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Abstract

We propose a simple speech activity detector (SAD) based on recording-specific

Gaussian mixture modeling (GMM) of speech and non-speech frames. We

extend the conventional expectation-maximization (EM) algorithm for GMM

training using semi-supervised learning. It provides a methodology to incorpo-

rate unlabeled data into the SAD training process, leading to more accurate

statistical models by exploiting the structure of data distribution. It fits nat-

urally to off-line applications that may require partial human assistance, or

applications that involve processing large quantities of audio data, such as text-

independent speaker verification, speaker diarization or audio surveillance. The

proposed SAD does not require any off-line training data as supervised SADs

do. Rather, it employs initial labels produced from a tiny fraction of a given au-

dio recording with the help of another simpler SAD (or a human operator). The

proposed SAD is analyzed for the different covariance types, the initialization

methods for speech and non-speech class, the amount of labeled data required

for initialization, and the speech features. In experiments with a stand-alone

SAD system, we observe increased accuracy on the challenging dataset from

the recent NIST OpenSAD evaluation. Our extensive automatic speaker verifi-

cation (ASV) experiments, including text-independent experiments with NIST
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2010 speaker recognition evaluation (SRE) data and text-dependent experiments

with RSR2015 and RedDots corpora, show benefits of the new approach for the

long speech segments containing non-stationary noise. For the shorter data con-

ditions in the text-dependent experiments, simpler unsupervised SADs perform

however better. Further, we study the impact of SAD misses and false alarms

to ASV performance on the NIST 2010 SRE data. By deriving an empirical

cost function with the two SAD errors, we have observed that ASV error rate

reaches a minimum value around the same SAD operating point irrespective of

SAD method and signal-to-noise ratio (SNR). The optimum ASV performance

occurs approximately at an SAD operating region where falsely included non-

speech is considered 4 to 5 times more costly than missed speech. Importantly,

the proposed semi-supervised SAD is relatively less dependent on the SAD de-

cision threshold compared to the other contrastive SAD methods.

Keywords: Speech activity detection, Semi-supervised learning, Gaussian

mixture model, Speaker recognition, NIST OpenSAD, NIST SRE.

1. Introduction

Speech activity detection (SAD) [1], the task of locating speech segments in

a given recording, plays a key role in any speech processing system, including

coding [2] and speaker recognition applications [3], to prevent unnecessary pro-

cessing of non-speech segments. A large number of methods has been studied

to solve the SAD problem. Classic digital signal processing (DSP) methods

first compute scalar features such as short-term energy, zero-crossing rate [4],

periodicity [5] or spectral divergence [6], and compare these values against fixed

thresholds to classify audio segments.

Though being simple and providing sufficient performance on clean condi-

tions, the accuracy of these methods rapidly degrades with low signal-to-noise

ratios (SNRs). To address this problem, a variety of statistical model-based ap-

proaches have been explored [7, 8, 9]. These methods assume that the spectral

coefficients follow a particular parametric distribution. The SAD decision is
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sought by calculating the likelihood ratio based on the hypothesized models.

For instance, [7] models the spectra of the noisy speech and noise using complex

Gaussian distributions, while [8] and [9] adopt, respectively, Laplacian and gen-

eralized Gamma models. The statistical methods often outperform the classic

methods in the presence of stationary noise, but non-stationary noise conditions

remain challenging.

The above classic SADs are unsupervised as they do not involve a separate

training process. In contrast, supervised methods, based on machine learning

(ML), have recently yielded promising results [10, 11, 12, 13, 14]. By leveraging

from prior knowledge in large annotated audio collections, these SADs can par-

tially cope with the aforementioned problem of non-stationary noise. Similar to

other machine learning tasks, however, supervised SADs tend to be sensitive to

acoustic mismatch between the training and test conditions [15]. The authors

of [16] made a step towards noise-independence by training a universal model

for clean speech to detect the presence of speech in noisy signal. Their method,

however, assumes noise additivity which may be violated in the presence of

additional channel mismatch.

Adaptive supervised SADs, such as [17] and [18] represent a compromise be-

tween the powerful supervised approaches, such as neural networks, and statisti-

cal model-based methods which require no prior training but whose parametric

modeling assumptions might be over-simplistic. For instance, [18] studied a

heuristic SAD not requiring any prior training data beyond the given utterance.

It first uses an auxiliary energy-based SAD to label a small portion of speech

frames, used for training two codebooks to represent feature distributions of

speech and nonspeech, which are then used to classify all the frames. This

approach is simple and, in principle, relatively insensitive of the type of noise

(assuming the initial labeling can be done reliably). The authors in [18] used

energy-based SAD for the initial frame labeling and standard mel-frequency

cepstral coefficient (MFCC) features as the features in the final SAD.

In this work, we extend the heuristic method in [18] using a more principled

semi-supervised learning (SSL) [19] paradigm. SSL considers classification set-
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ups where, for reasons such as time, cost or human labor, only a small fraction

of the available training data has labels. In conjunction with the labeled data,

SSL-based methods take use of unlabeled data to train robust models, often

surpassing the accuracy of models trained using only the small labeled data

sample [20]. This is a natural approach for large-scale off-line applications not

requiring real-time operation, such as speaker diarization, speech data mining

or forensic audio annotation or any other cases where it is convenient or cost-

effective to produce an initial labeling from very small amount of data, either

by a human annotator or another SAD that is known to work reasonably well.

In specific, we modify the conventional expectation-maximisation (EM) algo-

rithm to train GMMs with only partially labeled data. Semi-supervised training

of GMMs, as such, has been studied elsewhere, including image segmentation

[21], audio classification [22] and instrument recognition [23]) tasks but the au-

thors are unaware of its prior use in the context of SAD. Besides providing a

principled probabilistic formulation of the problem instead of ad-hoc derivation

in [18], we provide a detailed account into how the type of covariance matrices

and the quality of initial frame labeling influences SAD accuracy, none which

were addressed in [18]. In general, our SSL-based SAD provides a straightfor-

ward and simple approach to the SAD without requiring any manual labeling

effort at any stage.

In the experimental part of this work, we first analyze the performance

of the proposed semi-supervised GMM using both stand-alone SAD accuracy

on two datasets, including telephony/microphone and radio-phone data from

NIST SRE 2010 speaker recognition corpus [24] and the recent NIST OpenSAD

challenge benchmark data [25]. We then demonstrate the benefit of integrating

the proposed SAD into state-of-the-art automatic speaker verification (ASV)

task including both text-independent and text-dependent scenarios, evaluated

with the help of the NIST SRE 2010, RSR2015 and recent RedDots corpus.

Finally, as a key contribution of our work, we provide a novel analysis on the

relative importance of miss and false alarm rates of the SAD to ASV. Due to the

difficulty to relate the errors made by an SAD to a full ASV system consisting of
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multiple front-end and back-end processing modules, SAD thresholds are usually

determined using trial and error or ad-hoc rules that are not explicitly specified.

There are, however, obvious benefits to define an explicit SAD segmentation

objective to maximize ASV performance: it can lead to greatly reduced labor

or optimization work required on new databases and, importantly, it can shed

light into how one should trade-off SAD misses and false alarms in an ASV

context in general. Having these broad goals in our mind, we present, for the

first time, a methodology to derive an empirical cost function that interlinks

SAD segmentation errors to the ASV errors.

2. The Role of SAD in Speaker Recognition

Study on the role of SADs in speaker recognition context is surprisingly

limited [3, 18, 26]. In general, the speaker recognition community has paid

relatively little attention to the problem as many on-the-shelf SADs perform

more or less similarly with speech signals of relatively high signal-to-noise ratios

(SNRs) on various standard corpora [3]. Typically, an energy-based SAD [27]

performs quite well on earlier NIST evaluation corpora. However, the choice of

the SAD becomes more critical for ASV with highly degraded speech, especially

in the presence of additive noise [26]. A simple utterance-dependent threshold-

based energy SAD produces unreliable speech frames in noisy conditions, leading

to drastically increased speaker verification error rates. In recent years, we

observe a growing interest in this topic especially after the NIST 2012 speaker

recognition evaluation (SRE) campaign. The corpus for this evaluation consists

of speech files severely distorted with various additive noise, and here, advanced

SADs were helpful [28, 29]. Further, recent studies on DARPA RATS corpora

having speech files collected from highly degraded radio channels also motivates

the need for investigations in SAD algorithm for speaker recognition context [30].

