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Abstract

In this paper we study the performance of the lanance multi-taper Mel-frequency
cepstral coefficient (MFCC) and perceptual linegadiction (PLP) features in a state-of-
the-art i-vector speaker verification system. TheQWL and PLP features are usually
computed from a Hamming-windowed periodogram spettestimate. Such single-
tapered spectrum estimate has large variance, which carredaced by averaging
spectral estimates obtained using a set of diffetegpers, leading to a so-calledlti-
taper spectral estimate. The multi-taper spectrum estimamethod has proven to be
powerful especially when the spectrum of interest b large dynamic range or varies
rapidly. Multi-taper MFCC features were also rdbestudied in speaker verification
with promising preliminary results. In this studyroprimary goal is to validate those
findings using an up-to-date i-vector classifier thie latest NIST 2010 SRE data. In
addition, we also propose to compute robust peve¢finear prediction (PLP) features
using multitapers. Furthermore, we provide a detbdomparison between different taper
weight selections in the Thomson multi-taper methodthe context of speaker
verification. Speaker verification results on tleéephone (det5) and microphone speech
(detl, det2, det3 and det4) of the latest NIST 28RE corpus indicate that the multi-
taper methods outperform the conventional perioglogtechnique. Instead of simply
averaging (using uniform weights) the individuaéspal estimates in forming the multi-
taper estimate, weighted averaging (using non-tmifaveights) improves performance.
Compared to the MFCC and PLP baseline systemsjrigaveighted cepstrum estimator



(SWCE) based multitaper method provides averagaivel reductions of 12.3% and
7.5% in equal error rate, respectively. For timalti-peak multi-taper method, the
corresponding reductions are 12.6% and 11.6%, césphy. Finally, theThomson multi-
taper method provides error reductions of 9.5% 2986 in EER for MFCC and PLP
features, respectively. We conclude that both the&CK and PLP features computed via

multitapers provide systematic improvements in gation accuracy.

Keywords. Speaker verification, Multi-taper spectrum, Featextraction, i-vectors,
MFCC, PLP

1. Introduction

Useful information extraction from speech has basubject of active research for many
decades. Feature extraction foont-end) is the first step in an automatic speaker or
speech recognition system. It transforms the rawustic signal into a compact
representation. Since feature extraction is th& 8tep in the chain, the quality of the
subsequent steps (modeling and classificationpglyaddepends on it. Theel-frequency
cepstral coefficient (MFCC) [1] andperceptual linear prediction (PLP) [21] front-ends
have been dominantly used in speech and speakegméon systems and they
demonstrate good performance in both applicationfie MFCC and PLP
parameterization techniques aim at computing tleedp parameters similar to the way
how a human hears and perceives sounds [1]. Siese features are computed from an
estimated spectrum, it is crucial that this estemataccurate. Usually, the spectrum is
estimated using aindowed periodogram [16] via the discrete Fourier transformation
(DFT) algorithm. Despite having low bias, a cons=wpe of the data tapering
(windowing) is increased estimator variance. Theef MFCC or PLP features
computed from this estimated spectrum have alsb Wggiance. One elegant technique
for reducing the spectral variance is to replas@ralowed periodogram estimate with a
multi-taper spectrum estimate [8, 9, 10].

In the multi-taper spectral estimation method, teo§@rthogonal tapers is applied
to the short-time speech signal and the resultregtsal estimates are averaged (possible
with nonuniform weights), which reduces the spéataaiance. As each taper in a multi-

taper technique is pairwise orthogonal to all thkep tapers, the windowed signals



provide statistically independent estimates of wheerlying spectrum. The multi-taper
method has been widely used in geophysical apmitatand, in multiple cases, it has
been shown to outperform the windowed periodogriarhas also been used in speech
enhancement applications [2] and, recently, in lspeaecognition [3, 8, 32, 36] with
promising preliminary results. The preliminary expeents of [3, 8] were reported on the
NIST 2002 and 2006 SRE corpora using a lightwe@gissian mixture model-universal
background model (GMM-UBM) system [17] and geneedi linear discriminant
sequence support vector machine (GLDS-SVM) with@uty session variability
compensation techniqueghe recent results of [36], using multi-taper MF@atures
only, were reported on NIST 2002 and 2008 SRE carpsing GMM-UBM, GMM-
SVM andjoint factor analysis (JFA) [38, 39] classifiers.

In this paper, our aims are, firstly, to study wiegtthe improvements obtained
using multi-taper MFCC features in [3, 8, 36] tlats to a state-of-the-art speaker
verification task. Secondly, we propose to use irtafter PLP features in aRvector
speaker verification system as we have found tieperformance of PLP features (HTK
version of PLP, also denoted as revised PLP (RRLA37]) can outperform MFCC
accuracy in speaker verification, and thirdly, weovyide a comparison of the
performance of using uniform average versus wedjlaeerage to get the final multi-
taper spectral estimate in a Thomson multi-tapethate in the context of speaker
verification. Proper selection of weights is an artant design issue in multi-taper
spectrum estimation. Even though [3, 8, 32, 36kmsively compare different types of
taper windows, their weight selection wagt addressed. Therefore, in this work, we
provide detailed comparison between different taperght selections in the popular
Thomson multi-taper method. The recent i-vector ehgd, 5, 6] includes elegant inter-
session variability compensation, with demonstrageghificant improvements on the
recent NIST speaker recognition evaluation corp8iace i-vectors already do a good
job in compensating for variabilities in the spaakeodel space, one may argue that
improvements in the front-end may not translatdéofull recognition system. This is the
guestion which we address in this paper. In theergents, we use the latest NIST 2010
SRE benchmark data with the state-of-the-art ieeconfiguration. To this end, we

utilize a completely gender independent i-vectstaymn based on mixtungrobabilistic



linear discriminant analysis (PLDA) model of [6]. In this paper, similar to [Bjve also
use a gender independent i-vector extractor and fiwen a mixture PLDA model by
training and combining two gender dependent moddigre the gender label is treated

as a latent (or hidden) variable.

