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Abstract
Fusion of the base classifiers is seen as the way to achieve state-
of-the art performance in the speaker verfication systems. Stan-
dard approach is to pose the fusion problem as the linear binary
classification task. Most successful loss function in speaker ver-
ification fusion has been the weighted logistic regression pop-
ularized by the FoCal toolkit. However, it is known that opti-
mizing logistic regression can overfit severely without appropri-
ate regularization. In addition, subset classifier selection can be
achieved by using an external 0/1 loss function on the best sub-
set. In this work, we propose to use LASSO based regulariza-
tion on the FoCal cost function to achive improved performance
and classifier subset selection method integrated into one opti-
mization task. Proposed method is able to achieve 51% relative
improvement in Actual DCF over the FoCal baseline.
Index Terms: logistic regression, regularization, compressed
sensing, linear fusion, speaker verification

1. Introduction
Speaker verification is the task of accepting or rejecting an iden-
tity claim based on a person’s voice sample [1]. Classification
can be done on eitherbase classifierlevel or at the level ofen-
semble, which is then calledclassifier fusion. In fusion, bi-
nary classifier is trained on the base classifier scores to make
the accept or reject decision. The base classifiers might utilize,
for instance, different speech parameterizations (e.g. spectral,
prosodic or high-level features), classifiers (e.g. Gaussian mix-
ture models [2] or support vector machines [3]) or channel com-
pensation techniques (e.g. joint factor analysis [4] or nuisance
attribute projection [5]).

In this paper, we consider linear classifier as a fusion device
for the base classifer scores. Loss function used for optimizing
linear classifier parameters, i.e. the weight vectorw and the
biasb, play an important role as to how well learned classifier
generalizes to unseen data [6]. It is well known that 0/1-loss,
where classification error is directly optimized, can lead to a se-
rious overfit. In addition, finding the global optimum of 0/1-loss
is an NP-complete computational problem [7]. Thehinge loss,
also known asmaximum margin, and logistic regressionhave
been proposed for tackling these deficiencies, by optimizing an
upper bound of the 0/1-loss instead of the classification error
itself.

Logistic regression loss defines an unconstrained convex
programming problem, implying that the global optimum can
be found easily by iterative schemes [6]. In addition, logis-
tic regression loss has similar generalization properties as the
maximum margin in the SVM. Logistic regression has been
applied to the speaker verification score fusion task [8]. It
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was later popularized by thefusion and calibration(FoCal)
toolkit [9]. It has subsequently been found to be useful linear
fusion training methodology in a number of independent studies
(e.g. [9, 10, 11]) and is chosen here as a reference method.

Overfitting on the training data is still possible, even though
upper bound is optimized instead of 0/1-loss. To avoid overfit,
regularization techniques can be applied. Most common one
is the quadratic regularization, also known as theridge regres-
sion[12]. Regularization forces parameter shrinkage, where the
greater the Lagrange coefficientλ is, smaller the norm‖w‖ will
be. Smaller norm implies better generalizability. Reason for it
is also easy to see, as higher norm means that some classifiers
are given a large weight based on the training data. Effective-
ness of these classifiers might not be realized on the evaluation
data.

When the ensemble has a large number of classifiers, it is
expected that some of them will not play any role in a success-
ful ensemble. Thus, it would be beneficial to remove some un-
predictable classifiers from the ensemble to reduce the variance
of the prediction error [13]. We have recently studied whether
FoCal-based fusion could be improved by computing optimal
weights and bias for all subsets and selecting the subset that
yilds the best performance on the training set [14]. We noticed,
in oracle experiments, that classifier selection can significantly
improve performance if suitable selection criterion is utilized.
Our proposal was to use 0/1-loss as the selection criterion but
this turned out not to generalize so well.

