param-
eters 4 = {Pg, yk,Zk}le from a training sample X =
{xi,...,xr}. The basic approach is maximum likelihood
(ML) estimation. The average log-likelihood of X with
respect to model A is defined as,

1 T K
LLup(X, ) = = > log ) P Nl o). (7)
t=1 k=1



The higher the value, the higher the indication that the
unknown vectors originate from the model A. The pop-
ular expectation-maximization (EM) algorithm [24] can
be used for maximizing the likelihood with respect to a
given data. Note that K-means [140] can be used as an
initialization method for EM algorithm; a small num-
ber or even no EM iterations are needed according to
[124, 128, 181]. This is by no means a general rule, but
the iteration count should be optimized for a given task.

Only means adapted All parameters adapted

UBM component UBM component

>
2 Adapted - '\ : -2
component
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-4 -2 0 2 -4 -2 0

Figure 8: Examples of GMM adaptation using maximum a posteri-
ori (MAP) principle. The Gaussian components of a universal back-
ground model (solid ellipses) are adapted to the target speaker’s train-
ing data (dots) to create speaker model (dashed ellipses).

In speech applications, adaptation of the acoustic
models to new operating conditions is important be-
cause of data variability due to different speakers, en-
vironments, speaking styles and so on. In GMM-
based speaker recognition, a speaker-independent world
model or universal background model (UBM) is first
trained with the EM algorithm from tens or hundreds
of hours of speech data gathered from a large number
of speakers [197]. The background model represents
speaker-independent distribution of the feature vectors.
When enrolling a new speaker to the system, the param-
eters of the background model are adapted to the feature
distribution of the new speaker. The adapted model is
then used as the model of that speaker. In this way, the
model parameters are not estimated from scratch, with
prior knowledge (“speech data in general”) being uti-
lized instead. Practice has shown that it is advantageous
to train two separate background models, one for female
and the other one for male speakers. The new speaker
model is then adapted from the background model of
the same gender as the new speaker. Let us now look
how the adaptation is carried out.

As indicated in Fig. 8, it is possible to adapt all
the parameters, or only some of them from the back-
ground model. Adapting the means only has been found
to work well in practice [197] (this also motivates for
a simplified adapted VQ model [88, 124]). Given the
enrollment sample, X = {xi,...,Xr}, and the UBM,
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Ausm = {Px, yk,Zk}le, the adapted mean vectors (u;)
in the maximum a posteriori (MAP) method [197] are
obtained as weighted sums of the speaker’s training data
and the UBM mean:

My = Xy + (1 — apy, (8
where
W= ng+r (9)
1 T
X = — > PUIx)X, (10)
M
T
meo= ) Pkix) (1
t=1
P X
P(kx,) = kN(Xz|IJk, k) (12)
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The MAP adaptation is to derive a speaker-specific
GMM from the UBM. The relevance parameter r, and
thus ay, controls the effect of the training samples on
the resulting model with respect to the UBM.

In the recognition mode, the MAP-adapted model
and the UBM are coupled, and the recognizer is com-
monly refered to as Gaussian mixture model - univer-
sal background model, or simply “GMM-UBM”. The
match score depends on both the target model (Aiarget)
and the background model (Aygm) via the average log
likelihood ratio:

LLRavg (X 5 /ltargeta /lUBM)
=+ 2L, (log p(ildarger) = log p(xilduw)} (13)

which essentially measures the difference of the target
and backround models in generating the observations
X = {xq,...,Xr}. The use of a common background
model for all speakers makes the match score ranges
of different speakers comparable. It is common to ap-
ply test segment dependent normalization [14] on top of
UBM normalization to account for test-dependent score
offsets.

There are alternative adaptation methods to MAP, and
selection of the method depends on the amount of avail-
able training data [150, 157]. For very short enroll-
ment utterances (a few seconds), some other methods
have shown to be more effective. Maximum likelihood
linear regression (MLLR) [135], originally developed
for speech recognition, has been successfully applied
to speaker recognition [108, 150, 157, 216]. Both the
MAP and MLLR adaptations form a basis for the recent
supervector classifiers that we will cover in Section 6.



Gaussian mixture model is computationally inten-
sive due the frame-by-frame matching. In the GMM-
UBM framework [197], the score (13) can be evaluated
fast by finding for each test utterance vector the top-
C (where usually C = 5) scoring Gaussians from the
UBM [197, 203, 227]. Other speed-up techniques in-
clude reducing the numbers of vectors, Gaussian com-
ponent evaluations, or speaker models [15, 120, 143,
163, 183, 199, 203, 236, 238].

Unlike the hidden Markov models (HMM) in speech
recognition, GMM does not explicitly utilize any pho-
netic information - the training set for GMM simply
contains all the spectral features of different phonetic
classes pooled together. Because the features of the test
utterance and the Gaussian components are not phonet-
ically aligned, the match score may be biased due to
different phonemes in training and test utterances.

This phonetic mismatch problem has been attacked
with phonetically-motivated tree structures [44, 92] and
by using a separate GMM for each phonetic class
[40, 61, 81, 180] or for parts of syllables [25]. As an ex-
ample, phonetic GMM (PGMM) described in [40] used
neural network classifier for 11 language independent
broad phone classes. In the training phase, a separate
GMM was trained for each phonetic class and in run-
time the GMM corresponding to the frame label was
used in scoring. Promising results were obtained when
combining PGMM with feature-level intersession com-
bination and with conventional (non-phonetic) GMM.
Phonetic modeling in GMMs is clearly worth further
studying.
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Figure 9: Principle of support vector machine (SVM). A maximum-
margin hyperplane that separates the positive (+1) and negative (-1)
training examples is found by an optimization process. SVMs have
excellent generalization performance.
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4.3. Support Vector Machine

Support vector machine (SVM) is a powerful dis-
criminative classifier that has been recently adopted in
speaker recognition. It has been applied both with spec-
tral [36, 38], prosodic [204, 67], and high-level fea-
tures [35]. Currently SVM is one of the most robust
classifiers in speaker verification, and it has also been
successfully combined with GMM to increase accuracy
[36, 38]. One reason for the popularity of SVM is
its good generalization performance to classify unseen
data.

The SVM, as illustrated in Fig. 9, is a binary clas-
sifier which models the decision boundary between two
classes as a separating hyperplane. In speaker verifi-
cation, one class consists of the target speaker training
vectors (labeled as +1), and the other class consists of
the training vectors from an “impostor” (background)
population (labeled as -1). Using the labeled training
vectors, SVM optimizer finds a separating hyperplane
that maximizes the margin of separation between these
two classes.