2. Multi-taper Spectrum Estimation

A windowed direct spectrum estimator is the moggrofused power spectrum estimation
method in speech processing applications. Fomtitieframe andkth frequency bin an
estimate of the windowed periodogram can be expdess:

. N _27ik |2

Sd(m,k)=;w(j)s(m,j)e N (1)

where kD{O,l,...,K—} denotes the frequency bin indeXis the frame length,

s(m, j)is the time domain speech signal and j)denotes the time domain window
function, also known asaper. The taper, such as the Hamming window, is usually
symmetric and decreases towards the frame bousdd&g (1) is sometimes called
single-taper, modified or windowed periodogram. If w(j) is a rectangular or uniform
taper, Eg. (1) is called@eriodogram. Fig. 1 presents time- and frequency-domain plot o

the Hamming window.
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Figure 1. Hamming window foilN = 256, in (a) time domain, (b) frequency domain.



Windowing reduces the bias, i.e., expected valudefdifference between the estimated
spectrum and the actual spectrum, but it does edhtice the variance of the spectral
estimate [7] and therefore, the variance of the KdFféatures computed from this
estimated spectrum remains large. One way to rethecgariance of the MFCC or PLP
estimator is to replace the windowed periodogratimase by a so-callednulti-taper

spectrum estimate [8, 9, 10]. It is given by
N M N-1 27k |?
S k) =2 A(p) 2w, (i)s(m.j)e * |, &y
p=1 j=0
where N is the frame length aney,is thepth data taper p=1,2,...,M ) used for the
spectral estimateém([ﬂ, also known as thpth eigenspectrum. Finally, m denotes the
number of tapers and( p) is the weight of theth taper. The tapers, (j) are typically

chosen to be orthonormal so that, forpadindg,

ijp(j)wq(j)zé_pq:{l’ P=q

0, otherwise
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Figure 2. Block diagram of multi-taper spectrum estimatiortimoel.



The multi-taper spectrum estimate is therefore inbth as the weighted average of

M individual sub-spectra. Eq. (1) can be obtainedhaspecial case of Eq. (2) when

p=M =1 and A(p)=1. Fig. 2 illustrates the multi-taper spectrum estioraprocess

usingM = 6 tapers.

The idea behind multi-tapering is to reduce theavee of the spectral estimates by
averagingM direct spectral estimates, each with a differeta daper. If allM tapers are
pairwise orthogonal and properly designed to preleskage, the resulting multi-taper
estimates outperform the windowed periodogram imse of reduced variance,
specifically, when the spectrum of interest hashhignamic range or rapid variations
[29]. Therefore, the variance of the MFCC and PeRtdres computed via this multi-
taper spectral estimate will be low as well. Thelenying detail of the multi-taper
method is similar to Welch’s modified periodograny, [it, however, focuses only on one
frame rather than forming a time-averaged spectatimate over multiple frames. In
the multi-taper method, only the first of the dépering windows has the traditional
shape. The spectra from the different tapers dgraxtuce a common central peak for a
harmonic component. Only the first taper produceseatral peak at the harmonic
frequency of the component. The other tapers pm@dypectral peaks that are shifted
slightly up and down in frequency. Each of the g@econtributes to an overall spectral
envelope for each component. The so-cafieghian tapers that underlie the Thomson
multi-taper method [9] are illustrated in Fig. 3 fd = 6 both in time and frequency

domains.
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Figure 3. Thomson multi-tapers fo¥ = 256,M = 6 in (a) time and (b) frequency

domains.

2.1 Choice of the Tapersand the Taper Weights

The choice of taper has a significant effect on tésultant spectrum estimate. The
objective of the taper is to prevent energy ataghisirequencies from biasing the estimate
at the frequency of interest. Based on the Slepagers (also callediscrete prolate
spheroidal sequence, DPSS) [19] and theine tapers [10], various multi-taper methods
have been proposed in the literature for spectratimation, such as Thomson multi-
taper [9], SWCE (sinusoidal weighted cepstrum estim) multi-taper [11] and Multi-

peak multi-taper [12]. For completeness, we briedlyiew each method in the following.

Thomson multi-taper method: In the Thomson multi-taper method of spectrunmestion
[9], a set ofm orthonormal data tapers with good leakage propeisispecified from the
Sepian sequences [19]. Slepian sequences are defined as the re@lenergy sequences
on [0, N — 1] having the greatest energy in a bandwlithSlepian tapers can be shown
to be the solutions to the following eigenvalueljpem,

AW =W, 3)
where 0sn<N-1, 0<j<N-1, Ais a real symmetric matrix)Q<v® <1 is thepth

eigenvalue corresponding to tipgh eigenvectorw” known as the Slepian taper. The



sin27N (n—j)

- ,where W is the half-
mmn-j)

elements of the matrikare given bya; =

frequency bandwidth (or one sided bandwidth).

