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Abstract—In speaker identification, most of the computation group ofspeaker adaption methodsat are already employed
originates from the distance or likelihood computations between jnp speech recognition systems [8], [9]. Speaker-specific codecs

the feature vectors of the unknown speaker and the models in ; : ;
. - . in personal speech codirftave been also demonstrated to give
the database. The identification time depends on the number P P 9

of feature vectors, their dimensionality, the complexity of the smaller bit rates as opposed to a universal speaker-independent
speaker models and the number of speakers. In this paper, codec [10].

we concentrate on optimizing vector quantization (VQ) based  Speaker identification have also been applied to the ver-
speaker identification. We reduce the number of test vectors jfication problem in [11], where the following simple rank-

by pre-quantizing the test sequence prior to matching, and the poqaq yerification method was proposed. For the unknown
number of speakers by pruning out unlikely speakers during )

the identification process. The best variants are then generalized speaker's voice samplel ne.arest Speaker§ are searched

to Gaussian mixture model (GMM) based modeling. We apply from the database. If the claimed speaker is among#he

the algorithms also to efficient cohort set search for score best speakers, the speaker is accepted and otherwise rejected.
normalization in speaker verification. We obtain a speed-up Similar verification strategy is also used in [12].

factor of 16:1 in the case of VQ-based modeling with minor . PP . :
degradation in the identification accuracy, and 34:1 in the case of Speaker identification and adaptation have potentially more

GMM-based modeling. An equal error rate of 7 % can be reached aPPlications than verification, which is mostly limited to secu-
in 0.84 seconds on average when the length of test utterance isfity systems. However, the verification problem is still much

30.4 seconds. more studied, which might be due to (1) lack of applications
Index Terms— Speaker recognition, real-time, speaker prun- concepts for the identification problem, (2) increase in the
ing, pre-quantization, VQ, GMM expected error with growing population size [13], and (3) very
high computational cost. Regarding the identification accuracy,
|. INTRODUCTION it is not always necessary to know the exact speaker identity

but the speaker classof the current speaker is sufficient
(speaker adaptation). However, this has to be performed in
real-time. In this paper, we focus on decreasing the compu-

the .|dent|f:jcat|obn taskf, kan unknowrll speakﬁr 'i cgmpared tational load of identification while attempting to keep the
against a database of known speakers, and the best matc WS gnition accuracy reasonably high.

speaker is given as the identification result. The verification
task consists of making a decision whether a voice sample
was produced by a claimed person. B. Review of Computational Speed-Up Methods

Speaker recognition refers to two different taskpeaker
identification (SI) and speaker verification(SV) [1]-[3]. In

A large number of methods have been proposed for speeding
A. Motivation up the verification process. Specifically, Gaussian mixture
Applications of speakererificationcan be found in biomet- model (GMM) based verification systems [14], [15] have
ric person authentication such as an additional identity chet@ceived much attention, since they are considered as the
during credit card payments over the Internet. The potentfpte-of-the-art method for text-independent recognition. Usu-
applications of speaker identification can be found in mult@lly. speaker-dependent GMMs are derived from a speaker-
user systems. For instance, speaker trackinghe task is to independentiniversal background mod¢UBM) by adapting
locate the segments of given speaker(s) in an audio stream [#]& UBM components withmaximum a posteriori{MAP)
[7]. It has potential applications in automatic segmentation 8flaptation using each speaker's personal training data [15].
teleconferences and helping in the transcription of courtroohiis method incudes a natural hierarchy between the UBM
discussions. and the personal speaker models; for each UBM Gaussian
Speaker identification could be used adaptive user in- component, there is a corresponding adapted component in the
terfaces For instance, a car shared by many people of tig@eaker’s personal GMM. In the verification phase, each test
same family/community could recognize the driver by his/h&ctor is scored against all UBM Gaussian components, and a
voice, and tune the radio to his/her favorite channel. Thinall number (typically 5) of the best scoring components in
particular application concept belongs to the more genetBf corresponding speaker-dependent GMMs are scored. This

procedure effectively reduces the amount of needed density
c Corr(isp%n(;iing al:Jth_or: 'I'_(t)miflginnunen.PC(;)ntBact f:clifrtle:slz: B%i%irsment(%mPUtations'
omputer science, university or Joensuu, P.O. box , - oensuu . .
FINLAND. E-mail: Tomi.Kinnunencsjoensuu.fi, Tel. +358 13 251 7905, 1N addition to the basic UBM/GMM approach, a number of

Telefax. +358 13 251 7955. other hierarchical methods have been considered for GMM.
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Beigi & al. [12] propose a hierarchical structuring of thel5:1 to 17:1) as compared to the hash GMM, the Xiang’s and
speaker database with the following merging strategy. TvBerger’'s method is considerably more complex than the hash
closest GMMs are merged, and the process is repeated untilGdM.
number of GMMs is 1. A similar approach using t&DATA
clustering algorithm has been recently proposed by Sun @& Contributions of This Study
al. [16] for the identification task. They report identification The literary review herein shows that most of the speed
accuracy close to full search with speed-up factors from 3obtimizations have been done on GMM-based systems. In this
to 6:1. The relative speed-up of their algorithm was higher fatudy, we optimizevector quantizationVQ) based speaker
increased number of speakers. recognition, because it is straightforward to implement, and
Auckenthaler and Mason [17] applied UBM-likbash according to our experiments, it yields equally good or better
mode] in which for each Gaussian component, there is identification performance than the baseline GMM based on
shortlist of indices of the expected best scoring components faaximum likelihood training using the EM algorithm.
each individual GMM. Using the shortlist of the hash model, Most of the computation time in VQ-based speaker identifi-
only the corresponding components in the individual GMMation consists of distance computations between the unknown
are then scored. By increasing the lengths of the shortlistpeaker’s feature vectors and the models of the speakers
scores can be computed more accurately, but with an increasadblled in the system databasgpeaker prunind19], [22],
computational overhead. Auckenthaler and Mason reported28] can be used to reduce the search space by dropping out
speed-up factor of about 10:1 with a minor degradation in thumlikely speakers “on the fly” as more speech data arrives.
verification performance. We survey and compare several speaker pruning variants. We
McLaughlin & al. [18] have studied two simple speed-uglso propose a new speaker pruning variant cattafidence-
methods for the GMM/UBM-based verification system: (1pased speaker pruninghe idea is to wait for more speech
decreasing the UBM size, and (2) decimating the sequeritata until we are confident to decide whether a certain speaker
of test vectors with three simple methods. They noticed theauld be safely pruned out.
the UBM could be reduced by a factor of 4, and the test We optimize the other components of the recognition system
sequence up to a factor of about as high as 20 without affectidg well. We reduce the number of test sequence vectors
the verification performance. McLaughlin & al. [18] state (pby silence removal and pre-quantization, and show how the