Formally, the discriminant function of SVM is given
by [36],

N

f(x) = Z ait;K(x, X;) + d. (14)

i=1
Here t; € {+1,—1} are the ideal output values,
Zf\; 1 @iti = 0 and «; > 0. The support vectors x;, their
corresponding weights @; and the bias term d, are deter-
mined from a training set using an optimization process.
The kernel function K(-,-) is designed so that it can be
expressed as K(X,y) = ¢(x)Té(y), where ¢(x) is a map-
ping from the input space to kernel feature space of high
dimensionality. The kernel function allows computing
inner products of two vectors in the kernel feature space.
In a high-dimensional space, the two classes are easier
to separate with a hyperplane. Intuitively, linear hyper-
plane in the high-dimensional kernel feature space cor-
responds to a nonlinear decision boundary in the origi-
nal input space (e.g. the MFCC space). For more infor-
mation about SVM and kernels, refer to [24, 169].

4.4. Other Models

Artificial neural networks (ANNs) have been used
in various pattern classification problems, including
speaker recognition [62, 94, 130, 239]. A potential ad-
vantage of ANNS is that feature extraction and speaker
modeling can be combined into a single network, en-
abling joint optimization of the (speaker-dependent)
feature extractor and the speaker model [94]. They are
also handy in fusing different subsystems [195, 224].



Speaker-specific mapping has been proposed in [153,
164]. The idea is to extract two parallel feature streams
with the same frame rate: a feature set representing
purely phonetic information (speech content), and a fea-
ture set representing a mixture of phonetic and speaker-
specific information. The speaker modeling is thus es-
sentially to find a mapping from the “phonetic” spec-
trum to the “speaker-specific” spectrum by using sub-
space method [153] or neural network [164].

Representing a speaker relative to other speakers is
proposed in [154, 218]. Each speaker model is pre-
sented as a combination of some reference models
known as the anchor models. The combination weights
- coordinates in the anchor model space - compose the
speaker model. The similarity score between the un-
known speech sample and a target model is determined
as the distance between their coordinate vectors.

4.5. Fusion

Like in other pattern classification tasks, combining
information from multiple sources of evidence - a tech-
nique called fusion - has been widely applied in speaker
recognition [5, 80, 45, 49, 63, 69, 118, 149, 166, 190,
200, 207]. Typically, a number of different feature sets
are first extracted from the speech signal; then an in-
dividual classifier is used for each feature set; follow-
ing that the sub-scores or decisions are combined. This
implies that each speaker has multiple speaker models
stored in the database.

It is also possible to obtain fusion through modelling
the same features using different classifier architectures,
feature normalizations, or training sets [28, 63, 124,
166]. A general belief is that successful fusion system
should combine as independent features as possible -
low-level spectral features, prosodic features and high-
level features. But improvement can also be obtained
by fusion of different low-level spectral features (e.g.
MFCCs and LPCCs) and different classifiers for them
[28, 36, 118]. Fusing dependent (correlated) classifiers
can enhance the robustness of the score due to variance
reduction [187].

Simplest form of fusion is combining the classifier
output scores by weighted sum. That is, given the sub-
scores s;, where k indices the classifier, the fused match
score is s = Zi:/;l wps,. Here N, is the number of clas-
sifiers and w,, is the relative contribution of the n clas-
sifier. The fusion weights w, can be optimized using a
development set, or they can be set as equal (w,, = 1/N,)
which does not require weight optimization — but is
likely to fail if the accuracies of the individual classifiers
are diverse. In cases where the classifier outputs can be
interpreted as posterior probability estimates, product
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can be used instead of sum. However, the sum rule is the
preferred option since the product rule amplifies estima-
tion errors [127]. A theoretically elegant technique for
optimizing the fusion weights based on logistic regres-
sion has been proposed in [28, 29]. An implementation
of the method is available in the Fusion and Calibration
(FoCal) toolkit?>. This method, being simple and robust
at the same time, is usually the first choice in our own
research.

By considering outputs from the different classifiers
as another random variable, score vector, a backend
classifier can be built on top of the individual classifiers.
For instance, a support vector machine or a neural net-
work can be trained to separate the genuine and impos-
tor score vectors (e.g. [86, 195, 224, 68]). Upon verify-
ing a person, each of the individual classifiers gives an
output score and these scores are in turn arranged into a
vector. The vector is then presented to the SVM and the
SVM output score is compared against the verification
threshold.

Majority of fusion approaches in speaker recognition
are based on trial-and-error and optimization on given
datasets. The success of a particular combination de-
pends on the performance of the individual systems, as
well as their complementariness. Whether the combiner
yields improvement on an unseen dataset depends on
how the optimization set matches the new dataset (in
terms of signal quality, gender distribution, lengths of
the training and test material, etc.).

Recently, some improvements to fusion methodology
have been achieved by integrating auxiliary side infor-
mation, also known as quality measures, into the fusion
process [66, 72, 129, 211]. Unlike the traditional meth-
ods where the fusion system is trained on development
data and kept fixed during run-time, the idea in side-
information fusion is to adapt the fusion on each test
case. Signal-to-noise ratio (SNR) [129] and nonnative-
ness score of the test segment [66] have been used as
the auxiliary side information, for instance. Another re-
cent enhancement is to model the correlations between
the scores of individual subsystems, since intuitively un-
correlated systems fuse better than correlated ones [68].
Both the auxiliary information and correlation model-
ing were demonstrated to improve accuracy and are cer-
tainly worth further studying.

5. Robust Speaker Recognition

As a carrier wave of phonetic information, affec-
tive attributes, speaker characteristics and transmission

’http://www.dsp.sun.ac.za/~nbrummer/focal/
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Figure 10: Voice activity detector (VAD) based on periodicity [89].
It is known that voiced speech sounds (vowels, nasals) are more dis-
criminative than fricative and stop sounds. By using periodicity rather
than energy may lead to better performance in noisy environments.

path information, the acoustic speech signal is subject
to much variations, most of which are undesirable. It
is well-known that any mismatch between the training
and testing conditions dramatically decreases the accu-
racy of speaker recognition. The main focus of speaker
recognition research has been in tackling this mismatch.
Normalization and adaptation methods have been ap-
plied to all the parts of speaker recognition systems.

5.1. Voice Activity Detection

Voice activity detector (VAD), as illustrated in Fig.
10, aims at locating the speech segments from a given
audio signal [17]. The problem is analogous to face de-
tection from images: we wish to locate the objects of
interest before any further processing. VAD is an im-
portant sub-component for any real-world recognition
system. Even though a seemingly simple binary clas-
sification task, it is, in fact, rather challenging to im-
plement a VAD that works consistently across different
environments. Moreover, short-duration utterances (few
seconds) require special care [64].

