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Abstract—State-of-the-art speaker verification systems take hinge lossused in training SVMs[]7] and the logistic loss,
advantage of a number of complementary base classifiers by also known as thdogistic regressionmodel [8]. The latter
fusing them to arrive at reliable verification decisions. In speaker one has been found reliable in independent studies of fusion
verification, fusion is typically implemented as a weighted linear . e ) : :
combination of the base classifier scores, where the combination in speaker Ve”f'cat'on [8l, |_9],. _[]'01' Consujered f"‘s tde .
weights are estimated using a logistic regression model. An facto standard in Speaker verification studies, with readlly
alternative way for fusion is to use classifier ensemble selection, available implementations (e.g. [11], [12]), we take thgidtic
which can be seen as sparse regularization applied to logistic regression model as our baseline. One further advantage of
regression. Even though score fusion has been extensively setl o model js that the fused scores have an interpretation as

in speaker verification, classifier ensemble selection is much less . . L . .
studied. In this study, we extensively study a sparse classifier automatically calibratetbg-likelihood ratios(LLRS). In addi-

fusion on a collection of twelve 14U spectral subsystems on tion to producing interpretable scores, this enables désig
the NIST 2008 and 2010 speaker recognition evaluation (SRE) the verification threshold using the standard Bayes’ mimmu

corpora. risk classifier design_ [13] based on assumed class priors and
Index Terms—Classifier ensemble selection, linear fusion, Pre-specified misclassification costs.
speaker verification, experimentation Logistic regression is a probabilistic model of the degcisio
boundary between two classes and its parameters (weighbts) a
I. INTRODUCTION usually found as thenaximum likelihoodML) estimate on a

training set [[15]. However, ML solution easily overfits with
ited number of training scores (trials) which manifetself

. . fusion weights with large magnitudel [7]. Consequently,
Modern speaker verification systems utilize ensembldssé even a small change in the base classifier outputs causes larg

classifiersto arrive at an accurate verification decision b%hange in the fusion score leading to unreliable decisions
classifier fusionThe base classifiers might utilize, for instance, Motivated by this observation, we considegularized[i6] )

different speech parameterizations (e.g. spectral, pfosar I?gistic regression whereby weight vectors with large nana

hzlgh-level fe?ture?), mOdﬁ_IS (_e.g. Gau:;&an Imlxture nmsl enalized. Regularization defines a constrained optiinizat
[2] or support vector machines|[3]) or channel compensati oblem where one finds a compromise between training

techm?ues[:(e.g. joint factor analysis [4] or nuisancelaite data accuracy while avoiding weights with large magnitude.
projection [3]). I?egularized solution can also be viewed mmximum a

th Inbthls sltudy.,flwe consider ;/;l/el?ht.ed “\r;\(/a.z: Combllr|1at|cr)rri1§ osteriori (MAP) estimate of the fusion weights, over which
€ base classilier scores as he fusion. YWith a small nNUMbel,g. imposes a prior distribution_[16]. As in any practical

adeSta?'e parameters, linear fus_io_n sche_me often shqmd; g%ayesian learning method, two additional design conceras a
generalization performance. But it is crucial for the wegjto w introduced: (1) choosing the regularizer (functiorehi

be optimized using robust method which tolerates reasenaE the weight prior) and (2) training its parameters that act

deviations in the base classifier score distributions. kakpr s hyperparameters. To exemplifdige regression[L6] or

verification, the scores may vary considerably between t auared Euclidean norm regularization corresponds toszhoo

training and runtime data mainly due to differences in anous_in an isotropic Gaussian prior with zero mean where the

environments and transmission channels. The obvious \tvelg riance parameter determines the degree of regularizatio
optimization strategy, minimizing error rate on the tramset, applied. In this study, we train the regularization par i

easily overfits [b],' . .using a held-out validation dataset and focus on the firsgdes
A natural solution is to use a convex surrogate loss func“%{ﬁestion the choice of the regularizer

instead that serves as an upper bound toGiieloss func- In this paper, we advocateparse regularization applied

tion [6]. QP“”T“Z'”Q an upper bound is expected to _reduct% logistic regression model training in speaker verifizati
the cla§3|f|cat|on error rqte on the unseen data wh|.|e. St@barse regularization means that, in addition to optirgizin
convexity ensures the_emstence of a unique globgl MNIMUPBsion weights for the full classifier ensemble, we wouldelik
Well-known loss functions with these desiderata include tqo implement simultaneouslglassifier ensemble selectidry
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PEAKER verification is the task of accepting or rejectin
an identity claim based on a person’s speech sample [
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Fig. 1: Regularized classifier fusion. We display the contour§'ef, for fusion of two classifiers. The global minima 6f,;, are indicated
by red crosses. For constrained optimization, we search for the minimsicte the region(w? + wg)@/p) <1 (here, the casegs =1 and
p = 2 are displayed). The cage= 1 finds asparsesolution because classifier 2 gets zeroed. This solution hits closest to ¢heitiimum
on the unseen test data. Evénregularization § = 2) outperforms the unconstrained case. Thus, regularization ansifggion might be
particularly useful under unpredictable corpus mismatches [14].