Other than the impact of noise, it is also interesting to study the impact of

recording duration to SAD performance. Particularly, this may be a crucial issue

for the text-dependent speaker verification where a short-phrase is used for the
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test. A limited number of studies have discussed the relative ASV performance

for different SADs. In this work, we conduct more extensive study for different

SADs on different aspects like text-variations, duration variability in clean and

noisy conditions. Further, we also analyze the impact of SAD accuracy on the

corresponding speaker recognition performance.

3. SAD with Recording-Specific GMMs

GMMs can be used in a supervised or unsupervised manner for efficient

modeling of the speech and non-speech classes [31]. Given an arbitrary au-

dio recording, represented by a sequence of short-term feature vectors X =

{x1, . . . ,xT } ⊂ Rd, our goal is to train two GMMs, one to represent speech and

the other one non-speech. To do so, we need at least partial labels for each of

the observations xt. In [18], a small subset of X was selected using ranking of

the respective frame energy values within the utterance, so that highest- and

lowest-ranked frames were assumed to be correspond, respectively, speech and

non-speech. Thus, some auxiliary SAD is required to produce initial segmenta-

tion for supervised training of class-specific GMMs. Arbitrary SAD providing

real-valued scalar scores (e.g. log-likelihood ratios) can be used as such.

But acknowledging any imperfection of the initial SAD labels, we are traded-

off to choose a small-enough subset of ‘reliable’ frames, yet large enough to

enable numerically robust training of the two GMMs from limited data (in [18],

the problem was addressed by using code-books trained by k-means, a highly

restricted form of GMMs). To address these issues, we adopt semi-supervised

learning to enable taking benefit of all the training vectors. Before presenting

our approach, we provide a brief review of the closest similar methods.

3.1. Closest prior work on semi-supervised training

In our derivation shown below, we follow the classic approach to estimate

parameters of statistical classifiers from labeled and unlabeled data using max-

imum likelihood criterion. Similar methods have independently been developed
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in other applications such as image segmentation [21], audio classification [22]

and text classification [32]; in the last study, the authors consider multinomial,

rather than Gaussian distribution for observation modeling but the core ap-

proach remains otherwise the same. In fact, all these methods can be placed

under the umbrella of the general EM framework formalized in the seminal pa-

per [33]. Hence, the resulting algorithms presented in prior literature optimize

similar objective functions defined up to the choice of observation model, lead-

ing naturally to similar update equations. A short history of semi-supervised

training of generative classifiers can be found in [32]. Besides purely genera-

tive training strategy mentioned above, the authors of [34] proposed a hybrid

generative/discriminative objective function. Our training process can be seen

as a special case of their unified approach. In this study, we focus purely on

generative training.

3.2. Semi-Supervised GMM

Let us define the terminology and notation. A class is the true class of any

feature vector — either speech (` = 1) or nonspeech (` = 2). The number of

classes is L (here, 2) and each of them is modeled using a GMM. We use w`k, µ`k

and Σ`
k, to denote, respectively, the mixing weight, mean vector and covariance

matrix of kth Gaussian in class `. We assume the same number of Gaussians (K)

per class to simplify notation but the resulting expectation-maximization (EM)

update equations are trivial to modify if needed. Our derivation follows exactly

the one presented in [21], though, in addition, we present special formulae for

shared covariance updates in Subsection 3.3 that was not presented in [21].

Consider first a single feature vector, x, with a known class label y ∈

{1, .., L}. The class-conditional density function is,

p(x|y) =

K∑
k=1

wykN (x|µyk,Σ
y
k). (1)
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But if the class label of x is unknown, we have a mixture density,

p(x) =

L∑
`=1

π`
K∑
k=1

w`kN (x|µ`k,Σ
`
k), (2)

where π` is the class prior. To draw a random x ∼ p(x), we first select the class

according to the class prior, a Gaussian from that class following the component

prior and finally the Gaussian where x is then drawn.

In many speech processing systems, including universal background model-

ing for automatic speaker verification and language identification, large GMMs

(often with 1024 or 2048 Gaussians) are used for modeling feature frames pooled

from a large number of speakers and utterances. In contrast, the SAD solution

sought in this study use recording-specific GMMs to model the speech and non-

speech classes. To this end, consider now a training set — a set of frames

from a single audio recording of a single session of one speaker — containing

N vectors, Xa = {xan}Nn=1 with labels y = {yn}Nn=1 plus M unlabeled vectors

Xb = {xbm}Mm=1. The union of Xa and Xb, consisting of N + M vectors, con-

tains all the feature frames of a particular recording. Typically N � M due

to, for instance, labeling cost associated with human labor. We estimate the

model parameters via maximum likelihood (ML). Assuming the training vectors

are independent and identically distributed (i.i.d.), the logarithm of the joint

density function for all observations is,

log p(Xa,Xb) =

N∑
n=1

log p(xan|yn) +

M∑
m=1

log p(xbm). (3)

Optimal model parameters can be found by maximizing this function. Let

us consider the mean vector µ`k and write down a condition which must be

satisfied at the maximum of Eq. (3). Setting partial derivative of the function
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with respect to µ`k to zero, we obtain

0 =
∑
n∈C`

w`kN (xan|µ`k,Σ
`
k)∑K

j w
`
jN (xan|µ`j ,Σ

`
j)︸ ︷︷ ︸

γ`
k(n)

Σ`
k

−1
(xan − µ`k)+

M∑
m=1

π`w`kN (xbm|µ`k,Σ
`
k)∑L

` π
`
∑K
j w

`
jN (xbm|µ`j ,Σ

`
j)︸ ︷︷ ︸

ξ`k(m)

Σ`
k

−1
(xbm − µ`k)

where C` is the set of indices such that yn = `. After solving this equation with

respect to µ`k we obtain1

µ`k =

∑
n γ

`
k(n)xan +

∑
m ξ

`
k(m)xbm∑

n γ
`
k(n) +

∑
m ξ

`
k(m)

(4)

It should be noted that γ`k(n) and ξ`k(m) depend on µ`k, so Eq. (4) is not a closed-

form solution for likelihood maximization. However, it suggests an iterative

optimization algorithm which alternates between computing γ`k(n) and ξ`k(m)

and updating means according to (4). The same iterative scheme can be directly

derived as an instance of the expectation–maximization (EM) algorithm [33], a

general-purpose method for finding ML parameter estimates of probabilistic

models. For further details, refer to [35, Chapter 9]. Similar derivations can be

found in [21].

Similar to (4), the update equations for the remaining parameters are ob-

tained:

Σ`
k =

∑
n γ

`
k(n)δan +

∑
m ξ

`
k(m)δbm∑

n γ
`
k(n) +

∑
m ξ

`
k(m)

(5)

w`k =

∑
n γ

`
k(n) +

∑
m ξ

`
k(m)

N` +
∑
m ζ

`(m)
(6)

π` =
N` +

∑
m ζ

`(m)

N +M
, (7)

1γ`k(n) = 0 when xa
n does not belong to class `
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where we introduce short-hands δan = (xan − µ`k)(xan − µ`k)
>

, δbm = (xbm −

µ`k)(xbm − µ`k)
>

and ζ`(m) ,
∑K
k=1 ξ

`
k(m). We use empirical covariance ma-

trix to initialize Σ`
k and randomly sample µ`k around empirical mean of the

whole training set. All mixture weights are initialized to have equal value.

After training the two GMMs with the above iteration, we use log-likelihood

ratio (LLR), Λ(x) = log p(x|speech) − log p(x|nonspeech), as a speech activity

indicator for any frame x in the same utterance. To make the hard SAD decision,

we compare LLR with a threshold (which is, for the most part of this study, 0).

