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Abstract 
 
In this paper we study the performance of the low-variance multi-taper Mel-frequency 

cepstral coefficient (MFCC) and perceptual linear prediction (PLP) features in a state-of-

the-art i-vector speaker verification system. The MFCC and PLP features are usually 

computed from a Hamming-windowed periodogram spectrum estimate. Such a single-

tapered spectrum estimate has large variance, which can be reduced by averaging 

spectral estimates obtained using a set of different tapers, leading to a so-called multi-

taper spectral estimate. The multi-taper spectrum estimation method has proven to be 

powerful especially when the spectrum of interest has a large dynamic range or varies 

rapidly.  Multi-taper MFCC features were also recently studied in speaker verification 

with promising preliminary results. In this study our primary goal is to validate those 

findings using an up-to-date i-vector classifier on the latest NIST 2010 SRE data. In 

addition, we also propose to compute robust perceptual linear prediction (PLP) features 

using multitapers. Furthermore, we provide a detailed comparison between different taper 

weight selections in the Thomson multi-taper method in the context of speaker 

verification. Speaker verification results on the telephone (det5) and microphone speech 

(det1, det2, det3 and det4) of the latest NIST 2010 SRE corpus indicate that the multi-

taper methods outperform the conventional periodogram technique. Instead of simply 

averaging (using uniform weights) the individual spectral estimates in forming the multi-

taper estimate, weighted averaging (using non-uniform weights) improves performance. 

Compared to the MFCC and PLP baseline systems, the sine-weighted cepstrum estimator 
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(SWCE) based multitaper method provides average relative reductions of 12.3% and 

7.5% in equal error rate, respectively. For the multi-peak multi-taper method, the 

corresponding reductions are 12.6% and 11.6%, respectively. Finally, the Thomson multi-

taper method provides error reductions of 9.5% and 5.0% in EER for MFCC and PLP 

features, respectively. We conclude that both the MFCC and PLP features computed via 

multitapers provide systematic improvements in recognition accuracy.  

 
Keywords: Speaker verification, Multi-taper spectrum, Feature extraction, i-vectors, 
MFCC, PLP  
 
1. Introduction 
 
Useful information extraction from speech has been a subject of active research for many 

decades. Feature extraction (or front-end) is the first step in an automatic speaker or 

speech recognition system. It transforms the raw acoustic signal into a compact 

representation. Since feature extraction is the first step in the chain, the quality of the 

subsequent steps (modeling and classification) strongly depends on it. The mel-frequency 

cepstral coefficient (MFCC) [1] and perceptual linear prediction (PLP) [21] front-ends 

have been dominantly used in speech and speaker recognition systems and they 

demonstrate good performance in both applications. The MFCC and PLP 

parameterization techniques aim at computing the speech parameters similar to the way 

how a human hears and perceives sounds [1]. Since these features are computed from an 

estimated spectrum, it is crucial that this estimate is accurate. Usually, the spectrum is 

estimated using a windowed periodogram [16] via the discrete Fourier transformation 

(DFT) algorithm. Despite having low bias, a consequence of the data tapering 

(windowing) is increased estimator variance. Therefore, MFCC or PLP features 

computed from this estimated spectrum have also high variance. One elegant technique 

for reducing the spectral variance is to replace a windowed periodogram estimate with a 

multi-taper spectrum estimate [8, 9, 10].  

In the multi-taper spectral estimation method, a set of orthogonal tapers is applied 

to the short-time speech signal and the resulting spectral estimates are averaged (possible 

with nonuniform weights), which reduces the spectral variance. As each taper in a multi-

taper technique is pairwise orthogonal to all the other tapers, the windowed signals 
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provide statistically independent estimates of the underlying spectrum. The multi-taper 

method has been widely used in geophysical applications and, in multiple cases, it has 

been shown to outperform the windowed periodogram. It has also been used in speech 

enhancement applications [2] and, recently, in speaker recognition [3, 8, 32, 36] with 

promising preliminary results. The preliminary experiments of [3, 8] were reported on the 

NIST 2002 and 2006 SRE corpora using a lightweight Gaussian mixture model–universal 

background model (GMM-UBM) system [17] and generalized linear discriminant 

sequence support vector machine (GLDS-SVM) without any session variability 

compensation techniques. The recent results of [36], using multi-taper MFCC features 

only, were reported on NIST 2002 and 2008 SRE corpora using GMM-UBM, GMM-

SVM and joint factor analysis (JFA) [38, 39] classifiers. 

In this paper, our aims are, firstly, to study whether the improvements obtained 

using multi-taper MFCC features in [3, 8, 36] translate to a state-of–the-art speaker 

verification task. Secondly, we propose to use multi-taper PLP features in an i-vector 

speaker verification system as we have found that the performance of PLP features (HTK 

version of PLP, also denoted as revised PLP (RPLP) in [37]) can outperform MFCC 

accuracy in speaker verification, and thirdly, we provide a comparison of the 

performance of using uniform average versus weighted average to get the final multi-

taper spectral estimate in a Thomson multi-taper method, in the context of speaker 

verification. Proper selection of weights is an important design issue in multi-taper 

spectrum estimation. Even though [3, 8, 32, 36] extensively compare different types of 

taper windows, their weight selection was not addressed. Therefore, in this work, we 

provide detailed comparison between different taper weight selections in the popular 

Thomson multi-taper method. The recent i-vector model [4, 5, 6] includes elegant inter-

session variability compensation, with demonstrated significant improvements on the 

recent NIST speaker recognition evaluation corpora. Since i-vectors already do a good 

job in compensating for variabilities in the speaker model space, one may argue that 

improvements in the front-end may not translate to the full recognition system. This is the 

question which we address in this paper. In the experiments, we use the latest NIST 2010 

SRE benchmark data with the state-of-the-art i-vector configuration. To this end, we 

utilize a completely gender independent i-vector system based on mixture probabilistic 



 4 

linear discriminant analysis (PLDA) model of [6]. In this paper, similar to [6], we also 

use a gender independent i-vector extractor and then form a mixture PLDA model by 

training and combining two gender dependent models, where the gender label is treated 

as a latent (or hidden) variable. 

