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Abstract— In speaker identification, most of the computation
originates from the distance or likelihood computations between
the feature vectors of the unknown speaker and the models in
the database. The identification time depends on the number
of feature vectors, their dimensionality, the complexity of the
speaker models and the number of speakers. In this paper,
we concentrate on optimizing vector quantization (VQ) based
speaker identification. We reduce the number of test vectors
by pre-quantizing the test sequence prior to matching, and the
number of speakers by pruning out unlikely speakers during
the identification process. The best variants are then generalized
to Gaussian mixture model (GMM) based modeling. We apply
the algorithms also to efficient cohort set search for score
normalization in speaker verification. We obtain a speed-up
factor of 16:1 in the case of VQ-based modeling with minor
degradation in the identification accuracy, and 34:1 in the case of
GMM-based modeling. An equal error rate of 7 % can be reached
in 0.84 seconds on average when the length of test utterance is
30.4 seconds.

Index Terms— Speaker recognition, real-time, speaker prun-
ing, pre-quantization, VQ, GMM

I. I NTRODUCTION

Speaker recognition refers to two different tasks:speaker
identification (SI) and speaker verification(SV) [1]–[3]. In
the identification task, an unknown speakerX is compared
against a database of known speakers, and the best matching
speaker is given as the identification result. The verification
task consists of making a decision whether a voice sample
was produced by a claimed person.

A. Motivation

Applications of speakerverificationcan be found in biomet-
ric person authentication such as an additional identity check
during credit card payments over the Internet. The potential
applications of speaker identification can be found in multi-
user systems. For instance, inspeaker trackingthe task is to
locate the segments of given speaker(s) in an audio stream [4]–
[7]. It has potential applications in automatic segmentation of
teleconferences and helping in the transcription of courtroom
discussions.

Speaker identification could be used inadaptive user in-
terfaces. For instance, a car shared by many people of the
same family/community could recognize the driver by his/her
voice, and tune the radio to his/her favorite channel. This
particular application concept belongs to the more general
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group ofspeaker adaption methodsthat are already employed
in speech recognition systems [8], [9]. Speaker-specific codecs
in personal speech codinghave been also demonstrated to give
smaller bit rates as opposed to a universal speaker-independent
codec [10].

Speaker identification have also been applied to the ver-
ification problem in [11], where the following simple rank-
based verification method was proposed. For the unknown
speaker’s voice sample,K nearest speakers are searched
from the database. If the claimed speaker is among theK
best speakers, the speaker is accepted and otherwise rejected.
Similar verification strategy is also used in [12].

Speaker identification and adaptation have potentially more
applications than verification, which is mostly limited to secu-
rity systems. However, the verification problem is still much
more studied, which might be due to (1) lack of applications
concepts for the identification problem, (2) increase in the
expected error with growing population size [13], and (3) very
high computational cost. Regarding the identification accuracy,
it is not always necessary to know the exact speaker identity
but the speaker classof the current speaker is sufficient
(speaker adaptation). However, this has to be performed in
real-time. In this paper, we focus on decreasing the compu-
tational load of identification while attempting to keep the
recognition accuracy reasonably high.

B. Review of Computational Speed-Up Methods

A large number of methods have been proposed for speeding
up the verification process. Specifically, Gaussian mixture
model (GMM) based verification systems [14], [15] have
received much attention, since they are considered as the
state-of-the-art method for text-independent recognition. Usu-
ally, speaker-dependent GMMs are derived from a speaker-
independentuniversal background model(UBM) by adapting
the UBM components withmaximum a posteriori(MAP)
adaptation using each speaker’s personal training data [15].
This method incudes a natural hierarchy between the UBM
and the personal speaker models; for each UBM Gaussian
component, there is a corresponding adapted component in the
speaker’s personal GMM. In the verification phase, each test
vector is scored against all UBM Gaussian components, and a
small number (typically 5) of the best scoring components in
the corresponding speaker-dependent GMMs are scored. This
procedure effectively reduces the amount of needed density
computations.

In addition to the basic UBM/GMM approach, a number of
other hierarchical methods have been considered for GMM.
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Beigi & al. [12] propose a hierarchical structuring of the
speaker database with the following merging strategy. Two
closest GMMs are merged, and the process is repeated until the
number of GMMs is 1. A similar approach using theISODATA
clustering algorithm has been recently proposed by Sun &
al. [16] for the identification task. They report identification
accuracy close to full search with speed-up factors from 3:1
to 6:1. The relative speed-up of their algorithm was higher for
increased number of speakers.

Auckenthaler and Mason [17] applied UBM-likehash
model, in which for each Gaussian component, there is a
shortlist of indices of the expected best scoring components for
each individual GMM. Using the shortlist of the hash model,
only the corresponding components in the individual GMM
are then scored. By increasing the lengths of the shortlists,
scores can be computed more accurately, but with an increased
computational overhead. Auckenthaler and Mason reported a
speed-up factor of about 10:1 with a minor degradation in the
verification performance.

McLaughlin & al. [18] have studied two simple speed-up
methods for the GMM/UBM-based verification system: (1)
decreasing the UBM size, and (2) decimating the sequence
of test vectors with three simple methods. They noticed that
the UBM could be reduced by a factor of 4, and the test
sequence up to a factor of about as high as 20 without affecting
the verification performance. McLaughlin & al. [18] state (p.
1218):

“What is surprising is the degree to which feature vectors
can be decimated without loss in accuracy.. . . The key
factor seems to be the acoustic variety of the vectors
scored, not the absolute number of vectors.”

However, they did not experiment the combination of decima-
tion and reduced UBM.