Sparse logistic regression studied here belongs to this lassemble selection do.
category. This study summarizes and extends our preliminary work
There are several arguments favoring the sparse fusi@m classifier selectiori [19] and sparse fusian | [25]] [14]. We
approach. Firstly, even though the full system may consigpand the theory part in three respects. First, Se€fios Il i
of up to a dozen of base classifiers (elg.][18]), these e&@¥panded as a tutorial-like material for readers less famil
often redundant; they might utilize only slightly diffeten with state-of-the-art fusion. Second, we provide mathesaht
spectral front-ends, training parameters, acoustic nsodeti €vidence that, under reasonable assumptions, baselire (un
development corpora. It is therefore reasonable to asshate tegularized) logistic regression is unlikely to producarse
the effective number of base classifiers contributing ferthsolutions. Thirdly, we give a detailed account into setting
uncertainty reduction in the fused score is relatively $smapf the regularization parameters. This involves arguinat th
An experimental validation for this hypothesis comes frorgparse regularization is able to zero out unreliable diassi
our recent study [19]. Applying exhaustive classifier setec and that, under ideal conditions (no observation noise én th
and weight optimization from a pool of 12 classifiers][18]scores), the/; solution converges to unregularized solution.
we found that a classifier ensemble with only 4 classifiefde experimentation is further expanded by (1) providingico
outperformed full ensemble in accuracy. Interestinglpilir parison of different score pre-warping variants for caittan
experimental result was found by MITLL site in their langeagpurposes, (2) providing detailed comparison of unregedati
recognition submission to NIST LRE 2011, subset of 3 bag#d regularized fusion schemes on subconditions of the NIST
classifiers out of total 5 in the full ensemble gave the beSRE 2010 core task and (3) providing analysis of correlation
performance [[20]. Secondly, reducing the effective numbegefficients across the selected classifiers. To sum up, even
of model parameters is expected to improve generalizatiiipugh regularization and sparsification have been studied
performance because of reduced model variance [21]. Finaltoth linear and logistic regression schemes, their integra
computational benefits are obvious during system run-time i&ito fusion schemes in speaker verification is novel. Oudystu
the excluded classifiers need not to be invoked. is the first large-scale comparison of regularized, in paldr
Even though joint classifier ensemble selection and trginigParse, fusion schemes in speaker verification.
the fusion weights is a combinatorial optimization problem
it can be mathematically formulated &sregularization[[15]
where the regularizer (zeroth norm) counts the number &f Problem Setup
non-zero weights, corresponding to the selected classifiefve assume that, during the development phase, one has
ensemble. Since its time complexity is still exponentialhwi access to a development §2t= {(si,9i),i=1,2,..., Ngov }
respect to the number of base classifiers, the usual WOI‘kdI’Old;ontaining Ngev SCore vectors fronl base classifierss; €
is to usel;-regularization instead, a method known as LASS@L, Here, y; € {0,1} indicates whether the corresponding
(Ieast absolute shrinkage and selection operht{RZ]. In Speech Samp|e originates from a target Spe@yﬁr: 1) or
the logistic regression model; -regularization has also beenfrom a non-targety; = 0). Though it is not always the case
applied [23]. LASSO shrinks all the coefficients, with som@uring the NIST SRE campaigns, here we assume that these

of them forced to be exactly zero. By regularizing logistifabels contain no errors. We consider linear score fusion of
regression with the LASSO constraint, we can simultangoushe form fw(s) = wo + ElelwlSl = w's, wherew =

Il. LINEAR SCOREFUSION IN SPEAKER VERIFICATION

optimize fusion weights and perform classifier selection.  (wg,w,,...,w;)T contains the classifier weights, . .., wr,
Convex combination of ridge regression and LASSO leadgiscrimination component) and the biag (calibration com-
to another regularization technique known elastic-net(E- ponent). The augmented score veatot (1,51, 52,...,51)"

net) [24], which retains the zeroing capability of LASSOc¢ontains constant 1 and the base classifier output scores.
but because of the ridge term it does not push base classiOur goal is to find optimal weight vector (say,*) so that
fier weights to zero as aggressively as LASSO or classifiglassification errors are minimized on the development,data
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thus hopefully on the unseen evaluation data. Here we addpiis is also known as th€y, cost in [27]. The minimum
the detection cost functio(ODCF) commonly used in the NIST of (3) does not have closed form solutdn [7], however it is
speaker recognition evaluatifh® assess the accuracy of anyonvex, so iterative gradient descent methods can be used to
speaker verification system: find optimal w*.

The above formulation assumes that the costs of miss and

DCF(Q) = Cmisstiss(e)Ptar‘|‘Ofana(e)(1 - Ptar)- (1) false alarm are equdlcmiss — Cfa) and thatptar = 0.5.

Here, Priss(f) and Pi,(6) are the miss and false alarm probJo re-calibrate the model according to the pre-specified cos
abilities as a function of the decision threshéldP,,, is the parameter§Cu;ss, Cra and P.;), the following modification
prior probability of a target (true) speakef,, is the cost is used[[2V]:
of a miss (false rejection) and;, is the cost of a false alarm
(false acceptance).

In speaker verification[]1) is used for computing both thehere P.g is known aseffective prior which summarizes
actual (ActDCF) andminimum(MinDCF) values. The actual the three application-dependent parameters into a sirgfle p
cost refers to the DCF value obtained whenever the decisitameter, P.g = logit ™' (logit(Prar) + 10g(Criss/Cta)), With
thresholdd is fixed to a particular value beforehand, wheredsgit P = log (P/(1 — P)) = —6. Bayes-optimal decision is
MinDCF indicates the oracle value (minimum) on the teshen achieved by placing the threshold-tdogit(Pe.g).
set that can easily be found by linear search over the rangdn addition to DCF parameters, the number of positive and
of 4. Therefore, by definition ActDCE> MinDCF, and the negative examples in the development set might be highly
difference ActDCF - MinDCF can be used as a measure igfibalanced. This is the case with the NIST evaluations. As an
calibration error in terms of how well the, was estimated. example, in the female itv-itv condition in NIST SRE 2010
Score magnitudes can also affect calibration, as is theinas®nly 3.45% of the trials are target (positive) trials. Thisuld
NIST SRE 2012, but in this present work we consider onigiean that the cross-entropy objectité (3) will be strongly
the additive term. dominated by one of the two classes leading to biased weights

To take this class imbalance problem into account, the cast w
further modified in[[9] as follows:

p(y = 1|S) = o'(wTs + logit Peff), (4)

