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Abstract
Fusion of the base classifiers is seen as a way to achieve high
performance in state-of-the-art speaker verification systems.
Typically, we are looking for base classifiers that would be com-
plementary. We might also be interested in reinforcing good
base classifiers by including others that are similar to them. In
any case, the final ensemble size is typically small and has to be
formed based on some rules of thumb. We are interested to find
out a subset of classifiers that has a good generalization perfor-
mance. We approach the problem from sparse learning point of
view. We assume that the true, but unknown, fusion weights are
sparse. As a practical solution, we regularize weighted logistic
regression loss function by elastic-net and LASSO constraints.
However, all regularization methods have an additional param-
eter that controls the amount of regularization employed. This
needs to be separately tuned. In this work, we usevariational
Bayesapproach to automatically obtain sparse solutions without
additional cross-validation. Variational Bayes method improves
the baseline method in 3 out of 4 sub-conditions.
Index Terms: logistic regression, regularization, compressed
sensing, linear fusion, speaker verification

1. Introduction
Speaker verification is the task of accepting or rejecting an iden-
tity claim based on a person’s voice sample [1]. Classification
can be done on eitherbase classifierlevel or at the level ofen-
semble, which is a technique known asclassifier fusion. In this
study, we focus on the latter.

In this paper, we consider linear classifier as a fusion device
for the base classifer scores. Loss function used to optimize lin-
ear classifier parameters, i.e. the weight vectorw and the biasb,
play an important role as to how well the learned classifier gen-
eralizes to unseen data [2]. In this work we focus on thelogistic
regressionmodel, which is a probabilistic discriminative linear
model. As a loss function,log losshas several desirable prop-
erties, such as it does not overfit as easily as optimizing clas-
sification error directly. Logistic regression was introduced to
speaker verification score fusion in [3] and later popularized by
the fusion and calibration(FoCal) toolkit1. It has subsequently
been found to be a useful linear fusion training methodology by
in a number of independent studies (e.g. [4, 5]) and is taken
here as a reference method.

A complete speaker verification system consisting of an
ensemble of base classifiers might utilize, for instance, differ-
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ent speech parameterizations (e.g. spectral, prosodic or high-
level features), classifiers (e.g. Gaussian mixture models [6] or
support vector machines [7]), channel compensation techniques
(e.g. joint factor analysis [8] or nuisance attribute projection
[9]) or even selecting different datasets for estimating the hy-
perparameters. From such a list of features and classifiers a
large number of potential ensembles is possible. Usually, it is
left for an individual developer to select a suitable ensemble by
hand, which may not be optimal in all cases. It is the topic of
this paper to pursue an systematic method in fusion ensemble
design.

One can just develop a large number of base classifiers and
let the weight optimizer to find a good solution. Function to be
optimized is aproxyof a classification error, upper bound of it
that forms a convex function [10]. However, overfitting on the
training data is still possible, even though an upper bound is op-
timized instead of classification error. To avoid overfit, regular-
ization is required. The most common one is the quadratic reg-
ularizationλ

2
‖w‖22, also known asridge regression[11]. Reg-

ularization forces parameter shrinkage, where the greater the
Lagrange coefficientλ is, the smaller the norm‖w‖ will be.
Smaller norm implies better generalizability. Reason for this
is easy to see, as higher norm means that some classifiers are
given a large weight based on the training data. Effectiveness of
these classifiers might not be realized on an unseen evaluation
data.

In contrast to the ridge regression, an other approach is to
regularize with a constraint that enforcessparsesolutions. Ex-
treme example is to regularize with‖w‖0 constraint [12]. Then
λ signifies a maximum number of non-zero weights. This op-
timization problem is solved by optimizing weights for all the
subsets of the constrained ensemble size and picking the one
that performs the best. In our previous work [13] we selected
the subset based on the training set and not on a cross-validation
set, resulting in an underfit.