 

2.  Multi-taper Spectrum Estimation 
 

A windowed direct spectrum estimator is the most often used power spectrum estimation 

method in speech processing applications. For the mth frame and kth frequency bin an 

estimate of the windowed periodogram can be expressed as: 

                             ( ) ( )
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where { }0,1,..., 1k K∈ −  denotes the frequency bin index, N is the frame length, 

( ),s m j is the time domain speech signal and ( )w j denotes the time domain window 

function, also known as taper. The taper, such as the Hamming window, is usually 

symmetric and decreases towards the frame boundaries. Eq. (1) is sometimes called 

single-taper, modified or windowed periodogram. If ( )w j  is a rectangular or uniform 

taper, Eq. (1) is called a periodogram. Fig. 1 presents time- and frequency-domain plot of 

the Hamming window. 

                                                         

Figure 1. Hamming window for N = 256, in (a) time domain, (b) frequency domain.   
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Windowing reduces the bias, i.e., expected value of the difference between the estimated 

spectrum and the actual spectrum, but it does not reduce the variance of the spectral 

estimate [7] and therefore, the variance of the MFCC features computed from this 

estimated spectrum remains large. One way to reduce the variance of the MFCC or PLP 

estimator is to replace the windowed periodogram estimate by a so-called multi-taper 

spectrum estimate [8, 9, 10]. It is given by 

                             ( ) ( ) ( )
221

1 0

ˆ ( , ) , ,
ikM N
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p j

S m k p w j s m j e
π

λ
− −

= =
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where N is the frame length and pw is the pth data taper ( 1,2,...,.p M= ) used for the 

spectral estimate ̂ ( )MTS ⋅ , also known as the pth eigenspectrum. Finally, M denotes the 

number of tapers and ( )pλ is the weight of the pth taper. The tapers ( )pw j  are typically 

chosen to be orthonormal so that, for all p and q,  

( ) ( ) 1,

0, otherwise.p q pqj

p q
w j w j δ

=
= = 


∑  

 

Figure 2. Block diagram of multi-taper spectrum estimation method.  
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The multi-taper spectrum estimate is therefore obtained as the weighted average of 

M individual sub-spectra. Eq. (1) can be obtained as a special case of Eq. (2) when 

1p M= =  and ( ) 1.pλ =  Fig. 2 illustrates the multi-taper spectrum estimation process 

using M = 6 tapers.   

The idea behind multi-tapering is to reduce the variance of the spectral estimates by 

averaging M direct spectral estimates, each with a different data taper. If all M tapers are 

pairwise orthogonal and properly designed to prevent leakage, the resulting multi-taper 

estimates outperform the windowed periodogram in terms of reduced variance, 

specifically, when the spectrum of interest has high dynamic range or rapid variations 

[29]. Therefore, the variance of the MFCC and PLP features computed via this multi-

taper spectral estimate will be low as well. The underlying detail of the multi-taper 

method is similar to Welch’s modified periodogram [7], it, however, focuses only on one 

frame rather than forming a time-averaged spectrum estimate over multiple frames.  In 

the multi-taper method, only the first of the data tapering windows has the traditional 

shape. The spectra from the different tapers do not produce a common central peak for a 

harmonic component. Only the first taper produces a central peak at the harmonic 

frequency of the component. The other tapers produce spectral peaks that are shifted 

slightly up and down in frequency. Each of the spectra contributes to an overall spectral 

envelope for each component. The so-called Slepian tapers that underlie the Thomson 

multi-taper method [9] are illustrated in Fig. 3 for M = 6 both in time and frequency 

domains.  
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Figure 3. Thomson multi-tapers for N = 256, M = 6 in (a) time and (b) frequency 

domains. 

 

2.1 Choice of the Tapers and the Taper Weights 

The choice of taper has a significant effect on the resultant spectrum estimate. The 

objective of the taper is to prevent energy at distant frequencies from biasing the estimate 

at the frequency of interest. Based on the Slepian tapers (also called discrete prolate 

spheroidal sequence, DPSS) [19] and the sine tapers [10], various multi-taper methods 

have been proposed in the literature for spectrum estimation, such as Thomson multi-

taper [9], SWCE (sinusoidal weighted cepstrum estimator) multi-taper [11] and Multi-

peak multi-taper [12]. For completeness, we briefly review each method in the following. 

 
Thomson multi-taper method: In the Thomson multi-taper method of spectrum estimation 

[9], a set of M orthonormal data tapers with good leakage properties is specified from the 

Slepian sequences [19]. Slepian sequences are defined as the real, unit-energy sequences 

on [0, N − 1] having the greatest energy in a bandwidth W. Slepian tapers can be shown 

to be the solutions to the following eigenvalue problem, 

                                                               p p p
j nw wν=A ,                                                      (3) 

where 0 1n N≤ ≤ − , 0 1j N≤ ≤ − , A is a real symmetric matrix, 0 1pν< ≤  is the pth 

eigenvalue corresponding to the pth eigenvector p
nw  known as the Slepian taper. The 
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elements of the matrixA are given by 
sin 2 ( )

,
( )nj

W n j
a

n j

π
π

−=
−

where W is the half- 

frequency bandwidth (or one sided bandwidth). 