B. Logistic regression

Ny
To train the fusion device, in theory one can optimize (1) Cyi(w,D) = J;\e;f Zlog (1 4 e~ Wsi—logit Pﬁ-ff’)
directly, for instance by using a neural network1[26]. Foe th toi=1
reasons discussed above, we optimize the weights using a 1— Pg Ny e ot P
convex loss function instead.ogistic regressioris a proba- + Zlog (1 + g% sitlosit eff)(5)
bilistic linear model, which is based on the fact that paster Fo=

probablllty of the class label being the target class can %ere the two sums go through tme target score Vector&

written asp(y = 1|s) = (1 + exp{—g(s)})~" for any class- and theN; non-target score vectors, respectively.
conditional densities [15]. The functiog(s) takes the form

w's when the class-conditional densities follow exponenti% Score pre-warping

family of distributions with a shared dispersion paramégeg.

variance). We can thus express the target class posterior asince the raw base classifier scores may have different inter
p(y = 1]s) = (1 + exp{—(w's)})~! = o(wTs) [15], where pretations (e.g. log-likelihood ratios, SVM scores or ¢l

o(.) is a logistic sigmoid function. The posterior for the non¢0Sine distances) with considerable variation in theitescat

target class is thep(y = 0fs) = 1 — p(y = 1|s) = o(—w's) is important to propgrlly align _the score d|str|bu_t|qns [28bte

by the properties of(.). Furthermore, the quantity s has an that thg be_lse classifiers typically include their mterrgire

interpretation as théog odds i.e. In[p(y = 1|s)/p(y = 0|s)] normg!lzatlon such as T-norm. [29], used for normalizing the

[7], as one can verify by straightforward algebra. cl_assmer outputs across varying test segments and speaker
Using the development above, we are now able to write tP_%lth the help of external cohort models. Here the concern

likelihood function for the logistic regression model [7]: IS t(_) make glloballscore alignment at the 9Iasgﬂer Ievgl. To
avoid confusion with speaker score normalization techesqu

Naey we refer to global classifier-level score pre-processingcase
pyIw) = [[ {ew'sn)mo(=wTs,)' "}, (2) pre-warpingg PR
n=1 Most common pre-warping imean and variance normal-
where y is the Ny.,-dimensional vector of all labelg,. ization (MVN), also known as z-normalization. Meanu)(
Maximum likelihood (ML) estimate ofw can be found by and standard deviations{ of the entire score distribution
taking the negative logarithm ofl(2), which yields thess- is estimated from the training data and applied to the held
entropycost [7]: out score §) ass — (s — u)/o. MVN defines affine score
Naow normalization whose parameters can also be discrimirgtive
_ Z {yn Ino(w's,) + (1 —y,)n 0(_WTSH)}. (3) learned, as we will see later.
n—1 In addition to the MVN where the range of the pre-warping
function was unbounded, we also considecal [30] and s-
Ihitp://www.itl.nist.gov/iad/mig/tests/spk/ cal [9] methods that intentionally set upper and lower limits
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TABLE I: Score pre-warping methods used in this study. I1l. REGULARIZED CLASSIFIER FUSION
Type of # parameters Discr. A. Unregularized model is unlikely to find sparse solutions
pre-warping Learning We argue that in order to produce, in a general case, a
MVN 2 No sparse weight vectoww one has to use sparsity promoting
z-cal (unclip) 2 Yes regularizer, such a& and/;. In the following, we see when
z-cal (clip) 4 Yes unregularized logistic regression (i.e. via maximum likebd
s-cal 4 Yes training) can produce sparse solutions. First, the maximum
likelihood solution ofw is characterized a$ [115]:
W= Z71(#1 — Ho)s ®)

on the pre-warped scores. We thus call these metbtigised if the class-conditional densities follow Gaussian disttion.

variants. These methods were originally devised to oveer:onjr‘i| @izr'lsaggens;;ar;eedaﬁo\\::g;?ge I;n\;;\‘/te:l);aa&%gmbiugi:reo:;

the problem of labeling errors, assumption being that Sm%asﬁs\’/\?a(szoassu?ned ifl[8], then fo.r each base classifie? '

portion of target trials were accidentally marked as naget ’ '

and vice versa. In_[9], s-cal was applied on the fusbotput _ id =1 I 9)
. . . . 2 Z) - P

but we apply it to theinputs before fusion. By applying oj

clipping to the score pre-warping, non-linearity is apglighis \ynere ¢, is the difference between the means for e

leads to a score pre-warping effect that linear fusion @eisSc 4imension. It is clear that, under these assumptiensgan

not able to recreate. be exactly zero only when the means of target and non-

Both z-cal and s-cal aim at converting arbitrary scores $8rget scores completely match which is unlikely to happen f

well-calibrated log-likelihood ratios (LLRs). The s-categp 2Ny reasonably-performing speaker verification systemth@én
warping is other hand, an extremely large variangg would also push

_— w; arbitrarily close to zero, but not exactly zero.
(logit ™ a)(e™"¥ — 1) +1 (6)  The above argument assumed diagonal covariance matrices
(logit ' B)(emsnty — 1) +1’ and a particular special case of logistic regression. Even

where the saturation parameters 3 and the affine param- though the same analysis no longer holds for full covariance

etersz, y are optimized using the development set, with thr@atrice:s, it does illustrate that there are cases when unreg
attached ground truth labels so that g, cost in [3) is ularized solution cannot find a sparse solution. With sparsi
r

optimized [27]. As the problem is no longer convex in th@romoting regularizers, on the other hand, we can forcesspar

unknowns, we utilize unconstrained nonlinear NeIder-Mea\’lﬁe'ghtS regardless of whether the classifiers are corelate

optimization algorithm [[31] to find locally optimum values™ot

for a, B, x andy. In each new estimate of the parameters,

the development set scores are pre-warped uging (6) and BreClassifier Ensemble Selection as Regularization

optimality of the parameter estimates is computed uéipgin Up to this point, we have defined the standard fusion
(3); we utilize Matlab'sf i nsear ch function to implement framework, assuming a full ensemble bf classifiers. Now,
this. Occassionally the optimizer produced singular sohst instead of just optimizing the weights, we are in search #fibo
Those were detected, by noticing that thép, is one, and the optimal classifier ensemble and weights. Assume that we
rejected. If a solution was rejected then new one is computkdve decided on an appropriate size of the ensemble given by

