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Abstract—State-of-the-art speaker verification systems take
advantage of a number of complementary base classifiers by
fusing them to arrive at reliable verification decisions. In speaker
verification, fusion is typically implemented as a weighted linear
combination of the base classifier scores, where the combination
weights are estimated using a logistic regression model. An
alternative way for fusion is to use classifier ensemble selection,
which can be seen as sparse regularization applied to logistic
regression. Even though score fusion has been extensively studied
in speaker verification, classifier ensemble selection is much less
studied. In this study, we extensively study a sparse classifier
fusion on a collection of twelve I4U spectral subsystems on
the NIST 2008 and 2010 speaker recognition evaluation (SRE)
corpora.

Index Terms—Classifier ensemble selection, linear fusion,
speaker verification, experimentation

I. I NTRODUCTION

SPEAKER verification is the task of accepting or rejecting
an identity claim based on a person’s speech sample [1].

Modern speaker verification systems utilize ensembles ofbase
classifiers to arrive at an accurate verification decision by
classifier fusion. The base classifiers might utilize, for instance,
different speech parameterizations (e.g. spectral, prosodic or
high-level features), models (e.g. Gaussian mixture models
[2] or support vector machines [3]) or channel compensation
techniques (e.g. joint factor analysis [4] or nuisance attribute
projection [5]).

In this study, we consider weighted linear combinations of
the base classifier scores as the fusion. With a small number of
adjustable parameters, linear fusion scheme often shows good
generalization performance. But it is crucial for the weights to
be optimized using robust method which tolerates reasonable
deviations in the base classifier score distributions. In speaker
verification, the scores may vary considerably between the
training and runtime data mainly due to differences in acoustic
environments and transmission channels. The obvious weight
optimization strategy, minimizing error rate on the training set,
easily overfits [6].

A natural solution is to use a convex surrogate loss function
instead that serves as an upper bound to the0-1 loss func-
tion [6]. Optimizing an upper bound is expected to reduce
the classification error rate on the unseen data while strict
convexity ensures the existence of a unique global minimum.
Well-known loss functions with these desiderata include the
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hinge lossused in training SVMs [7] and the logistic loss,
also known as thelogistic regressionmodel [8]. The latter
one has been found reliable in independent studies of fusion
in speaker verification [8], [9], [10]. Considered as thede
facto standard in speaker verification studies, with readily
available implementations (e.g. [11], [12]), we take the logistic
regression model as our baseline. One further advantage of
the model is that the fused scores have an interpretation as
automatically calibratedlog-likelihood ratios(LLRs). In addi-
tion to producing interpretable scores, this enables designing
the verification threshold using the standard Bayes’ minimum
risk classifier design [13] based on assumed class priors and
pre-specified misclassification costs.

Logistic regression is a probabilistic model of the decision
boundary between two classes and its parameters (weights) are
usually found as themaximum likelihood(ML) estimate on a
training set [15]. However, ML solution easily overfits with
limited number of training scores (trials) which manifestsitself
as fusion weights with large magnitude [7]. Consequently,
even a small change in the base classifier outputs causes large
change in the fusion score leading to unreliable decisions.

Motivated by this observation, we considerregularized[16]
logistic regression whereby weight vectors with large normare
penalized. Regularization defines a constrained optimization
problem where one finds a compromise between training
data accuracy while avoiding weights with large magnitude.
Regularized solution can also be viewed asmaximum a
posteriori (MAP) estimate of the fusion weights, over which
one imposes a prior distribution [16]. As in any practical
Bayesian learning method, two additional design concerns are
now introduced: (1) choosing the regularizer (functional form
of the weight prior) and (2) training its parameters that act
as hyperparameters. To exemplify,ridge regression[16] or
squared Euclidean norm regularization corresponds to choos-
ing an isotropic Gaussian prior with zero mean where the
variance parameter determines the degree of regularization
applied. In this study, we train the regularization parameters
using a held-out validation dataset and focus on the first design
question, the choice of the regularizer.

In this paper, we advocatesparse regularization applied
to logistic regression model training in speaker verification.
Sparse regularization means that, in addition to optimizing
fusion weights for the full classifier ensemble, we would like
to implement simultaneouslyclassifier ensemble selectionby
forcing redundant classifiers to have zero weight. Classifier
selection can be also seen as afeature selectionproblem [17].
Feature selection methods are generally divided into three
groups:wrappermethods that use classification error to select
features,filter methods that use a surrogate cost function to
select features andembeddedmethods which jointly select
the subset of features and optimize the classifier parameters.



MANUSCRIPT, IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 2

w
1

w
2

 

 

−2 −1 0 1 2
−2

−1

0

1

2

w
1

w
2

−2 −1 0 1 2
−2

−1

0

1

2

w
1

w
2

−2 −1 0 1 2
−2

−1

0

1

2

Trainset (NIST 2008) Devset (NIST 2008) Testset (NIST 2010)

Unconstrained
minimum

Minima optimized
on devset

True minimum

Fig. 1: Regularized classifier fusion. We display the contours ofCwlr for fusion of two classifiers. The global minima ofCwlr are indicated
by red crosses. For constrained optimization, we search for the minimuminside the region(wp

1 + w
p
2)

(1/p)
≤ 1 (here, the casesp = 1 and

p = 2 are displayed). The casep = 1 finds asparsesolution because classifier 2 gets zeroed. This solution hits closest to the true minimum
on the unseen test data. Evenℓ2 regularization (p = 2) outperforms the unconstrained case. Thus, regularization and sparsification might be
particularly useful under unpredictable corpus mismatches [14].

Sparse logistic regression studied here belongs to this last
category.