An efficient GMM-based speaker identification system has
also been presented by Pellom and Hansen [19]. Since the
adjacent feature vectors are correlated and the order of the
vectors does not affect the final score, the vector sequence can
be reordered so that non-adjacent feature vectors are scored
first. After the scoring, worst scoring speakers are pruned
out using abeam searchtechnique where the beam width is
updated during processing. Then, a more detailed sampling of
the sequence follows. The process is repeated as long as there
are unpruned speakers or input data left, and then the best
scoring speaker is selected as the winner. Pellom and Hansen
reported speed-up factor of 6:1 relative to the baseline beam
search.

Recently, more advanced hierarchical models have been
proposed for efficient speaker verification [20], [21]. Xiang
and Berger [20] construct a tree structure for the UBM. Mul-
tilevel MAP adaptation is then used for generating the speaker-
specific GMMs with a tree structure. In the verification phase,
the target speaker scores and the UBM scores are combined
using an MLP neural network. Xiang and Berger reported a
speed-up factor of 17:1 with a 5 % relative increase in the
EER. They also compared their method with the hash model
of Auckenthaler and Mason [17]. Although the method of
Xiang and Berger gave slightly better verification accuracy
(from EER of 13.9 % to EER of 13.5 %) and speed-up (from

15:1 to 17:1) as compared to the hash GMM, the Xiang’s and
Berger’s method is considerably more complex than the hash
GMM.

C. Contributions of This Study

The literary review herein shows that most of the speed
optimizations have been done on GMM-based systems. In this
study, we optimizevector quantization(VQ) based speaker
recognition, because it is straightforward to implement, and
according to our experiments, it yields equally good or better
identification performance than the baseline GMM based on
maximum likelihood training using the EM algorithm.

Most of the computation time in VQ-based speaker identifi-
cation consists of distance computations between the unknown
speaker’s feature vectors and the models of the speakers
enrolled in the system database.Speaker pruning[19], [22],
[23] can be used to reduce the search space by dropping out
unlikely speakers “on the fly” as more speech data arrives.
We survey and compare several speaker pruning variants. We
also propose a new speaker pruning variant calledconfidence-
based speaker pruning. The idea is to wait for more speech
data until we are confident to decide whether a certain speaker
could be safely pruned out.

We optimize the other components of the recognition system
as well. We reduce the number of test sequence vectors
by silence removal and pre-quantization, and show how the
pre-quantization methods can be combined with the speaker
pruning for more efficient identification. Avantage-point tree
(VPT) [24] is used for indexing the speakers’ code vectors
for speeding up the nearest neighbor search. Our main contri-
bution is a systematic comparison and combining of several
optimization methods.

Although the framework presented in this study is built
around VQ-based speaker modeling, the methods are expected
to generalize to other modeling paradigms. We demonstrate
this by applying the best pre-quantization and pruning variants
to GMM-based identification.

Finally, we demonstrate that the methods apply also to the
verification task. Pre-quantization is applied for searching a
cohort setonline for the client speaker during the verification
process, based on the closeness to the input vectors. We
propose a novel cohort normalization method calledfast cohort
scoring (FCS) which decreases both the verification time and
the equal error rate.

The rest of the paper is organized as follows. In Section II,
we review the baseline speaker identification, and consider the
computational complexity issue in more detail, focusing on the
real-time processing in general level. A detailed description
of the speaker pruning algorithms follows then in Section
III. In Section IV, we utilize the speed-up methods to the
verification problem. Section V describes the experimental
setup. Test results with discussion are given in Section VI,
and conclusions are drawn in Section VII.

II. VQ-BASED SPEAKER IDENTIFICATION

A. General Structure

The components of a typical VQ-based speaker identifica-
tion [25]–[28] system are shown in Fig. 1.Feature extraction
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Fig. 1. Typical VQ-based closed set speaker identification system.

transforms the raw signal into a sequence of 10- to 20-
dimensional feature vectors with the rate of 70-100 frames
per second. Commonly used features includemel-cepstrum
(MFCC) and LPC-cepstrum(LPCC) [29], [30]. They mea-
sure short-term spectral envelope, which correlates with the
physiology of the vocal tract.

In the training phase, a speaker model is created by clus-
tering the training feature vectors into disjoint groups by a
clustering algorithm. TheLBG algorithm[31] is widely used
due to its efficiency and simple implementation. However,
other clustering methods can also be considered; a comparative
study can be found in [32]. The result of clustering is a set of
M vectors,C = {c1, c2, . . . , cM}, called acodebookof the
speaker.

In the identification phase, unknown speaker’s feature vec-
tors are matched with the models stored in the system
database. Amatch scoreis assigned to every speaker. Finally,
a 1-out-of-N decision is made. In a closed-set system this
consists of selecting the speaker that yields the smallest
distortion.

The match score between the unknown speaker’s feature
vectors X = {x1, . . . , xT } and a given codebookC =
{c1, . . . , cM} is computed as theaverage quantization dis-
tortion [25]:

Davg(X,C) =
1
T

T∑

i=1

e(xi, C), (1)

wheree(xi, C) = mincj∈ C ‖xi − cj‖2, and‖ · ‖ denotes the
Euclidean norm. Several modifications have been proposed to
the baseline VQ distortion matching [27], [33]–[37].

B. Time Complexity of Identification

In order to optimize speaker identification for real-time
processing, first the dominating factors have to be recognized.

In order to computeDavg(X, C), the nearest neighbors of
eachxi ∈ X from the codebookC are needed. With a sim-
ple linear search this requiresO(TM) distance calculations.
Computation of the squared Euclidean distance between two
d-dimensional vectors, in turn, takesd multiplications andd−1
additions. Therefore, the total number of floating point oper-
ations (flops) for computingDavg(X, C) is O(TMd). The
computation ofDavg(X, C) is repeated for allN speakers, so
the total identification time isO(NTMd).