A simple solution that works satisfactorily on typical
telephone-quality speech data, uses signal energy to de-
tect speech. As an example, we provide a Matlab code
fragment in the following:

= 20*logl0(std(Frames’)+eps);
maxl = max(E); % Maximum

(E>max1-30) & (E>-55); % Indicator

Here Frames is a matrix that contains the short-term
frames of the whole utterance as its row vectors (it is
also assumed that the signal values are normalized to
the range [—1, 1]). This VAD first computes the energies

% Energies
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of all frames, selects the maximum, and then sets the
detection threshold as 30 dB below the maximum. An-
other threshold (-55 dB) is needed for canceling frames
with too low an absolute energy. The entire utterance
(file) is required before the VAD detection is carried
out. A real-time VAD, such as the long-term spectral
divergence (LTSD) method [191] is required in most
real-world systems. Periodicity-based VAD (Fig. 10),
an alternative to energy-based methods, was studied in
[89].

5.2. Feature Normalization

In principle, it is possible to use generic noise sup-
pression techniques to enhance the quality of the origi-
nal time-domain signal prior to feature extraction. How-
ever, signal enhancement as an additional step in the en-
tire recognition process will increase the computational
load. It is more desirable to design a feature extractor
which is itself robust [155], or to normalize the features
before feeding them onto the modeling or matching al-
gorithms.

The simplest method of feature normalization is to
subtract the mean value of each feature over the en-
tire utterance. With the MFCC and LPCC features,
this is known as cepstral mean subtraction (CMS) or
cepstral mean normalization (CMN) [12, 70]. In the
log-spectral and cepstral domains, convolutive channel
noise becomes additive. By subtracting the mean vec-
tor, the two feature sets obtained from different channels
both become zero-mean and the effect of the channel is
correspondingly reduced. Similarly, the variances of the
features can be equalized by dividing each feature by its
standard deviation. When VAD is used, the normaliza-
tion statistics are usually computed from the detected
speech frames only.

The utterance-level mean and variance normalization
assume that channel effect is constant over the entire ut-
terance. To relax this assumption, mean and variance
estimates can be updated over a sliding window [228].
The window should be long enough to allow good es-
timates for the mean and variance, yet short enough to
capture time-varying properties of the channel. A typi-
cal window size is 3-5 seconds [182, 237].

Feature warping [182] and short-term Gaussianiza-
tion [237] aim at modifying the short-term feature dis-
tribution to follow a reference distribution. This is
achieved by “warping” the cumulative distribution func-
tion of the features so that it matches the reference dis-
tribution function, for example a Gaussian. In [182],
each feature stream was warped independently. In [237]
the independence assumption was relaxed by applying
a global linear transformation prior to warping, whose



purpose was to achieve short-term decorrelation or in-
dependence of the features. Although Gaussianization
was observed to improve accuracy over feature warping
[237], it is considerably more complex to implement.

RelAtive SpecTrAl (RASTA) filtering [99, 153] ap-
plies a bandpass filter in the log-spectral or cepstral do-
main. The filter is applied along the temporal trajectory
of each feature, and it suppresses modulation frequen-
cies which are outside of typical speech signals. For in-
stance, a slowly varying convolutive channel noise can
be seen as a low-frequency part of the modulation spec-
trum. Note that the RASTA filter is signal-independent,
whereas CMS and variance normalization are adaptive
in the sense that they use statistics of the given signal.
For useful discussions on data-driven temporal filters
versus RASTA, refer to [153].

Mean and variance normalization, Gaussianization,
feature warping and RASTA filtering are unsupervised
methods which do not explicitly use any channel infor-
mation. Feature mapping (FM) [194] is a supervised
normalization method which transforms the features ob-
tained from different channel conditions into a channel-
independent feature space so that channel variability
is reduced. This is achieved with a set of channel-
dependent GMMSs adapted from a channel-independent
root model. In the training or operational phase, the
most likely channel (highest GMM likelihood) is de-
tected, and the relationship between the root model and
the channel-dependent model is used for mapping the
vectors into channel-independent space. A generaliza-
tion of the method which does not require detection of
the top-1 Gaussian component was proposed in [245].

Often different feature normalizations are used in
combination. A typical robust front-end [196] con-
sists of extracting MFCCs, followed by RASTA filter-
ing, delta feature computation, voice activity detection,
feature mapping and global mean/variance normaliza-
tion in that order. Different orders of the normalization
steps are possible; in [31] cepstral vectors were first pro-
cessed through global mean removal, feature warping,
and RASTA filtering, followed by adding first-, second-,
and third-order delta features. Finally, voice activity de-
tector and dimensionality reduction using heteroscedas-
tic linear discriminant analysis (HLDA) were applied.

Graph-theoretic compensation method was proposed
in [87]. This method considered the training and test ut-
terances as graphs where the graph nodes correspond
to “feature points” in the feature space. The match-
ing was then carried out by finding the correspond-
ing feature point pairs from the two graphs based on
graph isomorphism, and used for global transformation
of the feature space, followed by conventional match-
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ing. The graph structure was motivated by invariance
against the affine feature distortion model for cepstral
features (e.g. [151, 155]). The method requires fur-
ther development to validate the assumptions of the fea-
ture distortion model and to improve computational ef-
ficiency.

5.3. Speaker Model Compensation

Model-domain compensation involves modifying the
speaker model parameters instead of the feature vec-
tors. One example is speaker model synthesis (SMS)
[219], which adapts the target GMM parameters into a
new channel condition, if this condition has not been
present in the enrollment phase. This is achieved
with the help of transformations between a channel-
independent background model and channel-dependent
adapted models. Roughly, speaker model synthesis is
a model-domain equivalent of feature mapping (FM)
[194]. Feature mapping can be considered more flexible
since the mapped features can be used with any classi-
fier and not only with the GMM.

Both SMS and FM require a labeled training set with
training examples from a variety of different channel
conditions. In [162], an unsupervised clustering of the
channel types was proposed so that labeling would not
be needed. The results indicate that feature mapping
based on unsupervised channel labels achieves equal or
better accuracy compared with supervised labeling. It
should be noted, however, that state-of-the-art speaker
modeling with supervectors use continuous intersession
variability models and therefore extend the SMS and
FM methods to handle with unknown conditions. The
continuous model compensation methods have almost
completely surpassed the SMS and FM methods, and
will be the focus of Section 6.

5.4. Score Normalization

In score normalization, the “raw’ match score is nor-
malized relative to a set of other speaker models known
as cohort. The main purpose of score normalization is
to transform scores from different speakers into a simi-
lar range so that a common (speaker-independent) veri-
fication threshold can be used. Score normalization can
correct some speaker-dependent score offsets not com-
pensated by the feature and model domain methods.