Slepian sequences (or DPSS), proposed originally in [19], were chosen as tapers in [9] as 

these tapers are mutually orthonormal and possess desirable spectral concentration 

properties (i.e., they have highest concentration of energy in the user-defined frequency 

interval (-W, W)). The first taper in the set of Slepian sequences is designed to produce a 

direct spectral estimator with minimum broadband bias (bias caused by leakage via the 

sidelobes). The higher order tapers ensure minimum broadband bias whilst being 

orthogonal to all of the lower order tapers. The first taper, resembling a conventional 

taper such as Hanning window, gives more weight to the center of the signal than to its 

ends. Tapers for largerp give increasingly more weight to the ends of the signal. There is 

no loss of information at the extremes of the signal.  

 
In the experiments of [3, 8, 36], uniform weights were applied to obtain the final 

Thomson multi-taper estimate. That is,( ) 1/p Mλ = . Even though [3, 8, 36] reported 

increased speaker verification accuracy when the standard windowed periodogram was 

replaced by the Thomson multi-taper, the question of weight selection in the Thomson 

method was not addressed. We hypothesize that recognition accuracy might be further 

increased by allowing non-uniform weighting in the Thomson method. In order to 

compensate for the increased energy loss at higher order tapers the uniform weights can 

be replaced with the weights corresponding to either the eigenvalues of the Slepian 

tapers, i.e., ( ) ppλ ν= or, alternatively, adaptive weights obtained as ( )
1

1/
p

q

q

pλ ν
=

= ∑  [9, 

20]. The different weighting schemes used in the Thomson multi-taper method are 

illustrated in Fig. 5 for M=6 tapers including the weights used in the multi-peak [12] and 

the SWCE [11] methods.                                                                                                                                

 

SWCE multi-taper: The Thomson multi-taper method requires solving an eigenvalue 

problem of Eq. (3) and does not have a closed-form expression for the tapers. A simpler 
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set of orthonormal tapers that has such a closed-form expression is the set of the sine 

tapers (see Fig. 4(c)) given by [10]: 

                                    ( ) ( )12
sin ,   0,1,...., 1

1 1p

p j
w j j N

N N

π + 
= = − + + 

.                 (4) 

The sine tapers achieve a smaller local bias (the bias due to the smoothing by the 

mainlobe) than the Slepian tapers at the expense of sidelobe suppression [10, 29].  The 

first taper in the set of sine tapers produces a direct spectral estimator with minimum 

local bias and the higher order tapers ensure minimum local bias whilst being orthogonal 

to all of the lower order tapers.  

In the SWCE method [11], the sine tapers are applied with optimal weighting for 

cepstrum analysis. The weights used in the SWCE method (see Fig. 5) have the following 

closed-form expression [11]:  

                                      ( )

1
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 = =
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.                      (5) 

 

Multi-peak multi-taper: In [12], a multi-taper method, dubbed as peak matched multiple 

windows (PMMW), was proposed for peaked spectra to obtain low bias at the frequency 

peak as well as low variance of the spectral estimate. Here, similar to [3], we denote this 

method as the multi-peak method and the tapers (or windows) as the multi-peak tapers. 

The multi-peak tapers are obtained as the solution of the following generalized 

eigenvalue problem: 

                                               ,  1,2,....,B j j Z jw w j Nν′ = =R R ,                                         (6) 

where B′R is the ( )N N× Toeplitz covariance matrix of the assumed spectrum model 

defined by [12]: 

( ) ( )10

2

10log / 2

0 / 2,

C f

e

s
e f BS f

f B

−
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with 20 dBC = and a predetermined interval of width B′outside of which spectral 

leakage is to be prevented, ZR is the Toeplitz covariance matrix, chosen for decreasing 

the leakage from the sidelobes of the tapers, of the following frequency penalty function: 

           ( ) / 2

1 / 2Z

G f B
S f

f B

′ >=  ′≤
,  

where 30 dBG = [12]. The eigenvectors corresponding to theM largest eigenvalues of 

(6) are used as multi-peak tapers for the multi-peak method and the weights for the tapers 

can be found from the M largest eigenvalues of (6) as: 

1

,  1,2,...,p
p M

p
p

p M
ν

λ
ν

=

= =
∑

. 

Six multi-peak tapers and the weights corresponding to these tapers are shown in Figs. 

4(b) and 5, respectively. 

 

         

(a)                                                                      (b) 

 

(c) 



 11 

Figure 4. (a) Six Slepian tapers in the Thomson method, (b) multi-peak tapers in the 

multi-peak method, and (c) sine tapers for SWCE method, for N = 256. 

 

Figure 5. Weights used in multi-taper spectrum estimation methods for six tapers. 

 
2.2 Variance Reduction by Multitapering 
 
The use of multiple orthogonal windows can have several advantages over the use of any 

single window [25-29]. In particular, the energy of a single band-limited window always 

non-uniformly covers the desired concentration region, which results in some data being 

statistically over- or underrepresented when forming the spectral estimate [27-28]. In 

contrast, the cumulative energy of the multiple orthogonal windows more uniformly 

covers the concentration region. Since the spectral estimates that result from using 

orthogonal tapers are uncorrelated, a multi-taper average (or weighted average) of these 

possesses a smaller estimation variance than the single-tapered spectrum estimates.  