There are several arguments favoring the sparse fusion
approach. Firstly, even though the full system may consist
of up to a dozen of base classifiers (e.g. [18]), these are
often redundant; they might utilize only slightly different
spectral front-ends, training parameters, acoustic models and
development corpora. It is therefore reasonable to assume that
the effective number of base classifiers contributing further
uncertainty reduction in the fused score is relatively small.
An experimental validation for this hypothesis comes from
our recent study [19]. Applying exhaustive classifier selection
and weight optimization from a pool of 12 classifiers [18],
we found that a classifier ensemble with only 4 classifiers
outperformed full ensemble in accuracy. Interestingly, similar
experimental result was found by MITLL site in their language
recognition submission to NIST LRE 2011, subset of 3 base
classifiers out of total 5 in the full ensemble gave the best
performance [20]. Secondly, reducing the effective number
of model parameters is expected to improve generalization
performance because of reduced model variance [21]. Finally,
computational benefits are obvious during system run-time as
the excluded classifiers need not to be invoked.

Even though joint classifier ensemble selection and training
the fusion weights is a combinatorial optimization problem,
it can be mathematically formulated asℓ0-regularization [16]
where the regularizer (zeroth norm) counts the number of
non-zero weights, corresponding to the selected classifier
ensemble. Since its time complexity is still exponential with
respect to the number of base classifiers, the usual workaround
is to useℓ1-regularization instead, a method known as LASSO
(least absolute shrinkage and selection operator) [22]. In
the logistic regression model,ℓ1-regularization has also been
applied [23]. LASSO shrinks all the coefficients, with some
of them forced to be exactly zero. By regularizing logistic
regression with the LASSO constraint, we can simultaneously
optimize fusion weights and perform classifier selection.

Convex combination of ridge regression and LASSO leads
to another regularization technique known aselastic-net(E-
net) [24], which retains the zeroing capability of LASSO,
but because of the ridge term it does not push base classi-
fier weights to zero as aggressively as LASSO or classifier

ensemble selection do.
This study summarizes and extends our preliminary work

on classifier selection [19] and sparse fusion [25], [14]. We
expand the theory part in three respects. First, Section II is
expanded as a tutorial-like material for readers less familiar
with state-of-the-art fusion. Second, we provide mathematical
evidence that, under reasonable assumptions, baseline (un-
regularized) logistic regression is unlikely to produce sparse
solutions. Thirdly, we give a detailed account into setting
of the regularization parameters. This involves arguing that
sparse regularization is able to zero out unreliable classifiers
and that, under ideal conditions (no observation noise in the
scores), theℓ1 solution converges to unregularized solution.
The experimentation is further expanded by (1) providing com-
parison of different score pre-warping variants for calibration
purposes, (2) providing detailed comparison of unregularized
and regularized fusion schemes on subconditions of the NIST
SRE 2010 core task and (3) providing analysis of correlation
coefficients across the selected classifiers. To sum up, even
though regularization and sparsification have been studiedfor
both linear and logistic regression schemes, their integration
into fusion schemes in speaker verification is novel. Our study
is the first large-scale comparison of regularized, in particular
sparse, fusion schemes in speaker verification.

II. L INEAR SCOREFUSION IN SPEAKER VERIFICATION

A. Problem Setup

We assume that, during the development phase, one has
access to a development setD = {(si, yi), i = 1, 2, . . . , Ndev}
containingNdev score vectors fromL base classifiers,si ∈
R

L. Here, yi ∈ {0, 1} indicates whether the corresponding
speech sample originates from a target speaker(yi = 1) or
from a non-target(yi = 0). Though it is not always the case
during the NIST SRE campaigns, here we assume that these
labels contain no errors. We consider linear score fusion of
the form fw(s) = w0 +

∑L

l=1 wlsl = wTs, where w =
(w0, w1, . . . , wL)

T contains the classifier weightsw1, . . . , wL

(discrimination component) and the biasw0 (calibration com-
ponent). The augmented score vectors = (1, s1, s2, . . . , sL)

T

contains constant 1 and the base classifier output scores.
Our goal is to find optimal weight vector (say,w∗) so that

classification errors are minimized on the development data,
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thus hopefully on the unseen evaluation data. Here we adopt
thedetection cost function(DCF) commonly used in the NIST
speaker recognition evaluations1 to assess the accuracy of any
speaker verification system:

DCF(θ) = CmissPmiss(θ)Ptar + CfaPfa(θ)(1− Ptar). (1)

Here,Pmiss(θ) andPfa(θ) are the miss and false alarm prob-
abilities as a function of the decision thresholdθ, Ptar is the
prior probability of a target (true) speaker,Cmiss is the cost
of a miss (false rejection) andCfa is the cost of a false alarm
(false acceptance).

In speaker verification, (1) is used for computing both the
actual (ActDCF) andminimum(MinDCF) values. The actual
cost refers to the DCF value obtained whenever the decision
thresholdθ is fixed to a particular value beforehand, whereas
MinDCF indicates the oracle value (minimum) on the test
set that can easily be found by linear search over the range
of θ. Therefore, by definition ActDCF≥ MinDCF, and the
difference ActDCF - MinDCF can be used as a measure of
calibration error in terms of how well thew0 was estimated.
Score magnitudes can also affect calibration, as is the casein
NIST SRE 2012, but in this present work we consider only
the additive term.

B. Logistic regression

To train the fusion device, in theory one can optimize (1)
directly, for instance by using a neural network [26]. For the
reasons discussed above, we optimize the weights using a
convex loss function instead.Logistic regressionis a proba-
bilistic linear model, which is based on the fact that posterior
probability of the class label being the target class can be
written asp(y = 1|s) = (1 + exp{−g(s)})−1 for any class-
conditional densities [15]. The functiong(s) takes the form
wTs when the class-conditional densities follow exponential
family of distributions with a shared dispersion parameter(e.g.
variance). We can thus express the target class posterior as
p(y = 1|s) = (1 + exp{−(wTs)})−1 = σ(wTs) [15], where
σ(.) is a logistic sigmoid function. The posterior for the non-
target class is thenp(y = 0|s) = 1− p(y = 1|s) = σ(−wTs)
by the properties ofσ(.). Furthermore, the quantitywTs has an
interpretation as thelog odds, i.e. ln[p(y = 1|s)/p(y = 0|s)]
[7], as one can verify by straightforward algebra.