1218): pre-quantization methods can be combined with the speaker
“What is surprising is the degree to which feature vectors ~ Pruning for more efficient identification. &antage-point tree
can be decimated without loss in accuracy. The key (VPT) [24] is used for indexing the speakers’ code vectors

factor seems to be the acoustic variety of the vectors for speeding up the nearest neighbor search. Our main contri-
scored, not the absolute number of vectors.” bution is a systematic comparison and combining of several
However, they did not experiment the combination of decimaptimization methods.
tion and reduced UBM. Although the framework presented in this study is built
An efficient GMM-based speaker identification system hasound VQ-based speaker modeling, the methods are expected
also been presented by Pellom and Hansen [19]. Since thegeneralize to other modeling paradigms. We demonstrate
adjacent feature vectors are correlated and the order of this by applying the best pre-quantization and pruning variants
vectors does not affect the final score, the vector sequence tmiGMM-based identification.
be reordered so that non-adjacent feature vectors are scorefinally, we demonstrate that the methods apply also to the
first. After the scoring, worst scoring speakers are prunedrification task. Pre-quantization is applied for searching a
out using abeam searchechnique where the beam width iscohort setonline for the client speaker during the verification
updated during processing. Then, a more detailed samplingpodcess, based on the closeness to the input vectors. We
the sequence follows. The process is repeated as long as tipgogose a novel cohort normalization method caléest cohort
are unpruned speakers or input data left, and then the bs&string (FCS) which decreases both the verification time and
scoring speaker is selected as the winner. Pellom and Han#iem equal error rate.
reported speed-up factor of 6:1 relative to the baseline beanThe rest of the paper is organized as follows. In Section I,
search. we review the baseline speaker identification, and consider the
Recently, more advanced hierarchical models have beggmputational complexity issue in more detail, focusing on the
proposed for efficient speaker verification [20], [21]. Xiangieal-time processing in general level. A detailed description
and Berger [20] construct a tree structure for the UBM. Mukf the speaker pruning algorithms follows then in Section
tilevel MAP adaptation is then used for generating the speakéi- In Section 1V, we utilize the speed-up methods to the
specific GMMs with a tree structure. In the verification phaswegrification problem. Section V describes the experimental
the target speaker scores and the UBM scores are combiggtup. Test results with discussion are given in Section VI,
using an MLP neural network. Xiang and Berger reportedand conclusions are drawn in Section VII.
speed-up factor of 17:1 with a 5 % relative increase in the II. VQ-BASED SPEAKER | DENTIFICATION
EER. They also compared their method with the hash model '
of Auckenthaler and Mason [17]. Although the method of\- General Structure
Xiang and Berger gave slightly better verification accuracy The components of a typical VQ-based speaker identifica-
(from EER of 13.9 % to EER of 13.5 %) and speed-up (frorion [25]-[28] system are shown in Fig. Eeature extraction
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Fig. 1. Typical VQ-based closed set speaker identification system.

transforms the raw signal into a sequence of 10- to 20% order to computeD,, (X, C), the nearest neighbors of
dimensional feature vectors with the rate of 70-100 frameschx; € X from the codeboolC are needed. With a sim-
per second. Commonly used features includel-cepstrum ple linear search this require3(7'M) distance calculations.
(MFCC) and LPC-cepstrum(LPCC) [29], [30]. They mea- Computation of the squared Euclidean distance between two
sure short-term spectral envelope, which correlates with thalimensional vectors, in turn, takdsnultiplications andi—1
physiology of the vocal tract. additions. Therefore, the total number of floating point oper-

In the training phase, a speaker model is created by clagions (flops) for computingD,.,(X,C) is O(T'Md). The
tering the training feature vectors into disjoint groups by eomputation ofD,,,(X, C) is repeated for allV speakers, so
clustering algorithm. Th&BG algorithm[31] is widely used the total identification time i€©)(NTMd).
due to its efficiency and simple implementation. However, The efficiency of the feature extraction depends on the
other clustering methods can also be considered; a comparasetected signal parametrization. Suppose that the extraction
study can be found in [32]. The result of clustering is a set of one vector take®(f) flops. The total number of flops for
M vectors,C = {¢1,¢s,...,cpr}, called acodebookof the feature extraction is the® (7' f), whereT is the number of
speaker. vectors. Notice that the feature extraction needs to be done

In the identification phase, unknown speaker’s feature vegnly once. To sum up, total number of flops in identification
tors are matched with the models stored in the systemO(Tf + NTMd) = O(T(f + NMd)). The standard
database. Anatch scords assigned to every speaker. Finallysignal processing methods (MFCC, LPCC) themselves are
a 1-out-ofV decision is made. In a closed-set system thiery efficient. By assuming’ <« NMd, we can approximate
consists of selecting the speaker that yields the small¢ise overall time asD(T'NMd).
distortion. The dimensionalityd is much smaller tharV, M andT.

The match score between the unknown speaker’s featli@ instance, about 10-20 mel-cepstral coefficients is usually
vectors X = {x1,...,zr} and a given codebook’ = enough due the fast decay of the higher coefficients [29]. There
{e1,...,cp} is computed as th@verage quantization dis- is no reason to use a high number of cepstral coefficients
tortion [25]: unless they are properly normalized; the coefficients with a
small magnitude do not contribute to the distance values much.