The variance of an estimatorθ̂ measures how much variability an estimator has around its 

mean (i.e., expected) value and is defined as [7, 43]: 

( ) ( )2
ˆ ˆ ˆvar E Eθ θ θ  = −   

, 

where [ ]E ⋅ is the expectation operator. A 'good' estimator is one that makes some suitable 

trade-off between low bias and low variance. 
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A multi-taper spectrum estimator is somewhat similar to averaging the spectra from a 

variety of conventional tapers such as Hamming and Hann tapers. But in this case, there 

will be strong redundancy as the different tapers are highly correlated (all the tapers have 

a common time-domain shape). Unlike conventional tapers, the M orthonormal tapers 

used in a multi-taper spectrum estimator provideM statistically independent (hence 

uncorrelated) estimates of the underlying spectrum. The weighted average of 

theM individual spectral estimates ( )ˆ ,MTS m k then has smaller variance than the single- 

tapered spectrum estimates ( )ˆ ,dS m k  by a factor that approaches 1M , i.e., 

( )( ) ( )( )1ˆ ˆvar , var ,MT dS m k S m k
M

≈  [29]. 

 

 

(a) 

 

(b) 

Figure 6: (a) Speech signal, (b) estimated spectrum by the single taper (Hamming) and 

the multi-taper methods. Sampling frequency is 16 kHz, frame length 25 msec and 

number of tapers used for the multi-taper methods is 6. 
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The reduction in the variance of the spectrum ordinates between using single taper (e.g., 

Hamming window) and multi-taper methods is illustrated in Fig. 6. Spectral variance 

reduction using multi-taper methods has been addressed by many researchers, including 

in [7-12, 20, 25-29]. The objective of our paper is to apply multi-taper methods to 

compute MFCC and PLP features for speaker verification using i-vectors and compare 

their performance with the Hamming window-based baseline MFCC and PLP systems. 

 

3.  Multi-taper MFCC and PLP Feature Extraction 
 
The two most widely used forms of speech parameterizations are the mel-frequency 

cepstral coefficients (MFCCs) [1] and the perceptual linear prediction (PLP) coefficients 

[21]. Figures 7 and 8 present the generalized block diagrams of MFCC and PLP feature 

extraction processes, respectively. MFCC extraction begins with pre-processing (DC 

removal and pre-emphasis using a first-order high-pass filter with transfer function 

1( ) 1 0.97*H z z−= − ). Short-time Fourier transform (STFT) analysis is then carried out 

using a single taper (e.g., Hamming) or multi-taper technique, and triangular Mel-

frequency integration is performed for auditory spectral analysis. The logarithmic 

nonlinearity stage follows, and the final static features are obtained through the use of 

discrete cosine transform (DCT). 

PLP processing, which is similar to MFCC processing in some ways, begins with STFT 

analysis followed by critical-band integration using trapezoidal frequency-weighting 

functions. In contrast to MFCC, pre-emphasis is performed based on an equal-loudness 

curve after frequency integration. The nonlinearity in PLP is based on the power-law 

nonlinearity proposed in [21]. After this stage, inverse discrete Fourier transform (IDFT) 

is used for obtaining a perceptual autocorrelation sequence following the linear prediction 

(LP) analysis.  Cepstral recursion is also usually performed to obtain the final features 

from the LP coefficients [22]. Here, for PLP feature extraction, we follow HTK-based 

processing [23], in which, for auditory frequency analysis, a Mel filterbank is used 

instead of a trapezoidal-shaped bark filterbank. 
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Figure 7. Generalized block diagram for the single taper and multi-taper spectrum estimation-

based MFCC feature extraction. 

  

Figure 8: Generalized block diagram for the single taper and multi-taper spectrum 

estimation-based PLP feature extraction. 
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After extracting the static MFCC or PLP features, augmented with the log energy of the 

frame, the delta and double delta features are computed using the following regression 

formula: 

                                      ( )
( )

1

2

1

( , ) ( , )

,

2

lag

lag

L

q

L

q

q c m q t c m q t

c m t

q

=

=

+ − −
∆ =

∑

∑
,                                   (7) 

where m is the frame index, t is the cepstral index, lagL represents the window lag size, 

and ( ),c m t is the tth cepstral coefficient of the mth frame. Nonspeech frames are 

removed using our voice activity detector (VAD) labels. For telephone speech, the VAD 

labels are produced by a Hungarian phoneme recognizer [33, 34] and for microphone 

speech, VAD labels are generated using a GMM-based VAD by training one GMM for 

nonspeech and another one for speech [35]. Final features are obtained after appending 

the delta and double delta features and normalizing the features using a short-time 

Gaussianization (STG) method [24, 40]. 

There is a limit to the number of tapers that can be used in multi-taper spectrum 

analysis for the computation of the MFCC or PLP features. Specifically, spectral leakage 

increases with each taper in the sequence. For a time-bandwidth product 2=tbp NW from 

3 to 5, a usual range for the number of tapers 12 −= tbpM is from 4 to 16, where N is the 

taper length and W is the design interval expressed as W=(M+1)/2(N+1). The optimal 

number of tapers for our recognition task is found to be 6optM = . Since speech 

recognition and speaker recognition systems share similar front-ends, we first determined 

the optimum number of tapers for speech recognition by doing a series of recognition 

experiments by ranging M from 4 to 10 [30] and applying the optimum value ( 6optM = ) 

to the speaker verification task. Interestingly, in the recent extensive speaker verification 

experiments on NIST 2002 and NIST 2008 corpora using three independently 

constructed speaker verification systems [36], the optimum range for M  was found to be 