LLRgcal(sn) = log

by stronger regularization. integer variableK, K < L. We would like to minimize [()
Th | ing function is defined similarly subject to this constraint. Obviously, one can simply emaree
€ z-cal pre-warping tunction 1S defined simiarly 1o S’althe(f;) = ﬁ possible classifier ensembles to ensure

cal, only difference being that instead of smooth sigmoid
shape, z-cal defines a piece-wise linear function with haB
thresholding (clipping). Z-cal is defined as:

t the size constraint is satisfied, and optimize the wgigh
minimizing Cy,, for each of these ensemble candidates and
choosing the one that minimizes the cost function.
LLR,ca(5n) = (85 — Zmin) Ymax — Ymin Yo (7) In this_paper, we shqw that a better way formulating the
ZTmax — Tmin problem is by casting it into the regularization framewdri.
where we SetLLR,ca(s) = ymim for all scores satisfying terestingly, the exhaustive search can be seen as regianiz
LLR,cal($n) < Ymin, Similarly LLRycai(sn) = ymax for Wit EoA-norm. Note that the/;-norm of vectorw, defined as
all scores WIthLLRycal(51) > ymax. z-cal parameters arellWllo = 37, [w;|®, counts the number of nonzero elements in
optimized in a same way as s-cal parameters. We also & I6]- This is becausew;|° equals 1 everywhere except for
perimented with the unclipped variant of z-cal, optimieati wi = 0 one defines it as 0. Thus, an equivalent formulation
was performed in a same way except that the clipping step wsthe above combinatorial optimization problem is
_not used. Itis expect_e_d that u_nclipped z-ca_1| will provid'ed-g min Cyp(w,D) st ||w]o < K. (10)
ilar results as optimizing fusion scores without pre-wagpi w
Score pre-warping methods selected for this study have beerlthough it is clear that the combinatorial search outlined
summarized in Tablg I. above is not very practical for largk, it is guaranteed to give
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the optimum classifier ensemble choice for a given set of dat*\BLE II: Selection of the three datasets used in this study.

[Dataset Usage Data source  # Trials |

C. Practical Regularization via Ridge, LASSO and Elasti¢ N€frainsef Train fusion parameters NIST 2008 2434 t, 238971 f
For computational reasons thjev|o constraint is typically itv-itv gsubset
approximated using thgw||; constraint, which is also known|Devset | Compare fusion and NIST 2008 2408 t, 239244 f
as LASSO|[[16]. The vector norm can also be constrained py pre-warping methods and itv-itysubset
|w||3, which corresponds tadge regressionHowever, unlike classif. selection
LASSO, ridge is not a sparsity promoting constraint [16]. |Evalset|Validate results _NIST 2010 5235, 146628 f
In the case of LASSO[{10) is modified as, itv-itv_osubset
rr‘lhi,n Coir(W,D) s, ||w]1 <t (12)

jective. Since logistic regression using quadratic reggadéion
wheret determines the desired amount of shrinkage[Tn (1Qy gifferentiable, it can be efficiently optimized usingreard
the norm||w|lo € Z* has an interpretation as the maximunpackages[[7]. Situation is not so simple for LASSO regu-
number of classifiers retained, but this does not necegsafyrization. In [22], aquadratic programming(QP) solution
hold for [w||; € R* which takes up any positive real valuewas proposed by rewriting the constraints [l (12) to a more
Therefore, rather than based on human judgment, (I1) convenient form. However, more recent techniques arerfaste
should be merely considered as a control parameter. In tbl%ctice, for that reason we apyyojectionL1algorithm [32
study, we optimizet using cross-validation. A useful insightipat optimizes the Lagrangian form 6f{12). We apply the same

into choosing a suitable range of possibig is the desired method to elastic-net. Since the sum of two convex functions
amount of shrinkageelative to the unregularized solution. js still convex, we can minimiz€.y,. (w, D)+ A(1 —a)||w]2,

That is, sett = ¢ - [[w™"|,, wherew"" are the maximum gjven Aa|wl|; as the constraint.

likelihood weights for [[b) andf is the desired amount of

shrinkage, such as=0.90. D. Sparse Regularization Knocks Out Noisy Classifiers
From a viewpoint pfppt|m|zat|on softvv_arg packages_, amore ¢ there a way to tell whether a given base classifier gets

useful form of [I1) is its Lagrange multiplier formulation, knocked out for a given\? In the case off-norm and

min {Cyi, (W, D) + A|wl1}, (12) standard linear regression, it has been shown that the tgeigh
w satisfy [33],
where\ is the Lagrange multiplier. It is known that the larger
), the more the normj|w|| will be shrunk [22]. Example w0y = {wlML — e sign(w}™), [w}'t] > g (14)
of (I2) on real data can be seen in HAig. 1, where two base 0, lwME| < ¢’

classifiers are fused. From the example it is clear that vigigh

found by the direct optimization of5) would lead to nonWherew?'" is the maximum likelihood estimate of the weight

optimal solution for the test set. of the base classifiel, ¢, = ‘/jcs’; , 02 is noise variance
When optimization is based ofi {12), the correspondengeeded in standard regression’setup) apds thenth score
between) and the shrinkage threshotdcan be found by a Of base classifiet. Thus,/;-norm based regularization defines
binary search on the possible values)ofin each iteration, an interval of2¢; around the origin where zero weight is
we select one\ and optimize the weights using it, output iobtained. For the case of logistic regressibnregularization
then the norm of the weights. Final weight vector is the orémilarly defines an interval around the origin, where weigh
whose norm is closest to the targetut does not violate it. is zero [33]. Note that we can write, = v/A/&, where
Elastic-net, on the other hand, is based on the idea that ve= Y., s7,/0” is the ratio of “signal” to noise variance.
can combine bottf; and/, regularizers into one constrainedTherefore, the noisier the classifier scores (logygrthe larger
optimization problem, the interval 2¢; and the higher the chance that a classifier
] ) gets zeroed out. For noise-free cage { ~o), the solution
min {Cwir(w, D) + A (afwli + (1 = a)wll2)} . (13)  converges to the ML weighty, — wMt