3.3. Model interpretation and practical issues

The method presents an interesting compromise between supervised and

unsupervised training. On the one hand, if all the data is labeled (M = 0),

the method boils down to training L class-specific GMMs independently of each

other (as e.g. in [18]). On the other hand, if there are no labeled samples

(N = 0) and each class is modelled as a single Gaussian (K = 1 for all `),

the method is exactly the same as unsupervised training (or clustering) with L-

component GMMs [35]. In the general case of more than one Gaussian per class,

it can be seen as a K-component GMM with weights π`w
`
k with the standard

formulae to train a conventional GMM. Further, when class distribution is a

single Gaussian (in this case K = 1 and hence all wlk = 1), equations (4), (7)

and (5) reduce to formulae presented in [21].

Lack of training data (short speech utterances) or high-dimensional features

might lead to numerical problems or inaccurately estimated models, making

the choice of the covariance matrix type a relevant practical consideration. It

may be either full (used as default type in this study), diagonal or spherical.

Diagonal covariances are obtained from the Eq. (5) by retaining only the di-

agonal elements while spherical covariances can be obtained by averaging the

elements of a diagonal covariance matrix. The number of covariance parameters

per Gaussian in these three cases are d(d + 1)/2, d and 1, respectively, where

d is the feature dimensionality. To constrain the model further, we may also

share the covariance matrices across the components of the same class. In this
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case, Eq. (5) is modified as,

Σ` =

∑K
k=1

∑
n γ

`
k(n)δan +

∑K
k=1

∑
m ξ

`
k(m)δbm

N` +
∑
m ζ

`(m)
(8)

In our experiments we did not estimate class mixing proportions πl – they were

set as πl = 0.5. By default we used 10% of speech and non-speech frames

obtained from auxiliary SAD to train corresponding GMMs. We provide details

on initialization strategies in Section 5.3.

Figure 1 shows two stages of the proposed algorithm in the data space (wave-

form) and feature space (first two MFCCs).

4. Standalone SAD Assessment: Experimental Set-up

Our experiments consists of three major parts. In the first part, consisting of

Sections 4 and 5, we assess the proposed SADs in a standalone mode by evaluat-

ing their accuracy with respect to a reference speech/nonspeech segmentation.

This involves studying the impacts of covariance matrix types, acoustic features

and alternative ways to initialize the semisupervised SAD. The second part, de-

scribed in Sections 6 and 7, consisting of disjoint data from the first part, is then

devoted to automatic speaker verification (ASV) experiments, containing both

text-independent and text-dependent scenarios. Finally, in Section 8, we ana-

lyze the relationship of SAD and ASV in more detail using novel methodology

suggested in this study.

4.1. Datasets

We evaluate SAD performance on two different speech corpora. The first one,

utilized in [18], consists of telephony speech degraded by digitally added noise

to simulate noisy environments. The second one is a part of the development

set in the recent NIST OpenSAD challenge [25], one of the rare benchmarks

specifically targeted at evaluating SAD accuracy2.

2NIST disclaimer: “NIST serves to coordinate the NIST OpenSAD evaluations in order to
support speech activity detection research and to help advance the state-of-the-art in speech
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(a) Supervised initialization

(b) Final result after 20 iterations

(c) Ground truth.

Figure 1: Semisupervised SAD in time (left) and MFCC (right) domains (first two cepstral
coefficients are shown) for K = 3 Gaussians per class. Gray color in (a) represents unlabeled
data, while green/red points are labeled speech/nonspeech frames. The ellipses represent the
individual Gaussians in speech and nonspeech models. Best viewed in color.

SRE10: We utilize telephone utterances from the development set of the

NIST 2010 speaker recognition evaluation (SRE) campaign. This development

set, originally provided by NIST, contains 36 two-channel recordings with sup-

plementary automatic speech recognition (ASR) transcripts with an average

duration of 5 minutes per file. We manually audited both sides of the calls

activity detection technologies. NIST OpenSAD evaluations are not viewed as a competition:
as such, results reported by NIST are not to be construed, or represented, as endorsements of
any participant’s system, or as official findings on the part of NIST or the U.S. Government”.
Web page: http://www.nist.gov/itl/iad/mig/opensad_15.cfm
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(36 × 2 = 72 unique recordings) to ensure a controlled SAD development set,

leading to rejection of 9 files without speech content3. This set of 63 files was

then downgraded with controlled signal-to-noise ratios (SNRs) ranging from 0

dB to 20 dB using G729 audio weighting filter for speech level determination

via Filtering and Noise Adding (FaNT) tool4. Eight noise files were selected

from FreeSound5, containing mostly device sounds in home environments (e.g.

airconditioner and washing machine). To degrade an arbitrary file, a random

long noise file was first selected with further random section selection within

that file. SAD accuracy is evaluated by comparing the predicted SAD labels

with a reference segmentation obtained from the ASR word-level transcripts.

As noted in [18], this ground truth is not perfect as some speech missed by

an SAD may originate from speech-internal pauses considered to be continuous

chunks of speech according to the word-level ASR transcripts. Nonetheless, in

our experience it suffices rather well for SAD optimization and complements our

other evaluations detailed below.

OpenSAD: The recently conducted NIST OpenSAD evaluation was in-

tended for advancing state-of-the-art in SAD for signals with highly degraded

conditions. The OpenSAD data originates from one of the DARPA RATS (Ro-

bust Automatic Transcription of Speech) evaluation sets [36]. It consists of

highly degraded recordings obtained by transmitting the source audio over sev-

eral different noisy radio communication channels. A push-to-talk protocol was

used in all the transmission channels except one. The data was provided along

with ground-truth annotations produced by an automatic SAD and further au-

dited by a human annotator. In our experiment we used the dev-2 subset of

the official development part6. We included six channels, namely {B, D, E,

F, G, H}, in our evaluation set, resulting in 661 audio recordings with an aver-

age duration of 10 minutes. The same set of files was used as the development

3An earlier study [18] using the same data used all the 72 recordings.
4http://dnt.kr.hsnr.de/download.html
5http://www.freesound.org
6LDC2015E97 NIST OpenSAD15 Development
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set during the NIST OpenSAD Challenge. The proposed semi-supervised SAD

was used as one of the sub-systems of the “HAPPY” team submission to the

challenge [37].

4.2. Proposed SAD: the Choice of Acoustic Features

The proposed SAD in Section 3 is general and was described without any

reference to the acoustic features {xt} used for training the speech and non-

speech GMMs. In this work, we study the role of features for speech/nonspeech

discrimination since the proposed method allows easy plug-in of arbitrary multi-

dimensional features, some of them potentially more robust in relative terms

against degradations induced by noise, or in terms of selecting speech frames

more relevant for speaker discrimination. In the prior work [18], conventional

mel-frequency cepstral coefficients (MFCCs) were adopted without further elab-

oration. Before detailing the features selected for our study, we make a brief

review of recent work on the role of features in the general SAD context.

There are several previous studies on the role of speech features in a su-

pervised SAD context using the DARPA RATS corpus. For instance, in [30],

mel filterbank outputs, MFCCs, perceptual linear prediction (PLP) coefficients,

cochlear filter cepstral coefficients (CFCCs), frequency domain linear predic-

tion (FDLP) features, cortical features, pitch contours and energy contours

were studied. In another study [38] using the same RATS corpus, MFCCs

were combined with different spectral information based on Gabor feature rep-

resentation, voicing features, spectral flux measures, subband auto-correlation,

multiband combo filter and F0 voicing measure to enhance SAD performance.

Furthermore, rate-scale feature, based on spectro-temporal modulation filtering

of the auditory was investigated along with PLP, FDLP and log-mel spectral

features in [39]. In [40], robust front-end using contextual and discriminative

information was investigated for SAD purposes. Voicing features [14] represent-

ing periodicity of the speech signal are also used in an integrated manner with

other spectral features to boost SAD accuracy.

Studies on speech features in an unsupervised SAD context, however, are
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very limited, and they use typically log-mel filterbank coefficients [41, 31]. This

motivates us to re-assess some of the most representative features that are known

to vary in their robustness. We provide a comparative evaluation of the GMM-

based SADs using the following alternative feature sets, all adopted from public

(open-source) implementations for reproducibility. The short-term framing set-

tings are the same across all the compared SADs: speech is segmented into 20

ms frames every 10 ms, i.e., with 50 % overlap.