3 ≤ M ≤ 8 with a recommended value of M=6.  Therefore, in this study we fix M=6 and 

focus on studying the i-vector recognizer accuracy across the multiple conditions 

available in the NIST 2010 SRE data. 
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4.  Speaker Verification using i-vector Framework 
 

Given two recordings of speech in a speaker detection trial, each assumed to have been 

uttered by a single speaker, are both speech utterances produced by the same speaker or 

by two different speakers? Speaker verification is the implementation of this detection 

task. Speaker detection provides a scalar valued match score for each trial, where a large 

score favors the target hypothesis (i.e., same speaker hypothesis) and a small score favors 

the non-target hypothesis (i.e., different speaker hypothesis). In the NIST speaker 

recognition evaluations (SREs), non-target trials may be male, female, or mixed but 

target trials, by definition, cannot have mixed gender. Real world deployment of a gender 

dependent speaker recognition system is not straightforward and typically involves 

making a premature hard-decision based on a gender detector output. Recently, in [6], an 

i-vector system based on probabilistic linear discriminant analysis (PLDA) is introduced, 

where a mixture of gender-dependent models (i.e., a male PLDA model and a female 

PLDA model) is used to compute the likelihood ratio scores for speaker verification. This 

system avoids the need for explicit gender detection. Here, we adopt this gender-

independent speaker recognition system for the speaker verification experiments. An i-

vector speaker verification system consists of three steps, extraction of i-vectors, 

generative PLDA modeling of the i-vectors and, finally, likelihood ratio computation (or 

scoring). We review these shortly in the following. 

4.1 Extraction of i-vectors 
 

I-vector extractors have become the state-of-the-art technique in the speaker verification 

field. An i-vector extractor represents entire speech segments as low-dimensional feature 

vectors called i-vectors [4, 5, 14]. The i-vector extractors studied in [4, 5, 14] are - 

according to long traditions in speaker verification research following NIST SRE 

evaluation protocol - gender-dependent and they are followed by gender-dependent 

generative modeling stages. In this paper, however, we use a gender-independent i-vector 

extractor, as shown in Fig. 9, trained on both microphone and telephone speech. The 

universal background model (UBM) used in this i-vector extractor is also gender-

independent. The advantage of a gender-independent system is simplified system design 

as separate female and male detectors do not need to be constructed. In order to handle 
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telephone as well as microphone speech, the dimension of the i-vectors is reduced from 

800 to 200 using ordinary linear discriminant analysis (LDA). The purpose of applying 

length normalization is to Gaussianize the distribution of the i-vectors so that a simple 

Gaussian PLDA model can be used instead of the heavy-tailed PLDA model [13], i.e., 

PLDA models with heavy-tailed prior distributions [5]. A heavy-tailed PLDA is 2 to 3 

times slower than the Gaussian PLDA. 

 

  

Figure 9: Gender-independent i-vector extractor. 

 

4.2 Generative PLDA Model for i-Vectors 
  
In a generative PLDA model, the i-vectors, denoted by i, are assumed to be distributed 

according to [5]: 

                                                 ,ε= + +Vi y m                                                              (8)  

where the speaker variable, y is Gaussian distributed and its value is common to all 

segments of a given speaker, m is the mean vector, V is a fixed hyper-parameter matrix 

and ε  is the residual assumed to be Gaussian. Usually m, V and the residual covariance 

matrix are taken to be gender-dependent, which is optimal for NIST conditions. 

Probability calculations with this model involve a Gaussian integral that can be evaluated 

in closed form [5]. 
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4.3 Likelihood Ratio Computation 
 

In a speaker verification task, given a pair of i-vectors ( )1 2,z i i= , the likelihood ratio is 

computed as: 

                                                           
( )
( )

( )
( ) ( )

1 1

1 20

,
P z H P z H

P i P iP z H
=                                         (9) 

where the target hypothesis1H indicates that both 1i and 2i share the same speaker variable 

y (i.e., 1 2y y= ) and the non-target hypothesis indicates that the i-vectors were generated 

from different speaker variables 1y and 2y . Because i1 and i2 can be considered 

independent under the non-target hypothesis H0, P(z|H0) factorizes as P(i1)P(i2).   In this 

work, we use a gender-independent likelihood ratio computation framework as described 

in [6]. 

 
5.  Experiments  

 
5.1 Experimental Setup 
 
We conducted experiments on the trial lists from the extended core-core condition of the 

NIST 2010 speaker recognition evaluation (SRE) corpus. To evaluate the performance of 

our speaker recognition systems we used the following evaluation metrics: equal error 

rate (EER), and the new normalized minimum detection cost function (minDCFnew). EER 

corresponds to the operating point with equal miss and false alarm rates whereas 

minDCFnew correspond to the evaluation metrics for the NIST SRE 2010 protocols. The 

normalized detection cost function DCFn, used to measure the performance of a speaker 

recognition system for application specific costs and priors, is defined as: 

         
( ) ( )( )

{ }
| | 1

min ,

Miss Target FA Target

n

Miss Target FA Non-target

C P Miss Target P C P FA Non-target P
DCF

C P C P

+ −
= ,           (10) 

where MissC and FAC  represent the costs of miss and false alarm, respectively. 

Further, TargetP and 1Non-target TargetP P= − are the prior probabilities of the target and non-

target trial, respectively. For NIST 2010 SRE, cost values 1Miss FAC C= =  and 
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0.001TargetP =  are used. The normalized minimum detection cost function (minDCFnew) is 

the minimum of DCFn over the threshold that determines ( )P FA and ( )P Miss . 