Using the development above, we are now able to write the
likelihood function for the logistic regression model [7]:

p(y|w) =

Ndev
∏

n=1

{

σ(wTsn)
ynσ(−wTsn)

1−yn
}

, (2)

where y is the Ndev-dimensional vector of all labelsyn.
Maximum likelihood (ML) estimate ofw can be found by
taking the negative logarithm of (2), which yields thecross-
entropycost [7]:

−
Ndev
∑

n=1

{

yn lnσ(w
Tsn) + (1− yn) lnσ(−wTsn)

}

. (3)

1http://www.itl.nist.gov/iad/mig/tests/spk/

This is also known as theCllr cost in [27]. The minimum
of (3) does not have closed form soluton [7], however it is
convex, so iterative gradient descent methods can be used to
find optimalw∗.

The above formulation assumes that the costs of miss and
false alarm are equal(Cmiss = Cfa) and thatPtar = 0.5.
To re-calibrate the model according to the pre-specified cost
parameters(Cmiss, Cfa andPtar), the following modification
is used [27]:

p(y = 1|s) = σ(wTs+ logitPeff), (4)

where Peff is known aseffective prior, which summarizes
the three application-dependent parameters into a single pa-
rameter,Peff = logit−1(logit(Ptar) + log(Cmiss/Cfa)), with
logitP = log (P/(1− P )) = −θ. Bayes-optimal decision is
then achieved by placing the threshold to− logit(Peff).

In addition to DCF parameters, the number of positive and
negative examples in the development set might be highly
imbalanced. This is the case with the NIST evaluations. As an
example, in the female itv-itv condition in NIST SRE 2010
only 3.45% of the trials are target (positive) trials. This would
mean that the cross-entropy objective (3) will be strongly
dominated by one of the two classes leading to biased weights.
To take this class imbalance problem into account, the cost was
further modified in [9] as follows:

Cwlr(w,D) =
Peff

Nt

Nt
∑

i=1

log
(

1 + e−w
T
si−logitPeff

)

+
1− Peff

Nf

Nf
∑

j=1

log
(

1 + ew
T
sj+logitPeff

)

(5)

where the two sums go through theNt target score vectorssi
and theNf non-target score vectorssj , respectively.

C. Score pre-warping

Since the raw base classifier scores may have different inter-
pretations (e.g. log-likelihood ratios, SVM scores or i-vector
cosine distances) with considerable variation in their scales, it
is important to properly align the score distributions [28]. Note
that the base classifiers typically include their internal score
normalization such as T-norm [29], used for normalizing the
classifier outputs across varying test segments and speakers
with the help of external cohort models. Here the concern
is to make global score alignment at the classifier level. To
avoid confusion with speaker score normalization techniques,
we refer to global classifier-level score pre-processing asscore
pre-warping.

Most common pre-warping ismean and variance normal-
ization (MVN), also known as z-normalization. Mean (µ)
and standard deviation (σ) of the entire score distribution
is estimated from the training data and applied to the held
out score (s) as s 7→ (s − µ)/σ. MVN defines affine score
normalization whose parameters can also be discriminatively
learned, as we will see later.

In addition to the MVN where the range of the pre-warping
function was unbounded, we also considerz-cal [30] and s-
cal [9] methods that intentionally set upper and lower limits

http://www.itl.nist.gov/iad/mig/tests/spk/
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TABLE I: Score pre-warping methods used in this study.

Type of # parameters Discr.
pre-warping Learning

MVN 2 No
z-cal (unclip) 2 Yes
z-cal (clip) 4 Yes
s-cal 4 Yes

on the pre-warped scores. We thus call these methodsclipped
variants. These methods were originally devised to overcome
the problem of labeling errors, assumption being that small
portion of target trials were accidentally marked as non-target
and vice versa. In [9], s-cal was applied on the fusionoutput
but we apply it to theinputs before fusion. By applying
clipping to the score pre-warping, non-linearity is applied. This
leads to a score pre-warping effect that linear fusion device is
not able to recreate.

Both z-cal and s-cal aim at converting arbitrary scores to
well-calibrated log-likelihood ratios (LLRs). The s-cal pre-
warping is

LLRscal(sn) = log
(logit−1α)(exsn+y − 1) + 1

(logit−1β)(exsn+y − 1) + 1
, (6)

where the saturation parametersα, β and the affine param-
etersx, y are optimized using the development set, with the
attached ground truth labels so that theCllr cost in (3) is
optimized [27]. As the problem is no longer convex in the
unknowns, we utilize unconstrained nonlinear Nelder-Mead
optimization algorithm [31] to find locally optimum values
for α, β, x and y. In each new estimate of the parameters,
the development set scores are pre-warped using (6) and the
optimality of the parameter estimates is computed usingCllr in
(3); we utilize Matlab’sfminsearch function to implement
this. Occassionally the optimizer produced singular solutions.
Those were detected, by noticing that thenCllr is one, and
rejected. If a solution was rejected then new one is computed
by stronger regularization.

The z-cal pre-warping function is defined similarly to s-
cal, only difference being that instead of smooth sigmoidal
shape, z-cal defines a piece-wise linear function with hard
thresholding (clipping). Z-cal is defined as:

LLRzcal(sn) = (sn − xmin)
ymax − ymin

xmax − xmin
+ ymin, (7)

where we setLLRzcal(s) = ymin for all scores satisfying
LLRzcal(sn) < ymin; similarly LLRzcal(sn) = ymax for
all scores withLLRzcal(sn) > ymax. z-cal parameters are
optimized in a same way as s-cal parameters. We also ex-
perimented with the unclipped variant of z-cal, optimization
was performed in a same way except that the clipping step was
not used. It is expected that unclipped z-cal will provided sim-
ilar results as optimizing fusion scores without pre-warping.
Score pre-warping methods selected for this study have been
summarized in Table I.