The efficiency of the feature extraction depends on the
selected signal parametrization. Suppose that the extraction
of one vector takesO(f) flops. The total number of flops for
feature extraction is thenO(Tf), whereT is the number of
vectors. Notice that the feature extraction needs to be done
only once. To sum up, total number of flops in identification
is O(Tf + NTMd) = O(T (f + NMd)). The standard
signal processing methods (MFCC, LPCC) themselves are
very efficient. By assumingf ¿ NMd, we can approximate
the overall time asO(TNMd).

The dimensionalityd is much smaller thanN , M and T .
For instance, about 10-20 mel-cepstral coefficients is usually
enough due the fast decay of the higher coefficients [29]. There
is no reason to use a high number of cepstral coefficients
unless they are properly normalized; the coefficients with a
small magnitude do not contribute to the distance values much.

C. Reducing the Computation Time

The dominating factors of the total identification time are
the number of speakers (N ), the number of vectors in the
test sequence (T ), and the codebook sizes (M ). We reduce
the number of speakers by pruning out unlikely speakers
during the matching, and the number of vectors by silence
removal and by pre-quantizing the input sequence to a smaller
number of representative vectors prior to matching. In order
to speed up the nearest neighbor search of the codebooks,



MANUSCRIPT, SUBMITTED TO IEEE TRANS. SPEECH & AUDIO PROCESSING (5.7.2004) 4

Speech input stream

Silence detection

Feature extraction

Pre-quantization

Speaker database

Speaker 1 
model

Speaker N 
model

List of candidate speakers

Active speakers Pruned speakers

Frame blocking

Decision ? END

...

Fill buffer with 
new data

All  frames

Non-silent 
frames

Feature 
vectors

Reduced set 
of vectors

Matching

v

v

v

v

v

v

v

Database pruning

v

v

YesNo

Speech input stream

Silence detection

Feature extraction

Pre-quantization

Speaker database

Speaker 1 
model

Speaker N 
model

List of candidate speakers

Active speakers Pruned speakers

Frame blocking

Decision ? END

...

Fill buffer with 
new data

All  frames

Non-silent 
frames

Feature 
vectors

Reduced set 
of vectors

Matching

v

v

v

v

v

v

v

Database pruning

v

v

YesNo

Fig. 2. Diagram of the real-time identification system.

we utilize vantage-point trees(VPT) [24] for indexing the
code vectors in the models. VPT is a balanced binary search
tree where each node represents a code vector. In the best
case (fully balanced binary tree), the search takesO(log2 M)
distance computations. Unfortunately, the VPT as well as
other indexing structures [38] apply only to metric distance
functions. Since (1) does not satisfy the triangular inequality,
we can index only the code vectors but not the codebooks
themselves.

D. Real-Time Speaker Identification

The proposed system architecture is depicted in Fig. 2. The
input stream is processed in short buffers. The audio data in
the buffer divided into frames, which are then passed through a
simple energy-based silence detector in order to drop out non-
information bearing frames. For the remaining frames, feature
extraction is performed. The feature vectors are pre-quantized
to a smaller number of vectors, which are compared against
active speakersin the database. After the match scores for each
speaker have been obtained, a number of speakers are pruned
out so that they are not included anymore in the matching on
the next iteration. The process is repeated until there is no
more input data, or there is only one speaker left in the list of
active speakers.

E. Pre-quantization

In pre-quantization(PQ), we replace the original test vector
sequenceX by a new sequencêX so that|X̂| < |X|. In order
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Fig. 3. Illustration of speaker pruning (pruning interval = 7 vectors).

to gain time, the total time spent for the PQ and matching must
be less than the matching time without PQ. The motivation
for using PQ is that, in practise, the adjacent feature vectors
are close to each other in the feature space because of the
gradual movements of the articulators. McLaughlin & al. [18]
applied three simple PQ methods prior to GMM matching,
and reported that the test sequence could be compressed by a
factor of 20:1 without compromizing the verification accuracy.
This clearly suggests that there is a lot of redundancy in the
feature vectors.

We consider four different pre-quantization techniques: (1)
random subsampling, (2) averaging, (3) decimation, and (4)
clustering-based PQ. In random subsampling and averaging,
the input buffer is processed in non-overlapping segments of
M >1 vectors. In random subsampling, each segment is rep-
resented by a random vector from the segment. In averaging,
the representative vector is the centroid (mean vector) of the
segment. In decimation, we simply take everyM th vector of
the test sequence, which corresponds to performing feature
extraction with a smaller frame rate. In clustering-based PQ,
we partition the sequenceX into M clusters using the LBG
clustering algorithm.

III. SPEAKER PRUNING

The idea of speaker pruning [19], [22], [23] is illustrated in
Fig. 3. We must decide how many new (non-silent) vectors are
read into the buffer before next pruning step. We call this the
pruning interval. We also need to define thepruning criterion.

Figure 4 shows an example how the quantization distortion
(1) develops with time. The bold line represents the correct
speaker. In the beginning, the match scores oscillate, and when
more vectors are processed, the distortions tend to stabilize
around the expected values of the individual distances because
of the averaging in (1). Another important observation is that
a small amount of feature vectors is enough to rule out most
of the speakers from the set of candidates.

We consider next the following simple pruning variants:
static pruning [23], hierarchical pruning [22], and adaptive
pruning [23]. We also propose a novel pruning variant called
confidence-based pruning. The variants differ in their pruning
criteria.
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Algorithm 1 Static Pruning (SP)

A := {1, 2, . . . , N} ; X := ∅ ;
while (|A| > 1) and (speech data left) do

Insert M new vectors into buffer X ;
Update Davg(X, Ci) for all i ∈ A ;
Prune out K worst speakers from A ;

end while
Decision: i∗ = arg mini{D(X, Ci)|i ∈ A} ;

The following notations will be used:

X Processing buffer for new vectors
A Indices of the active speakers
Ci Codebook of speakeri
N Size of the speaker database

A. Static Pruning (SP)

The idea is to maintain an ordered list of the best matching
speakers. At each iteration,M new vectors are read in,
match scores of the active speakers are updated, andK worst
matching speakers are pruned out (Algorithm 1). The update of
the match scores can be done efficiently by using cumulative
counts of the scores. The control parameters of the method
are M and K. Fig. 3 gives an example of the method with
parametersM = 7 andK = 2.