As can be seen, EqL_(I13) is a generalized variant of bg hThiS above rea_s_oning shows that, whil_e constaistapp!ied

LASSO and ridge regression. One can always find sueh alor all base classifiers, the amount of shrinkage (hencejregr

where, in terms of performance, elastic-net will at leagj@sd out) depends on the noise level of that base classifier. Since

as LASSO or ridge regression. However, whereas LASSO a Tﬁ'si va:;?nce IS ge.mta-rallyl ur'1tI;nowm, canll db?. %?ed

ridge regression had to select only one regression pargme f adjusting the zeroing Interval with cross-validatiorhe

now we need to cross-validate over a 2-d space. In this wo E’asqm_ng here concerns standard linear and IOg'.St'CSE'Q'E

the o parameter is first fixed and then shrinkage factois Ut similar arguments could be made for regularizag,.

cross-validated as in LASSO and ridge. In practiesyill also IV. CORPORA METRICS AND BASE CLASSIFIERS

be cross-validated in so that the bestand shrinkage factor o .

will be selected based on cross-validation set to be applied We-ut|I|ze the NIST 2008 and NIST 2.010 corpora In our

the evaluation set experimenfd The usage of each corpus is shown in TdBle I1.
Depending on the chosen regularization method, there aretp:/awww.di.ens.fremschmidt/Software/code.html

different strategies to optimize regularized cross-qatrob- 3http:/Awww.itl.nist.gov/iad/mig/tests/sie/
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TABLE IlI: Twelve base classifiers, calibrated using MVN, are constructed usiiegetif cepstral features and speaker modeling techniques.

Devset Evalset

Classifier Feature |EER|MIinDCF|ActDCF|ActDCF-| EER [MinDCF|ActDCF|ActDCF-

(%) | (x100) | (x100) | MIinDCF| (%) | (x100) | (x100)|MinDCF

1 GMM-UBM-JFA PLP 3.44| 1.6748| 1.6979| 0.0231| 7.18| 3.3108| 3.3911| 0.0803
2 GMM-UBM-JFA PLP 3.45| 1.4309| 1.5547| 0.1238| 5.74| 2.3852 | 2.4268| 0.0416
3 GMM-UBM-JFA PLP 3.32| 1.4760| 7.7305| 6.2545 | 4.62| 2.6668 | 8.2292| 5.5624
4 GMM-UBM-JFA LPCC ([3.99| 1.9056| 7.8119| 5.9063 |10.68| 5.7845| 6.5031| 0.7186
5 GMM-SVM-KL PLP 3.74| 1.8597 | 5.2105| 3.3508 | 6.82| 2.9659 | 6.9683| 4.0023
6 GMM-SVM-KL MFCC |3.16| 1.1564 | 1.4921| 0.3357 | 5.45| 2.7169 | 2.7338| 0.0168
7 GMM-SVM-KL LPCC |[3.53| 1.4877| 1.8412| 0.3535| 8.35| 4.1369 | 6.2928| 2.1559
8 GMM-SVM-KL MLF [B4] |2.95| 1.2965| 1.7472| 0.4508 | 8.29| 3.9229 | 4.4433| 0.5204
9 GMM-SVM-KL LPCC [3.82| 1.9267 | 5.2591| 3.3324 |10.55| 4.9308| 4.9947| 0.0639
10 GMM-SVM-KL SWLP [35]6.69| 3.6348 | 3.6585| 0.0237 |10.75 5.0897 | 5.7239| 0.6342
11| GMM-SVM-FT [36] PLP 4.45| 1.9574| 6.6046| 4.6472 | 8.60| 3.7126 | 8.0517| 4.3391
12| GMM-SVM-BHAT [37] PLP 3.12| 1.2151| 1.3090| 0.0938 | 6.28| 2.9944 | 3.0175| 0.0232

For evaluation of the methods, we consider the detection

Sa0 —Bestnavidial cost function in[(1L), where the cost parameters@rgs = 10,
€20 »7/ ” :El‘ﬁlkgwjh;cp Cra = 1 andPy,, = 0.01. We measure both the minimum DCF
55 (1% 0 \\b\ (MIinDCF) and the actual DCF (ActDCF). We also consider
g2 —x % el calibration error, defined as the difference of ActDCF and
g 2 : MIinDCF, and the well-knowrequal error rate(EER), corre-