Slepian sequences (or DPSS), proposed originall¥9h were chosen as tapers in [9] as
these tapers are mutually orthonormal and possessatile spectral concentration
properties (i.e., they have highest concentratioanergy in the user-defined frequency
interval (W, W)). The first taper in the set of Slepian sequengekesigned to produce a
direct spectral estimator with minimum broadbanashibias caused by leakage via the
sidelobes). The higher order tapers ensure minimbroadband bias whilst being
orthogonal to all of the lower order tapers. Thestfiaper, resembling a conventional
taper such as Hanning window, gives more weigthéocenter of the signal than to its

ends. Tapers for largegive increasingly more weight to the ends of tlgmal. There is

no loss of information at the extremes of the digna

In the experiments of [3, 8, 36], uniform weighteres applied to obtain the final

Thomson multi-taper estimate. That/lsé,p):llM. Even though [3, 8, 36] reported

increased speaker verification accuracy when taedsird windowed periodogram was
replaced by the Thomson multi-taper, the questiowaight selection in the Thomson
method was not addressed. We hypothesize that n#icomgaccuracy might be further
increased by allowing non-uniform weighting in ti@omson method. In order to
compensate for the increased energy loss at haylder tapers the uniform weights can

be replaced with the weights corresponding to eithe eigenvalues of the Slepian

p
tapers, i.e.A(p) =v’or, alternatively, adaptive weights obtainedEsp)=1/> v [9,
g=1

20]. The different weighting schemes used in the Thomsuwilti-taper method are
illustrated in Fig. 5 foM=6 tapers including the weights used in the mudtdp[12] and
the SWCE [11methods.

SWCE multi-taper: The Thomson multi-taper method requires solvimgeigenvalue

problem of Eq. (3) and does not have a closed-expression for the tapers. A simpler



set of orthonormal tapers that has such a closed-&xpression is the set of tlsae

tapers (see Fig. 4(c)) given by [10]:

. 2 . j+1 .
WP(J):w/NJrlS'”(ﬂF:\I(LZ )J j=0,1,..N- . (4)

The sine tapers achieve a smaller local bias (ihe Hue to the smoothing by the

mainlobe) than the Slepian tapers at the expense&elfobe suppression [10, 29]. The
first taper in the set ofine tapers produces a direct spectral estimator withinnum
local bias and the higher order tapers ensure mimrocal bias whilst being orthogonal
to all of the lower order tapers.

In the SWCE method [11], thane tapers are applied with optimal weighting for
cepstrum analysis. The weights used in the SWCHEawodgfsee Fig. 5) have the following

closed-form expression [11]:

CO{ZH(p—l)}_ L
A(p)= M/2 L p=12,.M. 5)

({2

Multi-peak multi-taper: In [12], a multi-taper method, dubbed @k matched multiple

windows (PMMW), was proposed for peaked spectra to olddtainbias at the frequency
peak as well as low variance of the spectral eséintdere, similar to [3], we denote this
method as thenulti-peak method and the tapers (or windows) as the mulikgapers.
The multi-peak tapers are obtained as the solutbnthe following generalized
eigenvalue problem:

Rgw, =V,R,w;, ] =1,2,....N, (6)
where R, is the (N x N) Toeplitz covariance matrix of the assumed spectnodel
defined by [12]:

__2d|f|

Sf)-ew%@|ﬂssm
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with C=20 dBand a predetermined interval of widtB outside of which spectral

leakage is to be preventeR,, is the Toeplitz covariance matrix, chosen for dasiegy

the leakage from the sidelobes of the tapers,efdhowing frequency penalty function:

(f)= G |f[>B'/2
=171, [f|l<B'/2’

where G =30 dB[12]. The eigenvectors corresponding to NMhéargest eigenvalues of
(6) are used as multi-peak tapers for the multkpeathod and the weights for the tapers
can be found from th& largest eigenvalues of (6) as:

VP
A=t p=12,.M.

2V

p=1

Six multi-peak tapers and the weights correspontiinthese tapers are shown in Figs.
4(b) and 5, respectively.
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Figure4. (a) Six Slepian tapers in the Thomson method, (djirpeak tapers in the
multi-peak method, and (e)ne tapers for SWCE method, fbr= 256.
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Figure5. Weights used in multi-taper spectrum estimatiothogs for six tapers.

2.2 Variance Reduction by Multitapering

The use of multiple orthogonal windows can haveessvadvantages over the use of any
single window [25-29]. In particular, the energyao$ingle band-limited window always
non-uniformly covers the desired concentrationaegivhich results in some data being
statistically over- or underrepresented when fogmihe spectral estimate [27-28]. In
contrast, the cumulative energy of the multiplehogonal windows more uniformly
covers the concentration region. Since the speesdmates that result from using
orthogonal tapers are uncorrelated, a multi-taperamge (or weighted average) of these
possesses a smaller estimation variance thanrgkegapered spectrum estimates.