The time complexity of subset selection is exponential
with respect to the number of base classifiers. Sparse solu-
tion can still be obtained by using a‖w‖1 constraint instead,
also known asleast absolute shrinkage and selection operator
(LASSO) [12]. LASSO shrinks all of the coefficients, where
some are forced to exactly zero. By regularizing logistic re-
gression with the LASSO constraint, we can simultaneously
optimize the fusion weights and perform classifier subset se-
lection. Convex combination of ridge regression and LASSO
leads to another regularization technique known aselastic-net
(E-net) [14], which is sharp on the zeroing capability and yet
smoother than the LASSO type of regularization. In addition,
with elastic-net control of the norm of the weight vector can be
more fine-grained than using LASSO, by increasing the influ-
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Figure 1: Visual intuition behind sparse classifier fusion. We display the contours of theCwlr cost function for score fusion of two
classifiers. In each panel, the global minimum ofCwlr is indicated by a red cross. In the constrained optimization case, we search for
the minimum instead inside a constraint region specified by(wp

1 + wp
2)

(1/p) ≤ 1 (here, the casesp = 1 andp = 2 are visualized). As
can be seen, the casep = 1 finds asparsesolution in the sense that classifier 2 is zeroed out. Luckily this solution hits closest to the
true minimum on the unseen test data. EvenL2 regularization (p = 2) gives smaller cost than the unconstrained solution, suggesting
that regularization and sparsification might be particularly useful for classifier fusion under unpredictable data mismatches.

ence of the ridge constraint. In our previous work [15], we pro-
posed to use LASSO and elastic-net regularization techniques
to simultaneously achieve generalizable fusion device and clas-
sifier subset selection.

Performance on the evaluation data is crucially dependent
on selection (or estimation) of suitable regularization parame-
ters. Cross-validation (CV) is a standard practice used to solve
these kind of problems, but it requires a large number of com-
putations. Also the solution can be quite noisy, select one CV
set and you get oneλ, with slightly a different set the differ-
ence inλ can be large [16]. In this work, we attempt to solve
this problem by placing a suitable sparsity enforcing prior on a
logistic regression and finding the so-calledvariational Bayes
solution to it, instead of the MAP solution as we used in [15].

In addition, we were interested to find out whether a com-
promise could be found between LASSO and elastic-net, where
we add an integer constraint to LASSO instead of ridge re-
gression. our integer constraint specifies which base classifier
shouldnot be zeroed out. All experiments are now performed
on the complete NIST 2010 core set.

2. Classifier Fusion
2.1. Problem Setup

We assume that, during the development phase, one has access
to a development setD = {(si, yi), i = 1, 2, . . . , Ndev} of
base classifier score vectorssi ∈ R

L, with yi ∈ {+1,−1}
indicating whether the corresponding speech sample originates
from a target speaker(yi = +1) or from a non-target(yi =
−1). UsingD, the goal is to find the best parametersw

∗ of a
linear combinerfw(s) = w

t
s+w0 so that a classification error

measure is minimized on unseen evaluation data. For our eval-
uation purposes, we adopt the standarddetection cost function
(DCF) used in the NIST speaker recognition evaluations2,

Cdet(θ) = CmissPmiss(θ)Ptar + CfaPfa(θ)(1− Ptar). (1)

2http://www.itl.nist.gov/iad/mig/tests/spk/

HerePmiss(θ) andPfa(θ) are the miss and false alarm probabil-
ities as a function of the decision thresholdθ wherePtar is the
prior probability of a target (true) speaker,Cmiss is the cost of a
miss (false rejection) andCfa is the cost of a false alarm (false
acceptance). These application-dependent cost parameters can
also be summarized as a single cost parameter,effective prior:

P = logit−1(logit(Ptar) + log(Cmiss/Cfa)), (2)

wherelogitP = log(P/(1 − P )). It is possible to minimize
DCF directly (e.g. [17]) or to optimize a surrogate cost such as
effective prior weighted logistic regression cost [4]. Here we
adopt the latter approach which represents state-of-the-art.

2.2. Logistic regression

Logistic regressionis a probabilistic linear model, which begins
with the realization that target class posterior can be modeled as
p(y = 1|s) = (1 + exp{−(wt

s+ w0)})−1 = σ(wt
s+ w0),

whereσ(.) is a logistic sigmoid function [2]. Non-target is then
p(y = −1|s) = 1−σ(wt

s+w0) = σ(−w
t
s−w0), by utiliz-

ing the properties ofσ(.). The quantitywt
s+w0 is then inter-

preted as a log of the ratio of probabilitiesln[p(y = 1|s)/p(y =
−1|s)], so calledlog odds[2]. This is useful, as if the pos-
teriors in the log odds are well estimated then Bayes optimal
cost-sensitive decision can be made by placing the threshold to
− logitP .