B. Hierarchical Pruning (HP)

For each speakeri, two codebooks are stored in the
database: acoarseand adetail codebook, denoted here asCc

i

andCd
i , respectively. Both codebooks are generated from the

same training data, but the coarse codebook is much smaller
than the detail one:|Cc

i | ¿ |Cd
i |. First, K worst speakers are

pruned out by matching the vectors against the coarse models.
Scores of the remaining models are then recomputed using the
detail models (Algorithm 2). The control parameters of the
method are the the sizes of the codebooks andK.
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Illustration of the pruning threshold.

Algorithm 2 Hierarchical Pruning (HP)

Let Cc = {Cc
1 , . . . , Cc

N} be the coarse models ;
Let Cd = {Cd

1 , . . . , Cd
N} be the detail models ;

A := {1, 2, . . . , N} ;
Read the whole test sequence into buffer X ;
Compute Davg(X, Cc

i ) for all i ∈ A ;
Prune out K worst speakers from A ;
Compute Davg(X, Cd

i ) for all i ∈ A ;
Decision: i∗ = arg mini{Davg(X, Cd

i )|i ∈ A} ;

Algorithm 3 Adaptive Pruning (AP)

A := {1, 2, . . . , N} ; X := ∅ ;
while (|A| > 1) and (speech data left) do

Insert M new vectors into buffer X ;
Update Davg(X, Ci) for all i ∈ A ;
Update Pruning threshold Θ ;
Prune out speaker i if Davg(X, Ci) > Θ ;

end while
Decision: i∗ = arg mini{Davg(X, Ci)|i ∈ A} ;

C. Adaptive Pruning (AP)

Instead of pruning a fixed number of speakers, a pruning
thresholdΘ based on the distribution of the scores is com-
puted, and the speakers whose score exceeds this are pruned
out (see Algorithm 3). The pruning thresholdΘ is computed
as

Θ = µD + η · σD, (2)

whereµD and σD are the mean and the standard deviation
of the active speakers’ match scores, andη is a control
parameter. The largerη is, the less speakers are pruned out, and
vice versa. The formula (2) has the following interpretation.
Assuming that the match scores follow a Gaussian distribution,
the pruning threshold corresponds a certainconfidence interval
of the normal distribution, andη specifies its width. Forη = 1,
the speakers above the 68 % confidence interval of the match
score distribution will be pruned out; that is approximately
(100-68)/2 = 16 % of the speakers. This interpretation is
illustrated in the right panel of Fig. 5. We have found out
experimentally that the Gaussian assumption holds sufficiently
well in practise. The left panel of Fig. 5 shows two real
score distributions computed from two different subsets of the
TIMIT corpus [39].

Notice that the mean and variance of the score distribution
can be updated efficiently using the running values for these.
Since the unlikely speakers (large scores) are pruned out
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iteratively, the variance of the match scores decreases with
time. The control parameters of the method areM andη.

D. Confidence-Based Pruning (CP)

In confidence-based pruning, only speakers whose match
scores have stabilized are considered for pruning. If the match
score is poor but it still oscillates, the speaker can still
change its rank and become the winner. Thus, we remove only
speakers that have already stabilized and whose match score is
below a given threshold. This is illustrated in Fig. 6, in which
the speakers are at given one per line, and the time (vector
count) increases from left to right. The numbers in the cells
show the match scores, gray color indicates that the speaker
has stabilized, and black indicates that the speaker has been
pruned out. Notice that both the stabilization and pruning can
happen in the same iteration.

The pseudocode of the method is given in Algorithm 4. Two
score values are maintained for each active speakeri: the one
from the previous iteration (Dprev[i]), and the one from the
current iteration (Dcurr[i]). When these two are close enough
to each other, we mark the speaker as stabilized. Stabilized
speakers are then checked against the pruning threshold as
defined in (2). There are three adjustable parameters: the
pruning interval (M ), the stabilization threshold (ε) and the
pruning threshold control parameter (η).

E. Combining PQ and Pruning (PQP)

Pre-quantization and pruning can be combined. Algorithm
5 combines clustering-based PQ and static pruning. First, the
whole input data is pre-quantized by the LBG algorithm [31].
Using the match scores for the quantized data,K worst scoring
speakers are pruned out, and the final decision is based on
comparing the unquantized data with the remaining speaker
models. We refer the ratio of the number of pruned speakers
to the number of all speakers as thepruning rate.