The relative improvement ( RI ) in performance (either EER or minDCFnew) of the multi-

taper systems over the corresponding baseline system is calculated as,: 

                                                  *100baseline mt

baseline

R R
RI

R

−= %,                                             (11) 

where baselineR and mtR  represent, respectively, the results of the baseline and the multi-

taper systems.  

Based on the single taper (e.g., Hamming window) and multi-taper MFCC and PLP 

features, we developed four speaker verification systems as shown in Table 2. Our 

baseline systems are based on the Hamming windowed MFCC and PLP features. For the 

Thomson [9], Multi-peak [12] and SWCE [11] methods, as mentioned in Table 2, MFCC 

features are computed from the multi-taper spectrum estimates described in Section 2. 

We report results on all of the principal sub-conditions (telephone speech and 

microphone speech) of the NIST 2010 SRE for the baseline and multi-taper systems. 

 
5.1.1 Feature Extraction  
 
For our experiments, we use 20 static MFCC or PLP features (including the log energy) 

augmented with their delta and double delta coefficients, making 60-dimensional MFCC 

(PLP) feature vectors. MFCC and PLP features are extracted following the procedures 

shown in Figs. 6 and 7, respectively, with a frame shift of 10 msec. Delta and double 

features are calculated using a 5-frame window (i.e., ± 2 frame lag) for the baseline and 

the multi-taper systems. Nonspeech frames are then removed using pre-computed VAD 

labels using algorithms mentioned in section 3. For feature normalization, we apply the 

short-time Gaussianization (STG) technique [24, 40] over a 300-frame window.  

 

5.1.2 Training the Universal Background Model (UBM) 
 

We train a gender-independent, full covariance universal background model 

(UBM) with 2048-component Gaussian mixture models (GMMs) by pooling all training 

features together. NIST SRE 2004 and 2005 telephone data (420 female speakers and 307 
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male speakers in 305 hours of speech) are used for training the UBM. Normally, to train a 

gender-independent UBM by pooling all the training data, the pooled data should be 

balanced over the subpopulations, i.e., male and female, telephone and microphone. If the 

pooled data are not balanced then the final model may be biased towards the dominant 

subpopulations [41].  

In this work, our gender-independent UBM is trained from NIST SRE 2004 and 2005 

telephone data that include more female trials than male. Therefore, the verification 

results for female trials should be better than that of the male trials. But our obtained 

results (for the baseline Hamming and multi-taper systems) depict that the verification 

results (in terms of EER, minDCFold, and minDCFnew) for male trials are consistently 

better than that for female trials, so the trained UBM is not biased towards the female 

trials. It should be mentioned here that, in this work, the data used for training a gender-

independent i-vector extractor includes female trials 1.3 times of the male trials.  

Training an UBM from a balanced set of female-male trials or inclusion of 

microphone data (NIST SRE 2005 microphone and/or NIST SRE 2006 microphone data) 

with the telephone data for training UBM did not help our system to improve recognition 

performance but increased the UBM training time considerably. The possible reasons 

why including microphone data to UBM or training an UBM from a balanced set of 

female-male trials did not help our systems could be: Firstly, we have more telephone 

data (approximately 10 times of microphone data) than the microphone data for training 

the i-vector extractor and consequently more i-vectors from telephone data than that from 

microphone data for training the PLDA models. Moreover, to handle both the 

microphone and telephone speech, we use ordinary linear discriminant analysis where the 

between-class scatter matrix is estimated from all telephone training data and the within-

class scatter matrix is estimated using all telephone and microphone training, as described 

in section 5.1.3, to reduce the dimensionality of the i-vectors from 800 to 200 [42]. 

Secondly, the ratio of female to male utterances in the database is approximately 1.3:1 

and therefore, we have more i-vectors from female utterances from training the PLDA 

models.  
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Note also that, for the baseline Hamming and the multi-taper systems, we use same data 

sets for training the UBM and other components of the system.. The only difference 

between the baseline and multi-taper systems is in the spectrum estimation method. 

 

5.1.3 Training and Extraction of i-Vectors 
 
A block diagram of the i-vector extractor used in this paper is shown in Figure 9. Our 

gender-independent i-vector extractor is of dimension 800. After training the gender-

independent UBM, we train the i-vector extractor using the Baum-Welch (BW) statistics 

extracted from the following data: LDC release of Switchboard II - phase 2 and phase 3, 

Switchboard Cellular - part 1 and part 2, Fisher data, NIST SRE 2004 and 2005 telephone 

data, NIST SRE 2005 and 2006 microphone data and NIST SRE 2008 interview 

development microphone data. Fisher data used in this work are Fisher English. In order 

to reduce the i-vector dimensionality, a linear discriminant analysis (LDA) projection 

matrix is estimated from the BW statistics by maximizing the following objective 

function:  

                                                  arg max ,
T

b

LDA T
B w

B B
B

B B

Σ
=

Σ
                                           (12) 

where B is the LDA transformation matrix,bΣ and wΣ represent the between- and within-

class scatter matrices, respectively. The optimization problem in (8) is equivalent to 

finding the eigenvectors ϕ  corresponding to the largest eigenvalues η  of the following 

generalized eigenvalue problem: 

                                                        ,b wϕ η ϕΣ = Σ                                                             (13) 

For the estimation of bΣ we use all telephone training data excluding the Fisher data and 

wΣ is estimated using all telephone and microphone training data excluding the Fisher 

data. We choose only speakers with more than four utterances for the estimation of LDA 

transformation matrix. Dimensionality reduction via LDA helps to handle microphone 

speech as well as telephone speech [42]. An optimal reduced dimension of 200 is 

determined empirically. 