Maximum likelihood estimate of the parameters can be
found by taking the negative logarithm of the likelihood for-
mulation, yielding the followingcross-entropycost [2]:

−
N
∑

n=1

{tn lnxn + (1− tn) ln(1− xn)} , (3)

wheretn ∈ {0, 1} is relabeled (for mathematical convenience)
class label andxn = σ(wt

sn +w0). Iterative gradient descent
methods can then find parameter estimates.



2.3. Weighted cross-entropy objective

In speaker verification applications, we are usually interested in
a specific set of DCF parameters, in effect in the training phase
we learing the parameters in a cost-sensitive way. In addition,
the ratio of positive and negative examples in the development
set might be highly imbalanced. This is the case with the bi-
annual NIST evaluation setup.

In the FoCal software package, indirect optimization of the
fusion weights and bias given DCF parameters is achieved by
modifying the cross-entropy objectiveCwlr. In Cwlr, in ad-
dition to a global effective prior based bias, cross-entropy is
weighted by the observed ratio of positive and negative exam-
ples [4]:

Cwlr(w, s) =
P

Nt

Nt
∑

i=1

log
(

1 + e−w
t
si−logitP

)

+
1− P

Nf

Nf
∑

j=1

log
(

1 + ew
t
sj+logitP

)

, (4)

where the two sums go throughNt target score vectorssi and
Nf non-target score vectorssj , respectively. We will also do
the standard bias encoding by adding one extra element con-
taining 1 tos. Global bias can then be extracted from the cor-
responding position in the weight vector.

3. Regularized Logistic Regression
We extend the weighted logistic regression in Eq. (4) by adding
a regularization term [2]. It leads to minimizing,

Cwlr(w, s) s.t. J(w) ≤ t, (5)

whereJ(w) can be1
2
‖w‖22, which is called ridge regression,

‖w‖1 =
∑L

i=1 |wi|, which is called LASSO or‖w‖0 =
∑L

i=1 w
0
i , which is called subset selection. Quantityw0

i is 1 ev-
erywhere except whenwi = 0, then it will get value 0. In other
words, the0th norm, simply counts the number of non-zero
weights. The user specified parametert indicates the intended
amount of parameter shrinkage. The Lagrange coefficients will
give us, in the case of LASSO, the following expression,

Cwlr(w, s) + λ‖w‖1. (6)

It is known that the largerλ, the more norm‖w‖ will be
shrunk [12]. Example of (6) on real data can be seen in Fig. 1,
where two base classifiers are fused. From the example it is
clear that weights found by the direct optimization of (4) would
lead to non-optimal solution for the NIST SRE 2010 data set.

If optimization is based on Eq. (6), then the correspondence
betweenλ and shrinkage thresholdt can be found by a binary
search on possibleλ values. In each iteration we select oneλ
value and optimize weights using it, output is then the norm
of the weights. Final weight vector is the one whose norm is
closest to the targett, but does not violate it.

Elastic-net, on the other hand, is based on the idea that we
can combine both regularizers into one constraint optimization
problem,

Cwlr(w, s) + λ
(

β‖w‖1 + (1− β)‖w‖22
)

. (7)

As can be seen, Eq. (7) is a generalized variant of both LASSO
and ridge regression. That is, we can always find such aβ
where, in terms of performance, elastic-net will at least not lose

to LASSO or ridge regression. However, whereas LASSO and
ridge regression had to select only one regression parameter,
now we need to do crossvalidation over a 2-d space. In this
work we first fix theβ parameter. Then the shrinkage factorλ
can be cross-validated as in LASSO and ridge regression.