sponding to the case of equal miss and false alarmBates
Table[ shows our twelve base classifiers based on dif-
Fig. 2: Comparison of fusion methods using the full ensemble s-ci§ent cepstral features and four different speaker mogeli
pre-warping on Trainset. The best individual classifier (for ActDCFl}EChnlques- When a base classifier shares the same model and
is also shown. The circles indicate the ActDCF points. features, it means that the base classifiers are independent
implementations. For speaker modeling, we use the geverati
GMM-UBM-JFA [4] and the discriminative GMM-SVM ap-
To avoid any evaluation bias from pooling of incompatibl@roaches with KL-divergence kernel [39] and Bhattacharyya
subcondition scores (se€e [38]), we mostly focus on the femadernel (BHAT) [37]. We also include feature transformation
trialdd of the interview-interview (itv-itv) sub-condition in the (FT) method [[36] as an alternative supervector for SVM. All
core task. Nevertheless, both genders and three other soibthe methods are grounded on the universal background
conditions (itv-tel, mic-mic, tel-tel) are included intbe final model (UBM) paradigm [2] and share similar form of subspace
validation. The audio files from all NIST 2008 speakers werghannel compensation, though the training methods differ.
split into two disjoint parts. In this regard, audio filesdlind- We used data from the NIST 2004, 2005 and 2006 corpora
ing both training and test files in the official NIST 2008 SRHEo train the UBM and the session-variability subspaces, and
dataset) from the same speaker were grouped together baagditional data from the Switchboard corpus to train the
on the available metadata. We then splitted the speakers iapeaker-variability subspace for the JFA systems. Each bas
two groups, consisting of 475 and 711 speakers, respectivellassifier has its own score normalization prior to score pre
Trials were then generated separately from those two setsvggrping and fusion. To this end, we use TZ-nofm|[29] with
assigning training and test files randomly based on the gpeakIST 2004 and NIST 2005 data as the background and cohort
information. We kept the empiricaP;.., close to those in the training data.
official NIST 2008 SRE trial lists. The first partrainset is
used for training the score pre-warping parameters (s-eal w V. RESULTS
used as precalibrat?on method), fgsipp weights and biae.. TR Choosing Score Pre-Warping and Fusion Training Methods
second partPevset is used for optimizing the ensemble size i ) , .
(K) for subset selection, shrinkage parametdrfor LASSO, We first compare the score pre-warpmg.a'md fusmn training
ridge and elastic net, and the tradeoff between LASSO amfthOds on th_e full set of = 12 base clas_sn‘lers n '_I'ad]EIV.
ridge for elastic netd). The optimized parameters are the#ere_we consider three r_nethods to (_)btam th_e fusion method.
applied to the NIST SRE 2010 trial&yalse}, which serves The f|rst.methqd.equal weightaises uniform we_lghts and does
for evaluation purposes. For the oracle subset selectian, f'Ot équire training. In the second meth@tadientCi,., we

classifier ensembles are optimized by exhaustive search U5i¢ standard conjugate gradient optimization of the wetght
Evalset.

2 51020 40 0.2 0.5 1
False Alarm probability (%) False Alarm probability (%)

S5For finite data points, one does not filf,iss = Pr, exactly. In this
study, we use linear interpolation between the two closisstete data points

“Female trials are somewhat more difficult than males. Similaomate to compute EER. For the interested reader we point to thenalige method
was taken, for instance, inl[4]. using convex hulls on ROC curve (ROCCH), availablelin| [12].
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Iogistic regress.ion cosCV'Vlr.. In th.e third method,EM-Iikg ACIDCF (X100) MinDCF (x100) EER (%)
MinDCF, we directly optimize MinDCF using an EM-like —a | 182
procedure as follows. We start with equal weights and fin®’* ™\ 0A71\\'_'_'gmg;g;g 180
the threshold that minimizes MinDCF. Given fixed threshold, o7, "~ [ LASSO
weights are optimized using the Nelder-Mead algorithmi [31 :

.. . . 0.8 0.9 1 0.8 0.9 1 0.8 0.9 1
The process is iterated until convergence; for more detai  shrinkage factor (1) Shrinkage factor (t) Shrinkage factor (t)
refer to [19]. @ (b) (©
. The first three rOWS_ show best individual base CIaSSIer";qg_ 3: Effect of the shrinkage factor (Devset, female trials, itv-itv
in terms of ActDCF, MinDCF and EER. As these scores agndition). The relative shrinkage factor irraxis is¢ in Eq. [11)
not pre-calibrated, calibration error is quite large. Apented, normalized by the unregularized weight norm.
fusion improves accuracy over the best single classifier sys
tematically. Regarding score pre-warping, z-cal and syieadi TABLE V: Chosen NIST 2010 subconditions.
similar results. They produge less errors compared to'both NIST 2010 common cond.
the _unwarpe_d an_d the non-clipped score pre-warping va_nant 1]2[3[4]5]6]7[8]9]
Fusion training with GradC',;, and with no score pre-warping

070l

at all and unclipped z-cal yields same EER and ActDCF, but ::://Ittevl XX -
in MinDCF there is a slight difference. As the optimization ic-mic T T
cost of linear calibration and’,,;, are slightly different, there teltel = >

are small differences in MinDCF. In addition, generative-pr
warping strategy by MVN also yields different but compaeabl

results to all three unclipped variants. _ net). Fig.[3 shows the effect of regularization to recogniti
Comparing the fusion training methods, gradi€ffi: SYS-  accuracy on Devset. For ease of interpretation, we show

tematically outperforms the other two methods in all threge accuracy as a function of the normalized regularization
costs. The DET plot in Figll2 confirms this. We find the.ntrainti — t/||wML|| rather than the Lagrange multiplier

direct optimization c.)f'MinDCF produces generally higher Here, ¢ is the constraint in Eq[{11) and™’ denotes
error rates than logistic regressiofi,(,) which does only he ynregularized (maximum likelihood) weight vector. Shu
indirect mlnlmlzat|0n_. Th|s suggests that logistic regies ; _ | corresponds to the unregularized solution.

offers_ better generalization p_erformance. For the resthef t | sparse regularized fusion training, all weights are con-
experiments, we choose gradiefif,, with s-cal. strained by regularizer, some are pushed to zero, but even
those that are retained are regularized. Thus, when mismatc