Algorithm 4 Confidence-Based Pruning (CP)

A := {1, 2, . . . , N} ; X := ∅ ;
for i := 1, . . . , N do

Dprev[i] := 0 ; stable[i] := false ;
end for
while (|A| > 1) and (speech data left) do

Insert M new vectors into buffer X ;
Update Davg(X, Ci) for all i ∈ A ;
Update pruning threshold Θ ;
for i ∈ A do

Dcurr[i] := Davg(X, Ci) ;
end for
for i ∈ A do

if ( |1−Dprev[i]/Dcurr[i]| < ε ) then
stable[i] = true ;

end if
if (stable[i]) and (Dcurr(X, Ci) > Θ) then

Prune out speaker i from A ;
else

Dprev[i] := Dcurr[i] ;
end if

end for
end while
Decision: i∗ = arg mini{Davg(X, Ci)|i ∈ A} ;

Algorithm 5 PQ + Static Pruning (PQP)

A := {1, 2, . . . , N} ;
Read new data into buffer X ;
X̂ := LBG-Clustering(X, M)
Compute Davg(X̂, Ci) for all i ∈ A ;
Prune out K worst speakers from A ;
Compute Davg(X, Ci) for all i ∈ A ;
Decision: i∗ = arg mini{Davg(X, Ci)|i ∈ A} ;

IV. EFFICIENT COHORT SCORING FORVERIFICATION

In this Section, we apply pre-quantization for speeding up
the scoring in the verification task. Current state-of-the-art
speaker verification systems use the Bayesian likelihood ratio
[40] for normalizing the match scores [41], [42]. The purpose
of the normalization is to reduce the effects of undesirable
variation that arise from mismatch between the input and
training utterances.

Given an identity claim that speakerS produced the vectors
X = {x1, . . . , xT }, two likelihoodsp(X|S) andp(X|S̄) are
estimated. The former presents the likelihood that speaker
S producedX (null hypothesis), and the latter presents the
likelihood thatX was produced by someone else (alternative
hypothesis). The two likelihoods are combined using the log-
likelihood ratio [1]:

score(X,S) = log p(X|S)− log p(X|S̄). (3)

This score is then compared with a predefined verification
threshold. The speaker is accepted if the score exceeds the
verification threshold, and otherwise rejected. We assume a
common (global) threshold for all speakers.

The problem in the computation of (3) is that the likelihood
of the alternative hypothesis is not directly accessible since this
requires information ofall other speakers of the world. There
are two main approaches for the estimation ofp(X|S̄) [41]:
universal background model(or world model) andcohort set.
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Algorithm 6 Fast Cohort Scoring (FCS)

Let X be the unknown speaker’s feature vectors ;
Let CS be the claimed speaker’s codebook ;
Let K > 1 be the desired cohort size ;
X̂ := LBG-Clustering(X, M) ;
Let Coh := K best scoring speakers based on Davg(X̂, Ci),
excluding the client ;
score(X, S) = Davg(X̂, CS)/ 1

K

P
i∈Coh Davg(X̂, Ci) ;

The world model is generated from a large set of speakers, and
it attempts to model speech in general. In the cohort approach,
for each client speaker, an individual set of cohort speakers is
defined. Usually the cohort set contains the nearest speakers
to the client, since intuitively these are the “best” impostors to
the client speaker. We are not aware of large-scale comparison
of the world model and cohort approaches, and it seems that
currently there is no consensus which one of these is more
accurate.

Cohort normalization methods can be divided into two
classes: those that select the cohort speakersoffline in the
training phase [43], and those that select the cohortonline
[44] based on the closeness to the test vector sequenceX.
The online approach, also known asunconstrained cohort
normalization (UCN) [41], [44], has been observed to be
more accurate [42], [44], probably due to its adaptive nature.
Another desirable feature of the UCN is that it does not require
updating of the cohort sets when new speakers are enrolled in
the system.

The usefulness of the online cohort selection is limited
by its computational complexity. The computation of the
normalized score (3) includes searching the cohort speakers,
whose time increases linearly with the number of cohort
candidates. Ariyaeeinia and Sivakumaran [44] noticed that a
smaller equal error rate (EER) is obtained, if the cohort is
selected among the client speakers instead of using an external
cohort set.

We propose to use pre-quantization for reducing the com-
putational load of cohort search (see Algorithm 6). The input
sequenceX is first quantized into a smaller set̂X using the
LBG algorithm [31], and majority of the speakers are pruned
out based on the scoresDavg(X̂, Ci), i = 1, . . . , N . The
remaining set ofK > 1 best scoring speakers constitutes
the cohort for the client speaker. The client score is also
computed using the quantized sequence, and the normalized
match score is computed as the ratio between the client score
and average cohort speaker score. A small value indicates that
the client score deviates clearly from the impostor distribution.
The control parameters of the algorithm are the cohort size (K)
and the size of the quantized test set (M ).

In acoustically mismatched conditions, both the client and
cohort scores are expected to degrade, but their ratio is
assumed to remains the same. This is the fundamental rationale
behind score normalization. In other words, we assume:

Davg(X, CS)∑
j Davg(X, Cj)

≈ Davg(X̂, CS)∑
k Davg(X̂, Cj)

, (4)

where j and k go over the indices of the cohort speakers

TABLE I

SUMMARY OF THE CORPORA USED

TIMIT NIST

Language English English
Speakers 630 230
Speech type Read speech Conversational
Quality Clean (hi-fi) Telephone
Sampling rate 8.0 kHz 8.0 kHz
Quantization 16-bit linear 8-bit µ-law
Training speech (avg.) 21.9 sec. 119.0 sec.
Evaluation speech (avg.) 8.9 sec. 30.4 sec.

selected usingX andX̂, respectively. The approximation (4) is
good whenX andX̂ follow the same probability distribution.

V. EXPERIMENTS

A. Speech Material

For the experiments, we used two corpora, theTIMIT corpus
[39] and theNIST 1999 speaker recognition evaluation corpus
[45]. The TIMIT corpus was used for tuning the parameters
of the algorithms, and the results were then validated using
the NIST corpus.

Main features of the evaluated corpora are summarized in
Table I. For consistency, the TIMIT files were downsampled
from 16 to 8 kHz. This was preceded by alias cancellation
using a digital low-pass FIR filter. TIMIT contains 10 files
for each speaker, of which we selected 7 for training and 3
for testing. The files “sa” and “sx” having the same phonetic
content for all speakers were included in the training material.