Depending on the chosen regularization method, there are
different strategies to optimize (5). Since logistic regression
using quadratic regularization is differentiable, it can be effi-
ciently optimized using standard packages [2]. Situation is not
so simple for LASSO regularization. In [12], aquadratic pro-
gramming(QP) solution was proposed to it by rewriting the
constraints in (5) to a more convenient form. However, more
recent techniques are faster in practice, for that reason we apply
the projectionL1algorithm [18] that optimizes the Lagrangian
form Eq. (6). We apply the same method to elastic-net, as the
sum of two convex functions is still convex; therefore we can
minimizeCwlr(w, s) + λ(1 − β)‖w‖22, givenλβ‖w‖1 as the
constraint.

3.1. Restricted LASSO

As λ increases, LASSO tends to zero out a large number of
base classifiers. We are interested to find out if regularizing the
LASSO regularizer will bring the extra benefit, i.e. in similar
vein than in elastic-net, we add extra parameter to LASSO so
that result will be less sparse. We call this methodrestricted
LASSO. We can exclude any of the base classifiers from being
zeroed out by adding an extra constraintwj 6= 0 to (5). Taking
Lagrange formulation of the constrained optimization problem,
we giveλ for wj 6= 0 constraint. We assume thatλ associated
with wj 6= 0 is the same as one for the LASSO. Thus, summing
up both constraints together leads to the fact thatλ equals to
zero for base classifierj.

3.2. Bayesian interpretation

Regularized logistic regression can also be interpreted as the
maximum a posteriori (MAP) estimate of the weight vector
w [12], where regularization term in (6) acts as a prior.

We are interested in shrinking the parameterswj towards
zero, threrefor a simple prior per weight is univariate Gaussian
with zero mean andτj variance,p(wj |τj) = N (0, τj) [19]. By
further assuming thatτj is distributed according to exponential
distribution:

p(τj |γj) = γj
2

exp
(

−γj
2
τj
)

, (8)

integrating outτj from p(wj |τj)p(τj |γj) gives [19]:

p(wj |λj) =
λj

2
exp (−λj |wj |) , (9)

whereλj =
√
γj . Now, settingλj = λ for all the base clas-

sifiers we obtain LASSO regularized logistic regression of (6).
Similarly, modeling precision instead of variance (α = 1/λ)
the prior corresponding to ridge regression turn out to be,

p(w|α) = N (0, α−1
I). (10)

3.3. Variational Bayes fusion

In contrast to the previous sub sections, where MAP point esti-
mate was the goal, in variational Bayes (VB) approach we try
to find the approximatefull posterior [2]. Then no free param-
eters are assumed to be fixed or set using cross-validation tech-
niques. The ultimate goal of the variational Bayes is to obtain



an approximate solution to thep(D), where all unobserved pa-
rameters and latent variables have been marginalized out. How-
ever, direct optimization ofp(D) is typically not possible, so
in the variational Bayes we iteratively optimize the lowerbound
ln p(D) ≥ L(q). Whereq is thevariational distribution. The
method assumes that the variational posterior distribution then
factorizes [2]. Factors can then be independently maximized,
which leads to iterative EM-like optimization algorithm. In this
work, we use implementation of VB logistic regression by Jan
Drugowitsch3.

In VB, we in addition to the prior in (10), where precision is
treated as a free parameter, we place hyper-prior the precisionα,
p(α) = Gam(α|a0, b0) [2]. Modeling decision can be done be-
cause, Gamma is the conjugate prior precision of Normal with
the known mean. Scalarsa0 andb0 are parameters of the hyper-
prior, in this work we select them to be non-informative.

In standard VB approach, one hyper-prior was selected for
all base classifiers, but inautomatic relevance determination
(ARD) prior we will have per base classifier hyper prior. It
aims to utilize data-dependent prior distribution that effectively
prunes away redundant or superfluous features [20]. In this
work, prior is selected to be the [2]:

p(w|α) = N (0,A−1), (11)

where A is a diagonal matrix with diagonal elements
α = (α1, . . . , αL). The hyper-prior is thenp(α) =
∏L

i=1 Gam(αi|a0, b0). Each base classifier has it’s own prior,
parametrized by precisionαi. We see that ifαi is high then it
is likely that the base classifieri does not play any role in the
fusion andwi is most likely zero [2].