We then extract 200-dimensional i-vectors for all training data excluding Fisher 

data by applying this transformation matrix on the 800-dimensional i-vectors. For the test 
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data, first BW statistics and then 200-dimensional i-vectors are extracted following a 

similar procedure using the same projection matrix. We also normalize the length (using 

2-norm) of the i-vectors to gaussianize the i-vectors distribution [13]. 

 
5.1.4 Training the PLDA model  
 
We train two PLDA models, one for the males and another for females. These models 

were trained using all the telephone and microphone training i-vectors; then we combine 

these PLDA models to form a mixture of PLDA models in i-vector space as described in 

[6]. For both of the models, the fixed hyper-parameter V is a full rank matrix of 

dimension 200. For training the PLDA models we choose only speakers with more than 

four utterances.  

 
5.2 Results and Discussion 
 
A. Use of uniform versus non-uniform weights in multi-tapering 
 
Usually, in a multi-taper spectrum estimation method, the final spectrum is obtained by 

averaging (using uniform weights, 1/M) over the M tapered subspectra. In [3, 8], for the 

Thomson multi-taper method, the individual spectra were averaged to obtain the final 

estimate. Only the  first taper (p = 1) in the multi-taper method produces a central peak at 

the harmonic frequency of the component while the other tapers (p > 1) produce spectral 

peaks that are shifted slightly up or down in frequency. The information lost at the 

extremes of the first taper is included and indeed emphasized in the subsequent tapers. As 

can be seen from Fig. 10, attenuation in the side-lobes decreases with each taper in the 

sequence, i.e., spectral leakage increases for the higher-order tapers. If uniform weights 

are applied to get the final spectrum estimate, the energy loss at higher-order tapers will 

be high. In order to compensate for this increased energy loss, a weighed average (using 

non-uniform weights) is used instead of simply averaging the individual estimates. In [9], 

the weights are changed adaptively to optimize the bias/variance tradeoff of the 

estimator. Figures 11 and 12 provide a comparison of the multi-taper spectral estimates 

when uniform & non-uniform weights are applied, respectively. Table 3 presents a 

comparison of the use of uniform and non-uniform weights (eigenvalue as the weight, 

EVW) and adaptive weight (AW) computed from the eigenvalues) in the Thomson multi-
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taper method, in the context of speaker verification. The speaker verification results 

suggest that non-uniform weights, specifically, the adaptive weights, should be preferred. 

 

Figure 10: Frequency domain plot of six (M = 6) Slepian tapers, p is the taper index. 

Attenuation in the side-lobes decreases for higher order tapers. 

 

    

                                 (a)                                                       (b) 

    

                                 (c)                                                       (d) 
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                                 (e)                                                       (f) 

    

                                 (g)                                                       (h) 

Figure 11: Multi-taper spectral estimates when adaptive weights are applied to the 

individual estimates (b)-(g) to get the final estimate (h) of a 25 msec duration speech 

signal (a). 

 

                               (a)                                                       (b) 

  

                               (c)                                                       (d) 
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                               (e)                                                       (f) 

   

                               (g)                                                       (h) 

Figure 12: Multi-taper spectral estimates when uniform weights (1/M) are applied to the 

individual estimates (b)-(g) to get the final estimate (h) of a 25 msec duration speech 

signal (a). 

 

B. Performance evaluation of Multi-taper MFCC and PLP features 
 
To evaluate and compare the performance of the systems in Table 2, we conducted 

experiments using both telephone and microphone speech on the extended core-core 

condition of the NIST SRE 2010 task. The results are reported for five evaluation 

conditions corresponding to detection (det) conditions 1 through 5, as shown in Table 1, 

as specified in the evaluation plan [18]. 

 

Fig. 13 presents EERs for the Hamming (baseline) and multi-taper MFCC systems both 

for the female and male trials. For all the MFCC-based systems, minDCFnew is shown in 

Fig. 14, for the male and female trials. In terms of both metrics, EER, and minDCFnew, 

multi-taper MFCC systems outperform the baseline MFCC system. Compared to the 

baseline (Hamming) MFCC system, average relative improvements (female-male, det1-

det5), as shown in Table 3, obtained by the multi-taper systems are as follows: 
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Table 1: Evaluation conditions (extended core-core) for the NIST 2010 SRE task. 
 
 

 
Table 2: Single-taper and multi-taper MFCC and PLP feature-based speaker verification 
systems. 
 
 

 
Relative improvements of the SWCE MFCC system are 12.2%, and 9.7% in EER, and 

minDCFnew, respectively. The multi-peak system provides relative improvements of 

12.6%, and 15.4% in EER, and minDCFnew, respectively. The corresponding 

improvements for the Thomson’s method are 17.1%, and 11.9%.  

 

Figures 15 and 16 present EER and minDCFnew values, respectively, for the 

Hamming (baseline) and multi-taper PLP systems both for the male and female trials. In 

the case of female trials, all the multi-taper PLP systems yield systematically less errors 

in comparison to the baseline PLP in terms of all the evaluation measures. For male trials, 

multipeak and SWCE PLP systems provide higher accuracy in the first four det 

conditions (1, 2, 3, 4). The results for the det5 condition for both systems are close to the 

Condition Task 
det1 Interview in training and test, same mic. 

det2 
Interview in training and test, different 
mic. 

det3 
Interview in training and normal vocal 
effort phone call over tel. channel in test. 

det4 
Interview in training and normal vocal 
effort phone call over mic channel in test. 

det5 
Normal vocal effort phone call in training 
and test, different  tel. 