Dauvg(X, C) e(x;, C )

HMH

C. Reducing the Computation Time

wheree(z;, C) = ming, e ¢ |@; — cj||2 and|| - || denotes the  The dominating factors of the total identification time are

Euclidean norm. Several modifications have been proposedi#§ number of speakersV), the number of vectors in the

the baseline VQ distortion matching [27], [33]-[37]. test sequencel)), and the codebook sized/). We reduce
the number of speakers by pruning out unlikely speakers

) . o during the matching, and the number of vectors by silence
B. Time Complexity of Identification removal and by pre-quantizing the input sequence to a smaller
In order to optimize speaker identification for real-timewumber of representative vectors prior to matching. In order
processing, first the dominating factors have to be recognizéal.speed up the nearest neighbor search of the codebooks,
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Activespeakers  Pruned speskers to gain time, the total time spent for the PQ and matching must
List of candidate speakers be less than the matching time without PQ. The motivation
Reduced set . . . . .
00 OOM M/ of vectors / for using PQ is that, in practise, the adjacent feature vectors
! are close to each other in the feature space because of the

| Matching H Databaseprunin9| gradual movements of the articulators. McLaughlin & al. [18]
applied three simple PQ methods prior to GMM matching,
and reported that the test sequence could be compressed by a
No_Decision 2>1=+ Enp factor of 20:1 without compromizing the verification accuracy.
This clearly suggests that there is a lot of redundancy in the
feature vectors.

Fig. 2. Diagram of the real-time identification system. We consider four different pre-quantization techniques: (1)
random subsampling(2) averaging (3) decimation and (4)
clustering-based PQIn random subsampling and averaging,

we utilize vantage-point treegVPT) [24] for indexing the the input buffer is processed in non-overlapping segments of

code vectors in the models. VPT is a balanced binary searth>1 vectors. In random subsampling, each segment is rep-
tree where each node represents a code vector. In the tiesented by a random vector from the segment. In averaging,
case (fully balanced binary tree), the search takéleg, //) the representative vector is the centroid (mean vector) of the
distance computations. Unfortunately, the VPT as well &gment. In decimation, we simply take eveth vector of

other indexing structures [38] apply only to metric distancée test sequence, which corresponds to performing feature
functions. Since (1) does not satisfy the triangular inequalitgxtraction with a smaller frame rate. In clustering-based PQ,

we can index only the code vectors but not the codebooké partition the sequenc¥ into M clusters using the LBG
themselves. clustering algorithm.

D. Real-Time Speaker Identification I1l. SPEAKER PRUNING

The proposed system architecture is depicted in Fig. 2. TheThe idea of speaker pruning [19], [22], [23] is illustrated in
input stream is processed in short buffers. The audio dataffy. 3. We must decide how many new (non-silent) vectors are
the buffer divided into frames, which are then passed througheid into the buffer before next pruning step. We call this the
simple energy-based silence detector in order to drop out Nn@iuning interval We also need to define tipeuning criterion
information bearing frames. For the remaining frames, featurerigure 4 shows an example how the quantization distortion
extraction is performed. The feature vectors are pre-quantizg9 develops with time. The bold line represents the correct
to a smaller number of vectors, which are compared agaiRgleaker. In the beginning, the match scores oscillate, and when
active speakers the database. After the match scores for eaghore vectors are processed, the distortions tend to stabilize
speaker have been obtained, a number of speakers are prigigfind the expected values of the individual distances because
out so that they are not included anymore in the matching @fthe averaging in (1). Another important observation is that
the next iteration. The process is repeated until there is Bosmall amount of feature vectors is enough to rule out most
more input data, or there is only one speaker left in the list gf the speakers from the set of candidates.

active speakers. We consider next the following simple pruning variants:
o static pruning[23], hierarchical pruning[22], and adaptive
E. Pre-quantization pruning [23]. We also propose a novel pruning variant called

In pre-quantization(PQ), we replace the original test vectoconfidence-based pruninghe variants differ in their pruning
sequenceX by a new sequenc so that|X'| < |X|. In order criteria.
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Fig. 5. Left: Match score distributions from the TIMIT corpus. Right:
lllustration of the pruning threshold.

— | Algorithm 2 Hierarchical Pruning (HP)

Let C. = {CY,...,C%} be the coarse models ;
‘ ‘ ‘ ‘ ‘ ‘ N Let Cy = {C{,...,C%} be the detail models ;
20 40 60 ﬁj%mbeﬁogf Ve(::LtZC?rS 140 160 180 200 A = {17 27 o N} : .

Read the whole test sequence into buffer X ;
Compute Dq.q(X,C5) foralli € A;
Prune out K worst speakers from A ;
Compute Dq.e(X,C{) foralli € A
Decision: i* = arg min;{ Dy (X, C)|i € A} ;

Fig. 4. lllustration of match score saturatiolv (= 20 speakers from the
TIMIT corpus).

Algorithm 1 Static Pruning (SP)
A:={1,2,....N}; X :=0;

while (JA| > 1) and (speech data left) do Algorithm 3 Adaptive Pruning (AP)

Insert M new vectors into buffer X ; A={L2,.. N} ;X =0,

Update Dy, (X, Ci) forallie A while (|A] > 1) and (speech data left) do

Pf“”‘? out K worst speakers from A ; Insert M new vectors into buffer X ;
end while . _ ‘ Update D,.,(X,C;) foralli e A;
Decision: i* = arg min, { D(X, Cy)|i € A}; Update Pruning threshold © ;

Prune out speaker i if Davg(X,C;) > O ;
end while

Decision: i* = argmin;{ Davqe(X, Ci)|i € A} ;

The following notations will be used:

X  Processing buffer for new vectors

A Indices of the active speakers C. Adaptive Pruning (AP)

C; Codebook of speaker . , .