A score normalization of the form

’ S =M

s = (15)
o

is commonly used. In (15), s’ is the normalized score,
s is the original score, and y; and o are the esti-
mated mean and standard deviation of the impostor



score distribution, respectively. In zero normalization
(“Z-norm”), the impostor statistics y; and o are tar-
get speaker dependent and they are computed off-line in
the speaker enrollment phase. This is done by match-
ing a batch of non-target utterances against the target
model, and obtaining the mean and standard deviation
of those scores. In test normalization (“T-norm”) [14],
the parameters are test utterance dependent and they are
computed “on the fly” in the verification phase. This is
done by matching the unknown speaker’s feature vec-
tors against a set of impostor models and obtaining the
statistics.

Usually the cohort models are common for all speak-
ers, however, speaker-dependent cohort selection for T-
norm has been studied in [192, 217]. Z-norm and T-
norm can also be combined. According to [229], Z-
norm followed by T-norm does produce good results.

Score normalization can be improved by using side
information such as channel type. Handset-dependent
background models were used in [95]. The hand-
set type (carbon button or electret) through which the
training utterance is channeled was automatically de-
tected, and the corresponding background model was
used for score normalization in the verification phase.
In [197], handset-dependent mean and variance of the
likelihood ratio were obtained for each target speaker.
In the matching phase, the most likely handset was
detected and the corresponding statistics were used
to normalize the likelihood ratio. In essence, this
approach is a handset-dependent version of Z-norm,
which the authors call “H-norm”. In a similar way,
handset-dependent T-norm (“HT-norm’) has been pro-
posed [58]. Note that the handset-dependent normal-
ization approaches [58, 95, 197] require an automatic
handset labeler which inevitable makes classification er-
rors.

Although Z-norm and T-norm can be effective in re-
ducing speaker verification error rates, they may seri-
ously fail if the cohort utterances are badly selected,
that is, if their acoustic and channel conditions differ too
much from the typical enrollement and test utterances
of the system. According to [31], score normalization
may not be needed at all if the other components, most
notable eigenchannel compensation of speaker models,
are well-optimized. However, Z- and T-norms and their
combinations seem to be an essential necessity for the
more complete joint factor analysis model [112]. In
summary, it remains partly a mystery when score nor-
malization is useful, and would deserve more research.
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Figure 11: The concept of modern sequence kernel SVM. Variable-
length utterances are mapped into fixed-dimensional supervectors,
followed by intersession variability compensation and SVM training.

6. Supervector Methods: a Recent Research Trend

6.1. What is a Supervector?

One of the issues in speaker recognition is how to rep-
resent utterances that, in general, have a varying number
of feature vectors. In early studies [158] speaker mod-
els were generated by time-averaging features so that
each utterance could be represented as a single vector.
The average vectors would then be compared using a
distance measure [119], which is computationally very
efficient but gives poor recognition accuracy. Since the
1980s, the predominant trend has been creating a model
of the training utterance followed by “data-to-model”
type of matching at run-time (e.g. likelihood of an utter-
ance with respect to a GMM). This is computationally
more demanding but gives good recognition accuracy.

Interestingly, the speaker recognition community has
recently re-discovered a robust way to present utter-
ances using a single vector, a so-called supervector.
On one hand, these supervectors can be used as inputs
to support vector machine (SVM) as illustrated in Fig.
11. This leads to sequence kernel SVMs, where the



utterances with variable number of feature vectors are
mapped to a fixed-length vector using the sequence ker-
nel; for review and useful insights, refer to [141, 232].
On the other hand, conventional adapted Gaussian mix-
ture speaker model [197] can also be seen as a supervec-
tor. Combinations of generative models and SVM have
also lead to good results [38].

Often “supervector” refers to combining many
smaller-dimensional vectors into a higher-dimensional
vector; for instance, by stacking the d-dimensional
mean vectors of a K-component adapted GMM into a
Kd-dimensional Gaussian supervector [38]. In this pa-
per, we understand supervector in a broader sense as any
high- and fixed-dimensional representation of an utter-
ance. It is important that the supervectors of different ut-
terances arise from a “common coordinate system” such
as being adapted from a universal background model,
or being generated using a fixed polynomial basis [36].
In this way the supervector elements are meaningfully
aligned and comparable when doing similarity compu-
tations in the supervector space. With SVMs, normal-
izing the dynamic ranges of the supervector elements is
also crucial since SVMs are not scale invariant [232].

An important recent advance in speaker recognition
has been the development of explicit inter-session vari-
ability compensation techniques [31, 112, 231]. Since
each utterance is now presented as a single point in the
supervector space, it becomes possible to directly quan-
tify and remove the unwanted variability from the su-
pervectors. Any variation in different utterances of the
same speaker, as characterized by their supervectors —
be it due to different handsets, environments, or pho-
netic content — is harmful.

Does this mean that we will need several training
utterances recorded through different microphones or
enviroments when enrolling a speaker? Not necessar-
ily. Rather, the intersession variability model is trained
on an independent development data and then removed
from the supervectors of a new speaker. The inters-
ession variability model itself is continuous, which is
in contrast with speaker model synthesis (SMS) [219]
and feature mapping (FM) [194] discussed in Section
5. Both SMS and FM assume a discrete collection of
recording conditions (such as mobile/landline channels
or carbon button/electrec handsets). However, the ex-
plicit inter-session variability normalization techniques
enable modeling channel conditions that “fall in be-
tween” some conditions that are not seen in training
data.

Various authors have independently developed differ-
ent session compensation methods for both GMM- and
SVM-based speaker models. Factor analysis (FA) tech-
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niques [110] are designed for the GMM-based recog-
nizer and take explicit use of stochastic properties of
the GMM, whereas the methods developed for SVM
supervectors are often based on numerical linear alge-
bra [212]. To sum up, two core design issues with the
modern supervector based recognizers are 1) how to cre-
ate the supervector of an utterance, 2) how to estimate
and apply the session variability compensation in the
supervector space. In addition, the question of how to
compute the match score with the session-compensated
models needs to be solved [74].

6.2. GLDS Kernel SVM

One of the simplest SVM supervectors is general-
ized linear discriminant sequence (GLDS) kernel [36].
The GLDS method creates the supervector by ex-
plicit mapping into kernel feature space using a poly-
nomial expansion [34], denoted here as b(x). As
an example, 2"¢ order polynomial expansion for a 2-
dimensional vector X = (x1,x2)T is given by b(x) =
1, xi, x, x%, X1X7, x%)T. During enrollment, all
the background speaker and target speaker utterances
X = {X1,Xp,...,Xr} are represented as average ex-
panded feature vectors:

1 T
bue = 7 ) bX). (16)
t=1

The averaged vectors are further variance-normalized
using the background utterances, and assigned with the
appropriate label for SVM training (+1=target speaker
vectors; -1=background speaker vectors). The SVM op-
timization (using standard linear kernel) yields a set of
support vectors b, their corresponding weights @; and a
bias d. These are collapsed into a single model vector
as,

L
w = Za’,’t,'bi+d, (17)
i=1

where d = (4,0,0,...,0)T and #; € {+1,-1} are the
ideal outputs (class labels of the support vectors), and
L is the number of support vectors. In this way, the
speaker model can be presented as a single supervector.
The collapsed model vector w is also normalized using
background utterances, and it serves as the model of the
target speaker.