4. Corpora, Metrics and Base Classifiers
4.1. Experiments with I4U systems

We utilize the two most recent NIST SRE corpora, namely,
NIST 2008 and NIST 2010, in our experiments4. The experi-
ments are performed solely on female trials5. The audio files
from all NIST 2008 speakers were split into two disjoint parts.
Trials were then automatically generated from those two sets,
while keeping observedptarget similar than in the official NIST
2008 SRE trial lists. The first part,trainset, is used for training
the score warping parameters (S-cal [4] was used as precalibra-
tion method), fusion weights and bias. The second part,cross
validation set, is used for estimating shrinkage parameter (λ)
and the tradeoff parameter (β) between LASSO and elastic-net.
The optimized parameters are then applied to the NIST 2010
data, which is reserved for the evaluation purposes.

For evaluation of the methods, we consider the detection
cost function in (1), where the cost parameters are adopted from
the previous NIST SRE evaluation plans, namely,Cmiss = 10
Cfa = 1 andPtar = 0.01. Decision is based on the threshold
obtained from the effective prior in Eq. (2). We are interested
in comparing the application dependent classification error as
measured in actual DCF (ActDCF). ActDCF is the error count
after thresholding the scores.

In this study we use the same ensemble setup as in our pre-
vious studies [13, 15]. We have twelve subsystems in total, all
are based on different cepstral features and four different clas-

3http://www.lnc.ens.fr/ ˜ jdrugowi/code_vb.html
4http://www.itl.nist.gov/iad/mig//tests/sre/
5Female trials are somewhat more difficult than males. Similar ra-

tionale was taken, for instance, in [8].
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Figure 2: Weight evolution of the Elastic-net regularization,
with α = 0.7, as a function of normalizedt.
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Figure 3: Effect of ensemble size to accuracy Evalset using VB
logistic regression. For a fixed ensemble size (K), the lowest
(green) and highest (red) lines show the best and worst possible
selections out from the
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)

choices from Evalset (NIST SRE
2010). The middle (blue) line indicates the actual ensemble
selected by cross-validation set.

sifiers, as part of the I4U system. For classifiers, we use the
generative GMM-UBM-JFA [8] and the discriminative GMM-
SVM approaches with KL-divergence kernel [21] and the Bhat-
tacharyya kernel [22]. We also include another method, feature
transformation [23], as an alternative supervector for SVM. All
of the methods are grounded on theuniversal background model
(UBM) paradigm and share similar form of subspace channel
compensation, though the training methods differ. We used data
from the NIST SRE 2004, SRE 2005 and SRE 2006 corpora to
train the UBM and the session variability subspaces, and addi-
tional data from the Switchboard corpus to train the speaker-
variability subspace for the JFA systems. Each base classifier
has its own score normalization prior to score warping and fu-
sion. To this end, we use T-norm and Z-norm with NIST SRE
2004 and SRE 2005 data as the background and cohort training
data.

5. Experiments
It is instructive to show the evolution of the individual classifier
weights as the function of threshold parametert. In Fig. 2 we
observe the fusion weights as a function of normalized shrink-
age threshold̂t = t/‖ŵ‖, whereŵ is the unregularized solu-
tion. We see that̂t will tell how much of the unregularized norm
is left after shrinkage. Regularization path of the elastic-net so-



lutions shows grouping effect, it appears to group classifiers into
4 different groups with theβ = 0.7 selection. Only two classi-
fiers are zeroed out when shrinkage ratio is set to 0.66.

Table 1: Variational Bayes logistic regression compared to max-
imum likelihood trained logistic regression.