The variance of an estima@measures how much variability an estimator hasratdts

mean (i.e., expected) value and is defined asj[z, 4

var(é) = E[(é— E[é])z} ,

where E[[]]is the expectation operator. A 'good' estimatamis that makes some suitable

trade-off between low bias and low variance.
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A multi-taper spectrum estimator is somewhat simitaaveraging the spectra from a
variety of conventional tapers such as Hammingtadn tapers. But in this case, there
will be strong redundancy as the different tapeesheghly correlated (all the tapers have
a common time-domain shape). Unlike conventionpéits, theM orthonormal tapers

used in a multi-taper spectrum estimator prowid#atistically independent (hence

uncorrelated) estimates of the underlying spectrubhe weighted average of

them individual spectral estimateS,; (m k)then has smaller variance than the single-

tapered spectrum estimateéd(m,k) by a factor that approache%, ie.,

var(éNIT (m,k)) = ﬁ var(éd (m ,k)) [29].
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Figure 6: (a) Speech signal, (b) estimated spectrum by itigtestaper (Hamming) and
the multi-taper methods. Sampling frequency is Hg kframe length 25 msec and
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The reduction in the variance of the spectrum @idis between using single taper (e.g.,
Hamming window) and multi-taper methods is illustthin Fig. 6. Spectral variance
reduction using multi-taper methods has been adéddeby many researchers, including
in [7-12, 20, 25-29]. The objective of our papertas apply multi-taper methods to
compute MFCC and PLP features for speaker vend@natising i-vectors and compare

their performance with the Hamming window-basedebas MFCC and PLP systems.

3. Multi-taper MFCC and PL P Feature Extraction

The two most widely used forms of speech paranzstions are the mel-frequency
cepstral coefficients (MFCCs) [1] and the perceplin@ar prediction (PLP) coefficients
[21]. Figures 7 and 8 present the generalized btbagrams of MFCC and PLP feature
extraction processes, respectively. MFCC extractegins with pre-processing (DC

removal and pre-emphasis using a first-order higgspfilter with transfer function
H(2) =1-0.97*z"). Short-time Fourier transform (STFT) analysisthien carried out

using a single taper (e.g., Hamming) or multi-tapechnique, and triangular Mel-
frequency integration is performed for auditory cpel analysis. The logarithmic
nonlinearity stage follows, and the final statiatiges are obtained through the use of
discrete cosine transform (DCT).

PLP processing, which is similar to MFCC processingome ways, begins with STFT
analysis followed by critical-band integration ugitrapezoidal frequency-weighting
functions. In contrast to MFCC, pre-emphasis idquared based on an equal-loudness
curve after frequency integration. The nonlinearityPLP is based on the power-law
nonlinearity proposed in [21]. After this stagevense discrete Fourier transform (IDFT)
is used for obtaining a perceptual autocorrelasiequence following the linear prediction
(LP) analysis. Cepstral recursion is also usupdyformed to obtain the final features
from the LP coefficients [22]. Here, for PLP feauwxtraction, we follow HTK-based
processing [23], in which, for auditory frequencyabysis, a Mel filterbank is used

instead of a trapezoidal-shaped bark filterbank.
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Figure 7. Generalized block diagram for the single taper amdti-taper spectrum estimation-
based MFCC feature extraction.
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Figure 8: Generalized block diagram for the single taper amdti-taper spectrum
estimation-based PLP feature extraction.
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After extracting the static MFCC or PLP featurasgraented with the log energy of the
frame, the delta and double delta features are atedpusing the following regression
formula:

Liag
> d(c(m+qt)-c(m-q,t))
Ac(mt) =+ = , (7)

wherem is the frame index is the cepstral index,,,, represents the window lag size,

and c(m,t)is the tth cepstral coefficient of thenth frame. Nonspeech frames are

removed using our voice activity detector (VAD) d#b For telephone speech, the VAD
labels are produced by a Hungarian phoneme recag{83, 34] and for microphone
speech, VAD labels are generated using a GMM-b&#dd by training one GMM for
nonspeech and another one for speech [36hl features are obtained after appending
the delta and double delta features and normaligheg features using a short-time
Gaussianization (STG) method [24, 40].

There is a limit to the number of tapers that canused in multi-taper spectrum
analysis for the computation of the MFCC or PLRUess. Specifically, spectral leakage

increases with each taper in the sequence. Forealtandwidth produdbp = 2NW from

3 to 5, a usual range for the number of tapdrs 2 is from 4 to 16, wherd\ is the
taper length andV is the design interval expressed\l@s(M+1)/2(N+1). The optimal

number of tapers for our recognition task is fouted beM,, =6. Since speech

recognition and speaker recognition systems shianiéas front-ends, we first determined
the optimum number of tapers for speech recognitiprdoing a series of recognition

experiments by ranginiyl from 4 to 10 [30] and applying the optimum valud (, =6)

to the speaker verification task. Interestinglythe recent extensive speaker verification
experiments on NIST 2002 and NIST 2008 corpora gisihree independently
constructed speaker verification systdi®§, the optimum range fdvl was found to be

3 <M < 8 with a recommended value =6. Therefore, in this study we fM=6 and
focus on studying the i-vector recognizer accuracyoss the multiple conditions
available in the NIST 2010 SRE data.
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4. Speaker Verification using i-vector Framewor k