N Size of the speaker database Instead of pruning a f|xeq ngml_)er of speakers, a pruning
threshold© based on the distribution of the scores is com-

puted, and the speakers whose score exceeds this are pruned

A. Static Pruning (SP) out (see Algorithm 3). The pruning threshaftlis computed

The idea is to maintain an ordered list of the best matchir?lgS
speakers. At each iteration)y/ new vectors are read in,
match_scores of the active speakers are_updatedKambrst where up and op are the mean and the standard deviation
matching speakers are pruned out (Algorlthm 1)._The update&n‘ the active speakers’ match scores, apds a control
the match scores can be done efficiently by using C“mUIat'HSrameter. The largeris, the less speakers are pruned out, and
counts of the scores. The control parameters of the methade yersa. The formula (2) has the following interpretation.
are M and K. Fig. 3 gives an example of the method withh s ming that the match scores follow a Gaussian distribution,
parametersl/ =7 and K = 2. the pruning threshold corresponds a certainfidence interval

of the normal distribution, ang specifies its width. Fon = 1,
. . . the speakers above the 68 % confidence interval of the match
B. Hierarchical Pruning (HP) score distribution will be pruned out; that is approximately

For each speakei, two codebooks are stored in the(100-68)/2 = 16 % of the speakers. This interpretation is
database: aoarseand adetail codebook, denoted here &§ illustrated in the right panel of Fig. 5. We have found out
and C¢, respectively. Both codebooks are generated from tegperimentally that the Gaussian assumption holds sufficiently
same training data, but the coarse codebook is much sma¥@ll in practise. The left panel of Fig. 5 shows two real
than the detail oneglC¢| < |C¢|. First, K worst speakers are score distributions computed from two different subsets of the
pruned out by matching the vectors against the coarse modéMIT corpus [39].

Scores of the remaining models are then recomputed using thé&lotice that the mean and variance of the score distribution
detail models (Algorithm 2). The control parameters of thean be updated efficiently using the running values for these.
method are the the sizes of the codebooks And Since the unlikely speakers (large scores) are pruned out

©=pp+n-op, )
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Stabilized models= Algorithm 4 Confidence-Based Pruning (CP)
Pruned models A= {1727.”7]\[} X =0

10.4 fori:=1,...,Ndo
12.9 Dyprevli] :== 0 ; stable[i] := false;
14.7 end for
14.5 while (JA| > 1) and (speech data left) do
12‘2 Insert M new vectors into buffer X ;
149 Update Dq.q(X,C;) foralli € A;
16.7 Update pruning threshold © ;
15.8 for i € Ado
13.8 Dcur'r[i] = Da'ug(X7 Cz) 3
16.2 end for
]Zg for i € Ado
45 if (]1-— l?pm; [i]/Deurri]] < €) then
15.1 stable[i] = true ;
18.0 end if
21.6 if (stable[:]) and (Deurr (X, C;) > O) then
15.1 Prune out speaker i from A ;
16.9 else
18.3 Dpre'u [Z] = DCuT‘?"[ﬂ ;
30 60 90 120 150 180 210 end if
Vectors . end fOf
end while
Fig. 6. lllustration of the confidence-based pruning. Decision: " = argmin;{Dauvg (X, Ci)|i € A} ;

iteratively, the variance of the match scores decreases wifigorithm S PQ + Static Pruning (PQP)

time. The control parameters of the method afeand . A:={1,2,...,N};
Read new data into buffer X ;

X := LBG-Clustering(X, M)

D. Confidence-Based Pruning (CP) Compute Do, (X,C;) forallic A;

In confidence-based pruning, only speakers whose matcH’rune out K worst speakers from A ;

o ; ; Compute Dave(X,C;) foralli € A;

scores have stabilized are considered for pruning. If the match?™ =" *~ ' )
score is poor but it stil oscillates, the speaker can still D8CiSion: " = arg mini{ Davg (X, Ci)li € A} ;
change its rank and become the winner. Thus, we remove only
speakers that have already stabilized and whose match score is
below a given threshold. This is illustrated in Fig. 6, in which V. EFFICIENT COHORT SCORING FORVERIFICATION

the speakers are at given one per line, and the time (vectoln this Section, we apply pre-quantization for speeding up
count) increases from left to right. The numbers in the celife scoring in the verification task. Current state-of-the-art
show the match scores, gray color indicates that the speakgbaker verification systems use the Bayesian likelihood ratio
has stabilized, and black indicates that the speaker has bpﬂj] for normalizing the match scores [41], [42]. The purpose
pruned out. Notice that both the stabilization and pruning c@f the normalization is to reduce the effects of undesirable
happen in the same iteration. variation that arise from mismatch between the input and
The pseudocode of the method is given in Algorithm 4. TWRaining utterances.
score values are maintained for each active speakbe one  Gjven an identity claim that speakérproduced the vectors
from the previous iterationfy,,.,[:]), and the one from the x _ {@1,..., @7}, two likelihoodsp(X|S) and p(X|S) are
current iteration Dc,,[i]). When these two are close enouglastimated. The former presents the likelihood that speaker
to each other, we mark the speaker as stabilized. StabilizgdproducedX (null hypothesis and the latter presents the
speakers are then checked against the pruning thresholdjjasinood thatX was produced by someone elsdtérnative

defined in (2). There are three adjustable parameters: figothesis The two likelihoods are combined using the log-
pruning interval (1), the stabilization thresholde) and the |ikelihood ratio [1]:

pruning threshold control parametey) (

score(X, S) = log p(X|S) — log p(X|95). 3

E. Combining PQ and Pruning (PQP) This score is then compared with a predefined verification
Pre-quantization and pruning can be combined. Algoriththreshold. The speaker is accepted if the score exceeds the

5 combines clustering-based PQ and static pruning. First, terification threshold, and otherwise rejected. We assume a

whole input data is pre-quantized by the LBG algorithm [31fommon (global) threshold for all speakers.