System Description 

Hamming  
(Baseline) 

MFCC and PLP features are computed 
from the Hamming windowed 
spectrum estimate. 

SWCE 
MFCC and PLP features are computed 
from the sinusoidal weighted (i.e., sine 
tapered) spectrum estimate [11]. 

Multi-peak 
MFCC and PLP features are computed 
from the multi-taper spectrum estimate 
using multi-peak tapering [12]. 

Thomson 

MFCC and PLP features are calculated 
from the multi-taper spectrum 
estimates with dpss tapering [9] and 
adaptive weights  
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baseline. Compared to the baseline PLP, the Thomson PLP system also performs better 

except in the det3 and det4 conditions in EER for the male trials. 

 

Table 3: Comparison of Speaker verification results (EER %) using a mixture PLDA 

model for the Thomson multi-taper method when uniform weights (UW), Eigenvalues as 

the weights (EVW) and adaptive weights (AW) are used to obtain the final spectrum 

estimate. The results of the baseline Hamming system are also included for comparison 

purposes. . For each condition, the minimum value is highlighted with boldface. We have 

60-dimensional MFCC features, a 256-component UBM and 800-dimensional i-vector 

extractor with dimension reduced to 150.                        

EER (%) 
Thomson Gender condition 

UW EVW AW 
Baseline 

Hamming 
det1 2.4 2.1 2.1 2.4 
det2 4.5 4.4 4.2  4.6 
det4 3.9 3.7 3.4  3.9 
det3 3.1 2.9 2.9 3.6 

Female 

det5 3.2 3.4 3.2 4.0 
det1 1.6 1.6 1.0 1.5 
det2 3.0 2.7  2.5 3.1 
det4 2.4 2.2  1.9  2.6 
det3 3.5 3.3 2.8 4.1 

Male 

det5 2.7 2.5 2.4 3.2 
 

 Compared to the Hamming PLP system, average relative improvements (female-

male, det1-det5), as shown in Table 3, obtained by the multi-taper PLP systems are as 

follows. Relative improvements of SWCE, Multi-peak and Thomson PLP systems are 

7.5%, 11.6% and 5.0% in terms of EER, and 14.4%, 16.2% and 10.1% in terms of 

minDCFnew. 

Although all three multi-taper variants outperformed the baseline Hamming method, 

considering the performances of both of the front-ends (i.e., MFCC and PLP), the SWCE 

and multipeak systems are preferred.  

In the multi-taper spectrum estimators, data are more evenly weighted and they have a 

reduced variance compared to single-tapered direct spectrum estimates. It is 

straightforward to choose the weights used in constructing the multi-taper estimate in 

order to minimize the estimation variance. 
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Figure 13: Male and female det1 to det5 speaker verification results for the baseline 

Hamming window system and multi-taper systems, measured by EER: 60-dimensional 

MFCCs with log-energy, deltas and double deltas, UBM with 2048 Gaussians, 800-

dimensional i-vectors with reduced dimension of 200. 

        

Figure 14: Same as Fig. 13 but for minDCFnew.                 
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Figure 15: Male and female det1 to det5 speaker verification results for the baseline 

Hamming window system and multi-taper systems, measured by EER: 60-dimensional 

PLP with log-energy, deltas and double deltas, UBM with 2048 Gaussians, 800-

dimensional i-vectors with dimension reduced to 200. 

     

Figure 16:  Same as Fig. 16 but for minDCFnew. 

Table 4: Average relative improvement in both female and male trials in det1 to det5 

conditions obtained by the multi-taper systems over the baseline system. The larger the 

relative improvement, the more effective the improvement due to multitapering. For each 

evaluation metric (EER or minDCFnew) and for each front-end (MFCC or PLP) the 

maximum value is highlighted with boldface. 

Average relative improvement (male-female, det1-det5) 
 SWCE Multi-peak Thomson 
 MFCC PLP MFCC PLP MFCC PLP 

EER 12.3 7.5 12.6 11.6 9.5 5.0 
minDCFnew 9.7 14.4 11.5 16.2 11.9 10.1 

 
 
 
6.  Conclusion  

 
In this paper we used multi-taper spectrum estimation approaches for low-variance 

MFCC and PLP feature computation and compared their performances, in the context of 

i-vector speaker verification, against  the conventional single-taper (Hamming window) 

technique. In a Thomson multi-taper method, instead of uniform weights, use of non-

uniform weights, specifically adaptive weights, can bring improvement in speaker 
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recognition. Experimental results on the telephone and microphone portion of the NIST 

2010 SRE task indicate that multi-tapering using sine or multi-peak or Slepian tapers 

outperforms the baseline single-taper method in most cases. Among the three multi-taper 

methods, the multi-peak and the SWCE MFCC systems outperformed the Thomson 

method (if uniform weights are chosen), which agrees well with the results of [3, 36]. 

However, if non-uniform weights (e.g., eigenvalues) are used in the Thomson method, 

from Table 4 it is observed that the Thomson MFCC system can outperform the other 

two multi-taper MFCC systems. The number of tapers was set to 6 according to [3, 30, 

36] without additional optimizations on the i-vector speaker verification system. The 

largest relative improvements over the baseline were observed for conditions involving 

microphone speech. Overall, the multi-taper method of MFCC and PLP feature extraction 

is a viable candidate for replacing the baseline MFCC and PLP features.  
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