To our knowledge, no speaker identification experiments
have been performed previously on the NIST-1999 corpus,
and therefore, we needed to design the test setup ourselves.
We selected to use the data from the male speakers only.
Because we do not apply any channel compensation methods,
we selected the training and recognition conditions to match
closely. For training, we used both the “a” and “b” files for
each speaker. For identification, we used the one speaker test
segments from the same telephone line. In general it can
be assumed that if two calls are from different lines, the
handsets are different, and if they are from the same line, the
handsets are the same [45]. In other words, the training and
matching conditions have very likely the same handset type
(electret/carbon button) for each speaker, but different speakers
can have different handsets. The total number of test segments
for this condition is 692.

B. Feature Extraction, Modeling and Matching

We use the standard MFCCs as the features [29]. A pre-
emphasiz filterH(z) = 1 − 0.97z−1 is used before framing.
Each frame is multiplied with a 30 ms Hamming window,
shifted by 20 ms. From the windowed frame, FFT is computed,
and the magnitude spectrum is filtered with a bank of 27
triangular filters spaced linearly on the mel-scale. The log-
compressed filter outputs are converted into cepstral coeffi-
cients by DCT, and the0th cepstral coefficient is ignored.
Speaker models are generated by the LBG clustering algorithm
[31]. The quantization distortion (1) with Euclidean distance
is used as the matching function.
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C. Performance Evaluation

The recognition accuracy of identification is measured by
identification error rate, and the accuracy of the verification
is measured by the equal error rate (EER). The methods were
implemented using C/C++ languages. All experiments were
carried out on a computing cluster of two Dell Optiplex G270
computers, each having 2.8 GHz processor and 1024 MB of
memory. The operating system is Red Hat Linux release 9 with
2.4.22-openmosix2 kernel. We use system functionclock
divided by the constantCLOCKS_PER_SECto measure the
running time.

VI. RESULTS AND DISCUSSION

A. Baseline System

First, a few preliminary tests were carried out on the TIMIT
corpus in order to find out suitable silence detection threshold.
The number of MFCCs and model sizes were fixed to 12 and
64, respectively. With the best silence threshold (lowest error
rate), about 11-12 % of the frames were classified as silent
and the average identification time improved by about 10 % as
compared without silence detection. Recognition accuracy also
improved slightly when silence detection was used (626/630
correct→ 627/630 correct). Using the same silence detection
threshold on the NIST, only 2.6 % of the frames were classified
as silent, and there was no improvement in the identification
time.

The effect of the number of MFCCs was studied next. In-
creasing the number of coefficients improved the identification
accuracy up to 10-15 coefficients, after which the error rates
stabilized. For the rest of the experiments, we fixed the number
of coefficients to 12.

Table II summarizes the performance of the baseline system
on the TIMIT corpus. The identification times are reported
both for the full-search and for the VPT-indexed code vectors.
The last row (no model) shows the results for using all training
vectors directly as the speaker model as suggested in [46].
Increasing the model size improves the performance up to
M = 256. After that, the results start to detoriate due to the
overfitting effect, as observed also in [47]. The identification
time increases with the codebook size. For small codebooks,
VPT indexing does not have much effect on the identification
times, but it becomes effective whenM ≥ 32. For the rest of
the experiments, VPT indexing is used.

TABLE II

PERFORMANCE OF THE BASELINE SYSTEM(TIMIT).

Codebook size Error rate (%) Avg. id. time (s)
Full search VPT

8 10.5 0.29 0.33
16 2.22 0.57 0.62
32 0.63 1.15 1.11
64 0.48 2.37 2.07
128 0.16 4.82 4.14
256 0.16 10.2 8.21
512 0.32 21.6 12.9
No model 1.59 42.8 23.7
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Fig. 7. Comparison of the PQ methods with codebook size 64 (TIMIT).

B. Pre-Quantization

Next, we compare the pre-quantization methods with code-
book size fixed toM = 64. Parameters were optimized with
extensive testing for each PQ method separately. The best
time-error curves for each method are shown in Fig. 7. We
observe that the clustering PQ gives the best results, especially
at the low-end when time is critical. In general, PQ can be
used to reduce the time about to 50 % of the full search with
a minor degradation in the accuracy.

C. Speaker pruning

Next, we evaluate the performance of the speaker pruning
variants with the pre-quantization turned off and speaker
model size fixed to 64. Several experiments were carried out
in order to find out the critical parameters. First, the variants
were considered individually (see Figs 8 to 11).

For the SP algorithm, we fixed the pruning interval (M =
5, 10, 15 vectors) and varied the number of pruned speakers
(K). The shortest pruning interval (M = 5) gives the poorest
results and the largest interval (M = 15) the best. The
difference betweenM = 10 andM = 15 is relatively small.

For the HP algorithm, we fixed the coarse speaker model
size (M = 4, 8, 16) and varied the number of pruned speakers
(K). We observe that the model sizesM = 4 andM = 8 give
the best trade-off between the time and identification accuracy.
If the codebook size is increased, more time is spent but the
relative gain in accuracy is small.

For the AP algorithm, we fixed the parameterη in (2) to
η = {0.0, 0.1, 0.5, 0.9} and varied the pruning interval (M ).
The valuesη = 0.5 andη = 0.9 give the best results.

For the CP algorithm, we fixed the two thresholds (ε =
0.1, 0.5 ; η = 0.1, 1.0) and varied the pruning interval. The
best result is obtained with combinationη = 1.0, ε = 0.5.
The selection of the stabilization thresholdε seems to be less
crucial than the pruning parameterη.