The match score in the GLDS method is computed as
an inner product s = wglrge[blest, where Wiyger denotes
the normalized model vector of the target speaker and
best denotes the normalized average expanded feature
vector of the test utterance. Since all the speaker models
and the test utterance are represented as single vectors,



the verification phase is computationally efficient. The
main drawback of the GLDS method is that it is diffi-
cult to control the dimensionality of the supervectors; in
practice, the polynomial expansion includes either 2"
or 3 order monomials before the dimensionality gets
infeasible.

6.3. Gaussian Supervector SVM

Since the universal background model (UBM) is
included as a part in most speaker recognition sys-
tems, it provides a natural way to create supervectors
[38, 52, 132]. This leads to hybrid classifier where the
generative GMM-UBM model is used for creating “fea-
ture vectors” for the discriminative SVM.

In [38] the authors derive the Gaussian supervec-
tor (GSV) kernel by bounding the Kullback-Leibler
(KL) divergence measure between GMMs. Suppose
that we have the UBM, Aupm = {P, i, Zilp . and
two utterances a and b which are described by their
MAP-adapted GMMs (Subsection 4.2). That is, 1, =
{Propl, S and 4, = {P,pl, S35, (note that the
models differ only in their means). The KL divergence
kernel is then defined as,

K
Ko, 1) = Y (VPE ) (VPP ). (18)
k=1

From the the implementation point of view, this just
means that all the Gaussian means y; need to be nor-
malized with \/ITkZ;(]/ ? before feeding them into SVM
training. Again, this is a form of variance normaliza-
tion. Hence, even though only the mean vectors of the
GMM are included in the supervector, the variance and
weight information of the GMM is implicitly present in
the role of normalizing the Gaussian supervector. It is
also possible to normalize all the adapted GMM super-
vectors to have a constant distance from the UBM [53].
As in the GLDS kernel, the speaker model obtained via
SVM optimization can be compacted as a single model
supervector.

A recent extension to Gaussian supervectors is based
on bounding the Bhattacharyya distance [240]. This
leads to a GMM-UBM mean interval (GUMI) kernel to
be used in conjunction with SVM. The GUMI kernel ex-
ploits the speaker’s information conveyed by the mean
of GMM as well as those by the covariance matrices in
an effective manner. Another alternative kernel known
as probabilistic sequence kernel (PSK) [132, 133] uses
output values of the Gaussian functions rather than the
Gaussian means to create a supervector. Since the in-
dividual Gaussians can be assumed to present phonetic
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classes [198], the PSK kernel can be interpreted as pre-
senting high-level information related to phone occur-
rence probabilities.

6.4. MLLR Supervector SVM

In [108, 216], the authors use Maximum likelihood
linear regression (MLLR) transformation parameters as
inputs to SVM. MLLR transforms the mean vectors of
a speaker-independent model as u; = Ay, + b, where
Hy is the adapted mean vector, g, is the world model
mean vector and the parameters A and b define the lin-
ear transform. The parameters A and b are estimated
by maximizing the likelihood of the training data with
a modified EM algorithm [135]. Originally MLLR was
developed for speaker adaptation in speech recognition
[135] and it has also been used in speaker recognition
as an alternative to maximum a posterior (MAP) adap-
tation of the universal background model (UBM) [150].

The key differences between MLLR and Gaussian su-
pervectors are in the underlying speech model - pho-
netic hidden Markov models versus GMMs, and the
adaptation method employed - MLLR versus maximum
a posteriori (MAP) adaptation. MLLR is motivated to
benefit from more detailed speech model and the ef-
ficient use of data through transforms that are shared
across Gaussians [216]. Independent studies [41, 136]
have shown that detailed speech model improve the
speaker characterization ability of supervectors.

A similar work to MLLR supervectors is to use fea-
ture transformation (FT) parameters as inputs to SVM
[243], where a flexible FT function clusters transforma-
tion matrices and bias vectors with different regression
classes. The FT framework is based on GMM-UBM
rather than hidden Markov model, therefore, does not
require a phonetic acoustic system. The FT parameters
are estimated with the MAP criteria that overcome pos-
sible numerical problems with insufficient training. A
recent extension of this framework [244] includes the
joint MAP adaptation of FT and GMM parameters.

6.5. High-Level Supervector SVM

The GLDS-, GMM- and MLLR-supervectors are
suitable for modeling short-term spectral features. For
the prosodic and high-level features (Subsections 3.4
and 3.5), namely, features created using a tokenizer
front-end, it is customary to create a supervector by
concatenating the uni-, bi- and tri-gram (N = 1,2,3)
frequencies into a vector or bag-of-N-grams [35, 204].
The authors of [35] developed term frequency log likeli-
hood ratio (TFLLR) kernel that normalizes the original
N-gram frequency by 1/ \/]_‘i, where f; is the overall fre-
quency of that N-gram. Thus the value of rare N-grams



is increased and the value of frequent N-grams is de-
creased, thereby equalizing their contribution in kernel
computations.

The high-level features created by a phone tokenizer,
or by quantization of prosodic feature values by binning
[204], are inherently noisy: tokenizer error (e.g. phone
recognizer error) or small variation in the original fea-
ture value may cause the feature to fall into a wrong cat-
egory (bin). To tackle this problem, the authors of [67]
proposed to use soft binning with the aid of Gaussian
mixture model and use the weights of the Gaussians as
the features for SVM supervector.

6.6. Normalizing SVM Supervectors

Two forms of SVM supervector normalizations are
necessary: normalizing the dynamic range of features
and intersession variability compensation. The first one,
normalizing the dynamic range, is related to the inher-
ent property of the SVM model. SVM is not invari-
ant to linear transformations in feature space and some
form of variance normalization is required so that cer-
tain supervector dimensions do not dominate the inner
product computations. Often variance normalization is
included in the definition of the kernel function and spe-
cific to a given kernel as seen in the previous subsec-
tions. Kernel-independent rank normalization has also
been successfully applied [215]. Rank normalization re-
places each feature by its relative position (rank) in the
background data. For useful insights on normalization,
refer to [215, 232]. Let us now turn our focus to the
other necessary normalization, the intersession variabil-
ity compensation.