III. R EGULARIZED CLASSIFIER FUSION

A. Unregularized model is unlikely to find sparse solutions

We argue that in order to produce, in a general case, a
sparse weight vector,w one has to use sparsity promoting
regularizer, such asℓ0 andℓ1. In the following, we see when
unregularized logistic regression (i.e. via maximum likelihood
training) can produce sparse solutions. First, the maximum
likelihood solution ofw is characterized as [15]:

w = Σ−1(µ1 − µ0), (8)

if the class-conditional densities follow Gaussian distribution.
In (8),Σ is the shared covariance matrix andµ1 andµ0 are the
class-conditional mean vectors. If we takeΣ to be diagonal,
as was assumed in [8], then for each base classifier,

wl =
1

σ2
l

dl, l = 1, . . . , L (9)

where dl is the difference between the means for thelth
dimension. It is clear that, under these assumptions,wl can
be exactly zero only when the means of target and non-
target scores completely match which is unlikely to happen for
any reasonably-performing speaker verification system. Onthe
other hand, an extremely large varianceσ2

l would also push
wl arbitrarily close to zero, but not exactly zero.

The above argument assumed diagonal covariance matrices
and a particular special case of logistic regression. Even
though the same analysis no longer holds for full covariance
matrices, it does illustrate that there are cases when unreg-
ularized solution cannot find a sparse solution. With sparsity
promoting regularizers, on the other hand, we can force sparse
weights regardless of whether the classifiers are correlated or
not.

B. Classifier Ensemble Selection as Regularization

Up to this point, we have defined the standard fusion
framework, assuming a full ensemble ofL classifiers. Now,
instead of just optimizing the weights, we are in search of both
the optimal classifier ensemble and weights. Assume that we
have decided on an appropriate size of the ensemble given by
integer variableK, K < L. We would like to minimize (5)
subject to this constraint. Obviously, one can simply enumerate
all the

(

L
K

)

= L!
K!(L−K)! possible classifier ensembles to ensure

that the size constraint is satisfied, and optimize the weights
by minimizingCwlr for each of these ensemble candidates and
choosing the one that minimizes the cost function.

In this paper, we show that a better way formulating the
problem is by casting it into the regularization framework.In-
terestingly, the exhaustive search can be seen as regularization
with ℓ0-norm. Note that theℓ0-norm of vectorw, defined as
‖w‖0 ,

∑

i |wi|0, counts the number of nonzero elements in
w [16]. This is because|wi|0 equals 1 everywhere except for
wi = 0 one defines it as 0. Thus, an equivalent formulation
of the above combinatorial optimization problem is

min
w

Cwlr(w,D) s.t. ‖w‖0 ≤ K. (10)

Although it is clear that the combinatorial search outlined
above is not very practical for largeL, it is guaranteed to give
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the optimum classifier ensemble choice for a given set of data.

C. Practical Regularization via Ridge, LASSO and Elastic Net

For computational reasons the‖w‖0 constraint is typically
approximated using the‖w‖1 constraint, which is also known
as LASSO [16]. The vector norm can also be constrained by
‖w‖22, which corresponds toridge regression. However, unlike
LASSO, ridge is not a sparsity promoting constraint [16].

In the case of LASSO, (10) is modified as,

min
w

Cwlr(w,D) s.t. ‖w‖1 ≤ t, (11)

wheret determines the desired amount of shrinkage. In (10),
the norm‖w‖0 ∈ Z

+ has an interpretation as the maximum
number of classifiers retained, but this does not necessarily
hold for ‖w‖1 ∈ R

+ which takes up any positive real value.
Therefore, rather than based on human judgment,t in (11)
should be merely considered as a control parameter. In this
study, we optimizet using cross-validation. A useful insight
into choosing a suitable range of possiblet’s is the desired
amount of shrinkagerelative to the unregularized solution.
That is, sett = t̂ · ‖wML‖1, wherewML are the maximum
likelihood weights for (5) and̂t is the desired amount of
shrinkage, such aŝt = 0.90.

From a viewpoint of optimization software packages, a more
useful form of (11) is its Lagrange multiplier formulation,

min
w

{Cwlr(w,D) + λ‖w‖1} , (12)

whereλ is the Lagrange multiplier. It is known that the larger
λ, the more the norm‖w‖ will be shrunk [22]. Example
of (12) on real data can be seen in Fig. 1, where two base
classifiers are fused. From the example it is clear that weights
found by the direct optimization of (5) would lead to non-
optimal solution for the test set.

When optimization is based on (12), the correspondence
betweenλ and the shrinkage thresholdt can be found by a
binary search on the possible values ofλ. In each iteration,
we select oneλ and optimize the weights using it, output is
then the norm of the weights. Final weight vector is the one
whose norm is closest to the targett, but does not violate it.

Elastic-net, on the other hand, is based on the idea that we
can combine bothℓ1 andℓ2 regularizers into one constrained
optimization problem,

min
w

{

Cwlr(w,D) + λ
(

α‖w‖1 + (1− α)‖w‖22
)}

. (13)

As can be seen, Eq. (13) is a generalized variant of both
LASSO and ridge regression. One can always find such aα
where, in terms of performance, elastic-net will at least asgood
as LASSO or ridge regression. However, whereas LASSO and
ridge regression had to select only one regression parameter,
now we need to cross-validate over a 2-d space. In this work,
the α parameter is first fixed and then shrinkage factorλ is
cross-validated as in LASSO and ridge. In practice,α will also
be cross-validated in so that the bestα and shrinkage factor
will be selected based on cross-validation set to be appliedon
the evaluation set.

Depending on the chosen regularization method, there are
different strategies to optimize regularized cross-entropy ob-

TABLE II: Selection of the three datasets used in this study.