Given two recordings of speech in a speaker detedtial, each assumed to have been
uttered by a single speaker, are both speech ntesgroduced by the same speaker or
by two different speakers? Speaker verificatiorthes implementation of this detection
task. Speaker detection provides a scalar valuedhnsaore for each trial, where a large
score favors the target hypothesis (i.e., samekepég/pothesis) and a small score favors
the non-target hypothesis (i.e., different speakgpothesis). In the NIST speaker
recognition evaluations (SRES), non-target trialsynbe male, female, or mixed but
target trials, by definition, cannot have mixed den Real world deployment of a gender
dependent speaker recognition system is not stfarglard and typically involves
making a premature hard-decision based on a geledector output. Recently, in [6], an
i-vector system based on probabilistic linear dinstrant analysis (PLDA) is introduced,
where a mixture of gender-dependent models (i.enake PLDA model and a female
PLDA model) is used to compute the likelihood ratmres for speaker verification. This
system avoids the need for explicit gender detectidere, we adopt this gender-
independent speaker recognition system for thekepeserification experiments. An i-
vector speaker verification system consists of ghsteps, extraction of i-vectors,
generative PLDA modeling of the i-vectors and, findikelihood ratio computation (or

scoring). We review these shortly in the following.
4.1 Extraction of i-vectors

I-vector extractors have become the state-of-théeahnique in the speaker verification
field. An i-vector extractor represents entire gfresegments as low-dimensional feature
vectors called i-vectors [4, 5, 14]. The i-vectottractors studied in [4, 5, 14] are -
according to long traditions in speaker verificatioesearch following NIST SRE
evaluation protocol - gender-dependent and theyfaltewed by gender-dependent
generative modeling stages. In this paper, howevenise a gendendependent i-vector
extractor, as shown in Fig. 9, trained on both opbone and telephone speech. The
universal background model (UBM) used in this iteecextractor is also gender-
independent. The advantage of a gender-indepesgstdam is simplified system design

as separate female and male detectors do not odsel ¢onstructed. In order to handle

16



telephone as well as microphone speech, the dimemdithe i-vectors is reduced from
800 to 200 using ordinary linear discriminant asay(LDA). The purpose of applying
length normalization is to Gaussianize the distrdyu of the i-vectors so that a simple
Gaussian PLDA model can be used instead of theyias#ed PLDA model [13], i.e.,
PLDA models with heavy-tailed prior distributionS][ A heavy-tailed PLDA is 2 to 3
times slower than the Gaussian PLDA.

| Number of Gaussians |

¥

Faatires P | i-vector dimension (D) |
" Training
| Feature dimension |
UBM l
Y
Baum-Welch
Statistics |, Trainingof L | Numberof
Extraction i-vector Extractor
l ¥
Estimation of Extraction of Length
Projection > jwvector | | MNermalization
Matrix (LDA )
’ i-vectors i Normalized

i-vectors
Reduced dimension

(D)

Figure 9: Gender-independent i-vector extractor.

4.2 Generative PLDA Modd for i-Vectors

In a generative PLDA model, the i-vectors, dendigd, are assumed to be distributed
according to [5]:

i =Vy+m+e, 8)
where thespeaker variable, y is Gaussian distributed and its value is commoralto
segments of a given speaker,is the mean vectol is a fixed hyper-parameter matrix
and ¢ is the residual assumed to be Gaussian. Usoally and the residual covariance
matrix are taken to be gender-dependent, which pmal for NIST conditions.
Probability calculations with this model involveGaussian integral that can be evaluated
in closed form [5].
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4.3 Likelihood Ratio Computation

In a speaker verification task, given a pair ofa'c—torsz=(i1,i2), the likelihood ratio is
computed as:
P(zH,) _ P(7H,)
P(zH,) P(i)P(i.)’

where the target hypothesisindicates that botl and i,share the same speaker variable

(9)

y(i.e., y, = Y,) and the non-target hypothesis indicates that-tteetors were generated
from different speaker variabley,and y,. Because ii and p can be considered

independent under the non-target hypothklgisP(z|Hy) factorizes a$(i1)P(iz). In this
work, we use a gender-independent likelihood redimputation framework as described
in [6].

5. Experiments
5.1 Experimental Setup

We conducted experiments on the trial lists from éRtendedore-core condition of the
NIST 2010 speaker recognition evaluation (SRE) esrgo evaluate the performance of
our speaker recognition systems we used the fatigwavaluation metrics: equal error
rate (EER), and the new normalized minimum deteatiost function (minDCfy). EER
corresponds to the operating point with equal nassl false alarm rates whereas
minDCFewcorrespond to the evaluation metrics for the NISRES2010 protocols. The
normalized detection cost functi@CF,, used to measure the performance of a speaker

recognition system for application specific costd ariors, is defined as:

boF = cMi$P(Mi$|Targ§t) Prage * CeaP (FA| Non-target)(1- P, ) ’ (10)
mln{CMm I:%'a.rgel ’CFAPNon-lafgel}

where C,,.and C_, represent the costs of miss and false alarm, césph.

Miss

Further P, and P, iae =1~ Py @re the prior probabilities of the target and non-
target trial, respectively. For NIST 2010 SRE, cosatlues C, =C., =1 and
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P =0.001are used. The normalized minimum detection casttfan (MiNDCFRey) is

the minimum ofDCF, over the threshold that determinB$FA) and P(Miss).