The pruning variants are compared in Fig. 12. The AP
variant gives the best results, whereas the static pruning gives
the poorest results. Next, we select the best PQ and pruning
variants as well as the combination of PQ and pruning (PQP)
as described in Section III-E and compare their performance.
From the Fig. 13 we observe that the pruning approach
gives slightly better results. However, in a time-critical ap-
plication PQ might be slightly better. The combination of
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Fig. 8. Performance of the SP algorithm for different pruning intervals
(TIMIT).
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Fig. 9. Performance of the HP algorithm for different coarse model
sizes with detail model size 64 (TIMIT).
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Fig. 10. Performance of the AP algorithm for different pruning
thresholds (TIMIT).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

Average ID time (s)

E
rr

or
 r

at
e 

(%
)

=0.1, =0.1

=0.1, =0.5

=1.0, =0.1

=1.0, =0.5

 

Fig. 11. Performance of the CP algorithm for different parameters
(TIMIT).

pre-quantization and pruning (PQP) gives the best result as
expected.

D. Validation with NIST and GMM

Since TIMIT is known to give overly optimistic perfor-
mance due to its laboratory quality and lack of intersession
data, we validate the results on the NIST corpus. The best pre-
quantization and pruning variants are also generalized to GMM
modeling [14] as follows. Instead of using the log-likelihood
log p(X|GMMi) as score, we use− log p(X|GMMi) instead.
In this way, the scores are interpreted as dissimilarities, and
the algorithms do not require any changes. We used diagonal
covariance GMMs since they are widely used with the MFCC
features, and they require significantly less computation and
storage.

The best results for both corpora and model types are
summarized in Tables III and IV. For pre-quantization, we
use the clustering-based method, and for the pruning we use
the adaptive variant. For the combination, we selected the
clustering PQ and static pruning.

We optimized the model sizes for VQ and GMM separately.
For VQ, larger codebook give more accurate results on both
corpora as expected. GMM, on the other hand, is more
sensitive to the selection of the model size. With TIMIT, model
sizes larger than 64 degraded results dramatically (for model
size 256 the error rate was 16.5 %). There is simply not enough
training data for robust parameter estimation of the models.
For NIST, there is 5 times more training data, and therefore
large models can be used.

The problem of limited training data for GMM parameter
estimation could be attacked by using, instead of the maximum
likelihood (ML) training, the maximum a posteriori parameter
(MAP) adaptation from the world model as described in [15].
Taking advantage of the relationship between the world model
and the speaker-depended GMMs, it would also possible to
reduce the matching time [15], [20]. In this paper, however,
we restricted the study on the baseline ML method.

From the results of Tables III and IV we can make the
following observations:

• Identification time depends on the size and the type of
the model.
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Fig. 12. Comparison of the pruning variants with speaker model size
64 (TIMIT).
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Fig. 13. Comparison of the best PQ and speaker pruning variants with
speaker model size 64 (TIMIT).

• The error rates are approximately of the same order for
both VQ and GMM. For TIMIT, the error rates are close
to zero, and for NIST they are around 17-19 %.

• The speed-up factor of PQ increases with the model size
as expected. Relative speed-up is higher for GMM than
for VQ. Improvement of the pruning, on the other hand,
depends much less on the model size.

• With TIMIT, PQP doubles the speed-up relative to PQ.
With NIST, on the other hand, the PQP is not successful.

• The best speed-up factor for NIST with VQ is 16:1
increasing the error rate from 17.34 % to 18.20 %. For
GMM, the corresponding speed-up factor is 34:1 with the
increase of the error rate from 16.90 % to 18.50 %.

In general, we conclude that the results obtained with
TIMIT hold also for NIST although there are differences
between the corpora. More importantly, the studied algorithms
generalize to GMM-based modeling. In fact, the speed-up
factors are better for GMM than for VQ on the NIST corpus.
The optimized systems are close to each other both in time
and accuracy, and we cannot state that one of the models
would be better than the other in terms of time/error trade-off.
The ease of implementation, however, makes the VQ approach
more attractive. In fact, prototype implementation for Symbian
series 60 operating system for mobile devices is currently in
progress.

The combination of PQ and GMM gives a good time-
accuracy trade-off, which is consistent with the verification
experiments carried out by McLaughlin & al. [18]. They
noticed that the test sequence could be decimated up to factor
20:1 with minor effect on the verification performance. They
found out that the fixed decimation (everyKth vector) gave
the best performance. However, as we can see from the Fig.
7, the clustering based pre-quantization performs better. This
explains partially why we obtained a better speed-up (up to
34:1).

E. Fast Cohort Scoring for Verification

The proposed cohort normalization method (FCS) was stud-
ied next on the NIST corpus. We used the same subset for veri-

fication than for the identification experiments, thus consisting
of N = 692 genuine speaker trials andN(N−1)/2 = 239086
impostor trials. The speaker model size was set to 128 for
both VQ and GMM based on the identification results, and
the PQ codebook size for the FCS method was set to 32 after
preliminary experiments. In both normalization methods, the
client score is divided by the average cohort score. In the case
of VQ, models are scored using the quantization distortion,
and in the case of GMM, the log likelihood.

We consider the following methods:

• No normalization
• Closest impostors to the test sequence
• Fast cohort scoring (FCS)
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Fig. 14. Effect of the cohort size using different scoring methods (model
sizes = 128;M = 32) (NIST).

The cohort size is varied fromK = 1 to K = 20. The
equal error rates of the normalization methods are shown in
Fig. 14, along with the unnormalized case as a reference. We
observe an decreasing trend in EER with increasing cohort
size for both normalization methods and for both modeling
techniques. GMM gives better results for both normalization
methods. More interestingly, the proposed method (FCS) out-
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TABLE III

SUMMARY OF THE BEST RESULTS ON THETIMIT CORPUS.