Nuisance attribute projection (NAP) is a successful
method for compensating SVM supervectors [37, 212].
It is not specific to some kernel, but can be applied to
any kind of SVM supervectors. The NAP transforma-
tion removes the directions of undesired sessions vari-
ability from the supervectors before SVM training. The
NAP transformation of a given supervector s is [28],

s’ =s—U(UTs), (19)
where U is the eigenchannel matrix. The eigenchan-
nel matrix is trained using a development dataset with
a large number of speakers, each having several train-
ing utterances (sessions). The training set is prepared
by subtracting the mean of the supervectors within each
speaker and pooling all the supervectors from differ-
ent speakers together; this removes most of the speaker
variability but leaves session variability. By perform-
ing eigen-analysis on this training set, one captures the
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principal directions of channel variability. The under-
lying assumption is that the session variability lies in
a speaker-independent low-dimensional subspace; after
training the projection matrix, the method can be ap-
plied for unseen data with different speakers. The equa-
tion (19) then just means subtracting the supervector
that has been projected on the channel space. For prac-
tical details of NAP, refer to [28, 65].

removed by NAP may contain speaker-specific in-
formation [230]. Moreover, session compensation and
SVM optimization processes are treated independently
from each other. Motivated with these facts, discrim-
inative variant of NAP has been studied in [30, 230].
In [230], scatter difference analysis (SDA), a simi-
lar method to linear discriminant analysis (LDA), was
used for optimizing the NAP projection matrix, and in
[30], the session variability model was directly inte-
grated within the optimization criterion of the SVM; this
leaves the decision about usefulness of the supervec-
tor dimensions for the SVM optimizer. This approach
improved recognition accuracy over the NAP baseline
in [30], albeit introducing a new control parameter that
controls the contribution of the nuisance subspace con-
straint. Nevertheless, discriminative session compensa-
tion is certainly an interesting new direction for future
studies.

Within-class covariance normalization (WCCN), an-
other SVM supervector compensation method similar
to NAP, was proposed in [85]. The authors considered
generalized linear kernels of the form K(s,s;) = s|Rsy,
where s; and s, are supervectors and R is a positive
semidefinite matrix. With certain assumptions, a bound
of a binary classification error metric can be minimized
by choosing R = W~!, where W is the expected within-
class (within-speaker) covariance matrix. The WCCN
was then combined with principal component analysis
(PCA) in [84] to attack the problem of estimating and
inverting W to large data sets. The key difference be-
tween NAP and WCCN is the way how they weight the
dimensions in the supervector space [216]. The NAP
method completely removes some of the dimensions
by projecting the supervectors to a lower-dimensional
space, whereas WCCN weights rather than completely
removes the dimensions.

6.7. Factor Analysis Techniques

In the previous subsection we focused on compensat-
ing SVM supervectors. We will now discuss a different
technique based on generative modeling, that is, Gaus-
sian mixture model (GMM) with factor analysis (FA)
technique. Recall that the MAP adaptation technique
for GMMs [197], as described in Section 4.2, adapts



the mean vectors of the universal background model
(UBM) while the weights and covariances are shared
between all speakers. Thus a speaker model is uniquely
represented as the concatenation of the mean vectors,
which can be interpreted as a supervector.

For a given speaker, the supervectors estimated from
different training utterances may not be the same espe-
cially when these training samples come from different
handsets. Channel compensation is therefore necessary
to make sure that test data obtained from different chan-
nel (than that of the training data) can be properly scored
against the speaker models. For channel compensation
to be possible, the channel variability has to be mod-
elled explicitly. The technique of joint factor analysis
(JFA) [110] was proposed for this purpose.

The JFA model considers the variability of a Gaus-
sian supervector as a linear combination of the speaker
and channel components. Given a training sample, the
speaker-dependent and channel-dependent supervector
M is decomposed into two statistically independent
components, as follows

M=s+c, 20)
where s and c are referred to as the speaker and chan-
nel supervectors, respectively. Let d be the dimension
of the acoustic feature vectors and K be the number of
mixtures in the UBM. The supervectors M, s and c¢ live
in a Kd-dimensional parameter space. The channel vari-
ability is explicitly modeled by the channel model of the
form,

c = Ux, 201

where U is a rectangular matrix and x are the chan-
nel factors estimated from a given speech sample. The
columns of the matrix U are the eigenchannels esti-
mated for a given dataset. During enrollment, the chan-
nel factors x are to be estimated jointly with the speaker
factors y of the speaker model of the following form:

s=m+ Vy+Dz. (22)
In the above equation, m is the UBM supervector, V is
a rectangular matrix with each of its columns referred
to as the eigenvoices, D is Kd X Kd diagonal matrix
and z is a Kd X 1 column vector. In the special case
y = 0, s = m+Dz describes exactly the same adaptation
process as the MAP adaptation technique (Section 4.2).
Therefore, the speaker model in the JFA technique can
be seen as an extension to the MAP technique with the
eigenvoice model Vy included, which has been shown
to be useful for short training samples.
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The matrices U, V and D are called the hyperparame-
ters of the JFA model. These matrices are estimated be-
forehand on large datasets. One possible way is to first
estimate V followed by U and D [110, 112]. For a given
training sample, the latent factors x and y are jointly es-
timated and followed by estimation of z. Finally, the
channel supervector ¢ is discarded and the speaker su-
pervector s is used as the speaker model. By doing
s0, channel compensation is accomplished via the ex-
plicit modeling of the channel component during train-
ing. For detailed account of estimation procedure the
reader should refer to [110, 112]. For comparing vari-
ous scoring methods, refer to [74].

The JFA model dominated the latest NIST 2008
speaker recognition evaluation (SRE) [175] and it was
pursued further in the Johns Hopkins University (JHU)
summer 2008 workshop [30]. Independent evaluations
by different research groups have clearly indicated the
potential of JFA. The method has a few practical de-
ficiencies, however. One is sensitivity to training and
test lengths (and their mismatch), especially for short
utterances (10-20 seconds). The authors of [30] hy-
pothesized that this was caused by within-session vari-
ability (due to phonemic variability) rather than inter-
session variability captured by the baseline JFA. The au-
thors then extended the JFA model by explicitly adding
a model of the within-session variability. Other choices
to tackle the JFA dependency on utterance length were
studied as well - namely, utilizing variable length devel-
opment utterances to create stacked channel matrix. The
extended JFA and the stacking approach both showed
improvement over the baseline JFA when the training
and test utterance lengths were not matched, hence im-
proving the generalization of JFA for unknown utter-
ance lengths. The within-session variability modeling,
however, has a price: a phone recognizer was used for
generating data for within-session modeling. It may be
worthwhile to study simplified approach — segmenting
the data into fixed-length chunks — as proposed in [30].

Given the demonstrated excellent performance of
the JFA compensation and Gaussian supervector SVMs
[38], it seems appropriate to ask how they compare
with each other, and whether they could be combined?
These questions were recently addressed in [53, 54].
In [53] the authors compared JFA and SVM both with
linear and nonlinear kernels, compensated with nui-
sance attribute projection (NAP). They concluded that
JFA without speaker factors gives similar accuracy to
SVM with Gaussian supervectors; however, JFA out-
performed SVM when speaker factors were added. In
[54] the same authors used the speaker factors of the
JFA model as inputs to SVM. Within-class covariance



normalization (WCCN) [216] was used instead of NAP.
The results indicated that using the speaker factors in
SVM is effective but the accuracy was not improved
over the JFA-compensated GMM. The combined JFA-
SVM method, however, results in faster scoring.