Dataset Usage Data source # Trials

Trainset Train fusion parameters NIST 2008 2434 t, 238971 f
itv-itv ♀subset

Devset Compare fusion and NIST 2008 2408 t, 239244 f
pre-warping methods and itv-itv♀subset
classif. selection

Evalset Validate results NIST 2010 5235 t, 146623 f
itv-itv ♀subset

jective. Since logistic regression using quadratic regularization
is differentiable, it can be efficiently optimized using standard
packages [7]. Situation is not so simple for LASSO regu-
larization. In [22], aquadratic programming(QP) solution
was proposed by rewriting the constraints in (12) to a more
convenient form. However, more recent techniques are faster in
practice, for that reason we applyprojectionL1algorithm [32]2

that optimizes the Lagrangian form of (12). We apply the same
method to elastic-net. Since the sum of two convex functions
is still convex, we can minimizeCwlr(w,D)+λ(1−α)‖w‖22,
given λα‖w‖1 as the constraint.

D. Sparse Regularization Knocks Out Noisy Classifiers

Is there a way to tell whether a given base classifier gets
knocked out for a givenλ? In the case ofℓ1-norm and
standard linear regression, it has been shown that the weights
satisfy [33],

wl =

{

wML
l − ǫl sign(w

ML
l ), |wML

l | > ǫl

0, |wML
l | ≤ ǫl

, (14)

wherewML
t is the maximum likelihood estimate of the weight

of the base classifierl, ǫl =
√
λσ2

∑
n s2

ln

, σ2 is noise variance
(needed in standard regression setup) andsln is thenth score
of base classifierl. Thus,ℓ1-norm based regularization defines
an interval of 2ǫl around the origin where zero weight is
obtained. For the case of logistic regression,ℓ1 regularization
similarly defines an interval around the origin, where weight
is zero [33]. Note that we can writeǫl =

√
λ/ξl, where

ξl ,
∑

n s
2
ln/σ

2 is the ratio of “signal” to noise variance.
Therefore, the noisier the classifier scores (lowerξl), the larger
the interval 2ǫl and the higher the chance that a classifier
gets zeroed out. For noise-free case (ξl → ∞), the solution
converges to the ML weight:wl → wML

l .
This above reasoning shows that, while constantλ is applied

for all base classifiers, the amount of shrinkage (hence, zeroing
out) depends on the noise level of that base classifier. Since
the noise variance is generally unknown,λ can be used
for adjusting the zeroing interval with cross-validation.The
reasoning here concerns standard linear and logistic regression
but similar arguments could be made for regularizedCwlr.

IV. CORPORA, METRICS AND BASE CLASSIFIERS

We utilize the NIST 2008 and NIST 2010 corpora in our
experiments3. The usage of each corpus is shown in Table II.

2http://www.di.ens.fr/∼mschmidt/Software/code.html
3http://www.itl.nist.gov/iad/mig/tests/sre/

http://www.di.ens.fr/~mschmidt/Software/code.html
http://www.itl.nist.gov/iad/mig/tests/sre/
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TABLE III: Twelve base classifiers, calibrated using MVN, are constructed using different cepstral features and speaker modeling techniques.

Classifier Feature
Devset Evalset

EER MinDCF ActDCF ActDCF- EER MinDCF ActDCF ActDCF-
(%) (×100) (×100) MinDCF (%) (×100) (×100) MinDCF

1 GMM-UBM-JFA PLP 3.44 1.6748 1.6979 0.0231 7.18 3.3108 3.3911 0.0803
2 GMM-UBM-JFA PLP 3.45 1.4309 1.5547 0.1238 5.74 2.3852 2.4268 0.0416
3 GMM-UBM-JFA PLP 3.32 1.4760 7.7305 6.2545 4.62 2.6668 8.2292 5.5624
4 GMM-UBM-JFA LPCC 3.99 1.9056 7.8119 5.9063 10.68 5.7845 6.5031 0.7186
5 GMM-SVM-KL PLP 3.74 1.8597 5.2105 3.3508 6.82 2.9659 6.9683 4.0023
6 GMM-SVM-KL MFCC 3.16 1.1564 1.4921 0.3357 5.45 2.7169 2.7338 0.0168
7 GMM-SVM-KL LPCC 3.53 1.4877 1.8412 0.3535 8.35 4.1369 6.2928 2.1559
8 GMM-SVM-KL MLF [34] 2.95 1.2965 1.7472 0.4508 8.29 3.9229 4.4433 0.5204
9 GMM-SVM-KL LPCC 3.82 1.9267 5.2591 3.3324 10.55 4.9308 4.9947 0.0639
10 GMM-SVM-KL SWLP [35] 6.69 3.6348 3.6585 0.0237 10.75 5.0897 5.7239 0.6342
11 GMM-SVM-FT [36] PLP 4.45 1.9574 6.6046 4.6472 8.60 3.7126 8.0517 4.3391
12 GMM-SVM-BHAT [37] PLP 3.12 1.2151 1.3090 0.0938 6.28 2.9944 3.0175 0.0232
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Fig. 2: Comparison of fusion methods using the full ensemble s-cal
pre-warping on Trainset. The best individual classifier (for ActDCF)
is also shown. The circles indicate the ActDCF points.

To avoid any evaluation bias from pooling of incompatible
subcondition scores (see [38]), we mostly focus on the female
trials4 of the interview-interview (itv-itv) sub-condition in the
core task. Nevertheless, both genders and three other sub-
conditions (itv-tel, mic-mic, tel-tel) are included into the final
validation. The audio files from all NIST 2008 speakers were
split into two disjoint parts. In this regard, audio files (includ-
ing both training and test files in the official NIST 2008 SRE
dataset) from the same speaker were grouped together based
on the available metadata. We then splitted the speakers into
two groups, consisting of 475 and 711 speakers, respectively.
Trials were then generated separately from those two sets by
assigning training and test files randomly based on the speaker
information. We kept the empiricalPtar close to those in the
official NIST 2008 SRE trial lists. The first part,Trainset, is
used for training the score pre-warping parameters (s-cal was
used as precalibration method), fusion weights and bias. The
second part,Devset, is used for optimizing the ensemble size
(K) for subset selection, shrinkage parameter (λ) for LASSO,
ridge and elastic net, and the tradeoff between LASSO and
ridge for elastic net (α). The optimized parameters are then
applied to the NIST SRE 2010 trials (Evalset), which serves
for evaluation purposes. For the oracle subset selection, the
classifier ensembles are optimized by exhaustive search on
Evalset.