In contrast to the ridge regression, other approach is to regu-
larize via the sum of absolute valuesλ

∑

i
|wi|1, which is called

least absolute shrinkage and selection operator(LASSO) [13].
It shrinks all coefficients, where some are forced to exactly
zero. By regularizing weighted logistic regression with LASSO
constraint, one can simultaneously optimize fusion weights and
perform classifier subset selection. The combination of ridge re-
gression and LASSO, with two separate Lagrange coefficients
(λ1, λ2) leads to a third regularization technique known as
Elastic-Net[15], which is believed to be sharp on the zeroing
capability and at the same time smoother than the LASSO type
of regularization. In addition, with Elastic-Net control of the
norm of the weight vector can be more fine-grained than using
LASSO. The reason is that Lagrange coefficient for LASSO can
be fixed while progressively increasing the Lagrange coefficient
for ridge regression, thus decreasing smoothly the norm of the
weight vector.

In this work, we propose to use LASSO and Elastic-Net
regularization techniques to simultaneously achieve generaliz-
able fusion device and classifier subset selection. By doing so
we have proposed a method to train the subset selector by opti-
mizing the weighted logistic regression loss.



2. Classifier Fusion
2.1. Problem Setup

We assume that, during the development phase, one has access
to a development setD = {(si, yi), i = 1, 2, . . . , Ndev} of
base classifier score vectorssi ∈ R

L, with yi ∈ {+1,−1}
indicating whether the corresponding speech sample originates
from a target speaker(yi = +1) or from a non-target(yi =
−1). UsingD, the goal is to find the best parameters(w∗, θ∗)
of a linear combinerfw,θ(s) = w

t
s+ θ so that a classification

error measure is minimized. We adopt thedetection cost func-
tion (DCF) used in the NIST speaker recognition evaluations,

Cdet(θ) = CmissPmiss(θ)Ptar + CfaPfa(θ)(1− Ptar), (1)

wherePtar is the prior probability of a target (true) speaker,
Cmiss is the cost of a miss (false rejection) andCfa is the cost of
a false alarm (false acceptance). These application-dependent
cost parameters can also be summarized as a single cost param-
eter,effective prior:

P = logit−1(logit(Ptar) + log(Cmiss/Cfa)), (2)

wherelogitP = logP − log(1−P ). It is possible to minimize
DCF directly (e.g. [16]) or to optimize a surrogate cost such as
effective prior weighted logistic regression cost [17].

2.2. Baseline system

As the baseline method, we use FoCal and as the loss function
we optimizeCwlr. We use iterative gradient descent method to
minimize the following effective-prior weighted logistic regres-
sion (WLR) objective [17],

Cwlr(w, s) =
P

Nt

Nt
∑

i=1

log
(

1 + e−w
t
si−θ′

)

+
1− P

Nf

Nf
∑

j=1

log
(

1 + ew
t
sj+θ′

)

, (3)

where the two sums go through theNt target score vectorssi

and theNf non-target score vectorssj , respectively. We will
also do the standard bias encoding, by adding one extra element
containing 1 tos. Global bias can then be extracted from the
corresponding position in the weight vector. Here,P is the ef-
fective prior defined in subsection 2.1 andθ′ = − logit(P ) is
the decision threshold which is determined from the pre-set cost
parametersPtar, Cmiss andCfa.

3. Regularized Logistic Regression
We extend the weighted logistic regression in Eq. (3), by adding
a regularization term. It leads to minimizing [6],

Cwlr(w, s) s.t. J(w) ≤ t, (4)

whereJ(w) is either 1
2
‖w‖22, which is called ridge regression

or ‖w‖1, which is known as LASSO. The user specified pa-
rametert indicates the intended amount of parameter shrinkage.
The Lagrange coefficients will give us, in the case of LASSO,
the following expression,

Cwlr(w, s) + λ‖w‖1. (5)

The larger the value ofλ, the more the norm‖w‖ will be
shrunk [13]. If the optimization is based on Eq. (5), the cor-

Table 1: Selection of the three datasets used in this study. We
focus on the core-condition itv-tel subset with female trials.

Dataset Usage Data source # Trials

Trainset To train fusion NIST SRE 2008 263 t,
parameters itv-tel subset 27315 f

Evalset 1To compare fusion NIST SRE 2008 283 t,
methods, cross-validate itv-tel subset 27195 f
regularization params.