6.8. Summary: Which Supervector Method to Use?

Given the multiple choices to create a supervector and
to model intersession variability, which one to choose
for practical use? It is somewhat difficult to compare the
methods in literature due to differences in data set selec-
tions, parameter settings and other implementation de-
tails. However, there are some common practice that we
can follow. To facilitate discussion, we present here the
results of the latest NIST 2008 speaker recognition eval-
uation submission by the 14U consortium [138]. All the
classifiers of 14U used short-term spectral features and
the focus was in the supervectors classifiers. Three well-
known methods - Gaussian mixture model-universal
background model (GMM-UBM) [197], generalized
linear discriminant sequence (GLDS) kernel SVM [36]
and Gaussian supervector (GSV) kernel SVM (GSV-
SVM) [38] were studied. In addition, three novel SVM
kernels were proposed: feature transformation kernel
(FT-SVM) [244], probabilistic sequence kernel (PSK-
SVM) [132, 133] and Bhattacharyya kernel (BK-SVM)
[240].

Table 1 reports the performance of individual sys-
tems, together with the weighted summation fusion of
the classifiers. The accuracy is measured in equal error
rate (EER), a verification error measure that gives the
accuracy at decision threshold for which the probabili-
ties of false rejection (miss) and false acceptance (false
alarm) are equal (see Section7).

From the results in Table 1 it is clear that intersession
compensation significantly improves the accuracy of the
GMM-UBM system. It can also be seen that the best in-
dividual classifier is the GMM-UBM system with JFA
compensation, and that JFA outperforms the eigenchan-
nel method (which is a special case of JFA). Finally,
fusing all the session-compensated classifiers improves
accuracy as expected.

Even though JFA outperforms the SVM-based meth-
ods, for practitioners we recommend to start with the
two simplest approaches at this moment: GLDS-SVM
and GSV-SVM. The former does not require much op-
timization whereas the latter comes almost as a by-
product when a GMM-UBM system is used. Further-
more, they do not require as many datasets as JFA does,
are simple to implement and fast in computation. They
should be augmented with nuisance attribute projection
(NAP) [28] and test normalization (T-norm) [14].
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Table 1: Performance of individual classifiers and their fusion of 14U
system on 14U’s telephone quality development dataset [138]. UNC
= Uncompensated, EIG = Eigenchannel, JFA = Joint factor analy-
sis, GLDS = Generalized linear discriminant sequence, GSV = Gaus-
sian supetvector, FT = Feature transformation, PSK = Probabilistic
sequence kernel, BK = Bhattacharyya kernel. All the SVM-based
systems use nuisance attribute projection (NAP) compensation.

Tuning set | Eval. set
EER (%) | EER (%)
Gaussian mixture model
1. GMM-UBM (UNC) 8.45 8.10
2. GMM-UBM (EIG) [112] 5.47 5.22
3. GMM-UBM (JFA) [112] 3.19 3.11

Support vector machine with different kernels

4. GLSD-SVM [36] 4.30 4.44
5. GSV-SVM [38] 4.47 4.43
6. FT-SVM [243] 4.20 3.66
7. PSK-SVM [132] 5.29 4.77
8. BK-SVM [240] 4.46 5.16
Fusing systems 2 to 8 2.49 2.05

7. Performance Evaluation and Software Packages

7.1. Performance Evaluation

Assessing the performance of new algorithms on a
common dataset is essential to enable meaningful per-
formance comparison. In early studies, corpora con-
sisted of a few or at the most a few dozen speakers,
and data was often self-collected. Recently, there has
been significant effort directed towards standardizing
the evaluation methodology in speaker verification.

The National Institute of Standards and Technology
(NIST)? provides a common evaluation framework for
text-independent speaker recognition methods [156].
NIST evaluations include test trials under both matched
conditions such as telephone only, and unmatched con-
ditions such as language effects (matched languages vs
unmatched languages), cross channel and two-speaker
detection. NIST has conducted speaker recognition
benchmarking on an annual basis since 1997, and reg-
istration is open to all parties interested in participating
in this benchmarking activity. During the evaluation,
NIST releases a set of speech files as the development
data to the participants. At this initial phase, the partic-
ipants do not have access to the “ground truth”, that is,
the speaker labels. Each participating group then runs
their algorithms “blindly” on the given data and submits
the recognition scores and verification decisions. NIST
then evaluates the performances of the submissions and

Shttp://nist.gov/



the results are discussed in a follow-up workshop. The
use of “blind” evaluation data makes it possible to con-
duct an unbiased comparison of the various algorithms.
These activities would be difficult without a common
evaluation dataset or a standard evaluation protocol.

Visual inspections of the detection error trade-off
(DET) curves [159] and equal error rate (EER) are
commonly used evaluation tools in the speaker verifi-
cation literature. The problem with EER is that it corre-
sponds to an arbitrary detection threshold, which is not
a likely choice in a real application where it is critical to
maintain the balance between user convenience and se-
curity. NIST uses a detection cost function (DCF) as the
primary evaluation metric to assess speaker verification
performance:

DCF(®) = 0.1 X Ppiss(®) + 0.99 X P, (©). (23)
Here Ppi(®) and P, (®) are the probabilities of miss
(i.e. rejection of a genuine speaker) and false alarm (i.e.
acceptance of an impostor), respectively. Both of them
are functions of a global (speaker-independent) verifica-
tion threshold ©.

Minimum DCF (MinDCF), defined as the DCF value
at the threshold for which (23) is smallest, is the opti-
mum cost. When the decision threshold is optimized
on a development set and applied to the evaluation cor-
pus, this produces actual DCF. Therefore, the differ-
ence between the minimum DCF and the actual DCF
indicates how well the system is calibrated for a cer-
tain application and how robust is the threshold set-
ting method. For an in-depth and thorough theoreti-
cal discussion as well as the alternative formulations
of application-independent evaluation metrics, refer to
[29].

While the NIST speaker recognition benchmark-
ing considers mostly conversational text-independent
speaker verification in English, there have been a few
alternative evaluations, for instance the NFI-TNO eval-
uation* which considered authentic forensic samples
(mostly in Dutch), including wiretap recordings. An-
other evaluation, specifically for Chinese, was orga-
nized in conjunction with the 5 International Sympo-
sium on Chinese Spoken Language Processing (ISC-
SLP’06)°. This evaluation included open-set speaker
identification and text-dependent verification tasks in
addition to text-independent verification.