Mel-frequency cepstral coefficient (MFCC): The standard MFCC fea-

tures are computed by passing the signal through a triangular filterbank

placed in non-linear Mel-frequency scale. The outputs of the filterbank

energies are logarithmically compressed followed by discrete cosine trans-

form (DCT) to obtain the final feature vector. We use 27 filters to extract

the MFCCs and retain the lowest 12 coefficients (including the energy co-

efficient) as our features. We use the MFCC implementation provided in

VQVAD package7.

Power normalized cepstral coefficient (PNCC): PNCC features have

yielded promising results in several speech processing tasks including speech

[42] and speaker [43] recognition. The computational steps are similar to

those of MFCCs, one of the differences being the use of gammatone fil-

ter for frequency integration. Additionally, it includes an environmental

noise compensation scheme with the help of asymmetric noise suppression

algorithm [42]. Furthermore, power function non-linearity is used instead

of logarithm for energy compression. We adopt a publicly available im-

plementation using its default parameter settings8. In specific, we extract

19-dimensional PNCCs using 32 gammatone filters.

Perceptual linear prediction (PLP) coefficients: PLP is another com-

monly adopted feature for speech/non-speech detection in RATS evalua-

7http://cs.uef.fi/pages/tkinnu/VQVAD/VQVAD.zip
8http://www.cs.cmu.edu/~./mharvill/RATS/software_releases/PNCC/PNCC_deployed_

v6/
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tion [30]. It emulates different processing blocks inside the human auditory

system. First, the speech frames are processed by trapezoidal filterbank

with center frequency spacing of 1 Bark, followed by equal loudness weight-

ing of the filterbank outputs, cube-root compression and inverse discrete

Fourier transform (IDFT) to obtain linear predictive coefficients further

transformed to cepstral coefficients. We extract 13 PLP coefficients fol-

lowed by RASTA filtering using the MATLAB implementation of [44].

The linear prediction based smoothing was not used, instead, the energy

compressed filterbank output are directly converted into cepstrum using

DCT.

Frequency domain linear prediction (FDLP): Another recently proposed

feature, FDLP [45], exploits the dual properties of time and frequency by

approximating the temporal envelope of a signal using linear prediction

analysis in spectral, rather than time domain. We use the publicly avail-

able implementation9. We extract 13 features using a long-term analysis

window of 10 s and all-pole model order for the temporal envelope is set

at 33. We apply gain normalization on subband envelopes as it improves

the robustness.

4.3. Proposed SAD: GMM vs SSGMM back-end

Through out our experiments, we consider two types of models trained using

one of the above-described spectral feature sets. The proposed semi-supervised

method will be referred to as SSGMM. In contrast, a special case of the pro-

posed method, based on purely supervised training without any use of unlabeled

data — i.e. M = 0 in equations (5) - (7) — is simply referred to as GMM.

4.4. Performance measures

Following standard evaluation methodology of speech activity detectors, we

assess a performance of a SAD by comparing its predicted output (a binary label

9http://www.clsp.jhu.edu/~sriram/research/fdlp/fdlp_analyze.zip
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for each speech frame) against a reference labeling. Let the boolean vectors zu

and ẑu denote, respectively, the ground truth and predicted SAD labels for an

utterance u. We compute average miss and false alarm (FA) rates:

Pmiss =

(
1

Nutt

Nutt∑
u=1

#
{
zu = 1 ∧ ẑu = 0

}
#
{
zu = 1

} )
× 100%,

Pfa =

(
1

Nutt

Nutt∑
u=1

#
{
zu = 0 ∧ ẑu = 1

}
#
{
zu = 0

} )
× 100%,

where #{·} is a counting function which returns the number of non-zero elements

in a boolean vector and Nutt is the number of utterances in a dataset. Having

estimated the average miss and false alarm rates, SAD performance can also be

summarized as a single scalar, decision cost function (DCF):

DCF(α) = αPmiss + (1− α)PFA, (9)

where α ∈ [0, 1] is a fixed weight fixed in advance depending on the intended

application and one’s belief which error type is more costly. For instance, the

official evaluation metric of the NIST OpenSAD evaluation [25] was DCF(0.75),

indicating relatively higher penalty for missed speech compared to falsely in-

cluded nonspeech.

5. Standalone SAD Assessment: Results

5.1. Effect of covariance matrix type

We begin by comparing different settings of covariance matrix structure for

SSGMM SAD. As discussed above, the possible choices are full, diagonal and

spherical covariances. Further, the covariance matrices can be distinct or shared

across all the Gaussians within a class, resulting in 6 possibilities in total. We

compare all these on the SRE10 dataset using the MFCC features for different

number of Gaussians. As we do not focus on a particular trade-off between

misses and false alarms at this stage, we use DCF(0.5) as our objective metric.
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Since DCF(0.5) is a special case of half total error rate (HTER), we estimate

the 95% confidence intervals of this quantity using the methodology of [46].

Number of components
1 2 8 16

D
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F
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.5
)
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35

full full-shared diag diag-shared sph sph-shared

Figure 2: Comparison of models obtained by SSGMM SAD with different covariance matrix
structure in terms of DCF(0.5) on the SRE10 set.

Figure 2 reveals that covariance sharing decreases the cost for all the three

types of covariance matrices (full, diagonal, spherical) while the number of Gaus-

sian components does not have a considerable effect on SAD performance. The

results are shown for the SNR of 15 dB, but the relative order was similar for

the other SNR levels, too. Further, Figure 3 shows the detection error trade-off

(DET) for the different covariance matrix types. It confirms that the conclu-

sions drawn from Figure 2 hold across a wider range of operating points. For the

further stand-alone SAD experiments we choose the model with full non-shared

covariance matrices and 8 Gaussians as an arbitrary but representative10 case.

5.2. Comparison of features

Our next analysis concerns the choice of SAD features. Figure 4 shows a

comparison of our four feature sets used by two SADs (SSGMM and GMM)

10Most open-source GMM code implementation include non-shared diagonal and full co-
variance matrix variants but covariance sharing is less common.
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Figure 3: Comparison of models obtained by SSGMM SAD with different covariance matrix
structure on the SRE10 set. The number of mixture components is 8. Each point on the curves
represents average miss rate across files for a given false alarm rate. The corresponding values
of DCF(0.5) from Fig. 2 are shown in brackets.

in terms of both miss and false alarm rates on the SRE10 set with an SNR

of 15 dB. We make several observations. Firstly, PNCCs yield the lowest false

alarm with a trade-off in highest miss rates. Secondly, all the other features

(excluding PNCCs) have similar average miss rates with each other. This is

likely due to the use of integrated noise reduction scheme in PNCC compu-

tation method [42]. Thirdly, PNCC has the lowest average false alarm rate.

Finally, the performances of FDLP- and MFCC-based SADs are very close to

each other. From these findings, the use of PNCCs might suit better applica-

tions where false alarms are more costly — such as automatic speaker verifica-
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Figure 4: Miss (a) and FA (b) rates for different SADs (left to right: GMM, SSGMM) and
features on the SRE10 set.

tion; otherwise, MFCCs or PLP features might be a better choice. In all the

remaining experiments of this study, we consider only the MFCC and PNCC

features.

Table 1: Comparison of features on the NIST OpenSAD set. SAD performance on the NIST
OpenSAD set is shown as (Miss % / FA %).

SAD Miss, % FA, %
GMM (MFCC) 27.22 16.06

SSGMM (MFCC) 22.23 14.31
GMM (PNCC) 26.88 14.69

SSGMM (PNCC) 37.49 4.21

Table 1 shows a comparison of different SADs based on MFCC and PNCC

features on our other SAD dataset, NIST OpenSAD. For the GMM (without

semi-supervised training), MFCCs and PNCCs perform similarly. For the semi-

supervised variant, however, the false alarm rate is considerably lower but with

considerably increased miss rate. This observation agrees with the results on the

SRE10 data. Figure 5 shows DET curves to compare performance of two SADs

for the case of PNCC and MFCC features. Each row of Table 1 corresponds

to a point on these curves. From these results we can presume that SSGMM

gives lower error rate on the NIST OpenSAD set using both MFCC and PNCC

features.
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Figure 5: SAD performance on the NIST OpenSAD for PNCC and MFCC features. Each
point on the curves represents average Miss rate across files for a given FA rate. Each DET
curve corresponds to a row of Table 1.