-I;ABLE I¥h Fl;.s'on hOf all the L : 12 Eas_e dc_la_ljsm”ersbon tgebetween Devset and Trainset is small it is expected that even
evset. The first three rows show the individually best bagg st of classifiers, which weights are regularized, danno

classifiers. improve on the unregularized fusion. Elastic net with= 0.2
) core ) ActDCF- marginally improves ActDCF. Elastic net with = 0.2 and
Fusion metho jﬁre-warping EER MinDCF ActDCF MinDCR  « :90.8, r)(/asp(fctively, has similar ActDCF trends as ridge and
Best ActDCF |- 3.74 1.8597 3.0131 1.1534 LASSO, as one may expect. A general trend is that aggressive
Best MinDCF |— 3.16 1.1564 18.4600 16.600 shrinking (smallf) increases both MinDCF and ActDCF. The
Best EER - 2.95 1.2965 14.7607 13.464 equal error rate (EER), however, does not follow the same
Equal - 2.09 0.8385 5.9863 5.1478 trend; this might be because weight optimization targehés t
weights MVN 210 0.8219 23085 1.4865 DCF rather than the EER region.
z-cal (unclip) 2.08 0.8080 1.1022 0.2942
s-cal 2.03 0.7907 0.9176 0.1269

z-cal (clip) 199 0.7786 09617 0.1830 C. Extended Results on Other Conditions

Grad. _ 1.83 06172 0.6231 0.0059 Table[Vl shows accuracies for all the subconditions of the
Cuwir MVN 1.83 0.6139 0.6235 0.0096 NIST 2010 core task as listed in Talilé V. We compare five
z-cal (unclip) 1.83 0.6135 0.6231 0.0096 fusion strategies:
s-cal 1.70 0.6031 0.6147 0.0116 « Bestindividual: individually best base classifier (smallest
. z-cal (clip) 1.66 0.5940 0.6183 0.0243 ACtDCF on Devset)
EM-like N 203 07038 21931 1.4899 « No regularization: unregularized logistic regression,
MinDCF [19] |MVN 2.03 0.7095 4.2973 3.5878 .
z-cal (unclip) 2.03 0.7159 1.5044 0.7885 similar to FoCal and BOSARIS software packages.
s-cal 189 06440 2.7454 21014 « Ridge: ridge regression/{) regularization.

z-cal (clip) 1.95 06631 9.9502 92871  * LASSO: LASSO (4) regularization.
o E-net: elastic net {, and¢;) regularization.
All of these are treated the same way regarding the use of
o datasets: fusion training is carried out on Trainset wHile t
B. Effect of Regularization regularization parameters are optimized on Devset, whare m
We now turn attention to weight optimization using thémum ActDCF is used as the criterion. In the case of ties, we
three regularizers described above (ridge, LASSO andielastelect the most aggressive regularization factor. Opéitiuns
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TABLE VI: Full comparison of fusion methods on NIST SRE 20Xl fusion parameters have been cross-validated using
Devset. The stard denotes a statistically significant difference (McNemaest([[40],[41] at 95 % confidence) to unregularized
fusion regarding the number of misses,(i.;) or false alarms §;.). Thet is the normalized shrinkage constraint relative to
unregularized norm. The total number of genuingd,) and impostor {Vi.,;,) trials in each condition are also indicated.

Ensemble EER MinDCF ActDCF ActDCF- Ensemble
selection (%) (Nimiss Nra) (x100) (Nimiss, Nia) (x100) (Naiss:Nia) | \inpeE| 7 | size || Noer| N,
Best ind. 5.45 (285, 7997) 2.7169 (972, 1274)3.8767 (436, 4508)1.1597 | 1 1
>|Noregul.  [3.41 (179, 4996) 1.7135 (581, 894)2.5198 (270, 2968)0.8063 | 1 12
Z|Ridge 3.40 (178, 4986) 1.7012 (594,+839) 2.5109 (271, 2952)0.8097 | 0.96| 12 |/5235146623
=|LASSO 3.32 (174, «4865) 1.6869 (595, +815)| 2.2354 (288, x2496) 0.5486 | 0.96| 6
E-neta =0 |3.40 (178, 4986) 1.7012 (594,x839) 2.5109 (271, 2952)0.8097 | 0.96| 12
Best ind. 3.03 (24, 918) 1.3879 (75, 138)1.7761 (50, 352)0.3882| 1 1
5|Noregul.  [245 (19, 742)0.9773 (56, 85)1.7102 (29, 412)0.7330| 1 12
< |Ridge 2.40 (19, 726) 0.9689 (59, x71)| 1.6513 (29, «394) 0.6824 | 0.86| 12 801| 30254
=|LASSO 2.37 (18, «716)| 0.9865 (57, 84)1.6332 (32, «377) 0.6467 | 0.71] 8
E-neta = 0.7|2.37 (19, «718) 0.9746 (55, 88)1.4740 (30, %336) 0.4994 | 0.66 10
Best ind. 6.52 (23, 2068) 3.0379 (61, 420)3.1569 (75, 331) 0.1190| 1 1
2|Noregul.  |5.12 (18, 1625) 23549 (61, 201)4.4200 (27, 1172)2.0651| 1 12
&|Ridge 5.10 (18, 1618) 2.2964 (64, x155)| 3.0418 (40, x612)| 0.7454 | 0.66| 12 353| 31744
E|LASSO 5.62 (20, 1785)2.4412 (57, 265)3.2276 (35, x717) 0.7864 | 0.56 3
E-neta = 0.74.82 (17, x1529) 2.3086 (63,x168)| 3.0330 (42, %591) 0.7243| 0.51] 6
Best ind. 362 (26, 1763) 15782 (85, 199)1.6563 (82, 254)0.0781| 1 1
%|Noregul. |2.36 (17, 1153) 1.1151 (52, 193) 1.1980 (60, 179) 0.0828| 1 12
2 |Ridge 2.36 (17, 1153) 1.1422 (50, 220)1.2133 (63, x166)| 0.0712| 0.91] 12 719| 48753
“|LASSO 2.36 (17, 1153) 1.1810 (49, 246)1.2761 (70, x149) 0.0951 | 0.91] 5
E-neta = 0.1/2.36 (17, 1153) 1.1364 (49, 224)1.2153 (63, x167) 0.0790 | 0.81] 12

are carried out separately for each of the four subconditiofABLE VII: Pearson's correlation analysis of sparse fusion
using their Trainset and Devset counterparts. ensemble on elastic net method for the mic-mic condition.