Some of the factors affecting speaker recognition ac-
curacy in the NIST and NFI-TNO evaluations have been

“http://speech.tm.tno.nl/aso/
Shttp://www.iscs1p2006.org/
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Figure 12: Example of detection error trade-off (DET) plot presenting
various subsystems and a combined system using score-level fusion.

analyzed in [134]. It is widely known that cross-channel
training and testing display a much lower accuracy com-
pared to that with same channel. Including different
handsets in the training material also improves recog-
nition accuracy. Another factor significant to perfor-
mance is the duration of training and test utterances.
The greater the amount of speech data used for train-
ing and/or testing, the better the accuracy. Training ut-
terance duration seems to be more significant than test
segment duration.

7.2. Software Packages for Speaker Recognition

As can be seen throughout this article, the state-of-
the-art speaker recognition methods are getting more
and more advanced and they often combine several
complementary techniques. Implementing a full system
from scratch may not be meaningful. In this sub-section
we point out a few useful software packages that can be
used for creating a state-of-the-art speaker recognition
system.

Probably the most comprehensive and up-to-date
software package is ALIZE toolkit®, an open-source
software developed at Université d’Avignon, France.
For more details, the interested reader is referred to [65].

®Now under “Mistral” platform for biometrics authentication.
Available at: http://mistral.univ-avignon.fr/en/



For research purposes, it is possible to build up a
complete speaker recognition system using various dif-
ferent software packages. The Matlab software by
MathWorks Inc. is excellent especially for developing
new feature extraction methods. Octave’ is an open-
source alternative to Matlab is, and there are a plenty
of free toolboxes for both of them such as Statisti-
cal Pattern Recognition Toolbox® and NetLab’. Aside
from Matlab/Octave, the Hidden Markov Model Toolkit
(HTK)'? is also popular in statistical modeling, whereas
Torch!!' software represents state-of-the-art SVM im-
plementation.

For score fusion of multiple sub-systems, we recom-
mend the FoCal toolkit'?. For evaluation purposes, such
as plotting DET curves, we recommend the DETware
toolbox (for Matlab) by NIST 13 A similar tool but with
more features is SRETools'*.

8. Future Horizons of Speaker Recognition

During the past ten years, speaker recognition com-
munity has made significant advances in the technology.
In summary, we have selected a few of the most influen-
tial techniques that have been proven to work in practice
in independent studies, or shown significant promise in
the past few NIST technology evaluation benchmarks:

e Universal background modeling (UBM) [197]
e Score normalization, calibration, fusion [14, 31]
e Sequence kernel SVMs [36, 38]

e Use of prosodics and high-level features with SVM
[35, 204, 216]

e Phonetic normalization using ASR [41, 216]

e Explicit session variability modeling and compen-
sation [28, 41, 84, 112].

Even though effective, these methods are highly data-
driven and massive amounts of data are needed for train-
ing the background models, cohort models for score

"http://www.gnu.org/software/octave/
$http://cmp.felk.cvut.cz/cmp/software/stprtool/
‘http://wuw.ncrg.aston.ac.uk/netlab/index.php
Ohttp://htk.eng.cam.ac.uk/
Unttp://www.torch.ch/
2http://niko.brummer.googlepages.com/focal
Bhttp://www.itl.nist.gov/iad/mig/tools/DETware_
v2.1.targz.htm
“http://sretools.googlepages.com/
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normalization, and modeling session and speaker vari-
abilities. The data sets need to be labeled and organized
in a controlled manner requiring significant human ef-
forts. It is not trivial to decide how to split the system
development data for UBM training, session modeling,
and score normalization. If the development data con-
ditions do not match to those of the expected operation
environment, the accuracy will drop significantly, some-
times to unusable level. It is clear that laborious de-
sign of data set splits cannot be expected, for instance,
from forensic investigators who just want to use speaker
recognition software in “turnkey” fashion.

For transferring the technology into practice, there-
fore, in future it will be important to focus on making
the methods less sensitive to selection of the data sets.
The methods also require computational simplifications
before they can be used in real-world applications such
as in smart cards or mobile phones, for instance. Finally,
the current techniques require several minutes of train-
ing and test data to give satisfactory performance, that
presents a challenge for applications where real-time
decision is desired. For instance, the core evaluation
condition in recent NIST benchmarkings uses about 2.5
minutes of speech data. New methods for short train-
ing and test utterances (less than 10 seconds) will be
needed. The methods for long data do not readily gener-
alize to short-duration tasks as indicated in [27, 30, 64].

The NIST speaker recognition evaluations [156, 134]
have systematized speaker recognition methodology de-
velopment and constant positive progress has been ob-
served in the past years. However, the NIST evalua-
tions have mostly focused on combating technical er-
ror sources, most notably that of training/test channel
mismatch (for instance, using different microphones in
training and test material). There are also many other
factors that have impacts on the speaker recognition per-
formance. We should also address human-related error
sources, such as the effects of emotions, vocal organ ill-
ness, aging, and level of attention. Furthermore, one of
the most popular questions asked by laymen is “what
if someone or some machine imitates me or just plays
previously recorded signal back?”. Before considering
speaker recognition in large-scale commercial applica-
tions, the research community must answer such ques-
tions. These questions have been considered in some
studies, mostly in the context of phonetic sciences, but
always for a limited number of speakers and using non-
public corpora. As voice transformation technique ad-
vances, low cost voice impersonation becomes possible
[27, 184]. This opens up a new horizon to study attack
and defense in voice biometrics.



Much of the recent progress in speaker recognition is
attributed to the success in classifier design and session
compensation, which largely rely on traditional short-
term spectral features. These features were introduced
nearly 30 years ago for speech recognition [50]. Despite
there is a strong belief that temporal, prosodic and high
level features are salient speaker cues, we have not ben-
efited much from them. So far, they are playing a sec-
ondary role complementary to short-term spectral fea-
tures. This warrants further investigation, especially as
to how temporal and prosodic features can capture high-
level phenomena (robust) without using computation-
ally intensive speech recognizer (practical). It remains
a great challenge in the near future to understand what
features to exactly look for in speech signal.

9. Summary

We have presented an overview of the classical and
new methods of automatic text-independent speaker
recognition.  The recognition accuracy of current
speaker recognition systems under controlled condi-
tions is high. However, in practical situations many
negative factors are encountered including mismatched
handsets for training and testing, limited training data,
unbalanced text, background noise and non-cooperative
users. The techniques of robust feature extraction, fea-
ture normalization, model-domain compensation and
score normalization methods are necessary. The tech-
nology advancement as represented by NIST evalua-
tions in the recent years has addressed several technical
challenges such as text/language dependency, channel
effects, speech durations, and cross-talk speech. How-
ever, many research problems remain to be addressed,
such as human-related error sources, real-time imple-
mentation, and forensic interpretation of speaker recog-
nition scores.
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