Therelative improvement (Rl ) in performance (either EE&®t minDCFRe,) of the multi-
taper systems over the corresponding baselinemsystealculated as,:
RI :MHOO%, (11)
aseline
where R _.and R,, represent, respectively, the results of the baseind the multi-

taper systems.

Based on the single taper (e.g., Hamming window) awlti-taper MFCC and PLP
features, we developed four speaker verificatiogtesys as shown in Table 2. Our
baseline systems are based on the Hamming windM#&2IC and PLP features. For the
Thomson [9], Multi-peak [12] and SWCE [11] methods,mentioned in Table 2, MFCC
features are computed from the multi-taper spectestimates described in Section 2.
We report results on all of the principal sub-ctiotdis (telephone speech and
microphone speech) of the NIST 2010 SRE for thelbssand multi-taper systems.

5.1.1 FeatureExtraction

For our experiments, we use 20 static MFCC or Rédturres (including the log energy)
augmented with their delta and double delta caefiis, making 60-dimensional MFCC
(PLP) feature vectors. MFCC and PLP features atemeted following the procedures
shown in Figs. 6 and 7, respectively, with a frashét of 10 msec. Delta and double
features are calculated using a 5-frame window, @& frame lag) for the baseline and
the multi-taper systems. Nonspeech frames arergraonved using pre-computed VAD
labels using algorithms mentioned in sectior8r feature normalization, we apply the

short-time Gaussianization (STG) technique [24,64@r a 300-frame window.

5.1.2 Training the Universal Background Model (UBM)

We train a gender-independent, full covariance ensial background model
(UBM) with 2048-component Gaussian mixture mod@&@s1Ms) by pooling all training
features together. NIST SRE 2004 and 2005 teleptatee(420 female speakers and 307
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male speakers in 305 hours of speech) are usdrhining the UBM. Normally, to train a
gender-independent UBM by pooling all the trainithata, the pooled data should be
balanced over the subpopulations, i.e., male amal&s telephone and microphone. If the
pooled data are not balanced then the final modsl be biased towards the dominant
subpopulations [41].

In this work, our gender-independent UBM is traiffeaim NIST SRE 2004 and 2005
telephone data that include more female trials thrde. Therefore, the verification
results for female trials should be better thart tfathe male trials. But our obtained
results (for the baseline Hamming and multi-tapestesms) depict that the verification
results (in terms of EER, minDGk and minDCERey) for male trials are consistently
better than that for female trials, so the trait#8M is not biased towards the female
trials. It should be mentioned here that, in thagky the data used for training a gender-
independent i-vector extractor includes femalddria3 times of the male trials.

Training an UBM from a balanced set of female-malals or inclusion of
microphone data (NIST SRE 2005 microphone and/@TN\BRE 2006 microphone data)
with the telephone data for training UBM did notpheur system to improve recognition
performance but increased the UBM training timesterably. The possible reasons
why including microphone data to UBM or training &8M from a balanced set of
female-male trials did not help our systems couwdd fErstly, we have more telephone
data (approximately 10 times of microphone dataptthe microphone data for training
the i-vector extractor and consequently more i-wextrom telephone data than that from
microphone data for training the PLDA models. Ma@o to handle both the
microphone and telephone speech, we use ordimagrlidiscriminant analysis where the
between-class scatter matrix is estimated fronteddbhone training data and the within-
class scatter matrix is estimated using all teleghend microphone training, as described
in section 5.1.3, to reduce the dimensionality leé i-vectors from 800 to 200 [42].
Secondly, the ratio of female to male utterancethendatabase is approximately 1.3:1
and therefore, we have more i-vectors from fem#tlerances from training the PLDA

models.

20



Note also that, for the baseline Hamming and th#iftajper systems, we use same data
sets for training the UBM and other componentshaf system.. The only difference

between the baseline and multi-taper systemstiseiispectrum estimation method.

5.1.3 Training and Extraction of i-Vectors

A block diagram of the i-vector extractor used himstpaper is shown in Figure 9. Our
gender-independent i-vector extractor is of dimems800. After training the gender-
independent UBM, we train the i-vector extractongghe Baum-Welch (BW) statistics
extracted from the following data: LDC release wiit8hboard Il - phase 2 and phase 3,
Switchboard Cellular - part 1 and part 2, FisheéadsIST SRE 2004 and 2005 telephone
data, NIST SRE 2005 and 2006 microphone data arfsif N\BRE 2008 interview
development microphone data. Fisher data usedsmbrk are Fisher English. In order
to reduce the i-vector dimensionality, a linearcdiminant analysis (LDA) projection
matrix is estimated from the BW statistics by magzing the following objective
function:

B'z,B
B'z,B

w

B.pa =argma (12)
B

where Bis the LDA transformation matri¥, and %, represent the between- and within-
class scatter matrices, respectively. The optinaaaproblem in (8) is equivalent to
finding the eigenvectorg corresponding to the largest eigenvalyesf the following
generalized eigenvalue problem:

Zop =nZ,.9, (13)
For the estimation ok, we use all telephone training data excluding trehéi data and
2, is estimated using all telephone and microphoniaitig data excluding the Fisher

data. We choose only speakers with more than ftiaramces for the estimation of LDA
transformation matrix. Dimensionality reduction \LW®A helps to handle microphone
speech as well as telephone speech [42]. An optmediiced dimension of 200 is
determined empirically.