Correlation is computed between base classifier scoraaedta

We make several interesting observations from Table \in the ensemble separately for target and nontarget scores.
Firstly, comparing the best individual classifier to the esth Column labels are the classifier labels from Table IlI.
strategies, fusion of multiple base classifiers outperfom 1 > 3 g 9 11[Avg.
dividual classifier in nearly all the cases. In a few cas€¥Net target 072 0.71 060 0.72 067 0.79.69
(most notable, itv-tel), the single classifier has goodotation | ENet non-target | 0.61 0.61 0.55 0.54 0.44 0.480.55
though. Second, comparing the unregularized baselineeto tirull ens. target | 0.68 0.67 0.60 0.74 0.72 0.79.70
regularized variants, one of the latter variants wins in tmogFull €ns. non-targe0.55 0.56 0.55 0.57 0.53 0.340.56
conditions. The exception is the tel-tel condition where th
unregularized baseline outperforms all the regularizents.
In fact, tel-tel condition is the easiest case, possibly thue [N theory, elastic-net should, at least be equal to the best

larger development set and longer experience of the teamr@gularized fusion method, in all cases. But we notice that i
processing telephony data. the itv-itv condition, cross-validation selected= 0, instead

of 1, as would have corresponded to the LASSO regularization

Comparing ridge, LASSO and elastic net, none is a cledhis will require further study on how to perform more
winner but the relative performance depends on the comditiaccurate estimation of the parameter.
and metric. Regarding the primary metric, ActDCF, all ofthe  Comparing the relative shrinkage factarsidge > LASSO
are useful for reducing the number of false alarms compared>t elastic net. It is expected that ridge, as a non-sparseaegul
the unregularized baseline by a statistically significaatgim. izer, shrinks less. Regarding the ensemble size, LASSQ@lglea
For instance, with only a slight increase of target speakegtains the smallest number of base classifiers as expdtted.
misses, ridge and elastic net reduce the number of falsealais notable that, for the itv-itv case, LASSO zeroes half & th
to nearly half of that of the unregularized baseline on thdassifiers and achieves smallest error rates in all thregase
mic-mic condition. Generalization bounds show that sparseAs a final analysis, Table_MIl, shows sparse fusion en-
solutions that give low error rates have a good chance sdémble of six base classifiers that elastic net learned, Igame
generalizing to an unseen dataset![42]. However, as sudh2,3,8,9,11}. We show average pairwise Pearson’s corre-
bounds are loose on non-sparse solutions, depending on ldi®n, in a following way: for a fixed classifier, we count
data set, dense weight weight vector can generalize well alﬁ Zjesv#i Corr(s;, s;), where S is the set of classifiers
as we have seen here. selected to an ensemble. Correlations were computed from no
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pre-warped scores. We count pairwise correlations betwesmor simultaneously as a way to obtain an ensemble with
classifiers in the ensemble for target and non-target scoeegood generalization property. Alternatively, run-tinlassi-

separately. In contrast, we also show average correlationsfier

ensemble selection for each speech utterance, sinoilar t

full ensemble to the selected base classifiers. We notidgla sl adaptable fusion using auxiliary quality measures wouldre
reduction in average ensemble correlation from 0.70 to 0.68eresting direction.

for the targets and 0.56 to 0.55 for the non-targets. However
for classifiers 1 and 2, both target and non-target average
correlations are increased. For the classifier 9, on ther oth&!
hand, correlations are reduced from 0.72 to 0.67 and 0.53 to
0.44, for targets and non-targets respectively. [2]

As we can see from the Tale_MIIl, most correlated target
score pairs are selected classifiers (1,2) and (8,11). Thdg,
maximum pairwise correlations non-selected classifiees ar
lower, for targets 0.80 to 0.78 and for non-targets 0.70 tgy
0.64. However, average maximum pairwise correlation ik ful
ensemble is still slightly bigger than the ENet ensembles Thys)
fact that ENet considerably outperformed the full-ensembl
but still maximum pairwise correlations were not consitdra
reduced, is in line with the theoretical results proved 8][4
There, it was shown that pairwise correlations are not sefftc
to predict ensemble accuracy, but that higher order cdiveks
need to be considered.

(6]
(7]
(8]
El

TABLE VIII: As in Table [VII] but using maximum pairwise
correlation instead of the average.

1 2 3 8 9 11T Avg. [10]
Between selected classifiers
ENet target 0.85 0.85 0.62 0.86 0.74 0.860.80 [11]
ENet non-target |0.83 0.83 0.73 0.63 0.55 0.63.70
From non-selected classifiers (12]
ENet target 0.77 0.75 0.69 0.82 0.82 0.820.78 [13]
ENet non-target 0.58 0.58 0.63 0.67 0.73 0.640.64
Full ens. target | 0.85 0.85 0.69 0.86 083 0.8e0.82| [[4
Full ens. non-target0.83 0.83 0.73 0.67 0.63 0.640.72

(15]

In summary, the analysis shows that while sparsity doﬁ%]
indeed reduce pairwise correlation in the ensemble, airoel
itself does not tell the full story of which classifers arel-m
redundant. One reason might be that pairwise correlationis
unable to capture higher-order classifier dependenciesl|abi

observations have been made for instance_in [43]. [18]

VI. CONCLUSION

We have presented a sparse regularized logistic regres%g,?
score fusion for speaker verification. We optimized oureyst
using audio data from NIST SRE 2008 corpus and evaluatﬁg]
using NIST SRE 2010 corpus (i.e. Evalset). We find that sparse
regularization brings improvement over unregularizedardar
in all other sub-conditions and measures (EER, MinDCR1]
ActDCF) except in tel-tel condition.

In the condition itv-ity, LASSO regularization provided[22]
better performance than elastic-net. It shows that estigat
the trade-off parametett by cross-validation is not always [23]
successful. As a future work we plan to utilize Bayesian nhode
selection techniques to automatically estimate botand o [24]
parameters from the fusion training set.

As a future work, it would be interesting to pursue methodé°)
that optimize ensemble diversity and ensemble classificati
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