Evalset 2To validate results NIST SRE 2010 801 t,
itv-tel subset 30254 f

respondence betweenλ and shrinkage thresholdt can be found
using a binary search the values ofλ. In each iteration, we se-
lect oneλ value and optimize weights using it, output is then
the norm of the weights. Final weight vector is the one whose
norm is closest to the targett, but does not violate it.

Elastic-Net, on the other hand, is based on the idea that we
can combine both regularizers into one constrainted optimiza-
tion problem,

Cwlr(w, s) + λ1‖w‖1 +
λ2

2
‖w‖22. (6)

As can be seen, (6) is a generalized variant of both LASSO and
ridge regression. That is, one can always find such regression
parameter setup where, in terms of performance, Elastic-Net
will at least not lose to LASSO or ridge regression. However,
whereas LASSO and ridge regression have only one regression
parameter, now we need to search 2-d space. In this work we
use methodology where LASSO parameter is first fixed and
then ridge regression parameter is found using cross validation
as with LASSO and ridge regression methods.

Depending on the chosen regularization method, there are
different strategies to optimize (4). Since logistic regression us-
ing quadratic regularization is differentiable, it can be efficiently
optimized using standard packages [6]. Unfortunately, situation
is not so simple for LASSO regularization. In [13], aquadratic
programming(QP) solution was proposed by rewriting the con-
straints in (4) in a more convenient form. However, more re-
cent techniques are faster in practice, for that reason we apply
projectionL1algorithm [18] that optimizes the Lagrangian form
Eq. (5). We apply the same method to Elastic-Net. Since, a
sum of two convex functions is still convex, we can minimize
Cwlr(w, s) + λ2

2
‖w‖22, givenλ1‖w‖1 as the constraint.

4. Corpora, Metrics and Base Classifiers
We utilize the two most recent NIST SRE corpora, namely,
NIST 2008 and NIST 2010, in our experiments1. The usage of
each corpus is shown in Table 1. To avoid any evaluation bias
from pooling of incompatible subcondition scores (see [19]),
we focus mostly on the female trials2 of the interview-telephone
(itv-tel) sub-condition in the core task. The NIST 2008 trial list
was split into two disjoint parts without speaker overlap. The
first part, trainset, is used for training the score warping pa-
rameters (S-cal was used as precalibration method) and fusion
weights. The second part,evalset 1, as well asevalset 2based
on the NIST 2010 data, serve for evaluation purposes.

1http://www.itl.nist.gov/iad/mig//tests/sre/
2Female trials are somewhat more difficult than males. Similar ra-

tionale was taken, for instance, in [4].



For evaluation of the methods, we consider the detection
cost function in (1), where the cost parameters are adopted from
the NIST 2010 SRE evaluation plan, namely,Cmiss = Cfa = 1
andPtar = 0.001. Decision is based on the threshold obtained
from effective prior in Eq. (2). Our primary evaluation metric
is the actual DCF (ActDCF).
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Figure 1: Weight evolution of the LASSO regularization as a
function of normalizedt.
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Figure 2: Weight evolution of the ridge regression regulariza-
tion as a function of normalizedt.

In this study we use the same ensemble setup as in our pre-
vious work [14]. We have twelve subsystems in total, all are
based on different cepstral features and four different classi-
fiers, as part of the of the I4U system. When subsystems share
the same classifier and features, it means that the systems are
independent implementations. For classifiers, we use the gener-
ative GMM-UBM-JFA [4] and the discriminative GMM-SVM
approaches with KL-divergence kernel [20] and the recently
proposed Bhattacharyya kernel [21]. We also include another
recent method, feature transformation [22], as an alternative su-
pervector for SVM. All of the methods are grounded on theuni-
versal background model(UBM) paradigm and they share simi-
lar form of subspace channel compensation, though the training
methods differ. We used data from the NIST SRE 2004, SRE
2005 and SRE 2006 corpora to train the UBM and the session
variability subspaces, and additional data from the Switchboard
corpus to train the speaker-variability subspace for the JFA sys-
tems. Each base classifier has its own score normalization prior
to score warping and fusion. To this end, we use T-norm and
Z-norm with NIST SRE 2004 and SRE 2005 data as the back-
ground and cohort training data.