We then extract 200-dimensional i-vectors for eirting data excluding Fisher

data by applying this transformation matrix on 8@®-dimensional i-vectors. For the test
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data, first BW statistics and then 200-dimensionatctors are extracted following a
similar procedure using the same projection mate. also normalize the length (using

2-norm) of the i-vectors to gaussianize the i-vesthstribution[13].

5.1.4 Training the PLDA mode

We train two PLDA models, one for the males andtlagofor females. These models
were trained using all the telephone and microplicaiaing i-vectors; then we combine
these PLDA models to form a mixture of PLDA models-vector space as described in
[6]. For both of the models, the fixed hyper-partane/ is a full rank matrix of
dimension 200. For training the PLDA models we choose only speakéth more than

four utterances.

5.2 Results and Discussion
A. Use of uniform versus non-uniform weightsin multi-tapering

Usually, in a multi-taper spectrum estimation methite final spectrum is obtained by
averaging (using uniform weights,M) over theM tapered subspectra. In [3, 8], for the
Thomson multi-taper method, the individual speetere averaged to obtain the final
estimate. Only the first tapgp € 1) in the multi-taper method produces a cermealk at
the harmonic frequency of the component while tteiotapersd > 1) produce spectral
peaks that are shifted slightly up or down in freroey. The information lost at the
extremes of the first taper is included and indeghasized in the subsequent tapers. As
can be seen from Fig. 10, attenuation in the sitded decreases with each taper in the
sequence, i.e., spectral leakage increases fanigier-order tapers. If uniform weights
are applied to get the final spectrum estimate etiergy loss at higher-order tapers will
be high. In order to compensate for this increaseztgy loss, a weighed average (using
non-uniform weights) is used instead of simply agang the individual estimates. In [9],
the weights are changed adaptively to optimize lies/variance tradeoff of the
estimator. Figures 11 and 12 provide a comparigaheo multi-taper spectral estimates
when uniform & non-uniform weights are applied, pestively. Table 3 presents a
comparison of the use of uniform and non-uniformights (eigenvalue as the weight,

EVW) and adaptive weight (AW) computed from theesigalues) in the Thomson multi-
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taper method, in the context of speaker verificatibhe speaker verification results

suggest that non-uniform weights, specifically, dldaptive weights, should be preferred.
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Figure 10: Frequency domain plot of siM(= 6) Slepian taperq is the taper index.
Attenuation in the side-lobes decreases for highger tapers.
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B. Performance evaluation of Multi-taper MFCC and PLP features

To evaluate and compare the performance of theemsygstin Table 2, we conducted
experiments using both telephone and microphonectpen the extended core-core
condition of the NIST SRE 2010 task. The results egported for five evaluation

conditions corresponding to detection (det) condgil through 5, as shown in Table 1,

as specified in the evaluation plan [18].

Fig. 13 presents EERs for the Hamming (baselind)aalti-taper MFCC systems both
for the female and male trials. For all the MFCGédxhsystems, minDGE, is shown in
Fig. 14, for the male and female trials. In termmdoth metrics, EER, and minDGJ,
multi-taper MFCC systems outperform the baselineC@Fsystem. Compared to the
baseline (Hamming) MFCC system, average relatiygrovements (female-male, detl-

det5), as shown in Table 3, obtained by the mafiet systems are as follows:
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Table 1: Evaluation conditionsektended core-core) for the NIST 2010 SRE task.

Condition Task
detl Interview in training and test, same mic.
det2 Interview in training and test, different
mic.

Interview in training and normal vocal

det3 effort phone call over tel. channel in test.
Interview in training and normal vocal

det4 . o]
effort phone call over mic channel in test.

det5 Normal vocal effort phone call in training

and test, different tel.

Table 2. Single-taper and multi-taper MFCC and PLP feahased speaker verification
systems.

System Description
MFCC and PLP features are computed
from the Hamming windowed
spectrum estimate.

MFCC and PLP features are computed
SWCE | from the sinusoidal weighted (i.sine
tapered) spectrum estimate [11].
MFCC and PLP features are computed
Multi-peak | from the multi-taper spectrum estimate
using multi-peak tapering [12].
MFCC and PLP features are calculated
from the multi-taper spectrum
estimates with dpss tapering [9] and
adaptive weights

Hamming
(Baseline)

Thomson

Relative improvements of the SWCE MFCC system &%, and 9.7% in EER, and
mMinDCR.ew respectively. The multi-peak system provides tretaimprovements of
12.6%, and 15.4% in EER, and minDEk respectively. The corresponding

improvements for the Thomson’s method are 17.1%,14n9%.

Figures 15 and 16 present EER and minRgalues, respectively, for the
Hamming (baseline) and multi-taper PLP systems bmtlthe male and female trials. In
the case of female trials, all the multi-taper PdyBtems yield systematically less errors
in comparison to the baseline PLP in terms offrelévaluation measures. For male trials,
multipeak and SWCE PLP systems provide higher acguiin the first four det
conditions (1, 2, 3, 4). The results for the desfdition for both systems are close to the
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baseline. Compared to the baseline PLP, the ThorR&dhsystem also performs better

except in the det3 and det4 conditions in EERHerrhale trials.