Using the match scores for the quantized d&tayorst scoring ~ The problem in the computation of (3) is that the likelihood

speakers are pruned out, and the final decision is basedofthe alternative hypothesis is not directly accessible since this

comparing the unquantized data with the remaining speakequires information oéll other speakers of the world here

models. We refer the ratio of the number of pruned speakene two main approaches for the estimationpoX |S) [41]:

to the number of all speakers as theining rate universal background modébr world mode) and cohort set
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Algorithm 6 Fast Cohort Scoring (FCS) TABLE |

Let X be the unknown speaker’s feature vectors ; SUMMARY OF THE CORPORA USED

Let Cs be the claimed speaker’s codebook ; l [ TIMIT [ NIST l

Let K > 1 be the desired cohort size ; Canguage English Engiish

X = LBG-CIusterlng(X., M) ; . Speakers 630 230

Let Co_h =K pest scoring speakers based on Dg.4(X, C;), Speech type Read speechf Conversational

excluding the client ; R Quality Clean (hi-fi) | Telephone

score(X, S) = Davg(X, Cs)/% ZieCoh, Davg(X, Ci) : Sampl_ing_rate 8.Q kHz 8.9 kHz
Quantization 16-bit linear 8-bit p-law
Training speech (avg.) 21.9 sec. 119.0 sec.
Evaluation speech (avg. 8.9 sec. 30.4 sec.

The world model is generated from a large set of speakers, and

it attempts to model speech in general. In the cohort approachI 4 usi 4% velv. Th L .
for each client speaker, an individual set of cohort speakerssf:seCte usingc and.X,, respectively. The approximation (4) is

defined. Usually the cohort set contains the nearest spealébq'gOl whenX and X follow the same probability distribution.

to the client, since intuitively these are the “best” impostors to

the client speaker. We are not aware of large-scale comparison

of the world model and cohort approaches, and it seems that Speech Material
currently there is no consensus which one of these is moreFor the experiments, we used two corpora, THdIT corpus
accurate. [39] and theNIST 1999 speaker recognition evaluation corpus

Cohort normalization methods can be divided into tw5]. The TIMIT corpus was used for tuning the parameters
classes: those that select the cohort speakéfime in the of the algorithms, and the results were then validated using
training phase [43], and those that select the colooline the NIST corpus.

[44] based on the closeness to the test vector sequ&nce Main features of the evaluated corpora are summarized in
The online approach, also known asconstrained cohort Table I. For consistency, the TIMIT files were downsampled
normalization (UCN) [41], [44], has been observed to be&rom 16 to 8 kHz. This was preceded by alias cancellation
more accurate [42], [44], probably due to its adaptive natungsing a digital low-pass FIR filter. TIMIT contains 10 files

Another desirable feature of the UCN is that it does not requifer each speaker, of which we selected 7 for training and 3
updating of the cohort sets when new speakers are enrolleddntesting. The files “sa” and “sx” having the same phonetic
the system. content for all speakers were included in the training material.

The usefulness of the online cohort selection is limited To our knowledge, no speaker identification experiments
by its computational complexity. The computation of théave been performed previously on the NIST-1999 corpus,
normalized score (3) includes searching the cohort speakensd therefore, we needed to design the test setup ourselves.
whose time increases linearly with the number of cohowe selected to use the data from the male speakers only.
candidates. Ariyaeeinia and Sivakumaran [44] noticed thatB&cause we do not apply any channel compensation methods,
smaller equal error rate (EER) is obtained, if the cohort ise selected the training and recognition conditions to match
selected among the client speakers instead of using an exteohadely. For training, we used both the “a” and “b” files for
cohort set. each speaker. For identification, we used the one speaker test

We propose to use pre-quantization for reducing the comsegments from the same telephone line. In general it can
putational load of cohort search (see Algorithm 6). The inpbe assumed that if two calls are from different lines, the
sequenceX is first quantized into a smaller sé&f using the handsets are different, and if they are from the same line, the
LBG algorithm [31], and majority of the speakers are prundiandsets are the same [45]. In other words, the training and
out based on the scordéa,,g(f(,ci), 1 = 1,...,N. The matching conditions have very likely the same handset type
remaining set of K > 1 best scoring speakers constitutegelectret/carbon button) for each speaker, but different speakers
the cohort for the client speaker. The client score is alsan have different handsets. The total number of test segments
computed using the quantized sequence, and the normalifadthis condition is 692.
match score is computed as the ratio between the client score
and average cohort speaker score. A small value indicates BatFeature Extraction, Modeling and Matching
the client score deviates clearly from the impostor dlstrlbutlon.We use the standard MFCCs as the features [29]. A pre-
The contrpl parameters of.the algorithm are the cohort gi2e ( emphasiz filterH (z) = 1 — 0.97-~" is used before framing.
and the sizé of the_quantlzed test SfM)( ) Each frame is multiplied with a 30 ms Hamming window,

In acoustically mismatched conditions, both the c_Ilent _a%ifted by 20 ms. From the windowed frame, FFT is computed,
cohort scores are expected to degrade, but their rafio Jisy the ‘magnitude spectrum is filtered with a bank of 27
assgmed to remains Fhe §ame.Thls is the fundamental rat'OQ?}?ngular filters spaced linearly on the mel-scale. The log-
behind score normalization. In other words, we assume: ., ynressed filter outputs are converted into cepstral coeffi-

Davg(X,Cs) Dang(X,Cs) cients by DCT, and thé@'® cepstral coefficient is_ ignored_.
S Duvg(X,C)) ~ S D (X C-)’ (4) Speaker models_ are gen_erate_d by the ITBG clu_sterlng z_ilgonthm
grmavei ke Favg o [31]. The quantization distortion (1) with Euclidean distance
where j and £ go over the indices of the cohort speakers used as the matching function.

V. EXPERIMENTS
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Fig. 7. Comparison of the PQ methods with codebook size 64 (TIMIT).