5. Experiments
It is instructive to show the evolution of the individual classifier
weights as the function of threshold parametert. In Figs. 1 and
2 we observe the fusion weights as a function of normalized
shrinkage threshold̂t = t/‖ŵ‖, whereŵ is the unregularized
solution. We see that̂t will tell how much of the unregularized
norm is left after shrinkage. It can be noticed immediately that
ridge regression tends to group all classifiers to similar weights
as the norm is shrunk towards zero. Grouping effect and the
lack of it in the LASSO is known in the general regression liter-
ature [15]. Ridge regression tends to group together classifiers
that are correlated. LASSO, on the other hand, tends to select
few classifers per group. Selection is evident in Fig. 1, as very
quickly only four classifiers are left in the ensemble, namely
GMM-SVM using MFCC and LPCC front-end and two JFA
systems with PLP front-end (base classifiers{1, 2, 6, 7}). It is
notable that even though both JFA base classifers use the same
features, they are different implementations (even using differ-
ent programming languages). The data sets used for learning
factor loading matrices are also different.
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Figure 3: ActualDCF results for the Evalset 1, as a function of
normalizedt.

In Fig. 3 we see recognition results for the Evalset 1 (subset
of the NIST SRE 08). The Elastic-Net needs to optimize two
constraints, one for LASSO and the other for ridge regression.
We selected the LASSO Lagrange coefficient as the one that
gave the best performance on the Evalset 1 for the rest of the
experiments. Then Elastic-Net shrinkage percentage was varied
as in the other methods. We notice that 20% to 40% shrinkage
by LASSO gives the best results. Ridge regression is slightly
better than baseline and Elastic-Net can obtain easily the same
performance as LASSO.

The subset ensemble [14] outperforms all but Elastic-Net
in one threshold location. Subset ensemble contains base clas-
sifiers{1, 2, 3, 4, 6}. However, as we can see in Fig. 4 and Ta-
ble 2, subset ensemble does not generalize well to NIST SRE
2010 data set. It is interesting to note that using threshold
t ≤ 0.6 for LASSO, we obtain 4 base classifer ensemble that
is more generalizable and has 3 classifiers in common with the
subset ensemble.

In Fig. 4 we see recognition results for Evalset 2 (NIST
SRE 2010). Significant improvement over the baseline can be
achieved using any of the regularization methods. Ridge regres-
sion and Elastic-Net obtain the best performance.

It is worth to note that improvement of regularization over
baseline is more apparent for Evalset 2 than on Evalset 1. Rea-
son for the behaviour is that fusion weights are optimized on the
Trainset, which is disjoint subset of the same NIST SRE 2008
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Figure 4: ActualDCF validation results for the Evalset 2, as a
function of normalizedt.

Table 2: Performance comparison of five fusion methods on
Evalset 2.

Fusion EER MinDCF ActDCF
(%) (×1000) (×1000)

Subset ensemble2.62 0.374 0.689
FoCal 2.58 0.306 0.598
Ridge regression2.24 0.284 0.398
LASSO 2.50 0.278 0.461
Elastic-Net 2.20 0.281 0.293

as Evalset 1. We conlude that regularization does help to tackle
the overfitting problem.

In Table 2 summary of validation results are shown for
Evalset 2. All fusion device training is done on Trainset,λ pa-
rameters are tuned with Evalset 1 and then applied to Evalset 2.
We note that all the regularization techniques improve on FoCal
baseline. LASSO obtains best minDCF and, using Elastic-net,
large improvement is obtained in ActDCF over the baseline. It
is also notable that calibration error in Elastic-Net is very small.

6. Conclusion
We have proposed the use of LASSO based regularization to
tackle the overfitting problem in optimizing the weighted lo-
gistic regression loss function. In addition to performance im-
provement, the proposed method achieves classifier selection at
the same time in one optimization task. Using Elastic-Net reg-
ularization we achieve 51% relative improvement in ActDCF,
8% relative improvement in minDCF and slight improvement
in EER over the baseline FoCal result. In future, it would be
interesting to study automatic selection of the regularization pa-
rameters, for example via Bayesian approach.
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