Fusion EER MinDCF ActDCF Ensemble
(%) (×100) (×100) size

itv
-it

v Log. Regr 3.55 1.8072 2.8420 12
VB 3.51 1.7789 2.8728 10
VB-ARD 3.48 1.7621 2.9289 10

itv
-t

el Log. Regr 2.40 0.98 1.74 12
VB 2.50 0.9683 2.0020 12
VB-ARD 2.50 0.9924 2.0112 12

m
ic

-m
ic Log. Regr 5.10 .2.35 4.14 12

VB 5.10 2.2273 4.8788 9
VB-ARD 5.67 2.1127 5.6405 9

te
l-t

el Log. Regr 2.33 1.12 1.18 12
VB 2.23 1.1396 3.0361 12
VB-ARD 2.27 1.1746 3.1334 12

5.1. Variational Bayes approaches

Variational Bayesian (VB) logistic regression with automatic
relevance determination (ARD) prior results are shown in Ta-
ble 1. In logistic regression,Cwlr was optimized, but in both
VB approaches observed target/non-target ratios did not play
any role nor did we use global effective prior bias. It was as-
sumed instead that in terms of DCF, logistic regression would
be the winner. However, in all but tel-tel condition VB ap-
proaches win in terms of MinDCF. Showing that there is no
need to weight the cost function by target/non-target ratios. By
not applying the global effective prior bias our VB approaches
did not obtain well calibrated scores.

In terms of EER, VB works better for the itv-itv and tel-
tel conditions. Relative improvement over logistic regression
baseline in the tel-tel condition is 5.6%.

It is interesting to note that both VB and VB-ARD ap-
proaches do, in fact, zero out some base classifiers, but only for
the case of itv-itv and mic-mic conditions. Table 1 also shows
that difference between VB and VB-ARD is small. We do not
consider ARD further.

As noted from Table 1, the VB approaches are not aggres-
sive in finding sparse solutions. For instance, in itv-itv condi-
tion, only two base classifiers are zeroed out. However, we can
also utilize subset selection methodology, where VB solution
is found for all subsets of base classifiers. Results for this are
shown in Fig. 3, where the solution chosen based on the cross-
validation set is shown in blue. The best and the worst bounds
are also shown. As a comparison, we show also the same exper-
iment when logistic regression was used instead of VB in Fig. 4.
We notice that VB provides much more stable performance as
function of subset size.

In Table 2, subset size is also selected from cross-validation
set. There is an improvement over the full ensemble methods
except in ActDCF. Using subset selection, the ensemble size
was further reduced from 10 to 6.
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(green) and highest (red) lines show the best and worst possible
selections out from the

(
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K

)

choices from Evalset 2 (NIST SRE
2010). The middle (blue) line indicates the actual ensemble
selected by cross-validation Evalset 1.

Table 2: Variational Bayes using subset selection and without
subset selection applied to itv-itv portion of Evalset. Subset is
selected from cross-validation set.

Fusion EER MinDCF ActDCF Ensemble
(%) (×100) (×100) size

fu
ll

se
t Log. Regr 3.55 1.8072 2.8420 12

VB 3.51 1.7789 2.8728 10
VB-ARD 3.48 1.7621 2.9289 10

su
bs

et subset Log. Regr3.40 1.7506 2.6119 6
subset VB 3.38 1.7524 3.0221 6
subset VB-ARD 3.37 1.7532 3.0322 6

5.2. Summarization of results

In Table 3 we show the recognition results for different NIST
SRE 2010 sub-conditions (itv-itv, itv-tel, mic-mic and tel-tel).
Here, baseline method refers to the unregularized solution (i.e.
λ = 0), equivalent to the implementation of the FoCal toolkit.
Best single classifier is selected based on the performance on the
cross validation set, so all the methods are directly, and fairly,
comparable in Table 3. We notice that, for the itv-tel and mic-
mic subconditions, elastic-net and subset selection achieve sim-
ilar and the best results. It is interesting to note that improve-
ment in the ActDCF is because scores are better calibrated.

General trend, when comparing minDCF over all condi-
tions seems to be that there are no large differences except in the
mic-mic condition where no regularization clearly fails. Differ-
ences in ActDCF are mostly the product of different calibra-
tions. Note that the bias isnot regularized.

It is interesting to note that predicting theβ value using
cross validation set is not a trivial problem. It is clear that in the
case when either LASSO or ridge wins over elastic-net in terms
of ActDCF, the prediction ofβ was unsuccesful. Especially
interesting is the itv-itv case, where prediction gaveβ = 0 (i.e.
ridge) and for NIST SRE 2010, LASSO was clearly better.