VI. RESULTS AND DISCUSSION

. B. Pre-Quantization
A. Baseline System o .
Next, we compare the pre-quantization methods with code-

First, a few preliminary tests were carried out on the TIMIgok size fixed talM — 64. Parameters were optimized with
corpus in order to find out suitable silence detection thresholdsensive testing for each PQ method separately. The best
The number of MFCCs and model sizes were fixed to 12 afhe-error curves for each method are shown in Fig. 7. We
64, respectively. With the best silence threshold (lowest errgpserve that the clustering PQ gives the best results, especially
rate), about 11-12 % of the frames were classified as silgfjtihe low-end when time is critical. In general, PQ can be

and the average identification time improved by about 10 % @§ed to reduce the time about to 50 % of the full search with
compared without silence detection. Recognition accuracy al$@ninor degradation in the accuracy.

improved slightly when silence detection was used (626/630

correct— 627/630 correct). Using the same silence detection _

threshold on the NIST, only 2.6 % of the frames were classifisdt SP€aKer pruning

as silent, and there was no improvement in the identificationNext, we evaluate the performance of the speaker pruning

time. variants with the pre-quantization turned off and speaker
The effect of the number of MECCs was studied next. Innodel size fixed to 64. Several experiments were carried out

creasing the number of coefficients improved the identificatidh order to find out the critical parameters. First, the variants

accuracy up to 10-15 coefficients, after which the error ratégre considered individually (see Figs 8 to 11).

stabilized. For the rest of the experiments, we fixed the numberFor the SP algorithm, we fixed the pruning interval (=

of coefficients to 12. 5,10, 15 vectors) and varied the number of pruned speakers
Table Il summarizes the performance of the baseline systéfn). The shortest pruning interval{ = 5) gives the poorest

on the TIMIT corpus. The identification times are reportetesults and the largest intervalMl( = 15) the best. The

both for the full-search and for the VPT-indexed code vectordifference betweend/ = 10 and M = 15 is relatively small.

The last row (no model) shows the results for using all training For the HP algorithm, we fixed the coarse speaker model

vectors directly as the speaker model as suggested in [48Fe ( = 4,8,16) and varied the number of pruned speakers

Increasing the model size improves the performance up (). We observe that the model sizé5 = 4 and M = 8 give

M = 256. After that, the results start to detoriate due to thé€ best trade-off between the time and identification accuracy.

overfitting effect, as observed also in [47]. The identificatiolf the codebook size is increased, more time is spent but the

time increases with the codebook size. For small codebook@lative gain in accuracy is small.

VPT indexing does not have much effect on the identification For the AP algorithm, we fixed the parametgin (2) to

times, but it becomes effective wheid > 32. For the rest of 7 = {0.0,0.1,0.5,0.9} and varied the pruning interval\f).

the experiments, VPT indexing is used. The valuesy) = 0.5 andn = 0.9 give the best results.
For the CP algorithm, we fixed the two thresholds=
TABLE |I 0.1,0.5 ; » = 0.1,1.0) and varied the pruning interval. The
PERFORMANCE OF THE BASELINE SYSTEMTIMIT). best result is obtained with combination= 1.0,¢ = 0.5.
_ - The selection of the stabilization thresheldeems to be less
Codebook size| Error rate (%) Fﬁﬁgs'e'g;;;]"“ev(;% crucial than the pruning parametgr o
5 05 529 033 The pruning variants are compared in Fig. 12. The AP
16 2.22 057 0.62 variant gives the best results, whereas the static pruning gives
32 0.63 115 111 the poorest results. Next, we select the best PQ and pruning
(15‘218 8.4112 421'2; 421'(1)471 variants as well as the combination of PQ and pruning (PQP)
256 0.16 10.2 8.21 as described in Section IlI-E and compare their performance.
512 0.32 21.6 12.9 From the Fig. 13 we observe that the pruning approach
No model 1.59 428 237 gives slightly better results. However, in a time-critical ap-

plication PQ might be slightly better. The combination of
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Fig. 8. Performance of the SP algorithm for different pruning intervals
(TIMIT).
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Fig. 10. Performance of the AP algorithm for different pruning
thresholds (TIMIT).

2
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Fig. 9. Performance of the HP algorithm for different coarse model
sizes with detail model size 64 (TIMIT).
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§
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Fig. 11. Performance of the CP algorithm for different parameters
(TIMIT).

pre-quantization and pruning (PQP) gives the best result adVe optimized the model sizes for VQ and GMM separately.

expected.

D. Validation with NIST and GMM

For VQ, larger codebook give more accurate results on both
corpora as expected. GMM, on the other hand, is more
sensitive to the selection of the model size. With TIMIT, model

sizes larger than 64 degraded results dramatically (for model

Since TIMIT is known to give overly optimistic perfor- size 256 the error rate was 16.5 %). There is simply not enough
mance due to its laboratory quality and lack of intersessidi@ining data for robust parameter estimation of the models.
data, we validate the results on the NIST corpus. The best pf@ NIST, there is 5 times more training data, and therefore
guantization and pruning variants are also generalized to GMf{ge models can be used.
modeling [14] as follows. Instead of using the log-likelihood The problem of limited training data for GMM parameter
log p(X|GMM;) as score, we use log p(X|GMM;) instead. estimation could be attacked by using, instead of the maximum
In this way, the scores are interpreted as dissimilarities, aelihood (ML) training, the maximum a posteriori parameter
the algorithms do not require any changes. We used diagodAP) adaptation from the world model as described in [15].
covariance GMMs since they are widely used with the MFC®2king advantage of the relationship between the world model
features, and they require significantly less computation afd the speaker-depended GMMs, it would also possible to

storage.

reduce the matching time [15], [20]. In this paper, however,

The best results for both corpora and model types afé restricted the study on the baseline ML method.
summarized in Tables Ill and IV. For pre-quantization, we From the results of Tables Ill and IV we can make the
use the clustering-based method, and for the pruning we (i8kowing observations:
the adaptive variant. For the combination, we selected thee Identification time depends on the size and the type of

clustering PQ and static pruning.

the model.
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Fig. 12. Comparison of the pruning variants with speaker model size Fig. 13. Comparison of the best PQ and speaker pruning variants with
64 (TIMIT). speaker model size 64 (TIMIT).