Table 3: Comparison of Speaker verification results (EER @$ng a mixture PLDA
model for the Thomson multi-taper method when unifeveights (UW), Eigenvalues as
the weights (EVW) and adaptive weights (AW) areduse obtain the final spectrum
estimate. The results of the baseline Hamming systee also included for comparison
purposes. . For each condition, the minimum vadugighlighted with boldfac&Ve have
60-dimensional MFCC features, a 256-component UBM &00-dimensional i-vector

extractor with dimension reduced to 150.

EER (%)
. Thomson Baseline
Gender | condition OW VW AW | Hamming
detl 2.4 2.1 2.1 2.4
det2 45 4.4 4.2 4.6
Female det4 3.9 3.7 34 3.9
det3 3.1 2.9 2.9 3.6
det5 3.2 3.4 3.2 4.0
detl 1.6 1.6 1.0 1.5
det2 3.0 2.7 2.5 3.1
Male det4 2.4 2.2 1.9 2.6
det3 3.5 3.3 2.8 4.1
det5 2.7 2.5 2.4 3.2

Compared to the Hamming PLP system, average velatiprovements (female-
male, detl-det5), as shown in Table 3, obtainedhbymulti-taper PLP systems are as
follows. Relative improvements of SWCE, Multi-peakd Thomson PLP systems are
7.5%, 11.6% and 5.0% in terms of EER, and 14.4%2%6and 10.1% in terms of
MIiNDCRew.

Although all three multi-taper variants outperfodnthe baseline Hamming method,
considering the performances of both of the framdse(i.e., MFCC and PLP), the SWCE
and multipeak systems are preferred.

In the multi-taper spectrum estimators, data areenewenly weighted and they have a
reduced variance compared to single-tapered digmctrum estimates. It is

straightforward to choose the weights used in canshg the multi-taper estimate in

order to minimize the estimation variance.
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Figure 13: Male and female detl to det5 speaker verificatiesuits for the baseline
Hamming window system and multi-taper systems, oregisby EER: 60-dimensional
MFCCs with log-energy, deltas and double deltasMUBith 2048 Gaussians, 800-
dimensional i-vectors with reduced dimension of.200

FEMALE, NIST 2010 SRE (extended core-core) MALE, NIST 2018 SRE (extended core-core)

0.60 (.60
) oy f
= 0.0 = o0s0 -
£ 0.40 ¥ 040 -
= B Hamming £ | MHamming
2 0.30 Il SWCE = 030 H SWCE
E [ Multipeak £ ' ' O Multi-peak
Té 2L B Thomson _§ Hzh B Thomson
= 010 = 0.10 I]
£ E .
Z 0.00 Z 0.00 ELE :

detl det? deid detd dets detl det? detd det3 detS
Det Conditions Det Conditions

Figure 14: Same as Fig. 13 but for minDEE.
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Figure 15: Male and female detl to det5 speaker verificatiesuits for the baseline
Hamming window system and multi-taper systems, oreasby EER: 60-dimensional
PLP with log-energy, deltas and double deltas, UBAKIh 2048 Gaussians, 800-
dimensional i-vectors with dimension reduced t0.200
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Figure 16: Same as Fig. 16 but for minDgef.

Table 4: Average relative improvement in both female andentahls in detl to det5
conditions obtained by the multi-taper systems dkierbaseline system. The larger the
relative improvement, the more effective the immnoent due to multitapering. For each
evaluation metric (EER or minDGf) and for each front-end (MFCC or PLP) the
maximum value is highlighted with boldface.

Aver age relative improvement (male-female, det1-detb)
SWCE M ulti-peak Thomson
MFCC| PLP | MFCC| PLP| MFCC PLP
EER 12.3 7.5 12.6 11.6 9.5 5.0
MiNDCFpay 9.7 14.4 11.5| 16.2 119 10.1

6. Conclusion

In this paper we used multi-taper spectrum estonatpproaches for low-variance
MFCC and PLP feature computation and compared gegformances, in the context of
i-vector speaker verification, against the conieral single-taper (Hamming window)
technique. In a Thomson multi-taper method, instebdniform weights, use of non-

uniform weights, specifically adaptive weights, chrnng improvement in speaker
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recognition. Experimental results on the telephané microphone portion of the NIST
2010 SRE task indicate that multi-tapering usingesor multi-peak or Slepian tapers
outperforms the baseline single-taper method int w@ses. Among the three multi-taper
methods, the multi-peak and the SWCE MFCC systeaipedformed the Thomson

method (if uniform weights are chosen), which agreell with the results of [3, 36].

However, if non-uniform weights (e.g., eigenvaluas® used in the Thomson method,
from Table 4 it is observed that the Thomson MF§€tesn can outperform the other
two multi-taper MFCC systems. The number of tapeas set to 6 according to [3, 30,
36] without additional optimizations on the i-vectspeaker verification system. The
largest relative improvements over the baselineevadaserved for conditions involving

microphone speech. Overall, the multi-taper metbidd FCC and PLP feature extraction

is a viable candidate for replacing the baselin€Cl@Fand PLP features.
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