4Female trials are somewhat more difficult than males. Similar rationale
was taken, for instance, in [4].

For evaluation of the methods, we consider the detection
cost function in (1), where the cost parameters areCmiss = 10,
Cfa = 1 andPtar = 0.01. We measure both the minimum DCF
(MinDCF) and the actual DCF (ActDCF). We also consider
calibration error, defined as the difference of ActDCF and
MinDCF, and the well-knownequal error rate(EER), corre-
sponding to the case of equal miss and false alarm rates5.

Table III shows our twelve base classifiers based on dif-
ferent cepstral features and four different speaker modeling
techniques. When a base classifier shares the same model and
features, it means that the base classifiers are independent
implementations. For speaker modeling, we use the generative
GMM-UBM-JFA [4] and the discriminative GMM-SVM ap-
proaches with KL-divergence kernel [39] and Bhattacharyya
kernel (BHAT) [37]. We also include feature transformation
(FT) method [36] as an alternative supervector for SVM. All
of the methods are grounded on the universal background
model (UBM) paradigm [2] and share similar form of subspace
channel compensation, though the training methods differ.
We used data from the NIST 2004, 2005 and 2006 corpora
to train the UBM and the session-variability subspaces, and
additional data from the Switchboard corpus to train the
speaker-variability subspace for the JFA systems. Each base
classifier has its own score normalization prior to score pre-
warping and fusion. To this end, we use TZ-norm [29] with
NIST 2004 and NIST 2005 data as the background and cohort
training data.

V. RESULTS

A. Choosing Score Pre-Warping and Fusion Training Methods

We first compare the score pre-warping and fusion training
methods on the full set ofL = 12 base classifiers in Table IV.
Here we consider three methods to obtain the fusion method.
The first method,equal weightsuses uniform weights and does
not require training. In the second method,GradientCwlr, we
use standard conjugate gradient optimization of the weighted

5For finite data points, one does not findPmiss = Pfa exactly. In this
study, we use linear interpolation between the two closest discrete data points
to compute EER. For the interested reader we point to the alternative method
using convex hulls on ROC curve (ROCCH), available in [12].
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logistic regression cost,Cwlr. In the third method,EM-like
MinDCF, we directly optimize MinDCF using an EM-like
procedure as follows. We start with equal weights and find
the thresholdθ that minimizes MinDCF. Given fixed threshold,
weights are optimized using the Nelder-Mead algorithm [31].
The process is iterated until convergence; for more details,
refer to [19].

The first three rows show best individual base classifiers
in terms of ActDCF, MinDCF and EER. As these scores are
not pre-calibrated, calibration error is quite large. As expected,
fusion improves accuracy over the best single classifier sys-
tematically. Regarding score pre-warping, z-cal and s-calyield
similar results. They produce less errors compared to both
the unwarped and the non-clipped score pre-warping variants.
Fusion training with Grad.Cwlr and with no score pre-warping
at all and unclipped z-cal yields same EER and ActDCF, but
in MinDCF there is a slight difference. As the optimization
cost of linear calibration andCwlr are slightly different, there
are small differences in MinDCF. In addition, generative pre-
warping strategy by MVN also yields different but comparable
results to all three unclipped variants.

Comparing the fusion training methods, gradientCwlr sys-
tematically outperforms the other two methods in all three
costs. The DET plot in Fig. 2 confirms this. We find the
direct optimization of MinDCF produces generally higher
error rates than logistic regression (Cwlr) which does only
indirect minimization. This suggests that logistic regression
offers better generalization performance. For the rest of the
experiments, we choose gradientCwlr with s-cal.

TABLE IV: Fusion of all theL = 12 base classifiers on the
Devset. The first three rows show the individually best base
classifiers.

Fusion method
Score

EER MinDCF ActDCF
ActDCF-

pre-warping MinDCF

Best ActDCF – 3.74 1.8597 3.0131 1.1534
Best MinDCF – 3.16 1.1564 18.4600 16.600
Best EER – 2.95 1.2965 14.7607 13.464
Equal – 2.09 0.8385 5.9863 5.1478
weights MVN 2.10 0.8219 2.3085 1.4865

z-cal (unclip) 2.08 0.8080 1.1022 0.2942
s-cal 2.03 0.7907 0.9176 0.1269
z-cal (clip) 1.99 0.7786 0.9617 0.1830

Grad. – 1.83 0.6172 0.6231 0.0059
Cwlr MVN 1.83 0.6139 0.6235 0.0096

z-cal (unclip) 1.83 0.6135 0.6231 0.0096
s-cal 1.70 0.6031 0.6147 0.0116
z-cal (clip) 1.66 0.5940 0.6183 0.0243

EM-like – 2.03 0.7038 2.1931 1.4892
MinDCF [19] MVN 2.03 0.7095 4.2973 3.5878

z-cal (unclip) 2.03 0.7159 1.5044 0.7885
s-cal 1.89 0.6440 2.7454 2.1014
z-cal (clip) 1.95 0.6631 9.9502 9.2871

B. Effect of Regularization

We now turn attention to weight optimization using the
three regularizers described above (ridge, LASSO and elastic
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Fig. 3: Effect of the shrinkage factor (Devset, female trials, itv-itv
condition). The relative shrinkage factor inx-axis is t̂ in Eq. (11)
normalized by the unregularized weight norm.