5.3. Effect of initialization

In [18], an energy-based SAD was used to obtain an initial segmentation for

training the speech and non-speech models. Short-term signal energy, however,

is easily impacted by the presence of background noise, which motivates a more

detailed look into the role of initialization accuracy in the GMM-based SADs.

We compare three alternatives. The first one is the same energy SAD as in [18]

that uses 10% of frames with the highest and lowest energies within an utterance

to train the models. In the second case, we additionally consider fundamental

frequency (F0) information along with energy, referred to as Energy+F0. Speech
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frames with valid F0 value (i.e. voiced frames) are only considered for the

initialization of speech model. On the other hand, for non-speech model, we

consider only the speech frames having no valid F0 values. For F0 extraction,

we adopt a cross-correlation method from the Snack Sound Toolkit [47].

Specific care is taken to ensure that the contrastive initialization schemes use

the same number of selected speech frames. In specific, if the F0 detector has

detected a sufficient amount of voiced frames, we use the voiced frames with the

highest energy values. But when there are not enough detected voiced frames, we

augment them with the highest energy frames taken from the remaining part of

an utterance. For instance, if the target is to train the utterance-specific speech

model using 10% of frames but only 6% of them are voiced, we choose the rest

(4%) from the remaining frames in the recording corresponding to the highest

energy values. Therefore, if no voiced frames were detected, the Energy+F0

initialization scheme collapses to the first one.

Our third strategy uses oracle initialization with the help of ground-truth

labels. In this case we select a random subset of frames from each class. The

purpose of our oracle initialization analysis is two-fold. Firstly, it simulates

human-assisted SAD initialization; even if the applications concerned in this

study involve automatic speaker verification experiments, there are applications,

such as forensics, that involve at least partial human supervision. Secondly, it

provides an experimental bound on the performance achievable by a perfectly

initialized SAD (assuming the ground truth labels are correct).

Table 2: Effect of initialization method (Energy, Energy + F0) on the NIST OpenSAD set,
(Miss % / FA %).

SAD used Energy (10%) Energy + F0 (10%)
GMM 34.99 / 24.27 27.22 / 16.06

SSGMM 31.04 / 23.45 22.23 / 14.31

Table 2 shows the miss and false alarm rates for different initializations on

the OpenSAD data for the MFCC features. As is obvious, the use of F0 to

create speech model helps in reducing both miss and false alarm rates. As the

F0 detector itself is characterized by very small false alarm rates, our speech
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Table 3: Effect of amount of training data(%) with estimated labels. SAD performance on
the NIST OpenSAD set is shown as (Miss % / FA %).

SAD used Energy + F0 (1%) Energy + F0 (10%) Energy + F0 (20%)
GMM 23.74 / 20.66 27.22 / 16.06 26.15 / 17.69

SSGMM 20.44 / 14.79 22.23 / 14.31 24.06 / 16.03

Table 4: Effect of amount of training data (%) with oracle labels. SAD performance on the
NIST OpenSAD set is shown as (Miss % / FA %).

SAD used Oracle (1%) Oracle (10%) Oracle (100%)
GMM 18.08 / 7.21 18.15 / 7.39 18.10 / 7.06

SSGMM 17.06 / 11.57 16.94 / 10.88 18.10 / 7.06

model becomes trained from data having less mis-labeled exemplars. Table 3

shows further the SAD performance dependency on the amount of data used

for initialization (1 %, 10 % and 20 %). Interestingly, using less frames for

initialization leads to lower error rates, especially the miss rate. In general, we

expect a trade-off between the amount and quality of the initialization. Here,

1 % of speech or nonspeech data consists of about 6 seconds of data (the audio

files are 10 minutes long).

Further, when the ground truth labels are used (Table 4), the performance

is stable with different amounts initialization data. These results indicate that

larger amounts of imperfectly labeled data degrades the speech and nonspeech

models. The last column in Table 4 shows the bounds for the performance that

can be achieved, as in corresponds to the case of training and evaluating the

speech and nonspeech models on the same data. The results of GMM with and

without semisupervision agree with the use of maximum amount of accurately

labeled data. By comparing the oracle results of Table 4 to those obtained in

Tables 2 and 3, we see that the best obtained miss rate (20.44 %) is not too far

from the oracle (18.10 %) but there is a 2-fold gap in the best false alarm rate

(14.31 %) in comparison to that of the oracle (7.06 %).

Figure 6 further shows DET curves corresponding to the different entries

in Tables 2, 3 and 4. We make several interesting observations. First, the

quality (accuracy) of the initialization has apparently a profound impact on SAD
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performance. Second, SSGMM has lower error rate than GMM for imperfect

initialization but it performs slightly worse when oracle labels are used. This

is an expected result, explained as follows. In the case of oracle labels, both

speech and non-speech models created by the GMM method are guaranteed to

be “pure” since each model is trained using data only from the corresponding

class. In contrast, by using unlabeled data, the SSGMM method is bound

to be corrupted from wrongly-assigned labels to the unlabeled feature vectors.

This negative effect was dominated by the positive effect of using more data

to create more accurate models in the case of imperfect initialization. Our

main conclusion, therefore, is that SSGMM is preferable when the auxiliary

SAD used to get initial labels is not very accurate. When the initialization is

close to perfect, however, the proposed SSGMM may not provide considerable

performance gains over the conventional GMM.

6. Application to Speaker Verification: Experimental Set-up

The proposed speech activity detector is, at least in principle, application-

independent. In this study, we focus on an automatic speaker verification ap-

plication, including evaluation across varied clean and noisy conditions. We

conduct extensive experiments in both text-dependent and text-independent

scenarios on multiple speech corpora to confirm the consistency of results. In

contrast to the text-independent scenario containing large amounts of telephony

data, our text-dependent speaker verification samples are short smartphone

recordings.

6.1. Text-Independent Speaker Verification Set-up

Dataset: For the text-independent ASV experiments, we select a subset of

the male trials from NIST SRE 201011 consisting of telephone quality speech.

In specific, we report our findings on the normal vocal effort telephone speech

11http://www.nist.gov/itl/iad/mig/upload/NIST_SRE10_evalplan-r6.pdf
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Figure 6: SAD performance on the NIST OpenSAD with different initialization strategies.
Each point on the curves represents average miss rate across files for a given false alarm rate.
The amount of initialization data is equal to 10% in all the cases, except those explicitly
specified. In the case where 100% of oracle labels are used, SSGMM and GMM are by
definition equivalent (this corresponds to M = 0 in equations (5) - (7)). Therefore, we have
arbitrarily labeled the thick dotted green line as ‘SSGMM’ but it could have been equivalently
labeled as ‘GMM’ (if both curves corresponding to Oracle-100% were shown, they would be
completely overlapping).

condition (CC5) which has more male trials than the other telephone condi-

tions of SRE10. Another reason to select the male subset is to limit the number

of simulations and to focus more on the analysis for different SAD configura-

tions. Additionally, experiments are also conducted with digitally added noise

on speech signals. We choose three different levels of noise: 10 dB, 6 dB and 0

dB, and use similar noise adding procedure as in the standalone SAD evaluation.

25



F
re

q
u

e
n

c
y
 (

in
 H

z
)

(a)

100 200 300 400 500 600 700 800
0

2000

4000

(b)

50 100 150 200 250 300
0

2000

4000

(c)

50 100 150 200 250 300 350
0

2000

4000

Time (in sec)

(d)

50 100 150 200 250 300 350 400 450 500 550
0

2000

4000

Figure 7: Spectrograms of noise signals used for corrupting the speech samples for the ASV
experiment. As can be seen, the noises are highly non-stationary ones. For instance, the
uppermost signal represents a washing machine noise and the lowest one train (underground)
noise.

The noise samples for the ASV part contain both stationary and non-stationary

noise samples as illustrated in Fig. 7.