« The error rates are approximately of the same order fication than for the identification experiments, thus consisting
both VQ and GMM. For TIMIT, the error rates are closef N = 692 genuine speaker trials ad(N —1)/2 = 239086
to zero, and for NIST they are around 17-19 %. impostor trials. The speaker model size was set to 128 for
« The speed-up factor of PQ increases with the model siketh VQ and GMM based on the identification results, and
as expected. Relative speed-up is higher for GMM thdhe PQ codebook size for the FCS method was set to 32 after
for VQ. Improvement of the pruning, on the other handyreliminary experiments. In both normalization methods, the
depends much less on the model size. client score is divided by the average cohort score. In the case
« With TIMIT, PQP doubles the speed-up relative to PQuf VQ, models are scored using the quantization distortion,
With NIST, on the other hand, the PQP is not successf@nd in the case of GMM, the log likelihood.
« The best speed-up factor for NIST with VQ is 16:1 We consider the following methods:
increasing the error rate from 17.34 % to 18.20 %. For 4 No normalization
GMM, the corresponding speed-up factor is 34:1 with the . Closest impostors to the test sequence
increase of the error rate from 16.90 % to 18.50 %. « Fast cohort scoring (FCS)
In general, we conclude that the results obtained with
TIMIT hold also for NIST although there are differences 10.25 g
between the corpora. More importantly, the studied algorithms

generalize to GMM-based modeling. In fact, the speed-up 9.75 - —o— GMM unnormalized
factors are better for GMM than for VQ on the NIST corpus. :gmmggfi Impostors
The optimized systems are close to each other both in time 3 9.25 - ——VQ unnormalized

and accuracy, and we cannot state that one of the models -+ - VQ closest impostors
would be better than the other in terms of time/error trade-off. I © VQFCS

The ease of implementation, however, makes the VQ approach
more attractive. In fact, prototype implementation for Symbian
series 60 operating system for mobile devices is currently in
progress.

The combination of PQ and GMM gives a good time-

Equal error rate (%)

accuracy trade-off, which is consistent with the verification 7.25 +—+—1+——1T T T
experiments carried out by McLaughlin & al. [18]. They TNOSTLOr®eg 4NN RgES3R
noticed that the test sequence could be decimated up to factor Cohort size

20:1 with minor effect on the verification performance. The\#/_ ) o _
found out that the fixed decimation (evefjth vector) gave Si'?é sli'lstgf[Ci %fz;h(?\lfso%ort size using different scoring methods (model
the best performance. However, as we can see from the Fig.

7, the clustering based pre-quantization performs better. Thisrha cohort size is varied fronk = 1 to K — 20. The

explains partially why we obtained a better speed-up (UP &3] error rates of the normalization methods are shown in

34:1). Fig. 14, along with the unnormalized case as a reference. We
] o observe an decreasing trend in EER with increasing cohort
E. Fast Cohort Scoring for Verification size for both normalization methods and for both modeling
The proposed cohort normalization method (FCS) was stugchniques. GMM gives better results for both normalization
ied next on the NIST corpus. We used the same subset for veniethods. More interestingly, the proposed method (FCS) out-
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TABLE Il
SUMMARY OF THE BEST RESULTS ON THETIMIT CORPUS

Vector quantization (VQ) Gaussian mixture model (GMM)

Setup Model | Error Time (s) | Speed-up| Model | Error Time (s) | Speed-up

size rate (%) factor size rate (%) factor
Baseline | 64 0.32 2.07 1:1 8 0.95 0.93 1:1
PQ 0.64 0.48 4:1 0.95 0.49 2:1
Pruning 0.48 0.43 5:1 1.11 0.21 4:1
PQP 0.32 0.27 8:1 0.95 0.21 4:1
Baseline | 128 0.00 4.14 11 16 0.16 1.77 1:1
PQ 0.64 0.59 71 0.48 0.77 2:1
Pruning 0.00 1.88 2:1 0.16 0.92 2:1
PQP 0.00 0.31 13:1 0.16 0.18 10:1
Baseline | 256 0.00 8.21 1:1 32 0.32 3.47 11
PQ 0.64 1.18 7:1 0.32 0.72 5:1
Pruning 0.00 3.28 311 0.32 1.80 2:1
PQP 0.00 0.65 13:1 0.32 0.40 9:1

TABLE IV

SUMMARY OF THE BEST RESULTS ON THENIST 1999CORPUS

Vector quantization (VQ) Gaussian mixture model (GMM)

Setup Model | Error Time (s) | Speed-up| Model | Error Time (s) | Speed-up

size rate (%) factor size rate (%) factor
Baseline | 64 18.06 2.92 1:1 64 17.34 9.58 1:1
PQ 18.20 0.62 5:1 18.79 0.73 13:1
Pruning 19.22 0.48 6:1 19.36 0.82 12:1
PQP 18.06 0.50 6:1 17.34 0.94 10:1
Baseline | 128 17.78 5.80 11 128 17.05 18.90 1:1
PQ 18.93 0.64 9:1 18.20 0.84 23:1
Pruning 18.49 0.86 7:1 17.34 2.88 7:1
PQP 17.78 0.67 9:1 17.63 1.34 14:1
Baseline | 256 17.34 11.40 1:1 256 16.90 37.93 1:1
PQ 18.20 0.70 16:1 18.50 111 34:1
Pruning 17.49 1.46 8:1 17.48 5.78 7:1
PQP 17.49 0.90 13:1 18.06 2.34 16:1