Regularization, however, does not bring improvement in the
tel-tel condition in terms of ActDCF. For the tel-tel condition,
designers of base classifiers had a very large and extensively
used corpora available for tuning up their systems. In addition,
selection of data sets for the estimation of session compensation
parameters is more straightforward. But the interview and mi-
crophone data conditions did not have such a wealth of material
backing their classifier design. It is thus expected that regu-



larization will hurt the classification performance in the tel-tel
condition. In the other conditions, significant improvement over
the baseline can be achieved by any of the regularization meth-
ods.

In Table 3, cross-validation was used to select the classifier
not to be regularized for restricted LASSO. We notice that leav-
ing one base classifier out of the LASSO regularization does not
necessarily lead to an increase in ensemble size by one classi-
fier, as one would expect. For example, in the case of itv-tel
ensemble size was actually decreased from 8 to 7. In other con-
ditions, increase in ensemble size is observed, extreme being
tel-tel condition where ensemble size was increased from 5 to a
full ensemble.

Restricted LASSO wins in the itv-tel condition, where EER
improves from 2.40% to 2.25%. Lowest EER (2.25%) in itv-tel
and minDCF (1.1074) in tel-tel condition are obtained using this
configuration.

6. Conclusions
We have studied regularized logistic regression fusion on the
NIST SRE 2010 core test conditions. We find that regulariza-
tion brings improvement over unregularized variant in all other
sub-conditions and measures (EER, MinDCF, ActDCF) except
ActDCF in tel-tel condition, even there our proposed restricted
LASSO achieves practically same result as no regularization.

Regularization techniques need a separate tuning for theλ
parameter. Here we have studied how to automatically obtain
sparse solutions using variational Bayesian logistic regression.
We obtained sparse solutions on 2 out of 4 sub-conditions. As
a result, the obtained EER is same or lower in 3 out 4 sub-
conditions and MinDCF is lower in 3 out of 4 sub-conditions
than baseline logistic regression.

As a future work we plan to extend the variational Bayes
approach used in this paper to the different, and more aggressive
priors such as elastic-net.
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Table 3: Comparison of fusion methods for NIST SRE 2010 set, all tuningparameters have been cross validated using NIST SRE 2008
development set.

Training EER MinDCF ActDCF ‖wreg‖1
‖w‖1

Ensemble
method (%) (×100) (×100) size

itv
-it

v

Best Single (GSV-MFCC) 5.45 2.72 3.65 1
no regularization 3.55 1.81 2.84 1 12
VB 3.51 1.78 2.87 10
subset sel. 3.40 1.75 2.61 6
ridge 3.40 1.70 2.51 0.96 12
LASSO 3.33 1.69 2.23 0.96 6
Restricted LASSO 3.40 1.71 2.52 8
E-netβ = 0 3.40 1.70 2.50 0.96 12

itv
-t

el

Best Single (JFA-PLP) 3.03 1.39 1.75 1
no regularization 2.40 0.98 1.74 1.0 12
VB 2.50 0.97 2.00 12
subset sel. 2.31 1.06 1.34 7
ridge 2.40 0.97 1.65 0.86 12
LASSO 2.40 0.99 1.63 0.71 8
Restricted LASSO 2.25 2.36 3.45 7
E-netβ = 0.7 2.37 0.97 1.47 0.66 10

m
ic

-m
ic

Best Single (JFA-PLP) 6.52 3.04 3.14 1
no regularization 5.10 2.35 4.14 1.0 12
VB 5.10 2.22 4.88 9
subset sel. 4.80 2.30 3.08 8
ridge 5.10 2.30 3.04 0.66 12
LASSO 5.62 2.44 3.23 0.56 3
Restricted LASSO 5.67 2.36 3.45 4
E-netβ = 0.7 4.82 2.30 3.03 0.51 6

te
l-t

el

Best Single (JFA-PLP) 3.62 1.58 1.74 1
no regularization 2.33 1.12 1.18 1.0 12
VB 2.23 1.14 3.04 12
subset sel. 2.43 1.25 1.27 6
ridge 2.33 1.14 1.28 0.91 12
LASSO 2.25 1.19 1.27 0.91 5
Restricted LASSO 2.27 1.11 1.19 12
E-netβ = 0.1 2.42 1.15 1.32 0.81 12