Classifier back-end: Our ASV system back-end for the text-independent

experiments uses i-vector [48] utterance descriptors with probabilistic linear dis-

criminant analysis (PLDA) [49] scoring. In specific, We use the simplified PLDA

model described in [50]. We train gender-dependent UBMs with 512 mixture

components using the EM algorithm with speech data from NIST SRE 2004—

2006, FISHER, and Switchboard corpora. Then, we train a total variability

matrix (i-vector extractor) with 400 factors using five EM iterations from 19082

files from the same databases. Prior to PLDA training or scoring, the i-vectors

are pre-processed using linear discriminant analysis (LDA) to reduce their di-

mension to 200, followed by radial Gaussianization [51]. For LDA and PLDA,

we re-use the same utterances as for training the i-vector extractor. The dimen-

sionality of the eigenvoice subspace in PLDA is set to 150 and 20 EM iterations

are used for estimating the PLDA hyper-parameters.
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6.2. Text-Dependent Speaker Verification Set-up

Dataset: For the text-dependent experiments, we choose RSR2015 [52] and

recent quarter four (Q4) release of RedDots corpus12. The RSR2015 consists

of microphone speech collected in clean and matched environmental condition

whereas RedDots corpus is collected from speakers using different smartphones

as well from variable environmental condition. The RedDots database is col-

lected from speakers using different smart-phones and acoustic environments.

Speech samples are collected using crowd-sourcing from native and native En-

glish speakers of diverse accents around the globe. We choose the first part

(Part 1) male subset of both datasets for our experiments. In this subset, the

speakers pronounce a set of fixed pass-phrases identical to all the speakers. This

condition is also a popular choice for user authentication in commercially avail-

able voice biometrics13. The number of trials for three corpora are summarized

in Table 5. We have used male sections only because they have more numbers

of trials in most of the datasets used in our experiments.

Table 5: Summary of trials for the corpora used in speaker verification experiments.

Database Name #target #non-target

NIST SRE2010 353 13707

RSR2015 10244 573664

RedDots 3242 120086

Classifier back-end: Our text-dependent ASV system uses the classic

Gaussian mixture model with universal background model (GMM-UBM) [53].

In our experiments with RedDots corpora, we have found it to outperform sev-

eral other ASV techniques including i-vectors and hidden Markov models [54]

(for similar findings, see [55]). We train a UBM with 512 Gaussians with di-

agonal covariances from 4380 male utterances of the TIMIT corpus. TIMIT

is a good choice for UBM model compared to NIST SRE or Switchboard cor-

12https://sites.google.com/site/thereddotsproject/reddots-2015-quarter-4-release
13http://www.nuance.com/ucmct/groups/imaging/@web-enus/documents/collateral/

nucc1021vocalpasswordv9proddes.pdf
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pora as the evaluation speech files are recorded at 16 kHz similar to TIMIT.

In [56, 54] results with TIMIT background were found comparable to other

systems using utterances from other data such as RSR2015 or LibriSpeech

used in [31, 55, 57]. The target speaker models are trained using maximum-

a-posteriori (MAP) adaptation of the Gaussian means as detailed in [53], using

adaptation relevance factor of 4, as optimized in [54].

6.3. Feature Extraction and Contrastive Speech Activity Detectors

Both the text-independent and -dependent ASV systems described above

use the same MFCC features extracted from 20 ms Hamming-windowed frames

every 10 ms. We use 20 filters in mel filterbank. We retain 19 base coefficients

after DCT, discarding the DC-coefficient. The speech features are then pro-

cessed by RASTA filtering [58] to suppress the effects of linear, slowly-varying

channel effects. Then 57-dimensional MFCCs are formed after augmenting the

dynamic coefficients. Here delta and double-delta features are computed us-

ing differentiator method across three adjacent coefficients. Finally, cepstral

mean and variance normalization (CMVN) is carried out after discarding the

non-speech frames with a speech activity detector.

As the focal point of this study is the speech activity detector, our contrastive

results presented in Section 7 consists always of otherwise equivalent ASV sys-

tems except that the enrollment and the test samples are processed with differ-

ent SADs. However, the system off-line components, namely, UBM, T-matrix,

LDA and PLDA are pre-trained with the same fixed SAD; as these datasets are

relatively clean and trained from very large number of speech frames, we use

bi-Gaussian energy SAD for this purpose (see below for the details). Even if

further performance gain might be expected by using “matched” or further op-

timized SADs for the off-line components, there are two reasons we have decided

to not do this. Firstly, in forensic automatic speaker recognition (FASR) sys-

tems, and in certain commercial applications, the application user has typically

access only to enrollment and test samples while the internal system param-

eters are fixed in advance and optimized by the system vendor. The second
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reason is computational: experimentation overhead is lower with fixed SAD for

the off-line components, allowing us to study more SAD variants. The same

experimentation strategy was adopted in [18]. We summarize our experimental

design as follows.

SAD for the enrollment and test files: one of the contrastive SADs listed below.

SAD for the off-line components: UBM, T-matrix, LDA and PLDA are trained from

features extracted with fixed, bi-Gaussian energy SAD. Hence, the system back-end

remains fixed.

Acoustic features: same in all the cases (19 MFCCs with deltas and double deltas),

CMVN after SAD processing.

We consider the following contrastive SADs for processing the enrollment

and test utterances:

No SAD: features are processed without any speech activity detection. This

serves as a reference point, especially for the text-dependent ASV set-

up containing short amount of speech, with a potential quality-amount

trade-off of selected speech frames for ASV scoring.

Clean labels: Clean SAD labels are obtained from the original uncorrupted

speech recordings using bi-Gaussian energy SAD; thus, performance of the

clean labels and bi-Gaussian SAD agree on the original data but will in

general differ for noise-added data.

Bi-Gaussian: In bi-Gaussian based speech activity detection method, the log-

energies of speech frames are fitted with GMM of two components [41].

The mode with a higher mean is assumed to correspond to speech whereas

the other mode with the lower mean is assumed to corresponds to non-

speech [59]. In a previous comparison of SADs for ASV task, bi-Gaussian
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SAD outperformed other methods in noisy condition [26]. We use our own

implementation as made available in 14.

Sohn: Sohn’s SAD [7] uses a robust decision rule derived from the generalized

likelihood ratio test considering geometric mean likelihood ratios over all

the frequency bins. It uses the noise statistics using a noise estimation

approach. We use the implementation provided in voicebox toolbox15.

rSAD: rSAD is another unsupervised SAD [60]. Here, the speech signal is

first filtered using a high-pass filter and then high-energy segments are

detected using a posteriori SNR weighted energy difference. Within the

high energy segments, frames without a valid pitch value are marked as

noise. Then, a denoised signal is generated by using a modified minimum

statistics based noise estimation method and setting the high-energy noise

segments to zero. Then chunk of speech frames are also verified if their

signal power is considerably greater than the corresponding noise power.

Finally, a posteriori SNR weighted energy difference measure is applied to

the denoised signal, and the frames containing pitch are treated speech.

The rSAD produced promising performance in recent NIST OpenSad chal-

lenge [37]. We use the implementation by the original authors16.

GMM: Proposed GMM-based SAD described in Section 3 without semi-

supervised training.

SSGMM: Proposed GMM-based SAD described in Section 3 with semi-supervised

training.

6.4. Performance measure

We assess speaker verification performance in terms of equal error rate (EER)

which corresponds to the operating point (decision threshold) at which the miss

14http://cs.joensuu.fi/~sahid/codes/bgVAD1.0.zip
15http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
16http://kom.aau.dk/~zt/online/rVAD/index.htm
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and false alarm rates of the ASV system coincide. In practice, we compute the

EER values using BOSARIS toolkit with ROC convex hull (ROCCH) method17.

7. Application to Speaker Verification: Results

7.1. Text-Independent Speaker Verification

In our first set of experiments, we evaluate different SADs in text-independent

task on the original NIST SRE 2010 data without added noise (matched con-

dition) and for the mismatched condition where the test data is distorted with

digitally added noises in 3 SNR levels: 10 dB, 6 dB and 0 dB. The results are

shown in Table 6. For the GMM and proposed semi-supervised GMM, the re-

sults are also shown for the best configurations found in Section 5 with MFCC

and PNCC features. The number of Gaussian is selected as 2 and 8 with full

(non-shared) covariances. In all cases, we use 50 speech frames (0.5 seconds as

our frame rate is 100 fps) to initialize the speech and non-speech models. This

amount was chosen according to the initialization scheme based on F0 detection

and signal energy computation.