TABLE V: Chosen NIST 2010 subconditions.

NIST 2010 common cond.
1 2 3 4 5 6 7 8 9

itv-itv × ×

itv-tel ×

mic-mic × ×

tel-tel × × ×

net). Fig. 3 shows the effect of regularization to recognition
accuracy on Devset. For ease of interpretation, we show
the accuracy as a function of the normalized regularization
contraint t̂ = t/‖wML‖ rather than the Lagrange multiplier
λ. Here, t is the constraint in Eq. (11) andwML denotes
the unregularized (maximum likelihood) weight vector. Thus,
t̂ = 1 corresponds to the unregularized solution.

In sparse regularized fusion training, all weights are con-
strained by regularizer, some are pushed to zero, but even
those that are retained are regularized. Thus, when mismatch
between Devset and Trainset is small it is expected that even
subset of classifiers, which weights are regularized, cannot
improve on the unregularized fusion. Elastic net withα = 0.2
marginally improves ActDCF. Elastic net withα = 0.2 and
α = 0.8, respectively, has similar ActDCF trends as ridge and
LASSO, as one may expect. A general trend is that aggressive
shrinking (small̂t) increases both MinDCF and ActDCF. The
equal error rate (EER), however, does not follow the same
trend; this might be because weight optimization target is the
DCF rather than the EER region.

C. Extended Results on Other Conditions

Table VI shows accuracies for all the subconditions of the
NIST 2010 core task as listed in Table V. We compare five
fusion strategies:

• Best individual: individually best base classifier (smallest
ActDCF on Devset)

• No regularization: unregularized logistic regression,
similar to FoCal and BOSARIS software packages.

• Ridge: ridge regression (ℓ2) regularization.
• LASSO: LASSO (ℓ1) regularization.
• E-net: elastic net (ℓ2 and ℓ1) regularization.
All of these are treated the same way regarding the use of

datasets: fusion training is carried out on Trainset while the
regularization parameters are optimized on Devset, where min-
imum ActDCF is used as the criterion. In the case of ties, we
select the most aggressive regularization factor. Optimizations
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TABLE VI: Full comparison of fusion methods on NIST SRE 2010.All fusion parameters have been cross-validated using
Devset. The star (⋆) denotes a statistically significant difference (McNemar’s test [40], [41] at 95 % confidence) to unregularized
fusion regarding the number of misses (Nmiss) or false alarms (Nfa). The t̂ is the normalized shrinkage constraint relative to
unregularized norm. The total number of genuine (Ngen) and impostor (Nimp) trials in each condition are also indicated.

Ensemble EER
(Nmiss,Nfa)

MinDCF
(Nmiss,Nfa)

ActDCF
(Nmiss,Nfa)

ActDCF- Ensemble
Ngen. Nimp.selection (%) (×100) (×100) MinDCF t̂ Size

itv
-it

v

Best ind. 5.45 (285, 7997) 2.7169 (972, 1274)3.8767 (436, 4508) 1.1597 1 1

5235 146623
No regul. 3.41 (179, 4996) 1.7135 (581, 894)2.5198 (270, 2968) 0.8063 1 12
Ridge 3.40 (178, 4986) 1.7012 (594,⋆839) 2.5109 (271, 2952) 0.8097 0.96 12
LASSO 3.32 (174, ⋆4865) 1.6869 (595, ⋆815) 2.2354 (288, ⋆2496) 0.5486 0.96 6
E-netα = 0 3.40 (178, 4986) 1.7012 (594,⋆839) 2.5109 (271, 2952) 0.8097 0.96 12

itv
-t

el

Best ind. 3.03 (24, 918) 1.3879 (75, 138) 1.7761 (50, 352) 0.3882 1 1

801 30254
No regul. 2.45 (19, 742) 0.9773 (56, 85) 1.7102 (29, 412) 0.7330 1 12
Ridge 2.40 (19, 726) 0.9689 (59, ⋆71) 1.6513 (29, ⋆394) 0.6824 0.86 12
LASSO 2.37 (18, ⋆716) 0.9865 (57, 84) 1.6332 (32, ⋆377) 0.6467 0.71 8
E-netα = 0.7 2.37 (19, ⋆718) 0.9746 (55, 88) 1.4740 (30, ⋆336) 0.4994 0.66 10

m
ic

-m
ic

Best ind. 6.52 (23, 2068) 3.0379 (61, 420) 3.1569 (75, 331) 0.1190 1 1

353 31744
No regul. 5.12 (18, 1625) 2.3549 (61, 201) 4.4200 (27, 1172) 2.0651 1 12
Ridge 5.10 (18, 1618) 2.2964 (64, ⋆155) 3.0418 (40, ⋆612) 0.7454 0.66 12
LASSO 5.62 (20, 1785) 2.4412 (57, 265) 3.2276 (35, ⋆717) 0.7864 0.56 3
E-netα = 0.7 4.82 (17, ⋆1529) 2.3086 (63,⋆168) 3.0330 (42, ⋆591) 0.7243 0.51 6

te
l-t

el

Best ind. 3.62 (26, 1763) 1.5782 (85, 195) 1.6563 (82, 254) 0.0781 1 1

719 48753
No regul. 2.36 (17, 1153) 1.1151 (52, 193) 1.1980 (60, 179) 0.0828 1 12
Ridge 2.36 (17, 1153) 1.1422 (50, 220) 1.2133 (63, ⋆166) 0.0712 0.91 12
LASSO 2.36 (17, 1153) 1.1810 (49, 246) 1.2761 (70, ⋆149) 0.0951 0.91 5
E-netα = 0.1 2.36 (17, 1153) 1.1364 (49, 224) 1.2153 (63, ⋆167) 0.0790 0.81 12

are carried out separately for each of the four subconditions
using their Trainset and Devset counterparts.