Vector quantization (VQ) Gaussian mixture model (GMM)
Setup Model Error Time (s) Speed-up Model Error Time (s) Speed-up

size rate (%) factor size rate (%) factor

Baseline 64 0.32 2.07 1:1 8 0.95 0.93 1:1
PQ 0.64 0.48 4:1 0.95 0.49 2:1
Pruning 0.48 0.43 5:1 1.11 0.21 4:1
PQP 0.32 0.27 8:1 0.95 0.21 4:1
Baseline 128 0.00 4.14 1:1 16 0.16 1.77 1:1
PQ 0.64 0.59 7:1 0.48 0.77 2:1
Pruning 0.00 1.88 2:1 0.16 0.92 2:1
PQP 0.00 0.31 13:1 0.16 0.18 10:1
Baseline 256 0.00 8.21 1:1 32 0.32 3.47 1:1
PQ 0.64 1.18 7:1 0.32 0.72 5:1
Pruning 0.00 3.28 3:1 0.32 1.80 2:1
PQP 0.00 0.65 13:1 0.32 0.40 9:1

TABLE IV

SUMMARY OF THE BEST RESULTS ON THENIST 1999CORPUS.

Vector quantization (VQ) Gaussian mixture model (GMM)
Setup Model Error Time (s) Speed-up Model Error Time (s) Speed-up

size rate (%) factor size rate (%) factor

Baseline 64 18.06 2.92 1:1 64 17.34 9.58 1:1
PQ 18.20 0.62 5:1 18.79 0.73 13:1
Pruning 19.22 0.48 6:1 19.36 0.82 12:1
PQP 18.06 0.50 6:1 17.34 0.94 10:1
Baseline 128 17.78 5.80 1:1 128 17.05 18.90 1:1
PQ 18.93 0.64 9:1 18.20 0.84 23:1
Pruning 18.49 0.86 7:1 17.34 2.88 7:1
PQP 17.78 0.67 9:1 17.63 1.34 14:1
Baseline 256 17.34 11.40 1:1 256 16.90 37.93 1:1
PQ 18.20 0.70 16:1 18.50 1.11 34:1
Pruning 17.49 1.46 8:1 17.48 5.78 7:1
PQP 17.49 0.90 13:1 18.06 2.34 16:1

performs the method of closest impostors even though only
the quantized test sequence is used for scoring. This result
supports the claim that redundancy in the test sequence should
be removed. The result also indicates that the assumption (4)
holds in practise.

Table V summarizes the performances of the two score
normalization methods. The speed-up factor is relative to the
closest impostors method. The proposed method speeds up the
verification by a factor of 23:1 and it also decreases the error
rate at the same time. The equal error rates are relatively high
in general, which is because of a simple acoustic front-end. We
did not apply either delta processing nor channel compensation
methods such as cepstral mean subtraction.

TABLE V

SUMMARY OF THE COHORT SELECTION METHODS(COHORT SIZE= 20;

MODEL SIZES= 128;M = 32) (NIST).

Method Model EER (%) Avg. verif. Speed-up
time (s) factor

Closest VQ 7.80 5.79 1:1
impostors GMM 7.51 18.94 1:1
FCS VQ 7.48 0.65 9:1

GMM 6.94 0.84 23:1

VII. C ONCLUSIONS

A real-time speaker identification system based on vector
quantization (VQ) has been proposed. The most dominating

factors of the identification time are the number of test vectors
and the number of speakers. We used silence detection and
pre-quantization for the reduction of the vectors, and speaker
pruning for the reduction of the speakers. A VPT tree was
applied for speeding up the nearest neighbor search from the
speaker codebook.

We used the TIMIT corpus for tuning the parameters, and
validated the results using the NIST-1999 speaker recognition
evaluation corpus. With TIMIT, a speed-up factor of 13:1 was
achieved without degradation in the identification accuracy.
With NIST, a speed-up factor of 16:1 was achieved with a
small degradation in the accuracy (17.34 % vs. 18.20 %).

We demonstrated that the methods formulated for VQ
modeling generalize to GMM modeling. With TIMIT, a speed-
up factor of 10:1 was achieved. With NIST, a speed-up factor
of 34:1 was achieved with a small degradation (16.90 % vs.
18.50 %) in the accuracy.

We also applied pre-quantization for efficient cohort normal-
ization in speaker verification. The proposed method turned
out to be both faster and more accurate than the commonly
used method of closest impostors. An EER of 6.94 % was
reached in average verification time of 0.84 seconds when the
length of test utterance is 30.4 seconds, with a speed-up of
23:1 compared to the widely used closest impostors method.

Regarding the selection between pre-quantization and prun-
ing methods, the former seems more attractive in the light of
the experimental results on the NIST corpus, and the findings
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reported in [18]. Clustering can be effectively applied for
removing redundancy from the test sequence with small or
no degradation in the accuracy. A possible future direction
could be towards developing more adaptive pre-quantization
methods (all pre-quantization methods studied here assume
either fixed buffer or codebook size).

In this paper we restricted the study of the GMM to the
baseline ML method. However, it is expected that the studied
methods generalize to the UBM/GMM framework [15] and
further speedups are possible by combining UBM/GMM with
pre-quantization and speaker pruning. It is also possible to use
UBM idea in the VQ context in the same way by generating a
large speaker-independent codebook and adapting the speaker-
dependent codebooks from it.

Finally, it must be noted that the acoustic front-end was
fixed to MFCC processing in this study, and it seems that
further speed optimization with these features is difficult.
A possible future direction could be to use multiparametric
classification: a rough estimate of the speaker class could
be based on pitch features, and the matching could then be
refined using spectral features. Alternatively, one could use
initially high-dimensional features, such as a combination of
cepstrum, delta-parameters, F0 features and voicing informa-
tion, followed by a mapping into a low-dimensional space
by linear discriminant analysis (LDA), principal component
analysis (PCA), or neural networks. In this way, probably more
discriminative low-dimensional features could be derived.
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