The results with “no SAD” denotes the performance without using any

SAD whereas the results with clean labels indicate the results with a perfect

SAD. From the results with no SAD and clean labels, we infer that the ASV

performance can be considerably improved by using ground-truth regarding

speech/non-speech class. We then compare the performances with baseline bi-

Gaussian SADs and other two standard SADs: Sohn and rSAD. The results

indicate that use of SAD can considerably improve ASV performance. The per-

formances of Sohn and rSAD are relatively better than baseline method in noisy

conditions.

Comparing GMM and SSGMM, the latter yields lower EERs in most cases.

This can be explained noting that SSGMM uses all the available frames to

enhance the models while GMM relies only on the small amount of initializa-

17https://sites.google.com/site/bosaristoolkit/
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Table 6: ASV performance in terms of EER (%) on NIST SRE 2010 in clean and noisy
condition using different SADs. For the proposed GMM and SSGMM methods, we indicate
the features (MFCC, PNCC) and the number of Gaussian components (K) used for modeling
speech and nonspeech classes.

SAD Method Matched 10 dB 6 dB 0 dB

No SAD 12.53 18.62 21.68 28.32

Clean labels 4.25 7.07 9.56 14.91

Bi-Gaussian 4.25 11.86 14.23 23.49

Sohn [7] 6.16 7.50 9.42 13.20

rSAD [60] 4.70 7.81 9.73 14.27

GMM (MFCC, K = 8) 11.10 13.10 14.37 18.69

GMM (MFCC, K = 2) 5.59 9.86 12.25 16.80

GMM (PNCC, K = 8) 7.63 12.31 13.18 17.22

GMM (PNCC, K = 2) 5.38 7.93 10.00 13.87

SSGMM (MFCC, K = 8) 4.36 7.58 10.13 15.37

SSGMM (MFCC, K = 2) 4.41 6.81 9.43 15.23

SSGMM (PNCC, K = 8) 6.01 8.12 10.21 15.66

SSGMM (PNCC, K = 2) 6.12 7.48 9.17 14.18

tion data which might be not enough for fitting accurate models. Comparing

the models with K = 8 or K = 2 Gaussians, the latter yields slightly bet-

ter performance. The proposed SAD techniques systematically outperform the

energy-based bi-Gaussian SAD for noisy conditions. On the other hand, the

performance of proposed SSGMM with MFCC features and two Gaussians is

better other than existing SADS in higher SNRs (matched and 10 dB) and is

slightly poor for lower SNRs (6 dB and 0 dB). Interestingly, the clean SAD is

not showing the best performance for noisy condition. This might be due to the

fact that a SAD algorithm also discards unreliable speech frames with very low

segmental SNR but ‘clean labels’ includes those noisy frames and they introduce

errors in ASV scoring process.

Next we study the effect of initialization length on the accuracy of the ASV

system, as illustrated in Fig. 8. We observe that while the accuracy of GMM

without semi-supervised training improves with longer data, the SSGMM is

relatively insensitive to the amount of initialization data. This is expected and
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Figure 8: Effect of initialization data amount for GMM SAD and SSGMM SAD using MFCC
and PNCC features with two Gaussians (K = 2) using full covariance. Performances in terms
of % of EER are shown for matched and noisy condition for amount of initialization as 1s, 3s,
5s, 7s, 9s and 1m.

favorable as it enables operating the SAD using different amounts of supervision.

7.2. Text-Dependent Speaker Verification: Results

Table 7 shows the results for the RedDots corpus. As before, we used 0.5

seconds of audio data to initialize the GMM models. Since the speech segments

are short in duration, we have used shared covariance here as the total amount of

speech is not adequate to estimate the covariances. We can see no considerable

benefit of using SSGMM in terms of ASV system performance. This observation

is supported by the intuition that the semi-supervised training can be helpful

if the overall amount of data is relatively large. Otherwise, neither GMM, nor

SSGMM method is able to fit accurate speech and non-speech models. We

can see that the GMM-based systems has lower accuracy, which also can be

explained by the short file durations in these datasets.

We have also observed the similar trend for RSR2015 in clean and noisy

conditions. The results are shown in Table 8. Here also, the proposed SADs as

well as Sohn and rSAD method give higher EER than simple energy-based SAD.
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Table 7: ASV performance in terms of EER (%) on RedDots using no SAD and different
proposed and existing SAD techniques.

SAD Method EER (%)

No SAD 4.99

Clean labels 3.01

Bi-Gaussian 3.01

Sohn [7] 2.81

rSAD [60] 3.37

GMM (MFCC, full-2) 3.81

GMM (PNCC, full-2) 3.64

SSGMM (MFCC, full-2) 3.87

SSGMM (PNCC, full-2) 4.04

Using no SAD at all outperforms all the compared SADs except energy-based

Bi-Gaussian SAD for the clean condition. These results confirm the limitations

of the proposed SADs for short text-dependent ASV tasks.

Table 8: ASV performance in terms of EER (%) on RSR2015 in clean and noisy condition
using no SAD and different proposed and existing SAD techniques.

SAD Method Matched 10 dB 6 dB 0 dB

No SAD 2.18 7.71 12.21 22.50

Clean labels 2.08 5.00 7.85 16.64

Bi-Gaussian 2.08 5.07 7.91 17.30

Sohn [7] 2.35 5.80 8.89 17.91

rSAD [60] 3.09 6.84 10.47 19.94

GMM (MFCC, 2) 3.21 6.71 9.89 18.80

GMM (PNCC, 2) 2.59 5.80 8.72 17.35

SSGMM (MFCC, 2) 2.88 6.35 9.34 18.24

SSGMM (PNCC, 2) 2.62 5.66 8.45 16.79

7.3. Shared features for SAD and ASV

So far in this study, we have used separate features SAD and ASV tasks.

In the next experiment, we use the same acoustic front-end for both SAD and

ASV. To model speech and non-speech classes, we use the same 19-dimensional
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Table 9: ASV performance in terms of EER (%) on NIST SRE 2010 in clean and noisy
condition with shared feature. MFCC features used for ASV task are adopted here for SAD.

SAD Method Matched 10 dB 6 dB 0 dB

GMM (8) 7.49 11.65 13.50 17.89

GMM (2) 5.45 8.07 10.82 14.89

SSGMM (8) 4.81 8.01 10.43 15.50

SSGMM (2) 4.66 7.04 9.10 13.67

base MFCCs extracted with 20 filters as used in ASV task (as discussed in Sec-

tion 6.3). One obvious advantage of this feature sharing scheme is that it does

not require additional computational overhead for SAD feature extraction. As

shown in Table 9, the ASV results with this approach indicate that SSGMM

outperforms GMM. We also notice that for GMM-SAD, the ASV performance

is better than the performance obtained by MFCC feature with different con-

figuration as reported in Table 6.

8. Impact of SAD Errors to Speaker Verification Accuracy

Throughout our experiments, we have compared different SADs using their

default settings, i.e., the SADs were not specially calibrated for ASV tasks.

Nonetheless, as a binary classifier involving the use of a detection threshold, any

SAD in practice will have to trade-off between speech misses (speech frames de-

clared as non-speech by the SAD) and false alarms (non-speech frames declared

as speech by the SAD). One should expect the relative importance of these two

types errors to depend on the application, type and level of background noise,

duration of speech utterances and other factors. As an example, the evaluation

metric for the OpenSAD challenge expressed in Eq. 9, with parameter α = 0.75

expresses a belief that speech misses are three times more costly than falsely

detected non-speech frames. Hence, the threshold for the SAD should be opti-

mized to detect a large number of speech frames. But in ASV, especially under

noisy conditions, we might have a different preference so as to avoid including

unusable frames with high amount of noise into speaker enrollment or scoring.
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With this background, our final analysis in this Section addresses the ques-

tion how one should weight the false alarms and misses in the ASV context. By

knowing — even approximately — what the SAD segmentation metric should

be in order to maximize ASV accuracy, the acquired knowledge would be useful

for optimizing other SADs outside the specific databases or classifiers used in

this study.