performs the method of closest impostors even though orifctors of the identification time are the number of test vectors
the quantized test sequence is used for scoring. This resant the number of speakers. We used silence detection and
supports the claim that redundancy in the test sequence shqurietquantization for the reduction of the vectors, and speaker
be removed. The result also indicates that the assumption 4dining for the reduction of the speakers. A VPT tree was
holds in practise. applied for speeding up the nearest neighbor search from the
Table V summarizes the performances of the two scospeaker codebook.
normalization methods. The speed-up factor is relative to theWe used the TIMIT corpus for tuning the parameters, and
closest impostors method. The proposed method speeds upwilated the results using the NIST-1999 speaker recognition
verification by a factor of 23:1 and it also decreases the ermvaluation corpus. With TIMIT, a speed-up factor of 13:1 was
rate at the same time. The equal error rates are relatively higthieved without degradation in the identification accuracy.
in general, which is because of a simple acoustic front-end. Wiéith NIST, a speed-up factor of 16:1 was achieved with a
did not apply either delta processing nor channel compensatsmall degradation in the accuracy (17.34 % vs. 18.20 %).
methods such as cepstral mean subtraction. We demonstrated that the methods formulated for VQ
modeling generalize to GMM modeling. With TIMIT, a speed-
up factor of 10:1 was achieved. With NIST, a speed-up factor
of 34:1 was achieved with a small degradation (16.90 % vs.
18.50 %) in the accuracy.

TABLE V
SUMMARY OF THE COHORT SELECTION METHODY COHORT SIZE= 20;
MODEL SIZES= 128; M = 32) (NIST).

Method | Model | EER (%) | Avg. verif. | Speed-up We also applied pre-quantization for efficient cohort normal-
time (s) factor ization in speaker verification. The proposed method turned
Closest | VQ 7.80 5.79 11 out to be both faster and more accurate than the commonly
Impostors S(’\QAM ;'ié (1)8624 éfi used method of closest impostors. An EER of 6.94 % was
GMM | 6.94 0.84 231 reached in average verification time of 0.84 seconds when the

length of test utterance is 30.4 seconds, with a speed-up of
23:1 compared to the widely used closest impostors method.
VII. CONCLUSIONS Regarding the selection between pre-quantization and prun-

A real-time speaker identification system based on vectiog methods, the former seems more attractive in the light of
guantization (VQ) has been proposed. The most dominatitite experimental results on the NIST corpus, and the findings
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reported in [18]. Clustering can be effectively applied fop1] A. Glaeser and F. Bimbot. Steps toward the integration of speaker
removing redundancy from the test sequence with small or recognition in real-world telecom applications. Rroc. Int. Conf. on

. . . . . Spoken Language Processing (ICSLP 1 ney, Australia, 1998.
no degradation in the accuracy. A possible future dlrecthpz] H?S_M. Beiggi sg.H. Maes ?é Sorenii?dan}(; U.V.Chaudhari.

could be towards developing more adaptive pre-quantization hierarchical approach to large-scale speaker recognition. Prot.
methods (a|| pre-quantization methods studied here assume 6th European Conference on Speech Communication and Technology
ither fixed buffer or codebook size) (Eurospeech 1999pages 2203-2206, Budapest, Hungary, 1999.
e . ) : [13] S. Furui.Digital Speech Processing, Synthesis, and Recognititarcel
In this paper we restricted the study of the GMM to the ~ Dekker, Inc., New York, second edition, 2001.

baseline ML method. However, it is expected that the studiéd] D.A. Reynolds and R.C. Rose. Robust text-independent speaker identi-

- fication using gaussian mixture speaker modEt&EE Trans. on Speech
methods generalize to the UBM/GMM framework [15] and ") Processings:72-83, 1995,

further speedups are possible by combining UBM/GMM witfys] p.A. Reynolds, T.F. Quatieri, and R.B. Dunn. Speaker verification using
pre-quantization and speaker pruning. It is also possible to use adapted gaussian mixture modeligital Signal Processing10(1):19-

. . . : 41, 2000.
UBM idea in the VQ context in the same way by generating B. Sun, W. Liu, and Q. Zhong. Hierarchical speaker identification

large speaker-independent codebook and adapting the speaker-ysing speaker clustering. Froc. International Conference on Natural
dependent codebooks from it. Language Processing and Knowledge Engineering 2p88es 299-304,
Finally, it must be noted that the acoustic front-end wag‘ﬂ Beijing, China, 2003.
t

. . . . . R. Auckenthaler and J.S. Mason. Gaussian selection applied to text-
fixed to MFCC processing in this study, and it seems th independent speaker verification. Proc. Speaker Odyssey: the Speaker

further speed optimization with these features is difficult. Recognition Workshop (Odyssey 2Q0fjpges 83-88, Crete, Greece,

A possible future direction could be to use multiparametric_ 2901 _ .
P P ﬁg] J.McLaughlin, D.A. Reynolds, and T. Gleason. A study of computation

classification: a rough estimate of the speaker class collt’ speed-ups of the GMM-UBM speaker recognition system. Phoc.
be based on pitch features, and the matching could then be 6th European Conference on Speech Communication and Technology
refined using spectral features. Alternatively, one could u§]f%] (Eurospeech 1999pages 1215-1218, Budapest, Hungary, 1999.

initially hiah-di . | f h bi . B.L. Pellom and J.H.L. Hansen. An efficient scoring algorithm for
initially high-dimensional teatures, such as a combination gaussian mixture model based speaker identificatidEEE Signal

cepstrum, delta-parameters, FO features and voicing informa- Processing Letters5(11):281-284, 1998.
tion, followed by a mapping into a low-dimensional spac®0! B. Xiang and T. Berger. Efficient text-independent speaker verification

bv linear discriminant analvsis (LDA) rincipal component with structural gaussian m_ixture moc_tiels and neural netwolkEE
y y » P p p Trans. on Speech and Audio Processih:447—-456, September 2003.

analysis (PCA), or neural networks. In this way, probably morggi] M. Liu, E. Chang, and B. q. Dai. Hierarchical gaussian mixture model

discriminative low-dimensional features could be derived. for speaker verification. —IrProc. Int. Conf. on Spoken Language
Processing (ICSLP 2002pages 1353-1356, Denver, Colorado, USA,
2002.
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