We make several interesting observations from Table VI.
Firstly, comparing the best individual classifier to the other
strategies, fusion of multiple base classifiers outperforms in-
dividual classifier in nearly all the cases. In a few cases
(most notable, itv-tel), the single classifier has good calibration
though. Second, comparing the unregularized baseline to the
regularized variants, one of the latter variants wins in most
conditions. The exception is the tel-tel condition where the
unregularized baseline outperforms all the regularized variants.
In fact, tel-tel condition is the easiest case, possibly dueto
larger development set and longer experience of the team in
processing telephony data.

Comparing ridge, LASSO and elastic net, none is a clear
winner but the relative performance depends on the condition
and metric. Regarding the primary metric, ActDCF, all of them
are useful for reducing the number of false alarms compared to
the unregularized baseline by a statistically significant margin.
For instance, with only a slight increase of target speaker
misses, ridge and elastic net reduce the number of false alarms
to nearly half of that of the unregularized baseline on the
mic-mic condition. Generalization bounds show that sparse
solutions that give low error rates have a good chance of
generalizing to an unseen dataset [42]. However, as such
bounds are loose on non-sparse solutions, depending on the
data set, dense weight weight vector can generalize well also
as we have seen here.

TABLE VII: Pearson’s correlation analysis of sparse fusion
ensemble on elastic net method for the mic-mic condition.
Correlation is computed between base classifier scores retained
in the ensemble separately for target and nontarget scores.
Column labels are the classifier labels from Table III.

1 2 3 8 9 11 Avg.
ENet target 0.72 0.71 0.60 0.72 0.67 0.750.69
ENet non-target 0.61 0.61 0.55 0.54 0.44 0.480.55
Full ens. target 0.68 0.67 0.60 0.74 0.72 0.750.70
Full ens. non-target 0.55 0.56 0.55 0.57 0.53 0.540.56

In theory, elastic-net should, at least be equal to the best
regularized fusion method, in all cases. But we notice that in
the itv-itv condition, cross-validation selectedα = 0, instead
of 1, as would have corresponded to the LASSO regularization.
This will require further study on how to perform more
accurate estimation of theα parameter.

Comparing the relative shrinkage factorst̂, ridge≥ LASSO
≥ elastic net. It is expected that ridge, as a non-sparse regular-
izer, shrinks less. Regarding the ensemble size, LASSO clearly
retains the smallest number of base classifiers as expected.It
is notable that, for the itv-itv case, LASSO zeroes half of the
classifiers and achieves smallest error rates in all three metrics.

As a final analysis, Table VII, shows sparse fusion en-
semble of six base classifiers that elastic net learned, namely
{1, 2, 3, 8, 9, 11}. We show average pairwise Pearson’s corre-
lation, in a following way: for a fixed classifieri, we count

1
|S|−1

∑

j∈S,j 6=i Corr(si, sj), whereS is the set of classifiers
selected to an ensemble. Correlations were computed from non
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pre-warped scores. We count pairwise correlations between
classifiers in the ensemble for target and non-target scores
separately. In contrast, we also show average correlationsin
full ensemble to the selected base classifiers. We notice a slight
reduction in average ensemble correlation from 0.70 to 0.69
for the targets and 0.56 to 0.55 for the non-targets. However,
for classifiers 1 and 2, both target and non-target average
correlations are increased. For the classifier 9, on the other
hand, correlations are reduced from 0.72 to 0.67 and 0.53 to
0.44, for targets and non-targets respectively.

As we can see from the Table VIII, most correlated target
score pairs are selected classifiers (1,2) and (8,11). Thus,
maximum pairwise correlations non-selected classifiers are
lower, for targets 0.80 to 0.78 and for non-targets 0.70 to
0.64. However, average maximum pairwise correlation in full-
ensemble is still slightly bigger than the ENet ensemble. The
fact that ENet considerably outperformed the full-ensemble,
but still maximum pairwise correlations were not considerably
reduced, is in line with the theoretical results proved in [43].
There, it was shown that pairwise correlations are not sufficient
to predict ensemble accuracy, but that higher order correlations
need to be considered.

TABLE VIII: As in Table VII, but using maximum pairwise
correlation instead of the average.

1 2 3 8 9 11 Avg.
Between selected classifiers

ENet target 0.85 0.85 0.62 0.86 0.74 0.860.80
ENet non-target 0.83 0.83 0.73 0.63 0.55 0.630.70

From non-selected classifiers
ENet target 0.77 0.75 0.69 0.82 0.82 0.820.78
ENet non-target 0.58 0.58 0.63 0.67 0.73 0.640.64
Full ens. target 0.85 0.85 0.69 0.86 0.83 0.860.82
Full ens. non-target 0.83 0.83 0.73 0.67 0.63 0.640.72

In summary, the analysis shows that while sparsity does
indeed reduce pairwise correlation in the ensemble, correlation
itself does not tell the full story of which classifers are
redundant. One reason might be that pairwise correlation is
unable to capture higher-order classifier dependencies. Similar
observations have been made for instance in [43].

VI. CONCLUSION

We have presented a sparse regularized logistic regression
score fusion for speaker verification. We optimized our system
using audio data from NIST SRE 2008 corpus and evaluated
using NIST SRE 2010 corpus (i.e. Evalset). We find that sparse
regularization brings improvement over unregularized variant
in all other sub-conditions and measures (EER, MinDCF,
ActDCF) except in tel-tel condition.

In the condition itv-itv, LASSO regularization provided
better performance than elastic-net. It shows that estimating
the trade-off parameterα by cross-validation is not always
successful. As a future work we plan to utilize Bayesian model
selection techniques to automatically estimate bothλ and α
parameters from the fusion training set.

As a future work, it would be interesting to pursue methods
that optimize ensemble diversity and ensemble classification

error simultaneously as a way to obtain an ensemble with
a good generalization property. Alternatively, run-time classi-
fier ensemble selection for each speech utterance, similar to
adaptable fusion using auxiliary quality measures would bean
interesting direction.
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