We begin by visualizing the distribution of the test file SAD errors repre-

sented by the corresponding Pmiss and Pfa in the SRE 2010 data. Figure 9

illustrates this for one SNR level (10 dB). To obtain this graph, we varied the

decision threshold of the SSGMM SAD such that, for each recording, a fixed

fraction of frames in the range 5%-100% was labeled as speech. The step was

equal to 5%, so that each SRE 2010 test file corresponds to a total of 20 points in

this plot. To obtain the SAD false alarm and miss rates in each case, we use the

segmentation produced by the bi-Gaussian SAD from the original uncorrupted

NIST file as a reference. The resulting scatter plot consists of the union of 20

copies of the test set corresponding to different threshold levels and the three

SNR levels (10 dB, 6 dB, 0 dB). We then computed the average miss and false

alarm rates across the files within each of these 20 subsets, shown as circles in

Fig. 9.

We then measured the EER of the ASV system for each case, i.e., using the

same trial list but different SAD labels. Given the small number of trials, we

further estimate 95% confidence intervals of the EER following the methodology

of [46]. In specific, we compute parametric confidence intervals as EER±σ·Zα/2,

where Zα/2 = 1.96, σ = 0.5
√

EER(1− EER)(n+ + n−)/(n+n−) and n+, n− are

the number of target and non-target trials, respectively.

The results, shown in Figure 10, illustrates the dependency of the ASV

EER on the logarithm of the miss to false alarm rates ratio of the SAD for the

three different SNRs. The best performance corresponds to the point around

Pmiss/Pfa ≈ 5 (since log(5) ≈ 1.6 – the point corresponding to the lowest EER)

and is relatively stable to the noise level. Thus, for our data and SADs, we

conclude that higher miss rate is less critical than false alarm rate, hence false
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Figure 9: Distribution of the test file SAD errors of the GMM SAD. Circles correspond to the
average errors computed for each copy of the test set. See text for the details.

alarms should be penalized roughly 4-5 times higher to get the best performance

in the application to speaker verification. It coincides with intuition that “noise-

poisoned” speaker model can be worse than the model estimated from smaller,

but more pure speech data. Naturally, these observations should be re-examined

using other SADs and datasets.

Interestingly, the proposed SSGMM method yields wider region of close-to-

the-optimal ASV error rates. One possible explanation comes from comparing

the objective functions for training GMM and SSGMM. SSGMM is trained by

maximizing (3) while only the first term of (3) is used as the training objective

for GMM. The second term in equation (3) can be seen as a regularizer which

enforces a more smooth decision boundary, therefore, improves generalization.

This might also explain why SSGMM was found to be less sensitive to the

amount of initialization data, as we have seen in Figure 8. Hence, moving the

decision boundary of SSGMM, by changing the decision threshold around the
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Figure 10: Estimated EER as a function of the logarithm of the miss to FA rates ratio
for different SADs: GMM (top), SSGMM (center), BiGaussian (bottom). Horizontal axis
represents the trade-off between two types of SAD errors which can tuned to achieve the best
ASV performance in terms of EER. We can see that the optimal trade-off is relatively stable
with respect to noise levels and almost the same for all three SADs.
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region of the optimal values, has less impact than in the case of GMM.

9. Conclusion

We have introduced a simple and general-purpose Gaussian mixture model

(GMM) based SAD trained from scratch for every audio recording. To train

the speech and non-speech GMMs, a small fraction of labeled data from the

specific recording is required, but otherwise the SAD segmentation process is

completely automatic. Depending on the application scheme, the initial labels

could be produced by a human annotator or by another simpler SAD. We have

extensively evaluated the proposed SAD using three different datasets varying

in their data qualities.

First, in order to find the optimal configuration in terms of standalone SAD

performance, we evaluated our method on two datasets with very different noise

characteristics. The main design parameters of the method include the num-

ber of Gaussians, the type of the covariance matrices, and the initialization

method. The number of Gaussians was found to have little impact but the

choice of covariance matrix structure has some impact. We found the SAD with

full covariance matrices to outperform the diagonal and spherical covariances,

and further, covariance sharing within each class (speech and non-speech) was

helpful.

Experiments with initial labeling revealed that accurate initialization is very

important. A combination of energy and F0 outperforms simpler energy-based

initialization (used in [18]) on the extremely noisy NIST OpenSAD data, as one

might expect. Further, our results suggest that larger amounts of imperfectly

labeled data degrades the models, leading to drop in accuracy. In turn, with

oracle initialization (using known reliable labels), SAD accuracy is stable to

changing the amount of data used to train models. These results are expected.

Comparing the baseline GMM and the proposed SSGMM models, the latter

is recommend especially when there is no guarantee on the correctness of the

initial labels, while the former can be more accurate with reliable initial labels.

39



We further compared four different features widely used in different recog-

nition tasks: MFCC, PLP, FDLP, and PNCC. The first three features had

comparable error rates while the use of PNCC features yielded higher miss and

much lower false alarm rates. While the choice of best SAD features is expected

to depend on a specific application and data, our experiments demonstrate that

all the features produced reasonable results. Therefore, it is straightforward

to integrate different spectral features into the proposed SAD modeling scheme

without requiring major changes in the back-end parameter configuration.

Besides standalone evaluation of SADs, we assessed the performance of ASV

systems with different SADs integrated to them. These experiments included

two different datasets involving both text-independent and text-dependent sce-

narios. Concerning the text-independent case, the proposed GMM-based SADs

yielded comparable performance to the systems based on several other unsuper-

vised SADs. In specific, they outperform the most commonly used, energy-based

(in our case, with bi-Gaussian threshold selection) by a wide margin under the

noisiest conditions as indicated by the results in Table 6. The performance is

comparable and sometimes better to the other two unsupervised SADs, Sohn

and rSAD. Concerning the text-dependent results with relatively short dura-

tion data, presented in Table 7, our results are, however, negative: the simpler

baseline methods outperformed the proposed methods.

Several conclusions can be drawn from these ASV experiments: (1) PNCC

features seem preferable for noisier conditions while MFCCs can be better for

relatively cleaner data; (2) the proposed SAD is best suited for long and noisy

data conditions, such as the NIST datasets, while the simpler DSP-based unsu-

pervised SADs seem sufficient for shorter data conditions; and (3) false alarms

of the SADs should be penalized higher than misses, i.e., decision threshold

should be adjusted in a way to make SAD more selective in order to reach lower

EER.

Overall, comparing the two alternative ways to train the GMMs for ASV,

with and without semi-supervision, the latter was found helpful in the case

of long recordings, but none of them was found a good choice for our text-
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dependent scenario involving short utterances in RedDots and RSR2015. This

observation is consistent with the core idea of the GMM training process: it

relies on the availability of relatively large amounts of data for fitting accurate

models — on the order of a few minutes, rather than only a few seconds.

We observed that using no SAD at all in text-independent task leads to

considerable ASV performance degradation, as one could expect. In contrast,

in the experiments on text-dependent ASV, the relative degradation between

the best SAD and no SAD was much smaller. This might be explained by the

short durations in the text-dependent case because such limited amount of data

(∼ 10 sec for enrolment and ∼ 3 sec for test) are not sufficient for training

target speaker models and decision making and the use of SAD further reduces

the amount of data.

Finally, utilizing the NIST SRE 2010 data, we took a detailed look into how

the SAD miss and false alarm errors impact ASV performance. Our novel anal-

ysis revealed that best ASV performance corresponds to an SAD segmentation

cost function where, approximately, false alarms should penalized 4 to 5 times

over the misses. What we find most interesting is that this choice, reflected by

the minima region in Fig. 10, does not depend on neither the SAD method nor

the SNR. While we do not claim generality of such observation beyond the spe-

cific methods and data presented here, we find the result encouraging for future

studies on SAD optimization for ASV (or other recognition) tasks. Further, our

analysis reveals an interesting property of the proposed semi-supervised SAD:

it yields comparatively more stable ASV error rates over a wider range of SAD

decision points especially under low noise condition in comparison to the other

two SAD methods compared. This leads us to conclude that the SAD calibra-

tion might be relatively easy for the proposed method, while for instance the

success of the energy-based SAD can be critically dependent on hitting just the

‘correct’ SAD operating point.

Our SAD naturally allows initialization with a portion of oracle labels pro-

vided by human or more accurate but computationally expensive SAD. These

suggest several possible directions to improve the method, specifically, combin-
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ing different features, using alternative models for speech/nonspeech and using

other SADs for initialization.
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